James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Reklamy

Od zasady najdłuższego czasu do równań Maxwella III

W poprzednich dwóch częściach rozpatrzyliśmy zasadę wariacyjną dla cząstki w polu, które okazało się elektromagnetyczne (przy okazji otrzymaliśmy siłę Lorentza) oraz zasadę wariacyjną dla pola elektromagnetycznego. Skoro zaszło się tak daleko, warto może pokazać jeszcze kilka prostych konsekwencji tego, co uzyskaliśmy. Dwa równania Maxwella (prawo Gaussa i prawo Ampère’a) mają u nas postać:

\partial^{\mu}F_{\mu\nu}=\mu_0 j_{\nu},\mbox{(1)}

gdzie j_{\nu}=(c\rho,-\vec{j}) jest czterowektorem gęstości ładunku oraz gęstości prądu; nie wprowadzaliśmy ich poprzednio, ponieważ ominęliśmy obliczenie wariacji lagranżianu oddziaływania pola z cząstkami, wyraz taki ma postać -\int j^{\mu}A_{\mu} d^{4}x. Jasne jest, że muszą pojawić się jakieś źródła: ładunki i prądy.

Dwa pozostałe równania Maxwella (prawo Faradaya oraz magnetyczny odpowiednik prawa Gaussa) wyglądają następująco:

\partial_{\mu}F_{\nu\rho}+\partial_{\rho}F_{\mu\nu}+\partial_{\nu}F_{\rho\mu}=0.\mbox{(2)}

Z równości tej otrzymujemy cztery równania skalarne, gdy trzy wskaźniki są różne. Jednak samo równanie jest prawdziwe dla dowolnego zestawu wskaźników, przy powtarzających się dostajemy tożsamościowo zero, np.

\partial_{0}F_{01}+\partial_{1}F_{00}+\partial_{0}F_{10}=0,

gdyż wyraz środkowy równy jest zeru, a dwa skrajne mają przeciwne znaki (bo F_{\mu\nu}=-F_{\nu\mu}).

Pokażemy trzy krótkie wnioski z równań zapisanych w tej postaci:

  1. Równania Maxwella w próżni sprowadzają się do równania falowego, a to znaczy, że pole elektromagnetyczne może wędrować w przestrzeni jako fala.
  2. Możemy zapisać te równania za pomocą czteropotencjału A_{\mu}.
  3. Spełniona jest zasada zachowania ładunku.

Ad 1 Obliczmy pochodną \partial^{\mu} z naszego równania (2):

\partial^{\mu}\partial_{\mu}F_{\nu\rho}+\partial^{\mu}\partial_{\rho}F_{\mu\nu}+\partial^{\mu}\partial_{\nu}F_{\rho\mu}=0.

Należy to sobie wyobrażać jako wzięcie pochodnej, a następnie wysumowanie po powtarzającym się wskaźniku. Dwa ostatnie wyrazy są w próżni równe zeru na mocy równania (1). Wyraz pierwszy to

\partial^{\mu}\partial_{\mu}=\dfrac{1}{c^2}\dfrac{\partial^2}{\partial t^2}-\dfrac{\partial^2}{\partial x^2}-\dfrac{\partial^2}{\partial y^2}-\dfrac{\partial^2}{\partial z^2}\equiv \square.

Taki operator nazywa się dalambercjanem (od Jeana Le Ronda d’Alemberta, który zajmował się jeszcze w XVIII wieku równaniem falowym) przez analogię do laplasjanu. Otrzymany wynik można więc krótko zapisać:

\square F_{\mu\nu}=0.

A więc teoria przewiduje fale w próżni.

Ad 2 Tensor pola wyraża się przez czteropotencjał następująco:

F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.

Wartości pola elektromagnetycznego otrzymujemy przez różniczkowanie, więc jasne jest, iż wybór czteropotencjału nie jest jednoznaczny. Równanie (2) zapisane za pomocą czteropotencjału daje tożsamościowo zero:

\partial_{\mu}(\partial_{\nu}A_{\rho}-\partial_{\rho} A_{\nu})+\partial_{\rho}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+ \partial_{\nu}(\partial_{\rho}A_{\mu}-\partial_{\mu}A_{\rho})=0.

Łatwo zauważyć, że mamy pary wyrazów różniących się tylko znakiem (kolejność różniczkowania wolno zawsze zmienić). W bardziej rozbudowanej matematycznie teorii jest to tzw. tożsamość Bianchiego (od matematyka włoskiego z przełomu XIX i XX wieku, pierwszy zresztą tę tożsamość zapisał Ricci-Curbastro, a potem odkrywana była jeszcze wiele razy na nowo). Wstawiając potencjał do równania (1), otrzymujemy

\partial^{\mu}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})=\square A_{\nu}-\partial_{\nu}(\partial^{\mu}A_{\mu})=\mu_{0}j_{\nu}.

Ostatnie równanie można uprościć, korzystając ze swobody cechowania. Możemy bowiem zażądać, żeby ostatni wyraz w nawiasie po lewej stronie był równy zeru. Ograniczamy w ten sposób dowolność wyboru czteropotencjału. Warunek ten nazywa się cechowaniem Lorenza (od duńskiego uczonego Ludwiga Lorenza, którego nie należy mylić z Holendrem Hendrikiem Lorentzem od transformacji Lorentza). Jeśli go nałożymy, to nasz czteropotencjał spełnia niejednorodne równanie falowe:

\square A_{\mu}=\mu_{0}j_{\mu}.

Tam gdzie nie ma ładunków ani prądów, otrzymujemy równanie falowe dla czteropotencjału. W tej formie równania Maxwella wyglądają więc następująco:

\begin{cases} \square A_{\mu}=\mu_{0}j_{\mu}\\ \partial^{\mu}A_{\mu}=0.\end{cases}

W tej postaci mamy tylko jedno równanie na czterowektor plus warunek cechowania. Czyli w istocie pole elektromagnetyczne nie potrzebuje sześciu składowych (po trzy dla pola elektrycznego i magnetycznego), wystarczą cztery, a nawet nieco mniej, ze względu na warunek cechowania, który ogranicza możliwości.

Ad 3 Ostatni punkt: zasada zachowania ładunku. Wynika ona z równania (1), gdy weźmiemy jego pochodną:

\partial^{\nu}\partial^{\mu}F_{\mu\nu}=0=\mu_{0} (\partial^{\nu}j_{\nu}).

Pierwsza równość pochodzi stąd, że pochodne możemy przestawiać bez zmiany znaku, natomiast tensor F_{\mu\nu} jest antysymetryczny. Tak przy okazji, nazywa się często F_{\mu\nu} tensorem Faradaya, oczywiście Michael Faraday nie miał pojęcia o tensorach, odkrył jednak, że zmienne pole magnetyczne generuje pole elektryczne. Ostatnie wyrażenie to uogólnienie dywergencji na cztery wymiary:

\dfrac{\partial\rho}{\partial t}+\nabla\cdot\vec{j}=0.

Ostatnie równanie znaczy tyle, że jeśli w danym punkcie prąd wypływa, to gęstość ładunku musi odpowiednio maleć. Ładunek jest zachowany, i to lokalnie: aby wypłynął z danej objętości, musi przeciąć powierzchnię, która tę objętość ogranicza. Jeśli był, a teraz go nie ma, to znaczy, że musiał przejść przez granicę.

Równania Maxwella zapisane jak wyżej nie tylko wyglądają prościej, ale wskazują jawnie, że teoria jest relatywistycznie kowariantna, tzn. zgodna z teorią względności. To nie koniec zalet takiego podejścia: okazuje się, że w teorii grawitacji Einsteina postać równań Maxwella jest właściwie taka sama.

