Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.

 

 

Reklamy

Fritz Haber, nieszczęśliwy kochanek ojczyzny

Urodził się we Wrocławiu, zmarł w Bazylei w 1934 roku, złamany i de facto wygnany z ojczyzny, która odebrała mu wszystko: jego Instytut, dom, większość pieniędzy, sens życia.

Pochodził z rodziny żydowskiej, ojciec, o wagnerowskim imieniu Siegfried, był kupcem obracającym barwnikami, farbami i lekarstwami. Matka zmarła wkrótce po jego urodzeniu, zrozpaczony ojciec długo nie potrafił dojść do siebie, niezbyt też kochał chłopca przypominającego mu o tragedii. Zajmowały się nim różne ciotki, potem macocha, Hedwig z domu Hamburger, która, choć bardzo młoda w chwili zamążpójścia, umiała zdobyć zaufanie i miłość Fritza. Jako dorosły mężczyzna nie rozumiał on jednak nigdy kobiet i ich emocji. Żył raczej w świecie męskich przyjaźni, ambicji, rozrywek. Lubił skupiać na sobie uwagę, łatwo się zaprzyjaźniał i potrafił przyjaźnie podtrzymywać. Później, kiedy został już wielkim człowiekiem nauki niemieckiej, interesował się losami współpracowników, patronował młodszym, pomagał, często także finansowo.

Mimo błyskotliwej inteligencji nie zapowiadał się na wybitnego uczonego, zrobił wprawdzie doktorat w Berlinie, ale potem jego kariera utknęła, wrócił nawet na jakiś czas pomagać ojcu w interesach, ale było to doświadczenie wybitnie nieudane. Na wiadomość o cholerze w Hamburgu Fritz sprowadził duże ilości wapna chlorowanego, które stosowano wówczas jako środek dezynfekcyjny. Ognisko cholery szybko jednak wygasło i spodziewana epidemia nie wybuchła. Zostali z dużymi zapasami wapna chlorowanego.

Fritz uciekł od ojca, uciekł też w pewnym sensie od swojego środowiska, postanawiając się ochrzcić w kościele luterańskim. Religia, zarówno żydowska, jak i chrześcijańska, nie odgrywała w jego życiu istotnej roli. Chodziło raczej o upodobnienie się do większości społeczeństwa niemieckiego. Był gorącym patriotą i pragnął się jakoś wykazać. Podczas służby wojskowej zabiegał o stopień oficerski. Zdał potrzebne egzaminy, decyzja była jednak odmowna, jak można sądzić, stały za nią przyczyny rasowe: korpus oficerski bardzo bronił się przed ludźmi z niższych klas, a także Żydami, którzy bywali co najwyżej lekarzami wojskowymi. Należy zdać sobie sprawę, jak ważna społecznie była w cesarskich Niemczech kasta oficerska. Stopień porucznika rezerwy otaczał posiadacza nimbem przez całe życie, bez względu na to, co ów człowiek w życiu osiągnął. Einstein zapamiętał na całe życie pewnego profesora z gimnazjum w Monachium, który obnosił się ze swym stopniem porucznika – przykłady tego rodzaju zniechęciły go na resztę życia do nacjonalizmu.

Fritz zdecydował się zrobić karierę naukową, na początek znaczyło to bezpłatną asystenturę na trzeciorzędnym uniwersytecie w Jenie. Opowiadał później anegdotkę, jak to wędrował kiedyś w upale po górach i szukał ochłody w wiejskim wodopoju. Zanurzył w nim głowę i dostrzegł w tym samym momencie wołu, który zrobił to samo co on. Gdy wynurzył głowę, spostrzegł, że zamienili się z wołem na głowy. I od tej chwili moja kariera naukowa nareszcie ruszyła z miejsca – dodawał. Naprawdę zaczęła się ona trzy lata po doktoracie, gdy w 1894 roku przeniósł się do Szkoły Technicznej w Karlsruhe i dostał pierwszą płatną posadę. Zaczął się zajmować chemią fizyczną, dziedziną młodą i stojącą wówczas w Niemczech na wysokim poziomie: działali tu Wilhelm Ostwald, a także o kilka lat starszy Walther Nernst, którego już niebawem stać było na kupienie posiadłości ziemskiej i jednego z pierwszych samochodów – wszystko to dzięki sprzedaży patentu na rodzaj żarówki. Haber wkrótce dał się poznać w środowisku jako niezwykle ambitny i asertywny młody człowiek, gotowy do upadłego spierać się o swoją rację nawet z największymi autorytetami (co niektórym, np. Ostwaldowi nawet się podobało). Haber napisał podręcznik, awansował na profesora nadzwyczajnego i ożenił się z Clarą Immerwahr z Wrocławia.

Żydzi wrocławscy często zawierali małżeństwa w swoim środowisku, wielu z nich było ze sobą spokrewnionych czy spowinowaconych. Clara nie mogła chodzić do gimnazjum, ponieważ nie przyjmowały one dziewcząt. Dzięki prywatnym lekcjom i własnej pracy osiągnęła poziom wiedzy maturalnej i zdała eksternistyczny egzamin, który to potwierdzał. Studiowała chemię na Uniwersytecie Wrocławskim (uczęszczanie kobiety na wykłady wymagało zgody każdego profesora z osobna). Obroniła też tam doktorat z jako pierwsza kobieta w dziejach uczelni. Jej promotorem i mentorem był Richard Abegg, kolega Habera z klasy. Małżeństwo z Haberem oznaczało nie tylko wyjazd z Wrocławia, ale także porzucenie pracy naukowej. Miała teraz być żoną profesora, która prowadzi mu dom na odpowiednim poziomie. Sytuacja ta stała się źródłem frustracji Clary, która nie była tak zdeterminowana jak starsza niecałe trzy lata Maria Skłodowska. Haber nie był też skłonny przejmować się uczuciami innych ludzi, był egocentrykiem dążącym do sukcesu.

Sukces nadszedł i u jego źródła leżała rywalizacja. Tym razem z Nernstem. Chodziło o reakcję łączenia azotu i wodoru w amoniak. Problemem tym interesowali się chemicy od dłuższego czasu: amoniak bowiem jest dobrym surowcem wyjściowym do uzyskiwania nawozów sztucznych (może być nawet wykorzystywany bezpośrednio jako nawóz, wymaga to wszakże odpowiedniego sprzętu), a także materiałów wybuchowych. Szybka urbanizacja i wzrost liczby ludności wywołały w XIX wieku coraz większe zapotrzebowanie na nawozy sztuczne, które zapobiegały wyjałowieniu gleby poddanej intensywnej uprawie. Importowano w tym celu saletrę z Chile, gdzie jej wydobycie stało się osobnym przemysłem. Synteza amoniaku z azotu atmosferycznego była bardzo kusząca, ale było też wiadomo, że nie jest to reakcja łatwa do przeprowadzenia. Spór Habera z Nernstem dotyczył punktu równowagi w reakcji syntezy amoniaku (gdy reakcja osiąga w danych warunkach punkt równowagi tyle samo cząsteczek amoniaku powstaje w jednostce czasu, ile samorzutnie się rozpada). Wiadomo było, że chcąc wytworzyć więcej amoniaku, należało zwiększyć ciśnienie, a także zastosować niezbyt wysoką temperaturę. Jednak w niewysokiej temperaturze zarówno reakcja syntezy, jak i reakcja przeciwna zachodzą powoli i w ten sposób nie uda się uzyskać znaczących ilości amoniaku. Nernst autorytatywnie orzekł, że dane Habera są nieścisłe i że naprawdę nie uda się wytworzyć znaczących ilości amoniaku, łącząc oba gazy nawet w obecności katalizatora.

Haber chciał wykazać, że to on ma rację. Współpracował z koncernem chemicznym BASF (Badische Anilin- & Soda-Fabrik), który finansował badania i zobowiązał się płacić pewną kwotę od każdego kilograma wyprodukowanego w ten sposób amoniaku. Razem z Robertem Le Rossignol, utalentowanym Anglikiem, który u niego pracował, skonstruowali aparaturę, w której udało się pod ciśnieniem 200 atmosfer uzyskać amoniak. Stało się to w rok po podpisaniu umowy. BASF z początku nie był przekonany, ale Carl Bosch, pracujący tam inżynier, przekonał zarząd do zajęcia się tym tematem. Z jednej strony należało pokonać duże przeszkody techniczne: aparatura pracująca pod takimi ciśnieniami mogła być niebezpieczna w eksploatacji, z drugiej strony rysowała się perspektywa ogromnych zarobków w razie powodzenia. Bosch poradził sobie z trudnościami przeskalowania procesu Habera na skalę przemysłową, z czasem został prezesem IG Farben, koncernu, który powstał z BASF, a także laureatem Nagrody Nobla w roku 1931. Po dojściu nazistów do władzy Bosch stopniowo wycofał się z działalności publicznej.

Fritz Haber stał się najbardziej znanym chemikiem Niemiec. Zaproszony został jako dyrektor nowo powstającego Instytutu Chemii Fizycznej im. Cesarza Wilhelma. Była to placówka pomyślana w stylu amerykańskim: chodziło o finansowanie działalności naukowej z prywatnej kiesy pod patronatem cesarza. Dyrektor opłacany był przez państwo, aby władze miały wpływ na obsadę tego stanowiska. Budowę i część kosztów utrzymania Instytutu pokrył żydowski bankier i przedsiębiorca Leopold Koppel. Postawił przy tym warunek, że dyrektorem zostanie Fritz Haber. Koppel wcześniej współpracował już z Haberem i był pod wrażeniem jego energii, zdolności organizacyjnych i inteligencji. Stworzono w ten sposób placówkę wybitną, skupiającą wielu uczonych z całego świata. Słynne były kolokwia co drugi poniedziałek. Błyszczał na nich w sposób naturalny Haber, który potrafił każde zagadnienie sprowadzić do istotnych punktów badź zadać pytania, odsłaniające problem. Bardzo przy tym dbał, aby mówiono prosto, unikając zbyt specjalistycznego żargonu. Jak to kiedyś ujął: w Berlinie odbywają się już inne, czwartkowe posiedzenia, na których nikt nikogo nie rozumie, lecz nie przenośmy tego zwyczaju na poniedziałki. Aluzja dotyczyła posiedzeń Pruskiej Akademii Nauk, w których Haber także zresztą uczestniczył.

Gdy Albert Einstein sprowadzony został do Berlina wiosną 1914 roku, jedną z jego funkcji było dyrektorowanie Instytutem Fizyki im. cesarza Wilhelma. Sam Instytut jeszcze nie powstał i Einstein urzędował w Instytucie Habera. Instytut Fizyki nie został zbudowany w czasie pobytu Einsteina w Berlinie, przypuszczalnie głównie dlatego, że uczony się tym zupełnie nie interesował. Polityka akademicka niezbyt go obchodziła i nawet nie próbował być organizatorem. Mimo to obaj się zaprzyjaźnili z Haberem, mieli do siebie nawzajem nie tylko respekt naukowy, Haber pomógł Einsteinowi w początkach jego pobytu w Berlinie. Działał nawet jako pośrednik między Albertem a Milevą – małżeństwo Einsteinów rozpadło się do lata i Mileva z synami wróciła do Zurychu. Clara Haber wykazywała chyba zrozumienie dla sytuacji Milevy, która przecież kiedyś także pragnęła być uczoną, a została sprowadzona do roli matki i gospodyni.

Przyjaźń obu uczonych wystawiona została wkrótce na dużą próbę. Wybuchła wojna światowa i Haber rzucił się w wir pracy dla armii. Był jednym z inicjatorów broni chemicznej, osobiście nadzorował nie tylko eksperymenty, ale także jej użycie na froncie. Został też kapitanem na osobisty rozkaz cesarza, co strasznie mu imponowało. Widać tu hierarchię społeczną Niemiec: sławny uczony, przyszły noblista, wpada w euforię, mogąc zostać kapitanem armii jak pierwszy lepszy junkier.

(Drugi od lewej Haber)

Broń chemiczna nie przechyliła szali zwycięstwa. Haber miał jednak wielki wpływ na decyzje o powiększeniu fabryk amoniaku zaraz na początku wojny. Armia niemiecka miała spore zapasy amunicji, ale przygotowana była na krótką, najwyżej kilkumiesięczną wojnę. Planowano szybko zdobyć Paryż dzięki atakowi przez neutralną Belgię. Po podpisaniu kapitulacji przez Francję Niemcy miały zwrócić swój wysiłek wojenny przeciw Rosji. Kiedy zaczęła się wojna pozycyjna, stało się jasne, że potrzeba będzie mnóstwo amunicji. W dodatku flota brytyjska kontrolowała transporty i nie było mowy o imporcie saletry z Chile. Jedynym rozwiązaniem było szybkie wybudowanie nowych urządzeń do produkcji amoniaku i przetwarzania go dalej na materiały wybuchowe. Haber i Bosch uzyskali decyzję o pospiesznej budowie odpowiednich zakładów. Haber podczas wojny rozkwitł, poswięcał się obowiązkom niemal bezgranicznie. Nawet samobójstwo Clary nie wytrąciło go z rytmu pracy: nazajutrz pojechał, tak jak było zaplanowane, na front doglądać przygotowań do kolejnych ataków gazowych. Nie mamy dziś pewności, co było motywem Clary. Była już wystarczająco nieszczęśliwa w tym małżeństwie, nawet zanim zaczęły się prace nad gazami trującymi. Być może z jej punktu widzenia życie obok Fritza obróciło się w koszmar, a on w potwora napędzanego szowinizmem. Clara nie ceniła tak wysoko społecznego uznania, tytułów, zaszczytów. Dla Habera uznanie było wszystkim, zwłaszcza uznanie najwyższych osób w państwie.

