List Richarda Feynmana do jego żony Arline, 17 października 1946

Arline,

kochanie, uwielbiam cię.

Wiem, jak bardzo lubisz to słyszeć – ale nie tylko dlatego to piszę – piszę tak, bo czuję wewnątrz przypływ ciepła, gdy to piszę.

Okropnie długo do ciebie nie pisałem – prawie dwa lata, ale wiem, że mi wybaczysz, ponieważ rozumiesz, jaki jestem: uparty i realistyczny, myślałem więc, że pisanie nie ma sensu.

Lecz teraz wiem, moja kochana żono, że muszę zrobić to, z czym tak długo zwlekałem w przeszłości. Chcę ci powiedzieć, że cię kocham. Chcę cię kochać. Zawsze cię będę kochał.

Trudno mi do końca zrozumieć, co znaczy kochać cię po twojej śmierci – ale wciąż pragnę cię pocieszać i się tobą opiekować – i chcę, żebyś ty mnie kochała i się mną opiekowała. Chcę mieć problemy, które z tobą omówię, chcę mieć z tobą wspólne małe plany. Nie myślałem aż do teraz, że możemy tak zrobić. Co powinniśmy zrobić. Zaczęliśmy się razem uczyć szycia, mieliśmy się uczyć chińskiego, zdobyć projektor filmowy. Czy nie mógłbym teraz zrobić którejś z tych rzeczy? Nie. Bez ciebie jestem sam, to ty byłaś „kobietą z pomysłami” i główną inicjatorką naszych dzikich przygód.

Kiedy chorowałaś, martwiłaś się, że nie możesz dać mi tego, co byś chciała i czego, jak myślałaś, potrzebuję. Niepotrzebnie się martwiłaś. I tak jak ci wtedy mówiłem, nie ma o co, bo kocham cię na tak wiele sposobów i tak bardzo. I teraz stało się to prawdziwe w jeszcze większym stopniu – nie możesz mi nic dać, a jednak kocham cię tak bardzo, że nie mógłbym kochać kogokolwiek innego i pragnę, aby tak było nadal. Ty, umarła, jesteś o tyle lepsza od wszystkich innych, żywych.

Wiem, iż zaczniesz mnie przekonywać, że jestem głupi i że chcesz, abym był naprawdę szczęśliwy i że nie chcesz stawać mi na drodze. Założę się, że jesteś zdziwiona tym, iż nie mam nawet żadnej dziewczyny (oprócz ciebie kochanie) po tych dwóch latach. Ale nic nie możemy na to poradzić ani ty, ani ja – sam tego nie rozumiem, gdyż poznałem wiele bardzo miłych dziewcząt i nie chcę przecież pozostać sam – ale po dwóch czy trzech spotkaniach wszystko zamienia się w popiół. Tylko ty mi zostałaś i tylko ty jesteś prawdziwa.

Moja kochana żono, naprawdę cię uwielbiam.

Kocham moją żonę. Moja żona nie żyje.

Rich.

PS. Wybacz, że nie wysyłam tego listu, ale nie znam twojego nowego adresu.

Arline Feynman zmarła w czerwcu 1945 roku. Zaklejoną kopertę z tym listem znaleziono po śmierci uczonego w roku 1988.

Po co człowiekowi w życiu logarytmy? Henry Briggs (1617)

Zanim przejdziemy do tytułowego pytania, zacznijmy od tego, jak należy wyobrażać sobie teorię oraz praktykę. Cesare Ripa daje następującą odpowiedź:

Słowo Theoria, oznaczające u Greków kontemplowanie, oglądanie, u nas zaczęło być stosowane na oznaczenie wszelkiego wywodu rozumowego opartego na przyczynach rzeczy stosownie do właściwych im porządków i z uwzględnieniem zasad zależących nie od rozsądku, lecz raczej od intelektu, gdyż zasady zawisłe od rozsądku określają Praktykę, przeciwstawną wszak Teorii. Ze względu na te okoliczności uważam, że Teorię całkiem trafnie przedstawić można w postaci młodej Niewiasty spoglądającej w górę, z dłońmi złączonymi, na głowie mającej cyrkiel o ramionach rozwartych i celujących w Niebo. Ma ona być odziana w dostojną błękitną suknię, i schodzić ze szczytu schodów. Wszystkie te szczegóły symbolizują wybitność, dostojność i wzniosłość. (przeł. I. Kania)

(…) Praktykę można przedstawić w postaci Staruchy z głową i rękami opuszczonymi w dół, ubranej nędznie w bure suknie, z wielkim rozwartym cyrklem, którego jedna nóżka wbita jest w ziemię; jedną ręką wspiera się na rzeczonym cyrklu, drugą – na liniale, w taki sposób, że druga nóżka cyrkla dotyka końca liniału układając się razem w kształt greckiej litery π, którą oni zwykli oznaczać Praktykę, podczas gdy Teorię oznaczali literą θ. (przekł. jw.)

Kto chodził do szkoły, ten wie, że Teoria ma przewagę nad Praktyką: ledwo zdążymy oswoić się z jednym pojęciem, a już mówi się o następnych i idzie dalej i dalej, nie pokazując zastosowań. W podobny sposób działały uniwersytety i szkoły także na przełomie XVI i XVII wieku. Dlatego znaczna część Rewolucji naukowej przebiegała niejako równolegle do systemu edukacji, który nawet owej rewolucji nie zauważył, nadal kształcąc na bazie Arystotelesa.

Logarytmy są wynalazkiem praktycznym, jednym z niewielu ważnych pojęć matematycznych, które powinno się wynosić ze szkoły. I nie chodzi o definicję czy dziwaczne równania z niewiadomymi pod logarytmem, ale o ideę zapisywania bardzo dużych albo bardzo małych liczb w krótki sposób. Logarytmy dziesiętne wprowadził Henry Briggs, profesor w londyńskim Gresham College. Była to szkoła o nastawieniu praktycznym, kształciła mierniczych, inżynierów i nawigatorów (żegluga oceaniczna zmusiła korzystania z astronomicznych metod wyznaczania położenia, a te wymagały obliczeń matematycznych). Pomysł należał do Szkota Johna Napiera, choć niezależnie od niego wpadł na podobną ideę Jost Bürgi, zegarmistrz i konstruktor przyrządów, zaprzyjaźniony z Johannesem Keplerem. Logarytmy pozwalały znacznie przyspieszyć obliczenia numeryczne, ponieważ mnożenie i dzielenie zastępują dodawaniem i odejmowaniem – działaniami znacznie mniej czasochłonnymi. Mówiono, że dzięki logarytmom życie astronomów wydłużyło się dwukrotnie, tak bardzo skracały one bowiem rachunki. Najważniejsze tablice astronomiczne czasów nowożytnych: Tablice Rudolfińskie (1627) Johannesa Keplera zostały obliczone przy wykorzystaniu logarytmów. Dzieło to zawierało frontispis przedstawiający świątynię astronomii, w której kilku sławnych uczonych minionych wieków prowadzi zaświatową debatę nad systemem planetarnym. Jedynie dwie kolumny oznaczone imionami Kopernika i Tychona Brahego są zdrowe i mocne, w suterenie widzimy Johannesa Keplera pochylonego nad swymi pracami.

