Richarda Feynmana droga do równania Schrödingera (1941)

Jeszcze w trakcie swoich studiów pierwszego stopnia w MIT (ukończył je w 1939 r.) Feynman dowiedział się o trudnościach elektrodynamiki kwantowej. Teoria taka była niezbędna do opisania oddziaływań przy większych energiach: kiedy mogą tworzyć się albo anihilować pary elektron-pozyton. Obliczenia prowadziły jednak do całek rozbieżnych, teoria wymagała nowego podejścia.

W swoim wykładzie noblowskim Richard Feynman opowiada o kilku ideach, które starał się rozwijać w trakcie swoich dalszych studiów w Princeton (na egzaminach wstępnych z fizyki uzyskał tam komplet punktów, co zdarzyło się po raz pierwszy). W roku 1942 r uzyskał doktorat pod kierunkiem Johna Archibalda Wheelera i niebawem zaczął pracę w Projekcie Manhattan.

Jednym z pomysłów Feynmana było nowe sformułowanie mechaniki kwantowej. Poszukiwał podejścia, w którym można by opisać, co dzieje się z cząstkami w czasoprzestrzeni. Chodziło mu o teorię relatywistyczną, w której opis taki wydaje się naturalny. Należało się spodziewać, że zamiast hamiltonianu pojawi się tu lagranżian cząstek (sformułowanie Lagrange’a mechaniki daje się łatwo zapisać w postaci jawnie kowariantnej, w której zgodność z teorią względności jest punktem wyjścia, a nie dodatkowym założeniem). Na początek udało mu się sformułować w nowy sposób „starą” mechanikę kwantową, która liczyła wprawdzie dopiero piętnaście lat, lecz dla młodego człowieka była to już prehistoria. Właśnie to sformułowanie znalazło się w doktoracie.

Punktem wyjścia była rozmowa z Herbertem Jehle w „Nassau Inn” w Princeton któregoś wieczoru. Jehle, Niemiec, syn generała, był kwakrem i pacyfistą, wyemigrował z nazistowskiej ojczyzny, pracował w Brukseli, w końcu trafił do obozu internowania w Gurs w Pirenejach w republice Vichy, skąd trafił do Stanów Zjednoczonych. Jehle znał pewną pracę Paula Diraca, w której pojawiał się lagranżian. Nazajutrz wybrali się obaj do biblioteki, aby odszukać tę pracę z 1933 roku. Była ona opublikowana w dość nieprawdopodobnym miejscu, bo w rosyjskim czasopiśmie „Physikalische Zeitschrift der Sowjetunion”.

Dirac pisze, jak znaleźć funkcję falową w chwili późniejszej t+\varepsilon z funkcji falowej w chwili t, korzystając z zasady Huygensa:

\psi(x,t+\varepsilon)={\displaystyle \int G(x,y)\psi(y,t)dy}.

Funkcja G(x,y) jest dziś zwana propagatorem cząstki. Funkcja falowa w późniejszym czasie jest więc sumą funkcji falowych w czasie wcześniejszym wziętą z odpowiednimi wagami – wagi te opisuje propagator. Angielski uczony stwierdził też, że propagator dla krótkich czasów „odpowiada” (corresponds to) wyrażeniu

e^{iL \varepsilon /\hbar},

gdzie L jest lagranżianem, \hbar – stałą Plancka. W wykładniku mamy tu działanie dla bardzo krótkiego czasu \varepsilon. Feynman spróbował natychmiast ustalić, co oznacza owa odpowiedniość. Jeśli wziąć dwa punkty x i y, to średnia prędkość cząstki powinna się równać

v=\frac{x-y}{\varepsilon},

a energia potencjalna powinna być także jakąś wartością średnią:

V=V(\frac{x+y}{2}).

Lagranżian to różnica energii kinetycznej i potencjalnej, a więc wyrażenie wykładnicze Diraca jest równe:

\exp\left(\frac{im(x-y)^2}{2\hbar\varepsilon}-\frac{i}{\hbar}V(\frac{x+y}{2})\varepsilon\right).