Jeszcze podczas wojny Haber ożenił się po raz drugi z niewiele starszą od swego syna Charlotte Nathan. Także to małżeństwo nie przetrwało, zakończył je rozwód. Wojna została przegrana. Haber otrzymał Nagrodę Nobla, choć obawiał się z początku, że może być ścigany za złamanie Konwencji Haskich o broni chemicznej.

https://www.nobelprize.org/mediaplayer/index.php?id=1100

(Nagranie z uroczystości wręczenie Nagród Nobla w roku 1920: od lewej Haber, Charles Glover Barkla, Max Planck, Richard Willstätter, Johannes Stark, Max von Laue, wszyscy oprócz wdowca Willstättera z żonami; trudno o bardziej wymowny przykład potęgi niemieckiej nauki w tamtym okresie)

Chcąc dopomóc krajowi, zaczął pracować nad wydobyciem złota z wody morskiej. Svante Arrhenius ocenił kiedyś zawartość złota na  6 mg w tonie wody morskiej. Gdyby znaleźć metodę na opłacalny proces wydobycia złota, Niemcy mogłyby myśleć o spłaceniu gigantycznych reparacji, jakie narzucił im Traktat Wersalski. Prace te nie prowadziły jednak donikąd, okazało się, że Arrhenius przecenił zawartość złota. Pomiary dawały zaledwie 0,01 mg w tonie wody. Żadną miarą nie można było tego wykorzystać. Okazało się, że przy tak małych ilościach trudno ustrzec się kontaminacji próbek złotem, np. z obrączki laboranta albo innego źródła tego rodzaju. Chemia nie mogła więc zbawić Niemców.

Nadal pracował naukowo, choć raczej jako organizator albo wścibski szef, który potrafił godzinami trzymać młodych pracowników w laboratorium, drążąc kolejne tematy, był bowiem niezwykle wszechstronny i znał się rzeczywiście na wszystkim. Instytut był jego całym życiem.

Dojście Hitlera do władzy było zapewne najgorszym koszmarem, jaki mógł sobie wyobrazić człowiek pokroju Habera. Choć mógłby zostać na stanowisku jako zasłużony podczas wojny, musiałby zwolnić wszystkich „niearyjskich” pracowników (mniej więcej jedną czwartą). Złożył rezygnację. Max Planck, który bez najmniejszej walki pozwolił usunąć Einsteina z Akademii Nauk, teraz usiłował zmienić decyzję władz. Zapewne sądził, że Haber ma zbyt duże zasługi dla Niemiec, a poza tym jego Instytut może się przydać w przyszłości. Rozmowy z „ministrem kultury” Wilhelmem Rustem, a nawet z samym Hitlerem, nic nie dały, oprócz ataku furii Führera, który wolał wcale nie mieć uczonych, niż mieć uczonych żydowskich. Haber wyjechał z Niemiec, ale wciąż bił się z myślami, czy wrócić i ratować jakąś część majątku (nie chodziło tylko o niego, lecz i o dzieci), czuł się coraz gorzej fizycznie i psychicznie. Nie wyobrażał sobie życia poza Niemcami. Zmarł na atak serca w przeddzień pierwszej rocznicy objęciu urzędu kanclerza przez Adolfa Hitlera.

Poniżej współczesne zdjęcia Instytutu Habera wykonane przez p. Macieja Drawsa w lipcu 2018 w Berlinie-Dahlem.

 

Po II wojnie światowej Keiser-Wilhelm-Gesellschaft i odpowiednie instytuty nazwane zostały imieniem Maksa Plancka.

 

Istota teorii względności (1923) – Albert Einstein

Ślepy żuk pełznący po powierzchni globusa nie wie, że tor, po którym się porusza, jest zakrzywiony. Ja miałem szczęście to zauważyć [A. Einstein]

Ta niewielka książeczka jest jedynym kompletnym przedstawieniem teorii przez jej twórcę, adresowanym do zawodowych uczonych, stanowiąc coś pośredniego między monografią a podręcznikiem. Ukazała się najpierw w 1923 roku w wersji angielskiej nakładem Princeton University Press oraz w wersji niemieckiej w wydawnictwie Vieweg & Sohn (z datą roczną 1922). Od tamtej pory doczekała się niezliczonych wydań w wielu językach. Uczony nie zmieniał głównego tekstu, choć z czasem dołączył kilka dodatków traktujących o późniejszych osiągnięciach.

Podstawą książki były wykłady wygłoszone w maju 1921 roku na uniwersytecie w Princeton. Czterdziestodwuletni Einstein wybrał się w swą pierwszą podróż za ocean, towarzysząc Chaimowi Weizmannowi i delegacji syjonistów. Ich celem było zebranie funduszy na założenie uniwersytetu w Jerozolimie. Uczony, który w kilku poprzednich latach z odrazą obserwował antysemityzm narastający w społeczeństwie niemieckim i który sam stał się ofiarą niewybrednych ataków z rasistowskimi podtekstami, zgodził się na ten wyjazd, rezygnując z udziału w pierwszym po wojnie Kongresie Solvaya, konferencji gromadzącej szczupłe grono najwybitniejszych fizyków świata. Po raz pierwszy wystąpił więc Einstein w roli działacza społecznego, wykorzystując autorytet naukowy do propagowania bliskich mu poglądów. Uczony witany był w Ameryce owacyjnie, zwłaszcza przez społeczność żydowską w Nowym Jorku, Bostonie, Cleveland. Niektórzy koledzy Einsteina, jak Fritz Haber, wybitny chemik, Żyd i niemiecki szowinista, mieli mu za złe podróż do Stanów Zjednoczonych, kraju niedawnego wroga. Rany wojenne nie zdążyły się jeszcze zabliźnić, zwłaszcza w Niemczech dźwigających ciężar przegranej wojny. Wielu niemieckich Żydów sądziło też, iż nie należy prowokować antysemityzmu i lepiej siedzieć cicho. Einstein, czy to dlatego, że spędził wiele lat w Szwajcarii, czy też z racji swego charakteru, nie podzielał takiego nastawienia, przeciwnie, to właśnie antysemityzm przyspieszył dojrzewanie jego żydowskiej tożsamości.

Podróż po Stanach Zjednoczonych miała też ważną część naukową. Einstein miał wykłady na Columbia University i w City College w Nowym Jorku, na uniwersytecie w Chicago oraz uniwersytecie Harvarda. W Princeton otrzymał stopień honorowy i wygłosił sławne zdanie, które później wyryto nad kominkiem w sali Wydziału Matematyki: „Pan Bóg jest wyrafinowany, lecz nie jest złośliwy” (odnosiło się ono do pewnych wyników eksperymentalnych zaprzeczających jego teorii). Bezpośrednio po uroczystościach rozpoczął się cykl pięciu wykładów odbywających się w kolejne dni tygodnia. Dwa pierwsze były popularne, następne bardziej techniczne. Wykładu inauguracyjnego słuchało około czterystu osób, podczas drugiego audytorium znacznie się przerzedziło, a kolejne odbywały się już w mniejszej sali dla niewielkiego grona słuchaczy. Na początku pobytu w Princeton uczony podpisał umowę z wydawnictwem uniwersytetu na publikację tekstu jego wystąpień. Ponieważ odbywały się one po niemiecku, wydawnictwo wynajęło niemiecką stenografkę, która notowała na żywo. Każdy z wykładów był na koniec podsumowywany po angielsku przez profesora fizyki Edwina Plimptona Adamsa, który został też tłumaczem wersji książkowej. Dopiero w styczniu 1922 roku uczony przesłał niemiecki tekst książki do wydawnictwa Vieweg & Sohn, wydrukowane przez nie korekty stały się podstawą angielskiego przekładu. Prace te wraz z poprawkami autorskimi zajęły cały rok 1922. Pod jego koniec wydrukowano wydanie niemieckie, a w styczniu ukończono druk wydania angielskiego. W trakcie tych prac ogłoszono wiadomość, że Albert Einstein został laureatem Nagrody Nobla za rok 1921. Laureat przebywał w tym czasie w Azji w drodze do Japonii.

Uczony spodziewał się otrzymać Nagrodę Nobla, w istocie przyszła ona dość późno i z istotnym zastrzeżeniem. Jak pisał Christopher Aurivillius, sekretarz Królewskiej Szwedzkiej Akademii Nauk, w liście do laureata: „Akademia (…) postanowiła przyznać panu Nagrodę Nobla w dziedzinie fizyki za ubiegły rok w uznaniu Pana dokonań w fizyce teoretycznej, w szczególności odkrycia teoretycznych podstaw zjawiska fotoelektrycznego, lecz z pominięciem zasług, które staną się Pana udziałem, gdy potwierdzą się sformułowane przez Pana teorie względności i grawitacji”. Teoria względności była więc w oczach szwedzkich akademików osiągnięciem kontrowersyjnym, podobnie myślało wielu uczonych.

Niewykluczone, że Einstein pragnął swoją książką przekonać część kolegów po fachu. Na początku lat dwudziestych obie teorie względności: szczególną z roku 1905 oraz ogólną z roku 1915 można było uznać za zakończony etap. Dzięki pracy Einsteina, ale także szeregu innych fizyków i matematyków, jak Max Planck, Max von Laue, David Hilbert, Felix Klein, Emmy Noether, Max Born, Hermann Weyl, Tullio Levi-Civita, Karl Schwarzschild, Hans Thirring, Josef Lense, Willem de Sitter, Hendrik Lorentz, Gunnar Nordström, Erich Kretschmann, Arthur Eddington, Paul Ehrenfest, Johannes Droste, Paul Langevin udało się wyjaśnić wiele aspektów nowej teorii – już sama lista nazwisk wskazuje, że praca Einsteina nie przebiegała w próżni, a ranga tych uczonych świadczy o poważnym traktowaniu osiągnięć Einsteina. Miał on jednak także sporo przeciwników, którzy z rozmaitych powodów odmawiali jego teorii naukowej wartości, a często także kwestionowali intelektualną uczciwość jej twórcy. Berliński profesor optyki Ernst Gehrcke uznawał teorię Einsteina za skutek zbiorowej sugestii, wybitni eksperymentatorzy (i laureaci Nagrody Nobla) Philipp Lenard i Johannes Stark nie potrafili się pogodzić ze światem nowych pojęć i widzieli w teorii względności produkt reklamy oraz sprytne pomieszanie elementów filozofii, matematyki i fizyki tak, by trudno było znaleźć uczonego zdolnego ją krytykować bez wykraczania poza ramy swej specjalności. Obaj ostatni nie ukrywali też swego antysemityzmu i stali się zwolennikami Adolfa Hitlera jeszcze we wczesnych latach dwudziestych, na długo przed rządami nazistów. Niektórzy, jak szwedzki oftalmolog i laureat Nagrody Nobla Allvar Gullstrand, sądzili, że teoria względności jest pusta wewnętrznie i może prowadzić do różnych wyników w tej samej sytuacji. Dochodziły do tego ostre podziały wśród filozofów, niektórzy jak Hans Reichenbach i Moritz Schlick mocno ją popierali, wielu jednak, jak Oskar Kraus czy Henri Bergson, wyrażało sceptycyzm, jeśli nie wrogość, wobec nowej teorii.
Większość uczonych była na ogół wciąż zdezorientowana, nie wiedząc, co sądzić. Toteż książka Einsteina skupiła się na podkreślaniu ciągłości w rozwoju fizyki, uwydatnieniu pewnej linii rozwoju, w której teoria względności stawała się naturalnym ogniwem. Nie sposób jednak ukryć, że teorie Einsteina zrywały z pojęciami absolutnej przestrzeni i absolutnego czasu, stanowiącymi fundament mechaniki, a z nią całej fizyki od czasów Isaaca Newtona. Kwestionowanie uświęconych tradycją zdobyczy nauki w oczach wielu było gestem obrazoburczym i świętokradczym. To, co starszych przejmowało zgrozą i oburzeniem, w oczach ówczesnych ludzi młodych stawało się fascynującą rewolucją. Karl Popper wspominał, jak wielką rolę w jego myśleniu o nauce odegrała teoria Einsteina, już sam fakt, że można było stworzyć realną alternatywę wobec królującej mechaniki Newtona miał dla niego rangę intelektualnego objawienia.

Zacząć wypada od samej nazwy: teoria względności. Z początku mówiło się o zasadzie względności, potem określać tak zaczęto teorię Einsteina z roku 1905 (szczególną teorię względności), a później Einstein zaczął mówić o uogólnionej bądź ogólnej teorii względności. W dyskursie potocznym zaczęto nazwy tę wiązać z zanegowaniem absolutnego czasu, a nawet szerzej z zanegowaniem dotychczasowej fizyki czy wręcz obowiązującej logiki albo etyki. Oczywiście, teoria względności, tak jak żadna udana teoria fizyczna, nie zmienia świata doświadczenia, ponieważ musi być zgodna z dotychczasowymi danymi eksperymentalnymi. Zmienia jedynie nasz sposób widzenia świata, przewidując nowe zjawiska i rozszerzając tym samym granice wiedzy. Mechanika newtonowska nadal obowiązuje, znamy tylko dokładniej jej ograniczenia. Max Planck, jeden z najwcześniejszych zwolenników teorii Einsteina, przekonuje w swej autobiografii naukowej, że jego zainteresowanie teorią względności wynikło właśnie z szukania w fizyce absolutu, ponieważ w świecie teorii względności są także wielkości oraz pojęcia niezmienne i absolutne. Dlatego nazwa ta bywa myląca.