Przyjrzyjmy się alegorycznym figurom na dachu świątyni. Cesarski orzeł zrzuca guldeny, co było raczej pobożnym życzeniem Keplera niż faktem, choć w sumie dzieło powstało dzięki patronatowi kolejnych cesarzy od Rudolfa II począwszy. Kobiece postaci od lewej strony począwszy to Physica lucis – fizyka światła, Optica – dzierżąca teleskop, Logarithmica – alegoria, niemal bogini logarytmów, Doctrina triangulorum – trygonometria, Stathmica – statyka przedstawiona z dźwignią (prawo dźwigni odgrywało zdaniem Keplera istotną rolę w ruchu planet) oraz Magnetica – alegoria nauki o magnetyzmie (uczony sądził, że jedną z sił poruszających planety jest specjalna siła magnetyczna). W aureoli wokół głowy Logarithmiki znajdują się cyfry 6931472, odpowiadające \ln(2)=0,6931472, dlatego pręty, które trzyma nasza bogini mają stosunek długości 1:2.

Johannes Kepler widział więc wagę logarytmów dla astronomii. Henry Briggs obliczył pierwsze praktyczne tablice logarytmów dziesiętnych. Poniżej wyjaśnimy, jak tego dokonał, najpierw jednak spróbujemy odpowiedzieć na pytanie, do czego w życiu przydają się logarytmy. Są one potrzebne szczególnie wtedy, gdy mamy do czynienia z procesami, w których jakaś wielkość zmienia się bardzo silnie. Np. ludność świata w milionach od czasów prehistorycznych do roku 2015. Widzimy, co znaczy określenie eksplozja demograficzna i dlaczego jest nas dziś więcej niż wszystkich ludzi razem wziętych w minionych epokach. W zaświatach spotkalibyśmy niemal wyłącznie współczesnych.

Drugi wykres ma skalę logarytmiczną na osi pionowej: znacznie lepiej widać zmiany szybkości eksplozji demograficznej: nachylenie krzywej (tangens kąta) mierzy wskaźnik przyrostu naturalnego. Stałe nachylenie to stały przyrost procentowy. Nadal widzimy eksplozję w ostatnich stuleciach, ale teraz widać znacznie więcej szczegółów zachowania krzywej. Spójrzmy jeszcze na wykres obejmujący tylko dwa ostatnie stulecia.

Widać na nim właściwie trzy odcinki prostoliniowe: 1800-1900, 1900-1950, 1950-2015. Zupełnie niewidoczne są obie wojny światowe. Skoki przyrostu naturalnego wiążą się najwyraźniej z postępem cywilizacyjnym: nawozy sztuczne, mniejsza umieralność niemowląt i dzieci, dłuższy średni czas życia.

Logarytm dziesiętny to w zasadzie liczba zer w zapisie: zamiast liczb 0,01;10;100000 piszemy -2,1,5. Oczywiście, musimy umieć obliczać logarytmy także innych liczb niż całkowite potęgi dziesiątki. Jeśli np. naszą liczbą jest a=3\cdot 10^4, to widać od razu, że jej logarytm musi być większy niż 4, lecz mniejszy niż 5 (bo 10^4<3\cdot 10^4<10^5). Trzeba znaleźć taki wykładnik, aby 10^{x}=3. Wiadomo, że x=0,477121, mamy więc

a=3\cdot 10^{4}=10^{0,477121}\cdot 10^{4}=10^{0,477121+4}=10^{4,477121}.

Zatem \log 3\cdot 10^4=4,477121.

Możemy powiedzieć (niestandardowo), że liczba 3\cdot 10^4=30000 ma 4,477121 zer. Logarytm jest więc uogólnieniem liczby zer, skonstruowanym w taki sposób, żeby zachować zwykłe reguły potęgowania, np. 10^{x}\cdot 10^{y}=10^{x+y}.

Jak można skonstruować tablice logarytmów, wiedząc tyle, ile Henry Briggs, to znaczy bez znajomości szeregów, pochodnych itd.? W zasadzie wystarczy umiejętność wyciągania pierwiastka kwadratowego – dawniej uczono, jak to się robi. Szybką metodę przybliżoną znano od czasów starożytnych. Przyjmijmy więc, że umiemy wyciągać pierwiastki kwadratowe. Możemy obliczyć teraz kolejne pierwiastki kwadratowe z 10 aż powstanie tabelka jak poniżej.

Zaczerpnęliśmy ją z rozdziału 22 tomu I wykładów Richarda Feynmana. Oczywiście, nietrudno ją obliczyć samemu, ale warto też spojrzeć na stronice Feynmana poświęcone temu zagadnieniu. Richard Feynman cenił matematykę praktyczną, metody uzyskiwania konkretnych liczbowych odpowiedzi. Pewnie dlatego zainteresował się Briggsem i sposobem konstruowania tablic. Gdybyśmy znaleźli się na bezludnej wyspie, będziemy wiedzieć, jak obliczyć tablice logarytmów. Ważniejszym powodem jest może ten, że wiedza powinna tworzyć powiązany system, a nie bezładne nagromadzenie faktów, i Feynman zawsze starał się poznać całe łańcuchy rozumowań od faktów doświadczalnych do teorii. (Nawiasem mówiąc, ta swoista niechęć do wykraczania poza fakty stała się chyba przyczyną, dla której nie podobały mu się kwarki, zaproponowane teoretycznie. Wprowadził nawet swoją nazwę: partony na części protonu, które obserwuje się w rozproszeniach przy dużych energiach. Uparcie nie chciał ich jednak uznać za kwarki.)

Z tabelki widać, że kolejne pierwiastki przejawiają prostą regularność:

10^{x}\approx 1+2,3025 x. \mbox{   (*)}

Także Briggs to zauważył: zamiast obliczać pierwiastki odpowiadające małym wykładnikom, można zastosować powyższe przybliżenie. Weźmy teraz jakąkolwiek liczbę z przedziału (1,10), np. 3. Szukamy w trzeciej kolumnie tabeli czynników, które przybliżą 3 z dołu:

10^{\frac{1}{4}}\cdot 10^{\frac{1}{8}}\cdot 10^{\frac{1}{16}}\cdot 10^{\frac{1}{32}}\cdot 10^{\frac{1}{128}}=10^{0,476563}\approx 2,996143.

Mamy już prawie 3. Brakujący czynnik to 3/2,996143=1,001287. Stosując przybliżenie (*) otrzymamy logarytm tego czynnika równy 0,000559. Liczbę tę należy dodać do wykładnika powyżej:

\log {3}=0,476563+0,000559=0,477121.

Metoda zastosowana przez Briggsa była nieco bardziej skomplikowana, ale w istocie sprowadzała się do tego samego. Zauważmy, że każdą liczbę z przedziału (0,1) możemy zapisać jako sumę potęg dwójkowych – będzie to po prostu owa liczba zapisana dwójkowo. Henry Briggs obliczył 54 kolejne pierwiastki z dokładnością 30 cyfr znaczących, co było pracą iście herkulesową (gdyby tylko Herkules pracował umysłowo, a nie fizycznie). W dodatku prawie wcale się przy tym nie mylił, drobne pomyłki nie wpłynęły na wyniki tablic. Zawierały one w pierwszej wersji logarytmy liczb od 1 do 1000 z dokładnością czternastu znaków. Po sześciu latach rozszerzył te tablice do liczb 1-20 000 oraz 90 000-100 000 z tą samą monstrualną dokładnością czternastu cyfr. Wydawca flamandzki Adriaan Vlacq zatrudnił mierniczego Ezechiela de Deckera, aby dokończyć tablice od 1 do 100 000. Miały one dokładność już tylko dziesięciu cyfr, de Decker stosował interpolację. Tablice Vlacqa ukazały się w 1627, trzy lata po niepełnych tablicach Briggsa.

Korzystałem m.in. z artykułu Iana Bruce’a, The agony and the ecstasy – the development of logarithms by Henry Briggs, „The Matematical Gazette”, t. 86 (2002), s. 216-227.

