Miał historycznego pecha: był 81 razy nominowany do Nagrody Nobla z fizyki, ale nigdy jej nie dostał. „Planck był autorytetem, Einstein – geniuszem, a Sommerfeld – nauczycielem”, jak ujął to historyk Armin Hermann. Nauczycielem noblistów, trzeba dodać. Czterech jego doktorantów i trzech postdoków zostało później laureatami Nobla, a do tego dochodzi mnóstwo nazwisk uczniów i współpracowników, które i dziś znane są fizykowi. Jego ośrodek w Monachium obok Getyngi Maksa Borna i Kopenhagi Nielsa Bohra wychował całe pokolenie genialnych chłopców lat dwudziestych (osobny był tylko Paul Dirac, ale on był zawsze osobny). Sommerfelda wyjaśnienie struktury subtelnej widma wodoru było eleganckie i niezwykle dokładne. Jednak osiągnięcia Sommerfelda nie stanowiły zamkniętej teorii, było jeszcze za wcześnie na mechanikę kwantową. Trudno czynić mu z tego zarzut: ani Planck, ani Einstein nie posunęli się dalej.
Sommerfeld był właściwie matematykiem zajmującym się zagadnieniami fizyki matematycznej. Gdy w 1906 r. objął katedrę fizyki teoretycznej w Monachium nie było jeszcze fizyki kwantowej oprócz pionierskich prac Plancka i Einsteina. Dopiero podczas wojny Sommerfeld zainteresował się serio zagadnieniami kwantowymi.
Czterdziestopięcioletni profesor nie został powołany do wojska ze względu na wiek, zresztą pomimo swego patriotyzmu nie był entuzjastą wojny, jak większość jego rodaków. Wkrótce jednak i jemu udzieliła się nieuchronna atmosfera paranoi i oblężonej twierdzy, podpisał np. antybrytyjski apel Wilhelma Wiena wzywający, by niemieccy uczeni nie publikowali w angielskich czasopismach i odrzucali „nieuzasadnione wpływy naukowe Anglików”. Było więcej tego rodzaju wstydliwych wystąpień, zresztą po obu stronach konfliktu. Zaledwie rok wcześniej, w roku 1913, zarówno Wien, jak Sommerfeld brali udział w drugim Kongresie Solvaya, gdzie spotykała się elita ówczesnych fizyków i mogło się wydawać, że nauki ścisłe nie mają narodowości.
Sommerfeld znany był z otwartości i bliskich kontaktów ze swymi studentami. Chodził z nimi na piwo i jeździli wspólnie na narty, w tamtych czasach taka postawa była rzadkością. Einstein, kiedy poznał Sommerfelda, obiecywał sobie, że będzie miał podobne podejście do studentów. Podczas wojny Sommerfeld prowadził wprawdzie nadal wykłady, ale wielu studentów i młodszych kolegów było na froncie. Chętnie jednak w miarę możliwości korespondowali na tematy naukowe, pozwalało im to na chwilę zapomnieć o toczącej się wciąż wojnie.
Sommerfeld stosował metodę, którą później wielokrotnie stosował Steven Weinberg: jeśli chcesz nauczyć się jakiegoś przedmiotu, wygłoś na ten temat cykl wykładów. W przypadku Sommerfelda wynikiem jest wielotomowy kurs fizyki teoretycznej, a także monografia Atombau und Spektrallinien („Budowa atomu i linie widmowe”), biblia pierwszych lat fizyki kwantowej. W przypadku Weinberga to seria znakomitych solidnych podręczników na różnym poziomie, a także zarys historii fizyki.