Od nacjonalizmu do idiotyzmu: duch francuski i fizyka niemiecka (1915, 1936)

Ponieważ przybliża się chwila, gdy nasze niestrudzone władze powołają wreszcie do życia Narodowy Instytut Fizyki im. Antoniego od Wielu Wybuchów, więc warto może przypomnieć chlubne przykłady z przeszłości. Złudne jest bowiem mniemanie, że dziedziny takie, jak matematyka albo fizyka nie mają charakteru narodowego. Otóż mają i dlatego tak ważne jest promowanie autentycznie polskiej fizyki. A jakaż to będzie radość dla dziatek naszych najmilszych, gdy w programie szkół po Koperniku będzie od razu Maria Skłodowska-Curie, wypadną zaś te wszystkie Newtony, Ohmy, Hertze i Einsteiny. Wszak żarówkę wynalazł Łodygin, nie jakiś Edison. A była przecież i lampa naftowa Łukasiewicza, i elektryczne świece Jabłoczkowa. My, Słowianie (czyli w zasadzie Polacy), daliśmy światu tyle, tylko on o tym nic nie wie. Kto zaś będzie negował nasze osiągnięcia, ten skazany być może na 3 lata naszej szkoły i nawet wśród pingwinów dopadnie go karząca ręka prawa i sprawiedliwości.

Pierwszy przykład pięknej myśli narodowej w naukach ścisłych znajdujemy u Pierre’a Duhema. Wybitny specjalista od termodynamiki, najbardziej znany jest jako filozof i historyk nauki. Wprowadził on rozróżnienie umysłów naukowych na typ angielski i francuski. Miało się ono wywodzić z tego, co Blaise Pascal określał jako zmysł życiowy (esprit de finesse) oraz zmysł geometryczny (esprit de géométrie). W nauce mielibyśmy uczonych, którzy tworzą różne modele, trzymając się danych doświadczalnych, nawet gdy wprowadza to pewien zamęt pojęciowy; drudzy to budowniczowie prostych teorii, koncentrujący się na ich konsekwencjach. Przykładem typu angielskiego miał być Michael Faraday, francuskiego – Isaac Newton. Rozróżnienie nie miało więc charakteru nacjonalnego, lecz analityczny. Duhem nie lubił brytyjskiej szkoły posługującej się pojęciem pola elektromagnetycznego i mocno atakował Jamesa Clerka Maxwella z pozycji filozoficznych. Oczywiście, żadna filozofia nie mogła na dłuższą metę zaszkodzić osiągnięciom Maxwella, filozofowie mówią swoje, a nauka idzie dalej, nawet bez ich pozwolenia.

Gdy wybuchła pierwsza wojna światowa, czyli wielka wojna (nikt jeszcze nie wiedział, że będzie następna), Duhem, za stary, aby iść na front, zaczął pisać i nauczać o niemieckiej nauce. Co pochlebnego można było powiedzieć o nauce wrogów? Duhem nie zamierzał ich chwalić, wprowadził i omówił pojęcie umysłu typu niemieckiego. Nauka niemiecka była formalistyczna, polegająca na wywodach logicznych nawet tam, gdzie to nie ma większego sensu. „Niemiec jest pracowity, skrupulatny, zdyscyplinowany i podporządkowany”. To geometra, brak mu subtelności. Przykładem Bernhard Riemann, twórca abstrakcyjnego ujęcia geometrii nieeuklidesowej. „Doktryna Riemanna jest ścisłą algebrą, gdyż wszystkie twierdzenia, jakie się w niej formułuje, są bardzo precyzyjnie wydedukowane z przyjętych postulatów; zaspokaja to zmysł geometryczny. Nie jest jednak prawdziwą geometrią, gdyż, wprowadzając swoje postulaty, wcale nie zatroszczyła się, aby wnioski z nich zgadzały się w każdym punkcie z osądami wyprowadzonymi z doświadczenia, które składają się na nasze intuicje dotyczące przestrzeni; w ten sposób przeczy ona zdrowemu rozsądkowi”. Był luty roku 1915, w listopadzie Albert Einstein zapisał równania pola grawitacyjnego w swej teorii. Od kilku lat ci, którzy śledzili rozwój fizyki, wiedzieli, że właśnie geometria riemannowska jest językiem matematycznym nowej teorii. Inaczej mówiąc: owa formalistyczna geometria, rzekomo ignorująca nasze pojęcie przestrzeni, okazała się nauką o fizycznej czasoprzestrzeni, jak najbardziej konkretną, podlegającą pomiarom. Duhem nie śledził zapewne grawitacyjnych prac Einsteina, ponieważ już wcześniejsza szczególna teoria względności nie zyskała w jego oczach aprobaty. Sądził, iż nie istnieje graniczna prędkość w przyrodzie, gdyż można sobie zawsze wyobrazić przebycie określonej drogi w dowolnie krótkim czasie, nawet gdy praktycznie nie potrafimy tego zrealizować. Przyjęcie zasady względności Einsteina, Minkowskiego i Lauego sprawia, że prędkość ponadświetlna staje się sprzecznością logiczną – twierdzi Duhem. „To, iż zasada względności dezorganizuje wszelkie intuicje wynikające ze zdrowego rozsądku, nie wywołuje u fizyków niemieckich żadnych wątpliwości. Przyjęcie jej oznacza siłą rzeczy obalenie wszystkich doktryn dotyczących przestrzeni, czasu, ruchu, wszystkich teorii mechaniki i fizyki; w tak wielkiej dewastacji nie ma niczego, co by nie mogło się podobać myśli germańskiej. Na terenie, który zostanie oczyszczony z dawnych poglądów, geometryczny zmysł Niemców pozwoli im całym sercem oddać się dziełu zbudowania na nowo całej fizyki, której fundamentem stanie się zasada względności”. Widzimy więc na tych przykładach, jak bardzo niefrancuska, a tym samym przykra dla zrównoważonego umysłu, była niemiecka nauka Einsteina.

