Ludwig Boltzmann: Jak świat pogrąża się w chaosie (1877)

Atomizm był od starożytności doktryną szczególnie ostro zwalczaną. Wydawało się bowiem – i zapewne słusznie – że w świecie z atomów nie ma miejsca na duszę, która może przetrwać śmierć ciała. Jednak odkrycie w XV w. poematu Lukrecjusza O rzeczywistości (nb. przez papieskiego sekretarza, Gianfrancesco Braccioliniego) wywarło spory wpływ na dzieje idei. W Anglii Isaaca Newtona udało się pogodzić bożą wszechmoc z atomizmem, ale nie wszyscy zwolennicy nowej nauki byli przekonani do takich kompromisów. Do nieprzejednanych oponentów atomizmu należeli m.in. René Descartes i Gottfied Wilhelm Leibniz.

Naukowa kariera atomizmu złączona była z chemią oraz nauką o cieple. Od czasu Johna Daltona atomy okazały się niezwykle przydatnym narzędziem dla chemików. Fizycy dopiero w drugiej połowie XIX wieku zaczęli rozwijać teorię kinetyczną, czyli w gruncie rzeczy konsekwencje cząstkowego obrazu materii obdarzonej ruchem. Szczególnie prosta okazała się teoria kinetyczna gazów, ponieważ wystarczyło założyć, że cząsteczki gazów oddziałują tylko za pomocą zderzeń. Ten sposób myślenia przebijał się wszakże bardzo powoli, jak świadczy przykład Johna Waterstona. Kilkanaście lat później James Clerk Maxwell zapoczątkował nowoczesną teorię kinetyczną.

Teoria gazów stała się głównym tematem badań Ludwiga Boltzmanna, wiedeńczyka, który co kilka lat przenosił się niespokojnie z jednego uniwersytetu na drugi, pracując w Wiedniu, Grazu, potem znowu w Wiedniu, znowu w Grazu, w Monachium, jeszcze raz w Wiedniu, w Lipsku i ponownie w Wiedniu. Boltzmann stworzył całą nową dziedzinę wiedzy: fizykę statystyczną – czyli mikroskopowy statystyczny opis zjawisk cieplnych. Głównym zastosowaniem była dla niego teoria gazów, w istocie jednak teorię tę stosować można do wszelkich układów wielu cząstek. Wyjaśnia ona własności makroskopowe różnych ciał: kryształów, cieczy, metali, półprzewodników, magnetyków itd. Pokazuje, jak z poziomu oddziaływań między atomami i cząsteczkami przejść na poziom własności materii obserwowanej w laboratorium.

Zjawiska cieplne podlegają zasadom termodynamiki. Pierwsza z nich to po prostu zasada zachowania energii. Druga jest znacznie bardziej interesująca: mówi bowiem o kierunku możliwych przemian w świecie. Można zdefiniować wielkość zwaną entropią S, która jest funkcją stanu ciała, czyli np. w przypadku gazu zawartego w objętości V i mającego energię E: S=S(V,E). Otóż druga zasada termodynamiki mówi, że entropia układu izolowanego cieplnie nie może maleć, a zazwyczaj rośnie. Intuicyjnie wzrost entropii odpowiada temu, że większa część energii ciała ma postać chaotycznych ruchów cieplnych i trudniej ją wykorzystać do uporządkowanych zmian typu np. zmiany objętości (dlatego nie można zbudować np. silnika samochodowego, który wykorzystywałby w 100% energię uzyskaną ze spalania; samochody elektryczne przenoszą ten problem do elektrowni, które też zazwyczaj coś spalają, z nieco większą wydajnością, ale także daleką od 100%).

Entropia jest wielkością tzw. ekstensywną, to znaczy entropia układu złożonego z dwóch części będzie sumą entropii obu części:

S=S_1+S_2.

Jak na poziomie cząsteczkowym opisać wzrost entropii? Boltzmannowi udało się powiązać entropię z prawdopodobieństwem, a właściwie z liczbą mikrostanów odpowiadających danemu makrostanowi. Rozważmy naczynie z gazem, w którym znajduje się N cząstek o łącznej energii E. Tej samej wartości energii całkowitej odpowiada bardzo wiele różnych konfiguracji cząstek (mikrostanów). Gaz dąży spontanicznie do równowagi cieplnej, ponieważ jest to stan najbardziej prawdopodobny. Wzrost entropii nie jest więc tajemniczym prawem przyrody, lecz konsekwencją trywialnego faktu matematycznego, że zdarzenia bardziej prawdopodobne realizują się częściej niż wyjątkowe.

Jak można to opisać ilościowo? Stan ruchu jednej cząstki możemy opisać, podając jej położenie \vec{r} oraz pęd \vec{p}. Załóżmy, że całą przestrzeń dostępnych stanów podzieliliśmy na komórki o jednakowej objętości. Stan makroskopowy gazu znamy, gdy podana zostanie liczba cząstek gazu w każdej komórce. Wyobrażamy sobie przy tym, że liczby te są duże (w jednym molu mamy N_A=6\cdot 10^{23} cząstek, więc nawet po rozdzieleniu tych cząstek na bardzo wielką liczbę komórek, możemy wciąż mieć dużo cząstek w każdej komórce). Stan makroskopowy będzie więc listą liczb cząstek w kolejnych komórkach: (n_1, n_2,\ldots, n_r), gdzie r jest całkowitą liczbą komórek (jeśli całkowita energia gazu równa jest E, to żadna cząstka nie może mieć energii większej niż E, a więc obszar przestrzeni stanów potrzebny nam w rozważaniach jest ograniczony).

Schematyczny rysunek obszaru w przestrzeni stanów (jest on sześciowymiarowy, a więc trudny do narysowania). Zaznaczyliśmy jedną z komórek, na jakie dzielimy całą przestrzeń stanów wraz z liczbą cząstek w tej komórce.

Jeśli znamy poszczególne n_i, to możemy także obliczyć całkowitą liczbę cząstek N:

N=n_1+n_2+\ldots n_r

oraz całkowitą energię E:

E=\varepsilon_1 n_1+\varepsilon_2 n_2+\ldots+\varepsilon_r n_r,

gdzie \varepsilon_i oznacza energię w  i-tej komórce. Dalej zakładamy, że N oraz E (a także objętość gazu) są ustalone. Ilu konfuguracjom cząstek (mikrostanom) będzie odpowiadać dana lista (n_1, n_2,\ldots, n_r)? Zakładając, że cząstki są rozróżnialne, lecz jednakowe, liczba konfiguracji W prowadzących do tej samej listy równa jest

W=\dfrac{N!}{n_1! n_2!\ldots n_r!}.

Nietrudno zrozumieć sens tego wyrażenia: liczbę permutacji wszystkich cząstek dzielimy przez liczby permutacji wewnątrz kolejnych komórek, bo nie zmieniają one wartości n_i. Liczba konfiguracji jest proporcjonalna do prawdopodobieństwa. Możemy poszukać takiej listy (\bar{n}_1, \bar{n}_2, \ldots, \bar{n}_r), dla której W będzie maksymalne. Fizycznie powinno to odpowiadać stanowi równowagi termodynamicznej. Ów rozkład najbardziej prawdopodobny jest tzw. rozkładem Maxwella-Boltzmanna:

\bar{n}_i=C\exp(-\beta \varepsilon_i),

gdzie stałe C,\beta określone są warunkami stałości całkowitej liczby cząstek i energii. Boltzmann wcześniej uzyskał ten rozkład z innych rozważań. Można teraz zdefiniować entropię następującym wzorem:

S=k \ln W\equiv k \ln \dfrac{N!}{n_1! n_2!\ldots n_r!}.

Pojawienie się logarytmu jest tu całkiem oczekiwane, ponieważ gdy weźmiemy dwa układy o liczbach konfiguracji odpowiednio W_1, W_2, to całkowita liczba konfiguracji będzie równa

W=W_1W_2,

a chcemy żeby entropie w takiej sytuacji się sumowały: S=S_1+S_2. Zdefiniowaliśmy entropię nie tylko w stanach równowagowych, którym odpowiadają listy (\bar{n}_1, \bar{n}_2, \ldots, \bar{n}_r), ale także w dowolnych innych, którym odpowiadają listy (n_1, n_2,\ldots, n_r). Żeby nowa definicja miała sens, trzeba było oczywiście wykazać, że w sytuacjach równowagowych, otrzymuje się znane wcześniej wyrażenia. Wzór Boltzmanna

S=k\ln W,

stał się nową definicją entropii, dziś uważaną za podstawową. W istocie wzór Boltzmanna ma znacznie szersze pole zastosowań niż fizyka klasyczna znana w jego czasach. Jeśli rozważymy np. cząstki nierozróżnialne, można z analogicznych rozważań otrzymać prawa obowiązujące dla gazu fermionów (np. elektrony w metalu albo w białym karle) albo gazu bozonów (z czego wynikają prawa promieniowania cieplnego oraz, w innej nieco sytuacji, kondensacja Bosego-Einsteina). Wzór Boltzmanna pozwala też wyprowadzić wniosek, że w niskich temperaturach, gdy układ znajduje się w stanie podstawowym, entropia powinna być równa zeru – jest to treścią trzeciej zasady termodynamiki sformułowanej przez Wilhelma Nernsta.

W czasach Boltzmanna teoria kinetyczna była wysoce spekulatywna. Nie było pewności, czy w ogóle istnieją cząstki składające się na gaz. A więc znajdowanie liczby ich konfiguracji mogło wydawać się liczeniem diabłów na łebku szpilki. Ludwig Boltzmann przez całe życie odpierać musiał rozmaite zarzuty i brać udział w polemikach. Część dotyczyła spraw istotnych: w jaki sposób z odwracalnej mechaniki dochodzi się do procesów nieodwracalnych jak stygnięcie herbaty w kubku albo przewidywane wówczas przez niektórych uczonych stygnięcie, śmierć cieplna całego wszechświata? Najbardziej zjadliwe były polemiki filozoficzne. Zaciętym wrogiem Boltzmanna był tu Ernst Mach, dziś znany głównie za sprawą liczby Macha w lotnictwie ponaddźwiękowym. Fotografował on kule w locie.

Chciał też rewizji całej fizyki. Sądził, że posługuje się ona mnóstwem pojęć nie wytrzymujących krytyki. Np. przestrzeń absolutna u Newtona. Rozważania Macha zainspirowały Alberta Einsteina, choć w sposób bardzo swoisty. Sam Mach nie chciał słyszeć o teorii względności. Filozofia Macha miała ambicję wyrugowania z nauki pojęć nieopartych na bezpośrednim doświadczeniu. Chciał on niejako spojrzeć na świat od nowa. Dostrzegał w nim jedynie swoje wrażenia i ich wiązki.

Rysunek Ernsta Macha: jego pokój widziany lewym okiem

Dlatego koncepcja atomów była przez niego uważana za fikcję. Boltzmanna traktował jak naiwnego materialistę, nieświadomego subtelności pojęciowych. Przyszłość należała do fizyki statystycznej i atomów. „Naiwne” koncepcje fizyków zadziwiająco często sprawdzały się w praktyce. Co oczywiście, zdaniem filozofów, niczego nie dowodzi.

Skłonny do zmian nastrojów, Boltzmann cierpiał na napady depresji. W 1906 roku, przebywając na wakacjach w Duino nieopodal Triestu, popełnił samobójstwo, w czasie gdy żona i córka pływały w morzu. Nie dowiemy się, ile zdołałby osiągnąć, gdyby znano wtedy leki antydepresyjne.

Zaprawdę, to osobliwe, nie przebywać już odtąd na ziemi,

wyuczone zaledwie porzucić zwyczaje,

różom i innym odrębnie obiecującym rzeczom

nie dawać znaczeń ludzkiej przyszłości, już nigdy.

Tym, czym się było w dłoniach tak nieskończenie trwożnych,

nie być już więcej i nawet własne swe imię

porzucić, jak się porzuca połamaną zabawkę.

To osobliwe, już nie mieć życzeń. To osobliwe,

wszystko, co było związane, ujrzeć w przestrzeni

rozpierzchłe…

(przeł. M. Jastrun)

Reklamy

Rezygnacja Richarda Willstättera (1924)

Na krótkim filmie z czerwca 1920 r. widzimy laureatów Nagrody Nobla wraz z żonami. Od lewej stoją: Fritz Haber (chemia, 1918), Charles Glover Barkla (fizyka, 1917), Max Planck (fizyka 1918), Richard Willstätter (chemia, 1915), Johannes Stark (fizyka, 1919) oraz Max von Laue (fizyka, 1914).

