Model Ehrenfesta: w którą stronę płynie czas?

Tylko jedno prawo fizyki odróżnia przeszłość od przyszłości: II zasada termodynamiki. Mówi ona z grubsza tyle, że temperatury z czasem się wyrównują, różnice stężeń też, a bałagan wypiera porządek. Można temu ogólnemu kierunkowi opierać się przez jakiś czas, ale trzeba z zewnątrz czerpać uporządkowanie. Np. żeby żyć, trzeba jeść, a żeby było co jeść, tzn. do wytworzenia cukrów rośliny korzystają ze źródła uporządkowanego promieniowania, jakim jest Słońce. Technicznie mówiąc, potrzeba źródła niskiej entropii. Entropia mierzy nieuporządkowanie – im jest większa, tym większy bałagan. II zasada termodynamiki mówi, że entropia rośnie (dla układu izolowanego).

Prawa mechaniki, elektrodynamiki i wszelkie inne prawa opisujące oddziaływania nie wyróżniają kierunku czasu. Gdy popatrzeć na film z kilkoma poruszającymi się i oddziałującymi cząstkami, nie można poznać, czy film puszczony jest do przodu, czy do tyłu. Chyba że film przedstawia jakieś ogromne zbiorowisko cząstek, np. jajko rozbijane na jajecznicę. Wtedy od razu poznamy, czy film puszczony został prawidłowo, czy wstecz.

Jak to się dzieje, że entropia rośnie, mimo że podstawowe prawa oddziaływania cząstek nie wyróżniają czasu? Na pytanie to odpowiedział Ludwig Boltzmann. Jego uczniem był Paul Ehrenfest, znakomity nauczyciel i przyjaciel Einsteina. Ehrenfest lubił docierać do istoty zagadnienia bez długich rachunków, miał nawet kłopot z uzyskiwaniem właściwej odpowiedzi w wyprowadzeniach podczas wykładów, zwykle gdzieś zgubił jakieś 2\pi albo znak minus. Mimo to jego studenci wspominali go jako wybitnego wykładowcę, dwóch z nich otrzymało Nagrodę Nobla, inny Casimir, też był wybitnym fizykiem.

Ehrenfest obmyślił kiedyś model pokazujący, skąd się bierze nieodwracalność czasu. Wyobraźmy sobie dwa leżące koło siebie psy: Azora i Burka. Na Azorze siedzi N pcheł, Burek jest wolny od pcheł. Co jednostkę czasu zostaje wylosowana w sposób przypadkowy jedna pchła (są one ponumerowane). Wylosowana pchła przeskakuje na drugiego psa. Jasne jest, że z czasem liczby pcheł na obu psach mniej więcej się wyrównają. Wygląda to np. tak (wzięliśmy N=50):

Obraz6

Jak można opisać dochodzenie do „równowagi” w liczbie pcheł na obu czworonogach? W każdej chwili mikrostan naszego układu złożonego z obu psów można scharakteryzować, podając, na którym psie przebywa każda z N pcheł. Mamy tu 2^N takich mikrostanów. Nie możemy w ramach naszego modelu podać żadnej bardziej szczegółowej informacji. Nawet jednak przy pięćdziesięciu pchłach jest to 2^{50}\approx 10^{15} stanów. Zbyt wiele na praktyczne potrzeby. Możemy ograniczyć się do odnotowania jedynie liczby pcheł na Azorze, jak na wykresach. Tak scharakteryzowane stany są zwykle znacznie ciekawsze, bo np. można je łatwo zmierzyć. Kiedy robimy doświadczenie na gazie w zbiorniku, nie obchodzi nas każda cząsteczka z osobna, lecz tylko pewne globalne charakterystyki, jak temperatura (w istocie jest to średnia energia owych cząsteczek, których nie widzimy i nawet nie chcemy oglądać).

Łatwo zauważyć, że w naszym modelu wszystkie mikrostany są jednakowo prawdopodobne: powstają one przez losowanie. Inaczej jest z makrostanami. Jeśli wiemy, że na Azorze siedzi N_A pcheł, to liczba mikrostanów odpowiadających tej sytuacji jest równa liczbie kombinacji:

W=\binom{N}{N_A}=\dfrac{N!}{N_A!(N-N_A)!}.