Dla niewielkich \varepsilon pierwszy składnik wykładnika będzie gwałtownie oscylował, drugi natomiast staje się coraz mniejszy i może być zastąpiony przybliżeniem liniowym. Oznaczając x-y=\xi i przyjmując, że „odpowiada” u Diraca znaczy „jest proporcjonalny”, mielibyśmy

\psi(x,t+\varepsilon) =A(\varepsilon) {\displaystyle \int \exp\left(\dfrac{im\xi^2}{2\varepsilon\hbar}\right)\left\{ 1-\dfrac{i}{\hbar}V(x-{\xi}/{2})\right\}\psi(x-\xi)d\xi}.

Ponieważ pierwszy czynnik pod całką gwałtownie oscyluje, więc możemy funkcję falową pod całką przybliżyć jej rozwinięciem Taylora wokół x:

\psi(x-\xi)\approx \psi(x)-\xi \dfrac{\partial \psi}{\partial x}+\dfrac{\xi^2}{2}\dfrac{\partial^2\psi}{\partial x^2}.

Także energię potencjalną możemy zamienić jej wartością w punkcie x. Całki po prawej stronie dają się w tym przybliżeniu bez trudu obliczyć i otrzymujemy:

\psi(x,t+\varepsilon)=\psi(x,t)-\dfrac{i\varepsilon }{\hbar}V(x)\psi(x,t)+\dfrac{i\hbar \varepsilon}{2m}\,\dfrac{\partial^2\psi}{\partial x^2}.

Możemy to równanie przekształcić do postaci

i\hbar \dfrac{\psi(x,t+\varepsilon)-\psi(x,t)}{\varepsilon}=-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi}{\partial x^2}+V(x)\psi(x,t),

co w granicy \varepsilon\rightarrow 0 przechodzi w równanie Schrödingera.

Jak opowiada Feynman, obliczenie to wykonał od razu w obecności Jehlego, który pilnie notował kolejne kroki.
Był to punkt wyjścia do całek Feynmana po trajektoriach (albo po historiach cząstki – jak nazwał to John Wheeler). Wyobraźmy sobie bowiem, że dany przedział czasu (0,T) dzielimy na N+1 podprzedziałów o długości \varepsilon każdy.

Propagator cząstki przyjmuje postać:

G(x,y)=A^{N+1}{\displaystyle \int\ldots\int \exp(\frac{i\varepsilon}{\hbar}(L(y,x_1)+L(x_1,x_2)+\ldots+L(x_N,x))dx_1\ldots dx_N}\mbox{(*)}.

Jeśli wyobrazimy sobie, że N\rightarrow\infty, to wykładnik w funkcji wykładniczej będzie dążył do całki działania pomnożonej przez czynnik i/\hbar:

\dfrac{i}{\hbar}S={\displaystyle \frac{i}{\hbar}\int_0^T L\left(x,\frac{dx}{dt}\right)dt}.

Mamy więc procedurę obliczania wartości G(x,y) za pomocą sumy po różnych możliwych trajektoriach. G można zinterpretować fizycznie: kwadrat modułu tej zespolonej wartości jest prawdopodobieństwem, że cząstka z punktu czasoprzestrzeni (y,0) przemieści się do punktu (x,T). Po drodze „próbuje” ona niejako wszelkich możliwych trajektorii i każda z nich daje wkład proporcjonalny do wartości działania:

G(x,T|y,0) \sim {\displaystyle \sum_{trajektorie}e^{iS[trajektoria]/\hbar}}.

Zapisujemy to następująco:

G(x,T|y,0)= {\displaystyle \int e^{iS[x(t)]/\hbar}{\mathcal D}[x(t)]}.