Półtora roku po Wielkiej Wojnie – jak wtedy mówiono – uroczystość noblowska była jedną z pierwszych okazji gromadzących uczonych z dwóch stron niedawnego frontu. Wymowny jest brak na zdjęciach obu brytyjskich laureatów z fizyki za rok 1915: Williama Henry’ego Bragga (ojciec) i Williama Lawrence’a Bragga (syn). Drugi syn Williama Bragga, Robert Charles, zginął na wojnie. Obaj Brytyjczycy pracowali nad dźwiękowym wykrywaniem łodzi podwodnych oraz pozycji artylerii – czymś w rodzaju akustycznego radaru. Także Haber i Willstätter zaangażowani byli w wysiłek wojenny swego kraju. Pierwszy uratował Niemcy przed klęską militarną: zapasy materiałów wybuchowych i amunicji wystarczały na kilka miesięcy wojny. Kiedy okazało się, że nie będzie szybkiego rozstrzygnięcia, pojawił się problem produkcji materiałów wybuchowych. Do tej pory korzystano z saletry importowanej z Chile. Jednak po wybuchu wojny marynarka brytyjska dość skutecznie odcięła tę drogę zaopatrzenia. Ratunkiem dla Niemiec okazał się proces Habera-Boscha produkcji amoniaku z powietrza. Haber na tym nie poprzestał, zaczął pracować nad gazami bojowymi i stał się entuzjastycznym inicjatorem wojny chemicznej. Willstätter także pracował na rzecz armii, ale nie chciał zajmować się produkcją broni, opracował maskę gazową, chroniącą żołnierzy. Zaopatrzenie armii koordynował Walther Rathenau, przemysłowiec i wielki patriota, późniejszy minister spraw zagranicznych w roku 1922 zamordowany przez nacjonalistów. Charakterystyczne jest, że choć niemieccy Żydzi wnieśli wielki wkład w wysiłek wojenny swego kraju (także walcząc w okopach), po przegranej wojnie to oni zostali oskarżeni o klęskę i spiskowanie z wrogiem.

Społeczeństwo niemieckie wyszło z wojny zupełnie podzielone. Nikt nie chciał odpowiadać za klęskę i bezmiar cierpień. Traktat wersalski przyniósł upokorzenie, nakładając ciężary reparacji niemożliwe do udźwignięcia. Skrajne siły na lewicy i prawicy podmywały porządek konstytucyjny, antysemityzm, od dawna obecny wśród Niemców, coraz częściej przeradzał się w obsesyjną nienawiść. Nawet nauka nie była wyłączona z tej presji politycznej. Z pięciu uczonych niemieckich na filmie, dwóch było Żydami, dwóch – von Laue i Planck – starało się zachować neutralność nauki, Johannes Stark natomiast był jednym z wczesnych zwolenników Hitlera i później propagatorem czegoś, co nazywało się „fizyką niemiecką” – jakby atomy, grawitacja, elektryczność, kwanty miały narodowość i aryjski rodowód.

Richard Willstätter był chemikiem, Nagrodę Nobla otrzymał za badania nad chlorofilem. Dzięki jego długoletniej pracy znane stały się podstawowe cechy budowy cząsteczki chlorofilu, z jej magnezowym centrum (miał tu polskiego prekursora w Leonie Marchlewskim), udowodnił także, że występują dwa rodzaje chlorofilu: a i b. Wykazał, że cząsteczki chlorofilu w różnych roślinach mają jednakową budowę, podobną zresztą do budowy cząsteczki hemoglobiny. Za ogromną różnorodnością życia kryła się więc jednolitość na poziomie biochemicznym. Willstätter badał też inne barwniki występujące w roślinach. Na filmie jest sam, jego żona umarła, później umarł także ich synek, została mu tylko córka. Uczony do końca życia pozostał już sam.

Rodzina pochodziła z Badenii, lecz przyszły chemik do gimnazjum chodził w Norymberdze, a studiował w Monachium. Starszy o siedem lat od Einsteina, w odróżnieniu od niego czuł się w Bawarii dobrze, choć też doświadczał czasem antysemityzmu, począwszy od łobuziaków na ulicy, goniących i rzucającyh kamieniami za żydowskimi rówieśnikami. Znacznie poważniejszym problemem był antysemityzm elit. W nauce Żydzi zostawali czasem profesorami, było to jednak trudne. Willstätter pierwszą posadę profesorską dostał w Szwajcarii, w ETH w Zurychu. Potem ściągnięto go w roku 1912 do Berlina, nieco podobnie dwa lata później Einsteina: był to świadomy zamysł ludzi takich, jak Haber, Nernst czy Planck, aby budować wielkość nauki niemieckiej. W roku 1916 Willstätter dostał propozycję katedry w Monachium, mógł dzięki temu wrócić na swą macierzystą uczelnię, teraz jako dyrektor budujący nowy gmach laboratorium, który wyposażył za pieniądze ze swej Nagrody Nobla.

W 1924 roku uniwersytet rozpatrywał sprawę nominacji profesora geochemii. Znakomitym kandydatem był Victor M. Goldschmidt, pracujący w Kristianii (dzisiejsze Oslo). Jednak Wilhelm Wien, fizyk i ówczesny dziekan wydziału, utrącił tę kandydaturę, przekonując profesorów, by nie głosowali za osobą „obcokrajowca” (nie chodziło mu przy tym bynajmniej o obywatelstwo norweskie). Przyjęto na stanowisko nauczyciela ze szkoły dla dziewcząt, bez żadnego dorobku naukowego. Decyzja podjęta za sprawą uprzedzeń rasowych wzburzyła bardzo Willstättera – tego samego dnia podał się do dymisji i nie odwiodły go od niej rozmaite apele i rozgłos wokół tej sprawy. Nie przyjął też żadnej z licznych propozycji, które zaczęły napływać z kraju i zagranicy: miał pięćdziesiąt trzy lata, był noblistą i sporo jeszcze mógł dokonać. Wycofał się na emeryturę, odtąd pracował naukowo, kontaktując się telefonicznie ze swymi asystentami, nigdy już nie odwiedzając swego laboratorium.

W marcu 1939 roku Richard Willstätter przekroczył granicę niemiecko-szwajcarską, opuszczając na zawsze ojczyznę. Pozwolenie na wyjazd okupione było długotrwałymi staraniami i utratą większej części majątku, w tym wspaniałej biblioteki zajmującej siedem pokoi w jego monachijskim domu. Umarł kilka lat później.

Szczęśliwy rok Erwina Schrödingera (1926)

W listopadzie 1926 roku seria sześciu ostatnich prac Schrödingera ukazała się w wydaniu książkowym. Jak sam pisał we wstępie do tego przedruku:

Młoda przyjaciółka powiedziała o nich niedawno: „Popatrz, kiedy je zaczynałeś, nie myślałeś w ogóle pojęcia, że wyjdzie z nich tak wiele sensownych rzeczy”. Powiedzenie to, z którym (prócz pochlebnego przymiotnika) w pełni się zgadzam, podkreśla fakt, że prace zebrane w tym tomie powstawały jedna po drugiej. Ich autor, pisząc wcześniejsze części, nie znał jeszcze części późniejszych.

Erwin Schrödinger stał się dzięki nim sławny i choć także wcześniej i później tworzył prace interesujące bądź nawet wybitne, żadna z nich nie dorównywała tej złotej serii.

Ową przyjaciółką była czternastoletnia Itha Junger („Ithi”). Ich dziadek Georg Junger był bogatym obywatelem Salzburga, właścicielem firmy zajmującej się handlem hurtowym. Interes prowadzili nadal jego dwaj synowie, to jeden z nich, Hans, był ojcem dwóch niejednakowych bliźniaczek: Ithy i Roswithy, uczęszczających do szkoły klasztornej. Mówiło się, że matka żony Schrödingera Anny była nieślubną córką Georga Jungera. W każdym razie obie rodziny były blisko i żona Hansa była matką chrzestną Anny. Itha miała kłopoty z matematyki, Anny zaproponowała, że Erwin mógłby pomóc, bliźniaczki przeniesiono do klasztoru blisko Zurychu, żeby mogły korzystać z korepetycji. Erwin bardzo się z nimi zaprzyjaźnił, a wkrótce i zakochał w Ithi. Ich osobliwy, nawet w tych swobodnych czasach, romans trwał wiele lat, związek został skonsumowany wkrótce po siedemnastych urodzinach Ithi.

Mechanika kwantowa Heisenberga i jego kolegów z Getyngi przyjmowana była z mieszanymi uczuciami przez środowisko fizyków. Przeskoki kwantowe, abstrakcyjny formalizm macierzowy, filozofia ograniczenia się tylko do wielkości bezpośrednio obserwowalnych i porzucenia raz na zawsze poglądowych wyobrażeń atomu – wszystko to traktowane było z rezerwą. Podejście Schrödingera wydawało się nie tylko bardziej zrozumiałe matematycznie, ale także umożliwiało wyobrażenie sobie, co właściwie dzieje się wewnątrz układów o skali atomowej. Schrödinger wykazał także, że przynajmniej w prostych sytuacjach oba podejścia są równoważne. Mimo to, Heisenberg wykazywał wobec „mechaniki falowej” postawę wrogą i nieprzejednaną. Jego mentor, Niels Bohr, zaprosił Schrödingera do Kopenhagi, gdzie zadręczał wręcz swojego gościa, atakując jego sposób myślenia.

Dla zwolenników Bohra elektron był punktową cząstką, a prawa kwantowe dotyczyły tylko prawdopodobieństw. Historia przyznała im rację, choć pewne problemy interpretacyjne mechaniki kwantowej pozostały do dziś. Trzeba jednak wyraźnie powiedzieć, że jak dotąd żaden eksperyment nie zaprzeczył prawom mechaniki kwantowej, „szara strefa” dotyczy raczej filozoficznego samopoczucia. Wciąż nie znamy wszystkich szczegółów przejścia z poziomu mikroświata do makroświata, w którym żyjemy i w którym powstała fizyka klasyczna.

Błyskawiczna kariera Schrödingera wiązała się z tym, że dla konserwatywnie nastawionych fizyków, jego podejście wydawało się łatwiejszą do przyjęcia wersją teorii kwantowej. Schrödinger został zasypany listami i zaproszeniami od luminarzy ówczesnej fizyki: od sędziwego Hednrika Lorentza, przez Maksa Plancka, Alberta Einsteina aż do Wilhelma Wiena i Arnolda Sommerfelda. Został członkiem bardzo elitarnego grona: Planck gościł go w swoim domu podczas wizyty w Berlinie. Dobiegający siedemdziesiątki i wieku emerytalnego Planck niewątpliwie myślał przy tym o przyszłości swojej katedry w Berlinie, najbardziej prestiżowego stanowiska w dziedzinie fizyki teoretycznej na świecie. Niedługo później Schrödinger trafił na krótką listę kandydatów i uzyskał to stanowisko. Uznano przy tym, że Werner Heisenberg, choć niewątpliwie genialny, jest po prostu jeszcze za młody na katedrę. Schrödinger odbył też podróż do Stanów Zjednoczonych, stając się jednym z długiego szeregu wizytujących sław europejskich. Amerykanie nie byli jeszcze potęgą w fizyce teoretycznej, ale starali się kusić wysokimi honorariami, uzyskując przynajmniej tyle, że odwiedzali Stany Zjednoczone wszyscy właściwie wybitni fizycy i matematycy. Schrödinger też dostał oferty pracy w USA, ale nie rozpatrywał ich poważnie. Ameryka mu się nie podobała, duch purytański, przejawiający się w owych latach, m.in. w prohibicji, wydawał mu się barbarzyństwem. Na widok Statui Wolności miał powiedzieć, że brakuje jej tylko zegarka na ręku.

William F. Meggers Gallery of Nobel Laureates

Erwin Schrödinger bronił w roku 1926 i później stanowiska, że elektron nie jest punktową cząstką, lecz raczej pewnym rozmytym obiektem. Stanowisko to nie dało się obronić. Przedstawimy jeden z argumentów Schrödingera. Jest on prawdziwy, lecz sytuacja, której dotyczy, okazała się nietypowa. Nie można było tego jednak wiedzieć latem 1926 roku.