W czerwcu 1905 roku redakcja „Annalen der Physik” otrzymała pracę nikomu nieznanego urzędnika Biura Patentowego w Bernie zatytułowaną O elektrodynamice ciał w ruchu. Rzecz dotyczyła jednego z najważniejszych zagadnień fizyki teoretycznej, którym w poprzednim dziesięcioleciu zajmowali się dwaj uznani luminarze Henri Poincaré i Hendrik Lorentz. Chodziło o eter – hipotetyczny ośrodek wypełniający świat. Na początku XIX stulecia Thomas Young i Augustin Fresnel wykazali, że światło jest falą. Wyobrażano sobie, że musi ono być falą sprężystą w eterze, czyli drganiem, które propaguje się na wszystkie strony podobnie jak fale akustyczne w powietrzu bądź innych ośrodkach sprężystych. Eter ów charakteryzować się musiał dość osobliwymi własnościami, gdyż z jednej strony był na tyle rzadki, by nie hamować ruchów planet, z drugiej zaś musiał być niezmiernie sprężysty, gdyż prędkość światła jest niewyobrażalnie duża w porównaniu np. z prędkością dźwięku. W przypadku dźwięku wiemy, że jego prędkość dodaje się wektorowo do prędkości powietrza: zmierzona prędkość będzie więc zależeć od prędkości ruchu powietrza. Podobne zjawisko zachodzić powinno także w przypadku światła. Ruch roczny Ziemi po orbicie wokół Słońca zachodzi z prędkością około 30 km/s, co stanowi 1/10 000 prędkości światła. Precyzyjne pomiary powinny wykryć zmiany obserwowanej prędkości światła. Przez cały wiek XIX szereg eksperymentatorów od François Arago w roku 1810 aż do Alberta Michelsona i Edwarda Morleya w roku 1887 starało się za pomocą różnych metod optycznych wykryć ruch Ziemi w eterze. Wyniki wszystkich tych doświadczeń były negatywne. Wyglądało to tak, jakby eter poruszał się razem z Ziemią, ale taka hipoteza rodziła sprzeczności z innymi obserwacjami.

Obok optyki innym wielkim tematem dziewiętnastowiecznej fizyki były elektryczność i magnetyzm. W latach sześćdziesiątych XIX wieku James Clerk Maxwell podsumował te wszystkie badania, podając jednolitą matematyczną teorię zjawisk elektrycznych, magnetycznych oraz optycznych – okazało się bowiem, że powinny istnieć fale elektromagnetyczne. Ich prędkość wynikająca z teorii Maxwella była bliska prędkości światła w próżni. Maxwell wysnuł więc wniosek, że światło jest rodzajem fal elektromagnetycznych. W latach 1887-1888 Heinrich Hertz wykazał, że można w laboratorium wytworzyć fale elektromagnetyczne o długości kilku metrów, które także rozchodzą się z prędkością światła. Teoria Maxwella została potwierdzona, stając się praktycznym narzędziem pracy inżynierów. Niemal równocześnie rozwijały się bowiem techniczne zastosowania elektromagnetyzmu: oświetlenie elektryczne, telefon i pierwsze elektrownie. Ojciec i stryj Einsteina, bracia Rudolf i Jakob, prowadzili najpierw w Monachium, później w północnych Włoszech firmę elektryczną i Albert niemal od dziecka miał do czynienia z techniką elektryczną. Elektrodynamika była także ważnym tematem zajęć laboratoryjnych i wykładów na Politechnice w Zurychu. Einstein jednak od początku nie chciał zostać inżynierem i narzekał, że program studiów nie obejmuje teorii Maxwella.

Teoria Maxwella pozwalała w jednolity sposób opisać ogromny obszar zjawisk. Czyniła to za pomocą pojęć pola elektrycznego oraz magnetycznego. W każdym punkcie przestrzeni i w każdej chwili można było za pomocą dwóch wektorów scharakteryzować stan pola. Wydawało się, że eter z początku wieku zyskał teraz nową funkcję, nośnika pola. Ważną cechą nowego podejścia była lokalność: to, co dzieje się z polem elektrycznym i magnetycznym w danym punkcie zależy od ładunków i prądów w tym samym punkcie. Zaburzenia pola rozchodzą się jako fale elektromagnetyczne. Była to więc fizyka pojęciowo odmienna od Newtonowskiej grawitacji, w której dwie masy oddziałują na siebie na odległość w sposób natychmiastowy. W teorii Maxwella ładunek jest źródłem pola w otaczającej go przestrzeni i pole to z kolei oddziałuje na inne ładunki. Prędkość rozchodzenia się zmian pola jest wielka, ale nie nieskończona. Choć Maxwell dokonał najważniejszej pracy, formułując teorię w sposób logicznie zamknięty, to dopiero jego następcy, m.in. Oliver Heaviside i Hendrik Lorentz, znaleźli prostsze i bardziej eleganckie jej wersje. Okazało się np., że każdy prąd elektryczny jest jedynie ruchem ładunków. Mamy więc dwa rodzaje ładunków, których położenia i prędkości określają stan pola w różnych miejscach – są to równania pola, czyli równania Maxwella. Znając zaś wartość pola elektrycznego i magnetycznego, możemy obliczyć siłę działającą na ładunek – są to równania ruchu (siła Lorentza).

Teoria Maxwella wyrastała z modelu pewnego ośrodka sprężystego i uczony, podobnie jak większość współczesnych, uważał, że jego rolą jest sprowadzenie zjawisk elektrycznych i magnetycznych do zjawisk mechanicznych. W odróżnieniu od teorii Newtona, w której mamy pojedyncze punkty materialne, tutaj substratem jest eter, który wyobrażano sobie jako pewien sprężysty materiał. Paradoksalny status eteru opisał na zjeździe Brytyjskiego Towarzystwa Krzewienia Nauk w Oksfordzie w roku 1894 markiz Salisbury, stwierdzając, że „główną, jeśli nie wyłączną, własnością słowa eter było dostarczanie rzeczownika do czasownika falować”.

Problem wykrycia ruchu Ziemi w eterze stał się tym bardziej palący. Wiadomo było wprawdzie, że inżynier stosować może równania Maxwella, nie przejmując się takimi subtelnościami, ale należało wyjaśnić negatywne wyniki doświadczeń. Hendrik Lorentz spróbował podejść do tego problemu w sposób systematyczny i wykazał, że każdemu stanowi pól w nieruchomym eterze odpowiada pewien stan pól w eterze ruchomym. Chciał w ten sposób podać ogólny dowód, że wszelkie zjawiska elektromagnetyczne przebiegają w taki sposób, aby nie można było ruchu Ziemi wykryć. Wprowadził przy tym dość szczególną konstrukcję matematyczną: w poruszającym się układzie należało zdefiniować czas w taki sposób, że zależał on od współrzędnej przestrzennej. Był to zdaniem Lorentza czas fikcyjny, potrzebny do dowodu niemożliwości wykrycia ruchu przez eter. Okazało się też, że należy założyć coś osobliwego na temat długości obiektów poruszających się: powinny one ulec nieznacznemu skróceniu o czynnik \sqrt{1-v^2/c^2}, gdzie v jest prędkością ruchu obiektu, a c – prędkością światła.

Praca Alberta Einsteina, eksperta technicznego III klasy z Berna, proponowała już we wstępie krok decydujący: pojęcie eteru świetlnego jest w fizyce „zbyteczne”. W ten sposób cała dziedzina badań nad zjawiskami w poruszającym się eterze przechodziła do historii, rozpoczynała się natomiast era szczególnej teorii względności.

Fizycy znali wcześniej zasadę względności. Dotyczyła ona mechaniki. I zasada dynamiki, czyli zasada bezwładności, mówi, że gdy żadne siły nie działają na ciało, to porusza się ono ruchem jednostajnym i prostoliniowym bądź spoczywa. Zasada ta nie dotyczy każdego układu współrzędnych (in. układu odniesienia). Obserwator w hamującym pociągu widzi, jak przewracają się przedmioty, które dotąd spokojnie sobie tkwiły w bezruchu. Hamujący pociąg nie jest więc układem odniesienia, w którym zasada bezwładności ma zastosowanie. Fizycy mówią: nie jest układem inercjalnym (tzn. takim, w którym obowiązuje zasada bezwładności). Pociąg jadący ruchem jednostajnym jest dobrym przybliżeniem układu inercjalnego, podobnie jak powierzchnia Ziemi. Wiemy jednak, że także powierzchnia Ziemi nie jest idealnym układem inercjalnym, ponieważ Ziemia wiruje wokół osi, a także porusza się ruchem rocznym wokół Słońca. Układ inercjalny jest więc pewnym ideałem teoretycznym. Zasady dynamiki mają w takim układzie szczególnie prostą postać i zazwyczaj tak są domyślnie sformułowane.

Ważną cechą układów inercjalnych jest to, że każdy układ odniesienia poruszający się ruchem jednostajnym i prostoliniowym względem jednego z nich jest także układem inercjalnym. mamy więc do czynienia z klasą równoważnych fizycznie układów odniesienia. W każdym z nich obowiązują zasady dynamiki w zwykłej postaci. Nie znaczy to, że nie możemy opisywać ruchu np. w odniesieniu do hamującego pociągu, musimy jednak wtedy uwzględnić dodatkowe siły, które nie wynikają z żadnych oddziaływań, lecz są skutkiem ruchu układu: w hamującym pociągu pasażerowie odczuwają siłę zwróconą ku jego przodowi, która znika, gdy pociąg się zatrzyma.

Isaac Newton sformułował w Matematycznych zasadach filozofii przyrody pojęcia absolutnej przestrzeni – czegoś w rodzaju nieskończonego pojemnika na wszystkie obiekty w świecie oraz absolutnego czasu. Prawa dynamiki obowiązywać miały, gdy ruch odnosimy do owej przestrzeni absolutnej, ale także w każdym układzie odniesienia poruszającym się ruchem jednostajnym i prostoliniowym. W rezultacie w fizyce Newtona nie ma sposobu na ustalenie, który z nieskończonego zbioru układów inercjalnych jest absolutną przestrzenią albo w języku dziewiętnastego wieku: eterem. Nie możemy więc ustalić absolutnego położenia żadnego przedmiotu w sposób empiryczny: dwa zdarzenia zachodzące w odstępie jednej minuty w tym samym punkcie (inercjalnego) pociągu zachodzą w różnych miejscach przestrzeni zdaniem obserwatora na peronie. Fizycznie oba punkty widzenia są równoprawne, a także punkty widzenia wszelkich innych obserwatorów inercjalnych. Absolutna przestrzeń należy więc do założeń metafizycznych Newtona, żadne eksperymenty nie pozwalają jej zlokalizować. Inaczej można powiedzieć, że w fizyce Newtona obowiązuje zasada względności: prawa fizyki są takie same w każdym układzie inercjalnym.

Czas w fizyce Newtona jest rzeczywiście absolutny, to znaczy, można zawsze ustalić, czy zdarzenia są równoczesne, nawet gdy zachodzą one daleko od siebie (zresztą dla pewnego obserwatora inercjalnego będą one równoczesne i zarazem w tym samym punkcie przestrzeni).

Einstein uważał, iż zasadę względności należy rozciągnąć także na zjawiska elektromagnetyczne i zaproponował, aby obowiązywała ona jako nowe prawo fizyki: wszelkie prawa fizyki mają taką samą postać w każdym układzie inercjalnym. Drugim postulatem jego teorii było przyjecie, że prędkość światła w próżni jest dla każdego obserwatora inercjalnego równa tej samej wartości c (wynikającej z teorii Maxwella). Zamiast analizować szczegóły zaproponował więc dwie zasady ogólne, które jego współczesnym wydawały się przeczyć sobie wzajemnie. Rozszerzenie zasady względności na całą fizykę byłoby wprawdzie eleganckim wyjaśnieniem, dlaczego nie obserwujemy ruchu Ziemi w eterze (bo eteru nie ma), ale pojawia się trudność z drugim postulatem. Znaczy on bowiem, że nie tylko prędkość światła zawsze jest równa c, bez względu na ruch źródła światła, ale także równa jest c bez względu na to, czy obserwator goni falę świetlną, czy też porusza się jej naprzeciw. Przeczy to prawu składania prędkości, a przecież eksperymenty potwierdzają je na co dzień: gdy pasażer porusza się z prędkością u (względem pociągu) w kierunku do przodu pociągu jadącego z prędkością v (względem peronu), to jego prędkość względem peronu jest sumą u+v. Dlaczego prawo to nie działa, gdy jednym z obiektów jest światło?

Czyniono często zarzut Einsteinowi, że prędkość światła w próżni jest w jego teorii jakoś szczególnie wyróżniona. Rzeczywiście, istnieje w tej teorii graniczna prędkość poruszania się obiektów materialnych, np. przekazywania energii albo informacji, i to jest właśnie c. Można powiedzieć, że światło ma tę szczególną własność, iż porusza się z ową maksymalną prędkością. Nie ma jednak żadnych przeszkód, aby istniały inne obiekty poruszające się z prędkością c. Wiemy, że światło składa się z fotonów (było to treścią innej pracy Einsteina z tego samego roku, nie bez powodu nazywanego jego „cudownym rokiem”), cząstek poruszających się z prędkością c. Podobnie poruszają się inne cząstki, odkryte później, jak gluony, albo wciąż czekające na odkrycie, jak grawitony. Cząstki takie nie istnieją w stanie spoczynku, lecz zawsze poruszają się z prędkością c.

Istnienie maksymalnej prędkości, i to w dodatku zawsze jednakowej, pozwala na eksperymentalne badanie równoczesności dwóch zjawisk. Obserwator inercjalny może rozmieścić w swoim układzie odniesienia zegary w różnych punktach. Znając odległość tych puntów oraz prędkość światła, może te zegary zsynchronizować. Gdy jego zegar wskazuje czas t, wysyła sygnał do punktu odległego o r i umawia się z kolegą, który tam przebywa, że moment odebrania sygnału będzie czasem t+r/c. Dzięki temu przepisowi wszystkie zegary zostaną zsynchronizowane i można będzie ustalić zawsze czas danego zdarzenia, obserwując go na pobliskim zegarze. Metoda ta zastosowana w innym układzie inercjalnym może dać inne wyniki w odniesieniu do tej samej pary zdarzeń.

