Wierutne głupstwa Roberta Jastrowa

Uprawianie żurnalistyki naukowej, polega na tym, aby spłycić i uprzystępnić oraz opatrzyć całość chwytliwym tytułem. W ostatni weekend w „Gazecie świątecznej” ukazał się wywiad Piotra Cieślińskiego z ks. prof. Michałem Hellerem. Zaczyna się tak:

Prof. Michał Heller: Teoria Wielkiego Wybuchu jest jak czarny sen racjonalistów

Wspięli się na najwyższy szczyt, zaraz odkryją tajemnicę narodzin Wszechświata. A na szczycie witają ich teologowie, którzy siedzieli tam od wieków.

Dopiero gdzieś głęboko w tekście dowiadujemy się, że to nie Ksiądz Profesor, ale amerykański astronom Robert Jastrow powiedział, i w dodatku czterdzieści lat temu. Było to głupstwo w 1978 roku i jest nadal głupstwem w 2017 roku.

Równie dobrze można powiedzieć, że, proszę, fizycy odkryli, iż kwarki mamy w trzech kolorach, których nie można wprost zaobserwować w eksperymencie, ponieważ Byt istnieje w trzech hipostazach, popularnie zwanych Osobami, i nie można tego eksperymentalnie zmierzyć. Teologowie czekali więc na szczycie, zanim uczeni stworzą chromodynamikę kwantową.

A gdzie siedzieli teologowie, kiedy Galileusz dowodził, że Ziemia jest ciałem niebieskim, jedną z planet, i się porusza, a wszechświat nie ma środka? Siedzieli po drugiej stronie stołu przesłuchań Galileusza, byli już tam wcześniej.

Gdzie teologowie byli i gdzie znaleźli w Piśmie, że człowiek pochodzi od małpy?

Dlaczego niby tekst Biblii miałby zawierać cokolwiek wartościowego na temat przyrody? A nie np. Wedy? Albo Kalevala? Czy Kubuś Puchatek? („Im bardziej Puchatek zaglądał do środka, tym bardziej Prosiaczka tam nie było” – myśl ta zapowiada niewątpliwie odkrycie ciemnej energii: wszechświat rozszerza się bowiem coraz prędzej.)

Galileusz cytował kardynała Cesare Baronia, iż Pismo nie mówi, jak rusza się niebo, lecz jak do niego trafić. Nie był to pogląd popularny w kręgach kościelnych i chyba nie jest do dziś, ale to zmartwienie wierzących.

Narzekał na to w roku 1822 ojciec Filippo Anfossi OP, Mistrz Świętego Pałacu Apostolskiego (czyli szef rzymskiej cenzury), który z żalem postawił takie oto pytanie: „Czy Duch Święty wiedział, jakie odkrycia zostaną dokonane w przyszłości? Jeśli wiedział, to czemu świątobliwe osoby z jego inspiracji mówiły nam przeszło osiemdziesiąt razy, że Słońce się porusza, a ani razu, że jest ono nieruchome?”

Wracając zaś do Wielkiego Wybuchu. Żadna teoria kosmologiczna i w ogóle naukowa nie ma związku z religią. Kropka. Nie ma najmniejszego znaczenia, czy uczeni są księżmi, czy ateistami, czy też jest im wszystko jedno. Inspirację czerpać mogą z Pisma równie dobrze, jak z baśni Andersena – nie ma to żadnego znaczenia. Jedyne, co liczy się w nauce, to wyprowadzenie z teorii obserwowalnych zjawisk i skonfrontowanie tego z pomiarami. Jeśli kogoś zainspiruje Królowa Śniegu to też dobrze. Nazywa się to kontekst odkrycia i kontekst uzasadnienia. Nie ma znaczenia, czy Einstein doszedł do ogólnej teorii względności drogą logicznie najprostszą i co go motywowało. Ważne, że równania są prawidłowe, co przez ostatnie sto lat wciąż się potwierdzało (teologów na tym szczycie nie było).

Teologia chrześcijańska odegrała pewną rolę w historii nauki: było to w średniowieczu i dotyczyło głównie kwestii czysto logicznych czy filozoficznych, zderzenia Jerozolimy z Atenami, mówiąc pokrótce. Jest to wkład poważny i można się na serio zastanawiać, czy bez tego przygotowania możliwy byłaby Rewolucja naukowa XVII wieku.

Podstawy rzeczowe do rozważań o teologach na szczycie są w tym tylko, że w latach sześćdziesiątych ubiegłego wieku modna była teoria stanu stacjonarnego, w której wszechświat nie ma początku. Potem odkryto mikrofalowe promieniowanie tła i jasne się stało, że nastąpił Wielki Wybuch. Nigdy nie był to spór kosmologów wierzących i niewierzących, bo większość kosmologów nie interesuje się w ogóle kwestią, jaki jest związek ich badań z teologią, domyślnie zakładając, że żaden.

Wielki Wybuch to nie to samo co creatio ex nihilo. Istnieją zupełnie porządne teorie, które sytuują go jako epizod w dziejach wszechświata. A więc (może) nie potrzeba żadnego początku. Możliwe, że nasz wszechświat jest jednym z odgałęzień multiświata. Wszystkie te dyskusje w żaden sposób nie wiążą się z Księgą Rodzaju.

Racjonaliści (Jastrow mówi, dokładnie biorąc, o uczonych żyjących wiarą w moc rozumu) nie mają powodów do złych snów. Wszechświat, który zaczyna się i kończy (przynajmniej w znanej formie) jest raczej łatwiejszy do przyjęcia niż taki, który trwa od zawsze. Nasze życie też zaczyna się kończy i nie ma niebiańskiego ciągu dalszego.

Kiedyś przemądrzali teologowie decydowali, co ma być prawdą, a co nie w naukach eksperymentalnych. Dziś starają się podłączyć do historycznego sukcesu nauki i wykazują, że nauka to nie wszystko, teologowie gdzieś wcześniej byli itd. itp.