Mamy drugi jeszcze przykład, jak wolna myśl narodowa kształtować może zdrową etnicznie fizykę. Autorem naszym jest Philipp Lenard, laureat Nagrody Nobla z fizyki eksperymentalnej, człowiek mimo to zgorzkniały i upatrujący odrodzenia nauki aryjskiej w wyzwoleniu się od wpływów żydowskich. Zdaniem Lenarda fizyka stworzona została niemal wyłącznie przez Aryjczyków: Francuzów w jego opowieści nie było, Anglicy, Szkoci i Skandynawowie to praktycznie Niemcy. Niemcami byli też wielcy eksperymentatorzy, jak Heinrich Hertz, odkrywca fal elektromagnetycznych, u którego Lenard pracował kiedyś jako asystent. Hertz nie był jednak „czystej krwi”: jego ojciec, prawnik i senator hanzeatyckiego miasta Hamburga, był Żydem przechrzczonym na luteranizm. Miało to złowieszcze, zdaniem Lenarda, następstwa, gdyż w ostatnich latach życia Hertz zajmował się zasadami mechaniki. W pracy tej „silnie wyszedł na jaw duch żydowski, który w jego wcześniejszych owocnych pracach pozostawał w ukryciu”. W 1936 roku ukazało się czterotomowe dzieło Philippa Lenarda, zatytułowane Deutsche Physik. Był to podręcznik zawierający zdrową pod względem narodowym część fizyki, a nie – jakby ktoś złośliwy mógł pomyśleć – to, co z fizyki zrozumiał Lenard. We wstępie do swego wiekopomnego dzieła skromny jego autor zwracał się do czytelnika: „«Fizyka niemiecka?» – zapytacie. Mógłbym równie dobrze powiedzieć fizyka aryjska albo fizyka ludzi typu nordyckiego, fizyka badaczy rzeczywistości, poszukiwaczy prawdy, fizyka tych, którzy stworzyli badania naukowe. «Nauka jest międzynarodowa i zawsze taka pozostanie» – zaczniecie protestować. (…) W rzeczywistości tak samo, jak wszystko, co tworzy człowiek, również nauka zdeterminowana jest przez rasę albo krew. (…) Należy powiedzieć tu nieco o «fizyce» narodu żydowskiego, ponieważ stoi ona w jaskrawym przeciwieństwie do fizyki niemieckiej (…) fizyka żydowska dopiero niedawno poddana została wyważonej ocenie publicznej. Pod koniec wojny, kiedy Żydzi w Niemczech zaczęli dominować i narzucać ton, wezbrała niczym powódź i ujawniły się jej wszystkie cechy. Znalazła szybko gorliwych zwolenników wśród wielu autorów krwi innej niż żydowska albo nie czysto żydowska”. Oczywiście, przykładem fizyki żydowskiej par excellence musiał być Albert Einstein, jego teorie „kompletnie zgrały się w zetknięciu z rzeczywistością. Najwyraźniej nie były nawet w zamierzeniu prawdziwe. Żyd pozbawiony jest całkowicie zrozumienia prawdy innej niż tylko powierzchowna zgodność z rzeczywistością, [prawdy], która nie zależy od ludzkiej myśli. (…) Zdumiewające jest, że prawda czy rzeczywistość nie wydają się Żydowi czymś szczególnym bądź różnym od nieprawdy, lecz są one równoważne jednej z wielu możliwych opcji teoretycznych”.

Lenard nie mógł przeboleć, że powstaje nowa fizyka, tworzona m.in. przez Einsteina, a popierana ku jego niezadowoleniu przez Maksa Plancka czy Maksa Lauego, późn. von Laue – niewątpliwych etnicznych Niemców. Poglądy wygłaszane przez Lenarda, choć sformułowane prymitywniej, są w istocie zbliżone do zarzutów Duhema. Dla obu teoria względności sprzeczna była ze zdrowym rozsądkiem, była wykwitem zbyt dużej skłonności do abstrakcji oderwanej od rzeczywistości, przerośniętym esprit de géométrie. Duhem widział w tym cechę niemiecką, Lenard natomiast żydowską.

„«Ja cierpię» – Lepiej tak powiedzieć, niż powiedzieć: «Ten krajobraz jest brzydki»” (Simone Weil).

Od zasady najdłuższego czasu do równań Maxwella (II)

Pokażemy, jak równania Maxwella wynikają z zasady najmniejszego działania dla pól relatywistycznych. Można powiedzieć, że klasyczny elektromagnetyzm jest najprostszą teorią relatywistyczną. Kolejność historyczna była odwrotna: najpierw równania Maxwella, a potem teoria względności. Teoria względności ma tu znaczenie fundamentu, ponieważ określa geometrię czasoprzestrzeni (przestrzeni Minkowskiego). Formalizm geometrii czasoprzestrzennej nie jest może oczywisty na pierwszy rzut oka, ale nawet na pierwszy rzut oka widać, że równania mają znacznie elegantszą formę.

Pokazaliśmy poprzednio, jak z zasady najmniejszego działania otrzymać dynamikę relatywistyczną cząstki. Należy w tym celu zdefiniować działanie tak, aby nie zależało od układu współrzędnych – tzn. było skalarem lorentzowskim: a więc funkcją nie zmieniającą się nie tylko przy obrotach, ale także przy transformacjach Lorentza (które geometrycznie są podobne do obrotów, tyle że mieszają ze sobą współrzędne przestrzenne i czasowe). Chcąc uwzględnić pole zewnętrzne, nie wystarczy teraz dodać funkcję będącą energią potencjalną cząstki. Okazuje się, że jeśli żądamy, aby nasze działanie było skalarem, to najprostsze pole zewnętrzne musi mieć cztery składowe: musi być czterowektorem A_{\mu} (zwanym czteropotencjałem). Równania ruchu, które uzyskuje się z zasady najmniejszego działania są wówczas równoważne wyrażeniu na siłę Lorentza w elektromagnetyzmie. Wielkością, która wchodzi do tego wyrażenia nie jest samo A_{\mu} , lecz jego pochodne:

F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu},

gdzie wprowadziliśmy krótsze oznaczenie: \dfrac{\partial}{\partial x^{\mu}}\equiv \partial_{\mu}.
Wielkości F_{\mu\nu} okazują się składowymi pola elektromagnetycznego: jest ich sześć, bo z definicji widać, że F_{\mu\nu}=-F_{\nu\mu} , a więc macierz 4×4 jest antysymetryczna i ma sześć składowych niezależnych. F_{\mu\nu}, zwane w czasach Einsteina Sechs-Vektor, jest tensorem, tzn. przy transformacjach zachowuje się tak jak iloczyn dwóch czterowektorów: x_{\mu}y_{\nu} . Oznacza to w szczególności, że przy transformacjach Lorentza pola elektryczne i magnetyczne będą się mieszać. Łatwo zauważyć, że powinno tak być. Weźmy parę spoczywających ładunków. Działają one na siebie siłą kulombowską. Jeśli będziemy je obserwować z układu odniesienia, względem którego oba ładunki się poruszają, będziemy mieli do czynienia z prądami, a więc i z polem magnetycznym.

Chcąc zbudować nie teorię cząstek w zadanym polu zewnętrznym, lecz równania, które musi spełniać pole, trzeba uogólnić nieco podejście. Zmiennymi będą teraz nie współrzędne cząstek, lecz wartości pól A_{\mu\nu}(x^{\rho}) . Zaznaczyliśmy wprost, że wartości pola są funkcjami położeń i czasu. Lagranżian musi teraz zależeć od wartości pola oraz jego pierwszych pochodnych: {\cal L}={\cal L}(A_{\mu}, \partial_{\nu}A_{\mu}). . To, co teraz robimy, jest uogólnieniem jednowymiarowwej teorii struny. Działanie musi przyjąć postać:

{\displaystyle S=\int {\cal L} dx^0dx^1dx^2dx^3\equiv \int {\cal L}d^4 x}

Całkujemy po czterowymiarowym obszarze w czasoprzestrzeni. Jaką postać musi przybrać działanie? Podobnie jak w przypadku struny spodziewamy się funkcji kwadratowej w A_{\mu} i jej pochodnych. Działanie powinno zawierać dwa wyrazy: jeden opisujący pola swobodne, drugi – ich oddziaływanie z naładowanymi cząstkami. Ten drugi wyraz już właściwie znamy z poprzedniej części. Gdy mamy wiele cząstek, należy oczywiście po nich wszystkich wysumować. Wrażenie to nie miało postaci całki czterowymiarowej, ale można je do takiej postaci przepisać, używając funkcji (dystrybucji) Diraca. Nie będziemy tego robić, ponieważ jest to ćwiczenie czysto rachunkowe. Zajmiemy się natomiast bliżej działaniem dla pól swobodnych. Lagranżian (ściśle mówiąc: gęstość lagranżianu) powinien być skalarem lorentzowskim. Najprostszym takim skalarem będzie wyrażenie:

{\cal L}=-\dfrac{1}{4\mu_0} F^{\mu\nu}F_{\mu\nu},

gdzie \mu_0 jest stałą fizyczną: przenikalnością magnetyczną próżni. Tensor z podniesionymi wskaźnikami ma niektóre wyrazy innego znaku niż ten z opuszczonymi: transformuje się on bowiem jak iloczyn dwóch czterowektorów x^{\mu}y^{\nu}. W praktyce oznacza to, że wyrazy z jednym wskaźnikiem czasowym zmieniają znak, pozostałe zaś są takie same. Żonglerka wskaźnikami potrzebna jest ze względu na rozróżnienie przestrzeni i czasu, które są w teorii względności nadal fundamentalnie różne. Jeśli w naszych sumach każdy wskaźnik górny jest sumowany z takim samym wskaźnikiem dolnym, to wyrażenie jest skalarem lorentzowskim. Iloczyn F^{\mu\nu}F_{\mu\nu} musi się zatem transformować, jak x^{\mu}y^{\nu}x_{\mu}y_{\nu}=(x^{\mu}x_{\mu})\cdot(y^{\nu}y_{\nu}),
a więc nie będzie zależeć od układu współrzędnych.