(*) Przybliżenie znalezione przez Briggsa łatwo uzasadnić rozwijając funkcję wykładniczą w szereg MacLaurina:

10^{x}=e^{x\ln 10}\approx 1+x\ln {10}.

 

 

 

Richarda Feynmana droga do równania Schrödingera (1941)

Jeszcze w trakcie swoich studiów pierwszego stopnia w MIT (ukończył je w 1939 r.) Feynman dowiedział się o trudnościach elektrodynamiki kwantowej. Teoria taka była niezbędna do opisania oddziaływań przy większych energiach: kiedy mogą tworzyć się albo anihilować pary elektron-pozyton. Obliczenia prowadziły jednak do całek rozbieżnych, teoria wymagała nowego podejścia.

W swoim wykładzie noblowskim Richard Feynman opowiada o kilku ideach, które starał się rozwijać w trakcie swoich dalszych studiów w Princeton (na egzaminach wstępnych z fizyki uzyskał tam komplet punktów, co zdarzyło się po raz pierwszy). W roku 1942 r uzyskał doktorat pod kierunkiem Johna Archibalda Wheelera i niebawem zaczął pracę w Projekcie Manhattan.

Jednym z pomysłów Feynmana było nowe sformułowanie mechaniki kwantowej. Poszukiwał podejścia, w którym można by opisać, co dzieje się z cząstkami w czasoprzestrzeni. Chodziło mu o teorię relatywistyczną, w której opis taki wydaje się naturalny. Należało się spodziewać, że zamiast hamiltonianu pojawi się tu lagranżian cząstek (sformułowanie Lagrange’a mechaniki daje się łatwo zapisać w postaci jawnie kowariantnej, w której zgodność z teorią względności jest punktem wyjścia, a nie dodatkowym założeniem). Na początek udało mu się sformułować w nowy sposób „starą” mechanikę kwantową, która liczyła wprawdzie dopiero piętnaście lat, lecz dla młodego człowieka była to już prehistoria. Właśnie to sformułowanie znalazło się w doktoracie.

Punktem wyjścia była rozmowa z Herbertem Jehle w „Nassau Inn” w Princeton któregoś wieczoru. Jehle, Niemiec, syn generała, był kwakrem i pacyfistą, wyemigrował z nazistowskiej ojczyzny, pracował w Brukseli, w końcu trafił do obozu internowania w Gurs w Pirenejach w republice Vichy, skąd trafił do Stanów Zjednoczonych. Jehle znał pewną pracę Paula Diraca, w której pojawiał się lagranżian. Nazajutrz wybrali się obaj do biblioteki, aby odszukać tę pracę z 1933 roku. Była ona opublikowana w dość nieprawdopodobnym miejscu, bo w rosyjskim czasopiśmie „Physikalische Zeitschrift der Sowjetunion”.

Dirac pisze, jak znaleźć funkcję falową w chwili późniejszej t+\varepsilon z funkcji falowej w chwili t, korzystając z zasady Huygensa:

\psi(x,t+\varepsilon)={\displaystyle \int G(x,y)\psi(y,t)dy}.

Funkcja G(x,y) jest dziś zwana propagatorem cząstki. Funkcja falowa w późniejszym czasie jest więc sumą funkcji falowych w czasie wcześniejszym wziętą z odpowiednimi wagami – wagi te opisuje propagator. Angielski uczony stwierdził też, że propagator dla krótkich czasów „odpowiada” (corresponds to) wyrażeniu

e^{iL \varepsilon /\hbar},

gdzie L jest lagranżianem, \hbar – stałą Plancka. W wykładniku mamy tu działanie dla bardzo krótkiego czasu \varepsilon. Feynman spróbował natychmiast ustalić, co oznacza owa odpowiedniość. Jeśli wziąć dwa punkty x i y, to średnia prędkość cząstki powinna się równać

v=\frac{x-y}{\varepsilon},

a energia potencjalna powinna być także jakąś wartością średnią:

V=V(\frac{x+y}{2}).

Lagranżian to różnica energii kinetycznej i potencjalnej, a więc wyrażenie wykładnicze Diraca jest równe:

\exp\left(\frac{im(x-y)^2}{2\hbar\varepsilon}-\frac{i}{\hbar}V(\frac{x+y}{2})\varepsilon\right).

Dla niewielkich \varepsilon pierwszy składnik wykładnika będzie gwałtownie oscylował, drugi natomiast staje się coraz mniejszy i może być zastąpiony przybliżeniem liniowym. Oznaczając x-y=\xi i przyjmując, że „odpowiada” u Diraca znaczy „jest proporcjonalny”, mielibyśmy

\psi(x,t+\varepsilon) =A(\varepsilon) {\displaystyle \int \exp\left(\dfrac{im\xi^2}{2\varepsilon\hbar}\right)\left\{ 1-\dfrac{i\varepsilon}{\hbar}V(x-{\xi}/{2})\right\}\psi(x-\xi)d\xi}.

Ponieważ pierwszy czynnik pod całką gwałtownie oscyluje, więc możemy funkcję falową pod całką przybliżyć jej rozwinięciem Taylora wokół x:

\psi(x-\xi)\approx \psi(x)-\xi \dfrac{\partial \psi}{\partial x}+\dfrac{\xi^2}{2}\dfrac{\partial^2\psi}{\partial x^2}.

Także energię potencjalną możemy zamienić jej wartością w punkcie x. Całki po prawej stronie dają się w tym przybliżeniu bez trudu obliczyć i otrzymujemy:

\psi(x,t+\varepsilon)=\psi(x,t)-\dfrac{i\varepsilon }{\hbar}V(x)\psi(x,t)+\dfrac{i\hbar \varepsilon}{2m}\,\dfrac{\partial^2\psi}{\partial x^2}.

Możemy to równanie przekształcić do postaci

i\hbar \dfrac{\psi(x,t+\varepsilon)-\psi(x,t)}{\varepsilon}=-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi}{\partial x^2}+V(x)\psi(x,t),

co w granicy \varepsilon\rightarrow 0 przechodzi w równanie Schrödingera.

Jak opowiada Feynman, obliczenie to wykonał od razu w obecności Jehlego, który pilnie notował kolejne kroki.
Był to punkt wyjścia do całek Feynmana po trajektoriach (albo po historiach cząstki – jak nazwał to John Wheeler). Wyobraźmy sobie bowiem, że dany przedział czasu (0,T) dzielimy na N+1 podprzedziałów o długości \varepsilon każdy.

Propagator cząstki przyjmuje postać:

G(x,y)=A^{N+1}{\displaystyle \int\ldots\int \exp(\frac{i\varepsilon}{\hbar}(L(y,x_1)+L(x_1,x_2)+\ldots+L(x_N,x))dx_1\ldots dx_N}\mbox{(*)}.

Jeśli wyobrazimy sobie, że N\rightarrow\infty, to wykładnik w funkcji wykładniczej będzie dążył do całki działania pomnożonej przez czynnik i/\hbar:

\dfrac{i}{\hbar}S={\displaystyle \frac{i}{\hbar}\int_0^T L\left(x,\frac{dx}{dt}\right)dt}.

Mamy więc procedurę obliczania wartości G(x,y) za pomocą sumy po różnych możliwych trajektoriach. G można zinterpretować fizycznie: kwadrat modułu tej zespolonej wartości jest prawdopodobieństwem, że cząstka z punktu czasoprzestrzeni (y,0) przemieści się do punktu (x,T). Po drodze „próbuje” ona niejako wszelkich możliwych trajektorii i każda z nich daje wkład proporcjonalny do wartości działania:

G(x,T|y,0) \sim {\displaystyle \sum_{trajektorie}e^{iS[trajektoria]/\hbar}}.

