Werner Heisenberg: pierwsza praca z mechaniki kwantowej (1925)

Dwudziestotrzyletni Heisenberg już od kilku lat był aktywnym uczonym zajmującym się fizyką teoretyczną atomu. Dwa lata wcześniej, po trzech latach studiów, zrobił doktorat w Monachium u Arnolda Sommerfelda, który pierwszy zwrócił uwagę na jego talent. Sommerfeld, aktywny uczestnik w rozwoju nowej dziedziny, miał dar przyciągania zdolnych studentów: czterech jego doktorantów otrzymało Nagrody Nobla, a wielu studentów i stażystów przewijających się przez jego instytut zyskało międzynarodową sławę. W latach dwudziestych Monachium traciło pomału pozycję na rzecz Getyngi, gdzie teoretykom przewodził Max Born. Mechanika kwantowa powstała w Getyndze, a także w Kopenhadze, dokąd Niels Bohr stale zapraszał młodych naukowców z całego świata. Heisenberg zdążył już spędzić długi staż u Bohra, wiosną roku 1925 pracowali tam intensywnie wraz ze starszym o półtora roku Wolfgangiem Paulim, który już wtedy stał się dla Heisenberga punktem odniesienia. Pauli zaczął pracę naukową zaraz po maturze publikacją na temat ogólnej teorii względności. Doktorat u Sommerfelda zrobił także po trzech latach studiów – w najkrótszym prawnie dopuszczalnym terminie. Napisał też w tym czasie długi, ponaddwustustronicowy artykuł przeglądowy na temat teorii względności, w którym omówiona została krytycznie cała literatura przedmiotu. Niezwykle utalentowany, Pauli znany był też z bezwzględnego atakowania prac, które uważał za bezwartościowe. W późniejszych latach słynne było jego powiedzenie o jakiejś słabej pracy: „to nawet nie jest błędne”.

Heisenberg w 1924 roku, podczas wykładu habilitacyjnego w Getyndze.

Chłopięco wyglądający Heisenberg zaangażowany był w ruch skautingowy, spędzał sporo czasu na wycieczkach z młodymi ludźmi. Panowała tam beztroska atmosfera braterstwa i wspólnego przeżywania przygód. Była to jednak organizacja stawiająca sobie cele paramilitarne. Werner Heisenberg wraz z kolegami odwiedzali np. regiony zamieszkane przez Niemców, a pozostające poza granicami Rzeszy, jak np. Górny Tyrol, Finlandia, gdzie było trochę niemieckich emigrantów, a także niektóre tereny Węgier i Polski. W przypadku Heisenberga chodziło chyba raczej o młodzieńczą przygodę, a także odskocznię od intensywnej pracy naukowej. Nie był zwolennikiem skrajnej prawicy, starał się być apolityczny, choć można o nim chyba powiedzieć, że był nacjonalistą. Podczas II wojny światowej nie widział nic niewłaściwego w wizytach w okupowanej Kopenhadze czy Krakowie. Zamiłowanie Heisenberga do spędzania czasu  wyłącznie w męskim towarzystwie wydało się potem podejrzane, gdy jego biografii zaczęło przyglądać się SS. Nie doszukali się jednak niczego nieobyczajnego, do tej pory zresztą uczony miał już żonę i powiększającą się gromadkę dzieci.

Niels Bohr stał się dla młodego Wernera nie tylko mentorem, ale także wzorem i duchowym ojcem. Z prawdziwym ojcem Augustem Heisenbergiem, profesorem bizantynistyki w Monachium, Werner miał stosunki dość napięte. Jak się zdaje, ojciec nie wierzył w jego talent, a może w ogóle w fizykę teoretyczną, która wciąż uchodziła za coś mniej solidnego niż prowadzenie eksperymentów. Werner jako nastolatek chciał zostać pianistą, fizykę wybrał dość późno. August źle reagował na złe wieści o synu, kiedy np. dowiedział się, że Werner ledwo zdał egzamin doktorski. Egzaminatorów było dwóch: teoretyk Sommerfeld oraz eksperymentator Willy Wien. Ten drugi szybko wykrył braki w wiedzy młodego człowieka, który nie potrafił obliczyć zdolności rozdzielczej mikroskopu ani powiedzieć, jak działa ogniwo elektryczne (cztery lata później mikroskop pojawi się w pracy Heisenberga na temat zasady nieoznaczoności). Wien dopiero po dyskusji z Sommerfeldem zgodził się przepuścić Heisenberga, ale jego ocena końcowa była słaba: cum laude (można było otrzymać doktorat summa cum laude, magno cum laude, cum laude i bez żadnego dodatkowego określenia). Wien w senacie uniwersytetu spotykał się z profesorem Heisenbergiem i nie omieszkał się poskarżyć. Werner potrzebował pomocy finansowej, ponieważ nie od razu uzyskał płatną posadę. Ojciec napisał do Borna, pytając o perspektywy naukowe syna. Prosił też Jamesa Francka, eksperymentatora z Getyngi, przyszłego noblistę, aby umożliwił Wernerowi pracę w swoim laboratorium. Franck się zgodził, ale niewiele z tego wyszło i Werner wrócił do pracy teoretyka. Bohr, skracający dystans, biorący udział we wspólnych wycieczkach z młodymi ludźmi, a także zapraszający ich do domu, stał się Heisenbergowi bardzo bliski zarówno pod względem naukowym, jak i prywatnym.

Co ciekawe, najważniejszą swą pracę naukową Heisenberg napisał z dala od Bohra i Pauliego, nie zwierzając się także Maksowi Bornowi. Jak się zdaje, Bohr przy całej swej życzliwości wywierał silną presję na otoczenie, co nie zawsze służyło młodszym, mniej asertywnym uczonym. W kwietniu 1925 roku Heisenberg dostał silnego ataku kataru siennego i wyjechał na wyspę Helgoland, gdzie nie było roślin i w związku z tym pyłku w powietrzu. Tam zdał sobie sprawę, że jedna z ostatnich prac Bohra jest błędna (chodziło w niej o podważenie zasady zachowania energii, tzw. praca BKS). Odbyło się to w scenerii godnej obrazów Caspara Friedricha, Werner spędził noc duchowych zmagań na skalistym wybrzeżu, czekając na wschód słońca. Udało mu się znaleźć nową metodę postępowania, zastosował ją do prostych przypadków. Nie był jednak pewny, czy jest na dobrym tropie. Po powrocie z Helgolandu wręczył gotową pracę Bornowi, pytając o opinię. Do ojca pisał w tym czasie: „Moja własna praca nie idzie w tej chwili najlepiej. Nie uzyskuję zbyt wielu rezultatów i nie wiem, czy w tym semestrze wyjdzie z tego następny artykuł”.

Max Born zadecydował, że pracę trzeba opublikować, mimo że nie rozumiał jej do końca. Pisał w lipcu 1925 roku do Alberta Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Heisenberg po jej napisaniu wyjechał do Cambridge, a później do Kopenhagi. W tym czasie Born wraz z Jordanem starali się zrozumieć, co właściwie Heisenberg zaproponował. Okazało się, że jest to decydujący krok w oderwaniu się od tzw. starej teorii kwantów, czyli fizyki klasycznej z kwantowymi dodatkami, jak model atomu Bohra – gdzie orbity elektronów są obliczane klasycznie, tak jak orbity planet, a do tego dokłada się warunek kwantowania, mówiący, jakie orbity są dozwolone. Problemem tego modelu i jego późniejszych coraz bardziej wyrafinowanych matematycznie ulepszeń była wewnętrzna sprzeczność: w fizyce klasycznej niemożliwe są stabilne orbity elektronów. Cały obraz atomu jako kłębowiska orbit elektronowych jest fałszywy. Stawało się to coraz bardziej widoczne przed rokiem 1925.

Heisenberg postanowił z konieczności zrobić cnotę: Nie powinniśmy w ogóle wyobrażać sobie żadnych orbit, nikt nie zaobserwował elektronu na orbicie i nie ma sensu mówić tutaj o ruchu w sposób klasyczny. Należy ograniczyć się do wielkości, które są możliwe do zaobserwowania w doświadczeniach, porzucając spekulacje na temat ruchu elektronu w atomie. Trzeba zmienić fizykę na poziomie kinematyki: nie można opisywać ruchu elektronu tak, jak ruchu kamienia czy innego obiektu makroskopowego. Powoływał się przy tym na podejście Einsteina, który zwracał w teorii względności uwagę, że aby np. mówić o równoczesności, należy podać metodę eksperymentalnego rozstrzygnięcia, czy dane zdarzenia są równoczesne. Metodologia tego rodzaju niekoniecznie sprawdza się w budowaniu teorii fizycznych, ale Heisenbergowi w tamtym momencie pomogła.

Podstawową informacją na temat atomów były linie widmowe. Atom promieniuje fale elektromagnetyczne o pewnych określonych częstościach. Najprostszym układem, który wysyła taką falę, jest drgający elektron. Aby mieć układ drgający należy wyobrazić sobie, że na elektron działa siła zależna od wychylenia, tak jakby nasz elektron był na sprężynie. Jednowymiarowy układ tego rodzaju jest najprostszym oscylatorem (masa na sprężynie, innym przykładem jest wahadło). Do opisania fal emitowanych przez oscylatory atomowe w przypadku klasycznym możemy zastosować analizę Fouriera. Współrzędna naszego oscylatora (o częstości kołowej \omega) jest funkcją okresową, można ją więc przedstawić jako sumę sinusów i cosinusów:

{\displaystyle x(t)=\sum_{n=0}^{\infty}(A_n\cos n\omega t+B_n \sin\omega t)}.

Dwa ciągi liczb rzeczywistych A_n, B_n określają jednoznacznie funkcję. Możemy także zapisać tę sumę krócej w postaci zespolonej:

{\displaystyle x(t)=\sum_{n=-\infty}^{+\infty}x(n) e^{i\omega n t}, \mbox{ (*)}}

gdzie korzystamy ze wzoru Eulera: e^{iz}=\cos z+i\sin z. Z punktu widzenia fizyki ważna jest nie tylko częstość, ale także amplituda drgań. Wypromieniowywana przez oscylator moc jest proporcjonalna do kwadratu amplitudy, czyli sumy |x(n)|^2.

Heisenberg uznał, że zamiast budować model atomu, w którym elektron jakoś się porusza, należy skupić się na wielkościach możliwych do zaobserwowania, czyli częstościach i kwadratach amplitudy.

