Werner Heisenberg: pierwsza praca z mechaniki kwantowej (1925)

Dwudziestotrzyletni Heisenberg już od kilku lat był aktywnym uczonym zajmującym się fizyką teoretyczną atomu. Dwa lata wcześniej, po trzech latach studiów, zrobił doktorat w Monachium u Arnolda Sommerfelda, który pierwszy zwrócił uwagę na jego talent. Sommerfeld, aktywny uczestnik w rozwoju nowej dziedziny, miał dar przyciągania zdolnych studentów: czterech jego doktorantów otrzymało Nagrody Nobla, a wielu studentów i stażystów przewijających się przez jego instytut zyskało międzynarodową sławę. W latach dwudziestych Monachium traciło pomału pozycję na rzecz Getyngi, gdzie teoretykom przewodził Max Born. Mechanika kwantowa powstała w Getyndze, a także w Kopenhadze, dokąd Niels Bohr stale zapraszał młodych naukowców z całego świata. Heisenberg zdążył już spędzić długi staż u Bohra, wiosną roku 1925 pracowali tam intensywnie wraz ze starszym o półtora roku Wolfgangiem Paulim, który już wtedy stał się dla Heisenberga punktem odniesienia. Pauli zaczął pracę naukową zaraz po maturze publikacją na temat ogólnej teorii względności. Doktorat u Sommerfelda zrobił także po trzech latach studiów – w najkrótszym prawnie dopuszczalnym terminie. Napisał też w tym czasie długi, ponaddwustustronicowy artykuł przeglądowy na temat teorii względności, w którym omówiona została krytycznie cała literatura przedmiotu. Niezwykle utalentowany, Pauli znany był też z bezwzględnego atakowania prac, które uważał za bezwartościowe. W późniejszych latach słynne było jego powiedzenie o jakiejś słabej pracy: „to nawet nie jest błędne”.

Heisenberg w 1924 roku, podczas wykładu habilitacyjnego w Getyndze.

Chłopięco wyglądający Heisenberg zaangażowany był w ruch skautingowy, spędzał sporo czasu na wycieczkach z młodymi ludźmi. Panowała tam beztroska atmosfera braterstwa i wspólnego przeżywania przygód. Była to jednak organizacja stawiająca sobie cele paramilitarne. Werner Heisenberg wraz z kolegami odwiedzali np. regiony zamieszkane przez Niemców, a pozostające poza granicami Rzeszy, jak np. Górny Tyrol, Finlandia, gdzie było trochę niemieckich emigrantów, a także niektóre tereny Węgier i Polski. W przypadku Heisenberga chodziło chyba raczej o młodzieńczą przygodę, a także odskocznię od intensywnej pracy naukowej. Nie był zwolennikiem skrajnej prawicy, starał się być apolityczny, choć można o nim chyba powiedzieć, że był nacjonalistą. Podczas II wojny światowej nie widział nic niewłaściwego w wizytach w okupowanej Kopenhadze czy Krakowie. Zamiłowanie Heisenberga do spędzania czasu  wyłącznie w męskim towarzystwie wydało się potem podejrzane, gdy jego biografii zaczęło przyglądać się SS. Nie doszukali się jednak niczego nieobyczajnego, do tej pory zresztą uczony miał już żonę i powiększającą się gromadkę dzieci.

Niels Bohr stał się dla młodego Wernera nie tylko mentorem, ale także wzorem i duchowym ojcem. Z prawdziwym ojcem Augustem Heisenbergiem, profesorem bizantynistyki w Monachium, Werner miał stosunki dość napięte. Jak się zdaje, ojciec nie wierzył w jego talent, a może w ogóle w fizykę teoretyczną, która wciąż uchodziła za coś mniej solidnego niż prowadzenie eksperymentów. Werner jako nastolatek chciał zostać pianistą, fizykę wybrał dość późno. August źle reagował na złe wieści o synu, kiedy np. dowiedział się, że Werner ledwo zdał egzamin doktorski. Egzaminatorów było dwóch: teoretyk Sommerfeld oraz eksperymentator Willy Wien. Ten drugi szybko wykrył braki w wiedzy młodego człowieka, który nie potrafił obliczyć zdolności rozdzielczej mikroskopu ani powiedzieć, jak działa ogniwo elektryczne (cztery lata później mikroskop pojawi się w pracy Heisenberga na temat zasady nieoznaczoności). Wien dopiero po dyskusji z Sommerfeldem zgodził się przepuścić Heisenberga, ale jego ocena końcowa była słaba: cum laude (można było otrzymać doktorat summa cum laude, magno cum laude, cum laude i bez żadnego dodatkowego określenia). Wien w senacie uniwersytetu spotykał się z profesorem Heisenbergiem i nie omieszkał się poskarżyć. Werner potrzebował pomocy finansowej, ponieważ nie od razu uzyskał płatną posadę. Ojciec napisał do Borna, pytając o perspektywy naukowe syna. Prosił też Jamesa Francka, eksperymentatora z Getyngi, przyszłego noblistę, aby umożliwił Wernerowi pracę w swoim laboratorium. Franck się zgodził, ale niewiele z tego wyszło i Werner wrócił do pracy teoretyka. Bohr, skracający dystans, biorący udział we wspólnych wycieczkach z młodymi ludźmi, a także zapraszający ich do domu, stał się Heisenbergowi bardzo bliski zarówno pod względem naukowym, jak i prywatnym.

Co ciekawe, najważniejszą swą pracę naukową Heisenberg napisał z dala od Bohra i Pauliego, nie zwierzając się także Maksowi Bornowi. Jak się zdaje, Bohr przy całej swej życzliwości wywierał silną presję na otoczenie, co nie zawsze służyło młodszym, mniej asertywnym uczonym. W kwietniu 1925 roku Heisenberg dostał silnego ataku kataru siennego i wyjechał na wyspę Helgoland, gdzie nie było roślin i w związku z tym pyłku w powietrzu. Tam zdał sobie sprawę, że jedna z ostatnich prac Bohra jest błędna (chodziło w niej o podważenie zasady zachowania energii, tzw. praca BKS). Odbyło się to w scenerii godnej obrazów Caspara Friedricha, Werner spędził noc duchowych zmagań na skalistym wybrzeżu, czekając na wschód słońca. Udało mu się znaleźć nową metodę postępowania, zastosował ją do prostych przypadków. Nie był jednak pewny, czy jest na dobrym tropie. Po powrocie z Helgolandu wręczył gotową pracę Bornowi, pytając o opinię. Do ojca pisał w tym czasie: „Moja własna praca nie idzie w tej chwili najlepiej. Nie uzyskuję zbyt wielu rezultatów i nie wiem, czy w tym semestrze wyjdzie z tego następny artykuł”.

Max Born zadecydował, że pracę trzeba opublikować, mimo że nie rozumiał jej do końca. Pisał w lipcu 1925 roku do Alberta Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Heisenberg po jej napisaniu wyjechał do Cambridge, a później do Kopenhagi. W tym czasie Born wraz z Jordanem starali się zrozumieć, co właściwie Heisenberg zaproponował. Okazało się, że jest to decydujący krok w oderwaniu się od tzw. starej teorii kwantów, czyli fizyki klasycznej z kwantowymi dodatkami, jak model atomu Bohra – gdzie orbity elektronów są obliczane klasycznie, tak jak orbity planet, a do tego dokłada się warunek kwantowania, mówiący, jakie orbity są dozwolone. Problemem tego modelu i jego późniejszych coraz bardziej wyrafinowanych matematycznie ulepszeń była wewnętrzna sprzeczność: w fizyce klasycznej niemożliwe są stabilne orbity elektronów. Cały obraz atomu jako kłębowiska orbit elektronowych jest fałszywy. Stawało się to coraz bardziej widoczne przed rokiem 1925.

Heisenberg postanowił z konieczności zrobić cnotę: Nie powinniśmy w ogóle wyobrażać sobie żadnych orbit, nikt nie zaobserwował elektronu na orbicie i nie ma sensu mówić tutaj o ruchu w sposób klasyczny. Należy ograniczyć się do wielkości, które są możliwe do zaobserwowania w doświadczeniach, porzucając spekulacje na temat ruchu elektronu w atomie. Trzeba zmienić fizykę na poziomie kinematyki: nie można opisywać ruchu elektronu tak, jak ruchu kamienia czy innego obiektu makroskopowego. Powoływał się przy tym na podejście Einsteina, który zwracał w teorii względności uwagę, że aby np. mówić o równoczesności, należy podać metodę eksperymentalnego rozstrzygnięcia, czy dane zdarzenia są równoczesne. Metodologia tego rodzaju niekoniecznie sprawdza się w budowaniu teorii fizycznych, ale Heisenbergowi w tamtym momencie pomogła.

Podstawową informacją na temat atomów były linie widmowe. Atom promieniuje fale elektromagnetyczne o pewnych określonych częstościach. Najprostszym układem, który wysyła taką falę, jest drgający elektron. Aby mieć układ drgający należy wyobrazić sobie, że na elektron działa siła zależna od wychylenia, tak jakby nasz elektron był na sprężynie. Jednowymiarowy układ tego rodzaju jest najprostszym oscylatorem (masa na sprężynie, innym przykładem jest wahadło). Do opisania fal emitowanych przez oscylatory atomowe w przypadku klasycznym możemy zastosować analizę Fouriera. Współrzędna naszego oscylatora (o częstości kołowej \omega) jest funkcją okresową, można ją więc przedstawić jako sumę sinusów i cosinusów:

{\displaystyle x(t)=\sum_{n=0}^{\infty}(A_n\cos n\omega t+B_n \sin\omega t)}.

Dwa ciągi liczb rzeczywistych A_n, B_n określają jednoznacznie funkcję. Możemy także zapisać tę sumę krócej w postaci zespolonej:

{\displaystyle x(t)=\sum_{n=-\infty}^{+\infty}x(n) e^{i\omega n t}, \mbox{ (*)}}

gdzie korzystamy ze wzoru Eulera: e^{iz}=\cos z+i\sin z. Z punktu widzenia fizyki ważna jest nie tylko częstość, ale także amplituda drgań. Wypromieniowywana przez oscylator moc jest proporcjonalna do kwadratu amplitudy, czyli sumy |x(n)|^2.

Heisenberg uznał, że zamiast budować model atomu, w którym elektron jakoś się porusza, należy skupić się na wielkościach możliwych do zaobserwowania, czyli częstościach i kwadratach amplitudy.