Inaczej mówiąc, jest to liczba sposobów wybrania podzbioru pcheł na Azorze ze zbioru wszystkich pcheł (pamiętamy, że są one ponumerowane i potrafimy je odróżniać). Jasne jest, że najwięcej sposobów realizacji takiego podzbioru będzie wówczas, gdy pchły rozłożą się po równo (pomijamy przypadek, gdy ich liczba jest nieparzysta i nie mogą się rozłożyć dokładnie po równo). Ale także makrostany w pobliżu tego równego podziału będą dość prawdopodobne. Można obliczyć rozkład prawdopodobieństwa po danej liczbie jednostek czasu. Wygląda on tak:

Pchly_prawdopodobienstwo

Zaczynaliśmy od wszystkich pcheł na Azorze, ale po pewnym czasie układ osiąga równowagę i najbardziej prawdopodobny jest rozkład, w którym połowa pcheł przebywa na Burku albo jakiś do niego podobny. Trzeba pamiętać, że nawet jeśli w jakiejś chwili dokładnie połowa pcheł będzie na Azorze, to stan ten nie utrzyma się na stałe, liczba pcheł będzie się zmieniać w przypadkowy sposób.

Obraz4

Jest oczywiście możliwe, że w pewnej chwili wszystkie pchły znajdą się z powrotem na Azorze, a nawet wiadomo, że tak kiedyś będzie. Nasz model nie ma wbudowanego kierunku czasu, każdy z przebiegów mógłby równie dobrze wydarzyć się w odwrotnej kolejności. Oto wielka tajemnica czasu: czas płynie tak, że zaczynając od sytuacji, gdy wszystkie pchły siedziały na Azorze, po pewnym czasie (najprawdopodobniej) zastaniemy nasz układ w jednym ze stanów bliskich „równowagi”. Czas płynie tak, aby liczba pcheł się wyrównywała. I to właściwie wszystko, co trzeba wiedzieć o II zasadzie termodynamiki. Jeśli odczekamy dostatecznie długo, to (na ogół) zastaniemy układ w jakimś stanie spośród tych najbardziej prawdopodobnych. Czas płynie w określonym kierunku nie z powodu praw fizyki, ale z tego powodu, że nasz świat zaczął się w stanie, gdy wszystkie pchły siedziały na Azorze. Zatem nie prawa fizyki, lecz warunki początkowe. Kolejne „dlaczego” w tej sprawie przenoszą nas aż do Wielkiego Wybuchu i w tym punkcie możemy odpowiedzieć: „nie wiemy”. Jak ktoś lubi wyobrażać sobie Stwórcę, może uznać, że wybrał On bardzo szczególny rodzaj wszechświata.

creator

W przestrzeni stanów równowaga termiczna zajmuje najwięcej miejsca, więc od jeśli zaczniemy od stanu dalekiego od równowagi, to w końcu na nią natrafimy.

equilibrium

(Rysunki Rogera Penrose’a)

Trzy uwagi na koniec:

1. Czemu nie obserwuje się spontanicznego powrotu wszystkich pcheł na Azora? Dlatego, że jest to jeden z 10^{15} stanów, a wszystkie są tak samo prawdopodobne. Gdy weźmiemy za N np. liczbę Avogadro, okaże się, że wieku wszechświata za mało, byśmy doczekali takiej sytuacji.

2. Entropia naszego ukladu jest równa

S=k\ln W.

Jest to najważniejsze odkrycie Boltzmanna. Wynika z niego w szczególności, że entropia nie rośnie zawsze, lecz tylko przeważnie. II zasada termodynamiki obowiązuje nadal, gdy układ jest duży.

(Stała k, zwana stałą Boltzmanna, potrzebna jest, żeby tak zdefiniowana entropia była dokładnie tym samym, czego używano przed Boltzmannem.)

3. Czemu odpowiadają pchły w „poważnej” fizyce? Można sobie wyobrażać spiny \frac{1}{2} w kontakcie z termostatem o bardzo wysokiej temperaturze, żeby zmiany entropii termostatu można było pominąć w rozważaniach.

Reklamy

Albert Einstein każe Bogu grać w kości (1916)

Słynne jest powiedzenie Einsteina, że Bóg nie gra w kości – chodziło mu o to, że prawa rządzące najmniejszymi, elementarnymi cząstkami powinny być przyczynowe. Prawami takimi są zasady dynamiki Newtona: jeśli znamy położenie i prędkość różnych ciał dziś, to w zasadzie moglibyśmy obliczyć, co się z tymi ciałami stanie w przyszłości. Pierre Simon de Laplace sformułował to następująco:

Inteligencja, która by w danej chwili znała wszystkie siły, które działają w przyrodzie, oraz wzajemne położenia bytów ją tworzących i była przy tym dostatecznie dostatecznie rozległa, by te dane poddać analizie, mogłaby w jednej formule zawrzeć ruch największych ciał wszechświata i najmniejszych atomów: nic nie byłoby dla niej niepewne i zarówno przyszłość, jak przeszłość byłyby dostępne dla jej oczu. Umysł ludzki daje słabe pojęcie owej inteligencji, której doskonałość osiągnąć potrafił jedynie w astronomii. [Théorie analytique des probabilités (1812)]

Otóż Einstein jako najwybitniejszy fizyk XIX wieku (podobnie jak Jarosław Iwaszkiewicz nazwany został, nie bez pewnej racji, najwybitniejszym polskim pisarzem dziewiętnastowiecznym) wierzył w słowa Laplace’a, technicznie rzecz ujmując, sądził, że równania różniczkowe mogą ściśle opisać rzeczywistość. Był w tym spadkobiercą Laplace’a i Jamesa Clerka Maxwella oraz całej plejady wybitnych fizyków wieku pary i elektryczności.

Jednak już sam Laplace zastanawiał się nad zdarzeniami przypadkowymi, w cytowanej książce podał klasyczną definicję prawdopodobieństwa, której każdy się uczył. Fizycy zastosowali prawdopodobieństwa do opisu obiektów zbyt złożonych, aby znać szczegóły ich ruchu, jak np. gaz doskonały. Nie musimy znać szczegółów zderzeń wszystkich cząstek w gazie, wystarczy, jeśli znamy pewne charakterystyki średnie, np. średnią energię. Metodę tę rozwinął zwłaszcza Ludwig Boltzmann, a także Josiah Willard Gibbs w Stanach Zjednoczonych oraz Albert Einstein.

W ostatnich latach wieku XIX odkryto radioaktywność niektórych pierwiastków, a Ernest Rutherford podał prawo rozpadu promieniotwórczego: liczba pozostałych jąder maleje wykładniczo z czasem t, tzn. po pewnym czasie \tau pozostaje połowa jąder, po następnym czasie \tau połowa tej połowy, czyli 1/4 itd. Wygląda to tak:

Halflife-sim

Animacja z Wikipedii, z lewej strony na początku mamy 4 atomy, z prawej 400, u góry wyświetla się liczba półokresów rozpadu.

A matematycznie można zapisać następująco:

N=N_0 2^{-\dfrac{t} {\tau} }=N_0 \exp{(-\lambda t)}.

Przez N_0 oznaczona jest początkowa liczba jąder. Ostatnia równość jest tożsamościowa: możemy po prostu zapisać naszą funkcję w obu tych postaciach, jeśli odpowiednio wybrać stałą rozpadu \lambda. Gdy przyjrzymy się przez chwilę animacji powyżej, nasuwa się pytanie: skąd dane jądro wie, kiedy ma się rozpaść? Ponieważ wszystko wskazuje, że jądra rozpadają się niezależnie od siebie, więc oznacza to, iż prawdopodobieństwo przeżycia czasu t przez dowolne jądro równe jest

p(t)=2^{-\dfrac{t}{\tau} }=\exp{(-\lambda t)}.

Jest to bardzo dziwne prawo: znaczy bowiem, że każde jądro, niezależnie od tego, jak długo już istnieje, ma ciągle takie same prawdopodobieństwo rozpadu w nadchodzącym przedziale czasu. To jak gra w ruletkę: jeśli nawet 10 razy z rzędu wypadło czerwone, to za jedenastym razem prawdopodobieństwo, że i tym razem wypadnie czerwone jest wciąż takie samo jak przedtem. Każde zakręcenie koła ruletki rozpoczyna cykl od nowa i jego wynik nie zależy od tego, co wypadło poprzednio. Prawdopodobieństwo rozpadu jądra w małym przedziale czasu (t, t+\Delta t) jest równe

p(t)-p(t+\Delta t)=\exp{(-\lambda t)}-\exp{(-\lambda (t+\Delta t))}=\\ \\p(t)(1-\exp{(-\lambda \Delta t)}\approx p(t)\lambda \Delta t.

Jest ono iloczynem prawdopodobieństwa dotrwania do chwili t i prawdopodobieństwa rozpadu w krótkim czasie \Delta t. Zatem prawdopodobieństwo rozpadu (pod warunkiem, że w chwili t że jądro nadal istnieje) jest proporcjonalne do długości przedziału \Delta t i nie zależy wcale od tego, jak długo już obserwujemy tę sytuację:

p_{rozpadu}=\lambda\Delta t.