Znacznie lepszym tytułem tej byłoby: WIELKI WYBUCH NIE MA NIC WSPÓLNEGO Z KSIĘGĄ RODZAJU i lepiej nie mącić w głowach ludziom, którzy czytają o nauce, lecz nie mają wykształcenia, aby ocenić samodzielnie to, co czytają.

Dosłowny cytat z Jastrowa wygląda tak:

For the scientist who has lived by his faith in the power of reason, the story ends like a bad dream. He has scaled the mountains of ignorance, he is about to conquer the highest peak; as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries.

God and the Astronomers, 1978

Voltaire czyli uśmiech rozumu

Pisał Thomas Carlyle:

Niezliczone zastępy strojnych panów, bogów tego niższego świata, obróciły się w nieorganiczny pył, nie zostawiając po sobie ani jednego miłego czy użytecznego wspomnienia; a ten biedny Voltaire, który nie miał nic oprócz własnego języka i umysłu, świeci wciąż blaskiem dla wszystkich narodów, mnie zaś proszą gorąco: „Opowiedz nam o nim, oto człowiek!”.
(Th. Carlyle, History of Friedrich II of Prussia, t. 16)

Różni pustogłowi mędrcy lubią twierdzić, że Oświecenie to epoka naiwna albo nawet złowroga, która w dodatku źle się skończyła, bo Rewolucją Francuską. Zwłaszcza francuscy philosophes, a wśród nich zwłaszcza Voltaire, podkopali religię. Swoim narzekaniem na upały ściągnęli nam na głowę gradobicie. Gdyby nie oni, żylibyśmy dotąd jak u Pana Boga za piecem, nieświadomi zwątpienia, przyjmując choroby i cierpienie jako dopust boży, może głodni, ale przekonani, że kto był dobrym człowiekiem, tego nagroda w niebie nie minie, a władcom należy się cześć niemal taka jak biskupom. Ten okropny, próżny, zarozumiały, cyniczny Voltaire…

A w dodatku, jak pisał. Przeczytajmy tylko jeden krótki liścik (cała jego korespondencja zajmuje pięćdziesiąt tomów, co stanowi jedną trzecią tego, co napisał). Autor ma siedemdziesiąt pięć lat, z wyglądu przypomina szkielet, mieszka w Ferney, blisko Genewy, gdyż we Francji groziłoby mu więzienie z powodu zbyt śmiałych tekstów. Adresatką jest trzydziestotrzyletnia Suzanne Curchod, znana pod nazwiskiem mężowskim jako pani Necker, dama bogata, wpływowa i inteligentna, w której paryskim salonie bywają encyklopedyści, d’Alembert i Diderot, pisarze, artyści. Goście pani Necker wpadli na pomysł, by zebrać pieniądze na posąg Voltaire’a. Wśród subskrybentów znalazło się dwóch królów: Danii i Prus, lecz nie Ludwik XV – ten nigdy Voltaire’a nie lubił. Zadanie wyrzeźbienia posągu otrzymał Jean Baptiste Pigalle, który wybrał się w tym celu do Szwajcarii.

Do Pani Necker
Kiedy ludzie z mej wioski ujrzeli, jak Pigalle rozkłada narzędzia swojej sztuki, powiadali: „Ho, ho, będą mu robić sekcję; ależ będzie zabawa!” Gdyż, jak pani wiadomo, każde widowisko zabawia publiczność; równie dobrze można pójść do teatru marionetek, na ognie świętojańskie, do Opery Komicznej, na sumę czy na pogrzeb. Mój posąg wzbudzi uśmiech paru filozofów i sprawi, że zmarszczy brew jakiś łajdak hipokryta czy jakiś łobuz pismak; marność nad marnościami!
Lecz przecież nie wszystko jest marnością; moja tkliwa wdzięczność dla mych przyjaciół, a przede wszystkim dla ciebie, pani, nie jest marnością.
Tysiąc czułych wyrazów oddania dla pana Necker.
Ferney, 19 czerwca 1770
(przeł. Z. Żabicki)

Anegdotka z początku listu została pewnie zmyślona przez Voltaire’a. Nie chodzi jednak tylko o to, by rozbawić panią Necker. Wprowadzając prostych ludzi i ich sposób widzenia świata, autor podkreśla dystans do własnej osoby i do zniszczonego ciała, które przyszło artyście rzeźbić za pomocą całego instrumentarium. W jednym z poprzednich listów tak opisał siebie po niedawno przebytej chorobie: „Oczy mam zapadnięte na trzy cale, moje policzki przypominają stary pergamin źle przyklejony do kości, które na niczym się nie trzymają. Wypadła mi resztka zębów, które miałem. Nie rzeźbiono dotąd żadnego nieboraka w takim stanie” (przeł. K. Arustowicz). Żarty z samego siebie, owszem, ale bez natarczywego zwracania uwagi na stronę fizyczną starczego rozpadu, byłoby to niestosowne i niesmaczne. Toteż Voltaire nie epatuje zbyt długo swoim stanem, z udaną rezygnacją zgadza się dostarczać innym widowiska. Bo publiczność uwielbia wszelkiego rodzaju zbiegowiska, zgromadzenia, procesje, spektakle, obojętne czy będą wysokiego lotu, czy nie – w dobie Facebooka powinniśmy świetnie rozumieć, że liczy się widowisko i efekt nowości, mniejsza o pretekst. Pani Necker rozumie to oczywiście równie dobrze jak autor, mający za sobą pół wieku doświadczeń w pisaniu i wystawianiu sztuk teatralnych. Suma i pogrzeb także trafiają na listę spektakli: bo przecież i one są przedstawieniami, zwłaszcza w wydaniu wielkoświatowym, gdy liczy się decorum, podniosłość, manifestowanie hierarchii społecznej znacznie bardziej niż treść duchowa owych zgromadzeń. Voltaire, wychowanek jezuitów, nigdy nie rozumiał przeżyć religijnych, uważał je za szalbierstwo albo przesąd kucharek i lokajów (potrzebny zresztą do utrzymania porządku w państwie). Wynikiem zabiegów Pigalle’a miał być posąg, niemający zbyt wiele wspólnego z rzeczywistym wyglądem modela. Przedstawiał on raczej pewien byt idealny, Voltaire’a na Polach Elizejskich (nie tych paryskich, lecz tych antycznych), gdzie znajdzie się wśród innych sławnych postaci.

jeanbaptistepigalle_voltairenude

Bo ostatecznie, jakie to ma znaczenie dla potomności, czy jakiś blok marmuru przypomina tego, a nie innego człowieka”.