Przeanalizował następnie, w jaki sposób buduje się kwadrat x(t). Zgodnie z naszym rozwinięciem w szereg Fouriera kwadrat funkcji będzie równy

x^2(t)=\sum_{n}\sum_{m}x(n)x(m)e^{i\omega(n+m)t}.

Wyrażenie to ma postać rozwinięcia Fouriera, jeśli wprowadzimy nową nazwę indeksu p=n+m, to nasz kwadrat można zapisać następująco:

x^2=\sum_{p} e^{i\omega pt}\left(\sum_{n}x(n)x(p-n)\right).

Wyrażenie w nawiasie mówi nam, jak otrzymać rozwinięcie fourierowskie kwadratu funkcji:

x^2(p)=\sum_{n}x(n)x(p-n).

Inaczej mówiąc, aby otrzymać wyraz o częstości \omega p, musimy wysumować wszystkie iloczyny x(n), w których suma częstości jest równa \omega p.

Następnie, i to był najważniejszy pomysł pracy, zastanowił się Heisenberg nad tym, co powinno zastąpić rozwinięcie fourierowskie w sytuacji kwantowej. Pojawia się wtedy oczywiście wiele różnych częstości, nie można przyjąć, że są one wielokrotnością jednej tylko częstości \omega. Co więcej, częstości zależą teraz od dwóch wskaźników:

\omega_{mn}=\dfrac{E_{m}-E_{n}}{\hbar}, \mbox{  (**)}

jest to warunek Bohra, będący w istocie zasadą zachowania energii (\hbar jest stałą Plancka podzieloną przez 2\pi). Można więc uznać, że teraz potrzebujemy także amplitud zależnych od dwóch wskaźników. Współrzędna x naszego oscylatora powinna być jakoś reprezentowana przez zbiór owych amplitud:

x \rightarrow \left\{ x_{mn}e^{i\omega_{mn} t} \right\} .

Nie powinniśmy teraz liczyć na to, że x(t) jest sumą takich wyrazów, raczej mówimy o pewnym zbiorze, który reprezentuje współrzędną w mechanice kwantowej, Heisenberg był tu nieprecyzyjny, bo prawdopodobnie nie potrafił lepiej tego wyrazić.

Czym będzie w takim razie kwadrat współrzędnej albo – co ciekawsze – iloczyn dwóch współrzędnych x oraz y? Mówimy o tym samym układzie, którego zestaw energii, a więc i częstości, jest ustalony. Jeśli także y dane będzie podobnym zestawem co x powyżej, to iloczynowi powinien odpowiadać zbiór

xy \rightarrow \left\{ (xy)_{mp}e^{i\omega_{mp}t} \right\},

gdzie

\boxed{(xy)_{mp}=\sum_{n} x_{mn}y_{np}.}

Zauważmy, że definicja ta daje prawidłowy czynnik wykładniczy:

e^{i\omega_{mp}t}=e^{i\omega_{mn}t}e^{i\omega_{np}t},

gdyż korzystając z (**), otrzymujemy:

\omega_{mp}=\omega_{mn}+\omega_{np}.

Definicja z ramki okazała się najważniejszym wynikiem tej przełomowej pracy Heisenberga. Zauważył on natychmiast, że przy takiej definicji xy\neq yx, czyli mnożenie dwóch wielkości będzie na ogół nieprzemienne.

Potrzebował jeszcze warunku kwantowania, uzyskał go w dość skomplikowanej postaci. Następnie zastosował wynaleziony formalizm do przypadku oscylatora anharmonicznego, tzn. gdy siła oprócz składnika proporcjonalnego do wychylenia zawiera także poprawkę kwadratową w wychyleniu. Nie będziemy powtarzać jego rachunków, pokażemy tylko, co stało się w następnym miesiącu.

Otóż w czasie gdy Heisenberg wojażował, Born wraz z Jordanem (młodszym o rok od Heisenberga, a więc mającym dwadzieścia dwa lata!) przyjrzeli się jego pracy z bardziej matematycznego punktu widzenia. Max Born skojarzył po kilku dniach, że widział już kiedyś takie mnożenie jak w ramce. Było to jeszcze na studiach we Wrocławiu, a chodziło o mnożenie macierzy. Wielkości Heisenberga były po prostu macierzami. Zauważyli też obaj, że ów skomplikowany warunek Heisenberga można macierzowo zapisać jako

\boxed{xp-px=i\hbar \mathbf{I},}

gdzie x,p były macierzami położenia i pędu, a \mathbf{I} macierzą jednostkową. Wielkości kwantowomechaniczne były więc macierzami i to takimi, które nie komutują. Od komutowania dzieli je niewiele, bo tylko stała Plancka – znaczy to, że w wielu sytuacjach różnica ta będzie nie do wykrycia, gdyż stała Plancka jest mała w zwykłych jednostkach (ujmując to inaczej, to nasze, dostosowane do ludzkiego ciała, jednostki są ogromne w skali atomowej, bo my sami składamy się z ogromnej liczby atomów).

Trudno dziś uwierzyć, że Max Born, matematyk z wykształcenia, dawny asystent Hermanna Minkowskiego, musiał wygrzebywać z zakamarków pamięci definicję mnożenia macierzy. Algebra liniowa przez ostatnie sto lat stała się dziedziną bardzo podstawową i uczy się jej powszechnie, nie tylko ze względu na mechanikę kwantową, ale także różne bardziej przyziemne zastosowania, np. w statystyce.

Najprostszym zastosowaniem mechaniki macierzowej jest oscylator harmoniczny. Jego energia ma postać:

H=\dfrac{1}{2}m\dot{x}^2+\dfrac{1}{2}m\omega^2 x^2,

(gdzie m to masa oscylatora), a równanie ruchu (odpowiednik równania Newtona):

\ddot{x}+\omega^2 x=0.

Wyrażenia mają tę samą postać co w mechanice klasycznej (kropki oznaczają pochodną po czasie), ale wszystkie wielkości x,\dot{x},\ddot{x} są teraz macierzami. Nietrudno znaleźć postać macierzy x_{mn}. Można wybrać ją jako macierz symetryczną: x_{mn}=x_{nm} i jedyne nieznikające wyrazy równe są

x_{n,n-1}=x_{n-1,n}=\sqrt{\dfrac{n\hbar}{2m\omega}}.

Macierz energii (zwana hamiltonianem) staje się diagonalna, tzn. nie znikają jedynie wyrazy z jednakowymi wskaźnikami:

H_{nn}=\hbar\omega\left(n+\dfrac{1}{2}\right), \mbox{ gdzie }\, n=0,1,2,\ldots.

Nasze macierze są nieskończone, gdyż oscylator ma nieskończenie wiele stanów wzbudzonych. Całe obliczenie znaleźć można w klasycznej książce L.D. Landaua i E.M. Lifszyca, Mechanika kwantowa.

Mechanikę kwantową rozwijali ludzie młodzi pod kierunkiem starszych oraz Erwin Schrödinger. Isnieje dość zabawne zdjęcie z uroczystości noblowskich w roku 1933, gdy twórcy mechaniki kwantowej odbierali swoje nagrody. Mamy tam Diraca i Heisenberga z matkami oraz Schrödingera z żoną. Ten ostatni, już po czterdziestce, mógł być niemalże ojcem młodszych laureatów.

Warto dodać może parę słów o Pacualu Jordanie. Był potomkiem hiszpańskiego oficera wojsk napoleońskich i zawziętym nacjonalistą, a także nazistą. W roku 1933 Born z racji żydowskiego pochodzenia był już na emigracji, Getynga wyglądała zupełnie inaczej. Jordan, który brał od początku udział w powstaniu mechaniki kwantowej, współtworzył także równolegle do Paula Diraca kwantową teorię pola, czyli relatywistyczną mechanikę kwantową. Gdyby nie nazistowskie sympatie, z pewnością zostałby laureatem Nagrody Nobla. Z czysto naukowego punktu widzenia należała mu się ona, choć trudno nie podzielać wątpliwości szwedzkiego komitetu, że przyznanie nagrody w takich okolicznościach byłoby złym sygnałem dla świata.

 

 

Reklamy

P.A.M. Dirac i jego równanie (1927-1928)

Paul Dirac znany był z powściągliwej małomówności i z tego, że nie wdaje się w grzecznościowe pogaduszki. Richard Feynman opowiadał, że kiedy spotkał po raz pierwszy Paula Diraca na jakiejś konferencji, to po długiej chwili milczenia starszy uczony rzekł: „Mam równanie. Czy pan także?”

Rozmaite wypowiedzi Diraca cytowane są często jako żarty, gdyż brzmią z pozoru absurdalnie. Paul Adrien Maurice Dirac sprawiał wrażenie postaci beckettowskiej: chudy, z długimi kończynami i wielkimi stopami, nie okazujący emocji, porozumiewający się pełnymi zdaniami (ponieważ nie wolno zacząć zdania, jeśli się nie wie, jak je zakończyć), myślący w kategoriach logicznych i matematycznych, a nie emocjonalnych czy etycznych. Jego przyjaciel Charles Galton Darwin, fizyk, wnuk twórcy teorii ewolucji, dopiero po kilku latach znajomości z Dirakiem odważył się zapytać, co właściwie znaczą inicjały P.A.M. przed jego nazwiskiem. Po przeczytaniu Zbrodni i kary Dostojewskiego Dirac miał tylko jedną uwagę, i to raczej techniczną niż etyczną czy psychologiczną: otóż w książce słońce wschodzi dwukrotnie tego samego dnia.

Anegdota z równaniem mówi sporo o obu rozmówcach. Dirac cenił konkrety, lubił np. słuchać wielogodzinnych monologów Nielsa Bohra, ale wątpił, czy coś z nich wyniósł, ponieważ prawie wcale nie było w nich równań. Toteż cenił sobie niewątpliwie fakt, iż odkrył jedno z fundamentalnych równań przyrody, które stosuje się do wszystkich cząstek o spinie ½: a więc elektronów, protonów, nieodkrytych jeszcze wtedy neutronów oraz kwarków, z których nukleony się składają. Feynman pozostawił po sobie wprawdzie całki Feynmana, diagramy Feynmana i wiele innych osiągnięć, nie odkrył jednak nigdy żadnego fundamentalnego prawa przyrody i jak się zdaje jego ambicja cierpiała z tego powodu.