Całka Feynmana jest w istocie granicą wyrażeń (*) i w celu obliczenia jej wartości musimy wracać do tej definicji. Okazuje się jednak, że sformułowanie to pozwala nie tylko spojrzeć inaczej na znaną fizykę, ale także umożliwia konkretne numeryczne obliczenia metodą Monte Carlo. Pozwala też łatwo zrozumieć, czemu przechodząc od fizyki kwantowej do klasycznej, otrzymujemy zasadę najmniejszego działania.

Wartości potrzebnych całek wynikają ze znanego wzoru:

{\displaystyle \int_{-\infty}^{\infty}e^{-\alpha x^2}dx=\sqrt{\dfrac{\pi}{\alpha}} }.

Jest on słuszny także dla czysto urojonych wartości \alpha. Różniczkowanie tego wzoru po \alpha generuje nam także całkę \int x^2 e^{-\alpha x^2} dx. Stała A równa jest

A=\sqrt{\dfrac{m}{2\pi i\hbar \varepsilon}}.

Kiedyś napiszę może trochę więcej na temat obliczania całek przez Feynmana, nieprzypadkowo zajmował się on w Los Alamos nadzorowaniem praktycznych obliczeń numerycznych – jak mało kto potrafił bowiem szybko obliczyć niemal wszystko, co daje się obliczyć metodami klasycznej analizy.

 

Reklamy

Galileo Galilei, Dialog o dwu najważniejszych układach świata, 1632 (2/2)

Galileuszowy Dialog rozgrywa się w pałacu Sagreda w Wenecji, dokąd przybywają na dyskusję Filippo Salviati i Simplicio (pedanterią byłoby w tym miejscu wytykanie autorowi, że Sagredo i Salviati nigdy się nie spotkali). Ich wymiana myśli odbywa się więc nie później niż w roku 1614, kiedy obaj przyjaciele uczonego jeszcze żyli, a więc przed ogłoszeniem dekretu Kongregacji Indeksu w sprawie Kopernika, w czasie gdy swobodna dyskusja była jeszcze możliwa. Rozmowy podzielone są na cztery kolejne dni i nie zawsze trzymają się ściśle wyznaczonego tematu. Przydaje to Dialogowi naturalności, a autorowi stwarza okazję, aby zatrącić o pewne kwestie, nie trzymając się zawsze ustalonego porządku. Ten pozorny chaos Galileuszowych dyskusji był zamierzony, choć niektórzy czytelnicy czuli się z tego powodu zagubieni. Osobisty ton rozważań miał do odegrania niezwykle ważną rolę: czytelnik uświadamia sobie, że zwolennicy nowej kosmologii nie są jakimiś ignorantami czy szaleńcami, wręcz przeciwnie: znają większość tradycyjnej nauki i argumentów geocentrycznych, lecz odrzucają je po dojrzałym namyśle. Salviati jest Simpliciem, który nauczył się matematyki, przemyślał swoje poglądy i opanował wiele nowych idei. Sagredo, mając do wyboru argumenty tradycjonalistów i nowe idee, przychyla się z reguły do tych nowych, nie dlatego wszakże, że są nowe, lecz dlatego, że lepiej objaśniają świat, kiedy im się przyjrzeć bez uprzedzeń. Największą wartością Dialogu był właśnie pewien eksperyment poznawczy: wyobrażenie sobie świata na wzór kopernikański i rozważenie różnych tego konsekwencji. Okazuje się, że nie tylko można być zwolennikiem Kopernika, nie tracąc zdrowego rozsądku, ale że nie sposób już być konsekwentnym zwolennikiem Ptolemeusza. Galileusz sprowadził rozważania do ostrej dychotomii: albo Ptolemeusz, albo Kopernik. Pominął całkiem układ Tychona, choć można twierdzić, że z jego punktu widzenia rozwiązanie Tychona nic nie wnosiło, zajmował się bowiem głównie pytaniem, czy Ziemia jest planetą i się porusza, a w tej kwestii duński astronom był równie konserwatywny jak starożytni Grecy.