Spektakle próżności to oczywiście marność nad marnościami, ale dalecy jesteśmy od tonu Księgi Koheleta: nie wszystko jest marnością. Na przykład przyjaźń. Delikatna, nie narzucająca się, pełna empatii przyjaźń jest jednym z najcenniejszych uczuć tej epoki, która niezbyt wiele sobie robiła z miłości, nie potrafiąc jej traktować z mieszczańską solennością ani z młodzieńczym ponuractwem romantyzmu. Voltaire, zjadliwy i szyderczy wobec wrogów, umiał być niezwykle wyrozumiały wobec tych, którzy mienili się jego przyjaciółmi. Nawet wtedy, gdy pielęgnował tylko złudzenie, nawet wtedy, gdy go to sporo kosztowało, a rzekomy przyjaciel był raczej pieczeniarzem albo obłudnikiem.

Styl Voltaire’a, jego zwięzłość, lekkość, starannie przemyślana prostota to jeden ze szczytów literatury francuskiej i światowej. Po poprzednikach otrzymał język zdolny do wyrażania wielu treści: język Molière’a, Racine’a, Pascala. Potrafił go udoskonalić na tysiącach przykładów, wydestylować co najlepsze z żartobliwego dialogu salonowego, w którym największą zbrodnią jest nudzić. Jego klarowna proza nie utrudniała dotarcia do myśli, przeciwnie, to autor brał na siebie lwią część trudu, nie każąc czytelnikowi przedzierać się przez zawiłe okresy zdaniowe. W dziedzinie stylu najwięcej chyba zawdzięczał Pascalowi, którego poglądy leżały na antypodach jego własnych. Voltaire nie potrafił zrozumieć ponurej zaświatowości tego wybitnego umysłu, opętanego jedną tylko kwestią: własnego zbawienia. Pascal starał się uratować katolicyzm przed życiem ułatwionym i algebraiczną moralnością jezuitów, w której złe i dobre uczynki sumowały się w jednym bilansie i nietrudno było wyjść na swoje. Jego kościół wybrał jednak barokową teatralność, gwałtowne gesty świętych rażonych nagłym widzeniem, cuda ułatwione i dostępne zmysłom. Wybrał jezuitów przeciwko jansenistom. Voltaire nie rozumiał ani jednych, ani drugich, choć po kasacie zakonu przygarnął pewnego jezuitę, z którym grał w szachy.

Wystan Hugh Auden

Voltaire w Ferney 

Teraz prawie szczęśliwy, oglądał gospodarstwo.
Tu zegarmistrz-emigrant w oknie go przywitał
I powrócił do pracy. Gdzie szybko rósł szpital,
Cieśla uchylił czapki. Ogrodnik meldował,
Że dobrze idą drzewa, które sam plantował.
Białe Alpy błyszczały. Był wielki. Było lato.

Tam daleko w Paryżu, gdzie jego przeciwnicy
Syczeli, że jest podły, w sztywnym swoim krześle
Stara, ślepa, czekała na śmierć i na listy. Do niej
„Nic lepszego nad życie” pisał. Gdyż jest bojem.
To coś warte. Oprawców, kłamców straszył nieźle.
Pleć chwast. Cywilizować. I tylko to się liczy.

Słodki, cięty, intrygant, prześcignął wszystkich dawno.
Inne dzieci rozważnie wiódł na święte wojny
Przeciw obrzydłym dorosłym. A chytrość miał dziecka.
Wiedział kiedy udawać, że jest już pokorny,
Chronić się w dwulicowość, łgać dla bezpieczeństwa,
Ale jak chłop cierpliwie trwał wiedząc, że upadną.

Nigdy, jak d’Alembert, nie zwątpił o wygranej.
Tylko Pascal był wielkim wrogiem. Ten czy ów
To szczury już otrute. Choć zostało wiele
Do zrobienia, a nie miał nikogo prócz siebie.
Poczciwy Diderot był głupi, starał się jak mógł.
Rousseau, wiedział to zawsze, wykpi się swoim łkaniem.

Więc, jak na warcie, nie spał. Noc była pełna ech:
Krzywdy, trzęsienia ziemi, egzekucje. Umrze,
A straszne niańki ciągle stoją nad Europą
Chcąc dzieci oblać wrzątkiem. Chyba tylko słowo
Wiersza mogło je wstrzymać; musiał pisać. W górze
Nie skarżące się gwiazdy składały jasny śpiew.
(przeł. Cz. Miłosz)

Stara, ślepa korespondentka to markiza du Deffand, kobieta tyleż przenikliwa, co złośliwa, choć nie wobec wszystkich.

Naukowy idiotyzm roku 2016

714248_bced_51_34

Nie będę się znęcał nad tym artykułem Gościa niedzielnego (sprzedaż ponad 120 000 egzemplarzy!). Nieczuli manipulatorzy trzymają w ciekłym azocie piękne aryjskie bobaski. Dodam tylko z podziwem, że trzeba mieć naprawdę czułe sumienie, aby w dniach, gdy w Aleppo giną tysiącami ludzie, przejąć się dramatem mrozaczków. Katholikos po grecku znaczy powszechny.