Jesienią 1927 roku Paul Dirac, młodzieniec zaledwie dwudziestopięcioletni, zaproszony został na Kongres Solvaya do Brukseli. Była to konferencja bardzo elitarna, gromadząca obecne i przyszłe znakomitości naukowe. Na pamiątkowym zdjęciu siedzi w samym środku za Einsteinem, wiemy, że bardzo był dumny z tej fotografii i posłał ją na swój macierzysty uniwersytet w Bristolu. Niewykluczone, że specjalnie usiadł za Einsteinem, jego teorię względności podziwiał bowiem od lat i poznał, zanim jeszcze zajął się fizyką atomową – jak to wtedy mówiono, czyli fizyką mikroświata. Najważniejsze postacie na tym zdjęciu to Niels Bohr i Max Born, przywódcy i patroni całego ruchu kwantowej odnowy w fizyce. W Kopenhadze i Getyndze tworzyły się zasady nowej mechaniki. Zaczęła ją praca Wernera Heisenberga z 1925 roku. Niedługo później dołączyli Born i Pascual Jordan.

Od jesieni 1925 roku mechanikę kwantową współtworzył też Paul Dirac. Był studentem Ralpha Fowlera w Cambridge. Fowler rozpoznał jego niebywały talent: młody inżynier elektryk i absolwent studiów drugiego stopnia z matematyki na uniwersytecie w Bristolu dostał stypendium do Cambridge i błyskawicznie uzupełnił braki z fizyki, nie tylko najnowszej, nie znał np. dotąd równań Maxwella. Fowler miał znakomite kontakty i chyba one przydały się Diracowi najbardziej. Młody uczony otrzymał od niego jeszcze przed drukiem korekty artykułu Heisenberga i zrozumiał ich znaczenie. Kiedy niedługo później opublikował swoją pierwszą pracę na temat mechaniki kwantowej, Max Born zdumiony był, że pojawił się ktoś spoza wąskiej grupy znanych mu ludzi pracujących w tej dziedzinie i w dodatku jego osiągnięcia są porównywalne do tego, co udało się stworzyć w Getyndze i Kopenhadze. Dirac, równieśnik Jordana, miał dwadzieścia trzy lata, pół roku mniej niż Heisenberg i dwa lata mniej niż Wolfgang Pauli. Pracował nad doktoratem. Dzięki Fowlerowi jego prace szybko się ukazywały w „Proceedings of the Royal Society”, a czas bardzo się wtedy liczył. Dirac zaczął korespondować z Hiesenbergiem, który od razu poczuł ogromny respekt do brytyjskiego kolegi. Po doktoracie wyjechał do Kopenhagi i Getyngi. Poznał wielu fizyków, ale nie zmienił swej metody pracy: przez sześć dni w tygodniu intensywne myślenie od rana do obiadu, w niedziele piesze wycieczki. Nie współpracował też z nikim, przez całe życie pracował sam, uważając, że tak jest najlepiej, bo ważne idee są zawsze dziełem konkretnego człowieka, nie zespołu.

Tak więc po dwóch latach swej naukowej kariery Dirac znalazł się w elitarnym gronie na Konferencji Solvaya. Przeszła ona do historii za sprawą dyskusji Bohra z Einsteinem, który nie potrafił się pogodzić z probabilistycznym charakterem nowej mechaniki – można w niej obliczać i przewidywać jedynie prawdopodobieństwa zdarzeń. To w trakcie jednej z takich dyskusji padły słynne słowa: „Bóg nie gra w kości”. W mechanice kwantowej zrezygnować trzeba także z pełnej wiedzy o zjawiskach w mikroświecie: im dokładniej zmierzymy położenie elektronu, tym mniej będziemy wiedzieli na temat jego pędu. Dirac zupełnie nie interesował się sporami filozoficznymi na temat podstaw mechaniki kwantowej. Dla niego była to piękna teoria, do której zbudowania się przyczynił, fascynowała go matematyczna elegancja całego obrazu, napisał zresztą niedługo później słynną książkę The Principles of Quantum Mechanics, przedstawiającą całą tę konstrukcję w niezrównany klarowny, choć też niezwykle zwięzły sposób.

Jesienią 1927 roku Paul Dirac pragnął odkryć swoje równanie. Chodziło o rozwiązanie zagadnienia elektronu w sposób zgodny z teorią względności Einsteina. Z problemem tym pierwszy zetknął się w roku 1925 Erwin Schrödinger, drugi outsider fizyki kwantowej, pracujący w Zurychu. Wiadomo było, że cząstki takie jak elektron związane są z pewnymi wielkościami falowymi. Schrödinger przyjął, że stan elektronu opisywany jest pewną funkcją położenia i czasu \psi(\vec{r},t). Funkcja ta spełniać musi równanie o postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi \mbox{ (*)},

gdzie H jest pewnym operatorem działającym na funkcję. Najłatwiej wyjaśnić to na przykładach. Operatorem takim jest np. mnożenie \psi przez którąś ze współrzędnych, np. x. Wynikiem działania tego operatora jest nowa funkcja równa x\psi. Innym operatorem jest różniczkowanie, np. po zmiennej x. Wynikiem działania tego operatora jest wówczas \frac{\partial \psi}{\partial x}. Innym przykładem operatora jest pochodna po czasie z lewej strony równania Schrödingera. Za każdym razem tworzymy z wyjściowej funkcji \psi jakąś nową funkcję. Operator H zwany hamiltonianem (albo operatorem Hamiltona) jest kwantową wersją wyrażenia na energię cząstki. Jeśli np. energia cząstki o masie m składa się z energii kinetycznej i potencjalnej V(\vec{x}), to możemy ją zapisać w postaci

E=\dfrac{{\vec{p}\,}^2}{2m}+V(\vec{x}).

Kwantowy operator Hamiltona będzie wówczas równy

H=-\dfrac{\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}\right)+V(\vec{r})\equiv -\dfrac{\hbar^2}{2m}\Delta+V(\vec{r}).

Operator V(\vec{r}) jest po prostu operatorem mnożenia, energię kinetyczną konstruujemy z pędu za pomocą podstawienia

p_x\rightarrow -i\hbar\dfrac{\partial}{\partial x}

i analogicznie dla pozostałych współrzędnych. Równanie Schrödingera (*) jest podstawowym prawem mechaniki kwantowej. Rozwiązując je, dowiadujemy się, w jaki spośob zmienia się funkcja falowa, a więc stan naszego elektronu. Najprostszym możliwym rozwiązaniem tego równania w przypadku cząstki swobodnej (tzn. gdy V=0) jest funkcja opisującą falę:

\psi=A \exp{\frac{i}{\hbar}(\vec{p}\,\vec{r}-Et)}, \mbox{ (**)}

gdzie p_x, p_y, p_x oraz E są parametrami liczbowymi. Łatwo sprawdzić, że różniczkowanie tej funkcji sprowadza się do mnożenia przez odpowiedni czynnik i ostatecznie równanie Schrödingera da nam warunek:

E=\dfrac{\vec{p}\,^2}{2m},

jak powinno być dla cząstki swobodnej i parametry są składowymi pędu oraz energią cząstki. Zbudowaliśmy stan o określonej energii i jednocześnie określonym pędzie. Jasne jest, że przyjmujemy tu energię kinetyczną w postaci newtonowskiej, a więc nierelatywistycznej.

Erwin Schrödinger początkowo poszukiwał równania relatywistycznego dla swojej funkcji \psi i nawet takie równanie znalazł. Ma ono następującą postać w przypadku swobodnym:

\dfrac{1}{c^2}\dfrac{\partial^2 \psi}{\partial {t}^2}-\Delta \psi+\left(\dfrac{mc}{\hbar}\right)^2 \psi=0.

Podstawiając do niego funkcję (**), otrzymamy równanie

E^2-p^2c^2=m^2c^4,

a więc prawidłowy związek energii i pędu dla cząstki o masie m w teorii względności. Oczywiście równanie dla cząstki swobodnej niewiele znaczy, interesujące są przypadki, gdy mamy pewien potencjał V(\vec{r}), np. gdy elektron porusza się w polu elektrostatycznym nieruchomego protonu. Jest to prawie atom wodoru (prawie – ponieważ w prawdziwym atomie wodoru proton, choć znacznie masywniejszy, może też się poruszać). Nietrudno równanie Kleina-Gordona rozszerzyć tak, aby zawierało zewnętrzne pole elektromagnetyczne. Wiadomo było jednak, że elektron ma spin, co sprawia, że jego stany są podwojone i np. w polu magnetycznym ta różnica się ujawnia jako rozszczepienie linii widmowych (efekt Zeemana). Czemu więc Schrödinger nie opublikował tego równania, które dziś nazywa się równaniem Kleina-Gordona? Schrödinger uznał, że trzeba ograniczyć się na początek do równania nierelatywistycznego i opublikował równanie (*) zastosowane m.in. do atomu wodoru. Nie jest jasne, czy chodziło mu o brak spinu, czy może dostrzegł inne trudności z rozwiązaniami równania Kleina-Gordona.

Z punktu widzenia Diraca równanie Kleina-Gordona nie było rozwiązaniem problemu elektronu. Owszem, relatywistyczny związek między energią i pędem cząstki był spełniony, ale równanie zawierało drugą pochodną czasową, a nie pierwszą jak równanie Schrödingera. Zdaniem Diraca równanie podstawowe powinno być pierwszego rzędu w czasie, tak aby wartości funkcji falowej w danej chwili determinowały jej wartości w przyszłości (w przypadku równania drugiego rzędu należy znać jeszcze wartości pochodnych czasowych). Jak pogodzić to z relatywistyczną postacią energii? Hamiltonian powinien mieć postać:

H=\sqrt{-c^2\hbar^2 \Delta+m^2c^4},

Oczywiście, wyciąganie pierwiastka kwadratowego z laplasjanu nie jest operacją standardową. Inżyniersko nastawiony do matematyki Paul Dirac, nieodrodny spadkobierca Olivera Heaviside’a, nie zamierzał się poddawać z tak trywialnego powodu. Równanie dla cząstki swobodnej powinno być pierwszego rzędu w czasie, w teorii względności znaczy to, że powinno być także pierwszego rzędu w pochodnych przestrzennych – poniważ przestrzeń i czas są symetryczne u Einsteina. Należy więc szukać równania postaci

i\hbar \gamma^{\mu}\dfrac{\partial \psi}{\partial x^{\mu}}=mc\psi, \mbox{ (***)}

gdzie sumujemy po wskaźnikach czasoprzestrzennych \mu=0,1,2,3 oraz x^0=ct. Żądamy, aby \gamma^{\mu} nie zależały od czasu ani współrzędnych przestrzennych, a także aby dwukrotne zastosowanie operatora po lewej stronie dało nam m^2, jak w równaniu Kleina-Gordona – wtedy relatywistyczny związek energii i pędu będzie spełniony. Łatwo zauważyć, że stanie się tak, jeśli

\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}=2\cdot diag(1,-1-1-1),

gdzie g^{\mu\nu} jest metryką czasoprzestrzeni Minkowskiego. Jakimi obiektami muszą być owe cztery \gamma^{\mu}? Mają one antykomutować ze sobą, czyli ich iloczyn zmienia znak przy przestawieniu, a kwadraty mają być równe \pm 1. Dirac odkrył, że \gamma^{\mu} muszą być macierzami 4×4, a więc funkcja \psi musi zawierać cztery składowe:

\psi=\begin{pmatrix} \psi_1\\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.