Zapisujemy to następująco:

G(x,T|y,0)= {\displaystyle \int e^{iS[x(t)]/\hbar}{\mathcal D}[x(t)]}.

Całka Feynmana jest w istocie granicą wyrażeń (*) i w celu obliczenia jej wartości musimy wracać do tej definicji. Okazuje się jednak, że sformułowanie to pozwala nie tylko spojrzeć inaczej na znaną fizykę, ale także umożliwia konkretne numeryczne obliczenia metodą Monte Carlo. Pozwala też łatwo zrozumieć, czemu przechodząc od fizyki kwantowej do klasycznej, otrzymujemy zasadę najmniejszego działania.

Wartości potrzebnych całek wynikają ze znanego wzoru:

{\displaystyle \int_{-\infty}^{\infty}e^{-\alpha x^2}dx=\sqrt{\dfrac{\pi}{\alpha}} }.

Jest on słuszny także dla czysto urojonych wartości \alpha. Różniczkowanie tego wzoru po \alpha generuje nam także całkę \int x^2 e^{-\alpha x^2} dx. Stała A równa jest

A=\sqrt{\dfrac{m}{2\pi i\hbar \varepsilon}}.

Kiedyś napiszę może trochę więcej na temat obliczania całek przez Feynmana, nieprzypadkowo zajmował się on w Los Alamos nadzorowaniem praktycznych obliczeń numerycznych – jak mało kto potrafił bowiem szybko obliczyć niemal wszystko, co daje się obliczyć metodami klasycznej analizy.

 

P.A.M. Dirac i jego równanie (1927-1928)

Paul Dirac znany był z powściągliwej małomówności i z tego, że nie wdaje się w grzecznościowe pogaduszki. Richard Feynman opowiadał, że kiedy spotkał po raz pierwszy Paula Diraca na jakiejś konferencji, to po długiej chwili milczenia starszy uczony rzekł: „Mam równanie. Czy pan także?”

Rozmaite wypowiedzi Diraca cytowane są często jako żarty, gdyż brzmią z pozoru absurdalnie. Paul Adrien Maurice Dirac sprawiał wrażenie postaci beckettowskiej: chudy, z długimi kończynami i wielkimi stopami, nie okazujący emocji, porozumiewający się pełnymi zdaniami (ponieważ nie wolno zacząć zdania, jeśli się nie wie, jak je zakończyć), myślący w kategoriach logicznych i matematycznych, a nie emocjonalnych czy etycznych. Jego przyjaciel Charles Galton Darwin, fizyk, wnuk twórcy teorii ewolucji, dopiero po kilku latach znajomości z Dirakiem odważył się zapytać, co właściwie znaczą inicjały P.A.M. przed jego nazwiskiem. Po przeczytaniu Zbrodni i kary Dostojewskiego Dirac miał tylko jedną uwagę, i to raczej techniczną niż etyczną czy psychologiczną: otóż w książce słońce wschodzi dwukrotnie tego samego dnia.

Anegdota z równaniem mówi sporo o obu rozmówcach. Dirac cenił konkrety, lubił np. słuchać wielogodzinnych monologów Nielsa Bohra, ale wątpił, czy coś z nich wyniósł, ponieważ prawie wcale nie było w nich równań. Toteż cenił sobie niewątpliwie fakt, iż odkrył jedno z fundamentalnych równań przyrody, które stosuje się do wszystkich cząstek o spinie ½: a więc elektronów, protonów, nieodkrytych jeszcze wtedy neutronów oraz kwarków, z których nukleony się składają. Feynman pozostawił po sobie wprawdzie całki Feynmana, diagramy Feynmana i wiele innych osiągnięć, nie odkrył jednak nigdy żadnego fundamentalnego prawa przyrody i jak się zdaje jego ambicja cierpiała z tego powodu.

Jesienią 1927 roku Paul Dirac, młodzieniec zaledwie dwudziestopięcioletni, zaproszony został na Kongres Solvaya do Brukseli. Była to konferencja bardzo elitarna, gromadząca obecne i przyszłe znakomitości naukowe. Na pamiątkowym zdjęciu siedzi w samym środku za Einsteinem, wiemy, że bardzo był dumny z tej fotografii i posłał ją na swój macierzysty uniwersytet w Bristolu. Niewykluczone, że specjalnie usiadł za Einsteinem, jego teorię względności podziwiał bowiem od lat i poznał, zanim jeszcze zajął się fizyką atomową – jak to wtedy mówiono, czyli fizyką mikroświata. Najważniejsze postacie na tym zdjęciu to Niels Bohr i Max Born, przywódcy i patroni całego ruchu kwantowej odnowy w fizyce. W Kopenhadze i Getyndze tworzyły się zasady nowej mechaniki. Zaczęła ją praca Wernera Heisenberga z 1925 roku. Niedługo później dołączyli Born i Pascual Jordan.

Od jesieni 1925 roku mechanikę kwantową współtworzył też Paul Dirac. Był studentem Ralpha Fowlera w Cambridge. Fowler rozpoznał jego niebywały talent: młody inżynier elektryk i absolwent studiów drugiego stopnia z matematyki na uniwersytecie w Bristolu dostał stypendium do Cambridge i błyskawicznie uzupełnił braki z fizyki, nie tylko najnowszej, nie znał np. dotąd równań Maxwella. Fowler miał znakomite kontakty i chyba one przydały się Diracowi najbardziej. Młody uczony otrzymał od niego jeszcze przed drukiem korekty artykułu Heisenberga i zrozumiał ich znaczenie. Kiedy niedługo później opublikował swoją pierwszą pracę na temat mechaniki kwantowej, Max Born zdumiony był, że pojawił się ktoś spoza wąskiej grupy znanych mu ludzi pracujących w tej dziedzinie i w dodatku jego osiągnięcia są porównywalne do tego, co udało się stworzyć w Getyndze i Kopenhadze. Dirac, równieśnik Jordana, miał dwadzieścia trzy lata, pół roku mniej niż Heisenberg i dwa lata mniej niż Wolfgang Pauli. Pracował nad doktoratem. Dzięki Fowlerowi jego prace szybko się ukazywały w „Proceedings of the Royal Society”, a czas bardzo się wtedy liczył. Dirac zaczął korespondować z Hiesenbergiem, który od razu poczuł ogromny respekt do brytyjskiego kolegi. Po doktoracie wyjechał do Kopenhagi i Getyngi. Poznał wielu fizyków, ale nie zmienił swej metody pracy: przez sześć dni w tygodniu intensywne myślenie od rana do obiadu, w niedziele piesze wycieczki. Nie współpracował też z nikim, przez całe życie pracował sam, uważając, że tak jest najlepiej, bo ważne idee są zawsze dziełem konkretnego człowieka, nie zespołu.

Tak więc po dwóch latach swej naukowej kariery Dirac znalazł się w elitarnym gronie na Konferencji Solvaya. Przeszła ona do historii za sprawą dyskusji Bohra z Einsteinem, który nie potrafił się pogodzić z probabilistycznym charakterem nowej mechaniki – można w niej obliczać i przewidywać jedynie prawdopodobieństwa zdarzeń. To w trakcie jednej z takich dyskusji padły słynne słowa: „Bóg nie gra w kości”. W mechanice kwantowej zrezygnować trzeba także z pełnej wiedzy o zjawiskach w mikroświecie: im dokładniej zmierzymy położenie elektronu, tym mniej będziemy wiedzieli na temat jego pędu. Dirac zupełnie nie interesował się sporami filozoficznymi na temat podstaw mechaniki kwantowej. Dla niego była to piękna teoria, do której zbudowania się przyczynił, fascynowała go matematyczna elegancja całego obrazu, napisał zresztą niedługo później słynną książkę The Principles of Quantum Mechanics, przedstawiającą całą tę konstrukcję w niezrównany klarowny, choć też niezwykle zwięzły sposób.