Przykład podany przez Einsteina pomaga to zrozumieć. Wyobraźmy sobie jadący pociąg i obserwatora na peronie. W chwili, gdy mija go środek pociągu, w jego początek i koniec uderzają równocześnie dwa pioruny. Ich uderzenia są równoczesne, ponieważ światło obu błyskawic dociera do naszego obserwatora w jednej chwili, a wiadomo, że odległość obu końców pociągu od obserwatora była w tym momencie taka sama. Inaczej opisze te zdarzenia obserwator siedzący w środku pociągu. Jego zdaniem piorun najpierw uderzył w przód pociągu, a dopiero później w jego tył (linia świata pasażera jest na rysunku zakreskowana, jest to zarazem jego oś czasu). Skoro równoczesność dwóch zdarzeń zależy od układu odniesienia, to znaczy, że czas absolutny nie istnieje. Wbrew pozorom nie burzy to jednak naszych koncepcji przyczyny i skutku. Musimy tylko precyzyjnie opisywać zdarzenia, podając ich położenie oraz czas. Zdarzenia takie, jak jednoczesne uderzenia dwóch piorunów w dwóch różnych punktach nie są z pewnością połączone związkiem przyczynowo-skutkowym, ponieważ wymagałoby to oddziaływania przenoszącego się natychmiastowo, z nieskończoną prędkością. Wszystkie zaś oddziaływania fizyczne mogą przenosić się co najwyżej z prędkością światła w próżni. Dlatego zmiana kolejności czasowej obu uderzeń pioruna nie burzy fizyki. Jeśli natomiast jakieś zdarzenie A może potencjalnie być przyczyną innego zdarzenia B, to dla każdego obserwatora ich kolejność czasowa będzie taka sama: t_A<t_B. Obalenie koncepcji absolutnego czasu nie oznacza zatem wprowadzenia anarchii w relacjach czasoprzestrzennych, lecz zaprowadzenie innego ładu niż dotąd.

Był to najważniejszy wniosek Einsteina. Oznaczał konieczność przebudowy samych podstaw fizyki: pojęć czasu i przestrzeni. Okazywało się, że teoria Maxwella zgodna jest z teorią względności, nie wymaga więc żadnej przebudowy. Przeciwnie, fikcyjny czas lokalny Lorentza należy interpretować jako czas rzeczywisty mierzony przez innego obserwatora. Póki znajdujemy się w jednym ustalonym układzie inercjalnym czas wydaje nam się absolutny. Rewolucja dotyczyła porównywania wyników pomiarów dokonywanych przez różnych obserwatorów. W przypadku elektrodynamiki oznaczało to względność pól elektrycznych i magnetycznych. Jeśli np. w jednym układzie odniesienia mamy spoczywający ładunek wytwarzający pole elektryczne, to w innym układzie ładunek ten będzie się poruszać – będziemy więc mieli do czynienia z prądem, i obserwować będziemy zarówno pole elektryczne, jak i magnetyczne. Oba wektory pola elektromagnetycznego stanowią więc z punktu widzenia teorii względności jedną całość, jeden obiekt matematyczny, którego składowe w różnych układach są różne, podobnie jak składowe zwykłego wektora w różnych układach współrzędnych.

Równania Maxwella są takie same w każdym układzie inercjalnym, więc i prędkość fali świetlnej będzie w każdym układzie taka sama. Większej przebudowy wymagała mechanika. Jej newtonowska wersja nadal pozostaje słuszna, gdy ciała poruszają się wolno w porównaniu do prędkości światła. Najważniejszą konsekwencją nowej mechaniki stało się słynne równanie E=mc^2, które pozwala zrozumieć m.in. reakcje, w których powstają albo giną cząstki, oraz skąd gwiazdy czerpią energię na świecenie przez miliardy lat.

Szczególna teoria względności rozwiązywała problemy, które od lat uciążliwie towarzyszyły fizykom, choć były one głównie natury pojęciowej. Można było na co dzień nie zaprzątać sobie głowy ruchem Ziemi w eterze i uprawiać fizykę tak, jakby Ziemia była nieruchoma. Także narzędzia do rozwiązania owych problemów zostały już wypracowane, głównie przez Lorentza i Poincarégo, Einstein je tylko radykalnie zreinterpretował. Pierwszy z fizyków pogodził się z sytuacją i zaprzyjaźnił z Einsteinem, drugi starał się ignorować prace młodszego kolegi (być może zresztą jego stosunek do Einsteina uległby z czasem zmianie, Poincaré zmarł w roku 1912, a więc przed stworzeniem ogólnej teorii względności). Ostatecznie elektrodynamika ciał w ruchu przeszła do historii, a podstawą fizyki stała się szczególna teoria względności.
Natomiast jej uogólnienie, czyli Einsteinowska teoria grawitacji, było praktycznie dziełem jednego tylko autora, stworzonym w latach 1907-1915.

Pojęciowym punktem wyjścia była prosty eksperyment myślowy: obserwator swobodnie spadający w polu grawitacyjnym nie będzie odczuwał grawitacji – będzie w stanie nieważkości, dziś dobrze znanym z lotów kosmicznych. Einstein uznał tę obserwację za „najszczęśliwsza myśl swego życia”. Z punktu widzenia fizyki Newtonowskiej istnieją dwa rodzaje masy: grawitacyjna i bezwładna. Pierwsza określa siłę, z jaką na ciało będzie oddziaływać grawitacja. Druga określa przyspieszenie ciała. Ponieważ obie te masy są jednakowe, więc przyspieszenie dowolnego ciała w danym polu grawitacyjnym jest takie same. Ilustruje to się czasem, demonstrując spadanie różnych ciał w rurze próżniowej. Obie masy skracają się zawsze, kiedy obliczamy przyspieszenie. Zdaniem Einsteina należało tę tożsamość wbudować w strukturę fizyki, zamiast ją tylko postulować jako dodatkowy warunek. Uczony sformułował zasadę równoważności pola grawitacyjnego i przyspieszenia. Znajdując się w zamkniętej kapsule, nie potrafilibyśmy odróżnić, czy nasza kapsuła porusza się ruchem przyspieszonym, czy spoczywa w polu grawitacyjnym (możliwe byłyby także kombinacje obu stanów). Grawitacja jest więc w fundamentalny sposób związana z bezwładnością. Einstein dążył do stworzenia teorii, która objaśniałaby jednocześnie grawitację oraz bezwładność. Argumentował przy tym, że układy inercjalne są sztucznym ograniczeniem dla fizyki, powinniśmy więc dopuścić także układy przyspieszone, nieinercjalne. Podobnie jak w szczególnej teorii względności każda prędkość ma zawsze charakter względny, w teorii uogólnionej także przyspieszenie miało stać się pojęciem względnym. Nawiązywał tu do rozważań Ernsta Macha, który sądził, że przyspieszenie jest względne. W swoim czasie Isaac Newton posłużył się przykładem wiadra z wodą wirującego na skręconym sznurze. Gdy wiadro przekaże ruch wirowy wodzie, jej powierzchnia staje się wklęsła, co jest skutkiem sił odśrodkowych. Możemy w ten sposób stwierdzić, czy woda wiruje względem absolutnej przestrzeni. Zdaniem Macha eksperyment ten dowodzi tylko tego, że woda obraca się względem dalekich gwiazd. Gdyby to owe gwiazdy zaczęły się obracać, skutek byłby ten sam, a przestrzeń absolutna nie istnieje.

Droga Einsteina do ogólnej teorii względności była zawikłana, lecz z perspektywy roku 1921 jej struktura matematyczna została już wyjaśniona. Rolę układów inercjalnych odgrywały teraz swobodnie spadające układy odniesienia. Obserwator znajdujący się w jednym z nich może stosować szczególną teorię względności. Różnica fizyczna między obiema teoriami polega jednak na tym, że szczególną teorię względności stosować można jedynie lokalnie. Nawet bowiem w spadającym swobodnie laboratorium można wykryć niewielkie zmiany przyspieszenia między różnymi jego punktami – są to siły przypływowe (poznane historycznie na przykładzie zjawiska przypływów i odpływów w oceanach, które są z różnymi siłami przyciągane grawitacyjnie przez Księżyc oraz Słońce). Oznacza to, że nie można wprowadzić jednego układu inercjalnego dla całego wszechświata, można tylko wprowadzać je lokalnie. Matematycznie rzecz biorąc, różnica między teorią ogólną i szczególną polega na geometrii: zakrzywionej w pierwszym przypadku, płaskiej w drugim. Einstein posłużył się czterowymiarowym sformułowaniem swej teorii szczególnej podanym przez Hermanna Minkowskiego. Czas i przestrzeń stanowią tu pewną całość, czasoprzestrzeń. W przypadku dwuwymiarowym w każdym punkcie powierzchni możemy zbudować płaszczyznę styczną. Jest ona zarazem dobrym przybliżeniem geometrii w otoczeniu danego punktu: w taki sposób posługujemy się planami miast, mimo że Ziemia nie jest płaska.

Teorię dwuwymiarowych powierzchni zawartych w trójwymiarowej przestrzeni zbudował Karl Friedrich Gauss. Zauważył przy tym, że wystarczy posługiwać się wielkościami dostępnymi bez wychodzenia poza powierzchnię. Można np. w ten sposób ustalić, czy jest ona zakrzywiona. Podejście Gaussa uogólnił później Bernhard Riemann, a inni matematycy rozwinęli je w systematyczne procedury dla powierzchni o dowolnej liczbie wymiarów.

W geometrii Riemanna współrzędne można wybrać w sposób dowolny, w przypadku zakrzywionych przestrzeni nie istnieje na ogół żaden szczególnie prosty układ współrzędnych, który mógłby odegrać taką rolę jak współrzędne kartezjańskie w przestrzeni euklidesowej. Nadal decydującą rolę odgrywa tu pojęcie odległości. Dla pary bliskich punktów możemy ją zawsze obliczyć w sposób euklidesowy, a długość dowolnej krzywej uzyskać przez sumowanie takich elementarnych odległości. Zamiast równania ds^2=dx^2+dy^2 na płaszczyźnie, mamy teraz równanie nieco bardziej skomplikowane

ds^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2.

Geometrię przestrzeni określa więc zbiór funkcji g_{\mu\nu} pozwalających obliczyć odległość punktów. Funkcje g_{\mu\nu} noszą nazwę tensora metrycznego (albo metryki). Można za ich pomocą wyrazić wszelkie własności geometryczne danej przestrzeni. W przypadku dwuwymiarowym wystarczą trzy takie funkcje, w przypadku czterowymiarowym należy znać ich dziesięć.

W zakrzywionej przestrzeni nie ma linii prostych, można jednak znaleźć ich odpowiedniki. Są to linie geodezyjne (albo geodetyki). Mają one niektóre własności linii prostych w geometrii euklidesowej: są np. najkrótszą drogą łączącą dwa punkty. Krzywe geodezyjne w teorii Einsteina są liniami świata cząstek poruszających się pod wpływem grawitacji. Metryka określa więc, jak poruszają się cząstki – grawitacja nie jest z punktu widzenia Einsteina siłą, lecz własnością czasoprzestrzeni. Należy dodać, że inne rodzaje sił działających na dane ciało sprawią, że przestanie się ono poruszać po geodezyjnej. Jedynie grawitacja wiąże się tak ściśle z geometrią. Jest to zgodne z faktem, że grawitacja jest powszechna, tzn. dotyczy wszystkich cząstek, a także działa na wszystkie w taki sam sposób – dzięki czemu można ją opisać jako własność czasoprzestrzeni. W teorii Einsteina nie potrzeba osobnej masy grawitacyjnej i bezwładnej.

Znając metrykę czasoprzestrzeni, możemy wyznaczyć geodezyjne, czyli obliczyć, jak poruszają się ciała pod wpływem grawitacji. Są to równania ruchu, zastępujące zasady dynamiki Newtona. Aby jednak wyznaczyć metrykę, potrzebne są równania, które musi ona spełniać. Są to równania pola, największe osiągnięcie Einsteina jako fizyka. Przystępując do pracy nad ogólną teorią względności uczony wiedział jedynie, że powinna ona zawierać teorię szczególną a także Newtonowską teorię grawitacji. Równania pola powinny mieć postać znaną z teorii Maxwella: (pewne kombinacje pochodnych pól)=(źródła pola). W przypadku grawitacyjnym źródłem powinna być masa, ale to także znaczy: energia. W teorii szczególnej opisuje się energię i pęd zbioru cząstek jako tensor energii pędu T_{\mu\nu}, zbiór dziesięciu wielkości danych w każdym punkcie czasoprzestrzeni. Masy powinny decydować o krzywiźnie czasoprzestrzeni. Zatem po lewej stronie równań pola powinna znaleźć się wielkość informująca o krzywiźnie. Okazuje się, że praktycznie jedyną możliwością jest tu tzw. tensor Einsteina, G_{\mu\nu} zbiór dziesięciu pochodnych metryki. Równania muszą więc przybrać postać

G_{\mu\nu}=\kappa T_{\mu\nu}.

gdzie \kappa jest odpowiednio dobraną stałą związaną ze stałą grawitacyjną. Sama postać zapisu tych równań zapewnia, że możemy w dowolny sposób wybrać współrzędne, a równania nadal pozostaną słuszne. Znalezienie prawidłowych równań pola pod koniec listopada 1915 roku zakończyło odyseję Einsteina: ogólna teoria względności została zbudowana.

Jeszcze w listopadzie 1915 roku uzyskał Einstein dla swej teorii pierwsze potwierdzenie obserwacyjne. Obliczył bowiem wielkość obrotu orbity Merkurego wokół Słońca – niewielkiej rozbieżności między obserwacjami a teorią Newtona nie udawało się wyjaśnić od półwiecza. Teraz okazało się, że przyczyną rozbieżności było niedokładne prawo grawitacji. Przewidział też Einstein, że promienie gwiazd biegnące blisko powierzchni Słońca powinny uginać się o kąt 1,74’’. Efekt ten został w roku 1919 potwierdzony podczas całkowitego zaćmienia Słońca przez dwie ekspedycje brytyjskie. Teoria grawitacji Einsteina okazała się ogromnym sukcesem, jest powszechnie uważana za najpiękniejszą teorię w fizyce. Nie wszystko jednak poszło po myśli jej twórcy. Okazało się np., że choć wprawdzie grawitacja i bezwładność zostały ze sobą zespolone, to nie udało się jednak zrealizować idei Macha. W teorii Einsteina wirowanie całego wszechświata jest czym innym niż wirowanie wiadra Newtona. Einstein z pewnym uporem trzymał się zasady Macha nawet wówczas, gdy wykazano, że nie obowiązuje ona w jego teorii. Wbrew przewidywaniom twórcy grawitacja może prowadzić do zapadania się materii i tworzenia czarnych dziur, w których zamknięta jest osobliwość czasoprzestrzeni. Einstein zmieniał w ciągu swej późniejszej kariery zdanie na temat tego, czy istnieją fale grawitacyjne: początkowo je przewidywał, później nabrał wątpliwości. Jego początkowe przybliżone podejście okazało się słuszne i fale grawitacyjne zostały odkryte w roku 2015.