Inaczej mówiąc, równanie (***) jest układem czterech równań liniowych o stałych współczynnikach. Zaraz po Nowym Roku 1928 Ralph Fowler przekazał pracę do druku i miesiąc później się ukazała. Po miesiącu Dirac uzupełnił ją o drugą część. Mógł być teraz pewien: miał swoje równanie.

Dirac zaczął sprawdzać konsekwencje odkrytego równania. Okazało się, że zawiera ono informację o stanach spinowych elektronu. Co więcej, spinowy moment pędu okazywał się równy \hbar/2, a moment magnetyczny równy dokładnie magnetonowi Bohra. Znaczyło to, że w tym przypadku stosunek momentu magnetycznego do momentu pędu jest dwukrotnie większy niż dla orbitalnego momentu pędu, co potwierdzały eksperymenty (Nb. w roku 1915 Albert Einstein i Wander de Haas, zięć Hendrika Lorentza, przegapili okazję do pierwszorzędnego odkrycia doświadczalnego, zmierzyli bowiem ten stosunek i wyszedł im taki, jak oczekiwali, ale dwa razy mniejszy niż w rzeczywistości). Równanie elektronu Diraca w polu kulombowskim odtwarzało znane wyniki dla energii uzyskane wcześniej przez Arnolda Sommerfelda za pomocą relatywistycznej wersji modelu Bohra (model Bohra-Sommerfelda).

Co z czterema składowymi funkcji falowej? Potrzebne były dwie składowe do opisania spinu, ale cztery? Równanie Diraca zawiera rozwiązania zarówno dla energii dodatniej +\sqrt{p^2c^2+m^2c^4}, jak i -\sqrt{p^2c^2+m^2c^4}. Paul Dirac zauważył też, że rozwiązania te stwarzają realny problem: energia elektronu nie jest bowiem ograniczona z dołu, a to w przypadku układu kwantowego znaczy, że prędzej czy później powinien on przejść do stanu o niższej energii. W mechanice kwantowej panuje skrajny liberalizm: wszystko, co nie jest zabronione, jest dozwolone i się kiedyś zdarzy. Jedynym wyjściem wydawało się znaleźć jakiś zakaz, który musiałby być naruszany podczas takiego przejścia. Dwa lata później Dirac zaproponował, że stany o ujemnej energii są zajęte, więc ponieważ elektrony podlegają zakazowi Pauliego, zwykle nie ma takich przejść. Możliwe jest wzbudzenie elektronu z ujemną energią do stanu z energią dodatnią, pozostawi on dziurę, która będzie się zachowywać jak cząstka o takiej samej masie, lecz dodatnia. Otrzymujemy w ten sposób parę elektron i antyelektron. W 1932 roku cząstka taka została odkryta i nazwana pozytonem. Nic więc dziwnego, że już w roku następnym P.A.M. Dirac otrzymał Nagrodę Nobla (po połowie ze Schrödingerem). Inne wyjaśnienie dla rozwiązań o energii ujemnej podał później Richard Feynman: u niego pozytony są elektronami, które poruszają się wstecz w czasie, zamiast energii zmienia się znak czasu. Współczesna kwantowa teoria pola nie potrzebuje takich obrazów, wprowadza się w niej przestrzeń stanów bogatszą niż w mechanice kwantowej, gdyż pojawia się możliwość procesów kreacji oraz anihliacji par. Równanie Diraca obowiązuje nadal, lecz zamiast funkcji falowej mamy operator pola, obiekt jeszcze nieco bardziej abstrakcyjny.

Znakomitą biografię Diraca napisał Graham Farmelo, została ona jednak całkiem popsuta w polskim przekładzie, który językowo jest poniżej wszelkiej krytyki. Szkoda, bo pewnie nieprędko pojawi się drugie wydanie.

Kopenhaga 1941: spotkanie Wernera Heisenberga z Nielsem Bohrem

Czy obłąkańcze ideologie zawsze są samoniszczące? I jakie są ich koszty społeczne? Gdzie kończy się patriotyzm, a zaczyna oportunizm i łajdactwo? Czy uczonym wolno zamykać się w wieży z kości słoniowej? Jacy naprawdę są ludzie, których znamy? Czy historia jest w ogóle możliwa inaczej niż jako rozmowa duchów na Polach Elizejskich?
Sztuka Michaela Frayna Copenhagen jest dialogiem trzech duchów: Wernera Heisenberga, Nielsa Bohra i jego żony Margharete. Chyba nie wystawiona nigdy w Polsce, odniosła wielki sukces w Londynie, Nowym Jorku i w innych miejscach świata.

Spotkanie owych trzech duchów poprzedzone było wieloma latami ziemskiej znajomości. Bohr pierwszy raz zetknął się z Heisenbergiem, gdy wygłaszał w Getyndze w czerwcu 1922 roku swe słynne wykłady, zwane potem Festiwalem Bohra. Dwudziestolatek o chłopięcym wyglądzie zwrócił publicznie uwagę na pomyłkę Bohra i tym go zaintrygował. Trzeba rozumieć kontekst: Niels Bohr był wtedy najbardziej znanym fizykiem atomowym, w listopadzie miano ogłosić, że otrzymuje Nagrodę Nobla. Tak się złożyło, że Bohr otrzymał ją jednocześnie z Albertem Einsteinem, który został laureatem za rok 1921. W grudniu 1922 Svante Arrhenius, przewodniczący Komitetu Noblowskiego z fizyki zaprezentował osiągnięcia obu uczonych: w ten sposób Einstein, najwybitniejszy fizyk pierwszej ćwierci wieku XX, został symbolicznie złączony z Bohrem, patronem intelektualnym nurtu, który za kilka lat miał przynieść mechanikę kwantową. Sytuacja niecodzienna nawet jak na uroczystości noblowskie (nie spotkali się jednak przy tej okazji, ponieważ Einstein był w Japonii). Teoria względności i mechanika kwantowa do dziś są dwoma najważniejszymi osiągnięciami ostatniego stulecia. Rok 1922 stanowił też początek powojennego przełamywania lodów w nauce: wizyta Bohra w Getyndze i Einsteina w Paryżu były pierwszymi zapowiedziami powrotu do międzynarodowej współpracy po latach pierwszej wojny światowej, o której dziś rzadko mówimy, bo niebawem wybuchła następna wojna, jeszcze bardziej brutalna i bezwzględna.

Heisenberg był asystentem Maksa Borna i okazał się najzdolniejszym spośród tamtych chłopaków, ich fizykę nazywano czasem Knabenphysik – fizyką chłopców. Rewolucje robią ludzie młodzi: zarówno Einstein, jak i twórcy mechaniki kwantowej, zaczynali jako dwudziestoparolatkowie, a po trzydziestce już raczej kontynuowali poprzednie osiągnięcia (czasem tak wielkie jak teoria grawitacji). Bohr zaczął wkrótce współpracować z Heisenbergiem, i to podczas stażu w Danii wiosną roku 1925 powstała pierwsza przełomowa praca z mechaniki kwantowej. Max Born, pełen wątpliwości, pisał do Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów [chodzi o termy atomowe, pojęcie z dziedziny spektroskopii, widma pierwiastków są skomplikowane, lecz ich szczegółowa znajomość okazała się kluczem do fizyki mikroświata]. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Praca Heisenberga była zupełnie samodzielna, miał on silną osobowość i umiał się przeciwstawić apodyktycznemu Bohrowi. Duński uczony był wprawdzie kimś w rodzaju duchowego ojca mechaniki kwantowej, ale jego wpływ na młodszych bywał szkodliwy: kilku naukowców miało za złe Bohrowi, że odwiódł ich od słusznych myśli, przez co przeszło im koło nosa jakieś odkrycie. Jednocześnie jednak Bohr troszczył się o wszystkich swoich pupilów i z nimi przyjaźnił, wspólnie pływali żaglówką, jeździli na nartach albo odbywali długie, nawet kilkudniowe spacery.

Gdy Hitler został kanclerzem Niemiec, Werner Heisenberg był już sławny. W grudniu tego roku otrzymał Nagrodę Nobla za rok 1932 razem ze swoimi dwoma konkurentami w tworzeniu mechaniki kwantowej: Erwinem Schrödingerem i Paulem Dirakiem, którzy podzieli się Nagrodą za rok 1933. Trzydziestodwuletni profesor był wielką nadzieją nauki niemieckiej, nie miał Żydów w rodzinie i czuł się gorącym patriotą, choć może z lekka brzydził go NSDAP-owski sztafaż. Orszak studentów z pochodniami przeszedł ulicami Lipska pod dom laureata. Heisenberg zdecydowany był nie wyjeżdżać z Niemiec, chciał też pracować dla ojczyzny, kultywując swoją dziedzinę, czyli fizykę teoretyczną. Okazało się to nieproste. W 1937 roku został publicznie zaatakowany w organie prasowym SS jako „biały Żyd”, tzn. ktoś, kto głosi idee fizyki żydowskiej wśród niemieckiej młodzieży. Porównano go nawet do Carla von Ossietzky’ego, działacza pokojowego i laureata pokojowej Nagrody Nobla, niebawem zamęczonego w Dachau. Do fizyki żydowskiej zaliczano oczywiście teorię względności, ale także mechanikę kwantową. W tym drugim przypadku kryterium było całkowicie polityczne (to ja decyduję, kto jest Żydem): akurat ani Heisenberg, ani Schrödinger, ani Dirac nie byli Żydami. Pół-Żydem był Niels Bohr, co wkrótce zaczęło mieć znaczenie. Przez następny rok Heisenberg starał się „oczyścić” z zarzutów, jego list dotarł do samego Heinricha Himmlera, który zarządził śledztwo. Badano w nim życie fizyka, sprawdzano m.in. czy aby nie jest homoseksualistą (ożenił się bowiem niedawno i dotąd miał raczej przyjaciół mężczyzn, choć homoseksualistą nie był) i dlaczego nie wykazywał entuzjazmu wobec nazistów. Przesłuchiwano go też w podziemiach SS w Berlinie naprzeciwko napisu: „Oddychaj głęboko i spokojnie”. W końcu dano mu spokój i uznano, że jest nieszkodliwym profesorem, trzymającym się swojej dziedziny i być może przydatnym reżimowi. Zaczęto go potrzebować szybciej, niż ktokolwiek sądził. Podjęto bowiem w Niemczech prace nad projektem uranowym, który miał prowadzić do zbudowania reaktora, a może także bomby nuklearnej. Najważniejszym uczonym pracującym nad tym projektem został w naturalny sposób Werner Heisenberg.