Rozpatrzmy oscylator harmoniczny, czyli cząstkę oscylującą wokół minimum energii potencjalnej. Ponieważ każdą funkcję wokół minimum można w przybliżeniu uważać za parabolę, więc jest sens rozważać przypadek kwadratowej, czyli parabolicznej, energii potencjalnej. Rozwiązanie równania Schrödingera daje nam wówczas następujące funkcje falowe.

skrypt Sagemath do generowania obrazka

Są to drgania o różnych dopuszczalnych energiach (nieparzyste wielokrotności wielkości \frac{1}{2}\hbar \omega, gdzie \omega jest częstością kołową naszego oscylatora). Klasycznie biorąc, obszar położony poza przecięciem potencjału z poziomą prostą danej energii całkowitej jest niedostępny; cząstka nie może się tam znaleźć, ponieważ musiałaby mieć ujemną energię kinetyczną. W fizyce kwantowej funkcja falowa rozlewa się poza ten klasycznie dostępny obszar, co jest tzw. zjawiskiem tunelowym. Każdy z tych stanów stacjonarnych ma bardzo prostą zależność od czasu. Należy funkcję z wykresu pomnożyć przez czynnik

\exp(-i\frac{Et}{\hbar})=\exp(-i\omega(n+\frac{1}{2})t).

Znaczy to, że zależność od czasu jest trywialna, nic się w naszej funkcji falowej nie porusza, opisane stany są falami stojącymi. Schrödinger zauważył, jak ze stanów o ustalonej energii zbudować rozwiązanie równania, które opisuje drgania w czasie. W gruncie rzeczy jest to bardzo proste. Chcąc zapoczątkować drgania oscylatora, wystarczy wychylić jego masę z położenia równowagi, a następnie puścić ciężarek, który zacznie wykonywać oscylacje.

Można analogicznie, wziąć funkcję falową stanu podstawowego oscylatora

\Psi_0(x)=C\exp(-\frac{x^2}{2}),

a następnie przesunąć ją do jakiegoś nowego położenia x_0:

\Psi(x)=C\exp(-\frac{(x-x_0)^2}{2}),

Jeśli tę ostatnią funkcję potraktujemy jako warunek początkowy w równaniu Schrödingera, to otrzymamy funkcje opisujące paczkę falową poruszającą się oscylacyjnie wokół położenia równowagi. W pracy Schrödingera („Naturwissenschaften”, 1926) przedstawiona została jej część rzeczywista:

Jest to zdjęcie migawkowe, paczka falowa będzie bowiem oscylować wokół położenia równowagi. Zdaniem Schrödingera ta właśnie fala jest elektronem. Ponieważ ciągle traktował on liczby zespolone jako wypadek przy pracy, więc wziął cząść rzeczywistą rozwiązania.

Wiemy jednak, że rację miał tu Max Born: należy obliczyć kwadrat zespolonego modułu funkcji falowej i jego wielkość określa rozkład prawdopodobieństwa. Otrzymamy wówczas klasyczne drgania rozmytej funkcji falowej.

Wikimedia Commons

Nie jest to jednak elektron, lecz prawdopodobieństwo jego znalezienia w danym miejscu i czasie. Dziś stany takie znane są jako stany koherentne. Przypadek oscylatora jest wyjątkowy: na ogół taka zlokalizowana funkcja falowa rozmywa się w czasie, choć w niektórych przypadkach może się później odbudowywać, jak na poniższym obrazku (chodzi tu o wysokowzbudzone stany atomu wodoru: mogą one przez chwilę przypominać klasyczny elektron na orbicie Bohra, potem ten obraz się rozmywa.

Mamy tu trzydzieści keplerowskich obiegów elektronu zbudowanych ze stanów wokół n=180

Erwin Schrödinger nie pogodził się z kopenhaską interpretacją mechaniki kwantowej, stał się jednym z jej krytyków, podobnie jak Einstein poszukujących innej drogi. Romans z Ithi kontyuowany był w latach berlińskich, w jakimś momencie uczony chciał się nawet z nią ożenić, ale do tego nie doszło. Po roku 1933 nie chciał zostać w nazistowskich Niemczech (co było dość wyjątkowe, ponieważ nie był Żydem i nie musiał rezygnować), wrócił na trochę do Austrii, ale wskutek Anschlussu także Austria stała się brunatna. Jego późniejsze afery uczuciowo-erotyczne stanowiły przeszkodę w objęciu katedr w Oxfordzie i Princeton, ostatecznie znalazł sobie miejsce w katolickiej Irlandii.

Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.

 

 

Fritz Haber, nieszczęśliwy kochanek ojczyzny

Urodził się we Wrocławiu, zmarł w Bazylei w 1934 roku, złamany i de facto wygnany z ojczyzny, która odebrała mu wszystko: jego Instytut, dom, większość pieniędzy, sens życia.

Pochodził z rodziny żydowskiej, ojciec, o wagnerowskim imieniu Siegfried, był kupcem obracającym barwnikami, farbami i lekarstwami. Matka zmarła wkrótce po jego urodzeniu, zrozpaczony ojciec długo nie potrafił dojść do siebie, niezbyt też kochał chłopca przypominającego mu o tragedii. Zajmowały się nim różne ciotki, potem macocha, Hedwig z domu Hamburger, która, choć bardzo młoda w chwili zamążpójścia, umiała zdobyć zaufanie i miłość Fritza. Jako dorosły mężczyzna nie rozumiał on jednak nigdy kobiet i ich emocji. Żył raczej w świecie męskich przyjaźni, ambicji, rozrywek. Lubił skupiać na sobie uwagę, łatwo się zaprzyjaźniał i potrafił przyjaźnie podtrzymywać. Później, kiedy został już wielkim człowiekiem nauki niemieckiej, interesował się losami współpracowników, patronował młodszym, pomagał, często także finansowo.

Mimo błyskotliwej inteligencji nie zapowiadał się na wybitnego uczonego, zrobił wprawdzie doktorat w Berlinie, ale potem jego kariera utknęła, wrócił nawet na jakiś czas pomagać ojcu w interesach, ale było to doświadczenie wybitnie nieudane. Na wiadomość o cholerze w Hamburgu Fritz sprowadził duże ilości wapna chlorowanego, które stosowano wówczas jako środek dezynfekcyjny. Ognisko cholery szybko jednak wygasło i spodziewana epidemia nie wybuchła. Zostali z dużymi zapasami wapna chlorowanego.

Fritz uciekł od ojca, uciekł też w pewnym sensie od swojego środowiska, postanawiając się ochrzcić w kościele luterańskim. Religia, zarówno żydowska, jak i chrześcijańska, nie odgrywała w jego życiu istotnej roli. Chodziło raczej o upodobnienie się do większości społeczeństwa niemieckiego. Był gorącym patriotą i pragnął się jakoś wykazać. Podczas służby wojskowej zabiegał o stopień oficerski. Zdał potrzebne egzaminy, decyzja była jednak odmowna, jak można sądzić, stały za nią przyczyny rasowe: korpus oficerski bardzo bronił się przed ludźmi z niższych klas, a także Żydami, którzy bywali co najwyżej lekarzami wojskowymi. Należy zdać sobie sprawę, jak ważna społecznie była w cesarskich Niemczech kasta oficerska. Stopień porucznika rezerwy otaczał posiadacza nimbem przez całe życie, bez względu na to, co ów człowiek w życiu osiągnął. Einstein zapamiętał na całe życie pewnego profesora z gimnazjum w Monachium, który obnosił się ze swym stopniem porucznika – przykłady tego rodzaju zniechęciły go na resztę życia do nacjonalizmu.

Fritz zdecydował się zrobić karierę naukową, na początek znaczyło to bezpłatną asystenturę na trzeciorzędnym uniwersytecie w Jenie. Opowiadał później anegdotkę, jak to wędrował kiedyś w upale po górach i szukał ochłody w wiejskim wodopoju. Zanurzył w nim głowę i dostrzegł w tym samym momencie wołu, który zrobił to samo co on. Gdy wynurzył głowę, spostrzegł, że zamienili się z wołem na głowy. I od tej chwili moja kariera naukowa nareszcie ruszyła z miejsca – dodawał. Naprawdę zaczęła się ona trzy lata po doktoracie, gdy w 1894 roku przeniósł się do Szkoły Technicznej w Karlsruhe i dostał pierwszą płatną posadę. Zaczął się zajmować chemią fizyczną, dziedziną młodą i stojącą wówczas w Niemczech na wysokim poziomie: działali tu Wilhelm Ostwald, a także o kilka lat starszy Walther Nernst, którego już niebawem stać było na kupienie posiadłości ziemskiej i jednego z pierwszych samochodów – wszystko to dzięki sprzedaży patentu na rodzaj żarówki. Haber wkrótce dał się poznać w środowisku jako niezwykle ambitny i asertywny młody człowiek, gotowy do upadłego spierać się o swoją rację nawet z największymi autorytetami (co niektórym, np. Ostwaldowi nawet się podobało). Haber napisał podręcznik, awansował na profesora nadzwyczajnego i ożenił się z Clarą Immerwahr z Wrocławia.

Żydzi wrocławscy często zawierali małżeństwa w swoim środowisku, wielu z nich było ze sobą spokrewnionych czy spowinowaconych. Clara nie mogła chodzić do gimnazjum, ponieważ nie przyjmowały one dziewcząt. Dzięki prywatnym lekcjom i własnej pracy osiągnęła poziom wiedzy maturalnej i zdała eksternistyczny egzamin, który to potwierdzał. Studiowała chemię na Uniwersytecie Wrocławskim (uczęszczanie kobiety na wykłady wymagało zgody każdego profesora z osobna). Obroniła też tam doktorat z jako pierwsza kobieta w dziejach uczelni. Jej promotorem i mentorem był Richard Abegg, kolega Habera z klasy. Małżeństwo z Haberem oznaczało nie tylko wyjazd z Wrocławia, ale także porzucenie pracy naukowej. Miała teraz być żoną profesora, która prowadzi mu dom na odpowiednim poziomie. Sytuacja ta stała się źródłem frustracji Clary, która nie była tak zdeterminowana jak starsza niecałe trzy lata Maria Skłodowska. Haber nie był też skłonny przejmować się uczuciami innych ludzi, był egocentrykiem dążącym do sukcesu.

Sukces nadszedł i u jego źródła leżała rywalizacja. Tym razem z Nernstem. Chodziło o reakcję łączenia azotu i wodoru w amoniak. Problemem tym interesowali się chemicy od dłuższego czasu: amoniak bowiem jest dobrym surowcem wyjściowym do uzyskiwania nawozów sztucznych (może być nawet wykorzystywany bezpośrednio jako nawóz, wymaga to wszakże odpowiedniego sprzętu), a także materiałów wybuchowych. Szybka urbanizacja i wzrost liczby ludności wywołały w XIX wieku coraz większe zapotrzebowanie na nawozy sztuczne, które zapobiegały wyjałowieniu gleby poddanej intensywnej uprawie. Importowano w tym celu saletrę z Chile, gdzie jej wydobycie stało się osobnym przemysłem. Synteza amoniaku z azotu atmosferycznego była bardzo kusząca, ale było też wiadomo, że nie jest to reakcja łatwa do przeprowadzenia. Spór Habera z Nernstem dotyczył punktu równowagi w reakcji syntezy amoniaku (gdy reakcja osiąga w danych warunkach punkt równowagi tyle samo cząsteczek amoniaku powstaje w jednostce czasu, ile samorzutnie się rozpada). Wiadomo było, że chcąc wytworzyć więcej amoniaku, należało zwiększyć ciśnienie, a także zastosować niezbyt wysoką temperaturę. Jednak w niewysokiej temperaturze zarówno reakcja syntezy, jak i reakcja przeciwna zachodzą powoli i w ten sposób nie uda się uzyskać znaczących ilości amoniaku. Nernst autorytatywnie orzekł, że dane Habera są nieścisłe i że naprawdę nie uda się wytworzyć znaczących ilości amoniaku, łącząc oba gazy nawet w obecności katalizatora.