Inaczej mówiąc, prawdopodobieństwo rozpadu na jednostkę czasu jest stałe i równe \lambda. Kiedy Rutherford podał prawo rozpadu promieniotwórczego, zastanawiano się nad tym, że wygląda ono tak, jakby rozpad nie miał konkretnej przyczyny. Nie potrafiono w każdym razie wskazać takiej przyczyny. Nie znaczy to bynajmniej, że rozpad danego jądra nie nastąpi. Sytuacja przypomina grę w rosyjską ruletkę: bierzemy rewolwer bębenkowy i ładujemy kulę do jednej komory, po czym kręcimy komorą, aż zatrzyma się w przypadkowym położeniu. Przykładamy sobie do głowy i naciskamy spust: albo przeżyliśmy, albo nie. Jeśli tak, to możemy ten zabieg powtarzać, aż w końcu nam się uda. Można pokazać, że przypadku rosyjskiej ruletki średnia liczba prób będzie równa 6 (jest to liczba komór w bębenku). Wcale to jednak nie znaczy, że konkretny gracz nie przetrwa np. 24 prób. Nie jest to bardzo prawdopodobne, ale jest możliwe.

I tu dochodzimy do pracy Einsteina z roku 1916. Pół roku wcześniej podał on równania teorii grawitacji, zrobił parę mniejszych prac i zajął się oddziaływaniem promieniowania z materią. Trzy lata wcześniej Niels Bohr ogłosił swój model atomu. Wynikało z niego, że każdy atom powinien mieć pewien zbiór określonych – skwantowanych – energii. Rozpatrzmy atomy pewnego rodzaju, a w nich dowolną parę stanów o dwóch różnych energiach E_1 < E_2. Jeśli nasze atomy znajdą się w zbiorniku z promieniowaniem o temperaturze T, to liczba atomów w stanie o wyższej energii będzie mniejsza niż tych w stanie o niższej energii:

\dfrac{N_2}{N_1}=\dfrac{\exp{(-\dfrac{E_2}{kT}})}{\exp{(-\dfrac{E_1}{kT}})}=\exp{(-\dfrac{E_2-E_1}{kT})}.

Stała k zwana jest stałą Boltzmanna, a sam rozkład liczby atomów od energii także nazywany jest rozkładem Boltzmanna. Co oznacza taka równowaga cieplna? Ano tyle, że czasem nasz atom w stanie E_1 pochłonie promieniowanie i przejdzie do stanu E_2, a czasem na odwrót (wtedy energia zostanie oddana w postaci promieniowania). W równowadze oba procesy powinny zachodzić z taką samą szybkością.

emisja

Einstein założył – i to jest punkt zasadniczy – że możliwe są procesy jak na rysunku: dwa pierwsze oznaczają przejścia między poziomami wymuszone promieniowaniem – tzw. absorpcję i emisję wymuszoną. Prawdopodobieństwa tych procesów na jednostkę czasu będą równe iloczynowi odpowiedniej stałej B oraz gęstości energii promieniowania u(\nu). Mamy tu jeszcze jeden proces: emisję spontaniczną. Jej prawdopodobieństwo na jednostkę czasu jest równe A_{2\rightarrow 1} – tutaj prawo jest takie samo jak w rozpadzie promieniotwórczym. Wiedząc to wszystko, możemy zapisać ilość przejść 1\rightarrow 2 oraz 2\rightarrow 1 na jednostkę czasu:

N_1 B_{1\rightarrow 2}u(\nu)=N_2 B_{2\rightarrow 1}u(\nu)+N_2 A_{2\rightarrow 1}.

Obliczamy stąd funkcję u(\nu) i porównujemy ze znanym rozkładem Plancka:

u(\nu)=\dfrac{A_{2\rightarrow 1}}{B_{1\rightarrow 2}\exp{(\frac{E_2-E_1}{kT})}-B_{2\rightarrow 1}}=\dfrac{8\pi h\nu^3}{c^3}\dfrac{1}{\exp{(\frac{h\nu}{kT})}-1}.

Łatwo z tej równości wysnuć pewne wnioski nt. zależności między współczynnikami A, B. Np. zgodność obu równań jest możliwa tylko wówczas, gdy

E_2-E_1=h\nu.