W lutym 1915 roku Sommerfeld pisał do Wiena: „W tym semestrze prowadziłem wykłady na temat [modelu] Bohra i interesuję się tą kwestią, na ile wojna pozwala. Dzisiejsze 100 000 Rosjan to z pewnością piękniejsza wiadomość niż wyjaśnienie serii Balmera przez Bohra. Mam jednak piękne nowe wyniki na ten temat.” Owe 100 000 Rosjan to jeńcy po bitwie nad jeziorami mazurskimi. Przez cały rok 1915 Sommerfeld pracował, choć z przerwami, nad zagadnieniem atomu. Udało mu się uogólnić warunki kwantowania Bohra, a następnie zastosował do elektronu mechanikę szczególnej teorii względności (którą także w owym czasie wykładał). Model relatywistyczny pozwolił wyjaśnić rozszczepienie optycznych linii widmowych wodoru, a także optycznych i rentgenowskich linii cięższych pierwiastków. Wyjaśniła się w ten sposób kwestia znana od wielu lat: linie widmowe pierwiastków mają często kilka blisko położonych składowych widocznych przy dużej zdolności rozdzielczej (np. żółta linia sodu świecąca w lampach sodowych jest dubletem). Tę strukturę subtelną wodoru odkryli Albert Michelson i Edward Morley jeszcze w roku 1887. Dzięki Sommerfeldowi wyjaśniło się, że odgrywa tu rolę szczególna teoria względności, w latach 1915-1916 jej słuszność wcale nie była jeszcze oczywista, obie teorie względności jeszcze długo później uchodziły za „kontrowersyjne”, pamiętajmy, że Nagrodę Nobla przyznano Einsteinowi z wyraźnym zastrzeżeniem, iż nie jest nagrodą za teorię względności. Wspominany w tym blogu kilkukrotnie Ernst Gehrcke, zaciekły przeciwnik teorii Einsteina, był specjalistą od pomiarów widmowych. Przez lata spierał się z Friedrichem Paschenem, który zmierzył wielkość rozszczepienia linii zgodną z wynikami Sommerfelda. Gehrcke otrzymywał wciąż nieco inną wartość. I to z pozornie obiektywnych pomiarów, w których widmo było rejestrowane przez przyrząd. Nienawiść zaślepia.
Wynik Sommerfelda niemal pokrywa się z tym, co uzyskano później z równania Diraca. Eleganckie i zgodne z obserwacjami wyniki Sommerfelda stały się największym sukcesem tzw. starej teorii kwantów, czyli fizyki sprzed powstania mechaniki kwantowej. Co ciekawe, twórcy mechaniki kwantowej, Schrödinger i Pauli, publikując rozwiązania dla atomu wodoru w styczniu 1926 roku, nie do końca byli usatysfakcjonowani. Obaj bowiem, zupełnie niezależnie, próbowali osiągnąć wynik Sommerfelda i im się to nie udało. Musieli zadowolić się podejściem nierelatywistycznym, bez struktury subtelnej. Mieli więc świadomość, że górują pod względem metody, ale nie dorównują wynikom Sommerfelda. Relatywistyczną mechanikę kwantową zapoczątkował w 1928 r. Paul Dirac, lecz okazało się dość szybko, jeszcze w latach trzydziestych, że potrzebna jest tu kwantowa teoria pola. Obliczenia w ramach teorii pola szybko doprowadziły do impasu: niektóre wyniki okazywały się nieskończone. Wyjście z tego impasu znaleziono dopiero po II wojnie światowej: było nim sformułowanie elektrodynamiki kwantowej przez Juliana Schwingera, Shin’ichirō Tomonagę i Richarda Feynmana. Dopiero wtedy dokładność teorii (a także pomiarów) wyprzedziła wyniki Sommerfelda i Diraca.
W modelu Bohra dozwolone są orbity kołowe, które spełniają warunek
gdzie to odpowiednio moment pędu, promień orbity, masa i prędkość elektronu oraz stała Plancka, a
jest dodatnią liczbą całkowitą. Max Planck interesował się zagadnieniem oscylatora harmonicznego – oscylatory takie emitują bądź pochłaniają fale elektromagnetyczne. Można opisać je w przestrzeni fazowej, gdzie współrzędnymi są położenie
oraz pęd
. Jeśli położenie w zależności od czasu opisane jest równaniem
(
jest częstością), to pęd elektronu jest równy
i łatwo sprawdzić, że tor w przestrzeni fazowej jest elipsą (wystarczy skorzystać z jedynki trygonometrycznej). Warunek kwantowania Plancka ma postać następującą:
Pole zakreślane w przestrzeni fazowej przez elektron jest wielokrotnością stałej . Można ten warunek zapisać w postaci
Zastanawiano się także nad dodaniem jakiejś stałej w rodzaju do
, ale na razie zostawmy to bez stałej. Dla eliptycznego toru w przestrzeni fazowej, mamy więc
. Obliczając energię oscylatora, otrzymamy
Jest to zgodne z tym, co na temat oscylatorów twierdzili Planck i Einstein.
Warunek kwantowania można zapisać także w postaci:
Druga całka jest po zamkniętym konturze, jej sens geometryczny jest taki sam.