Przeanalizował następnie, w jaki sposób buduje się kwadrat x(t). Zgodnie z naszym rozwinięciem w szereg Fouriera kwadrat funkcji będzie równy

x^2(t)=\sum_{n}\sum_{m}x(n)x(m)e^{i\omega(n+m)t}.

Wyrażenie to ma postać rozwinięcia Fouriera, jeśli wprowadzimy nową nazwę indeksu p=n+m, to nasz kwadrat można zapisać następująco:

x^2=\sum_{p} e^{i\omega pt}\left(\sum_{n}x(n)x(p-n)\right).

Wyrażenie w nawiasie mówi nam, jak otrzymać rozwinięcie fourierowskie kwadratu funkcji:

x^2(p)=\sum_{n}x(n)x(p-n).

Inaczej mówiąc, aby otrzymać wyraz o częstości \omega p, musimy wysumować wszystkie iloczyny x(n), w których suma częstości jest równa \omega p.

Następnie, i to był najważniejszy pomysł pracy, zastanowił się Heisenberg nad tym, co powinno zastąpić rozwinięcie fourierowskie w sytuacji kwantowej. Pojawia się wtedy oczywiście wiele różnych częstości, nie można przyjąć, że są one wielokrotnością jednej tylko częstości \omega. Co więcej, częstości zależą teraz od dwóch wskaźników:

\omega_{mn}=\dfrac{E_{m}-E_{n}}{\hbar}, \mbox{  (**)}

jest to warunek Bohra, będący w istocie zasadą zachowania energii (\hbar jest stałą Plancka podzieloną przez 2\pi). Można więc uznać, że teraz potrzebujemy także amplitud zależnych od dwóch wskaźników. Współrzędna x naszego oscylatora powinna być jakoś reprezentowana przez zbiór owych amplitud:

x \rightarrow \left\{ x_{mn}e^{i\omega_{mn} t} \right\} .

Nie powinniśmy teraz liczyć na to, że x(t) jest sumą takich wyrazów, raczej mówimy o pewnym zbiorze, który reprezentuje współrzędną w mechanice kwantowej, Heisenberg był tu nieprecyzyjny, bo prawdopodobnie nie potrafił lepiej tego wyrazić.

Czym będzie w takim razie kwadrat współrzędnej albo – co ciekawsze – iloczyn dwóch współrzędnych x oraz y? Mówimy o tym samym układzie, którego zestaw energii, a więc i częstości, jest ustalony. Jeśli także y dane będzie podobnym zestawem co x powyżej, to iloczynowi powinien odpowiadać zbiór

xy \rightarrow \left\{ (xy)_{mp}e^{i\omega_{mp}t} \right\},

gdzie

\boxed{(xy)_{mp}=\sum_{n} x_{mn}y_{np}.}

Zauważmy, że definicja ta daje prawidłowy czynnik wykładniczy:

e^{i\omega_{mp}t}=e^{i\omega_{mn}t}e^{i\omega_{np}t},

gdyż korzystając z (**), otrzymujemy:

\omega_{mp}=\omega_{mn}+\omega_{np}.

Definicja z ramki okazała się najważniejszym wynikiem tej przełomowej pracy Heisenberga. Zauważył on natychmiast, że przy takiej definicji xy\neq yx, czyli mnożenie dwóch wielkości będzie na ogół nieprzemienne.

Potrzebował jeszcze warunku kwantowania, uzyskał go w dość skomplikowanej postaci. Następnie zastosował wynaleziony formalizm do przypadku oscylatora anharmonicznego, tzn. gdy siła oprócz składnika proporcjonalnego do wychylenia zawiera także poprawkę kwadratową w wychyleniu. Nie będziemy powtarzać jego rachunków, pokażemy tylko, co stało się w następnym miesiącu.

Otóż w czasie gdy Heisenberg wojażował, Born wraz z Jordanem (młodszym o rok od Heisenberga, a więc mającym dwadzieścia dwa lata!) przyjrzeli się jego pracy z bardziej matematycznego punktu widzenia. Max Born skojarzył po kilku dniach, że widział już kiedyś takie mnożenie jak w ramce. Było to jeszcze na studiach we Wrocławiu, a chodziło o mnożenie macierzy. Wielkości Heisenberga były po prostu macierzami. Zauważyli też obaj, że ów skomplikowany warunek Heisenberga można macierzowo zapisać jako

\boxed{xp-px=i\hbar \mathbf{I},}

gdzie x,p były macierzami położenia i pędu, a \mathbf{I} macierzą jednostkową. Wielkości kwantowomechaniczne były więc macierzami i to takimi, które nie komutują. Od komutowania dzieli je niewiele, bo tylko stała Plancka – znaczy to, że w wielu sytuacjach różnica ta będzie nie do wykrycia, gdyż stała Plancka jest mała w zwykłych jednostkach (ujmując to inaczej, to nasze, dostosowane do ludzkiego ciała, jednostki są ogromne w skali atomowej, bo my sami składamy się z ogromnej liczby atomów).

Trudno dziś uwierzyć, że Max Born, matematyk z wykształcenia, dawny asystent Hermanna Minkowskiego, musiał wygrzebywać z zakamarków pamięci definicję mnożenia macierzy. Algebra liniowa przez ostatnie sto lat stała się dziedziną bardzo podstawową i uczy się jej powszechnie, nie tylko ze względu na mechanikę kwantową, ale także różne bardziej przyziemne zastosowania, np. w statystyce.

Najprostszym zastosowaniem mechaniki macierzowej jest oscylator harmoniczny. Jego energia ma postać:

H=\dfrac{1}{2}m\dot{x}^2+\dfrac{1}{2}m\omega^2 x^2,

(gdzie m to masa oscylatora), a równanie ruchu (odpowiednik równania Newtona):

\ddot{x}+\omega^2 x=0.

Wyrażenia mają tę samą postać co w mechanice klasycznej (kropki oznaczają pochodną po czasie), ale wszystkie wielkości x,\dot{x},\ddot{x} są teraz macierzami. Nietrudno znaleźć postać macierzy x_{mn}. Można wybrać ją jako macierz symetryczną: x_{mn}=x_{nm} i jedyne nieznikające wyrazy równe są

x_{n,n-1}=x_{n-1,n}=\sqrt{\dfrac{n\hbar}{2m\omega}}.

Macierz energii (zwana hamiltonianem) staje się diagonalna, tzn. nie znikają jedynie wyrazy z jednakowymi wskaźnikami:

H_{nn}=\hbar\omega\left(n+\dfrac{1}{2}\right), \mbox{ gdzie }\, n=0,1,2,\ldots.

Nasze macierze są nieskończone, gdyż oscylator ma nieskończenie wiele stanów wzbudzonych. Całe obliczenie znaleźć można w klasycznej książce L.D. Landaua i E.M. Lifszyca, Mechanika kwantowa.

Mechanikę kwantową rozwijali ludzie młodzi pod kierunkiem starszych oraz Erwin Schrödinger. Isnieje dość zabawne zdjęcie z uroczystości noblowskich w roku 1933, gdy twórcy mechaniki kwantowej odbierali swoje nagrody. Mamy tam Diraca i Heisenberga z matkami oraz Schrödingera z żoną. Ten ostatni, już po czterdziestce, mógł być niemalże ojcem młodszych laureatów.

Warto dodać może parę słów o Pacualu Jordanie. Był potomkiem hiszpańskiego oficera wojsk napoleońskich i zawziętym nacjonalistą, a także nazistą. W roku 1933 Born z racji żydowskiego pochodzenia był już na emigracji, Getynga wyglądała zupełnie inaczej. Jordan, który brał od początku udział w powstaniu mechaniki kwantowej, współtworzył także równolegle do Paula Diraca kwantową teorię pola, czyli relatywistyczną mechanikę kwantową. Gdyby nie nazistowskie sympatie, z pewnością zostałby laureatem Nagrody Nobla. Z czysto naukowego punktu widzenia należała mu się ona, choć trudno nie podzielać wątpliwości szwedzkiego komitetu, że przyznanie nagrody w takich okolicznościach byłoby złym sygnałem dla świata.

 

 

Reklamy

Proust i Einstein

Jak chętnie porozmawiałbym z tobą o Einsteinie! Bo chociaż pisano mi, że z niego zaczerpnąłem, to nie rozumiem z jego teorii ani słowa, nie znając algebry. A wątpię także, aby on czytał moje powieści. Wydaje się, że mamy analogiczny sposób deformowania czasu. Ale nie mogę tego ustalić, ponieważ chodzi o mnie samego, a nie znamy siebie samych; nie mogę też tego ustalić w odniesieniu do niego, ponieważ jest wielkim umysłem w naukach, o których nic nie wiem i w których już w pierwszej linijce zatrzymują mnie „znaki”, których nie rozpoznaję. [List do Armanda de Guiche, grudzień 1921 r.]