W dalszym ciągu postępujemy jak poprzednio, tzn. wyobrażamy sobie, że nasze pole A_{\mu} zmienia się na A_{\mu}+\delta A_{\mu} i obliczamy liniową część przyrostu działania:

{\displaystyle \delta S=\dfrac{1}{\mu_0}\int \partial_{\mu}F^{\mu\nu}\delta A_{\nu}d^4 x.}

Z zasady najmniejszego działania otrzymujemy więc cztery równania:

\boxed{\partial_{\mu}F^{\mu\nu}=0.}

Są to równania Maxwella, tzn. dokładnie ta ich para, w której występują prądy i ładunki (u nas one znikają). Możemy je równie dobrze zapisać w postaci:

\boxed{\partial^{\mu}F_{\mu\nu}=0.}

.
Pochodna ze wskaźnikiem na górze jest równa z definicji \partial^{\mu}\equiv\dfrac{\partial}{\partial x_{\mu}}.

Są to trywialne zmiany zapisu, z naszego punktu widzenia potrzebne do tego, by otrzymać prawidłowe znaki.
Równań Maxwella jest jednak osiem. Co stało się z drugą parą równań? Okazuje się, że mają one postać:

\boxed{\partial_{\mu}F_{\nu\rho}+\partial_{\rho}F_{\mu\nu}+\partial_{\nu}F_{\rho\mu}=0.}

gdzie trójka różnych wskaźników jest przestawiana cyklicznie: \mu\nu\rho\rightarrow \rho\mu\nu\rightarrow\nu\rho\mu.

Trzy wskaźniki spośród czterech możemy wybrać na cztery sposoby, otrzymujemy więc jeszcze cztery równania, a łącznie osiem – tyle, co trzeba.
Ten drugi zestaw równań spełniony jest tożsamościowo, jeśli pamiętamy, że F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.

Podsumujmy jeszcze krótko, co otrzymaliśmy: najprostszy lagranżian utworzony z pola A_{\mu} prowadzi do równań Maxwella. Ich postać narzucona jest więc w znacznym stopniu żądaniem zgodności z teorią względności, czyli mówiąc żargonem fizyki: kowariantności relatywistycznej. Oba zestawy naszych równań: ten otrzymany z działania oraz ten drugi, otrzymany z warunków symetrii, mają taką samą postać w każdym układzie odniesienia. Forma, w jakiej zapisaliśmy równania, niekoniecznie jest najwygodniejsza do praktycznych zastosowań, ale ma tę zaletę, iż widzimy na pierwszy rzut oka, że cała teoria jest kowariantna.

Można otrzymać z tych równań wniosek, że w pustej przestrzeni pola elektromagnetyczne wędrują z prędkością światła. Została ona tu wprowadzona jako przelicznik odległości czasowych na przestrzenne w teorii względności. Inaczej: prędkość c jest stałą wynikającą z historycznych zaszłości: mamy inne jednostki dla czasu i przestrzeni, choć Stwórca (jakby to ujął Einstein) nie widzi między nimi większej różnicy niż różnica znaku w niektórych wyrażeniach. Na tym fundamencie zbudowaliśmy teorię elektromagnetyzmu i przewiduje ona fale rozchodzące się z prędkością c, czyli dla Stwórcy jednostkową. Ludzie najpierw zetknęli się z tą wielkością, mierząc szybkość rozchodzenia się światła, stąd jej nazwa.

Jeszcze jedna uwaga na koniec. Lagranżian przez nas przyjęty może się nie wydawać absolutnie najprostszy. Mamy tu jednak jeszcze jedną symetrię, zwaną symetrią cechowania: jeśli do czteropotencjału dodać pochodną czasoprzestrzenną dowolnej funkcji \partial_{\mu}f zmiennych przestrzennych i czasu, to lagranżian oddziaływania z poprzedniej części zmieni się wprawdzie, ale niegroźnie, tzn. równania ruchu z poprzedniej części nie zmienią się, nie zmieni się też tensor pola F_{\mu\nu} (bo jest antysymetryczny, a drugie pochodne cząstkowe są przemienne). Dlatego do lagranżianu nie ma sensu dodawać takich wyrazów, jak A_{\mu}A^{\mu} – bo nie są one niezależne od cechowania. Symetria cechowania okazała się bardzo istotna. Najpierw wydawało się, że jest to pewna szczególna własność elektrodynamiki, z czasem jednak symetrię cechowania uogólniono na tzw. cechowanie nieabelowe. Chromodynamika i teoria oddziaływań elektrosłabych są takimi teoriami z symetrią cechowania – czyli cały Model Standardowy.

Zauważmy też, że podstawową wielkością jest czteropotencjał, choć w wielu przypadkach wygodniej jest posługiwać się polami elektromagnetycznymi.

J.J. Thomson: Jak powstaje fala elektromagnetyczna? (1903)

Pole elektryczne spoczywającego ładunku zachowuje się tak, jak linie prędkości cieczy (nieściśliwej). Oznacza to, że linie sił pola biegną radialnie z ładunku punktowego i każdą zamkniętą powierzchnię otaczającą nasz ładunek przecina tyle samo linii sił. Strumień pola elektrycznego jest taki sam przez każdą powierzchnię zamkniętą (taka sama objętość cieczy przepływa w jednostce czasu przez każdą powierzchnię: ciecz nie gromadzi się ani nigdzie nie ucieka, np. w czwarty wymiar, ile wpłynęło przez jedną powierzchnię, tyle musi wypłynąć przez drugą).

maxwell fluid

Zatem natężenie pola E razy pole powierzchni sferycznej o promieniu r jest stałe:

E4\pi r^2=\dfrac{q}{\varepsilon_0}\Rightarrow E=\dfrac{q}{4\pi\varepsilon_0 r^2} \mbox{(*)}.

Inaczej mówiąc, kwadrat odległości w prawie Coulomba bierze się stąd, że pole powierzchni sfery rośnie jak r^2. W równaniach tych q oznacza ładunek, \varepsilon_0 stałą informującą o wielkości sił elektrycznych, jest to tzw. przenikalność próżni i jest stałą fizyczną. Najczęściej jednak mamy do czynienia nie z polami elektrostatycznymi, lecz z falami elektromagnetycznymi: dzięki tym falom widzimy na ekranie ten tekst, dzięki tym falom możemy rozmawiać przez komórkę albo obserwować wszechświat, można śmiało stwierdzić, że większość naszej jednostkowej i cywilizacyjnej wiedzy zdobyliśmy dzięki falom elektromagnetycznym.