Einstein dadaista (1919-1920)

Przyjmowanie nowej prawdy naukowej to proces dramatyczny. Grają w nim rolę emocje, ambicje, przesądy, ale na szczęście także racjonalne przesłanki – na dłuższą metę nie da się utrzymać teorii, która nie ma eksperymentalnych potwierdzeń i dzięki której nie udało się zrozumieć niczego nowego. Teoria względności zyskała efektowne potwierdzenie w roku 1919 i Albert Einstein nagle stał się sławny na cały świat.

Artystka awangardowa Hannah Höch umieściła go na sławnym kolażu Cięcie dadaistycznym nożem kuchennym przez piwny brzuch najnowszej epoki weimarskiej w kulturze Niemiec (1919).

Hannah Höch, Cut with the Kitchen Knife Dada Through the Last Weimar Beer-Belly Cultural Epoch of Germany, 1919-20

Obrazek na flickr zawiera identyfikację niektórych postaci kolażu. A tu jest jego większa wersja:

https://www.artsy.net/artwork/hannah-hoch-cut-with-the-dada-kitchen-knife-through-the-last-weimar-beer-belly-cultural-epoch-in-germanyc

Na prawo od Einsteina mamy nieco pokiereszowaną twarz cesarza Wilhelma II, który abdykował po przegranej wojnie i uciekł do Holandii, pod nim fragment fotografii z manifestacji bezrobotnych. Są także Karol Marks i Lenin, niemieccy komuniści i artyści. Obok Einsteina głowa prezydenta Republiki Weimarskiej Friedricha Eberta doklejona do torsu tancerki topless. W prawym dolnym rogu znajduje się główka autorki na tle mapy Europy z zaznaczonymi krajami, w których kobiety nie mają jeszcze prawa głosu (Francja, Portugalia, Bałkany; Polska znalazła się tu chyba przez pomyłkę). Einstein – Żyd i naukowy rewolucjonista – niemal automatycznie łączony był z lewicą społeczną i artystycznym undergroundem. Wciąż zapowiadano jego wyjazd do Moskwy, gdzie nigdy nie był ani się też nigdy nie wybierał. Jeszcze po drugiej wojnie światowej FBI usiłowało ustalić, czy uczony był członkiem partii komunistycznej w Niemczech (nie był, nie był też żadnym sympatykiem komunizmu), przeszukiwano jego śmieci i podsłuchiwano telefon.

W roku 1919 fizyk nieoczekiwanie znalazł się w centrum zainteresowania mediów. Jego teoria zaczęła ściągać na siebie entuzjazm albo oburzenie, które trudno dziś zrozumieć. Jako element kultury masowej zaczęła być krytykowana, objaśniana bądź zwalczana przez ludzi, którzy nie mieli pojęcia o fizyce. Z jakiegoś powodu wszyscy zapragnęli mieć na jej temat własny pogląd. Szczególnie bulwersowała względność czasu: oto nie płynie on jednakowo dla wszystkich i zamiast być solidną podstawą rzeczywistości sam staje się jeszcze jednym zjawiskiem, kolejną zmienną fizyczną, podlegającą pomiarowi. Czas własny mierzony przez dwóch obserwatorów, którzy rozdzielili się i potem ponownie spotykają, zależy od ich historii, od tego, co im się po drodze przydarzyło, obaj na ogół zmierzą inny odstęp czasu pomiędzy spotkaniami. Jest to paradoks bliźniąt – w istocie żaden paradoks, lecz własność naszego świata sprawdzana tysiące razy eksperymentalnie, choć nie na bliźniakach.

W Niemczech publiczna dyskusja na temat teorii względności od początku zatruta była oparami nacjonalizmu: Żyd Einstein dla niektórych nie był dość narodowoniemiecki, toteż nie mógł mieć racji. Intelekt żydowski różni się bowiem od germańskiego: jest powierzchowny, nie zgłębia istoty rzeczy, tworzy sztuczne uogólnienia, lubuje się w abstrakcjach. Żydzi w Niemczech stanowili zaledwie 1% ludności, lecz spośród nich wywodziła się wielka część wybitnych uczonych, w miastach takich jak Berlin większość prawników i lekarzy było pochodzenia żydowskiego, do Żydów należały wielkie domy towarowe i koncerny prasowe. Konstytucję Republiki Weimarskiej napisał Żyd. Z punktu widzenia nacjonalistów to Żydzi stali za przegraną wojną (teoria noża w plecy) i to oni teraz bogacili się w kapitalistycznej gospodarce. Nawet komunistami, buntującymi się przeciwko kapitalizmowi, też często byli Żydzi.

W życiu politycznym jest mniej przypadków, niż się sądzi. Osoba Einsteina była wygodnym celem ataków: żeby wzbudzić wrogość, trzeba najpierw stworzyć postać wroga, wykazać, jak przebiegłe są jego knowania. Paul Weyland, zawodowy hochsztapler i mąciciel, umyślił sobie, że przeprowadzi całą kampanię przeciwko teorii względności i jej autorowi. Założył coś, co nazywało się Grupą Roboczą Niemieckich Przyrodników dla Zachowania Czystej Nauki (Arbeitgemeinschaft
deutscher Naturforscher zur Erhaltung reiner Wissenschaft). Naprawdę istniał chyba tylko ten szyld oraz pieniądze, które Weyland obiecywał różnym uczonym za wzięcie udziału w zwalczaniu teorii względności – 10 do 15 tys. marek – nie wiadomo, czy ktoś ostatecznie otrzymał taką sumę, czy też Weyland dopiero zamierzał ją zarobić. Jak się zdaje, Weyland zachęcany był przez dwóch noblistów, antysemitów i nacjonalistów: Philippa Lenarda i Johannesa Starka. W sierpniu 1920 roku w wielkiej sali Filharmonii Berlińskiej odbył się pierwszy z zapowiadanej serii antyeinsteinowskich sabatów. Wystąpili na nim sam Weyland oraz profesor eksperymentator z Berlina, Ernst Gehrcke, od lat zwalczający teorię względności. Weyland, określający Einsteina jako naukowego dadaistę, następująco przedstawił sytuację Niemiec:

Teraz, gdy zubożeliśmy pod względem finansowym, prowadzi się działania mające nam odebrać naszą własność  intelektualną; od dziś mamy przestać myśleć w sposób niezależny. W polityce to się im udało. Widzicie to każdego dnia i każdej godziny we wszystkich wiadomościach, jak oszalała grupa bezkrytycznych ludzi pod wodzą pozbawionych  skrupułów i egoistycznych przywódców zmierza do bolszewizmu. Etyka i moralność stały się pustymi słowami, ludzie, którzy starają się zabić w Niemcach wszystko, co czyniło ich wielkimi, teraz chcą im odebrać także naukę. (…) Bo konsekwencje i intencje teorii względności i zasady względności Einsteina i jego zwolenników sięgają dalej i głębiej, niż uświadamia to sobie opinia publiczna.

Niewykluczone, że Weyland starał się po prostu zarobić na biletach wstępu na owo przedstawienie. Zjawiło się sporo publiczności, w tym sam Einstein. Gehrcke przedstawił główne tezy swej broszury: Teoria względności – naukowa sugestia masowa, wydanej nakładem Grupy Roboczej jako pierwszy zeszyt serii. Gehrcke starał się ograniczać do argumentacji naukowej i żywo zaprzeczał, że kierują nim jakieś pozanaukowe względy. Przeświadczony był jednak, że zdemaskował rozmaite szalbierstwa Einsteina. Jego zdaniem Einstein sprytnie wykorzystywał fakt, że naukowcy ograniczeni są swoją specjalnością i stworzył teorię, która zawiera elementy filozofii, fizyki i matematyki tak pomieszane, że nikt nie czuje się dostatecznie kompetentny, aby ją zanegować.

Ernst Gehrcke. Einstein powiedział o nim: „ Gdyby miał tyle inteligencji co arogancji, to dyskusja z nim byłaby nawet przyjemna”.

Z rzeczy pozytywnych Gehrcke wierzył w istnienie eteru i wypowiedzi Einsteina na ten temat uważał za sprytne kluczenie oraz mylenie tropów. Rzeczywiście, był tu Einstein niekonsekwentny: najpierw, w szczególnej teorii, z młodzieńczą dezynwolturą stwierdził, że eter jest zbędny, później, w teorii ogólnej, obdarzył czasoprzestrzeń strukturą geometryczną, która w pewnym stopniu mogła przypominać eter. Nie była to jednak zmiana poglądów filozoficznych, lecz raczej podążanie za fizyką: fizyk nie może sobie zadekretować, że zawsze będzie trzymać się jakichś ram pojęciowych, bo przyroda może nie zechcieć z nim współpracować w tej kwestii. W każdym razie to, co dla kogoś innego byłoby naukowym namysłem, ewolucją poglądów wskutek wieloletniej pracy, w oczach Gehrckego stało się po prostu próbą oszustwa. Szczególnie upodobał sobie Gehrcke następujący argument przeciwko paradoksowi bliźniąt: skoro Einstein twierdzi, że wszystkie ruchy są względne, to obaj bliźniacy znajdują się w symetrycznej sytuacji, bo z każdym z nich można związać układ odniesienia (co jest prawdą, ale nie oznacza, że historie obu stają się dzięki temu symetryczne). Wiele też mówił Gehrcke o grawitacyjnym przesunięciu linii widmowych ku czerwieni, które było przewidziane przez Einsteina, lecz nie zostało zaobserwowane. Pomijał przy tym trudności obserwacyjne: przewidywany efekt był niewielki w porównaniu z szerokością typowych linii widmowych ciał niebieskich. Jako specjalista od optyki musiał to świetnie rozumieć, wolał jednak udawać, że obserwacje wyraźnie przeczą teorii względności. Także obserwacje Eddingtona – ugięcia promieni świetlnych w pobliżu Słońca – zbył pobieżnym omówieniem, jakby już fakt potwierdzenia niemieckiej teorii przez Anglika tuż po wojnie nie stanowił dodatkowego argumentu na rzecz Einsteina. Nikt nigdy nie kwestionował zresztą absolutnej uczciwości i prawdomówności kwakra Eddingtona. Milczał też Gehrcke na temat berlińskich zwolenników teorii względności: przede wszystkim Maksa Plancka, uchodzącego za największy autorytet nie tylko naukowy, ale i moralny, a także Maksa von Laue, noblisty i niewątpliwie „prawdziwego” Niemca. Postawa Gehrckego charakteryzowała się nienaukowymi uprzedzeniami, nawet jeśli pozornie prowadził on debatę ściśle naukową.

Ostatecznie z serii wykładów i wydawnictw nic nie wyszło. Inni naukowcy wycofali się z przedsięwzięcia, widząc, że nie przyniesie im ono chluby. Wycofał się też chyłkiem Philipp Lenard, który nawet poczuł się urażony tym, że jest wymieniany w kontekście tej sprawy – najwyraźniej wydawało mu się, że hipokryzja warta jest tyle samo co cnota.

Epizody tego rodzaju nie były na szczęście całą prawdą o nauce niemieckiej, ale też stanowiły coś więcej niż nieprzyjemne incydenty. Życie publiczne Niemiec przesiąknięte było nienawiścią i żądzą odwetu. W roku 1920 Niemcy nie były jeszcze skazane na powtórną wojnę i jej złowieszcze konsekwencje. Były jednak krajem wewnętrznie bardzo podzielonym. Podziały te z upływem lat rosły i po wieloletnim podżeganiu do nienawiści, po zimnej wojnie domowej z elementami przemocy, wykoleiły kraj zupełnie. Stało się to w latach trzydziestych, gdy gospodarka zaczęła już wychodzić z kryzysu. To najlepszy dowód, że Marks się mylił: ekonomia nie determinuje historii. Jeśli na nią wpływa, to w sposób pośredni, poprzez społeczne nastroje, a one zależą od wielu czynników, także irracjonalnych i trudnych do zmierzenia. W przypadku Niemiec wielką rolę odegrało poczucie upokorzenia przegraną wojną i jej wersalskimi następstwami. Hitler obiecywał lepszą przyszłość i jednocześnie wpędził Niemcy w wojnę, która musiała być przegrana – wystarczyło spojrzeć na mapę. Ale społeczeństwo powodowane resentymentem łatwo dało sobie wyperswadować, że w taki właśnie sposób uda się stworzyć potęgę kraju i zapewnić trwały pokój. Gdyby Niemcy nie cierpieli na ten chorobliwy, pełen kompleksów nacjonalizm, ich kraj stałby się mocarstwem dwadzieścia lat wcześniej w sposób pokojowy. Nacjonalizm nigdy nie jest lekarstwem, zawsze jest chorobą.

 

 

Walter Ritz, rówieśnik Einsteina (1878-1909)

Nauka jest przedsięwzięciem zbiorowym, ostatecznie to społeczność uczonych – niczym chór greckiej tragedii – osądza protagonistów i komunikuje boskie wyroki. Jest przedsięwzięciem zbiorowym także w bardziej trywialnym i współczesnym znaczeniu mrowiska, w którym nie należy przeceniać roli poszczególnych mrówczych jednostek. Jednak „lawina bieg od tego zmienia, po jakich toczy się kamieniach”, a tragedia byłaby niemożliwa bez głównych postaci. Z jednej więc strony mamy etos mrówek trudzących się dla kolektywnego dobra, z drugiej – kult bohaterów, herosów wyobraźni i intelektu.