Haber chciał wykazać, że to on ma rację. Współpracował z koncernem chemicznym BASF (Badische Anilin- & Soda-Fabrik), który finansował badania i zobowiązał się płacić pewną kwotę od każdego kilograma wyprodukowanego w ten sposób amoniaku. Razem z Robertem Le Rossignol, utalentowanym Anglikiem, który u niego pracował, skonstruowali aparaturę, w której udało się pod ciśnieniem 200 atmosfer uzyskać amoniak. Stało się to w rok po podpisaniu umowy. BASF z początku nie był przekonany, ale Carl Bosch, pracujący tam inżynier, przekonał zarząd do zajęcia się tym tematem. Z jednej strony należało pokonać duże przeszkody techniczne: aparatura pracująca pod takimi ciśnieniami mogła być niebezpieczna w eksploatacji, z drugiej strony rysowała się perspektywa ogromnych zarobków w razie powodzenia. Bosch poradził sobie z trudnościami przeskalowania procesu Habera na skalę przemysłową, z czasem został prezesem IG Farben, koncernu, który powstał z BASF, a także laureatem Nagrody Nobla w roku 1931. Po dojściu nazistów do władzy Bosch stopniowo wycofał się z działalności publicznej.

Fritz Haber stał się najbardziej znanym chemikiem Niemiec. Zaproszony został jako dyrektor nowo powstającego Instytutu Chemii Fizycznej im. Cesarza Wilhelma. Była to placówka pomyślana w stylu amerykańskim: chodziło o finansowanie działalności naukowej z prywatnej kiesy pod patronatem cesarza. Dyrektor opłacany był przez państwo, aby władze miały wpływ na obsadę tego stanowiska. Budowę i część kosztów utrzymania Instytutu pokrył żydowski bankier i przedsiębiorca Leopold Koppel. Postawił przy tym warunek, że dyrektorem zostanie Fritz Haber. Koppel wcześniej współpracował już z Haberem i był pod wrażeniem jego energii, zdolności organizacyjnych i inteligencji. Stworzono w ten sposób placówkę wybitną, skupiającą wielu uczonych z całego świata. Słynne były kolokwia co drugi poniedziałek. Błyszczał na nich w sposób naturalny Haber, który potrafił każde zagadnienie sprowadzić do istotnych punktów badź zadać pytania, odsłaniające problem. Bardzo przy tym dbał, aby mówiono prosto, unikając zbyt specjalistycznego żargonu. Jak to kiedyś ujął: w Berlinie odbywają się już inne, czwartkowe posiedzenia, na których nikt nikogo nie rozumie, lecz nie przenośmy tego zwyczaju na poniedziałki. Aluzja dotyczyła posiedzeń Pruskiej Akademii Nauk, w których Haber także zresztą uczestniczył.

Gdy Albert Einstein sprowadzony został do Berlina wiosną 1914 roku, jedną z jego funkcji było dyrektorowanie Instytutem Fizyki im. cesarza Wilhelma. Sam Instytut jeszcze nie powstał i Einstein urzędował w Instytucie Habera. Instytut Fizyki nie został zbudowany w czasie pobytu Einsteina w Berlinie, przypuszczalnie głównie dlatego, że uczony się tym zupełnie nie interesował. Polityka akademicka niezbyt go obchodziła i nawet nie próbował być organizatorem. Mimo to obaj się zaprzyjaźnili z Haberem, mieli do siebie nawzajem nie tylko respekt naukowy, Haber pomógł Einsteinowi w początkach jego pobytu w Berlinie. Działał nawet jako pośrednik między Albertem a Milevą – małżeństwo Einsteinów rozpadło się do lata i Mileva z synami wróciła do Zurychu. Clara Haber wykazywała chyba zrozumienie dla sytuacji Milevy, która przecież kiedyś także pragnęła być uczoną, a została sprowadzona do roli matki i gospodyni.

Przyjaźń obu uczonych wystawiona została wkrótce na dużą próbę. Wybuchła wojna światowa i Haber rzucił się w wir pracy dla armii. Był jednym z inicjatorów broni chemicznej, osobiście nadzorował nie tylko eksperymenty, ale także jej użycie na froncie. Został też kapitanem na osobisty rozkaz cesarza, co strasznie mu imponowało. Widać tu hierarchię społeczną Niemiec: sławny uczony, przyszły noblista, wpada w euforię, mogąc zostać kapitanem armii jak pierwszy lepszy junkier.

(Drugi od lewej Haber)

Broń chemiczna nie przechyliła szali zwycięstwa. Haber miał jednak wielki wpływ na decyzje o powiększeniu fabryk amoniaku zaraz na początku wojny. Armia niemiecka miała spore zapasy amunicji, ale przygotowana była na krótką, najwyżej kilkumiesięczną wojnę. Planowano szybko zdobyć Paryż dzięki atakowi przez neutralną Belgię. Po podpisaniu kapitulacji przez Francję Niemcy miały zwrócić swój wysiłek wojenny przeciw Rosji. Kiedy zaczęła się wojna pozycyjna, stało się jasne, że potrzeba będzie mnóstwo amunicji. W dodatku flota brytyjska kontrolowała transporty i nie było mowy o imporcie saletry z Chile. Jedynym rozwiązaniem było szybkie wybudowanie nowych urządzeń do produkcji amoniaku i przetwarzania go dalej na materiały wybuchowe. Haber i Bosch uzyskali decyzję o pospiesznej budowie odpowiednich zakładów. Haber podczas wojny rozkwitł, poswięcał się obowiązkom niemal bezgranicznie. Nawet samobójstwo Clary nie wytrąciło go z rytmu pracy: nazajutrz pojechał, tak jak było zaplanowane, na front doglądać przygotowań do kolejnych ataków gazowych. Nie mamy dziś pewności, co było motywem Clary. Była już wystarczająco nieszczęśliwa w tym małżeństwie, nawet zanim zaczęły się prace nad gazami trującymi. Być może z jej punktu widzenia życie obok Fritza obróciło się w koszmar, a on w potwora napędzanego szowinizmem. Clara nie ceniła tak wysoko społecznego uznania, tytułów, zaszczytów. Dla Habera uznanie było wszystkim, zwłaszcza uznanie najwyższych osób w państwie.

Jeszcze podczas wojny Haber ożenił się po raz drugi z niewiele starszą od swego syna Charlotte Nathan. Także to małżeństwo nie przetrwało, zakończył je rozwód. Wojna została przegrana. Haber otrzymał Nagrodę Nobla, choć obawiał się z początku, że może być ścigany za złamanie Konwencji Haskich o broni chemicznej.

https://www.nobelprize.org/mediaplayer/index.php?id=1100

(Nagranie z uroczystości wręczenie Nagród Nobla w roku 1920: od lewej Haber, Charles Glover Barkla, Max Planck, Richard Willstätter, Johannes Stark, Max von Laue, wszyscy oprócz wdowca Willstättera z żonami; trudno o bardziej wymowny przykład potęgi niemieckiej nauki w tamtym okresie)

Chcąc dopomóc krajowi, zaczął pracować nad wydobyciem złota z wody morskiej. Svante Arrhenius ocenił kiedyś zawartość złota na  6 mg w tonie wody morskiej. Gdyby znaleźć metodę na opłacalny proces wydobycia złota, Niemcy mogłyby myśleć o spłaceniu gigantycznych reparacji, jakie narzucił im Traktat Wersalski. Prace te nie prowadziły jednak donikąd, okazało się, że Arrhenius przecenił zawartość złota. Pomiary dawały zaledwie 0,01 mg w tonie wody. Żadną miarą nie można było tego wykorzystać. Okazało się, że przy tak małych ilościach trudno ustrzec się kontaminacji próbek złotem, np. z obrączki laboranta albo innego źródła tego rodzaju. Chemia nie mogła więc zbawić Niemców.

Nadal pracował naukowo, choć raczej jako organizator albo wścibski szef, który potrafił godzinami trzymać młodych pracowników w laboratorium, drążąc kolejne tematy, był bowiem niezwykle wszechstronny i znał się rzeczywiście na wszystkim. Instytut był jego całym życiem.

Dojście Hitlera do władzy było zapewne najgorszym koszmarem, jaki mógł sobie wyobrazić człowiek pokroju Habera. Choć mógłby zostać na stanowisku jako zasłużony podczas wojny, musiałby zwolnić wszystkich „niearyjskich” pracowników (mniej więcej jedną czwartą). Złożył rezygnację. Max Planck, który bez najmniejszej walki pozwolił usunąć Einsteina z Akademii Nauk, teraz usiłował zmienić decyzję władz. Zapewne sądził, że Haber ma zbyt duże zasługi dla Niemiec, a poza tym jego Instytut może się przydać w przyszłości. Rozmowy z „ministrem kultury” Wilhelmem Rustem, a nawet z samym Hitlerem, nic nie dały, oprócz ataku furii Führera, który wolał wcale nie mieć uczonych, niż mieć uczonych żydowskich. Haber wyjechał z Niemiec, ale wciąż bił się z myślami, czy wrócić i ratować jakąś część majątku (nie chodziło tylko o niego, lecz i o dzieci), czuł się coraz gorzej fizycznie i psychicznie. Nie wyobrażał sobie życia poza Niemcami. Zmarł na atak serca w przeddzień pierwszej rocznicy objęciu urzędu kanclerza przez Adolfa Hitlera.

Poniżej współczesne zdjęcia Instytutu Habera wykonane przez p. Macieja Drawsa w lipcu 2018 w Berlinie-Dahlem.

 

Po II wojnie światowej Keiser-Wilhelm-Gesellschaft i odpowiednie instytuty nazwane zostały imieniem Maksa Plancka.

 

Istota teorii względności (1923) – Albert Einstein

Ślepy żuk pełznący po powierzchni globusa nie wie, że tor, po którym się porusza, jest zakrzywiony. Ja miałem szczęście to zauważyć [A. Einstein]

Ta niewielka książeczka jest jedynym kompletnym przedstawieniem teorii przez jej twórcę, adresowanym do zawodowych uczonych, stanowiąc coś pośredniego między monografią a podręcznikiem. Ukazała się najpierw w 1923 roku w wersji angielskiej nakładem Princeton University Press oraz w wersji niemieckiej w wydawnictwie Vieweg & Sohn (z datą roczną 1922). Od tamtej pory doczekała się niezliczonych wydań w wielu językach. Uczony nie zmieniał głównego tekstu, choć z czasem dołączył kilka dodatków traktujących o późniejszych osiągnięciach.

Podstawą książki były wykłady wygłoszone w maju 1921 roku na uniwersytecie w Princeton. Czterdziestodwuletni Einstein wybrał się w swą pierwszą podróż za ocean, towarzysząc Chaimowi Weizmannowi i delegacji syjonistów. Ich celem było zebranie funduszy na założenie uniwersytetu w Jerozolimie. Uczony, który w kilku poprzednich latach z odrazą obserwował antysemityzm narastający w społeczeństwie niemieckim i który sam stał się ofiarą niewybrednych ataków z rasistowskimi podtekstami, zgodził się na ten wyjazd, rezygnując z udziału w pierwszym po wojnie Kongresie Solvaya, konferencji gromadzącej szczupłe grono najwybitniejszych fizyków świata. Po raz pierwszy wystąpił więc Einstein w roli działacza społecznego, wykorzystując autorytet naukowy do propagowania bliskich mu poglądów. Uczony witany był w Ameryce owacyjnie, zwłaszcza przez społeczność żydowską w Nowym Jorku, Bostonie, Cleveland. Niektórzy koledzy Einsteina, jak Fritz Haber, wybitny chemik, Żyd i niemiecki szowinista, mieli mu za złe podróż do Stanów Zjednoczonych, kraju niedawnego wroga. Rany wojenne nie zdążyły się jeszcze zabliźnić, zwłaszcza w Niemczech dźwigających ciężar przegranej wojny. Wielu niemieckich Żydów sądziło też, iż nie należy prowokować antysemityzmu i lepiej siedzieć cicho. Einstein, czy to dlatego, że spędził wiele lat w Szwajcarii, czy też z racji swego charakteru, nie podzielał takiego nastawienia, przeciwnie, to właśnie antysemityzm przyspieszył dojrzewanie jego żydowskiej tożsamości.