Niels Bohr między Elisabeth i Wernerem Heisenbergiem, z tyłu Victor Weisskopf (1937, pewnie przy okazji ślubu Heisenberga)

I właśnie jako szef prac nad uzyskaniem energii z uranu Heisenberg pojawił się w Kopenhadze. W zasadzie pracowano nad reaktorem, który mógłby wytwarzać w dalekiej przyszłości pluton. Ale możliwość bomby rysowała się nad horyzontem i, jak się zdaje, Heisenberg ciężko pracował, aby wykazać swoją przydatność dla ojczyzny. Nie przejawiał zbyt wiele inteligencji emocjonalnej: pojawił się w Kopenhadze jako przedstawiciel nauki niemieckiej, miał wygłosić wykład w Instytucie Kulturalnym Niemiec. Duńczycy, poddani okupacji (wprawdzie stosunkowo łagodnej) dużego sąsiada, niezbyt garnęli się do kontaktów z Niemcami, zwłaszcza że w praktyce chodziło o propagandę III Rzeszy. Na wykładzie nie pojawili się najważniejsi naukowcy duńscy. Heisenberg spotkał się natomiast z Bohrem prywatnie, odbyli też wspólny spacer, aby porozmawiać (obaj, słusznie, obawiali się podsłuchów). O swojej wizycie Heisenberg pisał do swej żony, Elisabeth:

Moja droga Li,
oto znowu jestem w tym tak dobrze mi znanym mieście, gdzie pozostała cząstka mego serca od tamtego czasu sprzed piętnastu lat. Kiedy usłyszałem znowu kuranty z wieży ratuszowej, zamknąłem okno mego hotelowego pokoju i coś ścisnęło mnie mocno w środku: wszystko było tak samo, jakby nic się na świecie nie zmieniło. To takie dziwne, napotkać własną przeszłość, to tak jakby spotkało się samego siebie. (…) Późnym wieczorem poszedłem pieszo pod jasnym rozgwieżdżonym niebem przez zaciemnione miasto do Bohra.
Bohr i jego rodzina mają się dobrze; on sam się trochę postarzał, jego synowie są już całkiem dorośli. Rozmowa szybko zeszła na ludzkie zmartwienia i nieszczęsne wypadki ostatnich czasów; w sprawach ludzkich konsensus jest oczywisty; w kwestiach politycznych stwierdziłem, że nawet tak wielki człowiek jak Bohr nie potrafi całkowicie rozdzielić myślenia, odczuwania oraz nienawiści. Ale może nie powinno się ich nigdy rozdzielać. (…)
Wczoraj znowu spędziłem cały wieczór z Bohrem; oprócz pani Bohr i dzieci była też młoda Angielka, która mieszka u nich, ponieważ nie może wrócić do Anglii. Trochę dziwnie jest rozmawiać teraz z Angielką. Podczas nieuniknionych rozmów politycznych, podczas których ja broniłem naturalnie i automatycznie naszego systemu, wyszła i pomyślałem, że w sumie to całkiem miłe z jej strony. – Dziś rano byłem na molo z [Carlem Friedrichem] Weizsäckerem, wiesz, tam przy porcie, gdzie znajduje się Langelinie. Teraz stoją tam na kotwicy niemieckie okręty wojenne, kutry torpedowe, krążowniki pomocnicze i tym podobne. Był pierwszy ciepły dzień, port i niebo ponad nim zabarwione bardzo jasnym lekkim błękitem. Dwa duże frachtowce odpłynęły w stronę Elsynoru; przypłynął węglowiec, prawdopodobnie z Niemiec, dwie łodzie żaglowe, pewnie takiej wielkości, jak ta, którą pływaliśmy dawniej wypływały z portu, pewnie na popołudniową wycieczkę. W pawilonie na Langelinie zjedliśmy obiad, wszędzie dokoła byli sami szczęśliwi i radośni ludzie, a przynajmniej takie robili na nas wrażenie. W ogóle ludzie tu wyglądają na szczęśliwych. Wieczorem na ulicach widzi się promieniejące szczęściem młode pary, idące na dancing, nie myślące o niczym innym. Trudno o coś bardziej odmiennego niż życie na ulicach tutaj i w Lipsku.
(…) Pierwszy oficjalny wykład jest mój, jutro wieczorem. Niestety, członkowie Instytutu Bohra nie przyjdą z powodów politycznych. Jeśli wziąć pod uwagę, że Duńczycy żyją bez jakichkolwiek restrykcji i żyją wyjątkowo dobrze, to zadziwiające jest, że wzbudzone tu zostało tak wiele nienawiści i strachu, iż nawet współpraca w dziedzinie kultury, kiedyś tak oczywista, teraz stała się prawie niemożliwa. (list z końca września 1941 roku)

Bohra doszły słuchy, jak Heisenberg opowiada, że okupacja Danii i Norwegii to przykra konieczność, w odróżnieniu od okupacji wschodniej Europy, która jest niezbędna, gdyż kraje te nie potrafią same się rządzić (było to przed Stalingradem). Z perspektywy Danii wyglądało to oczywiście inaczej, tym bardziej że należało się spodziewać dalszych kroków niemieckich władz okupacyjnych. Dotąd aresztowali oni komunistów, dwa lata później przyszła kolej na Żydów i Bohr sam musiał się ratować przeprawą przez Bałtyk (na szczęście znalazł się w niemieckiej ambasadzie przyzwoity człowiek, Georg Ferdinand Duckwitz, który uprzedził o zamiarach nazistów i praktycznie wszyscy Żydzi duńscy zostali w porę przetransportowani łodziami rybackimi do Szwecji). Heisenberg wspomniał Bohrowi, że pracuje nad energią z uranu i nawet spytał go, co należy zrobić z moralnego punktu widzenia. Nie chciał chyba jednak słuchać odpowiedzi. Elisabeth Heisenberg opowiadała, że mąż bardzo się bał, iż alianci zbudują broń nuklearną wcześniej niż Niemcy. Oczywiście reszta świata obawiała się czegoś dokładnie odwrotnego. Rozmowa zostawiła nieprzyjemny osad w pamięci Bohra. Ich dawna przyjaźń z Heisenbergiem nigdy już się nie odrodziła, choć po wojnie spotykali się czasem.

„Był tu Werner Heisenberg, fizyk teoretyczny z Niemiec, kiedyś wielki nazista. Z niego jest wielki uczony, lecz niezbyt przyjemny człowiek” – stwierdził Einstein w 1954 roku. Einstein najprawdopodobniej uważał za nazistów tych, którzy pracowali dla reżimu Hitlera bez względu na to, czy należeli do NSDAP albo innych organizacji nazistowskich.

Po wojnie uczeni niemieccy starali się przekuć swoje niepowodzenie w sukces moralny, lecz wydaje się, że po prostu (i na całe szczęście) zabrakło im wizji i możliwości technicznych.
David C. Cassidy wyliczył techniczne powody niepowodzenia ekipy Heisenberga:

  • Nie obliczyli masy krytycznej uranu 235: nie sądzili, że wystarczą kilogramy, nie tony
  • Nie umieli przeprowadzić separacji izotopów: metodę separacji gazów znał w Niemczech Gustav Hertz, ale jako nieczysty rasowo pracował w prywatnym laboratorium
  • Moderator: ekipa Heisenberga nie wiedziała, że nadaje się do tego grafit, ale musi zostać oczyszczony z domieszek boru, co zauważył Leo Szilard, Żyd oczywiście i emigrant. Z kolei ciężka woda z Norwegii nie docierała dzięki sabotażowi.
  • Reaktor Heisenberga składał się z płaskich płyt uranu w zbiorniku z ciężką wodą, co było wygodne do obliczeń teoretycznych, lecz marne jako rozwiązanie inżynierskie.
  • Projekt wymagał połączonej wiedzy i znakomitej organizacji: amerykańskie zasoby i poziom techniki oraz europejscy uczeni, przeważnie Żydzi albo ofiary antysemityzmu: Bohr, Oppenheimer, Feynman, Bethe, Wigner, von Neumann, Fermi, Peierls, Compton, Ulam, praktycznie jest to słownik wielkich fizyków
  • Przebieg wojny: po początkowych sukcesach zaczęły się niemieckie porażki i coraz trudniej było zmobilizować zasoby na projekt nierokujący natychmiastowych sukcesów

W sumie po stronie naukowo-inżynierskiej zemściła się na nazistach ich obłąkańcza ideologia antysemicka, rządy idiotów, którzy przez rok sprawdzali, czy Heisenberg się nadaje na profesora w ich Rzeszy.

Werner Heisenberg, zasada nieoznaczoności i istnienie atomów (1927)

W roku 1925 dwudziestotrzyletni Werner Heisenberg zaproponował nową mechanikę dla cząstek mikroświata. Był to początek prawdziwej rewolucji w fizyce, największej do tej pory. Można było wziąć podręcznik, wyszukać jakiś problem klasycznej mechaniki i rozwiązać go nowymi metodami. Niemal zawsze wynik taki znajdował zastosowanie w świecie atomów i cząsteczek, pozwalając zrozumieć zjawiska dotąd zupełnie niezrozumiałe.Heisenberg,Werner_1926

 

Problemem nowej teorii była interpretacja fizyczna (w jakimś sensie stanowi ona zresztą problem do dziś). Pod koniec marca 1927 roku Werner Heisenberg opublikował pracę O poglądowej treści kinematyki i mechaniki kwantowej. Znalazła się w niej słynna zasada nieoznaczoności: w przypadku cząstki kwantowej nie możemy przyjąć, że znamy jednocześnie jej położenie i prędkość. Każdą z tych wielkości z osobna możemy zmierzyć z dowolną dokładnością, ale tracimy wówczas informację o drugiej.