Jesienią 1927 roku Paul Dirac pragnął odkryć swoje równanie. Chodziło o rozwiązanie zagadnienia elektronu w sposób zgodny z teorią względności Einsteina. Z problemem tym pierwszy zetknął się w roku 1925 Erwin Schrödinger, drugi outsider fizyki kwantowej, pracujący w Zurychu. Wiadomo było, że cząstki takie jak elektron związane są z pewnymi wielkościami falowymi. Schrödinger przyjął, że stan elektronu opisywany jest pewną funkcją położenia i czasu \psi(\vec{r},t). Funkcja ta spełniać musi równanie o postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi \mbox{ (*)},

gdzie H jest pewnym operatorem działającym na funkcję. Najłatwiej wyjaśnić to na przykładach. Operatorem takim jest np. mnożenie \psi przez którąś ze współrzędnych, np. x. Wynikiem działania tego operatora jest nowa funkcja równa x\psi. Innym operatorem jest różniczkowanie, np. po zmiennej x. Wynikiem działania tego operatora jest wówczas \frac{\partial \psi}{\partial x}. Innym przykładem operatora jest pochodna po czasie z lewej strony równania Schrödingera. Za każdym razem tworzymy z wyjściowej funkcji \psi jakąś nową funkcję. Operator H zwany hamiltonianem (albo operatorem Hamiltona) jest kwantową wersją wyrażenia na energię cząstki. Jeśli np. energia cząstki o masie m składa się z energii kinetycznej i potencjalnej V(\vec{x}), to możemy ją zapisać w postaci

E=\dfrac{{\vec{p}\,}^2}{2m}+V(\vec{x}).

Kwantowy operator Hamiltona będzie wówczas równy

H=-\dfrac{\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}\right)+V(\vec{r})\equiv -\dfrac{\hbar^2}{2m}\Delta+V(\vec{r}).

Operator V(\vec{r}) jest po prostu operatorem mnożenia, energię kinetyczną konstruujemy z pędu za pomocą podstawienia

p_x\rightarrow -i\hbar\dfrac{\partial}{\partial x}

i analogicznie dla pozostałych współrzędnych. Równanie Schrödingera (*) jest podstawowym prawem mechaniki kwantowej. Rozwiązując je, dowiadujemy się, w jaki spośob zmienia się funkcja falowa, a więc stan naszego elektronu. Najprostszym możliwym rozwiązaniem tego równania w przypadku cząstki swobodnej (tzn. gdy V=0) jest funkcja opisującą falę:

\psi=A \exp{\frac{i}{\hbar}(\vec{p}\,\vec{r}-Et)}, \mbox{ (**)}

gdzie p_x, p_y, p_x oraz E są parametrami liczbowymi. Łatwo sprawdzić, że różniczkowanie tej funkcji sprowadza się do mnożenia przez odpowiedni czynnik i ostatecznie równanie Schrödingera da nam warunek:

E=\dfrac{\vec{p}\,^2}{2m},

jak powinno być dla cząstki swobodnej i parametry są składowymi pędu oraz energią cząstki. Zbudowaliśmy stan o określonej energii i jednocześnie określonym pędzie. Jasne jest, że przyjmujemy tu energię kinetyczną w postaci newtonowskiej, a więc nierelatywistycznej.

Erwin Schrödinger początkowo poszukiwał równania relatywistycznego dla swojej funkcji \psi i nawet takie równanie znalazł. Ma ono następującą postać w przypadku swobodnym:

\dfrac{1}{c^2}\dfrac{\partial^2 \psi}{\partial {t}^2}-\Delta \psi+\left(\dfrac{mc}{\hbar}\right)^2 \psi=0.

Podstawiając do niego funkcję (**), otrzymamy równanie

E^2-p^2c^2=m^2c^4,

a więc prawidłowy związek energii i pędu dla cząstki o masie m w teorii względności. Oczywiście równanie dla cząstki swobodnej niewiele znaczy, interesujące są przypadki, gdy mamy pewien potencjał V(\vec{r}), np. gdy elektron porusza się w polu elektrostatycznym nieruchomego protonu. Jest to prawie atom wodoru (prawie – ponieważ w prawdziwym atomie wodoru proton, choć znacznie masywniejszy, może też się poruszać). Nietrudno równanie Kleina-Gordona rozszerzyć tak, aby zawierało zewnętrzne pole elektromagnetyczne. Wiadomo było jednak, że elektron ma spin, co sprawia, że jego stany są podwojone i np. w polu magnetycznym ta różnica się ujawnia jako rozszczepienie linii widmowych (efekt Zeemana). Czemu więc Schrödinger nie opublikował tego równania, które dziś nazywa się równaniem Kleina-Gordona? Schrödinger uznał, że trzeba ograniczyć się na początek do równania nierelatywistycznego i opublikował równanie (*) zastosowane m.in. do atomu wodoru. Nie jest jasne, czy chodziło mu o brak spinu, czy może dostrzegł inne trudności z rozwiązaniami równania Kleina-Gordona.

Z punktu widzenia Diraca równanie Kleina-Gordona nie było rozwiązaniem problemu elektronu. Owszem, relatywistyczny związek między energią i pędem cząstki był spełniony, ale równanie zawierało drugą pochodną czasową, a nie pierwszą jak równanie Schrödingera. Zdaniem Diraca równanie podstawowe powinno być pierwszego rzędu w czasie, tak aby wartości funkcji falowej w danej chwili determinowały jej wartości w przyszłości (w przypadku równania drugiego rzędu należy znać jeszcze wartości pochodnych czasowych). Jak pogodzić to z relatywistyczną postacią energii? Hamiltonian powinien mieć postać:

H=\sqrt{-c^2\hbar^2 \Delta+m^2c^4},

Oczywiście, wyciąganie pierwiastka kwadratowego z laplasjanu nie jest operacją standardową. Inżyniersko nastawiony do matematyki Paul Dirac, nieodrodny spadkobierca Olivera Heaviside’a, nie zamierzał się poddawać z tak trywialnego powodu. Równanie dla cząstki swobodnej powinno być pierwszego rzędu w czasie, w teorii względności znaczy to, że powinno być także pierwszego rzędu w pochodnych przestrzennych – poniważ przestrzeń i czas są symetryczne u Einsteina. Należy więc szukać równania postaci

i\hbar \gamma^{\mu}\dfrac{\partial \psi}{\partial x^{\mu}}=mc\psi, \mbox{ (***)}

gdzie sumujemy po wskaźnikach czasoprzestrzennych \mu=0,1,2,3 oraz x^0=ct. Żądamy, aby \gamma^{\mu} nie zależały od czasu ani współrzędnych przestrzennych, a także aby dwukrotne zastosowanie operatora po lewej stronie dało nam m^2, jak w równaniu Kleina-Gordona – wtedy relatywistyczny związek energii i pędu będzie spełniony. Łatwo zauważyć, że stanie się tak, jeśli

\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}=2\cdot diag(1,-1-1-1),

gdzie g^{\mu\nu} jest metryką czasoprzestrzeni Minkowskiego. Jakimi obiektami muszą być owe cztery \gamma^{\mu}? Mają one antykomutować ze sobą, czyli ich iloczyn zmienia znak przy przestawieniu, a kwadraty mają być równe \pm 1. Dirac odkrył, że \gamma^{\mu} muszą być macierzami 4×4, a więc funkcja \psi musi zawierać cztery składowe:

\psi=\begin{pmatrix} \psi_1\\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.