Podróż po Stanach Zjednoczonych miała też ważną część naukową. Einstein miał wykłady na Columbia University i w City College w Nowym Jorku, na uniwersytecie w Chicago oraz uniwersytecie Harvarda. W Princeton otrzymał stopień honorowy i wygłosił sławne zdanie, które później wyryto nad kominkiem w sali Wydziału Matematyki: „Pan Bóg jest wyrafinowany, lecz nie jest złośliwy” (odnosiło się ono do pewnych wyników eksperymentalnych zaprzeczających jego teorii). Bezpośrednio po uroczystościach rozpoczął się cykl pięciu wykładów odbywających się w kolejne dni tygodnia. Dwa pierwsze były popularne, następne bardziej techniczne. Wykładu inauguracyjnego słuchało około czterystu osób, podczas drugiego audytorium znacznie się przerzedziło, a kolejne odbywały się już w mniejszej sali dla niewielkiego grona słuchaczy. Na początku pobytu w Princeton uczony podpisał umowę z wydawnictwem uniwersytetu na publikację tekstu jego wystąpień. Ponieważ odbywały się one po niemiecku, wydawnictwo wynajęło niemiecką stenografkę, która notowała na żywo. Każdy z wykładów był na koniec podsumowywany po angielsku przez profesora fizyki Edwina Plimptona Adamsa, który został też tłumaczem wersji książkowej. Dopiero w styczniu 1922 roku uczony przesłał niemiecki tekst książki do wydawnictwa Vieweg & Sohn, wydrukowane przez nie korekty stały się podstawą angielskiego przekładu. Prace te wraz z poprawkami autorskimi zajęły cały rok 1922. Pod jego koniec wydrukowano wydanie niemieckie, a w styczniu ukończono druk wydania angielskiego. W trakcie tych prac ogłoszono wiadomość, że Albert Einstein został laureatem Nagrody Nobla za rok 1921. Laureat przebywał w tym czasie w Azji w drodze do Japonii.

Uczony spodziewał się otrzymać Nagrodę Nobla, w istocie przyszła ona dość późno i z istotnym zastrzeżeniem. Jak pisał Christopher Aurivillius, sekretarz Królewskiej Szwedzkiej Akademii Nauk, w liście do laureata: „Akademia (…) postanowiła przyznać panu Nagrodę Nobla w dziedzinie fizyki za ubiegły rok w uznaniu Pana dokonań w fizyce teoretycznej, w szczególności odkrycia teoretycznych podstaw zjawiska fotoelektrycznego, lecz z pominięciem zasług, które staną się Pana udziałem, gdy potwierdzą się sformułowane przez Pana teorie względności i grawitacji”. Teoria względności była więc w oczach szwedzkich akademików osiągnięciem kontrowersyjnym, podobnie myślało wielu uczonych.

Niewykluczone, że Einstein pragnął swoją książką przekonać część kolegów po fachu. Na początku lat dwudziestych obie teorie względności: szczególną z roku 1905 oraz ogólną z roku 1915 można było uznać za zakończony etap. Dzięki pracy Einsteina, ale także szeregu innych fizyków i matematyków, jak Max Planck, Max von Laue, David Hilbert, Felix Klein, Emmy Noether, Max Born, Hermann Weyl, Tullio Levi-Civita, Karl Schwarzschild, Hans Thirring, Josef Lense, Willem de Sitter, Hendrik Lorentz, Gunnar Nordström, Erich Kretschmann, Arthur Eddington, Paul Ehrenfest, Johannes Droste, Paul Langevin udało się wyjaśnić wiele aspektów nowej teorii – już sama lista nazwisk wskazuje, że praca Einsteina nie przebiegała w próżni, a ranga tych uczonych świadczy o poważnym traktowaniu osiągnięć Einsteina. Miał on jednak także sporo przeciwników, którzy z rozmaitych powodów odmawiali jego teorii naukowej wartości, a często także kwestionowali intelektualną uczciwość jej twórcy. Berliński profesor optyki Ernst Gehrcke uznawał teorię Einsteina za skutek zbiorowej sugestii, wybitni eksperymentatorzy (i laureaci Nagrody Nobla) Philipp Lenard i Johannes Stark nie potrafili się pogodzić ze światem nowych pojęć i widzieli w teorii względności produkt reklamy oraz sprytne pomieszanie elementów filozofii, matematyki i fizyki tak, by trudno było znaleźć uczonego zdolnego ją krytykować bez wykraczania poza ramy swej specjalności. Obaj ostatni nie ukrywali też swego antysemityzmu i stali się zwolennikami Adolfa Hitlera jeszcze we wczesnych latach dwudziestych, na długo przed rządami nazistów. Niektórzy, jak szwedzki oftalmolog i laureat Nagrody Nobla Allvar Gullstrand, sądzili, że teoria względności jest pusta wewnętrznie i może prowadzić do różnych wyników w tej samej sytuacji. Dochodziły do tego ostre podziały wśród filozofów, niektórzy jak Hans Reichenbach i Moritz Schlick mocno ją popierali, wielu jednak, jak Oskar Kraus czy Henri Bergson, wyrażało sceptycyzm, jeśli nie wrogość, wobec nowej teorii.
Większość uczonych była na ogół wciąż zdezorientowana, nie wiedząc, co sądzić. Toteż książka Einsteina skupiła się na podkreślaniu ciągłości w rozwoju fizyki, uwydatnieniu pewnej linii rozwoju, w której teoria względności stawała się naturalnym ogniwem. Nie sposób jednak ukryć, że teorie Einsteina zrywały z pojęciami absolutnej przestrzeni i absolutnego czasu, stanowiącymi fundament mechaniki, a z nią całej fizyki od czasów Isaaca Newtona. Kwestionowanie uświęconych tradycją zdobyczy nauki w oczach wielu było gestem obrazoburczym i świętokradczym. To, co starszych przejmowało zgrozą i oburzeniem, w oczach ówczesnych ludzi młodych stawało się fascynującą rewolucją. Karl Popper wspominał, jak wielką rolę w jego myśleniu o nauce odegrała teoria Einsteina, już sam fakt, że można było stworzyć realną alternatywę wobec królującej mechaniki Newtona miał dla niego rangę intelektualnego objawienia.

Zacząć wypada od samej nazwy: teoria względności. Z początku mówiło się o zasadzie względności, potem określać tak zaczęto teorię Einsteina z roku 1905 (szczególną teorię względności), a później Einstein zaczął mówić o uogólnionej bądź ogólnej teorii względności. W dyskursie potocznym zaczęto nazwy tę wiązać z zanegowaniem absolutnego czasu, a nawet szerzej z zanegowaniem dotychczasowej fizyki czy wręcz obowiązującej logiki albo etyki. Oczywiście, teoria względności, tak jak żadna udana teoria fizyczna, nie zmienia świata doświadczenia, ponieważ musi być zgodna z dotychczasowymi danymi eksperymentalnymi. Zmienia jedynie nasz sposób widzenia świata, przewidując nowe zjawiska i rozszerzając tym samym granice wiedzy. Mechanika newtonowska nadal obowiązuje, znamy tylko dokładniej jej ograniczenia. Max Planck, jeden z najwcześniejszych zwolenników teorii Einsteina, przekonuje w swej autobiografii naukowej, że jego zainteresowanie teorią względności wynikło właśnie z szukania w fizyce absolutu, ponieważ w świecie teorii względności są także wielkości oraz pojęcia niezmienne i absolutne. Dlatego nazwa ta bywa myląca.

W czerwcu 1905 roku redakcja „Annalen der Physik” otrzymała pracę nikomu nieznanego urzędnika Biura Patentowego w Bernie zatytułowaną O elektrodynamice ciał w ruchu. Rzecz dotyczyła jednego z najważniejszych zagadnień fizyki teoretycznej, którym w poprzednim dziesięcioleciu zajmowali się dwaj uznani luminarze Henri Poincaré i Hendrik Lorentz. Chodziło o eter – hipotetyczny ośrodek wypełniający świat. Na początku XIX stulecia Thomas Young i Augustin Fresnel wykazali, że światło jest falą. Wyobrażano sobie, że musi ono być falą sprężystą w eterze, czyli drganiem, które propaguje się na wszystkie strony podobnie jak fale akustyczne w powietrzu bądź innych ośrodkach sprężystych. Eter ów charakteryzować się musiał dość osobliwymi własnościami, gdyż z jednej strony był na tyle rzadki, by nie hamować ruchów planet, z drugiej zaś musiał być niezmiernie sprężysty, gdyż prędkość światła jest niewyobrażalnie duża w porównaniu np. z prędkością dźwięku. W przypadku dźwięku wiemy, że jego prędkość dodaje się wektorowo do prędkości powietrza: zmierzona prędkość będzie więc zależeć od prędkości ruchu powietrza. Podobne zjawisko zachodzić powinno także w przypadku światła. Ruch roczny Ziemi po orbicie wokół Słońca zachodzi z prędkością około 30 km/s, co stanowi 1/10 000 prędkości światła. Precyzyjne pomiary powinny wykryć zmiany obserwowanej prędkości światła. Przez cały wiek XIX szereg eksperymentatorów od François Arago w roku 1810 aż do Alberta Michelsona i Edwarda Morleya w roku 1887 starało się za pomocą różnych metod optycznych wykryć ruch Ziemi w eterze. Wyniki wszystkich tych doświadczeń były negatywne. Wyglądało to tak, jakby eter poruszał się razem z Ziemią, ale taka hipoteza rodziła sprzeczności z innymi obserwacjami.

Obok optyki innym wielkim tematem dziewiętnastowiecznej fizyki były elektryczność i magnetyzm. W latach sześćdziesiątych XIX wieku James Clerk Maxwell podsumował te wszystkie badania, podając jednolitą matematyczną teorię zjawisk elektrycznych, magnetycznych oraz optycznych – okazało się bowiem, że powinny istnieć fale elektromagnetyczne. Ich prędkość wynikająca z teorii Maxwella była bliska prędkości światła w próżni. Maxwell wysnuł więc wniosek, że światło jest rodzajem fal elektromagnetycznych. W latach 1887-1888 Heinrich Hertz wykazał, że można w laboratorium wytworzyć fale elektromagnetyczne o długości kilku metrów, które także rozchodzą się z prędkością światła. Teoria Maxwella została potwierdzona, stając się praktycznym narzędziem pracy inżynierów. Niemal równocześnie rozwijały się bowiem techniczne zastosowania elektromagnetyzmu: oświetlenie elektryczne, telefon i pierwsze elektrownie. Ojciec i stryj Einsteina, bracia Rudolf i Jakob, prowadzili najpierw w Monachium, później w północnych Włoszech firmę elektryczną i Albert niemal od dziecka miał do czynienia z techniką elektryczną. Elektrodynamika była także ważnym tematem zajęć laboratoryjnych i wykładów na Politechnice w Zurychu. Einstein jednak od początku nie chciał zostać inżynierem i narzekał, że program studiów nie obejmuje teorii Maxwella.

Teoria Maxwella pozwalała w jednolity sposób opisać ogromny obszar zjawisk. Czyniła to za pomocą pojęć pola elektrycznego oraz magnetycznego. W każdym punkcie przestrzeni i w każdej chwili można było za pomocą dwóch wektorów scharakteryzować stan pola. Wydawało się, że eter z początku wieku zyskał teraz nową funkcję, nośnika pola. Ważną cechą nowego podejścia była lokalność: to, co dzieje się z polem elektrycznym i magnetycznym w danym punkcie zależy od ładunków i prądów w tym samym punkcie. Zaburzenia pola rozchodzą się jako fale elektromagnetyczne. Była to więc fizyka pojęciowo odmienna od Newtonowskiej grawitacji, w której dwie masy oddziałują na siebie na odległość w sposób natychmiastowy. W teorii Maxwella ładunek jest źródłem pola w otaczającej go przestrzeni i pole to z kolei oddziałuje na inne ładunki. Prędkość rozchodzenia się zmian pola jest wielka, ale nie nieskończona. Choć Maxwell dokonał najważniejszej pracy, formułując teorię w sposób logicznie zamknięty, to dopiero jego następcy, m.in. Oliver Heaviside i Hendrik Lorentz, znaleźli prostsze i bardziej eleganckie jej wersje. Okazało się np., że każdy prąd elektryczny jest jedynie ruchem ładunków. Mamy więc dwa rodzaje ładunków, których położenia i prędkości określają stan pola w różnych miejscach – są to równania pola, czyli równania Maxwella. Znając zaś wartość pola elektrycznego i magnetycznego, możemy obliczyć siłę działającą na ładunek – są to równania ruchu (siła Lorentza).