  1. Zilustrujemy to najpierw przykładem, który Heisenberg podał nieco później.
  2. W następnej kolejności rozpatrzymy mikroskop Heisenberga z 1927 roku.
  3. Pokażemy też, jak zasada nieoznaczoności pozwala zrozumieć fundamentalny fakt doświadczalny: stabilność atomów – w myśl fizyki klasycznej takie układy powinny być nietrwałe.
  1. W mechanice klasycznej (niekwantowej), aby obliczyć, co się stanie z pewnym ciałem, np. kamieniem, który rzucamy, należy znać jego położenie oraz prędkość w pewnej chwili. Oczywiście, trzeba znać siły działające na nasze ciało. Warunki początkowe plus siły pozwalają, przynajmniej w zasadzie, obliczyć, co się stanie w chwilach późniejszych albo, co się z naszym kamieniem działo w chwilach wcześniejszych – mechanika nie rozróżnia przeszłości i przyszłości w taki sposób jak my: przeszłość pamiętamy, przyszłości jeszcze nie ma. Heisenberg starał się sformułować swoją teorię, używając jedynie wielkości, które można zmierzyć. Sądził np., że takie pojęcie jak tor elektronu nie ma sensu empirycznego i w związku z tym nie należy sobie wyobrażać, iż elektrony w atomie jakoś się poruszają w sposób klasyczny. Louis de Broglie zaproponował kilka lat wcześniej, aby traktować elektron jako falę o długości

     \lambda=\dfrac{h}{p}=\dfrac{h}{mv},

    gdzie h jest stałą Plancka, p – pędem, czyli iloczynem masy m i prędkości v. Fala o ustalonym kierunku i wartości pędu, to fala płaska. Wiemy, że jeśli fala taka przejdzie przez szczelinę, ulegnie ugięciu.electron diffraction

     

     

     

    Przejście przez szczelinę o szerokości d możemy potraktować jak pomiar współrzędnej: znamy położenie elektronu z dokładnością do szerokości szczeliny. Nie możemy jednak określić dokładnie pędu naszego elektronu w kierunku poziomym. Krzywa dyfrakcyjna na rysunku oznacza rozkład prawdopodobieństwa znalezienia elektronu w różnych punktach. Pęd w kierunku poziomym jest statystycznie rozmyty. Wielkość jego rozmycia, to zgodnie z tym, co pisaliśmy o dyfrakcji:

    \Delta p=p\sin\theta=p\dfrac{\lambda}{d}.

    Mnożąc nieoznaczoność poziomej współrzędnej przez nieoznaczoność poziomego pędu, otrzymujemy:

    \Delta x\Delta p= \lambda p=h.

    Co oznacza ten związek? Jeśli dokładniej chcemy znać wartość współrzędnej x, to musimy za to zapłacić większym rozmyciem pędu, i na odwrót: dokładna znajomość pędu oznacza, że fala elektronu jest płaska, czyli nieskończenie szeroka w kierunku poziomym (przed wejściem do szczeliny) – nic wówczas nie wiemy o położeniu elektronu. Stan kwantowy charakteryzuje się więc tym, że zarówno współrzędna, jak i pęd muszą być rozmyte. Mówimy tu o szerokości rozkładów prawdopodobieństwa: w ściślejszym sformułowaniu należy z lewej strony pomnożyć odchylenia standardowe współrzędnej oraz pędu. Nie dziwmy się, że fizycy z lat dwudziestych ubiegłego wieku mieli trudności w zrozumieniu zachowania elektronów. Rozkład prawdopodobieństwa narysowany powyżej obowiązuje także w przypadku, gdy przez szczelinę przechodzi zawsze tylko pojedynczy elektron. Z jakichś powodów przechodzi on więc przez całą szczelinę jednocześnie, chociaż przyłapać go możemy zawsze tylko w konkretnym punkcie. Zachowanie się cząstki kwantowej w pobliżu przeszkody oddaje dobrze poniższy rysunek Charlesa Addamsa, rysownika zupełnie niezwiązanego z fizyką.
    YAGO600SPAN

  2. Rozpatrzmy jeszcze przykład mikroskopu Heisenberga – jest to Gedankenexperiment – doświadczenie pomyślane, nie interesujemy się techniczną wykonalnością, lecz zasadami fizyki. Załóżmy, że chcemy zmierzyć położenie elektronu oraz jego pęd w kierunku poziomym. Aby elektron zobaczyć, musimy go oświetlić. Nasz przedmiot (elektron) musi znajdować się praktycznie w ognisku obiektywu mikroskopu. mikroskop1Najmniejszy kąt możliwy do rozdzielenia przez nasz mikroskop, to kąt znaleziony przez Airy’ego, mamy więc

     \Delta x=f \alpha=1,22 f\dfrac{\lambda}{D},

    Przyjęliśmy, że \alpha jest nieduży (znacznie mniejszy od jednego radiana, wówczas wartości sinusa i tangensa kąta można zastąpić jego wartością w radianach); f jest ogniskową, D – średnicą obiektywu. Ponieważ oba te parametry soczewki są mniej więcej zbliżonej wielkości, więc najmniejsza odległość przedmiotów, jakie możemy rozdzielić jest rzędu długości fali. Dlatego używa się mikroskopów elektronowych: jeśli elektrony mają znaczny pęd, to zgodnie ze wzorem de Broglie’a ich długość fali jest niewielka i mamy szansę dostrzec mniejsze szczegóły niż za pomocą mikroskopu optycznego. Heisenberg wyobraził sobie mikroskop, w którym używamy promieniowania \gamma o bardzo małej długości fali, wtedy nieoznaczoność współrzędnej może być odpowiednio mniejsza. Co jednak z pędem? Nasz elektron zderza się z fotonem, w zderzeniu tym zachowany jest pęd, zatem mierząc pędu fotonu w kierunku poziomym, możemy znaleźć pęd elektronu. Aby foton wpadł do obiektywu, musi poruszać się w odpowiednim kierunku. mikroskop2To z kolei oznacza, że pozioma składowa jego pędu jest znana z dokładnością

    \Delta p=p\sin\theta\approx p\dfrac{D}{2f}.

    Mnożąc obie nieoznaczoności, otrzymamy

    \Delta x\Delta p=0,61\lambda p\approx h.

  3. Zastosujemy zasadę nieoznaczoności do wyznaczenia wielkości atomu wodoru. Możemy sobie wyobrażać, że mamy nieskończenie ciężki proton, który przyciąga elektron. Energia potencjalna elektronu jest wówczas równa

    V=-\dfrac{e^2}{r},

    gdzie e^2 zawiera ładunek elementarny i stałą z prawa Coulomba, tzn. e^2={q_e}^2/{4\pi\epsilon_0}. Energia potencjalna w funkcji odległości wygląda jak na wykresie.coulomb

    Im bliżej protonu znajdzie się elektron, tym mniejsza będzie jego energia potencjalna. Każdy układ fizyczny, jeśli go zostawić w spokoju, przejdzie do stanu o najniższej możliwej energii. W tym przypadku nie ma najmniejszej energii: studnia potencjału nie ma dna, więc nasz elektron powinien spaść na proton. Znaczyłoby to, że nie mamy atomu wodoru. Rzeczywiście, z punktu widzenia fizyki niekwantowej, nawet jeśli umieścimy elektron na kołowej orbicie wokół protonu, zacznie on wysyłać promieniowanie elektromagnetyczne, ponieważ ruch przyspieszony generuje takie fale. Unoszą one energię i nasz elektron powinien skończyć na protonie. Zasada nieoznaczoności pozwala tego uniknąć. Załóżmy, że r i p oznaczają typowe wartości nieoznaczoności odległości i pędu. Mamy wtedy

    rp\approx h\mbox{, zatem } \dfrac{1}{r}\approx \dfrac{p}{h}.

    Typowe wartości odległości oraz pędu powinny być takiego samego rzędu, dlatego opuściliśmy symbole \Delta. Całkowita energia równa jest sumie energii kinetycznej i potencjalnej:

    E=\dfrac{p^2}{2m}-\dfrac{e^2}{r}=\dfrac{1}{2m}p^2-\dfrac{ e^2}{h} p.

    Wyrażenie to jest funkcją kwadratową zmiennej p. Wykresem tej funkcji jest parabola, współrzędne jej wierzchołka pozwalają nam znaleźć zarówno wartość najmniejszej energii, jak i wartość odpowiadającej jej odległości r_0:

    E=-\dfrac{me^4}{2\hbar^2}\mbox{, } r_0=\dfrac{\hbar^2}{me^2}.

    Oczywiście, w takim oszacowaniu nie otrzyma się dokładnych wartości. Nasze wyniki mogą się różnić o jakieś czynniki liczbowe typu \pi^2. Nieco w tych wzorach oszukałem, wstawiając wartości \hbar=h/{2\pi}, wtedy wszystko się zgadza. Energia wychodzi równa -13,6 eV (oznacza to, że trzeba elektronowi dostarczyć 13,6 eV, aby miał energię równą zero: odpowiada to jonizacji). Odległość elektronu 0,5 Å – jest to jakaś średnia odległość, atom ma średnicę rzędu 10^{-10} \mbox{ m}. Nie o dokładne liczby jednak chodzi, lecz o pewien mechanizm: gdyby elektron stale przebywał bardzo blisko protonu, co daje niską energię potencjalną, musiałby mieć duży pęd, a to oznacza dużą energię kinetyczną. Stan o najmniejszej energii jest więc swoistym kompromisem, który minimalizuje energię.

Albert Einstein na dwóch fotografiach, czyli jak pionier został konserwatystą (1911, 1927)

Pierwsza fotografia pochodzi z roku 1911 i przedstawia uczestników I Kongresu Solvaya. Ernest Solvay, bogaty przemysłowiec, wzbogacił się na wynalezionej przez siebie metodzie produkcji sody. Nie miał akademickiego wykształcenia, lecz wykazywał pewne ambicje naukowe. Zwołany do Brukseli kongres zgromadził najwybitniejszych fizyków epoki, organizował go Hendrik Lorentz, który zaprosił m.in. Alberta Einsteina.