Giovanni Francesco Sagredo (Ashmolean Museum)

Pierwszy dzień rozmów poświęcony jest tematowi jedności materii we wszechświecie. Wedle Arystotelesa niebiosa zbudowane są z eteru, takie też stanowisko obowiązywało w zasadzie jezuitów, choć, jak pamiętamy, ich największy teolog, Bellarmin, prywatnie uważał, że niebiosa mogą być z ognia. Tak czy inaczej, zwolennicy tradycji nie chcieli żadną miarą uznać, aby Ziemia miała w czymś przypominać ciała niebieskie. Galileusz przede wszystkim pokazuje, że powszechnie znane i nauczane na uniwersytetach argumenty Arystotelesa są nic niewarte. Poprawia zresztą greckiego filozofa z upodobaniem niemal w każdej sprawie. Gdy Simplicio, który jest skarbnicą książkowych mądrości, przytacza opinię Arystotelesa, że ciała mają trzy wymiary: długość, szerokość i głębokość, gdyż liczba trzy jest doskonała, Salviati zauważa natychmiast, że nie ma czegoś takiego jak doskonałość sama przez się, gdyż doskonałość służy zawsze jakiemuś celowi: zwierzęta np. mają parę nóg albo cztery nogi, a nigdy trzy. Co do geometrii, proponuje inny sposób podejścia. Można bowiem z dowolnego punktu wytyczyć trzy wzajemnie prostopadłe proste. Simplicio nie całkiem rozumie, czemu akurat trzy – winę ponosi tu jego brak edukacji matematycznej. Galileusz nie wiedział, że mogą istnieć geometrie wielowymiarowe, ale jego podejście zadowoliłoby współczesnego fizyka: wymiar przestrzeni należy do faktów empirycznych i określamy go sprawdzając, jaki rodzaj geometrii stosuje się do przestrzeni. I oczywiście doskonałość liczby trzy nie ma tu nic do rzeczy.

U Arystotelesa kierunki do góry i w dół miały sens absolutny i związane były z elementami ognia i powietrza – naturalnie wznoszącymi się w górę, oraz wody i ziemi – naturalnie spadającymi w dół. Z eterem związany był ruch kolisty – co objaśniać miało wieczność i niezmienność świata nadksiężycowego. Galileusz kwestionuje te rozumowania, zawierające jako założenie to, czego się dopiero chce dowieść. „Wszystko to wygląda tak, jakby celem Arystotelesa było przemieszanie nam kart w ręku i dostosowanie planu architektonicznego do świata już zbudowanego, a nie budowanie świata wedle wskazań architektury. Jeżeli bowiem oświadczę, że we wszechświecie istnieć mogą tysiące ruchów kołowych, a co za tym idzie, tysiące ośrodków, to otrzymamy też wówczas tysiące ruchów w górę i w dół” – stwierdza Sagredo. Uczony rozmontowuje i unieszkodliwia krok po kroku całą arystotelesowską machinę argumentów, stanowiącą wówczas podstawową wiedzę, jaką wynosiło się z uniwersytetów. Trudno sobie wyobrazić, aby zadania tego podjął się ktoś przepełniony respektem dla instytucji akademickich. Galileusz nie mógł zniszczyć tradycyjnej kosmologii w sposób łagodny, operacja ta musiała też wywoływać reakcje obronne u tych, którzy wychowali się w arystotelesowskiej wierze. Nie doceniamy dziś siły tamtej tradycji i Dialog nie wywołuje już u nas wstrząsu intelektualnego, wtedy jednak chodziło o zakwestionowanie całego systemu wyjaśniania i wyobrażania sobie świata.