Spójrzmy nieco inaczej na rysunek wyżej. Gdyby punkt w środku oznaczał Słońce (albo jakąś inną gwiazdę, albo dowolne źródło o symetrii kulistej), a linie były promieniami światła, to przez każdą powierzchnię zamkniętą w jednostce czasu powinna przechodzić taka sama ilość energii, inaczej mówiąc: moc przepływająca przez każdą powierzchnię byłaby taka sama – wszechświat jest dość pusty i praktycznie cała energia przepływa dalej (gdybyśmy zresztą wyobrazili sobie planetę między dwiema powłokami, to po pierwsze byłaby ona malutka w porównaniu do gwiazdy, a więc pochłaniałaby niewiele mocy, a poza tym wysyłałaby tyle watów, ile pochłania – inaczej planeta gwałtownie stygłaby albo się ogrzewała.) Równanie zapisane wyżej można by powtórzyć z niewielkimi zmianami: jeśli I to moc na jednostkę powierzchni (W/m2), czyli natężenie promieniowania gwiazdy, to możemy napisać:

I4\pi r^2=P\Rightarrow I=\dfrac{P}{4\pi r^2}.

P jest mocą gwiazdy [W], czyli ilością energii wysyłanej przez nią w jednostce czasu. Zatem natężenie fali powinno maleć jak 1/r^2, ponieważ pole powierzchni sfery rośnie jak r^2. Natężenie fali jest dla wszystkich rodzajów fal, nie tylko elektromagnetycznych, proporcjonalne do kwadratu amplitudy. Mamy zatem

I\sim E^2\sim \dfrac{1}{r^2}\Rightarrow E\sim \dfrac{1}{r}.

Pole elektryczne fali powinno być odwrotnie proporcjonalne do odległości od źródła, a nie do jej kwadratu, jak w przypadku statycznym (*). Możemy teraz zrozumieć, czemu pole elektrostatyczne trudniej zaobserwować: maleje ono bowiem z odległością szybciej niż pole fali elektromagnetycznej. Jest i drugi powód: atomy zawierają tyle samo ładunku ujemnego co dodatniego i w efekcie pola elektrostatyczne niemal się równoważą – niemal, bo ładunki dodatnie (jądra) są średnio biorąc w innym miejscu niż ujemne (elektrony), wypadkowe pole maleje w rezultacie jeszcze szybciej, z sześcianem odległości. Siły elektrostatyczne są bardzo istotne dla wiązań atomów, czyli na niewielkich odległościach.

Jak można z pola spoczywającego ładunku otrzymać pole fali elektromagnetycznej? Zacznijmy od jednostek. Skoro dla pola statycznego E maleje jak 1/r^2, to aby otrzymać zależność 1/r, musimy we wzorze (*) znaleźć dodatkowy czynnik w mianowniku o wymiarze długości (m). Pole fali elektromagnetycznej związane jest z ruchem przyspieszonym ładunku, logicznie jest przypuścić, że powinno być proporcjonalne do jego przyspieszenia a (m/s2). Mamy więc w liczniku metry podzielone przez sekundy do kwadratu. A chcielibyśmy mieć same metry, i w mianowniku. Możemy wykorzystać w tym miejscu drugą stałą fizyczną elektromagnetyzmu, tzn. prędkość światła c (pierwsza to \varepsilon_0). Jeśli przyspieszenie podzielimy przez c^2, dostaniemy taki wymiar, jak potrzeba:

\left[\dfrac{a}{c^2}\right]=\dfrac{m/s^2}{m^2/s^2}=\dfrac{1}{m}.

W wyniku tego zgadywania, zwanego uczenie analizą wymiarową, możemy przypuszczać, że pole elektryczne fali wytwarzanej przez ładunek q powinno mieć postać:

E=\dfrac{qa}{4\pi\varepsilon_0 c^2 r}f(\theta).

Włączyliśmy tu jakąś nieznaną funkcję kąta miedzy przyspieszeniem a promieniem wodzącym. Kąty są bezwymiarowe, więc nie zmienia to naszych wniosków. Zobaczymy, jak można zrozumieć mechanizm wytwarzania fali i ostatni wzór. Rozumowanie poniżej pochodzi od J.J. Thomsona, który w roku 1903 miał wykłady w Yale, gdzie je przedstawił wśród wielu innych rozważań. Fale elektromagnetyczne znane były od kilku dziesięcioleci, wkład Thomsona jest tu czysto dydaktyczny (Główną jego naukową zasługą było odkrycie elektronu, za które otrzymał Nagrodę Nobla w 1906 roku.) Rozumowanie to było zresztą wielokrotnie powtarzane przez autorów podręczników, m.in. w kursie berkeleyowskim, znanym i w Polsce.

Punktem wyjścia jest fakt, że pole elektryczne ładunku poruszającego się jednostajnie wygląda w każdej chwili tak samo jak pole ładunku spoczywającego (*) – chcąc zmierzyć pole w danym punkcie i w danej chwili, musimy wstawić do tego wzoru odległość miedzy punktem a ładunkiem obliczoną właśnie w owej chwili. Zakładamy tu, że prędkość jest niewielka w porównaniu z prędkością światła, jest to założenie do uniknięcia, choć sam Thomson niezbyt dobrze rozumiał ten punkt – było to jeszcze przed teorią względności. W każdym razie w większości przypadków, oprócz akceleratorów cząstek albo kosmicznych katastrof, założenie to jest spełnione.

Impuls typu fali elektromagnetycznej uzyskamy, gdy nasz ładunek zmieni prędkość. Wyobraźmy sobie np., że w pewnej chwili t=0 ładunek zaczął hamować. Oczywiście nie mógł stanąć w miejscu, przez pewien krótki czas \tau poruszał się z przyspieszeniem, a potem już był nieruchomy. Jak powinny wyglądać linie sił w chwili T\gg \tau? Wiemy, że informacja nie może przenosić się szybciej niż c, zatem na zewnątrz sfery o promieniu cT=OR nic jeszcze nie wiadomo, że ładunek się zatrzymał i linie sił zbiegają do punktu O’, w którym powinien się on znaleźć, gdyby nadal poruszał się jednostajnie. W pobliżu ładunku, w odległościach mniejszych niż c(T-\tau)=OP, już wiadomo, że ładunek jest nieruchomy: linie sił zbiegają się w punkcie O. Linie sił pola elektrycznego muszą być ciągłe, nie mogą się zaczynać ani kończyć w punkcie przestrzeni, gdzie nie ma ładunku. Łącząc obraz sprzed hamowania i po hamowaniu uzyskamy co następuje:

electricitymatte00thombw

(Linia sił OPP’Q, oryginalny rysunek z wykładów Thomsona, Electricity and Matter, New Haven 1912)

purcell

(Linia sił to ABCD, ta sama sytuacja w podręczniku Purcella i Morina z roku 2013)

Na pierwszym rysunku nie zaznaczono drogi hamowania, na drugim jest ona zaznaczona, ale tak, że widać, iż jest znacznie krótsza niż droga v_0 T. Do pola radialnego doszło pole skierowane poprzecznie, prostopadle do promienia wodzącego. Właśnie to pole poprzeczne zmienia się jak 1/r. Nie wiem, czy dziś łatwiej się uczyć niż przed wiekiem, z pewnością lepsze są rysunki i liczniejsze źródła wiedzy. Trzymając się oznaczeń drugiego rysunku, widzimy, że stosunek pola poprzecznego E_{\theta} do radialnego E_r równy jest

\dfrac{E_{\theta}}{E_{r}}=\dfrac{v_0 T\sin\theta}{c\tau}=\dfrac{v_0}{\tau}\dfrac{cT}{c^2}\sin\theta=a\dfrac{r}{c^2}\sin\theta.