Niels Bohr założył słuszność takiego równania, tutaj pojawia się ono jako wniosek. Nie będziemy wchodzić w szczegóły. Rzec można, Einstein obliczył maksimum tego, co było możliwe bez mechaniki kwantowej. Jedenaście lat później P.A.M. Dirac pokazał, jak wartości einsteinowskich współczynników wynikają z teorii kwantowej. Równania Einsteina prawidłowo opisują oddziaływanie atomów i promieniowania. Np. działanie lasera opiera się na emisji wymuszonej, opisywanej współczynnikiem B_{2\rightarrow 1}. Nie znaczy to, że Einstein zbudował laser, ale z pewnością zrozumiałby, gdyby jakiś mądry ET opisał mu taki wynalazek.

Dlaczego Einstein każe tu Bogu grać w kości? Współczynnik emisji spontanicznej musi być niezerowy i taki też zazwyczaj jest w przyrodzie (chyba że są powody, aby jakieś przejście było niemożliwe, np. ze względu na symetrię). To wszystko znaczy, że atom w wyższym stanie energetycznym kiedyś przejdzie do stanu niższego: tak samo jak gracz w rosyjskiej ruletce kiedyś się zastrzeli. Tyle że w przypadku atomu nikt nie pociąga za spust. Nie ma żadnej doświadczalnie możliwej do wykrycia przyczyny tego przejścia. Okazało się, że te współczynniki Einsteina to wszystko, co możemy wiedzieć i nie ma żadnej lepszej teorii, która by nam powiedziała, kiedy dany atom wyśle foton albo kiedy dane jądro się rozpadnie. Einstein w roku 1916 jeszcze nie rozumiał, że osiągnął granicę możliwości fizyki. Nigdy się z tym zresztą nie pogodził, stając się pogodnym dziwakiem w oczach kolegów i pracując wytrwale nad teorią, która by usunęła te probabilistyczne rozważania raz na zawsze. Jak wiemy, nigdy mu się to nie udało, dziś chyba mało kto wierzy, aby przedsięwzięcie tego rodzaju było wykonalne. Laplace i Einstein nie mieli racji, Bóg najwyraźniej gra w kości.

Student Einstein, profesor Weber i diamenty (1906)

Albert Einstein miał trudności z dostaniem się na studia. Po pierwsze nie miał matury: gimnazjum w Monachium porzucił – nie podobała mu się sztywna atmosfera, a i on niezbyt się podobał nauczycielom. „ …Kiedy tak siedzisz w tylnej ławce i się uśmiechasz, to sama twoja obecność podważa mój autorytet wobec reszty uczniów” – oświadczył mu jeden z profesorów. Po drugie należało zdać egzaminy wstępne z wielu przedmiotów: historii politycznej, historii literatury, biologii, chemii, języków i rysunku. Einstein, wybitny z fizyki i matematyki, miał braki w niektórych innych przedmiotach. Zdawał na politechnikę w Zurychu, ETH (która nie wymagała świadectwa maturalnego) i oblał. Poradzono mu, aby poszedł jeszcze na rok do szkoły. Miał czas: skończył dopiero 16 lat. Za drugim razem go przyjęto. Były to w zasadzie studia nauczycielskie, po których otrzymywało się tytuł uprawniający do uczenia w szkole średniej.

Na politechnice zetknął się z profesorem Heinrichem Weberem, który prowadził wiele kursów i laboratoriów. Einstein z początku wyrażał się o Weberze w samych superlatywach, profesor także cenił zdolnego studenta. Po jakimś jednak czasie ich stosunki mocno się ochłodziły. Einstein przestał chodzić na wykłady, odkąd stwierdził, że niczego nowego się nie uczy – Weber za zbyt nowomodną uznawał np. teorię elektromagnetyzmu Maxwella, liczącą sobie ponad dwadzieścia lat. W dodatku student Einstein w pracowni chciał przeprowadzać wszystkie eksperymenty po swojemu, co prowadziło do konfliktów. Na domiar złego tytułował profesora: Herr Weber zamiast obowiązkowego Professor Weber. Toteż z pracy dyplomowej otrzymał zaledwie 4,5 (w skali do sześciu) i była to najsłabsza z jego ocen. Z takim dyplomem miał niewielkie szanse na zostanie na uczelni. Nigdy chyba Weberowi nie darował, bo wspominał go zawsze źle, co u Einsteina było raczej rzadkie. Prawdopodobnie profesor nie mógł wybaczyć studentowi, że ten śmie być od niego inteligentniejszy – zjawisko znane nie tylko w Zurychu z roku 1900.

Weberowi więc zawdzięczamy ten urzekający biografów obrazek: oto urzędnik Biura Patentowego w Bernie publikuje w 1905 roku przełomowe odkrycia z fizyki, których dokonał po godzinach pracy (osiem godzin, sześć dni w tygodniu). Oprócz teorii względności, będącej niemal w całości jego dziełem, Einstein zajmuje się w tym czasie wieloma zagadnieniami, wystarczyłoby ich na dorobek bardzo wybitnego uczonego (zresztą nagrodę Nobla dostał właśnie za te „inne” prace, teoria względności wydawała się bowiem kontrowersyjna).