Einstein nie znał książek Prousta. Szukanie analogii między dziedzinami tak odległymi jak powieść i fizyka teoretyczna jest oczywiście dość ryzykowne. Można jednak, jak sądzę, wskazać pewne elementy łączące obu wielkich twórców. Nie oznacza to, że któryś z nich był pod wpływem drugiego. Jakiś powierzchowny wpływ na Prousta mogły wywrzeć różne prasowe omówienia teorii względności, ale przecież nie zmienił pod ich wpływem swego wypracowanego przez lata podejścia do świata i roli pisarza. A przede wszystkim do czasu. Czas Prousta jest pozornie subiektywny, zawarty w ułamkach wspomnień, które dzięki pracy umysłu i uważnemu wejrzeniu w głąb przeszłości pozwalają odtworzyć cały zaginiony bezpowrotnie świat. Jest to rodzaj archeologii wewnętrznej. Niektóre wrażenia, takie jak smak magdalenki zamoczonej w herbacie, ewokują zupełnie inny czas, stając się początkiem odkrycia zatopionej w jego bezmiarze Atlantydy:

I z chwilą gdy poznałem smak zmoczonej w kwiecie lipowym magdalenki, którą mi dawała ciotka (mimo że jeszcze nie wiedziałem i aż znacznie później miałem odkryć, czemu to wspomnienie czyniło mnie tak szczęśliwym), natychmiast stary, szary dom od ulicy, gdzie był jej pokój, przystawił się niby dekoracja teatralna do wychodzącej na ogród oficynki, którą zbudowano dla rodziców od tyłu (owa ścięta ściana, jedyna którą wprzód widziałem) i wraz z domem miasto, od rana do wieczora i w każdym czasie, rynek, na który wysyłano mnie przed śniadaniem, ulice, gdzie załatwiałem sprawunki, drogi, którymi się chodziło, kiedy było ładnie. I jak w owej zabawie, w której Japończycy zanurzają w porcelanowym naczyniu pełnym wody kawałeczki papieru z pozoru byle jakie, które, ledwo się zanurzywszy, wydłużają się, skręcają, barwią, różniczkują się, zmieniając się w kwiat, w domy, w wyraźne osoby, tak samo teraz, wszystkie kwiaty z naszego ogrodu i z parku pana Swanna, i lilie wodne z Vivonne, i prości ludzie ze wsi, i ich domki, i kościół, i całe Combray, i jego okolice, wszystko to, przybrawszy kształt i trwałość, wyszło – miasto i ogrody – z mojej filiżanki herbaty. [W stronę Swanna, przeł. T. Żeleński(Boy)]

Mamy tu do czynienia z czymś, co pisarz SF nazwałby tunelem czasoprzestrzennym łączącym dwa zdarzenia i dwa światy. Strategia wyszukiwania takich tuneli, a następnie podążania nimi wytrwale w przeszłość, była wielkim wynalazkiem pisarskim Prousta. Tylko pewien rodzaj skojarzeń prowadził bowiem do odtworzenia minionego świata, punktem wyjścia nie była nigdy myśl, lecz jakieś doznanie zmysłowe: dźwięk, zapach, smak.

Czas pisarza jest subiektywny, przechowany w jego podświadomości, siłą rzeczy obraz, który udaje mu się odtworzyć zawiera obserwatora i jego wyróżniony punkt widzenia. Analityczny rozum podpowiada nam oczywiście, że światy widziane przez innych ludzi będą podobnie subiektywne, że prawda naszych wrażeń jest do pewnego stopnia względna. W szczególności czas zegarowy i kalendarzowy nie mają wielkiego znaczenia w porządku naszych skojarzeń, czas może się przesuwać albo przeskakiwać. Wprowadzając do swej książki pewien anachronizm – przesuwając w czasie drugą podróż do Balbec i koncert u Guermantes’ów, Proust napisał do przyjaciela: „Zeinsteinizujmy to, ponieważ moje byty są nieco spłaszczone za sprawą obrotu w czasie”. Dostrzegał więc pewną analogię między swoją metodą a elastycznym i ruchomym czasem Einsteina. Teoria naukowa odbierająca czasowi walor absolutny niewątpliwie ułatwiała także przeskoki czasowe w wyobraźni, niemal je sankcjonowała. Zanim powstała teoria względności, sporo było różnych fantastycznych rozważań na temat przemieszczania się w czasie. Łatwiej pomyśleć coś, co przypomina do pewnego stopnia rzecz albo sytuację już pomyślaną. Wyobraźnia, sfera tego, co potrafimy sobie wyobrazić, poszerza się przez różne myślowe doświadczenia, nawet fikcyjne albo baśniowe. Tym bardziej poszerza ją teoria naukowa, nosząca piętno ścisłości, nawet gdy nie jest powszechnie zrozumiała.

Ale nie tylko ruchomość i elastyczność czasu jest u Prousta „einsteinowska”. Nazwa teoria względności nie jest szczególnie udana, gdyż zwłaszcza pośród laików od początku rodziła nieporozumienia.

Czasoprzestrzeń teorii względności nie jest relatywna, relatywne są jedynie nasze opisy. Matematycznie biorąc, mamy pewien obiekt czterowymiarowy, rozmaitość czasoprzestrzenną, który można opisywać za pomocą rozmaitych współrzędnych, tzw. map. Jest to sytuacja analogiczna do przedstawiania powierzchni Ziemi za pomocą rozmaitych map w atlasach. Wiemy, że mapy takie mogą w rozmaity sposób deformować to, co na nich widzimy, ale obiektem, który badamy jest sama powierzchnia Ziemi, a nie umowne siatki współrzędnych. Różni obserwatorzy mogą wprowadzać swoje współrzędne, ich odczyty – „rozumienie sytuacji” – będzie różne, ale prawdą jest to, co wspólne i niezależne od układu odniesienia. Można by teorię względności nazwać teorią niezmienników (inwariantów), jak proponował Max Planck, którego przyciągnęło do niej właśnie poszukiwanie absolutu, a nie jakaś skłonność, aby wszystko relatywizować, czy to w sensie fizycznym, czy etycznym. Był to człowiek, który zawsze chodził wyprostowany i zapięty pod szyję, i ponad wszystko przedkładał etykę obowiązku.

Marcel Proust, wyruszając w swe podróże w czasie, nie uciekał od teraźniejszości, nie szukał żadnego narkotyku wzmacniającego doznania. Jego celem było dotknięcie absolutu – tego, co znajduje się poza naszymi siatkami współrzędnych, czego dotknąć i co wyrazić językiem dyskursywnym jest niezwykle trudno. Pisarz musi pracować w słowie, nie ma żadnych innych środków. Musi więc za pomocą języka i skojarzeń, które on niesie, zbudować odpowiednik przeżycia. W tym sensie Proust także poszukiwał prawdy niezależnej od subiektywnego punktu widzenia. Jak my wszyscy, skazany na egocentryczność, szukał wyjścia poza nią w swego rodzaju historii naturalnej pamięci i umysłu. Jednostkowy punkt widzenia, obraz, przedstawiony bez sentymentalizmu i sztucznych upiększeń, może służyć zrozumieniu, w jakimś stopniu wyzwala z bólu istnienia drogą kontemplacji, trochę tak jak w buddyzmie. Wysiłek pisarski Marcela Prousta, trwający niemal do ostatniego dnia jego życia, nie byłby możliwy bez przekonania pisarza, że ściga absolut, zmaga się z niewyrażalnym. Po cóż byłoby się tak trudzić, przez szesnaście lat odmawiać sobie wszelkich przyjemności życiowych, służąc swemu dziełu. Czegoś takiego nie robi się z prostej ambicji ani z chęci przypodobania się przyszłym pokoleniom. Ich osąd będzie tylko trochę mniej chimeryczny i przypadkowy niż opinia współczesnych zależna od tylu trzeciorzędnych czynników.

Proust miał ostrą świadomość bytowania rozciągniętego w czasie.

Odczuwałem znużenie i trwogę pojmując, że cały ten czas, jakże długi, był nie tylko bez przerwy przeżywany, przemyśliwany i wydzielany przeze mnie, że był moim życiem, że był mną, lecz jeszcze musiałem w każdej minucie podtrzymywać z nim związek, że był mi fundamentem, że tkwiłem na jego zawrotnym wierzchołku, że nie mogłem się poruszyć, by go nie przesunąć. Dzień, w którym usłyszałem dźwięk dzwonka w Combray, owa data tak odległa, a jednak wewnętrzna, był punktem wyjścia w tych bezmiarach, co rozciągały się we mnie bez mojej wiedzy. Doznałem zawrotu głowy widząc pod sobą – a jednak spoglądałem od środka w siebie, jakby to były mile wysokości – widząc tyle lat. (…) wydawało mi się, że nie starczy mi sił, by długo utrzymać przy sobie tę przeszłość, która zstępowała już tak daleko. Ale jeśli zostanie mi dość czasu, bym zdążył dokonać mego dzieła, nie omieszkam w nich najpierw opisać ludzi (choćby mieli w tym opisie przypominać potwory) jako zajmujących w Czasie miejsce tak znaczne, jak ograniczone jest ich miejsce wyznaczone im w przestrzeni, miejsce rozszerzające się niepomiernie, gdyż niczym zagłębieni w latach giganci dotykają przeżytych przez siebie, tak odległych epok, między którymi mieści się tyle dni – wśród Czasu [Czas odnaleziony, przeł. J. Rogoziński, przekł. poprawiony].

Nie będzie wielką przesadą powiedzenie, że Proust wierzył w bytowanie czasoprzestrzenne, linię świata, którą można oglądać, jeśli uda nam się osiągnąć dostateczny stopień koncentracji. Z tego punktu widzenia zdarzenia współwystępują, podobnie jak bytują obok siebie przedmioty w przestrzeni. Jest to boski punkt widzenia, niedostępny na co dzień istotom przyszpilonym do uciekającej chwili teraźniejszej.

Dla Asi

Kopenhaga 1941: spotkanie Wernera Heisenberga z Nielsem Bohrem

Czy obłąkańcze ideologie zawsze są samoniszczące? I jakie są ich koszty społeczne? Gdzie kończy się patriotyzm, a zaczyna oportunizm i łajdactwo? Czy uczonym wolno zamykać się w wieży z kości słoniowej? Jacy naprawdę są ludzie, których znamy? Czy historia jest w ogóle możliwa inaczej niż jako rozmowa duchów na Polach Elizejskich?
Sztuka Michaela Frayna Copenhagen jest dialogiem trzech duchów: Wernera Heisenberga, Nielsa Bohra i jego żony Margharete. Chyba nie wystawiona nigdy w Polsce, odniosła wielki sukces w Londynie, Nowym Jorku i w innych miejscach świata.

Spotkanie owych trzech duchów poprzedzone było wieloma latami ziemskiej znajomości. Bohr pierwszy raz zetknął się z Heisenbergiem, gdy wygłaszał w Getyndze w czerwcu 1922 roku swe słynne wykłady, zwane potem Festiwalem Bohra. Dwudziestolatek o chłopięcym wyglądzie zwrócił publicznie uwagę na pomyłkę Bohra i tym go zaintrygował. Trzeba rozumieć kontekst: Niels Bohr był wtedy najbardziej znanym fizykiem atomowym, w listopadzie miano ogłosić, że otrzymuje Nagrodę Nobla. Tak się złożyło, że Bohr otrzymał ją jednocześnie z Albertem Einsteinem, który został laureatem za rok 1921. W grudniu 1922 Svante Arrhenius, przewodniczący Komitetu Noblowskiego z fizyki zaprezentował osiągnięcia obu uczonych: w ten sposób Einstein, najwybitniejszy fizyk pierwszej ćwierci wieku XX, został symbolicznie złączony z Bohrem, patronem intelektualnym nurtu, który za kilka lat miał przynieść mechanikę kwantową. Sytuacja niecodzienna nawet jak na uroczystości noblowskie (nie spotkali się jednak przy tej okazji, ponieważ Einstein był w Japonii). Teoria względności i mechanika kwantowa do dziś są dwoma najważniejszymi osiągnięciami ostatniego stulecia. Rok 1922 stanowił też początek powojennego przełamywania lodów w nauce: wizyta Bohra w Getyndze i Einsteina w Paryżu były pierwszymi zapowiedziami powrotu do międzynarodowej współpracy po latach pierwszej wojny światowej, o której dziś rzadko mówimy, bo niebawem wybuchła następna wojna, jeszcze bardziej brutalna i bezwzględna.