Sommerfeld zastosował warunki kwantowania w tej drugiej postaci do ruchu elektronu w polu kulombowskim. Ruch klasyczny jest płaski, mamy więc dwa stopnie swobody. Położenie elektronu określają np. współrzędne biegunowe: odległość od jądra oraz kąt
z ustalonym kierunkiem. Odpowiadają tym zmiennym dwa pędy: składowa radialna
oraz składowa styczna
. W naszym przypadku element odległości
w zmiennych biegunowych ma postać
Iloczyn w przypadku składowej radialnej przyjmuje postać
, a w przypadku składowej stycznej
, pędem skojarzonym z kątem jest po prostu moment pędu. Można to uzasadnić ściślej, istnieje w mechanice precyzyjny przepis, jak dowolnej zmiennej uogólnionej przypisać odpowiedni pęd, por. niżej (*).
Przestrzeń fazowa jest teraz czterowymiarowa. Mamy dwa warunki kwantowania dla obu par zmiennych. Dla kąta i
warunek jest trywialny i pokrywa się z warunkiem Bohra:
Dla zmiennych radialnych otrzymujemy coś nowego:
gdzie liczby kwantowe mogą się różnić. Ponieważ dopuszczamy teraz zmiany odległości od jądra, należy się spodziewać, że podobnie jak w przypadku ruchu planet wokół Słońca dopuszczalne ruchy elektronu będą zachodzić po elipsach (mówimy tylko o stanach związanych, warunki kwantowania dotyczą tylko takiej sytuacji).
Energia kinetyczna elektronu jest zatem równa
Całkowita energia elektronu w atomie wodoru (pomijamy ruch jądra) dana jest wyrażeniem
gdzie piszemy (
to ładunek elementarny i przenikalność dielektryczna próżni). Możemy wyznaczyć
z równania energii i wstawić do warunku kwantowania. Obliczając całkę (**) i wyznaczając
dostajemy wynik Bohra:
Zamiast jednej liczby kwantowej, mamy teraz sumę dwóch liczb kwantowych: . Stała
jest bezwymiarowa i równa
Stała ta zwana stałą struktury subtelnej nabiera znaczenia w teorii relatywistycznej, jak zobaczymy niżej. Istnieje więc pewna liczba stanów o tej samej energii: wszystkie odpowiadają orbitom o tej samej dużej osi i różnym spłaszczeniu. Łatwo pokazać, że stosunek długości osi małej i dużej
jest równy
Sommerfeld wykluczył stany o zerowym momencie pędu, gdy tor elektronu jest odcinkiem o końcu w jądrze atomu. W ten sposób zamiast trzeciej orbity Bohra mamy zestaw okręgu i dwóch elips (jądro jest zawsze w ognisku elipsy). Mamy więc w ogólności wiele stanów o tej samej energii: zdegenerowanych.
Nietrudno procedurę Sommerfelda uogólnić na przypadek relatywistyczny. Klasyczne elipsy ulegają teraz precesji. Nie jest to precesja Einsteina z ogólnej teorii względności, Sommerfeld, śledzący na bieżąco postępy Einsteina, doskonale wiedział o różnicy. Obliczył nawet, że w przypadku Merkurego precesja byłaby równa 7 sekund kątowych na stulecie.
Rysunek z Atombau Sommerfelda
Wystarczy wstawić do równania na energię,
jest ujemną energią wiązania. Ponownie wyznaczając
i całkując warunek kwantowy, otrzymamy
W bardziej przejrzystym przybliżeniu w postaci szeregu w stałej struktury subtelnej:
Wyniki te niewiele zmieniają się w teorii Diraca, należy tylko zastąpić przez
, gdzie
jest liczbą kwantową całkowitego momentu pędu z uwzględnieniem spinu. Oczywiście w roku 1916 o spinie jeszcze nikt nie słyszał. W elektrodynamice kwantowej wyniki uzyskuje się w postaci szeregu potęgowego względem
. Dzięki takim rozwinięciom można elektrodynamikę potwierdzić z dokładnością kilkunastu cyfr znaczących.
(*) W przypadku współrzędnych uogólnionych pędy zdefiniowane są jako
gdzie jest energią kinetyczną, a
pochodną czasową zmiennej
.
(**) Całki występujące w obu wersjach kwantowania Sommerfelda są postaci
Współczynniki są dodatnie i wyrażenie podcałkowe ma dwa miejsca zerowe. Można w tym przypadku znaleźć całkę nieoznaczoną i wziąć ją w odpowiednich granicach. Metoda elegancka to scałkowanie wyrażenia na płaszczyźnie zespolonej z rozcięciem wzdłuż osi rzeczywistej między dwoma pierwiastkami. Można też użyć pakietu Sagemath, Maxima albo Mathematica.