Teoria Maxwella wyrastała z modelu pewnego ośrodka sprężystego i uczony, podobnie jak większość współczesnych, uważał, że jego rolą jest sprowadzenie zjawisk elektrycznych i magnetycznych do zjawisk mechanicznych. W odróżnieniu od teorii Newtona, w której mamy pojedyncze punkty materialne, tutaj substratem jest eter, który wyobrażano sobie jako pewien sprężysty materiał. Paradoksalny status eteru opisał na zjeździe Brytyjskiego Towarzystwa Krzewienia Nauk w Oksfordzie w roku 1894 markiz Salisbury, stwierdzając, że „główną, jeśli nie wyłączną, własnością słowa eter było dostarczanie rzeczownika do czasownika falować”.

Problem wykrycia ruchu Ziemi w eterze stał się tym bardziej palący. Wiadomo było wprawdzie, że inżynier stosować może równania Maxwella, nie przejmując się takimi subtelnościami, ale należało wyjaśnić negatywne wyniki doświadczeń. Hendrik Lorentz spróbował podejść do tego problemu w sposób systematyczny i wykazał, że każdemu stanowi pól w nieruchomym eterze odpowiada pewien stan pól w eterze ruchomym. Chciał w ten sposób podać ogólny dowód, że wszelkie zjawiska elektromagnetyczne przebiegają w taki sposób, aby nie można było ruchu Ziemi wykryć. Wprowadził przy tym dość szczególną konstrukcję matematyczną: w poruszającym się układzie należało zdefiniować czas w taki sposób, że zależał on od współrzędnej przestrzennej. Był to zdaniem Lorentza czas fikcyjny, potrzebny do dowodu niemożliwości wykrycia ruchu przez eter. Okazało się też, że należy założyć coś osobliwego na temat długości obiektów poruszających się: powinny one ulec nieznacznemu skróceniu o czynnik \sqrt{1-v^2/c^2}, gdzie v jest prędkością ruchu obiektu, a c – prędkością światła.

Praca Alberta Einsteina, eksperta technicznego III klasy z Berna, proponowała już we wstępie krok decydujący: pojęcie eteru świetlnego jest w fizyce „zbyteczne”. W ten sposób cała dziedzina badań nad zjawiskami w poruszającym się eterze przechodziła do historii, rozpoczynała się natomiast era szczególnej teorii względności.

Fizycy znali wcześniej zasadę względności. Dotyczyła ona mechaniki. I zasada dynamiki, czyli zasada bezwładności, mówi, że gdy żadne siły nie działają na ciało, to porusza się ono ruchem jednostajnym i prostoliniowym bądź spoczywa. Zasada ta nie dotyczy każdego układu współrzędnych (in. układu odniesienia). Obserwator w hamującym pociągu widzi, jak przewracają się przedmioty, które dotąd spokojnie sobie tkwiły w bezruchu. Hamujący pociąg nie jest więc układem odniesienia, w którym zasada bezwładności ma zastosowanie. Fizycy mówią: nie jest układem inercjalnym (tzn. takim, w którym obowiązuje zasada bezwładności). Pociąg jadący ruchem jednostajnym jest dobrym przybliżeniem układu inercjalnego, podobnie jak powierzchnia Ziemi. Wiemy jednak, że także powierzchnia Ziemi nie jest idealnym układem inercjalnym, ponieważ Ziemia wiruje wokół osi, a także porusza się ruchem rocznym wokół Słońca. Układ inercjalny jest więc pewnym ideałem teoretycznym. Zasady dynamiki mają w takim układzie szczególnie prostą postać i zazwyczaj tak są domyślnie sformułowane.

Ważną cechą układów inercjalnych jest to, że każdy układ odniesienia poruszający się ruchem jednostajnym i prostoliniowym względem jednego z nich jest także układem inercjalnym. mamy więc do czynienia z klasą równoważnych fizycznie układów odniesienia. W każdym z nich obowiązują zasady dynamiki w zwykłej postaci. Nie znaczy to, że nie możemy opisywać ruchu np. w odniesieniu do hamującego pociągu, musimy jednak wtedy uwzględnić dodatkowe siły, które nie wynikają z żadnych oddziaływań, lecz są skutkiem ruchu układu: w hamującym pociągu pasażerowie odczuwają siłę zwróconą ku jego przodowi, która znika, gdy pociąg się zatrzyma.

Isaac Newton sformułował w Matematycznych zasadach filozofii przyrody pojęcia absolutnej przestrzeni – czegoś w rodzaju nieskończonego pojemnika na wszystkie obiekty w świecie oraz absolutnego czasu. Prawa dynamiki obowiązywać miały, gdy ruch odnosimy do owej przestrzeni absolutnej, ale także w każdym układzie odniesienia poruszającym się ruchem jednostajnym i prostoliniowym. W rezultacie w fizyce Newtona nie ma sposobu na ustalenie, który z nieskończonego zbioru układów inercjalnych jest absolutną przestrzenią albo w języku dziewiętnastego wieku: eterem. Nie możemy więc ustalić absolutnego położenia żadnego przedmiotu w sposób empiryczny: dwa zdarzenia zachodzące w odstępie jednej minuty w tym samym punkcie (inercjalnego) pociągu zachodzą w różnych miejscach przestrzeni zdaniem obserwatora na peronie. Fizycznie oba punkty widzenia są równoprawne, a także punkty widzenia wszelkich innych obserwatorów inercjalnych. Absolutna przestrzeń należy więc do założeń metafizycznych Newtona, żadne eksperymenty nie pozwalają jej zlokalizować. Inaczej można powiedzieć, że w fizyce Newtona obowiązuje zasada względności: prawa fizyki są takie same w każdym układzie inercjalnym.

Czas w fizyce Newtona jest rzeczywiście absolutny, to znaczy, można zawsze ustalić, czy zdarzenia są równoczesne, nawet gdy zachodzą one daleko od siebie (zresztą dla pewnego obserwatora inercjalnego będą one równoczesne i zarazem w tym samym punkcie przestrzeni).

Einstein uważał, iż zasadę względności należy rozciągnąć także na zjawiska elektromagnetyczne i zaproponował, aby obowiązywała ona jako nowe prawo fizyki: wszelkie prawa fizyki mają taką samą postać w każdym układzie inercjalnym. Drugim postulatem jego teorii było przyjecie, że prędkość światła w próżni jest dla każdego obserwatora inercjalnego równa tej samej wartości c (wynikającej z teorii Maxwella). Zamiast analizować szczegóły zaproponował więc dwie zasady ogólne, które jego współczesnym wydawały się przeczyć sobie wzajemnie. Rozszerzenie zasady względności na całą fizykę byłoby wprawdzie eleganckim wyjaśnieniem, dlaczego nie obserwujemy ruchu Ziemi w eterze (bo eteru nie ma), ale pojawia się trudność z drugim postulatem. Znaczy on bowiem, że nie tylko prędkość światła zawsze jest równa c, bez względu na ruch źródła światła, ale także równa jest c bez względu na to, czy obserwator goni falę świetlną, czy też porusza się jej naprzeciw. Przeczy to prawu składania prędkości, a przecież eksperymenty potwierdzają je na co dzień: gdy pasażer porusza się z prędkością u (względem pociągu) w kierunku do przodu pociągu jadącego z prędkością v (względem peronu), to jego prędkość względem peronu jest sumą u+v. Dlaczego prawo to nie działa, gdy jednym z obiektów jest światło?

Czyniono często zarzut Einsteinowi, że prędkość światła w próżni jest w jego teorii jakoś szczególnie wyróżniona. Rzeczywiście, istnieje w tej teorii graniczna prędkość poruszania się obiektów materialnych, np. przekazywania energii albo informacji, i to jest właśnie c. Można powiedzieć, że światło ma tę szczególną własność, iż porusza się z ową maksymalną prędkością. Nie ma jednak żadnych przeszkód, aby istniały inne obiekty poruszające się z prędkością c. Wiemy, że światło składa się z fotonów (było to treścią innej pracy Einsteina z tego samego roku, nie bez powodu nazywanego jego „cudownym rokiem”), cząstek poruszających się z prędkością c. Podobnie poruszają się inne cząstki, odkryte później, jak gluony, albo wciąż czekające na odkrycie, jak grawitony. Cząstki takie nie istnieją w stanie spoczynku, lecz zawsze poruszają się z prędkością c.

Istnienie maksymalnej prędkości, i to w dodatku zawsze jednakowej, pozwala na eksperymentalne badanie równoczesności dwóch zjawisk. Obserwator inercjalny może rozmieścić w swoim układzie odniesienia zegary w różnych punktach. Znając odległość tych puntów oraz prędkość światła, może te zegary zsynchronizować. Gdy jego zegar wskazuje czas t, wysyła sygnał do punktu odległego o r i umawia się z kolegą, który tam przebywa, że moment odebrania sygnału będzie czasem t+r/c. Dzięki temu przepisowi wszystkie zegary zostaną zsynchronizowane i można będzie ustalić zawsze czas danego zdarzenia, obserwując go na pobliskim zegarze. Metoda ta zastosowana w innym układzie inercjalnym może dać inne wyniki w odniesieniu do tej samej pary zdarzeń.

Przykład podany przez Einsteina pomaga to zrozumieć. Wyobraźmy sobie jadący pociąg i obserwatora na peronie. W chwili, gdy mija go środek pociągu, w jego początek i koniec uderzają równocześnie dwa pioruny. Ich uderzenia są równoczesne, ponieważ światło obu błyskawic dociera do naszego obserwatora w jednej chwili, a wiadomo, że odległość obu końców pociągu od obserwatora była w tym momencie taka sama. Inaczej opisze te zdarzenia obserwator siedzący w środku pociągu. Jego zdaniem piorun najpierw uderzył w przód pociągu, a dopiero później w jego tył (linia świata pasażera jest na rysunku zakreskowana, jest to zarazem jego oś czasu). Skoro równoczesność dwóch zdarzeń zależy od układu odniesienia, to znaczy, że czas absolutny nie istnieje. Wbrew pozorom nie burzy to jednak naszych koncepcji przyczyny i skutku. Musimy tylko precyzyjnie opisywać zdarzenia, podając ich położenie oraz czas. Zdarzenia takie, jak jednoczesne uderzenia dwóch piorunów w dwóch różnych punktach nie są z pewnością połączone związkiem przyczynowo-skutkowym, ponieważ wymagałoby to oddziaływania przenoszącego się natychmiastowo, z nieskończoną prędkością. Wszystkie zaś oddziaływania fizyczne mogą przenosić się co najwyżej z prędkością światła w próżni. Dlatego zmiana kolejności czasowej obu uderzeń pioruna nie burzy fizyki. Jeśli natomiast jakieś zdarzenie A może potencjalnie być przyczyną innego zdarzenia B, to dla każdego obserwatora ich kolejność czasowa będzie taka sama: t_A<t_B. Obalenie koncepcji absolutnego czasu nie oznacza zatem wprowadzenia anarchii w relacjach czasoprzestrzennych, lecz zaprowadzenie innego ładu niż dotąd.

Był to najważniejszy wniosek Einsteina. Oznaczał konieczność przebudowy samych podstaw fizyki: pojęć czasu i przestrzeni. Okazywało się, że teoria Maxwella zgodna jest z teorią względności, nie wymaga więc żadnej przebudowy. Przeciwnie, fikcyjny czas lokalny Lorentza należy interpretować jako czas rzeczywisty mierzony przez innego obserwatora. Póki znajdujemy się w jednym ustalonym układzie inercjalnym czas wydaje nam się absolutny. Rewolucja dotyczyła porównywania wyników pomiarów dokonywanych przez różnych obserwatorów. W przypadku elektrodynamiki oznaczało to względność pól elektrycznych i magnetycznych. Jeśli np. w jednym układzie odniesienia mamy spoczywający ładunek wytwarzający pole elektryczne, to w innym układzie ładunek ten będzie się poruszać – będziemy więc mieli do czynienia z prądem, i obserwować będziemy zarówno pole elektryczne, jak i magnetyczne. Oba wektory pola elektromagnetycznego stanowią więc z punktu widzenia teorii względności jedną całość, jeden obiekt matematyczny, którego składowe w różnych układach są różne, podobnie jak składowe zwykłego wektora w różnych układach współrzędnych.