Heisenberg był asystentem Maksa Borna i okazał się najzdolniejszym spośród tamtych chłopaków, ich fizykę nazywano czasem Knabenphysik – fizyką chłopców. Rewolucje robią ludzie młodzi: zarówno Einstein, jak i twórcy mechaniki kwantowej, zaczynali jako dwudziestoparolatkowie, a po trzydziestce już raczej kontynuowali poprzednie osiągnięcia (czasem tak wielkie jak teoria grawitacji). Bohr zaczął wkrótce współpracować z Heisenbergiem, i to podczas stażu w Danii wiosną roku 1925 powstała pierwsza przełomowa praca z mechaniki kwantowej. Max Born, pełen wątpliwości, pisał do Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów [chodzi o termy atomowe, pojęcie z dziedziny spektroskopii, widma pierwiastków są skomplikowane, lecz ich szczegółowa znajomość okazała się kluczem do fizyki mikroświata]. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Praca Heisenberga była zupełnie samodzielna, miał on silną osobowość i umiał się przeciwstawić apodyktycznemu Bohrowi. Duński uczony był wprawdzie kimś w rodzaju duchowego ojca mechaniki kwantowej, ale jego wpływ na młodszych bywał szkodliwy: kilku naukowców miało za złe Bohrowi, że odwiódł ich od słusznych myśli, przez co przeszło im koło nosa jakieś odkrycie. Jednocześnie jednak Bohr troszczył się o wszystkich swoich pupilów i z nimi przyjaźnił, wspólnie pływali żaglówką, jeździli na nartach albo odbywali długie, nawet kilkudniowe spacery.

Gdy Hitler został kanclerzem Niemiec, Werner Heisenberg był już sławny. W grudniu tego roku otrzymał Nagrodę Nobla za rok 1932 razem ze swoimi dwoma konkurentami w tworzeniu mechaniki kwantowej: Erwinem Schrödingerem i Paulem Dirakiem, którzy podzieli się Nagrodą za rok 1933. Trzydziestodwuletni profesor był wielką nadzieją nauki niemieckiej, nie miał Żydów w rodzinie i czuł się gorącym patriotą, choć może z lekka brzydził go NSDAP-owski sztafaż. Orszak studentów z pochodniami przeszedł ulicami Lipska pod dom laureata. Heisenberg zdecydowany był nie wyjeżdżać z Niemiec, chciał też pracować dla ojczyzny, kultywując swoją dziedzinę, czyli fizykę teoretyczną. Okazało się to nieproste. W 1937 roku został publicznie zaatakowany w organie prasowym SS jako „biały Żyd”, tzn. ktoś, kto głosi idee fizyki żydowskiej wśród niemieckiej młodzieży. Porównano go nawet do Carla von Ossietzky’ego, działacza pokojowego i laureata pokojowej Nagrody Nobla, niebawem zamęczonego w Dachau. Do fizyki żydowskiej zaliczano oczywiście teorię względności, ale także mechanikę kwantową. W tym drugim przypadku kryterium było całkowicie polityczne (to ja decyduję, kto jest Żydem): akurat ani Heisenberg, ani Schrödinger, ani Dirac nie byli Żydami. Pół-Żydem był Niels Bohr, co wkrótce zaczęło mieć znaczenie. Przez następny rok Heisenberg starał się „oczyścić” z zarzutów, jego list dotarł do samego Heinricha Himmlera, który zarządził śledztwo. Badano w nim życie fizyka, sprawdzano m.in. czy aby nie jest homoseksualistą (ożenił się bowiem niedawno i dotąd miał raczej przyjaciół mężczyzn, choć homoseksualistą nie był) i dlaczego nie wykazywał entuzjazmu wobec nazistów. Przesłuchiwano go też w podziemiach SS w Berlinie naprzeciwko napisu: „Oddychaj głęboko i spokojnie”. W końcu dano mu spokój i uznano, że jest nieszkodliwym profesorem, trzymającym się swojej dziedziny i być może przydatnym reżimowi. Zaczęto go potrzebować szybciej, niż ktokolwiek sądził. Podjęto bowiem w Niemczech prace nad projektem uranowym, który miał prowadzić do zbudowania reaktora, a może także bomby nuklearnej. Najważniejszym uczonym pracującym nad tym projektem został w naturalny sposób Werner Heisenberg.

Niels Bohr między Elisabeth i Wernerem Heisenbergiem, z tyłu Victor Weisskopf (1937, pewnie przy okazji ślubu Heisenberga)

I właśnie jako szef prac nad uzyskaniem energii z uranu Heisenberg pojawił się w Kopenhadze. W zasadzie pracowano nad reaktorem, który mógłby wytwarzać w dalekiej przyszłości pluton. Ale możliwość bomby rysowała się nad horyzontem i, jak się zdaje, Heisenberg ciężko pracował, aby wykazać swoją przydatność dla ojczyzny. Nie przejawiał zbyt wiele inteligencji emocjonalnej: pojawił się w Kopenhadze jako przedstawiciel nauki niemieckiej, miał wygłosić wykład w Instytucie Kulturalnym Niemiec. Duńczycy, poddani okupacji (wprawdzie stosunkowo łagodnej) dużego sąsiada, niezbyt garnęli się do kontaktów z Niemcami, zwłaszcza że w praktyce chodziło o propagandę III Rzeszy. Na wykładzie nie pojawili się najważniejsi naukowcy duńscy. Heisenberg spotkał się natomiast z Bohrem prywatnie, odbyli też wspólny spacer, aby porozmawiać (obaj, słusznie, obawiali się podsłuchów). O swojej wizycie Heisenberg pisał do swej żony, Elisabeth:

Moja droga Li,
oto znowu jestem w tym tak dobrze mi znanym mieście, gdzie pozostała cząstka mego serca od tamtego czasu sprzed piętnastu lat. Kiedy usłyszałem znowu kuranty z wieży ratuszowej, zamknąłem okno mego hotelowego pokoju i coś ścisnęło mnie mocno w środku: wszystko było tak samo, jakby nic się na świecie nie zmieniło. To takie dziwne, napotkać własną przeszłość, to tak jakby spotkało się samego siebie. (…) Późnym wieczorem poszedłem pieszo pod jasnym rozgwieżdżonym niebem przez zaciemnione miasto do Bohra.
Bohr i jego rodzina mają się dobrze; on sam się trochę postarzał, jego synowie są już całkiem dorośli. Rozmowa szybko zeszła na ludzkie zmartwienia i nieszczęsne wypadki ostatnich czasów; w sprawach ludzkich konsensus jest oczywisty; w kwestiach politycznych stwierdziłem, że nawet tak wielki człowiek jak Bohr nie potrafi całkowicie rozdzielić myślenia, odczuwania oraz nienawiści. Ale może nie powinno się ich nigdy rozdzielać. (…)
Wczoraj znowu spędziłem cały wieczór z Bohrem; oprócz pani Bohr i dzieci była też młoda Angielka, która mieszka u nich, ponieważ nie może wrócić do Anglii. Trochę dziwnie jest rozmawiać teraz z Angielką. Podczas nieuniknionych rozmów politycznych, podczas których ja broniłem naturalnie i automatycznie naszego systemu, wyszła i pomyślałem, że w sumie to całkiem miłe z jej strony. – Dziś rano byłem na molo z [Carlem Friedrichem] Weizsäckerem, wiesz, tam przy porcie, gdzie znajduje się Langelinie. Teraz stoją tam na kotwicy niemieckie okręty wojenne, kutry torpedowe, krążowniki pomocnicze i tym podobne. Był pierwszy ciepły dzień, port i niebo ponad nim zabarwione bardzo jasnym lekkim błękitem. Dwa duże frachtowce odpłynęły w stronę Elsynoru; przypłynął węglowiec, prawdopodobnie z Niemiec, dwie łodzie żaglowe, pewnie takiej wielkości, jak ta, którą pływaliśmy dawniej wypływały z portu, pewnie na popołudniową wycieczkę. W pawilonie na Langelinie zjedliśmy obiad, wszędzie dokoła byli sami szczęśliwi i radośni ludzie, a przynajmniej takie robili na nas wrażenie. W ogóle ludzie tu wyglądają na szczęśliwych. Wieczorem na ulicach widzi się promieniejące szczęściem młode pary, idące na dancing, nie myślące o niczym innym. Trudno o coś bardziej odmiennego niż życie na ulicach tutaj i w Lipsku.
(…) Pierwszy oficjalny wykład jest mój, jutro wieczorem. Niestety, członkowie Instytutu Bohra nie przyjdą z powodów politycznych. Jeśli wziąć pod uwagę, że Duńczycy żyją bez jakichkolwiek restrykcji i żyją wyjątkowo dobrze, to zadziwiające jest, że wzbudzone tu zostało tak wiele nienawiści i strachu, iż nawet współpraca w dziedzinie kultury, kiedyś tak oczywista, teraz stała się prawie niemożliwa. (list z końca września 1941 roku)

Bohra doszły słuchy, jak Heisenberg opowiada, że okupacja Danii i Norwegii to przykra konieczność, w odróżnieniu od okupacji wschodniej Europy, która jest niezbędna, gdyż kraje te nie potrafią same się rządzić (było to przed Stalingradem). Z perspektywy Danii wyglądało to oczywiście inaczej, tym bardziej że należało się spodziewać dalszych kroków niemieckich władz okupacyjnych. Dotąd aresztowali oni komunistów, dwa lata później przyszła kolej na Żydów i Bohr sam musiał się ratować przeprawą przez Bałtyk (na szczęście znalazł się w niemieckiej ambasadzie przyzwoity człowiek, Georg Ferdinand Duckwitz, który uprzedził o zamiarach nazistów i praktycznie wszyscy Żydzi duńscy zostali w porę przetransportowani łodziami rybackimi do Szwecji). Heisenberg wspomniał Bohrowi, że pracuje nad energią z uranu i nawet spytał go, co należy zrobić z moralnego punktu widzenia. Nie chciał chyba jednak słuchać odpowiedzi. Elisabeth Heisenberg opowiadała, że mąż bardzo się bał, iż alianci zbudują broń nuklearną wcześniej niż Niemcy. Oczywiście reszta świata obawiała się czegoś dokładnie odwrotnego. Rozmowa zostawiła nieprzyjemny osad w pamięci Bohra. Ich dawna przyjaźń z Heisenbergiem nigdy już się nie odrodziła, choć po wojnie spotykali się czasem.