W roku 1906 ukazuje się przełomowa praca Einsteina na temat ciepła właściwego kryształów, która do dziś stanowi rozdział podręczników. W pracy tej raz jeszcze skrzyżowały się losy profesora Webera i młodego doktora Einsteina.

Ciepło właściwe to ciepło potrzebne, aby ogrzać ustaloną ilość substancji o jeden stopień. Wiadomo było, że wiele kryształów ma takie same ciepło właściwe, jeśli tylko przeliczymy je na mol substancji. Prawidłowość ta została od nazwisk odkrywców nazwana prawem Dulonga-Petita. Ciepło molowe równe jest 3R=5,96 cal/mol·K (takich jednostek używał Einstein na wykresie poniżej). Stała R jest to stała gazowa, znana ze szkoły. Prawidłowość tę można wyjaśnić teoretycznie, jeśli przyjąć, że atomy w krysztale drgają wokół położeń równowagi. Gdy dostarczamy kryształowi energię (a więc go ogrzewamy), drgania stają się coraz intensywniejsze. Przy pewnej wielkości tych drgań kryształ się zdestabilizuje i ciało się stopi.Każdy atom stanowi więc oscylator powiązany z sąsiednimi atomami: jak układ mas połączonych sprężynami. Fizyka klasyczna (tzw. zasada ekwipartycji energii) przewiduje taką jak trzeba wartość ciepła właściwego. Tę elegancką zgodność teorii z eksperymentem popsuły (jak zwykle) dalsze eksperymenty. Okazało się, że niektóre kryształy, np. diament, mają ciepło właściwe dużo mniejsze niż 6 cal/mol·K. W latach siedemdziesiątych wieku XIX zagadnieniem tym zajmował się Heinrich Weber, wówczas asystent Hermanna von Helmholtza w Berlinie. Ciepło właściwe diamentu, a także niektórych innych ciał stałych wyraźnie maleje wraz z temperaturą. Jak się wydaje, także i tego faktu Einstein nie dowiedział się od Webera.

Niewielu fizyków zdawało sobie sprawę, jak bardzo ambarasujący są te wyniki eksperymentalne. Chodziło nie o jakąś anomalię budowy niektórych kryształów, lecz o kwestię zupełnie fundamentalną. Fizyka klasyczna, przedkwantowa, nie potrafi tego zjawiska wyjaśnić. W roku 1906 nie było też żadnej fizyki kwantowej ani poczucia, że jest ona do czegoś potrzebna. Kilka lat wcześniej Max Planck w innym zagadnieniu (promieniowania termicznego) przyjął założenie, że drgające ładunki emitujące promieniowanie nie mogą mieć dowolnej energii, lecz tylko pewien ich ciąg – energia jest skwantowana. Było to jednak inne zagadnienie, niemające wiele wspólnego z drganiami atomów w krysztale diamentu oprócz tego, że w obu przypadkach chodziło o drgania. Einstein przyjął, że drgania atomów w krysztale diamentu są skwantowane: tzn. atom taki nie może drgać z dowolną amplitudą, dozwolone są jedynie pewne skokowe jej wartości. To tak jakby wahadło mogło mieć tylko pewien skwantowany ciąg amplitud. Brzmi to cokolwiek szaleńczo, ale okazało się prawdą. Jeśli przyjmiemy, że energia drgań atomu może być równa tylko n\varepsilon, gdzie n jest liczbą naturalną (od zera począwszy), a \varepsilon pewną stałą energią charakterystyczną dla kryształów diamentu, to można wyjaśnić, czemu ciepło właściwe maleje z temperaturą. Przy wysokich temperaturach skok energii o \varepsilon staje się niezauważalny i wracamy do klasycznego wyniku.(*)

annalen_1906

Obliczenia Einsteina zostały na wykresie zestawione z wynikami uzyskanymi przez Webera. Einstein wykorzystał dane z powszechnie znanych tablic, nic nie wskazuje, aby przy tej okazji zwrócił się osobiście do Webera. Temperatura jest podana jako ułamek pewnej temperatury charakterystycznej dla diamentu i równej 1300 K. Ciepło właściwe wyrażone jest w kaloriach i dąży do wartości bliskiej 6 przy wysokich temperaturach. Wyjątkowość diamentu polega jedynie na tym, że owa charakterystyczna temperatura jest stosunkowo wysoka, nie potrzeba więc pomiarów w bardzo niskich temperaturach, aby wykryć odchylenia od prawa Dulonga-Petita.