1911

Podpisana wersja tej fotografii

Trzydziestodwuletni Einstein stoi z cygarem w drugim rzędzie obok Paula Langevina, z którym szybko się zaprzyjaźnił (nb. w tym właśnie czasie wybuchł skandal prasowy w Paryżu wokół romansu żonatego Langevina ze starszą od niego Marią Skłodowską-Curie, jedyną kobietą na zdjęciu). Dla Einsteina był to pierwsza międzynarodowa konferencja naukowa i okazja do poznania sławnych fizyków spoza Niemiec. Zaledwie dwa lata wcześniej zaczął pracować na uczelni, do Brukseli przyjechał z Pragi, gdzie od wiosny tego roku był profesorem zwyczajnym. Okna jego gabinetu wychodziły na ogród szpitala psychiatrycznego. Einstein lubił pokazywać swoim gościom spacerujących alejkami pensjonariuszy tego zakładu ze słowami: „oto wariaci, którzy nie zajmują się kwantami”. Sam intensywnie pracował nad nową fizyką kwantową, m.in. odkrył, dlaczego ciepło właściwe diamentu maleje wraz z temperaturą. Zjawisko to jest kwantowe: drgania atomów węgla w krysztale diamentu mogą bowiem zachodzić tylko ze ściśle określonymi – skwantowanymi – energiami. W ten sposób okazało się, że nowa fizyka potrzebna jest do wyjaśnienia obserwowanych od dawna faktów. Dziś wiemy, że właśnie fizyka kwantowa wyjaśnia własności atomów, kryształów, cieczy – całą chemię i fizykę różnych materiałów, a także sporą część biologii. Inni uczeni zainteresowali się tym kręgiem zagadnień, szybko rosła więc liczba prac poświęconych kwantom. Tak więc stojący skromnie w drugim rzędzie Einstein reprezentował wówczas naukową awangardę, nie zawsze dobrze przyjmowaną przez starszych kolegów.

 

kwanty

Widzimy, jak szybko rosła liczba autorów idących w ślad za Einsteinem. Liczby nie wydają się może imponujące, ale ogólną liczbę fizyków w Europie w tamtej epoce szacuje się na 1000-1500, z czego nie wszyscy byli aktywni naukowo (Wykresy z T.S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894-1912, Clarendon Press, Oxford 1978, s. 217).

solvay_conference_1927_

Druga fotografia przedstawia uczestników V Kongresu Solvaya w roku 1927. Nosił on tytuł Elektrony i fotony. Fotony, cząstki światła, zostały zapostulowane przez Einsteina w roku 1905, teraz niejako oficjalnie uznano, że miał rację. A więc niewątpliwy triumf. Nikt przez dwadzieścia lat nie chciał wierzyć w owe kwanty światła, po eksperymentach Comptona i innych, wreszcie w nie uwierzono. Triumf zabarwiony był jednak goryczą. W latach 1925-1926 młodzi fizycy przedstawili mechanikę kwantową, z którą Einstein nie potrafił się zgodzić ani wtedy, ani nigdy później. Był nadal sprawny intelektualnie, nie zapomniał fizyki, ale należało wyjść poza krąg dotychczasowych idei, rozstać się z pewnym ideałem nauki. Rewolucji dokonali ludzie młodzi, mówiono o tym Knabenphysik – fizyka chłopców.
Fotografia ilustruje wymownie, jak wzrosła pozycja Einsteina w środowisku naukowym w ciągu tych kilkunastu lat. Teraz on zajmuje miejsce centralne. Siedzi między starym Lorentzem a posiwiałym Langevinem z nawoskowanymi wąsami, niczym rewolucjonista uwięziony w świecie XIX wieku. Obok Lorentza mocno postarzała, surowa i niepobłażająca Maria Skłodowska-Curie i znużony Max Planck. Dopiero w drugim rzędzie znajdujemy chudego, jakby wyjętego z dramatu Becketta Paula Diraca, arystokratycznego, rasowego Louisa de Broglie’a, uprzejmego i skromnego Maksa Borna, wychowawcę siedmiu noblistów, i wreszcie silnego i skupionego Nielsa Bohra. Elegancki Erwin Schrödinger, sceptyczny Wolfgang Pauli i szelmowsko chłopięcy Werner Heisenberg stoją skromnie w trzecim rzędzie. Trudno o bardziej symboliczny obraz zmiany warty: Einstein stał się teraz kimś podobnym do Lorentza czy Plancka, a więc wybitnym uczonym, którego należy szanować, ale od którego nie można się zbyt wiele nauczyć. Liczyli się młodzi ludzie z drugiego i trzeciego rzędu oraz ich duchowi przewodnicy, Bohr i Born. W ciągu następnych kilku lat twórcy mechaniki kwantowej otrzymali Nagrody Nobla, wszyscy oprócz Diraca nominowani byli zresztą także przez Einsteina. Najwybitniejszy spośród nich, Paul Dirac, musiał zadowolić się Nagrodą Nobla wraz ze Schrödingerem. Właśnie Paul Dirac w latach 1927-1928 pokazał, jak można sformułować kwantową teorię elektronów i fotonów. Było to otwarcie drogi, która zakończyła się dwadzieścia lat później zbudowaniem konsekwentnej elektrodynamiki kwantowej przez Richarda Feynmana, Freemana Dysona, Juliana Schwingera i Shin’itiro Tomonagę.

Max Born: Nagroda Nobla za przypis (1926, 1954)

Max Born w roku 1954 otrzymał Nagrodę Nobla za „fundamentalne badania w dziedzinie mechaniki kwantowej, a szczególnie za statystyczną interpretację funkcji falowej”. Nagrodę tę dzielił po połowie z Waltherem Bothe, którego eksperymenty pozwoliły wyjaśnić, że światło ma naturę cząstkową. Była to jedna z tych nagród, które przyznawane są jakby dla wyrównania dawnej niesprawiedliwości. Z perspektywy trzydziestu lat widać było, jak niezwykłym epizodem w dziejach fizyki były lata 1925-1927: ani wcześniej, ani później nie dokonano tak fundamentalnego przełomu w tak krótkim czasie. Fizycy wciąż zajmują się badaniem konsekwencji zasad wtedy sformułowanych, po drodze zrozumiano budowę atomów, cząsteczek chemicznych, ciał stałych, jąder atomowych i samych cząstek elementarnych, zbudowano tranzystory, lasery itd. Współczesna nanotechnologia to nic innego niż praktyczne zastosowania mechaniki kwantowej – coraz częściej uczy się tego przedmiotu inżynierów.

Max_Born

Zdjęcie: Wikimedia

W roku 1925 Max Born miał czterdzieści trzy lata i był profesorem fizyki w Getyndze. Umiał on przyciągać talenty: siedmiu jego studentów i doktorantów otrzymało Nagrody Nobla. To głównie dzięki niemu Getynga stała się w tamtych czasach głównym ośrodkiem fizyki, obok Kopenhagi, gdzie podobną rolę odgrywał Niels Bohr. Born zwierzał się w lipcu Einsteinowi:

Moi młodzi ludzie, Heisenberg, Jordan, Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. [Chodzi o szczegółową wiedzę dotyczącą widm różnych pierwiastków] Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka.

Heisenberg radził się Borna, co zrobić z tą pracą, czy ma ją już opublikować, nie umiał się bowiem w tamtej chwili dalej posunąć. Max Born też jeszcze zapewne nie rozumiał, jak głęboki przewrót się szykuje. W drugiej połowie roku razem z Jordanem i Heisenbergiem rozwinęli pomysły Heisenberga w systematyczną teorię. Można było w jej ramach obliczać pewne wielkości, np. skwantowane energie oscylatora albo atomu wodoru. Nie bardzo jednak rozumiano, jak należy interpretować matematyczny formalizm, który dostarczał tych wyników.
W czerwcu 1926 roku Max Born zajął się zagadnieniem zderzeń cząstek w nowej teorii. Jeśli początkowo cząstka znajdowała się w stanie opisanym falą \psi^{0}_{n} (np. poruszając się w określonym kierunku z określonym pędem), to po zderzeniu jej stan był sumą wielu różnych stanów m (odpowiadających np. różnym kierunkom rozproszenia).

\psi^{1}_{n}=\sum_{m}\Phi_{nm}\psi^{0}_{m}

Wartości \Phi_{nm} informują o zawartości fal danego rodzaju w stanie końcowym. Jeśli\Phi_{nm} dla jakiegoś m jest równe zeru, to stan m w ogóle się nie pojawi. Born pisze: „Jeśli chce się ten wynik zrozumieć w sposób korpuskularny, to możliwa jest tylko jedna interpretacja: \Phi_{nm} określa prawdopodobieństwo” rozproszenia do stanu m. Do zdania tego została dołączona uwaga na etapie korekty pracy: „Dokładniejsze rozważania pokazują, że prawdopodobieństwo jest proporcjonalne do kwadratu \Phi_{nm}”. To jest właśnie ten przypis wart Nagrody Nobla. Ściśle biorąc, chodzi o kwadrat modułu zespolonego, bo \Phi_{nm} jest zespolone.

Oczywiście, to nie jest cały wkład Borna do mechaniki kwantowej. Podobne myśli chodziły wówczas po głowie co najmniej paru osobom, Born zdecydował się je rozwinąć. Miał też świadomość wagi tego kroku: w tej samej pracy pisze, że osobiście skłonny jest porzucić determinizm w świecie atomowym. A więc jeśli elektron w danym stanie zderzy się z drugą cząstką, to wynik za każdym razem może być inny. Nie dlatego, że nie potrafimy dokładnie powtórzyć warunków doświadczenia, ale dlatego że sama przyroda działa losowo. Był to niezmiernie ważny krok. Wszelka fizyka kwantowa jest właściwie sztuką obliczania takich wielkości zespolonych, zwanych dziś amplitudami prawdopodobieństwa. Chcąc otrzymać wielkość mierzalną doświadczalnie, należy amplitudę podnieść do kwadratu i otrzymujemy wówczas prawdopodobieństwo zajścia danego zdarzenia. Tylko tyle i aż tyle.

Nowa fizyka wciągnęła niemal wszystkich. Wyjątkiem był Albert Einstein, tylko kilka lat starszy od Borna, uważany w tamtym momencie za najwybitniejszego żyjącego fizyka. W grudniu 1926 roku Einstein napisał do Borna: „Mechanika kwantowa jest bardzo imponująca. Ale mój głos wewnętrzny mówi, że to nie jest sedno sprawy. Teoria ta wiele daje, ale niewiele nas przybliża do tajemnic Starego. Ja przynajmniej jestem przekonany, że On nie gra w kości”. Pozostał wierny temu przekonaniu aż do śmierci. Po niemal wieku widać, że niezmiernie trudno byłoby jakoś obejść fizykę kwantową, choć niektórzy zastanawiają się nad taką możliwością (np. Gerard t Hooft).