„Był tu Werner Heisenberg, fizyk teoretyczny z Niemiec, kiedyś wielki nazista. Z niego jest wielki uczony, lecz niezbyt przyjemny człowiek” – stwierdził Einstein w 1954 roku. Einstein najprawdopodobniej uważał za nazistów tych, którzy pracowali dla reżimu Hitlera bez względu na to, czy należeli do NSDAP albo innych organizacji nazistowskich.

Po wojnie uczeni niemieccy starali się przekuć swoje niepowodzenie w sukces moralny, lecz wydaje się, że po prostu (i na całe szczęście) zabrakło im wizji i możliwości technicznych.
David C. Cassidy wyliczył techniczne powody niepowodzenia ekipy Heisenberga:

  • Nie obliczyli masy krytycznej uranu 235: nie sądzili, że wystarczą kilogramy, nie tony
  • Nie umieli przeprowadzić separacji izotopów: metodę separacji gazów znał w Niemczech Gustav Hertz, ale jako nieczysty rasowo pracował w prywatnym laboratorium
  • Moderator: ekipa Heisenberga nie wiedziała, że nadaje się do tego grafit, ale musi zostać oczyszczony z domieszek boru, co zauważył Leo Szilard, Żyd oczywiście i emigrant. Z kolei ciężka woda z Norwegii nie docierała dzięki sabotażowi.
  • Reaktor Heisenberga składał się z płaskich płyt uranu w zbiorniku z ciężką wodą, co było wygodne do obliczeń teoretycznych, lecz marne jako rozwiązanie inżynierskie.
  • Projekt wymagał połączonej wiedzy i znakomitej organizacji: amerykańskie zasoby i poziom techniki oraz europejscy uczeni, przeważnie Żydzi albo ofiary antysemityzmu: Bohr, Oppenheimer, Feynman, Bethe, Wigner, von Neumann, Fermi, Peierls, Compton, Ulam, praktycznie jest to słownik wielkich fizyków
  • Przebieg wojny: po początkowych sukcesach zaczęły się niemieckie porażki i coraz trudniej było zmobilizować zasoby na projekt nierokujący natychmiastowych sukcesów

W sumie po stronie naukowo-inżynierskiej zemściła się na nazistach ich obłąkańcza ideologia antysemicka, rządy idiotów, którzy przez rok sprawdzali, czy Heisenberg się nadaje na profesora w ich Rzeszy.

Czy Einstein zapowiadał się na geniusza? (1879-1894)

„Nie mam żadnych szczególnych uzdolnień. Cechuje mnie tylko niepohamowana ciekawość”.
Einstein napisał te słowa w liście do swego przyszłego biografa Carla Seeliga w roku 1952, a więc mając już przeszło siedemdziesiąt lat i spoglądając wstecz na całe minione życie. Nie sądzę, by powodowała nim skromność, raczej przedstawił trzeźwy osąd własnego talentu. Przez te lata znał wielu ludzi bardzo wybitnych, niektórych wręcz genialnych, miał więc skalę porównawczą. Nie był dużym dzieckiem, jakim się go – zwłaszcza dawniej – przedstawiało: oto geniusz zachowujący dziecięcą prostotę w świecie dorosłych, ktoś, kto potrafi, nic sobie nie robiąc ze społecznych ani filozoficznych konwencji, spojrzeć inaczej na kwestie tak fundamentalne, jak czas i przestrzeń. Dziecko z baśni Andersena, które woła: król jest nagi.

Rozwijał się dość szybko, nie miał jednak nic z wunderkinda. Mówił powoli, z rozwagą, zastanawiał się nad swymi odpowiedziami, nie miał powierzchownej łatwości i szybkiego refleksu, które często brane są za oznaki zdolności. Dorastał w zamożnej rodzinie. Dom w Monachium, niedaleko za bramą miejską, otoczony ogrodem i wygodny, stanowił miejsce jego pierwszych zabaw. Nawet zabawki były po mieszczańsku solidne: kamienne klocki firmy Anker, miniaturowa maszyna parowa podarowana przez wuja. Zadziwił go jednak kompas, którego igła uparcie trzymała się jednego kierunku, podlegając jakiejś niewidzialnej sile – dobry początek dla kogoś, kto całe życie poświęci teorii pola.

Grająca na fortepianie matka zauważyła, że ma słuch muzyczny. Zaczął więc przychodzić nauczyciel gry na skrzypcach, chłopiec uczył się, choć bez zapału. W szkole nie błyszczał, ale nauka przychodziła mu łatwo. Katolicka szkoła podstawowa wpłynęła na Alberta w nieoczekiwany sposób. Musiał tam uczyć się religii, szło mu to na tyle dobrze, że podpowiadał nawet katolickim kolegom. Jego rodzice, choć niezwiązani z religią i nie uczęszczający do synagogi, poczuli się w obowiązku zapewnić Albertowi dla równowagi lekcje judaizmu. W rezultacie Albert stał się niezwykle pobożny, przestał jeść wieprzowinę, układał hymny do Pana, które śpiewał sobie po drodze do szkoły. Tolerancyjni rodzice nie bardzo wiedzieli, co z tym począć. Ujawniła się w ten sposób istotna różnica między Albertem a jego ojcem, Hermannem, który lekceważąco wypowiadał się o żydowskiej religii, traktując ją jako nagromadzenie przesądów. Być może doszła tu do głosu różnica pokoleniowa: Hermann pragnął asymilacji i zatarcia różnic kulturowych, Albert natomiast wcześnie zdał sobie sprawę, że jako Żyd skazany jest w niemieckim społeczeństwie na alienację – zawsze bowiem będzie kimś obcym. Nie zetknął się w tym czasie z poważniejszymi przejawami antysemityzmu, nauczyciele starali się zachować neutralność, choć chłopcy, zwłaszcza w szkole podstawowej, przynosili z domu niechęć i lekceważenie wobec Żydów, objawiające się dokuczaniem i zaczepkami. Nie można wykluczyć, że religijność Alberta miała w sobie także motyw obronny. Nie tylko nie zaczął wstydzić się swego pochodzenia, lecz wręcz przeciwnie, pragnął je zaakcentować.

Wiara Alberta nie dotrwała do bar micwy, nim skończył trzynaście lat, jego nową wiarą stała się nauka. Zainteresowania naukowe Alberta jeszcze bardziej oddaliły go od szkoły. Uczęszczał teraz do klasycznego Gimnazjum Luitpolda. Rodzice chcieli, aby zdobył najlepsze wykształcenie. W ówczesnej Europie najbardziej prestiżowymi szkołami były gimnazja klasyczne, w których połowę czasu zajmowały łacina i greka. Wierzono, że czas spędzony nad językami klasycznymi służy rozwojowi umysłu, stanowiąc swego rodzaju gimnastykę mózgu. Ponadto warstewka kultury klasycznej pozwalała od razu poznać, kto przeszedł edukację tego rodzaju. „Najbardziej zdumiewającą cechą edukacji jest to, jak wielką ilość ignorancji udaje się w niej zmieścić pod postacią martwych faktów” (Henry Adams). Jak się zdaje, jedyne co Albert zawdzięczał szkole to lekcje niemieckiego w szóstej klasie gimnazjum. Zainteresowanie Goethem zostało mu na całe życie. Nie nauczył się natomiast w szkole niczego z matematyki i fizyki.

Zwrot w kierunku nauki nastąpił pod wpływem osobliwej przyjaźni Alberta z przychodzącym do nich na obiady studentem medycyny z Polski, Maksem Talmudem. Chłopiec zapalił się do materializmu filozoficznego w stylu Georga Büchnera (nb. lekarza), który głosił, iż istnieje tylko siła i materia. Dzięki popularnym książkom Aarona Bernsteina zapoznał się z podstawami chemii, astronomii, fizyki, biologii. Bernstein, syn rabina z Gdańska, głosił pochwałę ludzkiego rozumu, nie był jednak ateistą jak Büchner.

Bardzo ważnym doświadczeniem Alberta stało się zetknięcie z geometrią. Częściowo dokonało się to dzięki rozmowom ze stryjem Jakobem, inżynierem, częściowo wpływ miał Max Talmud, przynosząc chłopcu odpowiednie książki. Zanim jeszcze ujrzał pierwszy podręcznik geometrii, udało mu się wykazać twierdzenie Pitagorasa.

Zauważył (po dłuższym zastanawianiu się nad tym problemem), że wysokość opuszczona z kąta prostego dzieli trójkąt na dwa mniejsze i podobne trójkąty. (Pojęcie podobieństwa trójkątów uznał za oczywiste. Zatem ich pola powierzchni są proporcjonalne do kwadratu długości przeciwprostokątnych, czyli kc^2=ka^2+kb^2, gdzie k jest wspólnym współczynnikiem proporcjonalności). Tym, co zrobiło na Einsteinie ogromne wrażenie, były nie tyle rozmaite twierdzenia, ile sam fakt, że można owe twierdzenia udowodnić, wychodząc z pewnych postulatów. Chodziło zatem o metodę postępowania, nie wyniki. Pierwszy swój podręcznik geometrii opisywał potem Einstein jako „świętą książeczkę”. Dziś zaniedbuje się nauczania geometrii, niewielu więc uczniów ma podobne doświadczenia. Klasyczna geometria nadaje się zresztą nadzwyczajnie do tego, by pokazać na czym polega prawdziwa matematyka, ponieważ już na poziomie szkolnym łatwo znaleźć zadania, które mogą stanowić wyzwanie intelektualne, a zarazem możliwe do rozwiązania bez wielkiej wiedzy i szczególnych technik.