W niektórych założeniach Galileusz nie odbiega jednak od Arystotelesa: obaj uważali świat za doskonale uporządkowaną całość – po grecku „kosmos”. W kosmosie Arystotelesa ruchy prostoliniowe ograniczone były do bezpośredniego sąsiedztwa Ziemi, dlatego ruch prostoliniowy i naturalny musiał mieć początek i koniec. Także Galileusz wzdraga się przed ruchem prostoliniowym: „W dodatku zważmy, że ruch po linii prostej z natury swojej jest nieskończony, gdyż sama linia prosta jest nieskończona i nieokreślona. Jest więc niepodobieństwem, by coś ruchomego miało z przyrodzenia swego właściwość poruszania się po linii prostej, to jest do celu, którego nie sposób osiągnąć, ponieważ nie posiada on kresu. Jak zresztą sam Arystoteles bardzo słusznie zaznacza, przyroda nie nakreśla sobie zadań, które nie mogą być osiągnięte, i nie zwykła jest zmierzać tam, dokąd dojść nie można”. Widzimy, że droga do sformułowania I zasady dynamiki była jeszcze długa – Isaac Newton urodził się w roku śmierci Galileusza.

Chcąc, aby kosmos był uporządkowany, Galileusz zakłada w nim istnienie ruchów kołowych. W odróżnieniu od Arystotelesa uważa, że nie potrzebują one jednak żadnego poruszyciela, mogą trwać niezakłócone w nieskończoność. By wyjaśnić początek układu planetarnego, odwołuje się do swej hipotezy, w myśl której Stwórca wypuścił na początku planety z jednego punktu i spadały one ku Słońcu ruchem przyspieszonym aż do chwili, gdy każda osiągnęła przepisaną odległość od Słońca. Wówczas ich ruch zmienił kierunek na obiegowy, ale wartości ich prędkości się nie zmieniła. Kosmogonia w wydaniu Galileusza przypomina nieco jego własne eksperymenty, w których zmieniał on kierunek prędkości – np. po stoczeniu się kulki z równi pochyłej na płaski stół – i obserwował, że jej wartość pozostaje taka sama. Uczony traktował te spekulacje jako pewne uzupełnienie Platońskiego Timajosa, gdzie opowiedziana jest historia o zbudowaniu świata przez demiurga. Wyniki jego obliczeń zdawały się zgodne z danymi na temat planet. Matematyk Wielkiego Księcia nie mówił o siłach i ciężkości, tym bardziej ciężkości powszechnej, jego mechanika była kinematyką. Hipoteza kosmogoniczna Galileusza była później rozważana z całą powagą przez Isaaca Newtona, który zauważył, że grawitacja Słońca musiałaby zostać podwojona w chwili zmiany kierunku prędkości.

Sagredo pyta, czy prędkość nie mogłaby zostać nadana planecie w sposób skokowy, po co to spadanie i przechodzenie kolejnych prędkości? „Ja nie powiedziałem i nie śmiałbym twierdzić, że dla natury i Boga byłoby niemożliwe nadanie takiej, jak mówicie, prędkości, i to natychmiast. Twierdzę jedynie, że de facto natura tego nie czyni. Takie rozwiązanie stałoby poza naturalnym biegiem rzeczy, a więc należałoby do dziedziny cudów” – odpowiada Salviati. Galileusz podkreśla, że nie ogranicza w ten sposób boskiej wszechmocy, bada jedynie świat taki, jaki dany jest nam w doświadczeniu, tak a nie inaczej stworzony. Koronny zarzut wobec niego będzie oparty na niezrozumieniu natury działalności naukowej. Florentyńczyk czuł się badaczem kosmosu już stworzonego, zupełnie nie interesowały go pytania o atrybuty samego Stwórcy. Rozważając choćby niezobowiązująco, jak mógł powstać układ planetarny, ryzykował oskarżenie, że wkracza na teren zastrzeżony dla Księgi Rodzaju. Spekulacje na temat puszczenia w ruch machiny kosmicznej prowadził zresztą także Kartezjusz, katolik z pewnością nie mniej liczący się z głosem Kościoła niż Galileusz. W miarę poznawania praw ruchu nieuniknione były tego rodzaju spekulacje, zaglądające niejako Stwórcy przez ramię.