 Max Born był zawiedziony, kiedy kilka lat później jako jedyny z Getyngi Nagrodę Nobla otrzymał Werner Heisenberg. Także Heisenbergowi było głupio, napisał nawet przepraszający list do Borna. Kiedy w latach pięćdziesiątych zdecydowano się naprawić dawny błąd, pominięto Pascuala Jordana, trzeciego ważnego uczonego z Getyngi. To ostatnie było jednak zapewne celowe: Jordan, potomek napoleońskiego żołnierza, został w latach trzydziestych gorącym nazistą. Niecałe dziesięć lat po tym, jak Niemcy zniszczyli pół Europy, przyznawanie mu Nagrody Nobla wywołałoby z pewnością gorące protesty. Jordan został zrehabilitowany i niebawem zajął się znowu polityką, popierając rozmieszczenie broni jądrowej na terenie Niemiec.

Werner Heisenberg i nazistowska bomba: dylematy dobrego Niemca w złych czasach (1933-1945)

Heisenberg uosabiał wszystko, co najlepsze w niemieckiej tradycji i kulturze. Te same cechy sprawiły, że był zupełnie bezbronny w czasach dyktatury kiczowatego malarza z Austrii, który nie potrafił nawet mówić czystą niemczyzną.

Heisenberg był nacjonalistą, romantykiem, skautem, miłośnikiem wędrówek po górach, poezji i znakomitym pianistą. Za prace dotyczące mechaniki kwantowej otrzymał Nagrodę Nobla, dowiedział się o niej na miesiąc przed swymi trzydziestymi drugimi urodzinami. Był więc młody, genialny i już sławny. Niestety, był to rok 1933 – rok dojścia do władzy Adolfa Hitlera i rok rasistowskich czystek we wszystkich instytucjach państwowych, w tym na uczelniach. Wielu kolegów Heisenberga musiało emigrować, inni opowiedzieli się za nazizmem, jak Pascual Jordan, kilka lat wcześniej nominowany do Nagrody Nobla razem z Heisenbergiem (jak na ironię ten zaciekły zwolennik Hitlera miał francuskie korzenie – stąd nazwisko) czy Martin Heidegger, słynny filozof.

Heisenberg

Większość Niemców zachowała w obliczu tych czystek stoicki spokój, niektórzy się cieszyli, niemal nikt nie protestował. Sebastian Haffner opowiada, jak 31 marca 1933 roku w budynku Kammergericht w Berlinie prawnicy pracują w ciszy, aż pojawia się kilka brunatnych mundurów i ich dowódca w prostackich słowach ogłasza, że nie-Aryjczycy mają natychmiast wyjść. Sędziowie i adwokaci pakują aktówki i wychodzą.

Heisenberg nie był zwolennikiem Hitlera, próbował pomagać ludziom, którzy mieli kłopoty. Sam też miał zresztą pewne trudności mimo Nagrody Nobla: fizyka atomowa oraz teoria względności uchodziły za niearyjskie i chciano usunąć je z programu studiów, opisano nawet kiedyś Heisenberga w prasie partyjnej jako „białego Żyda” – czyli Niemca współpracującego z ową rasą winną całego zła na świecie. Autorem nie był jakiś nazistowski bęcwał, lecz profesor Johannes Stark (Nagroda Nobla 1919). Heisenberg nie chciał wyjeżdżać, co zresztą jest charakterystyczne: emigrowali niemal wyłącznie ci, którzy musieli – z powodu komunizmu, żydowskości albo łączenia ich w propagandzie z tymi dwiema grupami.

StarkJohannes19301Cele i osobowość Adolfa Hitlera przez dra Johannesa Starka, laureata Nagrody Nobla i profesora uniwersytetu, Monachium 1930

StarkJohannes19300Obok strony tytułowej widzimy inne fascynujące pozycje wydawnicze: Protokoły mędrców Syjonu, Narodowy socjalizm, Międzynarodowa finansjera. (źródło: Internet Archive)

Nasz uczony nie popierał nazistów, ale też nie przeszkadzało mu specjalnie, gdy Niemcy zajęli większość Europy. Pracował podczas wojny w projekcie atomowym, który mógł doprowadzić do wyprodukowania bomby plutonowej. Wśród licznych podróży Heisenberga po okupowanej Europie – jeździł jako oficjalny przedstawiciel niemieckiej propagandy kulturalnej (!) do Budapesztu, Krakowa (gdzie gościł go kolega z ławy szkolnej Hans Frank), do Holandii itd. – szczególnie sławne są jego odwiedziny u Nielsa Bohra w Kopenhadze w roku 1941. Bohr był naukowym mentorem Heisenberga, kimś w rodzaju jego naukowego ojca. Dawniej spotykali się bardzo często, nawet po drodze do Sztokholmu na uroczystość noblowską Heisenberg wstąpił do Bohra, aby mu podziękować. Tym razem jednak rozmowy się nie kleiły. Uczony niemiecki uważał okupację krajów takich jak Dania za coś zrozumiałego samo przez się i nie widział w tym nic niestosownego. Poruszył też temat wojennych prac nad rozszczepieniem uranu. Bohr, który nie bardzo znał się wówczas na stronie technicznej przedsięwzięcia, był przerażony. Po pewnym czasie uciekł z Danii i w Los Alamos opowiedział o tych rozmowach z Heisenbergiem. Uczeni alianccy uznali, że tym bardziej należy się spieszyć.

Znamy ciąg dalszy: to Amerykanie, a właściwie międzynarodowa ekipa, w której było także wielu uciekinierów z Niemiec, zbudowali dwie pierwsze bomby: uranową i plutonową. Dopiero po wojnie okazało się, że Niemcy nie mieli szans na szybkie zbudowanie takiej broni. Heisenberg, jego bliski współpracownik Carl Friedrich von Weizsäcker i inni zaczęli owo niemieckie zapóźnienie przedstawiać jako swą moralną przewagę nad aliantami. Był to zresztą element powszechnej w powojennych Niemczech zmiany życiorysów tak, aby lepiej pasowały do nowych czasów. Nagle znalazło się mnóstwo przeciwników nazizmu tak głęboko zakamuflowanych, że przed 1945 rokiem nikt ich jakoś nie zauważył. Co ciekawe, w komunistycznej Polsce ukazała się książka Roberta Jungka, Jaśniej niż tysiąc słońc, w której prezentowano właśnie ten niemiecki punkt widzenia. Podejrzewam, iż chodziło o to, że źle w tym ujęciu wypadali Amerykanie, czyli imperialiści, jak wiadomo.

Jak naprawdę wyglądała sprawa nazistowskiej bomby atomowej?

Bombę atomową można zbudować albo wykorzystując izotop uranu 235U, albo stosując pluton, pierwiastek niewystępujący w przyrodzie, który trzeba wcześniej wytworzyć w reaktorze. Z 235U jest ten problem, że stanowi on zaledwie 0,7% naturalnego uranu, większość to 238U, który nie nadaje się na bombę. Ponieważ chemicznie atomy obu rodzajów się nie różnią, więc trzeba wykorzystywać do rozdzielenia jakieś procesy, w których odgrywa rolę różnica mas, np. dyfuzja, wirówki albo ruch w polu elektromagnetycznym. Między masą 235 i 238 różnica jest na tyle mała, że trzeba wielokrotnie powtarzać proces. Amerykanie zbudowali podczas wojny ogromne zakłady wzbogacania uranu w Oak Ridge w rekordowo krótkim tempie. Niemcy uważali tę drogę za nierealną mimo że Gustav Hertz (bratanek Heinricha Hertza, odkrywcy fal elektromagnetycznych i laureat Nagrody Nobla z 1925 roku) prowadził prace nad rozdzielaniem izotopów. Jednak w roku 1936 usunięto go z posady akademickiej jako tzw. „częściowego Żyda drugiego stopnia” i pracował odtąd w przemyśle prywatnym. Na szczęście, chciałoby się dodać.

Drugim sposobem budowy bomby jest produkcja plutonu w reaktorze. Trzeba mieć działający reaktor z kontrolowaną reakcją łańcuchową i odpowiednio dużo czasu. Wyzwalające się neutrony należy spowalniać. Najlepszym do tego materiałem okazał się grafit, czego na szczęście Niemcy nie wiedzieli – chodzi o to, że zwykły grafit przemysłowy był zanieczyszczony borem, silnie pochłaniającym neutrony. Należało więc używać specjalnie oczyszczonego grafitu, co zrobił Enrico Fermi (emigrant z Włoch) w Chicago. Ekipa Heisenberga najpierw próbowała niepraktycznej konstrukcji reaktora – wygodniejszej jednak do rachunków (szef był teoretykiem), a dopiero niedługo przed końcem wojny wpadli na lepsze rozwiązanie. Poza tym do spowalniania neutronów używali ciężkiej wody produkowanej w Norwegii i (znów na szczęście!) mieli jej za mało.

Uczeni niemieccy z wielkim zdumieniem przyjęli nowinę o Hiroszimie i Nagasaki. Ich program atomowy był znacznie mniej zaawansowany i to wcale nie wskutek jakiegoś sabotażu. Lepiej po prostu nie potrafili. Jedną z przyczyn tej naukowo-technicznej porażki, obok idiotyzmów politycznych i kurczących się możliwości niemieckiego przemysłu w czasie wojny, był znaczny ubytek uczonych najwyższej klasy. Heisenberg i jego koledzy nie zdawali sobie sprawy, że nie tylko przemysł amerykański jest lepszy od niemieckiego, ale że odtąd fizykę będzie się tworzyć za oceanem, a „The Physical Review” – amerykańskie pismo, którego przed wojną nikt w Niemczech nie czytał, stanie odtąd się najważniejszym forum prezentowania nowych odkryć.

Sebastian Haffner, Historia pewnego Niemca, Znak, Kraków 2007.
David C. Cassidy, New Light on Copenhagen and the German Nuclear Project, „Physics in perspective”, t. 4 (2002), s. 447–455.
David C. Cassidy, Beyond Uncertainty: Heisenberg, Quantum Physics, and the Bomb, Bellevue Literary Press, New York 2009.