Walter Ritz był człowiekiem niezwykle utalentowanym i zdążył wnieść oryginalny wkład do nauki, mimo że cierpiał na gruźlicę, która odbierała mu siły, a po kilku latach odebrała także i życie. Nie osiągnął tyle, ile by chciał i potrafił, ale zdążył już zaznaczyć swoją indywidualność. Chciałbym zestawić jego drogę naukową z biegiem życia i dorobkiem młodszego niemal dokładnie o rok Alberta Einsteina. Przed rokiem 1909 Einstein nie był jeszcze sławny, wręcz przeciwnie: słyszało o nim niewielu i jego kariera dopiero się zaczynała. Dopiero jesienią tego roku wziął po raz pierwszy udział w konferencji naukowej, zamienił także posadę w Biurze Patentowym w Bernie na stanowisko profesora nadzwyczajnego uniwersytetu w Zurychu. Pensja na obu stanowiskach była dokładnie jednakowa. Konkurentem Einsteina do posady był Walter Ritz, uczelnia by go wolała, „ponieważ jest Szwajcarem i według zdania naszego kolegi Kleinera jego prace wykazują nadzwyczajny talent graniczący z geniuszem”. Choroba nie pozwoliła jednak Ritzowi objąć tego stanowiska. Einstein otrzymał więc swoje pierwsze stanowisko naukowe niejako w zastępstwie za kolegę. Wcześniej ze starań o tę posadę wycofał się Friedrich Adler, który tak jak Einstein, zrobił doktorat u Alfreda Kleinera, profesora zwyczajnego na uniwersytecie w Zurychu. Drugi etat profesorski dla fizyka był skutkiem jego zabiegów, tak to się wówczas odbywało: mógł być jeden Ordinarius z danej dziedziny, ewentualnie tworzono także pomocniczy, nie tak prestiżowy i gorzej płatny, etat Extraordinariusa. Adler wszakże niezbyt walczył o stanowisko, bardziej interesowała go filozofia nauki i działalność socjalistyczna (był synem znanego psychologa i przywódcy austriackich socjalistów Victora Adlera). Pisał w roku 1908 do ojca: „Zapomniałem powiedzieć, kto prawdopodobnie otrzyma profesurę: człowiek, któremu z punktu widzenia społeczeństwa należy się ona znacznie bardziej niż mnie i kiedy ją otrzyma, będę się z tego bardzo cieszył mimo pewnej przykrości. Nazywa się Einstein, studiował w tym samym czasie co ja, chodziliśmy razem na niektóre wykłady. (…) Ludzie z jednej strony odczuwają wyrzuty sumienia z powodu tego, jak go wcześniej potraktowano, z drugiej zaś strony skandal jest szerszy i dotyczy całych Niemiec: żeby ktoś taki musiał tkwić w biurze patentowym”.

Walter Ritz był w tym czasie Privatdozentem w Getyndze. Pochodził ze Sionu w Szwajcarii, ojciec, malarz pejzaży i scen rodzajowych, przyrodnik, geolog, etnograf i alpinista, zmarł w 1894 roku po długiej chorobie. Walter uczęszczał w tym czasie do liceum i uchodził za nader utalentowanego. W 1897 zaczął studia na politechnice w Zurychu, był więc o rok niżej niż Einstein. Ritz z początku miał być inżynierem, lecz zmienił wydział na nauczycielski (jak Einstein). Obaj chodzili na wykłady tych samych profesorów. Albert Einstein nie cieszył się jednak dobrą opinią: profesor fizyki Heinrich Weber uważał go za przemądrzałego i aroganckiego i nie miał najmniejszej chęci zostawiać go na uczelni. Weber nie był wybitnym uczonym, ale Politechnika miała znakomitych matematyków, wśród nich dwóch wielkich: Hermanna Minkowskiego i Adolfa Hurwitza. Einstein w tamtym okresie niezbyt pasjonował się matematyką, toteż i na wykłady chodził rzadko. Minkowski, który później stworzył matematyczne sformułowanie teorii względności, nie spodziewał się zbyt wiele po Einsteinie: „Byłem niezwykle zdumiony, gdyż wcześniej Einstein był zwykłym wałkoniem. O matematykę w ogóle się nie troszczył” [C. Seelig, Albert Einstein, s. 45]. Nie lepszą opinię miał zapewne Hurwitz, kiedy Einstein, nie mogąc nigdzie znaleźć pracy, w akcie rozpaczy, zwrócił się do niego o asystenturę, spotkała go milcząca odmowa, choć nie prosił o wiele: Politechnika stale potrzebowała asystentów do prowadzenia ćwiczeń i sprawdzania prac studenckich.

Znacznie wyżej oceniany był Walter Ritz. W roku 1901 wyjechał on na dalsze studia do Getyngi. Minkowski, który był w stałym kontakcie ze swym przyjacielem Davidem Hilbertem, pisał: „W następnym semestrze będziesz miał u siebie matematyka stąd, W. Ritza, który wykazuje dużo zapału, ale jak dotąd wyszukiwał sobie same nierozwiązywalne problemy”. [List do Davida Hilberta, 11 III 1901, Briefe an Hilbert, s. 139] Uniwersytet w Getyndze stał się w tamtych latach najważniejszym ośrodkiem matematycznym, nie brakowało tam także fizyków teoretycznych i doświadczalnych. Centrum stanowili Felix Klein i David Hilbert, dwaj przyjaciele i znakomici matematycy, wytyczający kierunki badań w swej ukochanej dziedzinie. Niedługo dołączyć miał do nich Hermann Minkowski. Walter Ritz uczęszczał na wykłady Hilberta, a także zaczął pracować nad doktoratem pod kierunkiem fizyka teoretycznego i znawcy twórczości Bacha, Woldemara Voigta. Oprócz ważnych nauczycieli poznał Ritz w Getyndze także wybitnych rówieśników. Zaprzyjaźnił się niemal od razu z Paulem Ehrenfestem, a także z Tatianą Afanasevą, Rosjanką, przyszłą żoną Paula, także studiującą fizykę. Ehrenfest był studentem Ludwiga Boltzmanna w Wiedniu i do Getyngi przyjechał, gdy Boltzmann wywędrował z Wiednia.

Doktorat Ritza dotyczył spektroskopii atomowej. Chodziło o wyjaśnienie obserwowanych serii widmowych. Np. częstości widzialnych linii wodoru opisać można wzorem Balmera:

\nu=N\left( \dfrac{1}{4}-\dfrac{1}{n^2} \right), \mbox{ gdzie } n=3,4, 5, \ldots

Stosując mianowniki typu (n+\alpha)^2 można było opisać także inne serie widmowe, np. metali alkalicznych. Serie częstości nasuwały myśl o falach stojących, a więc układzie przypominającym strunę albo membranę. Ładunek drgający z częstością \nu wysyła falę elektromagnetyczną o takiej właśnie częstości. W przypadku kwadratowej membrany równanie ruchu ma postać:

\dfrac{1}{v^2}\dfrac{\partial^2 f}{\partial t^2}=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}.

Jest to po prostu dwuwymiarowe równanie falowe (t,x,y są odpowiednio czasem i współrzędnymi kartezjańskimi w płaszczyźnie membrany, f opisuje wychylenie membrany, stała v jest prędkością fal w membranie). Łatwo stwierdzić, że dozwolone częstości własne opisane są wyrażeniem

\nu^2=A(n^2+m^2), \mbox{ gdzie }n,m=1,2,3,\ldots

Zakładamy tu, że krawędzie membrany pozostają cały czas nieruchome. Ritz spróbował znaleźć równania, które mogłyby opisać wzór Balmera i inne podobne przypadki. W przypadku wzoru Balmera odpowiednim równaniem okazało się

\partial_{t}^2\partial_{x}^4 \partial_{y}^4 f=B(\partial_{x}^2-\partial_{y}^2)^2 f.

Oznaczyliśmy tu pochodne cząstkowe po odpowiednich zmiennych przez \partial_{i}, gdzie i=x,y, t. Dobierając odpowiednio warunki brzegowe, udało się Ritzowi znaleźć także bardziej skomplikowane wzory na częstości linii widmowych. Równania te były wysokiego rzędu (tutaj dziesiątego), w dodatku o niespotykanej w fizyce postaci. Znak minus po prawej stronie oznacza, że zamiast laplasjanu (który wynika z symetrii obrotowej) do opisu membrany stosujemy pewne niestandardowe wyrażenie. Ritz pokazał, że jego równania wynikały z zasady wariacyjnej, formalnie więc były w porządku. Słabość tego podejścia tkwiła w braku jakiegokolwiek wyobrażenia drgającego atomu: po prostu bierzemy do obliczeń membranę, która nie może być czymś istniejącym w przyrodzie. Nikt wówczas nie miał pojęcia, jak wyglądają atomy, dopiero niedawno ustalono, że istnieją elektrony – naładowane cząstki o masie tysiące razy mniejszej niż masy atomów. Serie częstości w fizyce klasycznej odpowiadały zawsze falom stojącym, wystarczy pomyśleć o instrumentach muzycznych, które z punktu widzenia fizyka są rozmaicie zbudowanymi generatorami fal opartymi na falach stojących w strunie czy w słupie powietrza.

Model Ritza odniósł pewien sukces: przewidział, że w serii rozmytej potasu powinna istnieć linia widmowa odpowiadająca długości fali \lambda=6964 Å. W następnym roku, udało mu się tę linię zidentyfikować w widmie. Po doktoracie Ritz zaczął podróże naukowe: lato 1903 spędził w Lejdzie, gdzie słuchał wykładów H. Lorentza, potem znalazł się w Bonn, gdzie odkrył „swoją” linię potasu, w listopadzie pracował już w laboratorium profesora Aimé Cottona w École Normale w Paryżu. Zima paryska dała mu się we znaki, jakiś czas musiał spędzić w sanatorium w Sankt Blasien w Schwarzwaldzie. Gdy poczuł się lepiej, pojechał do Zurychu, aby wywołać swe klisze z widmami w podczerwieni naświetlone w Paryżu. Jakiś czas przemieszkał w Sion pod opieką matki. Lekarze zabraniali mu pracować, twierdząc, że to szkodzi jego zdrowiu. Zimą 1906/1907 pisał z Nicei do przyjaciela:

Zgodzi się pan ze mną, że nie mogę w takim stopniu co inni wierzyć w przyszłość, która miałaby mi wynagrodzić stan obecny. Pozostało mi zapewne niewiele czasu i jestem mocno zdeterminowany, aby spędzić go w środowiskach naukowych i intelektualnych, bo tylko tak znaleźć mogę zadowolenie i poczucie, że żyję, a może właśnie to stanowi warunek mojego wyzdrowienia? Drogi przyjacielu, nie mogę mieć nadziei ani na szczęście rodzinne, ani na dobre samopoczucie starego kawalera cieszącego się zdrowiem, pozostaje mi jedynie Nauka i życie intelektualne, i doprawdy nie mam siły zakopywać się tutaj w imię bardzo niepewnego celu.

Wrócił do pracy, zimę 1907/1908 spędził w Tybindze, gdzie współpracował z Friedrichem Paschenem, badającym eksperymentalnie widma pierwiastków. Ritz miał nowe pomysły na temat budowy atomu i mogli wymieniać się pomysłami oraz wynikami. Następnie wrócił do Getyngi, gdzie został Privatdozentem, choć nie prowadził zajęć ze względu na stan zdrowia. Henri Poincaré interesował się jego pracami i odwiedzając Getyngę, spotkał się z nim i ogłosił zamiar przyznania mu nagrody Lecomte’a przez francuską Akademię Nauk. Był to już ostatni rok życia Ritza.

Co robiło tak wielkie wrażenie na jego współczesnych? Badania nad seriami linii widmowych – po doktoracie Ritz zaproponował jeszcze jeden model atomowy: była to drgająca i obracająca się wokół osi naładowana struna. Także i ten model stanowić miał jedynie matematyczne uzasadnienie dla obserwowanych prawidłowości widm, nie mówił nic na temat np. własności chemicznych czy budowy wewnętrznej atomu. Próbował za pomocą swego modelu wyjaśnić anomalny efekt Zeemana: zjawisko rozszczepiania linii widmowych w silnym polu magnetycznym. Cząstkową teorię tego zjawiska podał Hendrik Lorentz, za co otrzymał wraz z Peterem Zeemanem Nagrodę Nobla w roku 1902. Teoria Lorentza nie opisuje jednak wszystkich obserwowanych przypadków, te niewyjaśnione objęto określeniem: anomalny efekt Zeemana – jak to często bywa, za normalne uznajemy to, co dobrze rozumiemy. Prace Ritza zawierały jeden istotny szczegół techniczny: częstości linii widmowych były w nich różnicami dwóch wyrażeń. W istocie chodzi o zasadę zachowania energii:

h\nu=E_{n}-E_{m}.

(Stała h jest stałą Plancka). Ritz nie napisał jednak takiego równania i uznałby je za bezsensowne. Jego rozważania opierały się na klasycznej teorii drgań i nie było w nich miejsca na fotony. Równanie takie znalazło się po raz pierwszy u Bohra, choć on także nie wierzył w fotony. Duński uczony sądził, że energie po prawej stronie określone były warunkami kwantowania (zawierającymi stałą Plancka – sygnał, że mamy do czynienia z fizyką kwantową), ale przejścia miedzy poziomami energetycznymi prowadziły do wysłania fali o energii danej powyższym równaniem. Sama postać tego równania, nawet jeśli nie rozumiemy różnych stałych, może być przydatna. Np. dodając stronami dwa takie równania otrzymać możemy:

\nu_{nm}+\nu_{mk}=\nu_{nk}.

Jest to związek między wielkościami obserwowanymi, mówi się w tym kontekście o zasadzie kombinacji, wcześniej zauważonej przez Janne Rydberga. Ritz znalazł dla tej zasady wyjaśnienie, choć fałszywe. Postęp w rozumieniu budowy atomów oraz wyjaśnieniu widm nastąpił dopiero za kilka lat, po odkryciu przez Ernesta Rutherforda jądra atomowego i sformułowaniu przez Nielsa Bohra znanego modelu, który stanowił przełom w badaniach. Sam Bohr opowiadał później, że o widmach dowiedział się z książki Johannesa Starka Prinzipien der Atomdynamik (cz. 2), gdzie znalazły się wzory Balmera, jak i informacje o różnych pracach na ten temat, m.in. Waltera Ritza. Z kolejnych teorii atomu szwajcarskiego fizyka nie zostało nic. Nie da się zbudować teorii atomu bez fizyki kwantowej.