Geometria Euklidesa była pierwszą historycznie dziedziną sformułowaną w sposób aksjomatyczny. Pewność takiej metody dedukcyjnej robiła wrażenie na wielu uczonych w przeszłości. Wielu też starało się tę metodę naśladować w innych dziedzinach, np. Kartezjusz albo Newton. Albert dopiero z czasem zdał sobie sprawę, że aksjomaty geometrii nie są bynajmniej oczywiste, tak samo jak i jej rezultaty. Przyjmując pewien zestaw aksjomatów, otrzymujemy teorię pewnego typu – nie ma jednak żadnych przesłanek, oprócz logicznej niesprzeczności, aby przyjąć ten zestaw aksjomatów raczej niż inny. Gdy zajmujemy się matematyką, kryterium wyboru może stanowić to, czy powstała teoria jest ciekawa, czy wiąże się z innymi teoriami matematycznymi itd. Fizyk musi wybrać postulaty, które nie prowadzą do sprzeczności z doświadczeniem.

Albert robił szybkie postępy w matematyce. W wieku piętnastu lat przerobił już podręcznik rachunku różniczkowego i całkowego H.B. Lübsena (jego autor sam był samoukiem, który okazał się dobrym nauczycielem). Einstein umiał dużo, jak na ówczesnego nastolatka, w przyszłości miał się nauczyć jeszcze więcej. Nie to jednak przesądziło o jego późniejszych osiągnięciach. Najważniejsza była ciekawość w połączeniu z upartym charakterem.

Zetknął się wcześnie z najnowocześniejszą wtedy techniką: elektrycznością. Stryj i ojciec prowadzili do spółki firmę produkującą generatory elektryczne, fabryka była nieopodal domu, Albert bywał tam często, wiedział, jak działają różne urządzenia, widział na ich przykładzie, jak niewidzialne siły pola elektromagnetycznego można przesyłać przewodami, jak można ich energię wykorzystać do oświetlenia albo do rozmów telefonicznych. Rozumiał technikę, ale nie upajał się jej osiągnięciami, dość szybko zauważył, że interesują go zasady działania tych urządzeń, a nie ich praktyczna realizacja czy ewentualne zyski. Ciekawość Alberta kierowała się ku fundamentalnym wyjaśnieniom, miała charakter teoretyczny.
Po rozczarowaniu religijnym, kiedy zrozumiał, że biblijne przypowieści nie mogą być prawdziwe w sensie dosłownym i że istniejące religie stanowią przedłużenie władzy państwowej, służąc raczej spętaniu jednostek niż ich wyzwoleniu, zaczął krytycznie obserwować wszystkich wokół: rodziców, nauczycieli gimnazjalnych. Jego cierpki krytycyzm potrafił ranić, a jego pewny siebie uśmieszek doprowadzał niektórych do wściekłości. Dawał odczuć, że jego prawdziwy świat znajduje się gdzie indziej i że jego królestwo niewiele ma wspólnego z codziennymi zabiegami i staraniami ludzi, którzy nie potrafią go dosięgnąć. Nie wiemy, kiedy dokładnie postanowił, że nie zostanie inżynierem – czy było to przed, czy raczej wskutek niepowodzeń ojca w interesach. Mała fabryczka braci Einstein nie miała szans w konkurencji z gigantami takimi, jak Siemens czy AEG (kapitał 20 milionów marek).

Po kolejnym niepowodzeniu bracia postanowili przenieść się do Włoch. Albert miał zostać w Monachium: czekały go jeszcze trzy lata gimnazjum, dopiero wtedy mógł zdać maturę i myśleć o uniwersytecie.

Ci, którzy go znali, pamiętali jego śmiech przypominający szczekanie foki. Philipp Frank pisał: „[Einstein] widział sprawy codzienne w nieco komicznym świetle i coś z tego nastawienia wyzierało z jego słów; jego poczucie humoru rzucało się w oczy. Kiedy ktoś powiedział coś zabawnego, intencjonalnie albo niechcący, Einstein reagował bardzo żywiołowo. Wydobywający się z głębi jego jestestwa śmiech był jedną z jego charakterystycznych cech, które natychmiast zwracały uwagę. Dla ludzi dookoła był ów śmiech źródłem radości i ożywienia. Czasem jednak dawało się w nim wyczuć krytycyzm, który nie każdemu przypadał do gustu. Ludziom o wysokiej pozycji społecznej niezbyt się podobało, że Einstein uważa ich świat za śmiechu warty w porównaniu z wielkimi problemami, którymi sam się zajmuje. Jednak ludzie o niższej pozycji społecznej czerpali zawsze przyjemność z obcowania z Einsteinem. Jego sposób prowadzenia rozmowy sytuował się gdzieś między dziecinnymi żartami a gryzącym szyderstwem, tak że niektórzy nie wiedzieli, czy powinni się śmiać, czy obrazić. (…) Toteż wrażenie, jakie Einstein wywierał na otoczeniu, oscylowało między dziecinną wesołością a cynizmem”.

Albert zamknął się w swoim świecie fizyki, matematyki, wyobraźni i pojęć, nauczył się też skutecznie go chronić, zaczął prowadzić coś w rodzaju podwójnego życia. W tym ważniejszym, niedostępnym dla innych, rządziła ciekawość, inżynierska dociekliwość: jak to jest zbudowane i jak działa. Jego ciekawość skierowana była wszakże w stronę, by tak rzec, euklidesową: w stronę poszukiwania zasad, na których opiera się świat. Zapewne ta ogromna ciekawość sprawiła, że spędził lata i dziesiątki lat na zastanawianiu się nad fizyką. Kiedy mówimy o uporze albo wytrwałości, akcentujemy cechy charakteru ważne, ale w jakiś sposób wtórne. W jego przypadku wytrwałość była dopełnieniem ciekawości, była napędzana kolejnymi pytaniami, jakie się wyłaniały w miarę znajdywania odpowiedzi na poprzednie pytania. Jego siostra Maja zapamiętała, że w dzieciństwie Albert cierpliwie budował domki z kart, osiągające nawet czternaście kondygnacji. Jakby już wtedy ujawniła się jego wielka cierpliwość oraz pogodna łatwość burzenia i zaczynania od nowa.

A co ze światem ludzi i jego wymaganiami? Wszyscy musimy w jakimś stopniu brać udział w jego oczekiwaniach i rytuałach. Albert nie nadawał się na buntownika, był na to zbyt racjonalny. Nauczył się jednak chronić swą wewnętrzną niezależność – i ta umiejętność odegrała wielką rolę w jego życiu naukowym. Pierwszą oznaką owej niezależności stał się banalny konflikt szkolny. W siódmej klasie gimnazjum pojawił się nowy wychowawca, doktor Joseph Degenhart. Podobnie jak inni nauczyciele w tym gimnazjum był człowiekiem dobrze wykształconym. Uczył greki, do której Albert nie pałał wielkim entuzjazmem, jak zresztą do wszelkiej nauki pamięciowej. Miał on bowiem zawsze tę wadę inteligentnych ludzi, że trudno go było zmusić do robienia czegoś, co uważał za bezsensowne. Nie znamy szczegółów konfliktu między Degenhartem i Einsteinem. Prawdopodobnie wychowawca starał się klasie zaszczepić współzawodnictwo w nauce greki, chciał, by uczniowie w zdyscyplinowany sposób podążali za nim, niczym za swoim dowódcą – porównanie bynajmniej nie nonsensowne – szkoły starano się zmilitaryzować, zaprowadzając dyscyplinę i ćwicząc w cnocie posłuszeństwa wobec przełożonych. Degenhart napotkał opór ze strony Alberta. Uczeń nie miał zamiaru spędzać zbyt wiele czasu nad greką, traktował ten przedmiot jako zło konieczne. Zirytowany Degenhart pozwolił sobie na publiczną uwagę, że z Einsteina nic nie będzie. Piętnastolatek odwzajemnił mu się milczącym szyderstwem. Ta psychomachia trwała jakiś czas, aż w końcu oznajmiono mu, że powinien zmienić szkołę, gdyż sama jego obecność podrywa autorytet profesora wobec klasy. Wkrótce Einstein zdobył zaświadczenie lekarskie, iż powinien odpocząć z powodu wyczerpania nerwowego i opuścił na zawsze szkołę oraz Monachium. Nie chciał mieszkać w Niemczech, nie chciał być dłużej obywatelem królestwa Wirtembergii (jakim był z racji urodzenia w Ulm) i nie chciał służyć w niemieckiej armii. „Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby”. Nie przypuszczał wtedy, iż kiedykolwiek wróci do Niemiec, choć wiedział przecież, ile znaczy niemiecka nauka i niemieckie uniwersytety. W szkolnych latach Einsteina na uniwersytecie w Monachium wykładał najwybitniejszy ówczesny fizyk, Ludwig Boltzmann, co oczywiście nie miało jeszcze żadnego znaczenia dla ucznia gimnazjum. Jednak już za niewiele lat Einstein miał twórczo rozwinąć prace Boltzmanna. Psychologowie podają regułę dziesięciu lat: tyle mniej więcej trzeba, aby ktoś zdolny doszedł do mistrzostwa w trudnej wyspecjalizowanej dziedzinie, jak gra w szachy, gra na instrumencie albo fizyka. Albert Einstein był na początku swojej dekady pogłębiania wiedzy i odkrywania jej dla siebie.

Porzucenie szkoły dwa i pół roku przed maturą nie było rozważne, decyzję podjął sam, nie uprzedzając o niej rodziców. Ale tak samo mało „rozważne” były niemal wszystkie prace Einsteina. Nigdy nie dążył do łatwo osiągalnego celu. Nie zadowalały go kompromisy i częściowe sukcesy, tak jak nie przejmował się tym, co inni sądzą na temat jego osoby czy pracy. Właśnie ta silna osobowość w połączeniu z ciekawością zapowiadała w nim kogoś nietuzinkowego. W owym czasie ani on sam, ani nikt inny nie mógł przepowiedzieć, jak bardzo niezwykłe będzie twórcze życie Einsteina. „Wielkość naukowa jest w zasadzie kwestią charakteru. Najważniejsze to nie iść na zgniłe kompromisy”.