Równania Maxwella są takie same w każdym układzie inercjalnym, więc i prędkość fali świetlnej będzie w każdym układzie taka sama. Większej przebudowy wymagała mechanika. Jej newtonowska wersja nadal pozostaje słuszna, gdy ciała poruszają się wolno w porównaniu do prędkości światła. Najważniejszą konsekwencją nowej mechaniki stało się słynne równanie E=mc^2, które pozwala zrozumieć m.in. reakcje, w których powstają albo giną cząstki, oraz skąd gwiazdy czerpią energię na świecenie przez miliardy lat.

Szczególna teoria względności rozwiązywała problemy, które od lat uciążliwie towarzyszyły fizykom, choć były one głównie natury pojęciowej. Można było na co dzień nie zaprzątać sobie głowy ruchem Ziemi w eterze i uprawiać fizykę tak, jakby Ziemia była nieruchoma. Także narzędzia do rozwiązania owych problemów zostały już wypracowane, głównie przez Lorentza i Poincarégo, Einstein je tylko radykalnie zreinterpretował. Pierwszy z fizyków pogodził się z sytuacją i zaprzyjaźnił z Einsteinem, drugi starał się ignorować prace młodszego kolegi (być może zresztą jego stosunek do Einsteina uległby z czasem zmianie, Poincaré zmarł w roku 1912, a więc przed stworzeniem ogólnej teorii względności). Ostatecznie elektrodynamika ciał w ruchu przeszła do historii, a podstawą fizyki stała się szczególna teoria względności.
Natomiast jej uogólnienie, czyli Einsteinowska teoria grawitacji, było praktycznie dziełem jednego tylko autora, stworzonym w latach 1907-1915.

Pojęciowym punktem wyjścia była prosty eksperyment myślowy: obserwator swobodnie spadający w polu grawitacyjnym nie będzie odczuwał grawitacji – będzie w stanie nieważkości, dziś dobrze znanym z lotów kosmicznych. Einstein uznał tę obserwację za „najszczęśliwsza myśl swego życia”. Z punktu widzenia fizyki Newtonowskiej istnieją dwa rodzaje masy: grawitacyjna i bezwładna. Pierwsza określa siłę, z jaką na ciało będzie oddziaływać grawitacja. Druga określa przyspieszenie ciała. Ponieważ obie te masy są jednakowe, więc przyspieszenie dowolnego ciała w danym polu grawitacyjnym jest takie same. Ilustruje to się czasem, demonstrując spadanie różnych ciał w rurze próżniowej. Obie masy skracają się zawsze, kiedy obliczamy przyspieszenie. Zdaniem Einsteina należało tę tożsamość wbudować w strukturę fizyki, zamiast ją tylko postulować jako dodatkowy warunek. Uczony sformułował zasadę równoważności pola grawitacyjnego i przyspieszenia. Znajdując się w zamkniętej kapsule, nie potrafilibyśmy odróżnić, czy nasza kapsuła porusza się ruchem przyspieszonym, czy spoczywa w polu grawitacyjnym (możliwe byłyby także kombinacje obu stanów). Grawitacja jest więc w fundamentalny sposób związana z bezwładnością. Einstein dążył do stworzenia teorii, która objaśniałaby jednocześnie grawitację oraz bezwładność. Argumentował przy tym, że układy inercjalne są sztucznym ograniczeniem dla fizyki, powinniśmy więc dopuścić także układy przyspieszone, nieinercjalne. Podobnie jak w szczególnej teorii względności każda prędkość ma zawsze charakter względny, w teorii uogólnionej także przyspieszenie miało stać się pojęciem względnym. Nawiązywał tu do rozważań Ernsta Macha, który sądził, że przyspieszenie jest względne. W swoim czasie Isaac Newton posłużył się przykładem wiadra z wodą wirującego na skręconym sznurze. Gdy wiadro przekaże ruch wirowy wodzie, jej powierzchnia staje się wklęsła, co jest skutkiem sił odśrodkowych. Możemy w ten sposób stwierdzić, czy woda wiruje względem absolutnej przestrzeni. Zdaniem Macha eksperyment ten dowodzi tylko tego, że woda obraca się względem dalekich gwiazd. Gdyby to owe gwiazdy zaczęły się obracać, skutek byłby ten sam, a przestrzeń absolutna nie istnieje.

Droga Einsteina do ogólnej teorii względności była zawikłana, lecz z perspektywy roku 1921 jej struktura matematyczna została już wyjaśniona. Rolę układów inercjalnych odgrywały teraz swobodnie spadające układy odniesienia. Obserwator znajdujący się w jednym z nich może stosować szczególną teorię względności. Różnica fizyczna między obiema teoriami polega jednak na tym, że szczególną teorię względności stosować można jedynie lokalnie. Nawet bowiem w spadającym swobodnie laboratorium można wykryć niewielkie zmiany przyspieszenia między różnymi jego punktami – są to siły przypływowe (poznane historycznie na przykładzie zjawiska przypływów i odpływów w oceanach, które są z różnymi siłami przyciągane grawitacyjnie przez Księżyc oraz Słońce). Oznacza to, że nie można wprowadzić jednego układu inercjalnego dla całego wszechświata, można tylko wprowadzać je lokalnie. Matematycznie rzecz biorąc, różnica między teorią ogólną i szczególną polega na geometrii: zakrzywionej w pierwszym przypadku, płaskiej w drugim. Einstein posłużył się czterowymiarowym sformułowaniem swej teorii szczególnej podanym przez Hermanna Minkowskiego. Czas i przestrzeń stanowią tu pewną całość, czasoprzestrzeń. W przypadku dwuwymiarowym w każdym punkcie powierzchni możemy zbudować płaszczyznę styczną. Jest ona zarazem dobrym przybliżeniem geometrii w otoczeniu danego punktu: w taki sposób posługujemy się planami miast, mimo że Ziemia nie jest płaska.

Teorię dwuwymiarowych powierzchni zawartych w trójwymiarowej przestrzeni zbudował Karl Friedrich Gauss. Zauważył przy tym, że wystarczy posługiwać się wielkościami dostępnymi bez wychodzenia poza powierzchnię. Można np. w ten sposób ustalić, czy jest ona zakrzywiona. Podejście Gaussa uogólnił później Bernhard Riemann, a inni matematycy rozwinęli je w systematyczne procedury dla powierzchni o dowolnej liczbie wymiarów.

W geometrii Riemanna współrzędne można wybrać w sposób dowolny, w przypadku zakrzywionych przestrzeni nie istnieje na ogół żaden szczególnie prosty układ współrzędnych, który mógłby odegrać taką rolę jak współrzędne kartezjańskie w przestrzeni euklidesowej. Nadal decydującą rolę odgrywa tu pojęcie odległości. Dla pary bliskich punktów możemy ją zawsze obliczyć w sposób euklidesowy, a długość dowolnej krzywej uzyskać przez sumowanie takich elementarnych odległości. Zamiast równania ds^2=dx^2+dy^2 na płaszczyźnie, mamy teraz równanie nieco bardziej skomplikowane

ds^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2.

Geometrię przestrzeni określa więc zbiór funkcji g_{\mu\nu} pozwalających obliczyć odległość punktów. Funkcje g_{\mu\nu} noszą nazwę tensora metrycznego (albo metryki). Można za ich pomocą wyrazić wszelkie własności geometryczne danej przestrzeni. W przypadku dwuwymiarowym wystarczą trzy takie funkcje, w przypadku czterowymiarowym należy znać ich dziesięć.

W zakrzywionej przestrzeni nie ma linii prostych, można jednak znaleźć ich odpowiedniki. Są to linie geodezyjne (albo geodetyki). Mają one niektóre własności linii prostych w geometrii euklidesowej: są np. najkrótszą drogą łączącą dwa punkty. Krzywe geodezyjne w teorii Einsteina są liniami świata cząstek poruszających się pod wpływem grawitacji. Metryka określa więc, jak poruszają się cząstki – grawitacja nie jest z punktu widzenia Einsteina siłą, lecz własnością czasoprzestrzeni. Należy dodać, że inne rodzaje sił działających na dane ciało sprawią, że przestanie się ono poruszać po geodezyjnej. Jedynie grawitacja wiąże się tak ściśle z geometrią. Jest to zgodne z faktem, że grawitacja jest powszechna, tzn. dotyczy wszystkich cząstek, a także działa na wszystkie w taki sam sposób – dzięki czemu można ją opisać jako własność czasoprzestrzeni. W teorii Einsteina nie potrzeba osobnej masy grawitacyjnej i bezwładnej.

Znając metrykę czasoprzestrzeni, możemy wyznaczyć geodezyjne, czyli obliczyć, jak poruszają się ciała pod wpływem grawitacji. Są to równania ruchu, zastępujące zasady dynamiki Newtona. Aby jednak wyznaczyć metrykę, potrzebne są równania, które musi ona spełniać. Są to równania pola, największe osiągnięcie Einsteina jako fizyka. Przystępując do pracy nad ogólną teorią względności uczony wiedział jedynie, że powinna ona zawierać teorię szczególną a także Newtonowską teorię grawitacji. Równania pola powinny mieć postać znaną z teorii Maxwella: (pewne kombinacje pochodnych pól)=(źródła pola). W przypadku grawitacyjnym źródłem powinna być masa, ale to także znaczy: energia. W teorii szczególnej opisuje się energię i pęd zbioru cząstek jako tensor energii pędu T_{\mu\nu}, zbiór dziesięciu wielkości danych w każdym punkcie czasoprzestrzeni. Masy powinny decydować o krzywiźnie czasoprzestrzeni. Zatem po lewej stronie równań pola powinna znaleźć się wielkość informująca o krzywiźnie. Okazuje się, że praktycznie jedyną możliwością jest tu tzw. tensor Einsteina, G_{\mu\nu} zbiór dziesięciu pochodnych metryki. Równania muszą więc przybrać postać

G_{\mu\nu}=\kappa T_{\mu\nu}.

gdzie \kappa jest odpowiednio dobraną stałą związaną ze stałą grawitacyjną. Sama postać zapisu tych równań zapewnia, że możemy w dowolny sposób wybrać współrzędne, a równania nadal pozostaną słuszne. Znalezienie prawidłowych równań pola pod koniec listopada 1915 roku zakończyło odyseję Einsteina: ogólna teoria względności została zbudowana.

Jeszcze w listopadzie 1915 roku uzyskał Einstein dla swej teorii pierwsze potwierdzenie obserwacyjne. Obliczył bowiem wielkość obrotu orbity Merkurego wokół Słońca – niewielkiej rozbieżności między obserwacjami a teorią Newtona nie udawało się wyjaśnić od półwiecza. Teraz okazało się, że przyczyną rozbieżności było niedokładne prawo grawitacji. Przewidział też Einstein, że promienie gwiazd biegnące blisko powierzchni Słońca powinny uginać się o kąt 1,74’’. Efekt ten został w roku 1919 potwierdzony podczas całkowitego zaćmienia Słońca przez dwie ekspedycje brytyjskie. Teoria grawitacji Einsteina okazała się ogromnym sukcesem, jest powszechnie uważana za najpiękniejszą teorię w fizyce. Nie wszystko jednak poszło po myśli jej twórcy. Okazało się np., że choć wprawdzie grawitacja i bezwładność zostały ze sobą zespolone, to nie udało się jednak zrealizować idei Macha. W teorii Einsteina wirowanie całego wszechświata jest czym innym niż wirowanie wiadra Newtona. Einstein z pewnym uporem trzymał się zasady Macha nawet wówczas, gdy wykazano, że nie obowiązuje ona w jego teorii. Wbrew przewidywaniom twórcy grawitacja może prowadzić do zapadania się materii i tworzenia czarnych dziur, w których zamknięta jest osobliwość czasoprzestrzeni. Einstein zmieniał w ciągu swej późniejszej kariery zdanie na temat tego, czy istnieją fale grawitacyjne: początkowo je przewidywał, później nabrał wątpliwości. Jego początkowe przybliżone podejście okazało się słuszne i fale grawitacyjne zostały odkryte w roku 2015.

Einstein dadaista (1919-1920)

Przyjmowanie nowej prawdy naukowej to proces dramatyczny. Grają w nim rolę emocje, ambicje, przesądy, ale na szczęście także racjonalne przesłanki – na dłuższą metę nie da się utrzymać teorii, która nie ma eksperymentalnych potwierdzeń i dzięki której nie udało się zrozumieć niczego nowego. Teoria względności zyskała efektowne potwierdzenie w roku 1919 i Albert Einstein nagle stał się sławny na cały świat.