Inaczej mówiąc, równanie (***) jest układem czterech równań liniowych o stałych współczynnikach. Zaraz po Nowym Roku 1928 Ralph Fowler przekazał pracę do druku i miesiąc później się ukazała. Po miesiącu Dirac uzupełnił ją o drugą część. Mógł być teraz pewien: miał swoje równanie.

Dirac zaczął sprawdzać konsekwencje odkrytego równania. Okazało się, że zawiera ono informację o stanach spinowych elektronu. Co więcej, spinowy moment pędu okazywał się równy \hbar/2, a moment magnetyczny równy dokładnie magnetonowi Bohra. Znaczyło to, że w tym przypadku stosunek momentu magnetycznego do momentu pędu jest dwukrotnie większy niż dla orbitalnego momentu pędu, co potwierdzały eksperymenty (Nb. w roku 1915 Albert Einstein i Wander de Haas, zięć Hendrika Lorentza, przegapili okazję do pierwszorzędnego odkrycia doświadczalnego, zmierzyli bowiem ten stosunek i wyszedł im taki, jak oczekiwali, ale dwa razy mniejszy niż w rzeczywistości). Równanie elektronu Diraca w polu kulombowskim odtwarzało znane wyniki dla energii uzyskane wcześniej przez Arnolda Sommerfelda za pomocą relatywistycznej wersji modelu Bohra (model Bohra-Sommerfelda).

Co z czterema składowymi funkcji falowej? Potrzebne były dwie składowe do opisania spinu, ale cztery? Równanie Diraca zawiera rozwiązania zarówno dla energii dodatniej +\sqrt{p^2c^2+m^2c^4}, jak i -\sqrt{p^2c^2+m^2c^4}. Paul Dirac zauważył też, że rozwiązania te stwarzają realny problem: energia elektronu nie jest bowiem ograniczona z dołu, a to w przypadku układu kwantowego znaczy, że prędzej czy później powinien on przejść do stanu o niższej energii. W mechanice kwantowej panuje skrajny liberalizm: wszystko, co nie jest zabronione, jest dozwolone i się kiedyś zdarzy. Jedynym wyjściem wydawało się znaleźć jakiś zakaz, który musiałby być naruszany podczas takiego przejścia. Dwa lata później Dirac zaproponował, że stany o ujemnej energii są zajęte, więc ponieważ elektrony podlegają zakazowi Pauliego, zwykle nie ma takich przejść. Możliwe jest wzbudzenie elektronu z ujemną energią do stanu z energią dodatnią, pozostawi on dziurę, która będzie się zachowywać jak cząstka o takiej samej masie, lecz dodatnia. Otrzymujemy w ten sposób parę elektron i antyelektron. W 1932 roku cząstka taka została odkryta i nazwana pozytonem. Nic więc dziwnego, że już w roku następnym P.A.M. Dirac otrzymał Nagrodę Nobla (po połowie ze Schrödingerem). Inne wyjaśnienie dla rozwiązań o energii ujemnej podał później Richard Feynman: u niego pozytony są elektronami, które poruszają się wstecz w czasie, zamiast energii zmienia się znak czasu. Współczesna kwantowa teoria pola nie potrzebuje takich obrazów, wprowadza się w niej przestrzeń stanów bogatszą niż w mechanice kwantowej, gdyż pojawia się możliwość procesów kreacji oraz anihliacji par. Równanie Diraca obowiązuje nadal, lecz zamiast funkcji falowej mamy operator pola, obiekt jeszcze nieco bardziej abstrakcyjny.

Znakomitą biografię Diraca napisał Graham Farmelo, została ona jednak całkiem popsuta w polskim przekładzie, który językowo jest poniżej wszelkiej krytyki. Szkoda, bo pewnie nieprędko pojawi się drugie wydanie.

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Dziewiąty wykład Feynmana: Co mówi druga zasada dynamiki?

Zadziwiające, jak wiele osób nie czuje sensu drugiej zasady dynamiki, mimo wieloletniej szkolnej mitręgi. Druga zasada to podstawowe prawo matematyczne całej mechaniki: wszystko, co się porusza, można opisać za jej pomocą, dopiero gdy schodzimy na poziom atomowy, potrzebna jest mechanika kwantowa.

Poprzedza ją zasada pierwsza: ruch swobodny ciała (tzn. gdy nie działają na nie siły) to ruch jednostajny i prostoliniowy. Wyobraźmy sobie krążek hokejowy ślizgający się po nieskończonym lodowisku: jeśli sprawimy, że zniknie całkiem tarcie między krążkiem a lodem, będzie on się ślizgał przez całą wieczność ruchem jednostajnym i prostoliniowym. Przy braku sił ciało może więc spoczywać, ale może też poruszać się jednostajnie. To ambitna zasada, gdyż jest idealizacją rzeczywistego świata.

Teraz zasada druga: jeśli ruch nie jest jednostajny lub nie jest prostoliniowy, to znaczy, że na ciało działa jakaś siła. Zmiany prędkości opisuje przyspieszenie, druga zasada mówi, że przyspieszenie ciała proporcjonalne jest do siły. Sens matematyczny tej zasady tkwi w tym, że jeśli znamy skądś siły występujące w danym przypadku, to możemy obliczyć przyspieszenie ciała.

Przyspieszenie nie mówi wszystkiego o ruchu: zazwyczaj interesuje nas położenie, czasem także prędkość ciała. Musimy znać także warunki początkowe: gdzie się nasze ciało znajduje i jak się porusza w chwili zerowej.

  1. Przyspieszenie mówi nam, jak zmieni się prędkość w krótkim odstępie czasu.
  2. Prędkość z kolei mówi nam, jak zmieni się położenie ciała w krótkim odstępie czasu.

Możemy więc, wykonując dwa kroki: od przyspieszenia do prędkości i od prędkości do położenia znaleźć ich wartości w chwili nieco późniejszej. Znając położenie i prędkość, możemy obliczyć siłę i przyspieszenie w owej późniejszej chwili i powtórzyć całą procedurę od nowa.

Rozpatrzmy przykład masy zawieszonej na sprężynie. Jeśli x będzie wychyleniem tej masy z położenia równowagi, to siła wypadkowa F równa jest

F=-kx,

gdzie k jest pewną stałą charakteryzującą sprężynę. Znak minus informuje, że siła ma zwrot przeciwny do wychylenia. Jeśli nasze ciało ma masę m, to z II zasady dynamiki wynika, że przyspieszenie równe jest

a=-\left(\dfrac{k}{m}\right)x.

Ruch ciała będzie drganiem harmonicznym:

Simple_harmonic_oscillator

Znając pojęcie pochodnej, można znaleźć równanie takiego ruchu, tzn. funkcje x(t) oraz v(t). Można też zrobić to numerycznie, co nie tylko jest łatwe, ale także ilustruje sens drugiej zasady dynamiki. Prędkość średnia ciała w przedziale czasu (t, t+\Delta t) to z definicji

v=\dfrac{x(t+\Delta t)-x(t)}{\Delta t}.

Dzielimy zmianę współrzędnej przez odstęp czasu. Tak samo definiuje się średnie przyspieszenie:

a=\dfrac{v(t+\Delta t)-v(t)}{\Delta t}.