Rozumowania Arystotelesa nie miały wartości: „Ani Arystoteles, ani wy sami nigdy nie będziecie w stanie dowieść, że Ziemia de facto znajduje się w środku wszechświata. A jeżeli może być mowa o określeniu jakiegoś środka wszechświata, to okaże się, że raczej Słońce może być w nim umieszczone”. W trakcie dalszych rozważań Galileusz podkreśla, że nie sposób ustalić, czy wszechświat w ogóle ma jakiś środek. Słońce jest środkiem ruchu planet, nie znaczy to jednak wcale, że musi być zarazem środkiem całego wszechświata. Urzędowi czytelnicy ze Świętego Oficjum nie zwrócili bądź woleli nie zwracać uwagi na te stwierdzenia Dialogu i przypisano Galileuszowi pogląd, że Słońce jest w środku świata. Jeśli ani Ziemia, ani Słońce nie były środkiem, to pozostawała wizja Bruna i Kartezjusza: nieskończonego wszechświata z nieskończoną mnogością „środków” w postaci gwiazd okrążanych przez planety.

Kosmos Galileusza nie musi być niezmienny. Podobnie jak Ziemia nie byłaby doskonalsza, gdyby „była cała jednym rozległym piaszczystym pustkowiem czy kulą z jaspisu, czy też gdyby w czasie potopu zamarzły pokrywające ją wody, a ona stała się olbrzymim globem zlodowaciałym; gdyby na niej nic się nie rodziło, nic nie przeobrażało i nie zmieniało (…) Im bardziej zagłębiam się w niedorzeczność rozpowszechnionych pojęć, tym bardziej stają się one dla mnie lekkomyślne i bezsensowne. Czyż można sobie wyobrazić większą głupotę aniżeli nazywanie rzadkich kamieni, srebra i złota kosztownościami – a ziemi i błota marnościami? I jakże tym ludziom nie przychodzi tu na myśl, że jeśliby ziemia należała do takich rzadkości jak klejnoty i najcenniejsze metale, to nie znalazłby się książę, który by nie poświęcił worka diamentów i rubinów oraz czterech wozów złota, by mieć przynajmniej garść ziemi, wystarczającą do posadzenia w małym wazoniku jaśminu czy zasiania pomarańczy chińskiej, aby przyglądać się, jak wschodzi, rośnie, okrywa się pięknymi liśćmi, pachnącymi kwiatami, wdzięcznymi owocami. (…) Ci, którzy egzaltują się niezniszczalnością, niezmiennością itd., dochodzą, jak sądzę, do wypowiadania podobnych stwierdzeń jedynie dlatego, że w obawie przed śmiercią pragną przetrwać jak najdłużej”. Dla Galileusza Ziemia – taka, jaka jest – nie jest niedoskonała. Wcale nie przeszkadza mu myśl, że podobne do niej mogą być inne ciała niebieskie. Przekonanie, że cały kosmos ma służyć jedynie Ziemi i jej mieszkańcom, wkłada w usta Simplicia: „Dla wygody człowieka rodzą się konie, dla żywienia koni ziemia wydaje trawę, a obłoki dostarczają jej wody. Dla wygody i wyżywienia ludzi rodzą się trawy, zboża, owoce, zwierzęta, ptaki, ryby, i w ogóle, jeśli starannie zbadamy i zgłębimy wszystkie te rzeczy, dojdziemy do wniosku, że cel, ku któremu wszystko to zmierza, to potrzeba, pożytek, wygoda i przyjemność człowieka. A jaki pożytek mogłyby mieć dla rodzaju ludzkiego płody powstające na Księżycu czy na innej planecie? Bo chyba nie chcielibyście mnie przekonywać, że na Księżycu są również ludzie, korzystający z rodzących się na nim owoców; myśl taka bądź trąci bajką, bądź jest bezbożna”. Z argumentami tego rodzaju spotykał się Galileusz nie raz. Odpowiada, że nie wydaje mu się prawdopodobne, by na Księżycu byli ludzie, ale to jeszcze wcale nie oznacza, że nie może tam być żadnych zmian. Naszą wyobraźnię kształtują doświadczenia; ktoś, kto mieszkałby w lesie i nie znał żadnych zbiorników wodnych, nie potrafiłby sobie wyobrazić ryb ani statków przepływających oceany. Wrażliwość Galileusza jest raczej panteistyczna niż antropocentryczna: różnorodność i porządek w naturze są dla niego źródłem zachwytu, Stwórca w jego pojęciu nie ograniczył się tylko do zapewnienia bytu ludziom, lecz stworzył naturę godną podziwu i badania dla niej samej.