Evangelista Torricelli: nieskończona trąba i barometr (1643-1644)

Nauka powstająca w XVII wieku była iście rewolucyjna: podważono jednocześnie niemal cały tradycyjny system myślowy, wiedzę zgromadzoną od tysiącleci. Świat materialny zmienił się niewiele od średniowiecza, choć nauczono się żeglować po oceanach i korzystać z broni palnej. Jednak technika była wciąż prymitywna, energia trudno dostępna, a większość ludzi walczyła jedynie o przetrwanie. Zanim przeobraziła się cywilizacja, należało najpierw przebudować zawartość głów. Postęp pojęciowy jest zawsze niezmiernie trudny, trzeba pokonać własne nawyki myślowe, wyciągnąć wnioski z nowych założeń, niewielu ludzi potrafi żyć wśród tymczasowych koncepcji i bez żalu porzucać je na rzecz innych, nowych, lepiej opisujących wymykającą się rzeczywistość. M.in. dlatego niewielu jest einsteinów na świecie, mimo że nie brak ludzi bardzo inteligentnych i utalentowanych.

Evangelista Torricelli określany jest często jako uczeń Galileusza. W istocie był bardziej uczniem Benedetta Castellego, wiernego przyjaciela i okazjonalnie współpracownika mistrza z Florencji. Ze starym, niewidomym już uczonym spędził ledwie kilka miesięcy: od października 1641 r. do stycznia roku następnego, gdy Galileusz zmarł. Torricelli był już wtedy po trzydziestce i był ukształtowanym uczonym w duchu archimedesowym, gdzieś między matematyką a inżynierią i eksperymentem. Odziedziczył po Galileuszu stanowisko matematyka przy księciu Toskanii. Galileusz był także nadwornym filozofem, czyli fizykiem i astronomem, ale w owej chwili, dziesięć lat po wyroku inkwizycji, lepiej było nie kłuć w oczy władz kościelnych. Sławnego uczonego pochowano w nieoznaczonym grobie i musiało minąć sto lat, nim pozwolono na postawienie tablicy nagrobnej. Torricelli w roku 1643 stał się sławny w całej uczonej Europie dzięki rozważaniom na temat pewnej nieskończonej bryły, która miała skończoną objętość. Przypominała ona wnętrze trąby.

tromba

Bryła Torricellego powstaje z obrotu hiperboli (równobocznej) wokół jednej z asymptot. Wycinamy z niej tylko część zaznaczoną na rysunku: mamy zwężającą się, nieskończenie długą trąbę. Torricelli wykazał, że pole powierzchni takiej trąby jest nieskończone, lecz objętość jest skończona. Oszacujemy tę objętość. Dzielimy naszą bryłę na cylindryczne cienkie powłoki: leżą one jedna wewnątrz drugiej jak składany tubus. Pole podstawy takiej powłoki (wydrążonego walca) równe jest 2\pi r dr, co jest iloczynem długości okręgu i grubości naszej powłoki dr. Objętość wydrążonego walca o takiej podstawie  i wysokości h(r) możemy łatwo oszacować z góry:

dV=2\pi r dr h(r) < 2 \pi r dr \dfrac{a^2}{r}=2 \pi a^2 dr.

Zatem suma objętości wszystkich wydrążonych walców jest mniejsza niż 2\pi a^2 R, gdzie R to największy promień przekroju poprzecznego trąby. Torricelli obliczył tę objętość, stosując metodę Cavalieriego, a także przeprowadzając dowód w duchu Archimedesa. Paradoksalny wynik wzbudził zainteresowanie i komentowali go najwięksi matematycy epoki: jeśli był prawdziwy, granice matematyki matematyki zostały poszerzone.

W roku następnym został Torricelli odkrywcą barometru. Tak się zwykle mówi, bardzo upraszczając całą sprawę. On sam nie uznawał siebie za wynalazcę takiego przyrządu ani nad nim jakoś szczególnie nie pracował. Dopiero później urządzenie takie zaczęto nazywać barometrem i traktować jako przyrząd służący do pomiaru ciśnienia atmosferycznego. Torricelli niczego nie mierzył w sposób ciągły, lecz uważał swoje doświadczenie za rodzaj filozoficznego (tj. naukowego) pokazu. Chodziło w nim o istnienie próżni. Natura abhorret vacuum – natura nie znosi próżni – mawiali filozofowie scholastyczni, czerpiąc to twierdzenie od Arystotelesa. Wiadomo było z praktycznych doświadczeń inżynierów, iż nie można wciągnąć wody w rurze wyżej niż na 18 łokci. Galileusz objaśniał to siłami spoistości wody: gdy wysokość jej słupa przekracza owe 18 łokci, słup rozrywa się pod własnym ciężarem, tak jak rozerwałaby się pod własnym ciężarem dostatecznie długa kolumna z marmuru zawieszona od góry. Torricelli sądził inaczej, uważał, że słup cieczy równoważony jest ciśnieniem zewnętrznym. A skoro chodzi o równowagę, to zamiast 18 łokci wody wystarczy 5/4 łokcia i jeden cal żywego srebra (rtęci) – gdyż jego ciężar właściwy jest kilkanaście razy większy. Wystarczy wziąć szklaną rurkę długości, powiedzmy, dwóch łokci, zatopioną z jednej strony i nalać do niej rtęci. Następnie zatykamy rurkę palcem i odwracamy zatopioną częścią do góry, po czym wkładamy rurkę do naczynia z rtęcią (nikt w XVII wieku nie rozumiał, jak się zdaje, jak szkodliwe może być takie nieostrożne manipulowanie rtęcią, Newton żartował sobie, że posiwiał wcześnie z powodu używania rtęci w doświadczeniach alchemicznych, naprawdę chyba się tym jednak nie przejmował).