Wyjaśnienie anomalnego efektu Zeemana udało się dopiero po wprowadzeniu pojęcia spinu elektronu w 1925 r. Nie wiemy, co Walter Ritz potrafiłby wnieść do tych prac, gdyby nadal żył. Wiemy natomiast, że musiałby zmienić podejście, bo tą drogą nie doszedłby do sukcesu. Widać jednak ambicję młodego fizyka, by zmierzyć się z jednym z najtrudniejszych problemów fizyki.

Jedynym fizykiem, który mógłby zapisać równanie na różnicę energii, był w tym czasie Einstein. Energia fotonu to był jego pomysł, traktowany przez kolegów jako aberracja. Ritz nie wierzył ani w prace kwantowe Einsteina, ani w teorię względności. Najwyraźniej on także nie traktował serio pomysłów kolegi ze studiów. Teoria względności zastępowała pojęcia czasu i przestrzeni jedną wspólną rozmaitością: czasoprzestrzenią, co zauważył Hermann Minkowski, który od roku 1902  pracował już w Getyndze. Nienaruszona była przy tym elektrodynamika Maxwella w postaci nadanej jej przez Hendrika Lorentza. Ritz wybrał inną drogę: też nie wierzył w eter i uznawał zasadę względności, ale postulował, aby zmienić elektrodynamikę. Jego podejście oznaczałoby zarzucenie koncepcji pola elektromagnetycznego. Elektrodynamika Ritza została jedynie zarysowana, byłaby ona teorią bardzo skomplikowaną matematycznie i nieelegancką. Gdy źródło światła się poruszało, to jego prędkość powinna się dodawać do c. Einstein dyskutował na temat elektrodynamiki z Ritzem, ogłosili nawet razem króciutki protokół rozbieżności w tej sprawie. Zdaniem Einsteina należy startować z pojęcia pola – cała jego dalsza kariera była z tym pojęciem związana.

Innym osiągnięciem Ritza było sformułowanie eleganckiej metody przybliżonej dla opisu drgań, za jej pomocą rozwiązał zagadnienie figur Chladniego.

Osiągnięcia Ritza są niepełne i niedokończone za sprawą choroby. Jednak w chwili śmierci Ritza i on, i Einstein mieli dorobek porównywalny ilościowo: jeden solidny, pięćsetstronicowy tom dzieł. Einstein ceniony był w Berlinie, gdzie pracowali Max Planck, Max Laue i Walther Nernst. Inni zachowywali dystans wobec jego prac i albo o nich nic nie wiedzieli, albo nie wiedzieli, co myśleć. Hermann Minkowski też niezbyt często wymieniał nazwisko Einsteina, może wciąż go pamiętał jako leniwego studenta? Ritz również zajmował się problemami fundamentalnymi i był chyba lepiej rozumiany przez kolegów. W jego przypadku doktorat był początkiem kontaktów z wieloma uczonymi, niewątpliwie działała tu opinia doktoratu z Getyngi, jeśli nie miał wprost jakichś listów polecających. Można się zastanawiać nad tym, jak potoczyłaby się kariera naukowa Einsteina, gdyby mniej zrażał ludzi do siebie i nie był taki arogancki? Przecież on także mógłby trafić do Getyngi i poddać się czarowi eleganckiej, choć częstokroć jałowej fizyki matematycznej. Pomogłoby mu to niewątpliwie w dalszej karierze, chyba że nie przekonałby Minkowskiego. Czy nie zaszkodziłoby mu to jednak w sensie naukowym? Ritz spędził sporo czasu w naukowym odosobnieniu z powodu choroby, ale był już mimo młodego wieku szanowanym uczonym i miał kontakty. Einstein był w tym czasie niemal całkowicie izolowany. Pracował osiem godzin dziennie w biurze przez sześć dni w tygodniu i zadowolony był, że mają z Milevą co jeść i że zostają mu wieczory oraz niedziele na pracę naukową. Opowiadał potem Infeldowi, że do trzydziestki nie widział prawdziwego fizyka teoretyka. Nie jest to prawda w sensie ścisłym, bo poznał np. Maksa Lauego, ale z pewnością zaczynał jako kompletny autsajder, który niemal wszystkiego nauczył się sam z książek i artykułów.

Do Getyngi trafił Einstein znacznie później, już jako samodzielny mistrz. Przedstawił tam swoją teorię grawitacji w czerwcu roku 1915. Skończyło się to zresztą dwuznacznym incydentem, gdyż praca ta spodobała się Hilbertowi, co miało ten skutek, że pod koniec roku obaj pracowali nad nią równolegle i mało brakowało, a Einstein zostałby pozbawiony satysfakcji postawienia kropki nad i, tzn. zapisania równań pola. W Getyndze bowiem uczeni nie mieli oporów przed korzystaniem z wyników kolegów, traktując je jako rodzaj dobra wspólnego. Nazywało się to u nich „nostryfikacją” cudzych wyników.

Prace Einsteina cechuje ogromna intuicja: zazwyczaj miał on dobre wyczucie, czego należy się trzymać i w którą stronę zmierzać. Tak było np. z polem elektromagnetycznym. Einstein wiedział, że teoria Maxwella ma ograniczenia kwantowe, ale samo pojęcie pola traktował jako fundament. Cenił bardzo dorobek Lorentza (znany mu wyłącznie z publikacji), który na Ritzu nie zrobił wielkiego wrażenia, mimo że znał jego autora. Einstein przed rokiem 1905 rozpatrywał możliwość innej elektrodynamiki, zgodnej z mechaniką Newtona, była ona podobna do późniejszej propozycji Ritza. Dlatego później nie tracił już czasu na koncepcje, które kiedyś odrzucił po starannym namyśle. Prawdopodobnie właśnie przez to, że Ritz był umysłem o wiele mniej rewolucyjnym, współcześni cenili go wyżej, osiągnięcia Einsteina od początku wydawały się kontrowersyjne, niektórzy wielcy uczeni, jak Henri Poincaré podchodzili do nich bardzo sceptycznie. Nie wiemy, jak rozwinąłby się Walter Ritz, gdyby wcześniej odkryto penicylinę, ale można przypuszczać, że był już ukształtowany intelektualnie i nie stać by go było na żaden rewolucyjny skok w nieznane. Teoretycy rzadko robią coś rewolucyjnego po trzydziestce, chyba że kontynuują coś, co już wcześniej sami zaczęli. Dorobek Einsteina z tamtych lat jest bardzo mało techniczny, nie ma tam właściwie wcale skomplikowanych obliczeń, są raczej proste rozumowania i pomysłowe argumenty. W porównaniu prace Waltera Ritza wydają się znacznie bardziej zaawansowane. A jednak: „Ten piękny wysiłek w porównaniu z geniuszem jest tym, czym urywany lot świerszcza w porównaniu z lotem jaskółki” (A. Camus).

Jak można odtworzyć wzór Balmera? Szukając rozwiązań w postaci sinusów wzdłuż x i y oraz o częstości \nu, otrzymamy (a jest długością boku kwadratu):

f(x,y,t)=A \sin \dfrac{n\pi x}{a}\sin\dfrac{m\pi y}{a}\sin 2\pi\nu t.

Drugie pochodne sprowadzają się teraz do mnożenia przez odpowiedni czynnik, podstawiając do równania Ritza, otrzymamy

\nu^2 m^4 n^4 \sim (n^2-m^2)^2,

skąd przy m=2 dostajemy wzór Balmera.

Od nacjonalizmu do idiotyzmu: duch francuski i fizyka niemiecka (1915, 1936)

Ponieważ przybliża się chwila, gdy nasze niestrudzone władze powołają wreszcie do życia Narodowy Instytut Fizyki im. Antoniego od Wielu Wybuchów, więc warto może przypomnieć chlubne przykłady z przeszłości. Złudne jest bowiem mniemanie, że dziedziny takie, jak matematyka albo fizyka nie mają charakteru narodowego. Otóż mają i dlatego tak ważne jest promowanie autentycznie polskiej fizyki. A jakaż to będzie radość dla dziatek naszych najmilszych, gdy w programie szkół po Koperniku będzie od razu Maria Skłodowska-Curie, wypadną zaś te wszystkie Newtony, Ohmy, Hertze i Einsteiny. Wszak żarówkę wynalazł Łodygin, nie jakiś Edison. A była przecież i lampa naftowa Łukasiewicza, i elektryczne świece Jabłoczkowa. My, Słowianie (czyli w zasadzie Polacy), daliśmy światu tyle, tylko on o tym nic nie wie. Kto zaś będzie negował nasze osiągnięcia, ten skazany być może na 3 lata naszej szkoły i nawet wśród pingwinów dopadnie go karząca ręka prawa i sprawiedliwości.

Pierwszy przykład pięknej myśli narodowej w naukach ścisłych znajdujemy u Pierre’a Duhema. Wybitny specjalista od termodynamiki, najbardziej znany jest jako filozof i historyk nauki. Wprowadził on rozróżnienie umysłów naukowych na typ angielski i francuski. Miało się ono wywodzić z tego, co Blaise Pascal określał jako zmysł życiowy (esprit de finesse) oraz zmysł geometryczny (esprit de géométrie). W nauce mielibyśmy uczonych, którzy tworzą różne modele, trzymając się danych doświadczalnych, nawet gdy wprowadza to pewien zamęt pojęciowy; drudzy to budowniczowie prostych teorii, koncentrujący się na ich konsekwencjach. Przykładem typu angielskiego miał być Michael Faraday, francuskiego – Isaac Newton. Rozróżnienie nie miało więc charakteru nacjonalnego, lecz analityczny. Duhem nie lubił brytyjskiej szkoły posługującej się pojęciem pola elektromagnetycznego i mocno atakował Jamesa Clerka Maxwella z pozycji filozoficznych. Oczywiście, żadna filozofia nie mogła na dłuższą metę zaszkodzić osiągnięciom Maxwella, filozofowie mówią swoje, a nauka idzie dalej, nawet bez ich pozwolenia.

Gdy wybuchła pierwsza wojna światowa, czyli wielka wojna (nikt jeszcze nie wiedział, że będzie następna), Duhem, za stary, aby iść na front, zaczął pisać i nauczać o niemieckiej nauce. Co pochlebnego można było powiedzieć o nauce wrogów? Duhem nie zamierzał ich chwalić, wprowadził i omówił pojęcie umysłu typu niemieckiego. Nauka niemiecka była formalistyczna, polegająca na wywodach logicznych nawet tam, gdzie to nie ma większego sensu. „Niemiec jest pracowity, skrupulatny, zdyscyplinowany i podporządkowany”. To geometra, brak mu subtelności. Przykładem Bernhard Riemann, twórca abstrakcyjnego ujęcia geometrii nieeuklidesowej. „Doktryna Riemanna jest ścisłą algebrą, gdyż wszystkie twierdzenia, jakie się w niej formułuje, są bardzo precyzyjnie wydedukowane z przyjętych postulatów; zaspokaja to zmysł geometryczny. Nie jest jednak prawdziwą geometrią, gdyż, wprowadzając swoje postulaty, wcale nie zatroszczyła się, aby wnioski z nich zgadzały się w każdym punkcie z osądami wyprowadzonymi z doświadczenia, które składają się na nasze intuicje dotyczące przestrzeni; w ten sposób przeczy ona zdrowemu rozsądkowi”. Był luty roku 1915, w listopadzie Albert Einstein zapisał równania pola grawitacyjnego w swej teorii. Od kilku lat ci, którzy śledzili rozwój fizyki, wiedzieli, że właśnie geometria riemannowska jest językiem matematycznym nowej teorii. Inaczej mówiąc: owa formalistyczna geometria, rzekomo ignorująca nasze pojęcie przestrzeni, okazała się nauką o fizycznej czasoprzestrzeni, jak najbardziej konkretną, podlegającą pomiarom. Duhem nie śledził zapewne grawitacyjnych prac Einsteina, ponieważ już wcześniejsza szczególna teoria względności nie zyskała w jego oczach aprobaty. Sądził, iż nie istnieje graniczna prędkość w przyrodzie, gdyż można sobie zawsze wyobrazić przebycie określonej drogi w dowolnie krótkim czasie, nawet gdy praktycznie nie potrafimy tego zrealizować. Przyjęcie zasady względności Einsteina, Minkowskiego i Lauego sprawia, że prędkość ponadświetlna staje się sprzecznością logiczną – twierdzi Duhem. „To, iż zasada względności dezorganizuje wszelkie intuicje wynikające ze zdrowego rozsądku, nie wywołuje u fizyków niemieckich żadnych wątpliwości. Przyjęcie jej oznacza siłą rzeczy obalenie wszystkich doktryn dotyczących przestrzeni, czasu, ruchu, wszystkich teorii mechaniki i fizyki; w tak wielkiej dewastacji nie ma niczego, co by nie mogło się podobać myśli germańskiej. Na terenie, który zostanie oczyszczony z dawnych poglądów, geometryczny zmysł Niemców pozwoli im całym sercem oddać się dziełu zbudowania na nowo całej fizyki, której fundamentem stanie się zasada względności”. Widzimy więc na tych przykładach, jak bardzo niefrancuska, a tym samym przykra dla zrównoważonego umysłu, była niemiecka nauka Einsteina.