Widzimy, że wraz z rosnącą odległością stosunek obu składowych pola jest coraz większy: daleko od źródła zostaje jedynie pole poprzeczne. Wstawiając za E_{r} wzór (*), otrzymamy pole promieniowania.

E=\dfrac{qa\sin\theta}{4\pi\varepsilon_0 c^2 r}.

Jak widać, f(\theta)=\sin\theta. Ostatnia zależność oznacza, że tylko przyspieszenie ładunku prostopadłe do promienia wodzącego jest źródłem fali. Jeśli patrzymy na poruszający się ładunek i nie widzimy ruchu (bo porusza się on wzdłuż linii widzenia), nie ma promieniowania. Wyrażenie dla E_{\theta} słuszne jest dla dowolnego ruchu nierelatywistycznego. W antenach ładunki oscylują, zatem przyspieszenie zmienia się okresowo, a tym samym zgodnie z naszym wzorem zmienia się okresowo także pole elektryczne. Mamy rozchodzącą się falę elektromagnetyczną. Nie zajmowaliśmy się tu polem magnetycznym, które jest proporcjonalne do pola elektrycznego i prostopadłe do niego, a także do kierunku rozchodzenia się fali.

Uwaga nt. kątów: Natężenie fali elektromagnetycznej będzie zawierało kwadrat pola, a więc \sin^2\theta. Oczywiście, jeśli źródło złożone jest z wielu ładunków, których przyspieszenia rozmieszczone są przypadkowo i izotropowo (jak w przypadku gwiazdy), wypadkowa energia będzie niezależna od kierunku, zostanie tylko zależność od odległości.

Uwaga nt. stałych: Czasem używa się innej pary stałych: \varepsilon_0 oraz \mu_0. Zachodzi zależność:

\mu_0=\dfrac{1}{\varepsilon_0 c^2}.

James Clerk Maxwell: O liniach sił Faradaya (1855-1856)

Jesienią 1855 roku dwudziestoczteroletni Szkot został wybrany na członka (Fellow) Trinity College, w tym samym mniej więcej wieku co niegdyś Isaac Newton. Kolegium nie wymagało już przyjęcia święceń, choć pobożny Maxwell pewnie nie odrzucałby z góry takiej możliwości (Newton, także pobożny, ale nieortodoksyjny, wykręcił się specjalną dyspensą królewską). Maxwell miał talent matematyczny, należał do wychowanków sławnego tutora Williama Hopkinsa, znanego z kształcenia tzw. wranglers – studentów wyróżniających się na końcowych egzaminach z tego przedmiotu. Hopkins miał ich na koncie dwie setki, zarabiał zresztą w ten sposób całkiem spore pieniądze. Do jego uczniów należeli Arthur Cayley, lord Kelvin, George Gabriel Stokes, a także w roku 1854 Edward Routh jako Senior Wrangler i Maxwell jako Second Wrangler. Ten ostatni zdążył już zająć się w sposób twórczy kilkoma tematami z dziedziny fizyki oraz fizyki matematycznej, teraz próbował swych sił na polu elektryczności i magnetyzmu.
Na przełomie lat 1855 i 1856 Maxwell ogłosił pracę O liniach sił Faradaya. Nawiązywał w niej do badań eksperymentalnych Michaela Faradaya, bodaj największego eksperymentatora w historii fizyki. Prosty chłopak, oddany jako czternastolatek do terminu u introligatora, sam zdobył wykształcenie naukowe i zaczynając od pomocnika w laboratorium, doszedł do pozycji wyroczni w kwestiach eksperymentalnych. W roku 1855 zjawiska elektryczne i magnetyczne znane były całkiem dobrze, brakowało jednak wciąż zadowalającej teorii, która obejmowałaby ich całość. Próbowano sprawdzonego wcześniej podejścia za pomocą oddziaływania na odległość. A więc ładunki elektryczne oraz bieguny magnetyczne przyciągają się albo odpychają, a siła jest odwrotnie proporcjonalna do kwadratu odległości. Prawo takie sprawdził eksperymentalnie Charles Augustin Coulomb jeszcze w poprzednim wieku. Także prądy elektryczne oddziałują ze sobą na odległość, choć prawo w tym przypadku okazało się dość skomplikowane, ponieważ uwzględniać musiało kierunki obu prądów. Faraday odkrył, że zmienne pole magnetyczne generuje prąd – to zjawisko indukcji elektromagnetycznej wykorzystywane jest np. w elektrowniach, trudno wyobrazić sobie naszą cywilizację bez wszelkiego rodzaju generatorów prądu.
Idea oddziaływania na odległość była niezbyt chętnie akceptowanym spadkiem po Isaacu Newtonie. Jego prawo powszechnego ciążenia mówi o przyciąganiu na odległość odwrotnie proporcjonalnym do kwadratu odległości. Jak jakieś ciało może działać tam, gdzie go nie ma? Czemu siła maleje jak kwadrat odległości, a nie jakaś inna jej potęga? Nie znano odpowiedzi na pierwsze pytanie, co do drugiego istniały pewne wskazówki, Układ Słoneczny, jaki znamy wymaga takiego właśnie prawa z wykładnikiem równym dwa. Można więc było podejrzewać, że odpowiadało on zamiarom Stwórcy. Do czasów Maxwella nie dowiedziano się niczego nowego na temat grawitacji, uczeni, nie mogąc odpowiedzieć na te pytania, przestali je zadawać i zajęli się, jak to zawsze bywa, kwestiami rokującymi szybszą odpowiedź.
Faraday, geniusz eksperymentu, nie miał wyrafinowanego wykształcenia matematycznego. Starał się więc wizualizować obserwowane zjawiska. Przykładem były linie sił pola magnetycznego z jednej z jego prac.

faraday29_1-x

Na lewym rysunku mamy linie sił bieguna magnetycznego, na drugim dwóch różnych biegunów magnetycznych. Są to wyniki eksperymentu: na papierze rozsypywane były opiłki żelaza, a później obraz ten utrwalano za pomocą kleju. Czym były linie sił? Maxwell definiował je jako linie wskazujące w każdym punkcie kierunek siły działającej na biegun magnetyczny (albo ładunek w przypadku elektrycznym). Dalej skupimy się na polu elektrycznym, ponieważ istnieją pojedyncze ładunki elektryczne i jest to nieco łatwiejsze do omówienia. Podobne rozumowania stosują się także do przypadku magnetycznego, trzeba tylko pamiętać, że nie istnieją osobne bieguny magnetyczne. Nb. szukano wielokrotnie cząstek elementarnych, które byłyby takimi biegunami, tzw. monopoli magnetycznych, czasami nawet komunikowano o ich odkryciu, ale żadne z tych doniesień się nie potwierdziło.

y

x

Te same linie sił obliczone dla przypadku pojedynczego ładunku oraz pary przeciwnych ładunków. Linie przerywane są wszędzie prostopadłe (ortogonalne) do linii sił i odpowiadają stałemu potencjałowi.