torr

Uczony sądził, że nad rtęcią tworzy się próżnia. A więc łatwo jest ją wytworzyć i natura się jej nie lęka. O swoich doświadczeniach napisał do Michelangela Ricciego w czerwcu 1644 roku. Pokazywał je też ojcu Marinowi Mersenne’owi, który spełniał w owych czasach rolę serwera pocztowego dla środowiska uczonych, gdy ten odwiedził go we Florencji. Nie słychać, aby Torricelli zamienił swoją odwróconą rurkę na stały przyrząd, który można z dnia na dzień obserwować. Spodziewał się chyba, że zmiany ciśnienia atmosferycznego będą większe, niż są w rzeczywistości. W tym samym liście pisał, iż żyjemy na dnie oceanu powietrza – coś podobnego sugerował kilkanaście lat wcześniej Giovanni Battista Baliani w liście do Galileusza. Torricelli mógł o takim poglądzie słyszeć. Tak czy owak nie zajmował się sprawą dłużej, dopiero kilka lat później stała się ona europejską sensacją, gdy doświadczenia podobne zaczęto powtarzać w różnych krajach, a przede wszystkim we Francji, a zagadnieniem ciśnienia atmosferycznego i istnienia próżni zajął się m.in. Blaise Pascal. Dla jego analitycznego i skłonnego do paradoksów umysłu pogląd, który przeczył jednocześnie scholastykom i „nowoczesnemu” Kartezjuszowi, musiał wydawać się wielce interesujący. Torricelli zmarł młodo, w roku 1649, i nie dożył czasów, w których uznano go za „odkrywcę barometru”. Zapewne byłby zdziwiony, że ten maleńki fragment jego naukowego dorobku doczekał się takiej sławy, podczas gdy o reszcie mało kto dziś pamięta.

List Torricellego do Ricciego.

Jego angielski przekład

 

Wzór Herona, Archimedes i zasada Arnolda

Heron z Aleksandrii żył gdzieś między datą śmierci Archimedesa (212 p.n.e.) a Pappusem, żyjącym w IV w.n.e. Jedyna informacja pozwalająca lepiej zlokalizować go w czasie, to zaćmienie Księżyca w roku 62 n.e., które opisał. Prawdopodobnie więc w owym roku zaliczał się między żywych, nim – jak wszyscy – przeszedł do krainy cieni. Nauczał w aleksandryjskim Muzeum (które było czymś w rodzaju elitarnej uczelni i instytutu badawczego), pozostawił wiele dzieł, i to one nas tu interesują.

Nastawiony praktycznie, w swej Pneumatyce opisał wiele urządzeń poruszanych siłą powietrza albo pary wodnej. Były tam urządzenia takie, jak wrota świątynne, które same się otwierały, gdy rozpalono ogień na ołtarzu. Trzeba było zaczekać, aż w naczyniu z prawej skondensuje się dostatecznie dużo pary, czas biegł wtedy wolniej, ludzie się nie spieszyli.

536px-Heron_-_automatische_Tempeltür

Samoczynne urządzenia zaspokajały potrzebę cudowności i podziwu, tę samą co dziś Gwiezdne wojny albo krwawiąca hostia w Legnicy, poza tym jednak nie służyły do niczego. Heron napisał podręcznik efektów specjalnych.

Zawartość [tego dzieła] stanowiła zawsze źródło konsternacji i rozpaczy dla poważnie myślących badaczy. Heron opisuje wprawdzie pewne użyteczne urządzenia, jak pompa strażacka albo organy wodne, ale cała reszta to zabawki, mechaniczne kukiełki albo przyrządy do salonowych sztuczek magicznych. Naczynia, które tryskają wodą bądź winem oddzielnie albo w stałych proporcjach, śpiewające ptaszki i grające trąbki, figurki poruszające się, gdy na ołtarzu rozpali się ogień, zwierzęta, które piją, gdy poda im się wodę – jak szanować autora, który poważnie zajmuje się tymi wszystkimi błahostkami? (A.G. Drachmann)

Napisał też Heron sporo dzieł geometrycznych, ale nastawionych inżyniersko, praktycznych. W jednym z nich, Metrikon, znajdują się metody obliczania pola powierzchni oraz objętości brył. W Egipcie, gdzie po każdym wylewie Nilu trzeba było od nowa wyznaczać granice działek rolnych, geometria praktyczna była w cenie. Geometria po grecku znaczy właśnie sztukę mierzenia ziemi.

Oto jeden z przykładów Herona. Mamy trójkąt o bokach 7, 8, 9. Znaleźć jego pole. Uczony podaje przepis: obliczamy najpierw długość obwodu i dzielimy ją przez dwa:

p=\dfrac{7+8+9}{2}=12.

Następnie od liczby tej odejmujemy długości poszczególnych boków a,b,c:

p-a=12-7=5,

p-b=12-8=4,

p-c=12-9=3,

Uzyskane w ten sposób cztery liczby mnożymy przez siebie i wyciągamy pierwiastek z wyniku:

S=\sqrt{p(p-a)(p-b)(p-c)}=\sqrt{720}.

Jest to tzw. wzór Herona. Uczony nie kończy jednak na zapisaniu pierwiastka – geodeta potrzebuje jakiegoś przybliżenia. Uczony podaje w tym celu pewien algorytm. Najbliższym pełnym kwadratem większym niż 720 jest liczba 729=27^2. Weźmy 27 jako pierwsze przybliżenie naszego pierwiastka. Wiemy, że to za dużo. Możemy podzielić 720 przez 27 – gdyby to była prawidłowa wartość pierwiastka, to otrzymalibyśmy tę samą liczbę. Nasze przybliżenie jest z nadmiarem, po podzieleniu dostaniemy wynik z niedomiarem: 26\frac{2}{3}. Bierzemy teraz średnią arytmetyczną obu przybliżeń i to będzie nasz wynik:

\dfrac{27+26\frac{2}{3}}{2}=26+\dfrac{1}{2}+\dfrac{1}{3}.