Mamy drugi jeszcze przykład, jak wolna myśl narodowa kształtować może zdrową etnicznie fizykę. Autorem naszym jest Philipp Lenard, laureat Nagrody Nobla z fizyki eksperymentalnej, człowiek mimo to zgorzkniały i upatrujący odrodzenia nauki aryjskiej w wyzwoleniu się od wpływów żydowskich. Zdaniem Lenarda fizyka stworzona została niemal wyłącznie przez Aryjczyków: Francuzów w jego opowieści nie było, Anglicy, Szkoci i Skandynawowie to praktycznie Niemcy. Niemcami byli też wielcy eksperymentatorzy, jak Heinrich Hertz, odkrywca fal elektromagnetycznych, u którego Lenard pracował kiedyś jako asystent. Hertz nie był jednak „czystej krwi”: jego ojciec, prawnik i senator hanzeatyckiego miasta Hamburga, był Żydem przechrzczonym na luteranizm. Miało to złowieszcze, zdaniem Lenarda, następstwa, gdyż w ostatnich latach życia Hertz zajmował się zasadami mechaniki. W pracy tej „silnie wyszedł na jaw duch żydowski, który w jego wcześniejszych owocnych pracach pozostawał w ukryciu”. W 1936 roku ukazało się czterotomowe dzieło Philippa Lenarda, zatytułowane Deutsche Physik. Był to podręcznik zawierający zdrową pod względem narodowym część fizyki, a nie – jakby ktoś złośliwy mógł pomyśleć – to, co z fizyki zrozumiał Lenard. We wstępie do swego wiekopomnego dzieła skromny jego autor zwracał się do czytelnika: „«Fizyka niemiecka?» – zapytacie. Mógłbym równie dobrze powiedzieć fizyka aryjska albo fizyka ludzi typu nordyckiego, fizyka badaczy rzeczywistości, poszukiwaczy prawdy, fizyka tych, którzy stworzyli badania naukowe. «Nauka jest międzynarodowa i zawsze taka pozostanie» – zaczniecie protestować. (…) W rzeczywistości tak samo, jak wszystko, co tworzy człowiek, również nauka zdeterminowana jest przez rasę albo krew. (…) Należy powiedzieć tu nieco o «fizyce» narodu żydowskiego, ponieważ stoi ona w jaskrawym przeciwieństwie do fizyki niemieckiej (…) fizyka żydowska dopiero niedawno poddana została wyważonej ocenie publicznej. Pod koniec wojny, kiedy Żydzi w Niemczech zaczęli dominować i narzucać ton, wezbrała niczym powódź i ujawniły się jej wszystkie cechy. Znalazła szybko gorliwych zwolenników wśród wielu autorów krwi innej niż żydowska albo nie czysto żydowska”. Oczywiście, przykładem fizyki żydowskiej par excellence musiał być Albert Einstein, jego teorie „kompletnie zgrały się w zetknięciu z rzeczywistością. Najwyraźniej nie były nawet w zamierzeniu prawdziwe. Żyd pozbawiony jest całkowicie zrozumienia prawdy innej niż tylko powierzchowna zgodność z rzeczywistością, [prawdy], która nie zależy od ludzkiej myśli. (…) Zdumiewające jest, że prawda czy rzeczywistość nie wydają się Żydowi czymś szczególnym bądź różnym od nieprawdy, lecz są one równoważne jednej z wielu możliwych opcji teoretycznych”.

Lenard nie mógł przeboleć, że powstaje nowa fizyka, tworzona m.in. przez Einsteina, a popierana ku jego niezadowoleniu przez Maksa Plancka czy Maksa Lauego, późn. von Laue – niewątpliwych etnicznych Niemców. Poglądy wygłaszane przez Lenarda, choć sformułowane prymitywniej, są w istocie zbliżone do zarzutów Duhema. Dla obu teoria względności sprzeczna była ze zdrowym rozsądkiem, była wykwitem zbyt dużej skłonności do abstrakcji oderwanej od rzeczywistości, przerośniętym esprit de géométrie. Duhem widział w tym cechę niemiecką, Lenard natomiast żydowską.

„«Ja cierpię» – Lepiej tak powiedzieć, niż powiedzieć: «Ten krajobraz jest brzydki»” (Simone Weil).

Einstein, paradoks bliźniąt i związek nacjonalizmu ze zidioceniem (1911-1921)

W roku 1921 Philip Lenard, laureat nagrody Nobla, przedstawił własną teorię grawitacji. Nie byłoby w tym nic złego, choć od roku 1915 aż do dziś żadna nowa teoria względności nie okazała się potrzebna. Badanie alternatyw ma oczywiście swoje miejsce w nauce, lecz zazwyczaj jest to miejsce poślednie, ciekawostka dla ekspertów. Lenardowi przyświecał jednak zamysł polemiczny: pragnął bowiem zwalczać teorie niegodne Narodu Niemieckiego, a taką była teoria Einsteina. W dodatku jej twórca nie był wcale germańskim wojownikiem o blond włosach i niebieskich oczach:

Im bardziej «śmiały» okazuje się badacz natury, tym więcej miejsc w jego publikacjach nie wytrzymuje próby czasu; można to wykazać za pomocą przykładów z dalekiej i niedawnej przeszłości (szczególnie łatwo jest znaleźć te drugie). Z tego  względu śmiałość badacza natury nie zasługuje na tak wysoką ocenę, jak śmiałość wojownika. Gdyż ten ostatni przez swą śmiałość naraża własne życie, podczas gdy ten pierwszy znajduje zwykle wygodną wyrozumiałość oraz zapomnienie dla swoich niepowodzeń. Czasami odnosi się wrażenie, że owa przypisywana badaczowi natury «śmiałość» w istocie  polega na całkowicie wyzbytych skrupułów rachubach, iż obniżając poziom publikacji, nie poniesie się żadnej osobistej szkody. Taka śmiałość nie jest cechą niemiecką.

Słychać tu echa dziewiętnastowiecznej szkoły w fizyce, której przedstawiciele lubili utyskiwać na wszelkie teorie i zalecali trzymać się ściśle obserwacji. Wybitny skądinąd eksperymentator, Lenard nie był dość oryginalny, by stworzyć nową teorię zdolną do życia. Ale słychać też wojujący nacjonalizm. Przekonanie, że ktoś powinien zginąć za poglądy, bo inaczej są one nic niewarte, jest tyleż idiotyczne, co zgubne. Ludzie tacy jak Lenard popychali Niemcy (a może tylko dawali się nieść prądowi) w kierunku nowej wojny, która miała udowodnić ich wyższość rasową. Ostatecznie wykazała tylko, że są śmiertelni, podobnie jak ich ofiary. Rok 1921 zapowiadał już tendencje, które później się, niestety, wzmocniły. Można doszukiwać się tu przyczyn ekonomicznych, ale trudno zignorować też klimat poglądów objawiających się w sferze publicznej. m.in. w nauce. Świadomość określa byt, przynajmniej w polityce. Właściwie przez cały czas istnienia Niemiec weimarskich zaraza nacjonalizmu objawiała się gorączką sporów, argumentami rasowymi, poczuciem krzywdy, jaką rzekomo Niemcy doznały ze strony Europy. W kraju, który obok Wielkiej Brytanii, przodował w nauce, debaty naukowe często schodziły na poziom rasistowskich pyskówek. Niemiecka profesura przeważnie dostojnie milczała, milczała też w 1933 roku, kiedy jednym pociągnięciem zlustrowano ich kolegów i usunięto tych, którzy mieli złe pochodzenie.

Innym przeciwnikiem Einsteina był berliński fizyk Ernst Gehrcke, solidny eksperymentator w dziedzinie optyki, mający też ambicje teoretyczno-filozoficzne. Widział on w teorii względności przypadek masowej sugestii, której ulegli inni uczeni. Przejął się tą sprawą tak bardzo, że zaczął dokumentować wszelkie prasowe wzmianki o Einsteinie i robił to przez wiele lat.

«Klasyczna teoria względności» [cudzysłów Gehrckego – J.K.], będąca mieszanką wzajemnie  sprzecznych założeń, może posłużyć za interesujący przypadek masowej sugestii w fizyce, przynajmniej w krajach języka niemieckiego.

Warto zwrócić uwagę na słowo mieszanka (Gemisch): wiadomo, że to, co zmieszane, gorsze jest od czystego. Gehrcke powziął swą niechęć do teorii względności jeszcze przed pierwszą wojną i pozostał jej wierny do końca swego życia. Zabawnym zrządzeniem losu, jeden z tych „zahipnotyzowanych”, Max Planck, sprowadził do Berlina samego autora owej mieszanki, Alberta Einsteina, i to na wyjątkowo zaszczytne stanowisko, robiąc go przy okazji najmłodszym w dziejach członkiem Pruskiej Akademii Nauk. Einstein nawet próbował z Gehrckem dyskutować, ale w końcu dał spokój. Często prześladowali go różni obsesjonaci i wariaci, zwykle niegroźni.

Gehrcke, ale także i inni przeciwnicy teorii względności nie potrafili się pogodzić z tym, że czas przestał być absolutny, lecz wskazania zegarów mogły zależeć od ich wzajemnego ruchu. Podważali to często z powodów filozoficznych, np. dlatego że u Kanta nie ma miejsca na względność czasu i nieuklidesowość przestrzeni. Einstein nie przejmował się zbytnio Kantem i uważał, że efekty przewidywane przez teorię względności są mierzalne i w tym sensie jak najbardziej rzeczywiste.

Wyobraźmy sobie dwa układy (inercjalne) układy współrzędnych: jeden z nich umownie będzie dla nas układem spoczywającym (nieprimowanym), drugi porusza się względem niego z wielką prędkością v (primowany). Rozpatrzmy zegar spoczywający w drugim układzie. Jego dwa tyknięcia A i B oddziela pewien czas \tau. W poruszającym się układzie zachodzą one w tym samym punkcie. Te same dwa zdarzenia A i B możemy obserwować z układu spoczywającego. Czas między nimi jest teraz równy t, a odległość \Delta x=vt. W czasoprzestrzeni Minkowskiego, tzn. w świecie szczególnej teorii względności, dla dwóch dowolnych zdarzeń niezmienniczą (in. inwariantną) wielkością jest

c^2\Delta t^2-\Delta x^2=c^2\Delta t'^2-\Delta x'^2.

Znaczy to, że obserwatorzy związani z naszymi dwoma układami współrzędnych muszą otrzymać jednakową wartość tej wielkości.

c^2t^2-v^2t^2=c^2\tau^2\Rightarrow \tau=t\sqrt{1-\dfrac{v^2}{c^2}}.

Widzimy, że czas \tau jest krótszy niż t. Inne podejście do tego zagadnienia można znaleźć tutaj. Stąd pomysł, że gdybyśmy wysłali jeden zegar w podróż z wielką prędkością, a potem go z tą samą prędkością zawrócili, to po powrocie zmierzony przezeń odstęp czasu będzie krótszy. Ponieważ rzecz dotyczy nie jakiegoś wyimaginowanego czasu fizyków, ale tego, co można zmierzyć, konstruując na dowolnej zasadzie fizycznej przyrząd zwany zegarem, więc konkluzja dotyczy nie tylko czasomierzy, lecz np. pary bliźniąt, z których jedno wysyłamy w kosmiczną podróż, a drugie, mniej przedsiębiorcze, czeka w domu. Bliźniak podróżujący będzie po powrocie młodszy o czynnik \sqrt{1-{v^2}/{c^2}}. Można to narysować na diagramie czasoprzestrzennym.

Żółte linie pokazują linie świata światła. Poruszający się bliźniak (linia niebieska),  wciąż przebywa w stożku przyszłości względem zdarzenia polegającego na ich rozstaniu, linie kropkowane są liniami równoczesności dla brata poruszającego się w prawo i w lewo: zdarzenia wzdłuż tych linii podróżujący uważa za równoczesne; oczywiście linie równoczesności dla brata spoczywającego są równoległe do osi x).

Tutaj odległości wyrażone są w latach świetlnych, a czas w latach. Jak widać z obrazka, bliźniak poruszający się ma prędkość v/c=4/5. Podróż, która w układzie nieprimowanym zajmuje dziesięć lat, w układzie primowanym, czyli zmierzona przez podróżnika, zajmie w obie strony

\tau=10\sqrt{1-\dfrac{16}{25}}=6\mbox{ lat}.

Im bliższa prędkości światła jest prędkość podróżnika, tym silniejszy efekt. Einstein mówił o tej paradoksalnej naturze czasu w styczniu 1911 roku:

Gdybyśmy np. umieścili w pudełku żywy organizm i kazali mu się poruszać tam i z powrotem, tak jak omawianemu wyżej zegarowi, to byłoby możliwe, iż organizm ten, wracając do punktu wyjścia po dowolnie długiej podróży, zmieniłby się w  dowolnie małym stopniu, podczas gdy organizmy, które pozostawały w spoczynku w punkcie wyjścia, dawno  już zostałyby  zastąpione przez nowe pokolenia.

Gehrcke uważał, że wnioski Einsteina są fałszywe, bo skoro wszystko jest względne, to możemy równie dobrze uznać, iż to podróżujący bliźniak spoczywa, z czego by wynikało, że to on jest starszy. Naprawdę chodzi jednak o własność czasoprzestrzeni Minkowskiego (czyli naszej w małej skali): liniom prostym odpowiada zawsze dłuższy czas niż wszystkim innym. W przestrzeni euklidesowej najkrótszą linią łączącą dwa punkty jest prosta, w przestrzeni Minkowskiego, to linia najdłuższa w czasie.

W długim opowiadaniu Stanisława Lema pt. Powrót z gwiazd mamy następujący dialog:

— Tak — powiedziałem — i poczułem tremę, jakby od moich słów Bóg wie co miało zależeć. — Jestem… byłem pilotem. Ostatni raz byłem tu… nie przestrasz się!
— Nie. Mów!
Jej oczy były uważne i błyszczące.
— Sto dwadzieścia siedem lat temu. Miałem trzydzieści lat. Ekspedycja… byłem pilotem wyprawa do Fomalhaut. To jest dwadzieścia trzy lata świetlne. Lecieliśmy, w jedną i drugą stronę, sto dwadzieścia siedem lat czasu Ziemi i dziesięć lat czasu pokładowego.

Nie tylko Einstein, ale i inni wcześni relatywiści, jak Paul Langevin czy Arthur Eddington, dostrzegli tu możliwość podróży w czasie, ale tylko w przód. Lemowski Hal Bregg wraca na Ziemię, gdzie już dawno nie żyją jego bliscy i wszystko się bardzo zmieniło. Gdyby Lem pisał dzisiaj, mógłby jeszcze do kolorytu lokalnego dodać nacjonalizm, który przynajmniej w Europie wschodniej wciąż ma swoich zwolenników. Łatwiej przebudować drogi i domy niż ludzi.