Dokonujemy więc takiej samej operacji co przedtem, ale tym razem na prędkości. Oba te równania opisują, jak szybko zmienia się wielkość z licznika po prawej stronie. Wyobraźmy sobie teraz, że dzielimy czas na krótkie odcinki o długości \Delta t=\varepsilon. Jeśli odcinki są krótkie, to rozsądnie będzie przybliżyć prędkość średnią dla całego przedziału wartością prędkości w środku tego przedziału. W ten sposób współrzędna x(t+\varepsilon)  równa jest

x(t+\varepsilon)=x(t)+v(t+\varepsilon/2)\varepsilon.

Tak samo możemy postąpić z prędkością i przyspieszeniem:

v(t+\varepsilon/2)=v(t-\varepsilon/2)+a(t)\varepsilon.

Dzięki takiej procedurze możemy znaleźć wartości położeń i prędkości dla dwóch ciągów chwil. W punktach czerwonych obliczamy prędkości (do czego potrzeba przyspieszenia w środkowym punkcie niebieskim), a w punktach niebieskich – położenia.

second law axis

Jeśli znamy tylko prędkość w chwili zero, potrzebne jest dodatkowe równanie dla pierwszego czerwonego punktu:

v(\varepsilon/2)=v(0)+a(0)\dfrac{\varepsilon}{2}.

Metoda taka jest oczywiście tylko przybliżona, w razie gdyby dawała absurdalne wyniki, trzeba zmniejszyć krok czasowy \varepsilon – w każdym zagadnieniu inny odstęp czasu jest „krótki”. Ponieważ mamy powtarzać w kółko ten sam ciąg obliczeń, najlepiej go zaprogramować, najprostszym narzędziem jest dowolny arkusz kalkulacyjny.

Obliczenia wyglądają następująco.

Wyniki dla k/m=1 oraz dwóch wychyleń początkowych x(0)=1, 2 (prędkość początkowa równa jest zeru):

image (1)

Naprawdę nasze rozwiązanie jest tylko dyskretnym zbiorem punktów, ale gdy punkty położone są gęsto, widać wyraźnie linię. Łatwo też zgadnąć, że jest to po prostu wykres funkcji cosinus: x(t)=A\cos t dla dwóch różnych amplitud. Okresem naszego ruchu jest 2\pi. Okres nie zależy od amplitudy: na tej własności opierała się konstrukcja zegarów wahadłowych, przy małych wychyleniach ruch wahadła można opisać bowiem takim samym równaniem jak masę na sprężynie. Generalnie, konstrukcja każdego zegara musi opierać się na jakimś rodzaju drgań, obecnie są to zazwyczaj drgania niemechaniczne.

Rozwiązanie tego problemu jest proste i nie potrzeba komputera, jeśli zna się własności funkcji sinus i cosinus. Metoda numeryczna pozwala jednak rozwiązywać równie łatwo także i bardziej skomplikowane przypadki. Rozpatrzmy np. wahadło matematyczne dla dowolnie dużych wychyleń (przy wychyleniach większych niż kąt prosty, trzeba sobie wyobrażać, że mamy sztywny lekki drążek z ciężarkiem na końcu).

pendulum

W takim przypadku przyspieszenie styczne do toru (czyli łuku okręgu) równe jest

a=-g\sin\gamma=-g\sin\dfrac{x}{l}.

W naszym arkuszu wystarczy tylko zmienić wzór na przyspieszenie. Wygląda to następująco.

Wykres dla przypadku l=g i początkowego kąta wychylenia 3 radiany przedstawia się następująco:

image (2)

Amplituda wahań równa jest około 172^{\circ}. Widzimy, że wahadło niemal zatrzymuje się w pobliżu skrajnych położeń, dlatego okres jest teraz znacznie dłuższy niż przy małych wychyleniach (*). Richard Feynman w swoim wykładzie dziewiątym pokazuje przykład oscylatora, a także pokazuje, jak zastosować taką samą metodę do ruchu planety: jedyną różnicą jest inne prawo rządzące siłą (prawo ciążenia) oraz to, że trzeba obliczenia prowadzić dla dwóch współrzędnych kartezjańskich.

(*) Tak się składa, że i ten przypadek ruchu wahadła można rozwiązać analitycznie, trzeba jednak posłużyć się funkcjami eliptycznymi zamiast trygonometrycznych, jest to nieco bardziej zaawansowana matematyka.

Poniżej szczegóły obliczenia w arkuszu, gdyby ktoś chciał się pobawić. Najpierw formuły, potem liczby. Wystarczy tylko wpisać dwa pierwsze (jasnoniebieskie) wiersze formuł, resztę uzyskuje się przeciąganiem drugiego z nich w dół tak daleko, jak chcemy. Dla długich okresów czasu błędy naszej procedury będą się kumulować, więc rozwiązania będą się pogarszać. Zawsze jednak można zmniejszyć krok czasowy.

Zrzut ekranu z 2016-03-19 16:44:00Zrzut ekranu z 2016-03-19 16:45:47

Od Eulera do Feynmana: Po co nam liczba e?

Ilu matematyków potrzeba do wkręcenia żarówki? Odpowiedź: -e^{i\pi}.

feynman e i pi

Piętnastoletni Richard Feynman zapisał w swoim notatniku:

Najbardziej niezwykła równość w matematyce

e^{i\pi}+1=0.

Rzeczywiście, mamy tu trzy liczby: podstawę logarytmów naturalnych e, stosunek długości okręgu do średnicy \pi oraz jednostkę urojoną i. Pokażemy, co wyróżnia liczbę e, wprowadzoną w sposób systematyczny i nazwaną przez Leonharda Eulera. Przyjrzymy się funkcji wykładniczej e^{x} w dwóch przypadkach: dla x rzeczywistego oraz czysto urojonego – w tym drugim przypadku funkcja staje się okresowa, co jest na pierwszy rzut oka zaskakujące.

exponents

W dziedzinie rzeczywistej funkcja e^x jest „najprostszą” funkcją wykładniczą. Na wykresie zaznaczona jest linią niebieską. Na czym polega jej prostota (albo naturalność)? Po pierwsze można każdą inną funkcję wykładniczą zapisać za jej pomocą, zatem inne są nam właściwie niepotrzebne. Po drugie zachowuje się ona najprościej w okolicy x=0. Oczywiscie każda funkcja wykładnicza ma w tym punkcie wartość 1. Chodzi jednak o nachylenie, z jakim krzywa przecina oś Oy. Z wykresu widać, że to nachylenie względem osi Ox może być dowolne (oprócz 90º). Naturalna funkcja wykładnicza ma tangens nachylenia równy 1. Oznacza to, że dla małych wartości x mamy

e^x\approx 1+x. \mbox{ (*)}

Dla porównania, przy podstawie 10, otrzymamy:

10^x\approx 1+2,3026x.

Widzimy, czemu matematycy nie chcą używać innych podstaw funkcji wykładniczej niż e. Funkcję tę możemy zdefiniować jako szereg, czyli nieskończoną sumę:

e^x=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\ldots.

Nawet jeśli nie znamy analizy, wiadomo, jak używać takiego szeregu: gdy chcemy poznać wartość funkcji, musimy zsumować dostatecznie dużo jego wyrazów. Ile wyrazów – to zależy od wymaganej dokładności oraz od wartości x.

Tak wygląda obliczanie wartości liczby e.