Heron kończy w tym miejscu, obliczając, że kwadrat ostatniej liczby jest trochę za duży. W postaci algebraicznej można by ten algorytm znajdowania \sqrt{A} zapisać następująco:

x_{n+1}=\dfrac{1}{2}\left(x_n+\dfrac{A}{x_n}\right).

Jest on bardzo szybko zbieżny kolejne wartości to: 27; 26,83333333; 26,83281573 – w trzecim przybliżeniu wszystkie cyfry są dokładne!

Heron nie tylko podał przepis na obliczanie pola trójkąta, ale także zamieścił jego dowód. Jak się zdaje, wyrażenie to znał już Archimedes, Heron nie przypisuje sobie zresztą pierwszeństwa. Ponieważ to jego praca się zachowała, mówimy o wzorze Herona. W dziejach nauki jest mnóstwo takich mylnie przypisywanych określeń. Tak wiele, że Michael Berry, znakomity fizyk matematyczny, sformułował kiedyś dwie następujące żartobliwe zasady:

Zasada Arnolda. Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy.

Zasada Berry’ego. Zasada Arnolda stosuje się do samej siebie.

(Chodzi o Vladimira Arnolda, też znakomitego matematyka.)

Podamy trzy dowody. Pierwszy, algebraiczny, znaleziony został przez uczonych arabskich i podawany był także przez Leonarda Pisano, zwanego Fibonacci (od filius Bonacci – syn Bonacciego) w XIII w. oraz Niccolò Fontanę, zwanego Tartaglia (Jąkała) w XVI w. Drugi będzie współczesny trygonometryczny. Trzeci, geometryczny, podany przez Herona, jest najmniej przejrzysty dla dzisiejszego czytelnika.

  • Jest to właściwie dowód „siłowy”, wywodzący się z przekształceń formalnych.

heron4

Obliczamy brakującą wysokość trójkąta, wyrażając ją przez u=b\cos\alpha i korzystając z twierdzenia cosinusów. Można tu nie wprowadzać funkcji cosinus i korzystać wyłącznie z twierdzeń zawartych w Elementach Euklidesa.

16S^2=4c^2h^2=4c^2(b^2-u^2)=4c^2b^2-4c^2u^2.

Z tw. cosinusów mamy

a^2=b^2+c^2-2bc\cos\alpha=b^2+c^2-2cu \Rightarrow 2cu=b^2+c^2-a^2.

Podstawiając to do wyrażenia wyżej i korzystając ze wzorów skróconego mnożenia, otrzymujemy wynik w postaci

16S^2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c).

  • Punktem wyjścia dwóch pozostałych dowodów jest następująca obserwacja. Środek okręgu wpisanego w trójkąt leży na przecięciu dwusiecznych kątów trójkąta. Ponieważ dwie styczne poprowadzone z pewnego punktu na zewnątrz okręgu są tej samej długości, możemy łatwo wyrazić pole trójkąta jako sumę trzech prostokątów.

heron

Wynika stąd, że pole trójkąta równe jest

S=p\rho.

Należy więc wyrazić \rho przez długości boków.

Podejście trygonometryczne. Korzystamy z następującej tożsamości słusznej, gdy trzy kąty \alpha, \beta, \gamma dają w sumie kąt prosty:

1=\mbox{ tg }\alpha \mbox{ tg }\beta+\mbox{ tg }\alpha\mbox{ tg }\gamma+\mbox{ tg }\beta\mbox{ tg }\gamma.

Do wykazania tego faktu wystarczy poniższy rysunek.

heron2

Zaczynamy od lewego niebieskiego trójkąta, potem dorysowujemy ten sam trójkąt, lecz przeskalowany (wszystkie boki razy \mbox{tg}\beta ). Uzupełniamy rysunek do prostokąta. Trójkąt wewnątrz musi mieć kąt \beta, a stąd wynika, że trzeci zaznaczony kąt równy jest \alpha. Możemy więc długości boków zapisać jak w wyrażeniach z prawej strony prostokąta. Równość obu boków prostokąta daje nam szukaną tożsamość (*).

Wracając do rysunku trójkąta z okręgiem wpisanym, łatwo zauważyć, że tangensy połowy kątów trójkąta znaleźć możemy z odpowiednich trójkątów prostokątnych, np. w niebieskim trójkącie, mamy

\mbox{tg }\beta=\dfrac{\rho}{y}=\dfrac{\rho}{p-b}.

Wstawiając te wyrażenia do powyższej tożsamości, otrzymuje się wyrażenie na promień okręgu wpisanego, a stąd pole trójkąta.

  • Na koniec przedstawimy oryginalny dowód Herona. Wiadomo, że nie jest to dowód samego Archimedesa, ponieważ uczony z Syrakuz nie używał pewnych środków technicznych tu użytych. Oto rysunek z pracy Herona w wydaniu filologicznym oraz jego przejrzystsza wersja z książki Geometry by Its History, A. Ostermanna i G. Wannera.

metrikon

geometry by its history

Mamy trójkąt ABC z dwusiecznymi BI, AI, CI. Rysujemy dwie prostopadłe: do BC w wierzchołku C oraz do BI w punkcie I. BL jest w ten sposób przeciwprostokątną dwóch trójkątów prostokątnych BLC oraz BLI. Możemy więc na obu opisać wspólny łuk okręgu zaznaczony linią przerywaną. Rozważamy teraz kąty o wierzchołku w punkcie M. Dwa z nich to \gamma i \beta, co wynika z twierdzenia o kacie środkowym i kacie wpisanym opartym na tym samym łuku. Zatem kąt CML musi być równy \alpha, bo suma trzech kątów trójkąta równa się kątowi półpełnemu. Wobec tego kąt CBL jest równy  \alpha/2. Mamy więc dwa podobne trójkąty prostokątne: BLC oraz AID. Mamy stąd równość

\dfrac{l}{\rho}=\dfrac{z+y}{x}.