Artystka awangardowa Hannah Höch umieściła go na sławnym kolażu Cięcie dadaistycznym nożem kuchennym przez piwny brzuch najnowszej epoki weimarskiej w kulturze Niemiec (1919).

Hannah Höch, Cut with the Kitchen Knife Dada Through the Last Weimar Beer-Belly Cultural Epoch of Germany, 1919-20

Obrazek na flickr zawiera identyfikację niektórych postaci kolażu. A tu jest jego większa wersja:

https://www.artsy.net/artwork/hannah-hoch-cut-with-the-dada-kitchen-knife-through-the-last-weimar-beer-belly-cultural-epoch-in-germanyc

Na prawo od Einsteina mamy nieco pokiereszowaną twarz cesarza Wilhelma II, który abdykował po przegranej wojnie i uciekł do Holandii, pod nim fragment fotografii z manifestacji bezrobotnych. Są także Karol Marks i Lenin, niemieccy komuniści i artyści. Obok Einsteina głowa prezydenta Republiki Weimarskiej Friedricha Eberta doklejona do torsu tancerki topless. W prawym dolnym rogu znajduje się główka autorki na tle mapy Europy z zaznaczonymi krajami, w których kobiety nie mają jeszcze prawa głosu (Francja, Portugalia, Bałkany; Polska znalazła się tu chyba przez pomyłkę). Einstein – Żyd i naukowy rewolucjonista – niemal automatycznie łączony był z lewicą społeczną i artystycznym undergroundem. Wciąż zapowiadano jego wyjazd do Moskwy, gdzie nigdy nie był ani się też nigdy nie wybierał. Jeszcze po drugiej wojnie światowej FBI usiłowało ustalić, czy uczony był członkiem partii komunistycznej w Niemczech (nie był, nie był też żadnym sympatykiem komunizmu), przeszukiwano jego śmieci i podsłuchiwano telefon.

W roku 1919 fizyk nieoczekiwanie znalazł się w centrum zainteresowania mediów. Jego teoria zaczęła ściągać na siebie entuzjazm albo oburzenie, które trudno dziś zrozumieć. Jako element kultury masowej zaczęła być krytykowana, objaśniana bądź zwalczana przez ludzi, którzy nie mieli pojęcia o fizyce. Z jakiegoś powodu wszyscy zapragnęli mieć na jej temat własny pogląd. Szczególnie bulwersowała względność czasu: oto nie płynie on jednakowo dla wszystkich i zamiast być solidną podstawą rzeczywistości sam staje się jeszcze jednym zjawiskiem, kolejną zmienną fizyczną, podlegającą pomiarowi. Czas własny mierzony przez dwóch obserwatorów, którzy rozdzielili się i potem ponownie spotykają, zależy od ich historii, od tego, co im się po drodze przydarzyło, obaj na ogół zmierzą inny odstęp czasu pomiędzy spotkaniami. Jest to paradoks bliźniąt – w istocie żaden paradoks, lecz własność naszego świata sprawdzana tysiące razy eksperymentalnie, choć nie na bliźniakach.

W Niemczech publiczna dyskusja na temat teorii względności od początku zatruta była oparami nacjonalizmu: Żyd Einstein dla niektórych nie był dość narodowoniemiecki, toteż nie mógł mieć racji. Intelekt żydowski różni się bowiem od germańskiego: jest powierzchowny, nie zgłębia istoty rzeczy, tworzy sztuczne uogólnienia, lubuje się w abstrakcjach. Żydzi w Niemczech stanowili zaledwie 1% ludności, lecz spośród nich wywodziła się wielka część wybitnych uczonych, w miastach takich jak Berlin większość prawników i lekarzy było pochodzenia żydowskiego, do Żydów należały wielkie domy towarowe i koncerny prasowe. Konstytucję Republiki Weimarskiej napisał Żyd. Z punktu widzenia nacjonalistów to Żydzi stali za przegraną wojną (teoria noża w plecy) i to oni teraz bogacili się w kapitalistycznej gospodarce. Nawet komunistami, buntującymi się przeciwko kapitalizmowi, też często byli Żydzi.

W życiu politycznym jest mniej przypadków, niż się sądzi. Osoba Einsteina była wygodnym celem ataków: żeby wzbudzić wrogość, trzeba najpierw stworzyć postać wroga, wykazać, jak przebiegłe są jego knowania. Paul Weyland, zawodowy hochsztapler i mąciciel, umyślił sobie, że przeprowadzi całą kampanię przeciwko teorii względności i jej autorowi. Założył coś, co nazywało się Grupą Roboczą Niemieckich Przyrodników dla Zachowania Czystej Nauki (Arbeitgemeinschaft
deutscher Naturforscher zur Erhaltung reiner Wissenschaft). Naprawdę istniał chyba tylko ten szyld oraz pieniądze, które Weyland obiecywał różnym uczonym za wzięcie udziału w zwalczaniu teorii względności – 10 do 15 tys. marek – nie wiadomo, czy ktoś ostatecznie otrzymał taką sumę, czy też Weyland dopiero zamierzał ją zarobić. Jak się zdaje, Weyland zachęcany był przez dwóch noblistów, antysemitów i nacjonalistów: Philippa Lenarda i Johannesa Starka. W sierpniu 1920 roku w wielkiej sali Filharmonii Berlińskiej odbył się pierwszy z zapowiadanej serii antyeinsteinowskich sabatów. Wystąpili na nim sam Weyland oraz profesor eksperymentator z Berlina, Ernst Gehrcke, od lat zwalczający teorię względności. Weyland, określający Einsteina jako naukowego dadaistę, następująco przedstawił sytuację Niemiec:

Teraz, gdy zubożeliśmy pod względem finansowym, prowadzi się działania mające nam odebrać naszą własność  intelektualną; od dziś mamy przestać myśleć w sposób niezależny. W polityce to się im udało. Widzicie to każdego dnia i każdej godziny we wszystkich wiadomościach, jak oszalała grupa bezkrytycznych ludzi pod wodzą pozbawionych  skrupułów i egoistycznych przywódców zmierza do bolszewizmu. Etyka i moralność stały się pustymi słowami, ludzie, którzy starają się zabić w Niemcach wszystko, co czyniło ich wielkimi, teraz chcą im odebrać także naukę. (…) Bo konsekwencje i intencje teorii względności i zasady względności Einsteina i jego zwolenników sięgają dalej i głębiej, niż uświadamia to sobie opinia publiczna.

Niewykluczone, że Weyland starał się po prostu zarobić na biletach wstępu na owo przedstawienie. Zjawiło się sporo publiczności, w tym sam Einstein. Gehrcke przedstawił główne tezy swej broszury: Teoria względności – naukowa sugestia masowa, wydanej nakładem Grupy Roboczej jako pierwszy zeszyt serii. Gehrcke starał się ograniczać do argumentacji naukowej i żywo zaprzeczał, że kierują nim jakieś pozanaukowe względy. Przeświadczony był jednak, że zdemaskował rozmaite szalbierstwa Einsteina. Jego zdaniem Einstein sprytnie wykorzystywał fakt, że naukowcy ograniczeni są swoją specjalnością i stworzył teorię, która zawiera elementy filozofii, fizyki i matematyki tak pomieszane, że nikt nie czuje się dostatecznie kompetentny, aby ją zanegować.

Ernst Gehrcke. Einstein powiedział o nim: „ Gdyby miał tyle inteligencji co arogancji, to dyskusja z nim byłaby nawet przyjemna”.

Z rzeczy pozytywnych Gehrcke wierzył w istnienie eteru i wypowiedzi Einsteina na ten temat uważał za sprytne kluczenie oraz mylenie tropów. Rzeczywiście, był tu Einstein niekonsekwentny: najpierw, w szczególnej teorii, z młodzieńczą dezynwolturą stwierdził, że eter jest zbędny, później, w teorii ogólnej, obdarzył czasoprzestrzeń strukturą geometryczną, która w pewnym stopniu mogła przypominać eter. Nie była to jednak zmiana poglądów filozoficznych, lecz raczej podążanie za fizyką: fizyk nie może sobie zadekretować, że zawsze będzie trzymać się jakichś ram pojęciowych, bo przyroda może nie zechcieć z nim współpracować w tej kwestii. W każdym razie to, co dla kogoś innego byłoby naukowym namysłem, ewolucją poglądów wskutek wieloletniej pracy, w oczach Gehrckego stało się po prostu próbą oszustwa. Szczególnie upodobał sobie Gehrcke następujący argument przeciwko paradoksowi bliźniąt: skoro Einstein twierdzi, że wszystkie ruchy są względne, to obaj bliźniacy znajdują się w symetrycznej sytuacji, bo z każdym z nich można związać układ odniesienia (co jest prawdą, ale nie oznacza, że historie obu stają się dzięki temu symetryczne). Wiele też mówił Gehrcke o grawitacyjnym przesunięciu linii widmowych ku czerwieni, które było przewidziane przez Einsteina, lecz nie zostało zaobserwowane. Pomijał przy tym trudności obserwacyjne: przewidywany efekt był niewielki w porównaniu z szerokością typowych linii widmowych ciał niebieskich. Jako specjalista od optyki musiał to świetnie rozumieć, wolał jednak udawać, że obserwacje wyraźnie przeczą teorii względności. Także obserwacje Eddingtona – ugięcia promieni świetlnych w pobliżu Słońca – zbył pobieżnym omówieniem, jakby już fakt potwierdzenia niemieckiej teorii przez Anglika tuż po wojnie nie stanowił dodatkowego argumentu na rzecz Einsteina. Nikt nigdy nie kwestionował zresztą absolutnej uczciwości i prawdomówności kwakra Eddingtona. Milczał też Gehrcke na temat berlińskich zwolenników teorii względności: przede wszystkim Maksa Plancka, uchodzącego za największy autorytet nie tylko naukowy, ale i moralny, a także Maksa von Laue, noblisty i niewątpliwie „prawdziwego” Niemca. Postawa Gehrckego charakteryzowała się nienaukowymi uprzedzeniami, nawet jeśli pozornie prowadził on debatę ściśle naukową.

Ostatecznie z serii wykładów i wydawnictw nic nie wyszło. Inni naukowcy wycofali się z przedsięwzięcia, widząc, że nie przyniesie im ono chluby. Wycofał się też chyłkiem Philipp Lenard, który nawet poczuł się urażony tym, że jest wymieniany w kontekście tej sprawy – najwyraźniej wydawało mu się, że hipokryzja warta jest tyle samo co cnota.

Epizody tego rodzaju nie były na szczęście całą prawdą o nauce niemieckiej, ale też stanowiły coś więcej niż nieprzyjemne incydenty. Życie publiczne Niemiec przesiąknięte było nienawiścią i żądzą odwetu. W roku 1920 Niemcy nie były jeszcze skazane na powtórną wojnę i jej złowieszcze konsekwencje. Były jednak krajem wewnętrznie bardzo podzielonym. Podziały te z upływem lat rosły i po wieloletnim podżeganiu do nienawiści, po zimnej wojnie domowej z elementami przemocy, wykoleiły kraj zupełnie. Stało się to w latach trzydziestych, gdy gospodarka zaczęła już wychodzić z kryzysu. To najlepszy dowód, że Marks się mylił: ekonomia nie determinuje historii. Jeśli na nią wpływa, to w sposób pośredni, poprzez społeczne nastroje, a one zależą od wielu czynników, także irracjonalnych i trudnych do zmierzenia. W przypadku Niemiec wielką rolę odegrało poczucie upokorzenia przegraną wojną i jej wersalskimi następstwami. Hitler obiecywał lepszą przyszłość i jednocześnie wpędził Niemcy w wojnę, która musiała być przegrana – wystarczyło spojrzeć na mapę. Ale społeczeństwo powodowane resentymentem łatwo dało sobie wyperswadować, że w taki właśnie sposób uda się stworzyć potęgę kraju i zapewnić trwały pokój. Gdyby Niemcy nie cierpieli na ten chorobliwy, pełen kompleksów nacjonalizm, ich kraj stałby się mocarstwem dwadzieścia lat wcześniej w sposób pokojowy. Nacjonalizm nigdy nie jest lekarstwem, zawsze jest chorobą.