Praca Einsteina na temat drgań w kryształach jest świetnym przykładem czegoś, co Arthur Koestler nazywał „sleepwalking”: chodzeniem przez sen. Twórcy teorii kwantowej: Planck, Einstein, Bohr poruszali się jak somnabulicy chodzący po dachu, którzy jakimś cudem nie robią sobie krzywdy i docierają szczęśliwie do nieznanego celu. Einstein miał dużo szczęścia w przypadku tej pracy: dane dla innych kryształów i ogólnie dla niskich temperatur nie potwierdzają jego zbyt uproszczonego modelu (choć niezbędne poprawki są czysto techniczne, chodzi o tzw. model Debye’a). Miał jednak rację co do zasady: drgania są skwantowane i w niskich temperaturach przejawia się to w cieple właściwym. Miał też rację przewidując, że ciepło właściwe powinno dążyć do zera, gdy temperatura dąży do zera bezwzględnego. Jego wyniki wykorzystał W. Nernst, formułując III zasadę termodynamiki.

(*)

Pokażemy, jak obliczyć ciepło właściwe kryształu. Korzystamy z podstawowego prawa fizyki statystycznej, że prawdopodobieństwo znalezienia układu w stanie o energii E_n jest równe

p_n=\dfrac{\exp(-E_n/kT)}{Z}.

Z jest tu pewną stałą zależną od temperatury, ale nie od energii E_n; k to stała Boltzmanna, T – temperatura. Z warunku unormowania prawdopodobieństw (suma wszystkich prawdopodobieństw musi być równa 1) otrzymujemy

Z=\exp(-E_1/kT)+\exp(-E_2/kT)+\ldots

W naszym przypadku średnią energię drgającego atomu możemy zapisać jako

E=p_1 E_1+p_2 E_2+\ldots=\dfrac{\varepsilon\exp(-\varepsilon/kT)+2\varepsilon\exp(-2\varepsilon/kT)+\ldots}{\exp(-\varepsilon/kT)+\exp(-2\varepsilon/kT)+\ldots}.

Jest to w zasadzie średnia ważona z energii, w której wagami są eksponenty. Musimy wysumować dwa szeregi: w liczniku i w mianowniku. Prostszy jest ten w mianowniku, oznaczając x=\exp(-\varepsilon/kT) otrzymujemy dla mianownika

Z=1+x+x^2+\ldots=\dfrac{1}{1-x}.

Jest to suma szeregu geometrycznego. Sumę w liczniku możemy uzyskać albo różniczkując ostatnią równość po x, albo zauważając, że można ją zapisać jako

x+2x^2+3x^3+\ldots=
=(x+x^2+x^3+x^4+\ldots)+(x^2+x^3+x^4+\ldots)+(x^3+x^4+\ldots)+\ldots=
=xZ+x^2 Z +x^2 Z+\ldots=x(1+x+x^2+\ldots)Z=xZ^2.

Ostatecznie więc dostajemy energię średnią drgającego atomu równą

E=\dfrac{\varepsilon}{\exp\frac{\varepsilon}{kT}-1}

Ciepło właściwe przedstawione na wykresie to pochodna tej funkcji po temperaturze.

Jean Perrin i atomy, 1913

Zeszłoroczne odkrycie bozonu Higgsa przez dwa niezależne zespoły w LHC w CERN-ie ożywiło debatę nad znaczeniem tego wyniku. Z punktu widzenia teoretyków pracujących w dziedzinie cząstek elementarnych sytuacja jest nieco frustrująca: oto potwierdza się model zbudowany jakieś 40 lat temu – mniej więcej tyle, ile trwa profesjonalne życie badacza. Teoretycy przez ten cały czas wciąż pracowali, głównie pod dwoma sztandarami: supersymetrii i teorii strun. Najwybitniejsi, a także najlepiej zabiegający o popularność, badacze stworzyli całe multiświaty różnych wersji tych idei. Oprócz niezliczonych artykułów i monografii napisano całe mnóstwo książek popularnonaukowych, nakręcono trochę filmów. I jest tylko jeden mały kłopot: ta góra nie urodziła nawet myszy. Nie ma jak dotąd żadnych śladów supersymetrii w przyrodzie. Nie ma też żadnych przewidywań teorii strun – to znaczy istnieje ona w tylu wersjach, że pozwala, jak się wydaje, przewidzieć wszystko, trzeba tylko wiedzieć, do jakich faktów należy ją dopasować. Stąd dość ostry czasami ton dyskusji ekspertów. Por. np. blog Not Even Wrong.