Maxwell zwrócił uwagę, że linie sił pola tworzą taki sam obraz jak linie przepływu idealnej nieściśliwej cieczy. Moglibyśmy sobie wyobrazić, że te linie sił to w istocie rurki cieczy. W rurce takiej iloczyn szybkości przepływu oraz pola przekroju jest stały. Tam, gdzie przekrój jest mniejszy, ciecz płynie szybciej. Gdyby prędkość była odpowiednikiem natężenia pola, należałoby sobie wyobrażać rurkę jako węższą tam, gdzie pole jest silniejsze, i odwrotnie.

maxwell tube

Pole elektryczne wokół ładunku punktowego składałoby się ze stożkowych rurek o wierzchołku w ładunku. Pole przekroju rośnie jak kwadrat promienia, natomiast prędkość przepływu (a także pole elektryczne) maleje w takim samym stosunku – co zgodne jest z obserwacjami.

maxwell1

maxwell fluid

Ładunek punktowy odpowiada więc źródłu naszej dziwnej cieczy. Z tego punktu, niczym z wywierzyska, wypływa nieściśliwa ciecz na wszystkie strony. Całkowita objętość tej cieczy przepływająca przez powłokę sferyczną nie zależy od promienia powłoki:

v\sim \dfrac{1}{r^2}\Rightarrow vS\sim \dfrac{1}{r^2}4\pi r^2=4\pi=const

Przez każdą powierzchnię sferyczną przepływa tyle samo cieczy w ciągu sekundy. W przeciwnym wypadku ciecz musiałaby się gdzieś gromadzić albo wypływać po drodze między dwiema takimi tymi powierzchniami otaczającymi źródło. Nie musimy wcale ograniczać się do powierzchni kulistych: przez każdą powierzchnię zamkniętą otaczającą źródło w jednostce czasu przepłynie taka sama objętość cieczy.

Oczywiście Maxwell nie twierdził, że pole elektryczne jest przepływem jakiejś tajemniczej cieczy. Podkreślał jedynie analogię czysto matematyczną. W przypadku elektrycznym wielkość „przepływu” nazywamy strumieniem pola elektrycznego przez daną powierzchnię zamkniętą. Okazuje się, że ów strumień \Phi jest równy (w jednostkach SI):

\Phi=\dfrac{q}{4\pi\varepsilon_0 r^2}4\pi r^2=\dfrac{q}{\varepsilon_0}.

Ładunek wewnątrz powierzchni oznaczamy przez q. Znów kształt powierzchni jest obojętny. Prawo to, zwane prawem Gaussa, pozostaje słuszne także dla przypadku większej liczby ładunków. Wypadkowa prędkość przepływu w danym punkcie jest wówczas sumą osobnych prędkości. Podobnie z natężeniem pola elektrycznego: jest ono wektorową sumą pól wytwarzanych przez każdy z ładunków. Ładunki ujemne są „ujemnymi” źródłami, czyli takimi miejscami, w których nasza ciecz ucieka w jakieś matematyczne zaświaty. Prawo Gaussa w wersji elektrycznej stwierdza, że strumień przez dowolną powierzchnię zamkniętą jest proporcjonalny do algebraicznej sumy ładunków wewnątrz powierzchni.

Prawo Gaussa jest przydatne, pozwala bowiem obliczać pole elektryczne w niektórych sytuacjach, gdy układ jest symetryczny. Możemy np. stosować je do dowolnego kulistosymetrycznego rozkładu ładunków. Można je także przenieść na grawitację: wówczas polem jest przyspieszenie grawitacyjne a strumień jest zawsze ujemny i proporcjonalny do masy (*). Samo prawo Gaussa jednak nie wystarczy: na przepływy owej fikcyjnej cieczy należy jeszcze nałożyć dodatkowy warunek bezwirowości (w przypadku statycznym).

Dlaczego obraz nieściśliwej cieczy lepszy był od tradycyjnego oddziaływania na odległość? Pozwalał wyjaśnić obserwowane linie sił i sprowadzał zagadnienie do lokalnego: ciecz zachowuje się tak, a nie inaczej, tylko wskutek popychania przez inne jej części. Wszystkie zjawiska są więc lokalne. W gruncie rzeczy w takim podejściu nie potrzebujemy wcale sił działających na odległość. Wystarczą pola i ich lokalne zachowanie. Punkt widzenia tego rodzaju miał wielką przyszłość. Koncentrując się na lokalnych równaniach opisujących elektryczność i magnetyzm Maxwell odniósł sukces, budując najważniejszą teorię XIX stulecia. Stało się to jednak znacznie później, na razie była tylko pewna analogia matematyczna, ilustracja pojęć wprowadzonych przez Faradaya.

Charakterystyczna jest reakcja samego Faradaya, człowieka niezwykle skromnego. Sześćdziesięciopięcioletni luminarz nauki pisze do badacza młodszego o dwa pokolenia: „Z początku byłem nieomal przerażony, widząc tak wielką siłę matematyczną zastosowaną do tego przedmiotu, potem jednak zdumiało mnie, jak dobrze przedmiot zniósł to wszystko”.

(*) W szczególności prawo Gaussa pozwala natychmiast rozwiązać problem przyciągania przez kulę (w obu przypadkach: grawitacji oraz elektryczności). Jeśli rozkład ładunku ma symetrię kulistą, to możemy do niego zastosować prawo Gaussa tak, jak do punktowego ładunku w środku kuli. Przeprowadzając doświadczenia na zewnątrz kuli, będziemy obserwowali pole elektryczne takie, jak gdyby nasza kula ściągnięta była do punktu środkowego (z zachowaniem wartości ładunku). Dlatego np. kula ziemska przyciąga tak, jak punktowa masa w środku Ziemi. Wiemy, że nasza planeta w pierwszym przybliżeniu rzeczywiście składa się z koncentrycznych warstw kulistych. Nie musimy przy tym wiedzieć, jaka jest gęstość i grubość różnych warstw, ważna jest tylko całkowita masa Ziemi.

James Clerk Maxwell i prędkości cząsteczek gazu (1859)

Brytyjskie Towarzystwo Krzewienia Nauk (BAAS) zebrało się na swój doroczny zjazd we wrześniu w Aberdeen. To niewielkie miasto miało wówczas dwa uniwersytety i wybudowało w ciągu roku wielką salę koncertową na 2400 słuchaczy, choć i tak wszyscy chętni ledwie mogli się pomieścić. Uczonych zaszczycił obecnością królewski małżonek, książę Albert, który wygłosił przemówienie i przez cztery godziny wizytował jedną z uczelni. Nauka stanowiła mocną stronę imperium brytyjskiego, naród kupców i żeglarzy kolekcjonował osobliwe przedmioty i rośliny, badał czaszki prehistorycznych ludzi z Nepalu, interesował się polem magnetycznym i skałami z odległych części globu, rozwijał konstrukcję parowców, pracował nad projektem kabla telegraficznego przez Atlantyk – pierwszy taki kabel położono rok wcześniej, lecz po kilku tygodniach przestał działać. Za kilka lat miała nastąpić następna próba, tym razem zakończona powodzeniem.

BA150_rdax_800x491

Na zjeździe trzy komunikaty przedstawił młody profesor z miejscowego Marischal College, James Clerk Maxwell. Dwudziestoośmioletni Szkot, absolwent Trinity College w Cambridge, napisał już kilka wielce obiecujących prac: na temat pola elektromagnetycznego, pierścieni Saturna i widzenia barwnego. Do elektromagnetyzmu miał niebawem wrócić, tworząc jednolitą teorię zjawisk elektrycznych, magnetycznych i optycznych (co stało się największym osiągnięciem w fizyce od dwustu lat, od czasów Isaaca Newtona). Kilkuletnia, rozbudowana w szczegółach, praca nad pierścieniami Saturna doprowadziła go do wniosku, że nie mogą one być zbudowane z materii stałej ani ciekłej, muszą być zbiorowiskiem niewielkich fragmentów krążących niezależnie wokół planety (co się potwierdziło: są to bryłki lodu o rozmiarach zawartych najczęściej w przedziale od centymetra do 10 m). Za pracę nad pierścieniami Saturna otrzymał Nagrodę Adamsa, nazwaną na cześć brytyjskiego współodkrywcy Neptuna. Maxwell pasjonował się też eksperymentami dotyczącymi widzenia barwnego, rozwijając idee Thomasa Younga i Hermanna von Helmholtza. Jego koło barw pozwalało ilościowo porównywać wrażenia barwne wytworzone przez zmieszanie trzech barw podstawowych: czerwieni, zieleni i błękitu. Nasuwało to myśl o fotografii barwnej: wystarczy bowiem sfotografować obraz w trzech barwach i później te trzy obrazy odpowiednio zmieszać.