Od nacjonalizmu do idiotyzmu: duch francuski i fizyka niemiecka (1915, 1936)

Ponieważ przybliża się chwila, gdy nasze niestrudzone władze powołają wreszcie do życia Narodowy Instytut Fizyki im. Antoniego od Wielu Wybuchów, więc warto może przypomnieć chlubne przykłady z przeszłości. Złudne jest bowiem mniemanie, że dziedziny takie, jak matematyka albo fizyka nie mają charakteru narodowego. Otóż mają i dlatego tak ważne jest promowanie autentycznie polskiej fizyki. A jakaż to będzie radość dla dziatek naszych najmilszych, gdy w programie szkół po Koperniku będzie od razu Maria Skłodowska-Curie, wypadną zaś te wszystkie Newtony, Ohmy, Hertze i Einsteiny. Wszak żarówkę wynalazł Łodygin, nie jakiś Edison. A była przecież i lampa naftowa Łukasiewicza, i elektryczne świece Jabłoczkowa. My, Słowianie (czyli w zasadzie Polacy), daliśmy światu tyle, tylko on o tym nic nie wie. Kto zaś będzie negował nasze osiągnięcia, ten skazany być może na 3 lata naszej szkoły i nawet wśród pingwinów dopadnie go karząca ręka prawa i sprawiedliwości.

Pierwszy przykład pięknej myśli narodowej w naukach ścisłych znajdujemy u Pierre’a Duhema. Wybitny specjalista od termodynamiki, najbardziej znany jest jako filozof i historyk nauki. Wprowadził on rozróżnienie umysłów naukowych na typ angielski i francuski. Miało się ono wywodzić z tego, co Blaise Pascal określał jako zmysł życiowy (esprit de finesse) oraz zmysł geometryczny (esprit de géométrie). W nauce mielibyśmy uczonych, którzy tworzą różne modele, trzymając się danych doświadczalnych, nawet gdy wprowadza to pewien zamęt pojęciowy; drudzy to budowniczowie prostych teorii, koncentrujący się na ich konsekwencjach. Przykładem typu angielskiego miał być Michael Faraday, francuskiego – Isaac Newton. Rozróżnienie nie miało więc charakteru nacjonalnego, lecz analityczny. Duhem nie lubił brytyjskiej szkoły posługującej się pojęciem pola elektromagnetycznego i mocno atakował Jamesa Clerka Maxwella z pozycji filozoficznych. Oczywiście, żadna filozofia nie mogła na dłuższą metę zaszkodzić osiągnięciom Maxwella, filozofowie mówią swoje, a nauka idzie dalej, nawet bez ich pozwolenia.

Gdy wybuchła pierwsza wojna światowa, czyli wielka wojna (nikt jeszcze nie wiedział, że będzie następna), Duhem, za stary, aby iść na front, zaczął pisać i nauczać o niemieckiej nauce. Co pochlebnego można było powiedzieć o nauce wrogów? Duhem nie zamierzał ich chwalić, wprowadził i omówił pojęcie umysłu typu niemieckiego. Nauka niemiecka była formalistyczna, polegająca na wywodach logicznych nawet tam, gdzie to nie ma większego sensu. „Niemiec jest pracowity, skrupulatny, zdyscyplinowany i podporządkowany”. To geometra, brak mu subtelności. Przykładem Bernhard Riemann, twórca abstrakcyjnego ujęcia geometrii nieeuklidesowej. „Doktryna Riemanna jest ścisłą algebrą, gdyż wszystkie twierdzenia, jakie się w niej formułuje, są bardzo precyzyjnie wydedukowane z przyjętych postulatów; zaspokaja to zmysł geometryczny. Nie jest jednak prawdziwą geometrią, gdyż, wprowadzając swoje postulaty, wcale nie zatroszczyła się, aby wnioski z nich zgadzały się w każdym punkcie z osądami wyprowadzonymi z doświadczenia, które składają się na nasze intuicje dotyczące przestrzeni; w ten sposób przeczy ona zdrowemu rozsądkowi”. Był luty roku 1915, w listopadzie Albert Einstein zapisał równania pola grawitacyjnego w swej teorii. Od kilku lat ci, którzy śledzili rozwój fizyki, wiedzieli, że właśnie geometria riemannowska jest językiem matematycznym nowej teorii. Inaczej mówiąc: owa formalistyczna geometria, rzekomo ignorująca nasze pojęcie przestrzeni, okazała się nauką o fizycznej czasoprzestrzeni, jak najbardziej konkretną, podlegającą pomiarom. Duhem nie śledził zapewne grawitacyjnych prac Einsteina, ponieważ już wcześniejsza szczególna teoria względności nie zyskała w jego oczach aprobaty. Sądził, iż nie istnieje graniczna prędkość w przyrodzie, gdyż można sobie zawsze wyobrazić przebycie określonej drogi w dowolnie krótkim czasie, nawet gdy praktycznie nie potrafimy tego zrealizować. Przyjęcie zasady względności Einsteina, Minkowskiego i Lauego sprawia, że prędkość ponadświetlna staje się sprzecznością logiczną – twierdzi Duhem. „To, iż zasada względności dezorganizuje wszelkie intuicje wynikające ze zdrowego rozsądku, nie wywołuje u fizyków niemieckich żadnych wątpliwości. Przyjęcie jej oznacza siłą rzeczy obalenie wszystkich doktryn dotyczących przestrzeni, czasu, ruchu, wszystkich teorii mechaniki i fizyki; w tak wielkiej dewastacji nie ma niczego, co by nie mogło się podobać myśli germańskiej. Na terenie, który zostanie oczyszczony z dawnych poglądów, geometryczny zmysł Niemców pozwoli im całym sercem oddać się dziełu zbudowania na nowo całej fizyki, której fundamentem stanie się zasada względności”. Widzimy więc na tych przykładach, jak bardzo niefrancuska, a tym samym przykra dla zrównoważonego umysłu, była niemiecka nauka Einsteina.

Mamy drugi jeszcze przykład, jak wolna myśl narodowa kształtować może zdrową etnicznie fizykę. Autorem naszym jest Philipp Lenard, laureat Nagrody Nobla z fizyki eksperymentalnej, człowiek mimo to zgorzkniały i upatrujący odrodzenia nauki aryjskiej w wyzwoleniu się od wpływów żydowskich. Zdaniem Lenarda fizyka stworzona została niemal wyłącznie przez Aryjczyków: Francuzów w jego opowieści nie było, Anglicy, Szkoci i Skandynawowie to praktycznie Niemcy. Niemcami byli też wielcy eksperymentatorzy, jak Heinrich Hertz, odkrywca fal elektromagnetycznych, u którego Lenard pracował kiedyś jako asystent. Hertz nie był jednak „czystej krwi”: jego ojciec, prawnik i senator hanzeatyckiego miasta Hamburga, był Żydem przechrzczonym na luteranizm. Miało to złowieszcze, zdaniem Lenarda, następstwa, gdyż w ostatnich latach życia Hertz zajmował się zasadami mechaniki. W pracy tej „silnie wyszedł na jaw duch żydowski, który w jego wcześniejszych owocnych pracach pozostawał w ukryciu”. W 1936 roku ukazało się czterotomowe dzieło Philippa Lenarda, zatytułowane Deutsche Physik. Był to podręcznik zawierający zdrową pod względem narodowym część fizyki, a nie – jakby ktoś złośliwy mógł pomyśleć – to, co z fizyki zrozumiał Lenard. We wstępie do swego wiekopomnego dzieła skromny jego autor zwracał się do czytelnika: „«Fizyka niemiecka?» – zapytacie. Mógłbym równie dobrze powiedzieć fizyka aryjska albo fizyka ludzi typu nordyckiego, fizyka badaczy rzeczywistości, poszukiwaczy prawdy, fizyka tych, którzy stworzyli badania naukowe. «Nauka jest międzynarodowa i zawsze taka pozostanie» – zaczniecie protestować. (…) W rzeczywistości tak samo, jak wszystko, co tworzy człowiek, również nauka zdeterminowana jest przez rasę albo krew. (…) Należy powiedzieć tu nieco o «fizyce» narodu żydowskiego, ponieważ stoi ona w jaskrawym przeciwieństwie do fizyki niemieckiej (…) fizyka żydowska dopiero niedawno poddana została wyważonej ocenie publicznej. Pod koniec wojny, kiedy Żydzi w Niemczech zaczęli dominować i narzucać ton, wezbrała niczym powódź i ujawniły się jej wszystkie cechy. Znalazła szybko gorliwych zwolenników wśród wielu autorów krwi innej niż żydowska albo nie czysto żydowska”. Oczywiście, przykładem fizyki żydowskiej par excellence musiał być Albert Einstein, jego teorie „kompletnie zgrały się w zetknięciu z rzeczywistością. Najwyraźniej nie były nawet w zamierzeniu prawdziwe. Żyd pozbawiony jest całkowicie zrozumienia prawdy innej niż tylko powierzchowna zgodność z rzeczywistością, [prawdy], która nie zależy od ludzkiej myśli. (…) Zdumiewające jest, że prawda czy rzeczywistość nie wydają się Żydowi czymś szczególnym bądź różnym od nieprawdy, lecz są one równoważne jednej z wielu możliwych opcji teoretycznych”.

Lenard nie mógł przeboleć, że powstaje nowa fizyka, tworzona m.in. przez Einsteina, a popierana ku jego niezadowoleniu przez Maksa Plancka czy Maksa Lauego, późn. von Laue – niewątpliwych etnicznych Niemców. Poglądy wygłaszane przez Lenarda, choć sformułowane prymitywniej, są w istocie zbliżone do zarzutów Duhema. Dla obu teoria względności sprzeczna była ze zdrowym rozsądkiem, była wykwitem zbyt dużej skłonności do abstrakcji oderwanej od rzeczywistości, przerośniętym esprit de géométrie. Duhem widział w tym cechę niemiecką, Lenard natomiast żydowską.

„«Ja cierpię» – Lepiej tak powiedzieć, niż powiedzieć: «Ten krajobraz jest brzydki»” (Simone Weil).

Historia na osi czasu

Dodałem nową stronę, gdzie wpisy z tego bloga uporządkowane są chronologicznie wg epok i lat, do których się odnoszą: od starożytności po wiek XX i XXI. Jest jeszcze na końcu dział Różne, z wpisami odnoszącymi się do rozmaitych czasów. Mam nadzieję, że łatwiej będzie znaleźć artykuły na jakiś konkretny temat.