Także trójkąty IKE oraz KLC są podobne (kąty wierzchołkowe w K). A więc

\dfrac{l}{\rho}=\dfrac{z-m}{m} =\dfrac{z}{m}-1.

Porównując oba równania, wyznaczamy m:

m=\dfrac{xz}{p}.

Promień \rho jest wysokością trójkąta prostokątnego BIK opuszczoną na przeciwprostokątną, mamy zatem

\rho^2=ym=\dfrac{xyz}{p},

co pozwala natychmiast znaleźć pole trójkąta.

(*) Tożsamość, z której tu korzystamy, można także wyprowadzić w sposób czysto formalny bez żadnych rysunków. Mamy bowiem

\cos(\alpha+\beta+\gamma)=0,

korzystając najpierw ze wzoru na cosinus sumy, a następnie ze wzorów na cosinus oraz sinus sumy, dostaniemy:

\cos\alpha\cos(\beta+\gamma)-\sin\alpha\sin(\beta+\gamma)=

\cos\alpha\cos\beta\cos\gamma-\cos\alpha\sin\beta\sin\gamma-\sin\alpha\sin\beta\cos\gamma-\sin\alpha\cos\beta\sin\gamma=0.

Wystarczy teraz obie strony podzielić przez \cos\alpha\cos\beta\cos\gamma, aby uzyskać wynik.

Augustin Fresnel: piękna matematyka dyfrakcji (1818)

Stanisław Lem stwierdził kiedyś: „Nikt nic nie czyta, a jeśli czyta, to nic nie rozumie, a jeśli nawet rozumie, to nic nie pamięta”. Zjawisko to zresztą stare jak świat, w gruncie rzeczy różne informacje przypominają elementy puzzli: bez nich nie da się złożyć obrazka, ale one same nie wystarczą, bo trzeba jeszcze je odpowiednio dopasować. Każdy, kto się czegoś uczył, zauważył pewnie, że jeśli uda nam się coś dobrze zrozumieć, stworzyć pewną logiczną strukturę z tego, czego się uczyliśmy, to trudno to potem zapomnieć. Łatwo się zapomina fragmenty, które nigdy nam do niczego nie pasowały albo pasowały dość luźno.

Historycy mają skłonność sądzić, że jeśli X czytał albo choć posiadał w bibliotece tekst Y, to znaczy, że Y wpłynął na X. Często zresztą X sam nie wie, czy Y na niego wpłynął. Na uniwersytecie w Getyndze, będącym matematycznym centrum Niemiec, sto lat temu mówiło się o „nostryfikacji” idei czy pomysłów. Znane nawet było pojęcie „samonostryfikacji”, gdy ktoś wpadał na pomysł kiedyś już przez niego samego opublikowany. Einstein latem roku 1915 wygłosił tam cykl wykładów o swej teorii grawitacji, sądząc, że jest zakończona. Jesienią zauważył, że równania pola grawitacyjnego powinny być inne i zaczął nad nimi gorączkowo pracować, tym intensywniej, że w Getyndze David Hilbert zajął się tym samym tematem – groziła więc Einsteinowi „nostryfikacja” ze strony jednego z najlepszych matematyków tamtych czasów. Ostatecznie to Einstein pierwszy zapisał prawidłowe równania teorii grawitacji, można powiedzieć, że wszystko się skończyło szczęśliwie, bo włożył wiele trudu w zbudowanie tej teorii i należała mu się taka finałowa satysfakcja.

Augustin Fresnel był z zawodu inżynierem drogowym, nadzorował rozmaite budowy na prowincji. Może nie zająłby się poważniej fizyką, która go interesowała, lecz o której nie wiedział zbyt wiele, gdyby nie Napoleon. Wielki cesarz powrócił właśnie z zesłania na Elbie i próbował odbudować imperium, co jak wiemy skończyło się bitwą pod Waterloo. Fresnel jako polityczny przeciwnik cesarstwa stracił posadę i miał dużo wolnego czasu, który spędzał w rodzinnej wiosce matki, Mathieu w regionie Calvados, pod nadzorem policji. Z pomocą miejscowego kowala zbudował przyrządy do obserwacji optycznych, kropla miodu służyła mu za soczewkę. Znał matematykę. Czytał trochę Thomasa Younga, ale że nie znał angielskiego, niezbyt chyba wiele od niego zaczerpnął. Nie będziemy dociekać, ile dokładnie wziął od Younga, w każdym razie posunął się znacznie dalej niż angielski przyrodnik, tworząc matematyczną teorię światła jako fal i sprawdzając ją za pomocą świetnych eksperymentów. Kilka lat później został przyjęty do paryskiej Akademii Nauk. Słabowity przez całe życie, zmarł na gruźlicę w 1827 roku, niedługo po swoich trzydziestych dziewiątych urodzinach – żył więc tak samo długo jak Chopin, Słowacki i Riemann, którzy cierpieli na tę chorobę.

fresnel-1

W roku 1818 Fresnel przedstawił matematycznie prawidłową teorię ugięcia światła na nieprzezroczystej półpłaszczyźnie. Podstawą tej teorii jest zasada Huygensa: każdy punkt czoła fali traktujemy jak nowe źródło fal, które rozchodzą się we wszystkich kierunkach. W punkcie obserwacji, np. w jakimś punkcie ekranu, sumują się drgania przychodzące od każdego punktu fali. Łatwo opisać, jak to będzie wyglądać, gdy mamy tylko dwie fale dochodzące do danego punktu. Obserwujemy wówczas sumę drgań (wtedy nie wiedziano, co tam właściwie drga, my dziś wiemy, że są to pola elektryczne oraz magnetyczne).

fresnelDrganie można przedstawić jako rzut obracającego się wektora o pewnej długości. Na rysunku wektory te obracają się przeciwnie do wskazówek zegara z prędkością kątową

\omega=\dfrac{2\pi}{T},

gdzie T jest okresem fali (i drgania w danym punkcie), \omega nazywa się częstością kołową. Złożenie dwóch drgań o takiej samej częstości będzie sumowaniem dwóch obracających się wektorów. Ponieważ oba obracają się tak samo, możemy obrazek unieruchomić i dodawać te wektory tak, jak się dodaje wektory – według reguły równoległoboku albo (dolny rysunek) rysując je jeden za drugim. Wynik będzie taki sam, ale tą drugą techniką możemy dodać tyle wektorów, ile zechcemy.