My zajmiemy się tu pracą dotyczącą teorii kinetycznej gazów. Jest to niezwykle prosty model, który dość precyzyjnie opisuje zachowanie rzeczywistych gazów. Przyjmuje się w nim, że cząsteczki zderzają się sprężyście ze sobą oraz ze ściankami naczynia, poruszając się między zderzeniami prostoliniowo. Jak przedstawił to Maxwell na zjeździe w Aberdeen: cząsteczki powietrza poruszają się średnio z prędkością 1500 stóp na sekundę, przebywają między zderzeniami średnią drogę 1/447000 cala, co oznacza, że ulegają 8 077 200 000 zderzeniom w ciągu sekundy. Można śmiało przypuszczać, że Maxwell pragnął tymi liczbami zaintrygować słuchaczy (przedstawił też na zjeździe badania nad kolorami oraz model pierścieni Saturna – a więc mówił o rzeczach mogących zainteresować nie tylko ekspertów). Profesor musiał wywrzeć korzystne wrażenie, rok później przeniósł się bowiem do Londynu.

Maxwell pierwszy zadał pytanie: jaki jest rozkład statystyczny prędkości cząsteczek w gazie. Podał też prawidłową odpowiedź, zwaną dziś rozkładem Maxwella. Inspiracją były rozważania Adolphe’a Queteleta, jednego z pionierów statystyki w naukach społecznych i biologii. Szkocki uczony przeczytał długą recenzję pracy Queteleta w „Edinburgh Review”. Niepodpisany artykuł był autorstwa sir Johna Herschela i zawierał m.in. takie rozumowanie:

Przypuśćmy, że upuszczamy z dużej wysokości kulkę, pragnąc, by upadła ona w oznaczonym punkcie. Kulka spada i jej odchylenie od tego punktu stanowi błąd, a prawdopodobieństwo tego błędu jest pewną nieznaną funkcją kwadratu błędu, tzn. sumy kwadratów odchyleń w dwóch prostopadłych kierunkach. Ponieważ prawdopodobieństwo danego odchylenia zależy tylko od jego wartości, a nie od kierunku, więc prawdopodobieństwa obu odchyleń w prostopadłych kierunkach muszą być opisane tą samą funkcją ich kwadratów. Ponieważ także odchylenie w dowolnym kierunku jest równoważne odpowiednim odchyleniom w dwu prostopadłych kierunkach, które zdarzyły się jednocześnie i są od siebie niezależne – jest więc zdarzeniem, na które składają się dwa niezależne zdarzenia, zatem jego prawdopodobieństwo będzie równe iloczynowi tamtych oddzielnych prawdopodobieństw. Na podstawie tego warunku określić można postać nieznanej funkcji: takiej, że iloczyn dwóch owych funkcji dla dwóch argumentów równy jest tej samej funkcji od sumy obu argumentów. Ale w każdej książce z algebry wykazuje się, że własność taką posiada funkcja wykładnicza, i tylko ona. Jest to więc funkcja kwadratu błędu wyrażająca prawdopodobieństwo jego popełnienia.

W zapisie algebraicznym rozumowanie to sprowadza się do równości

f(x^2+y^2)=f(x^2)f(y^2) \Rightarrow f(x^2)=\exp(-\alpha x^2),

gdzie \alpha jest parametrem. Nasz wynik znany był wtedy jako funkcja błędu, dziś nazywany jest rozkładem normalnym – uzasadnieniem tej nazwy jest jego niezwykle częste występowanie w wielu sytuacjach: nie tylko błędy pomiaru, ale także mnóstwo innych wielkości wykazuje rozkład tego typu o charakterystycznym kształcie krzywej dzwonowej.

normal67

 

Wykres ze strony http://www.regentsprep.org/regents/math/algtrig/ats2/normallesson.htm. Jednostką na osi x jest 1/\sqrt{2\alpha}, odchylenie standardowe.

James Clerk Maxwell zastosował bardzo podobne rozumowanie do prędkości cząstek gazu. Jeśli potraktujemy składowe prędkości w prostopadłych kierunkach jako trzy zmienne v_x, v_y, v_z, to ich rozkłady prawdopodobieństwa powinny być opisane tą samą funkcją:

f(v_x^2+v_y^2+v_z^2)=f(v_x^2)f(v_y^2)f(v_z^2) \Rightarrow f(v^2_x)=\exp(-\alpha v_x^2),

gdzie \alpha jest pewnym parametrem. Maxwell pokazał też w swej pracy, że ów parametr zależy od masy cząsteczek m oraz temperatury T. Dziś zapisujemy to następująco:

\alpha=\dfrac{m}{2kT},

gdzie k to stała Boltzmanna. Znając rozkład prawdopodobieństwa dla składowych prędkości, można łatwo znaleźć postać rozkładu dla samej prędkości, korzystając z tego, że v^2=v_x^2+v_y^2+v_z^2. Rozkład prawdopodobieństwa przyjmuje postać:

p(v)=v^2\exp({-\alpha v^2}). \mbox{ (*)}

Zwykle ten wynik nazywamy rozkładem Maxwella. Pokazuje on, że w gazie występują wszystkie możliwe wartości prędkości, choć z różnym prawdopodobieństwem. Rozkład ten pozwala zrozumieć np., czemu w atmosferze jest mało lekkich pierwiastków, jak wodór – lżejsze atomy szybciej się poruszają i łatwiej jest im uciec w przestrzeń kosmiczną (a zawsze pewien niewielki ułamek cząsteczek ma dużą prędkość, jest to tzw. ogon rozkładu Maxwella).

MaxwellBoltzmann-en

https://en.wikipedia.org/wiki/Maxwell–Boltzmann_distribution#/media/File:MaxwellBoltzmann-en.svg

W późniejszym okresie Maxwell wrócił do wyprowadzenia tego rozkładu i uzyskał je z nieco solidniejszych założeń, które sprowadzały się do przyjęcia, iż wektory prędkości cząsteczek gazu nie są ze sobą skorelowane – co także nie jest założeniem oczywistym (tzw. chaos molekularny). To drugie podejście Maxwella otworzyło drogę do pracy Ludwiga Boltzmanna, wielkiego fizyka, który zajmował się głównie teorią gazów, rozszerzając ją stopniowo do fizyki statystycznej.

(*) Warunek v^2=v_x^2+v_y^2+v_z^2 to równanie sfery w przestrzeni v_x, v_y, v_z. Na sferze takiej prędkość jest stała. Szukając prawdopodobieństwa dla wąskiego przedziału prędkości (v,v+dv), musimy uwzględnić fakt, że objętość cienkiej powłoki między dwoma sferami równa się 4\pi v^2 dv – stąd dodatkowe v^2 w rozkładzie Maxwella. Nasze wszystkie rozkłady są nieunormowane, należy też, ściśle biorąc, rozważać zawsze niewielkie przedziały, a nie konkretne wartości, nie chciałem jednak zaciemniać prostych koncepcji, które tu się pojawiają.