Niewykluczone, że mieliśmy w XX wieku niespotykane szczęście do fizyki: udało się bowiem w ciągu tego stulecia poznać elementarne składniki materii, przede wszystkim atomy, których budowa i zachowanie nie ma już przed nami tajemnic. To niesłychanie wiele, jeśli weźmiemy pod uwagę, że praktycznie cała materia wokół nas to właśnie atomy. To także niesłychanie wiele, jeśli pomyśleć, że od starożytności aż do początku wieku XX atomy były właściwie hipotezą, jak cząstka Higgsa do zeszłego roku. Np. radca dworu i profesor uniwersytetu w Wiedniu Ernest Mach uważał, że nauka powinna zajmować się jedynie ekonomicznym i jak najprostszym opisem faktów doświadczalnych. Wobec tego teorie wyjaśniające np. zachowanie gazów za pomocą ruchu niewidocznych atomów uważał za nienaukowe. Pytał szyderczo Ludwiga Boltzmanna, pioniera fizyki statystycznej: „Czy widział Pan może jakiś atom?” Mach był konserwatywny, ale na początku XX wieku nie był zupełnie odosobniony w swoich poglądach, przeciwnikiem atomów był także Wilhelm Ostwald, wybitny chemik.

Okazało się niebawem, że choć samych atomów i cząsteczek chemicznych nie można zobaczyć pod mikroskopem (optycznym), to można obserwować skutki ich chaotycznych, bezładnych ruchów termicznych. Są to ruchy Browna, ruchy cząstek różnych zawiesin (np. dymu). Cząstki te są na tyle wielkie w sensie atomowym, że można je bez trudu obserwować bezpośrednio, a zarazem na tyle małe, by reagować na bombardowanie przez otaczające cząsteczki. Statystyczne charakterystyki ruchów Browna zostały w roku 1905 objaśnione w niezależnych pracach Alberta Einsteina i Mariana Smoluchowskiego. Jean Perrin wykonał słynne doświadczenia, które rozwiały ostatnie wątpliwości co do istnienia atomów. Opisał je kilka lat później w książce Les atomes (1913). Pisze w niej, że w nauce można postępować dwojako. Niektórzy, jak Galileusz czy Sadi Carnot, potrafią wyabstrahować prawa z obserwowanych zjawisk, dostrzegając niewidoczne dla innych analogie czy powiązania. Inni starają się objaśnić skomplikowane zjawiska zakładając ukrytą prostotę na innym poziomie – jest to droga Daltona i Boltzmanna, pionierów atomizmu w XIX wieku.

PerrinPlot2.svg

Tory cząstek mastyksu obserwowanych przez Perrina co 30 s. Jedna podziałka skali równa jest 3,125 μm (Les atomes, s. 165)

Charakterystyczną cechą ruchów Browna jest ich skrajna nieregularność, Perrin pisze, że robiąc obserwacje 100 razy częściej, dostalibyśmy zamiast każdego z odcinków poszarpaną linię łamaną. Tory cząstek nie są regularne w żadnej obserwowanej skali. Zjawisko to ilustruje rysunek poniżej, gdzie różnymi kolorami zaznaczono tory uzyskiwane przy obserwacjach z różnym krokiem czasowym. Przypominają one np. linię brzegową przedstawianą na mapach o różnej skali: im dokładniejsza mapa, tym dłuższa linia brzegowa. Tor cząstki jest fraktalem.

Brownian_hierarchical

Źródło: Wikipedia

Pomiary Perrina przypieczętowały sukces teorii atomowej i pozwoliły wyznaczyć liczbę Avogadro, a tym samym masy atomów. Dwadzieścia lat później powstała mechanika kwantowa, która początkowo miała być tylko teorią atomów, słuszną dla zjawisk w skali energii pojedynczych elektronowoltów (eV), a ostatecznie okazała się skuteczna nawet w skali TeV, czyli 10^{12} razy większej.
W jakimś sensie dzisiejsi fizycy, narzekając na Model Standardowy cząstek, cierpią na zawrót głowy od sukcesów. Miejmy nadzieję, że LHC pozwoli jeszcze odkryć jakąś nową fizykę, inaczej trudno będzie przekonać polityków i podatników do następnych, jeszcze kosztowniejszych projektów tego typu i stagnacja może potrwać długo.