Simplicio opisuje swym rozmówcom Księżyc i wychodzi mu z rozumowań, że musi on być zrobiony ze szczególnie twardej i nieprzenikliwej materii. „Jakżeż piękny byłby ten materiał niebieski do budowania pałaców, jeśliby można było nabyć coś równie twardego i przezroczystego” – wzdycha Sagredo, po czym obaj z Salviatim zastanawiają się, czy mieszkańcy obijaliby się o te niewidzialne ściany, czy też nie – biorąc pod uwagę, że materia niebios jest także niedotykalna. Galileusz przedstawia argumenty za tym, że także Ziemia widziana z daleka byłaby podobna do Księżyca. Charakterystyczna jest jednak ostrożność, z jaką uczony przedstawia wnioski dotyczące tak odległych światów, jak dalekie planety – ostrożność ta bardzo kontrastuje z beztroską pewnością siebie wszystkich Simpliciów, z którymi przychodziło mu się stykać. Galileusz cały czas podkreśla, że rozumiemy bardzo niewiele. Wprowadza tu rozróżnienie poznania ekstensywnego i intensywnego. W sensie ekstensywnym zawsze skazani jesteśmy na znajomość drobnego ułamka tego, co jest we wszechświecie. „Ale biorąc pod uwagę drogę intensywną – o ile pojęcie intensywności oznacza intensywne, a więc doskonałe zrozumienie – umysł ludzki poznaje, zdaniem moim, niektóre zagadnienia tak doskonale i z taką absolutną pewnością, jaką posiada tylko przyroda. Takimi są właśnie czyste nauki matematyczne, a więc geometria i arytmetyka – w których rozum boży zna nieskończenie większą liczbę prawd – gdyż zna je wszystkie – jednak z tych niewielu znanych rozumowi ludzkiemu mieści się, według mnie, poznanie równe bożemu w obiektywnej pewności, gdyż dochodzi do zrozumienia zawartej w nich konieczności – a nie może chyba istnieć większa pewność aniżeli właśnie ta”. Ta piękna intuicja platońska stała się jednym więcej kamieniem obrazy dla sędziów uczonego. Warto zwrócić uwagę, że podobne przekonania nie były wyłączną własnością Galileusza: tak samo myśleli Kepler i Kartezjusz, i większość tych, którzy w XVII wieku stworzyli nowożytną naukę.