Widzimy, że wynik dodawania zależy tylko od różnicy fazy \varphi między dwoma drganiami.

Rozpatrzmy teraz falę płaską padającą na nieprzezroczystą półpłaszczyznę AB, punkty B, D, E i C współtworzą czoło fali biegnącej z lewej strony z dalekiego źródła. Możemy odpowiadające im drgania zapisać jako strzałki, wszystkie mają tę samą fazę – ustawiliśmy je pionowo.

f30-07_tc_bigRysunek 30.7 z wykładów Feynmana (kto czuje niedosyt, może zajrzeć do podrozdziału 30-6 w t. 1)

Załóżmy, że interesuje nas natężenie światła w pewnym punkcie P. Fala docierająca do tego punktu z E musi przebyć odległość s, nieco większą niż odległość ekranu b:

fresnel1Z trójkąta prostokątnego na rysunku i z twierdzenia Pitagorasa, otrzymujemy

(b+\Delta)^2=b^2+2b\Delta+\Delta^2=b^2+h^2.

Różnice odległości \Delta, które mogą być dla nas ważne, są porównywalne z długością fali światła, a więc są znacznie mniejsze niż typowa odległość ekranu, możemy więc pominąć \Delta^2 w porównaniu do 2b\Delta, otrzymujemy wówczas:

\Delta=\dfrac{h^2}{2b}.

Dodając przyczynki od różnych punktów czoła fali, możemy przyjąć, że amplitudy fal cząstkowych są jednakowe: dodajemy więc wektory tej samej długości. Nie możemy natomiast pominąć faz. Różnica fazy między falą z E i falą z D będzie równa

\varphi=2\pi\dfrac{\Delta}{\lambda}=\dfrac{\pi h^2}{b\lambda}\sim h^2.

Zsumowanie nieskończenie wielu fal cząstkowych to obliczenie całki – coś, co Fresnel jako dobry inżynier z początku XIX wieku potrafił. Możemy uzyskać jakościowe wyobrażenie o wyniku, dodając bardzo wiele jednakowych strzałek. Zaczynamy od punktu D leżącego najbliżej punktu obserwacji P. Gdy przesuwamy się wyżej, faza rośnie proporcjonalnie do h^2: w wyniku powstanie spirala zwijająca się od punktu D w prawo i w górę, spirala ta zawija się coraz gęściej wokół pewnego punktu.

f30-08_tc_big(Rysunek 30-8 z wykładów Feynmana)

Podobnie będzie z wektorami z fragmentu BD naszego czoła fali, będzie im odpowiadać fragment spirali od B_P do D. Całkowite drganie odpowiadające punktowi obserwacji P dane będzie wektorem B_{P\infty} na rysunku. Jeśli nasz punkt obserwacji będzie leżał w cieniu, jak Q na rysunku, dodawać będziemy tylko fale cząstkowe od B_Q w górę i nasz wektor wypadkowy będzie miał koniec w punkcie \infty, im dalej w cień, tym bardziej spada natężenie światła. Po jasnej stronie półpłaszczyzny w punkcie R: musimy wystartować w B_{R} na lewym zwoju spirali i zakończyć gdzieś na prawym zwoju, co w rezultacie da wektor w przybliżeniu od lewego centrum spirali do jakiegoś punktu w pobliżu centrum prawego: długość wektora będzie się (niemal) okresowo zmieniać. Kwadrat długości naszego wektora to natężenie światła, czyli to co zwykle rejestrujemy. Obliczony ściśle wynik wygląda następująco:

FresnelFresnel_diffraction_of_straight_edge_density_plotwikimedia commons, autor: Gisling

Oś y wykresu leży na krawędzi szczeliny, na lewo mamy część „zacienioną”, na prawo – „jasną”, oś x wyskalowana jest w jednostkach \sqrt{b\lambda/2} (dla żółtego światła o \lambda=0,6 \mu m i odległości ekranu b=3,3 m będzie to skala w milimetrach. Wahania natężenia widać jako prążki. Tak wygląda granica cienia, jeśli się jej dokładniej przyjrzeć i jeśli fala padająca ma dobrze określoną fazę, np. oświetlamy naszą półpłaszczyznę laserem. Można to zrobić i bez lasera (jak Fresnel w XIX wieku), ale wówczas źródło fal musi być dostatecznie małe.

CornuSpiral1Elegancka spirala, którą otrzymaliśmy wyżej nazywa się spiralą Cornu. Fresnel obliczył całki, które są tu potrzebne, samo przestawienie graficzne jest późniejsze.

Najłatwiej zastosować tutaj wzór Eulera: nasza płaszczyzna jest wówczas płaszczyzną zespoloną, a dodawanie wektorów jest dodawaniem liczb zespolonych. Napiszmy jeszcze wzór na zespoloną sumę drgań S (kwadrat jej modułu to natężenie światła):

S=\int\limits_{-a}^{\infty} e^{i\frac{\pi h^2}{b\lambda}} dh,

a to odległość DB. Część rzeczywista i urojona tej liczby wyraża się przez tzw. całki Fresnela, funkcje wprowadzone do nauki i obliczone po raz pierwszy przez naszego uczonego.