Voltaire czyli uśmiech rozumu

Pisał Thomas Carlyle:

Niezliczone zastępy strojnych panów, bogów tego niższego świata, obróciły się w nieorganiczny pył, nie zostawiając po sobie ani jednego miłego czy użytecznego wspomnienia; a ten biedny Voltaire, który nie miał nic oprócz własnego języka i umysłu, świeci wciąż blaskiem dla wszystkich narodów, mnie zaś proszą gorąco: „Opowiedz nam o nim, oto człowiek!”.
(Th. Carlyle, History of Friedrich II of Prussia, t. 16)

Różni pustogłowi mędrcy lubią twierdzić, że Oświecenie to epoka naiwna albo nawet złowroga, która w dodatku źle się skończyła, bo Rewolucją Francuską. Zwłaszcza francuscy philosophes, a wśród nich zwłaszcza Voltaire, podkopali religię. Swoim narzekaniem na upały ściągnęli nam na głowę gradobicie. Gdyby nie oni, żylibyśmy dotąd jak u Pana Boga za piecem, nieświadomi zwątpienia, przyjmując choroby i cierpienie jako dopust boży, może głodni, ale przekonani, że kto był dobrym człowiekiem, tego nagroda w niebie nie minie, a władcom należy się cześć niemal taka jak biskupom. Ten okropny, próżny, zarozumiały, cyniczny Voltaire…

A w dodatku, jak pisał. Przeczytajmy tylko jeden krótki liścik (cała jego korespondencja zajmuje pięćdziesiąt tomów, co stanowi jedną trzecią tego, co napisał). Autor ma siedemdziesiąt pięć lat, z wyglądu przypomina szkielet, mieszka w Ferney, blisko Genewy, gdyż we Francji groziłoby mu więzienie z powodu zbyt śmiałych tekstów. Adresatką jest trzydziestotrzyletnia Suzanne Curchod, znana pod nazwiskiem mężowskim jako pani Necker, dama bogata, wpływowa i inteligentna, w której paryskim salonie bywają encyklopedyści, d’Alembert i Diderot, pisarze, artyści. Goście pani Necker wpadli na pomysł, by zebrać pieniądze na posąg Voltaire’a. Wśród subskrybentów znalazło się dwóch królów: Danii i Prus, lecz nie Ludwik XV – ten nigdy Voltaire’a nie lubił. Zadanie wyrzeźbienia posągu otrzymał Jean Baptiste Pigalle, który wybrał się w tym celu do Szwajcarii.

Do Pani Necker
Kiedy ludzie z mej wioski ujrzeli, jak Pigalle rozkłada narzędzia swojej sztuki, powiadali: „Ho, ho, będą mu robić sekcję; ależ będzie zabawa!” Gdyż, jak pani wiadomo, każde widowisko zabawia publiczność; równie dobrze można pójść do teatru marionetek, na ognie świętojańskie, do Opery Komicznej, na sumę czy na pogrzeb. Mój posąg wzbudzi uśmiech paru filozofów i sprawi, że zmarszczy brew jakiś łajdak hipokryta czy jakiś łobuz pismak; marność nad marnościami!
Lecz przecież nie wszystko jest marnością; moja tkliwa wdzięczność dla mych przyjaciół, a przede wszystkim dla ciebie, pani, nie jest marnością.
Tysiąc czułych wyrazów oddania dla pana Necker.
Ferney, 19 czerwca 1770
(przeł. Z. Żabicki)

Anegdotka z początku listu została pewnie zmyślona przez Voltaire’a. Nie chodzi jednak tylko o to, by rozbawić panią Necker. Wprowadzając prostych ludzi i ich sposób widzenia świata, autor podkreśla dystans do własnej osoby i do zniszczonego ciała, które przyszło artyście rzeźbić za pomocą całego instrumentarium. W jednym z poprzednich listów tak opisał siebie po niedawno przebytej chorobie: „Oczy mam zapadnięte na trzy cale, moje policzki przypominają stary pergamin źle przyklejony do kości, które na niczym się nie trzymają. Wypadła mi resztka zębów, które miałem. Nie rzeźbiono dotąd żadnego nieboraka w takim stanie” (przeł. K. Arustowicz). Żarty z samego siebie, owszem, ale bez natarczywego zwracania uwagi na stronę fizyczną starczego rozpadu, byłoby to niestosowne i niesmaczne. Toteż Voltaire nie epatuje zbyt długo swoim stanem, z udaną rezygnacją zgadza się dostarczać innym widowiska. Bo publiczność uwielbia wszelkiego rodzaju zbiegowiska, zgromadzenia, procesje, spektakle, obojętne czy będą wysokiego lotu, czy nie – w dobie Facebooka powinniśmy świetnie rozumieć, że liczy się widowisko i efekt nowości, mniejsza o pretekst. Pani Necker rozumie to oczywiście równie dobrze jak autor, mający za sobą pół wieku doświadczeń w pisaniu i wystawianiu sztuk teatralnych. Suma i pogrzeb także trafiają na listę spektakli: bo przecież i one są przedstawieniami, zwłaszcza w wydaniu wielkoświatowym, gdy liczy się decorum, podniosłość, manifestowanie hierarchii społecznej znacznie bardziej niż treść duchowa owych zgromadzeń. Voltaire, wychowanek jezuitów, nigdy nie rozumiał przeżyć religijnych, uważał je za szalbierstwo albo przesąd kucharek i lokajów (potrzebny zresztą do utrzymania porządku w państwie). Wynikiem zabiegów Pigalle’a miał być posąg, niemający zbyt wiele wspólnego z rzeczywistym wyglądem modela. Przedstawiał on raczej pewien byt idealny, Voltaire’a na Polach Elizejskich (nie tych paryskich, lecz tych antycznych), gdzie znajdzie się wśród innych sławnych postaci.

jeanbaptistepigalle_voltairenude

Bo ostatecznie, jakie to ma znaczenie dla potomności, czy jakiś blok marmuru przypomina tego, a nie innego człowieka”.

Spektakle próżności to oczywiście marność nad marnościami, ale dalecy jesteśmy od tonu Księgi Koheleta: nie wszystko jest marnością. Na przykład przyjaźń. Delikatna, nie narzucająca się, pełna empatii przyjaźń jest jednym z najcenniejszych uczuć tej epoki, która niezbyt wiele sobie robiła z miłości, nie potrafiąc jej traktować z mieszczańską solennością ani z młodzieńczym ponuractwem romantyzmu. Voltaire, zjadliwy i szyderczy wobec wrogów, umiał być niezwykle wyrozumiały wobec tych, którzy mienili się jego przyjaciółmi. Nawet wtedy, gdy pielęgnował tylko złudzenie, nawet wtedy, gdy go to sporo kosztowało, a rzekomy przyjaciel był raczej pieczeniarzem albo obłudnikiem.

Styl Voltaire’a, jego zwięzłość, lekkość, starannie przemyślana prostota to jeden ze szczytów literatury francuskiej i światowej. Po poprzednikach otrzymał język zdolny do wyrażania wielu treści: język Molière’a, Racine’a, Pascala. Potrafił go udoskonalić na tysiącach przykładów, wydestylować co najlepsze z żartobliwego dialogu salonowego, w którym największą zbrodnią jest nudzić. Jego klarowna proza nie utrudniała dotarcia do myśli, przeciwnie, to autor brał na siebie lwią część trudu, nie każąc czytelnikowi przedzierać się przez zawiłe okresy zdaniowe. W dziedzinie stylu najwięcej chyba zawdzięczał Pascalowi, którego poglądy leżały na antypodach jego własnych. Voltaire nie potrafił zrozumieć ponurej zaświatowości tego wybitnego umysłu, opętanego jedną tylko kwestią: własnego zbawienia. Pascal starał się uratować katolicyzm przed życiem ułatwionym i algebraiczną moralnością jezuitów, w której złe i dobre uczynki sumowały się w jednym bilansie i nietrudno było wyjść na swoje. Jego kościół wybrał jednak barokową teatralność, gwałtowne gesty świętych rażonych nagłym widzeniem, cuda ułatwione i dostępne zmysłom. Wybrał jezuitów przeciwko jansenistom. Voltaire nie rozumiał ani jednych, ani drugich, choć po kasacie zakonu przygarnął pewnego jezuitę, z którym grał w szachy.

Wystan Hugh Auden

Voltaire w Ferney 

Teraz prawie szczęśliwy, oglądał gospodarstwo.
Tu zegarmistrz-emigrant w oknie go przywitał
I powrócił do pracy. Gdzie szybko rósł szpital,
Cieśla uchylił czapki. Ogrodnik meldował,
Że dobrze idą drzewa, które sam plantował.
Białe Alpy błyszczały. Był wielki. Było lato.

Tam daleko w Paryżu, gdzie jego przeciwnicy
Syczeli, że jest podły, w sztywnym swoim krześle
Stara, ślepa, czekała na śmierć i na listy. Do niej
„Nic lepszego nad życie” pisał. Gdyż jest bojem.
To coś warte. Oprawców, kłamców straszył nieźle.
Pleć chwast. Cywilizować. I tylko to się liczy.

Słodki, cięty, intrygant, prześcignął wszystkich dawno.
Inne dzieci rozważnie wiódł na święte wojny
Przeciw obrzydłym dorosłym. A chytrość miał dziecka.
Wiedział kiedy udawać, że jest już pokorny,
Chronić się w dwulicowość, łgać dla bezpieczeństwa,
Ale jak chłop cierpliwie trwał wiedząc, że upadną.

Nigdy, jak d’Alembert, nie zwątpił o wygranej.
Tylko Pascal był wielkim wrogiem. Ten czy ów
To szczury już otrute. Choć zostało wiele
Do zrobienia, a nie miał nikogo prócz siebie.
Poczciwy Diderot był głupi, starał się jak mógł.
Rousseau, wiedział to zawsze, wykpi się swoim łkaniem.

Więc, jak na warcie, nie spał. Noc była pełna ech:
Krzywdy, trzęsienia ziemi, egzekucje. Umrze,
A straszne niańki ciągle stoją nad Europą
Chcąc dzieci oblać wrzątkiem. Chyba tylko słowo
Wiersza mogło je wstrzymać; musiał pisać. W górze
Nie skarżące się gwiazdy składały jasny śpiew.
(przeł. Cz. Miłosz)

Stara, ślepa korespondentka to markiza du Deffand, kobieta tyleż przenikliwa, co złośliwa, choć nie wobec wszystkich.