Istnieje także inny, bardziej praktyczny sposób zdefiniowania liczby e. Wyobraźmy sobie, że oddajemy złotówkę na lokatę ze stopą oprocentowania 10% na 10 lat. Ile będziemy mieli na koncie po 10 latach? Naiwna odpowiedź brzmi 2 zł (bo 10% razy 10 lat daje 100%). W rzeczywistości musimy uwzględnić kapitalizację odsetek, tzn. fakt, że co pewien czas obliczana jest nowa wartość naszej lokaty i następne odsetki oblicza się już od tej nowej wartości. Jeśli kapitalizacja odsetek następuje co roku, wartość naszej lokaty po 10 latach równa będzie

\left(1+\dfrac{1}{10}\right)^{10}\approx 2,5937.

A gdyby kapitalizować odsetki 10 razy w roku (oczywiście za każdym razem stopa będzie 10 razy mniejsza)? Wówczas wartość naszej lokaty będzie równa

\left(1+\dfrac{1}{100}\right)^{100}\approx 2,7048.

W tym miejscu uważny Czytelnik zauważy, iż nasze zadanie prowadzi najwyraźniej do liczby e.

Bardziej rozbudowany przykład liczbowy.

Gdybyśmy kapitalizowali odsetki w sposób ciągły, pod koniec lokaty będziemy mieli na koncie e zł. Możemy uważać tę wartość za granicę następującego ciągu:

e=\lim_{n\rightarrow\infty} \left(1+\dfrac{1}{n}\right)^n \mbox{ (**)}.

Wynika stąd, że w przybliżeniu 1% wzrostu przez 100 lat albo 5% wzrostu przez 20 lat, albo 10% wzrostu przez 10 lat dadzą w przybliżeniu ten sam wynik końcowy: e. Błąd będzie tym mniejszy, im mniejsza jest stopa procentowa. Istnieje podobna reguła dla wzrostu dwukrotnego: iloczyn stopy procentowej i liczby okresów powinien równać się około 70%. Czyli np. wzrost gospodarczy 7% rocznie przez 10 lat daje podwojenie PKB. (Reguła 70% to naprawdę reguła 69,3%, chodzi o to, że e^{0,693}\approx 2).

Przejdźmy teraz do argumentów czysto urojonych. Funkcja e^{it} jest okresowa, czego na pierwszy rzut oka nie widać w jej definicji za pomocą szeregu (wstawiliśmy x=it):

z(t)=e^{it}=1+\dfrac{it}{1!}+\dfrac{(it)^2}{2!}+\dfrac{(it)^3}{3!}+\ldots.

Spróbujmy popatrzeć na tę funkcję okiem fizyka, traktując t jako czas, a wartość funkcji jako współrzędne punktu na płaszczyźnie zespolonej. Łatwo obliczyć moduł liczby z(t), tzn. odległość punktu od początku układu. Jeśli z(t)=a+bi, to mamy

|z(t)|^2=a^2+b^2=(a+bi)\cdot(a-bi)=zz^{\star},

gdzie w ostatniej równości skorzystaliśmy z definicji liczby zespolonej sprzężonej do danej liczby: różni się ona znakiem przy części urojonej. W naszym przypadku otrzymamy:

|z(t)|^2=zz^{\star}=e^{it}\cdot e^{-it}=e^{0}=1.

Zatem koniec wektora z(t) będzie leżał na okręgu jednostkowym. Obliczmy prędkość ruchu punktu z(t). Prędkość średnia w przedziale czasu (t, t+h) będzie równa

v(t)=\dfrac{z(t+h)-z(t)}{h}=\dfrac{e^{i(t+h)}-e^{it}}{h}=e^{it}\dfrac{e^{ih}-1}{h}.

Zauważmy, że działania takie jak dodawanie, odejmowanie liczb zespolonych oraz dzielenie przez liczbę rzeczywistą h odbywa się zgodnie z regułami działań na wektorach (w tym przypadku dwuwymiarowych). Jeśli czas h będzie krótki, to w ostatnim ułamku możemy zastosować (*) dla przypadku x=ih i otrzymamy ostatecznie

v(t)=iz(t).

Łatwo zauważyć, że mnożenie liczby zespolonej przez i oznacza obrót wektora o 90º w lewo na płaszczyźnie:

i(a+bi)=-b+ai.

Moduł obliczonej przez nas prędkości równy jest 1. Sytuację przedstawia rysunek.

euler

Okres ruchu to długość okręgu podzielona przez prędkość, czyli 2\pi. Promień wodzący punktu o współrzędnych z(t) tworzy kąt proporcjonalny do czasu. Ponieważ z(0)=1, więc kąt ten po prostu równy jest t. W zapisie zespolonym punkt na okręgu jednostkowym ma przy takim kącie t postać (stosujemy definicje funkcji sinus i cosinus na okręgu jednostkowym):

\cos t+i\sin t=z(t)=e^{it}.

Wzór ten zwany jest wzorem Eulera. Wstawiając t=i\pi, otrzymujemy równość, od której zaczęliśmy i która tak zachwyciła młodego Feynmana. Wzór Eulera jest niezwykle użyteczny w rozpatrywaniu fal, drgań, a także w trygonometrii, funkcje wykładnicze są bowiem bardzo proste w użyciu. Powiedzmy, że potrzebujemy wyrażenia na \sin 2\alpha. Wystarczy podnieść do kwadratu wzór Eulera, a dostaniemy szukane wyrażenie oraz przy okazji wyrażenie na \cos 2\alpha:

e^{i2\alpha}=\cos 2\alpha+ i\sin 2\alpha.

(e^{i\alpha})^2=(\cos \alpha+i\sin \alpha)^2=\cos^2 \alpha-\sin^2 \alpha+i 2\sin \alpha\cos \alpha.

Porównując prawe strony obu wyrażeń otrzymujemy dwie tożsamości trygonometryczne. Wzór Eulera musiał szczególnie podobać się Feynmanowi, bo przydaje się w praktycznych zastosowaniach. Feynman już wtedy starał się rozumieć, „jak działa” matematyka, to znaczy, jak można obliczyć najróżniejsze rzeczy. Nieprzypadkowo w Los Alamos kierował zespołem wykonującym obliczenia numeryczne, wiadomo było, że jest w tej dziedzinie pomysłowy, stosował np. równoległe przetwarzanie danych, żeby było szybciej (za procesory służyli ludzie z kalkulatorami elektrycznymi). Gdyby wysadzić go na bezludnej wyspie, odtworzyłby bez trudu sporą część różnych tablic funkcji i całek. Można zresztą założyć, że w wersji skróconej miał je wszystkie w głowie: zakładał się, że obliczy dowolne wyrażenie z dokładnością 10% w ciągu minuty, jeśli tylko samo zadanie można sformułować w dziesięć sekund. I niemal zawsze wygrywał.

Nieco więcej ścisłości.

Łatwo sprawdzić, że definicja e^z za pomocą szeregu jest prawidłowa, tzn. szereg jest zbieżny absolutnie dla wszystkich wartości z. Tak zdefiniowana funkcja spełnia też prawo mnożenia funkcji wykładniczych:

e^{z+u}=e^{z}e^{u}.

Mamy bowiem

e^{z+u}=\sum_{n=0}^{\infty}\dfrac{(z+u)^n}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n-k} \dfrac{z^{k}u^{n-k}}{k!(n-k)!}  =\sum_{k=0}^{\infty}\sum_{m=0}^{\infty}\dfrac{z^k u^{m}}{k!m!} .

Korzystając z dwumianu Newtona możemy też uzasadnić granicę (**). Rozwijając dwumian, otrzymamy jako k-ty wyraz

\dfrac{n!}{k!(n-k)!n^k}=\dfrac{n(n-1)\ldots (n-k+1)}{n^k}\dfrac{1}{k!}.

Pierwszy ułamek dąży do 1, przy n dążącym do nieskończoności, zostaje więc suma wynikająca z rozwinięcia w szereg e^1.