Dzień drugi Dialogu poświęcony jest kwestii ruchu obrotowego Ziemi wokół osi. Galileusz przytacza (ustami Sagreda) charakterystyczną anegdotę: „Byłem pewnego dnia w domu bardzo szanowanego w Wenecji lekarza. Jedni odwiedzali go ze względu na swoje studia, a inni przez ciekawość, by zobaczyć sekcję, przeprowadzaną ręką tego równie uczonego, jak sumiennego i zręcznego anatoma. Tego dnia właśnie zdarzyło się, że poszukiwał on miejsca, skąd biorą początek nerwy, na temat których toczy się sławny spór między lekarzami-galenistami i perypatetykami. Anatom pokazał, jak wielki pęk nerwów, wychodząc z mózgu i idąc przez potylicę, schodzi wzdłuż stosu pacierzowego, rozgałęziając się na całe ciało, tak że jedno tylko włókno, cieniutkie jak nić, dochodzi do serca. Zwracając się następnie do pewnego szlachcica, którego znał jako filozofa-perypatetyka i gwoli którego ze szczególną dokładnością odsłonił i zademonstrował to wszystko, zapytał go, czy mu to wystarcza i czy nabrał pewności, że nerwy biorą początek w mózgu, a nie w sercu, na co ów filozof po krótkim namyśle odpowiedział: «Pokazaliście mi to wszystko w sposób tak jasny i dotykalny, że gdyby tekst Arystotelesa, według którego nerwy powstają w sercu, nie był z tym sprzeczny, to musiałbym siłą rzeczy uznać wasze twierdzenie za prawdę»”. Galileusz uwielbiał dworować z niesamodzielności intelektualnej zwolenników Arystotelesa, którzy uznawali greckiego filozofa za wyrocznię we wszystkich sprawach, choć po części rozumiał, skąd się to bierze. Simplicio tłumaczy, że pisma Arystotelesa tworzą wspaniały, skomplikowany gmach i trzeba znać je wszystkie, by rozumieć właściwie ich treść. Rzeczywiście gmach wiedzy zbudowany, czy raczej nadbudowany, przez średniowiecze nad naukami Greka mógł imponować i stwarzać wrażenie ostatecznej prawdy. W czasach Galileusza tacy filozofowie, jak Borro czy Cremonini, przez całe życie nie zajmowali się niczym innym jak komentowaniem tego korpusu wiedzy i dociekaniem, co Filozof naprawdę miał na myśli. Ludzie o takim nastawieniu, nawet słysząc o wynalazku teleskopu, potrafili znaleźć ustęp u Arystotelesa, gdzie się o nim wspomina. Oczywiście Sagredo i Salviati bawią się, przywołując anegdoty tego rodzaju. Także astrologia i alchemia traktowane są niezbyt serio: „W podobny sposób alchemicy, pod wpływem uporczywego maniactwa, utrzymują, że wszystkie najwznioślejsze umysły świata zajęte były jedynie opisywaniem sposobów wytwarzania złota (…) Jest rzeczą nadzwyczaj zabawną rozczytywanie się w ich komentarzach do poetów antycznych, u których dopatrują się największych tajemnic ukrytych pod osłoną baśni: co oznaczały miłostki bogini Księżyca i jej zejście na ziemię w pogoni za Endymionem, jej gniew na Akteona, przemiana Jowisza raz w złoty deszcz – to znów w palące się płomienie”. Czytając takie fragmenty, zaczynamy się zastanawiać, jak bardzo wiarygodne były dla Galileusza opisy cudów chrześcijańskich, czy jeśli w ogóle traktował je serio, to nie sądził, że należałoby je odrzeć z otoczki zbyt naiwnych stwierdzeń. Jak się zdaje, niedługo przed Dialogiem uczony napisał jakiś traktat poświęcony naturalistycznym wyjaśnieniom cudów, który się jednak nie zachował.

Wśród argumentów przemawiających za wirowaniem Ziemi był i ten, że łatwiej wyobrazić sobie nieruchomy wszechświat z niewielką wirującą Ziemią niż odwrotnie. Sagredo mówi: „Uważałbym tego, kto mniema, że słuszniej jest kazać poruszać się całemu światu, byle tylko utrzymać w bezruchu Ziemię, za mniej rozsądnego od kogoś, kto wzniósłby się na szczyt waszej kopuły (*) tylko po to, by spojrzeć na miasto wraz z otaczającymi je osiedlami, i domagał się, by cała okolica obracała się dokoła niego, byleby on nie ponosił trudu obracania głowy”. Simplicio widzi jednak sytuację inaczej: „O ile jednak chodzi o potęgę Tego, który wszystko wprawia w ruch – a przecież jest ona nieskończona – to nie mniej Mu łatwo poruszyć wszechświat aniżeli Ziemię czy słomkę. A skoro ta potęga jest nieskończona, to dlaczego nie miałaby raczej objawiać się większa jej część aniżeli mniejsza?”

Standardowy argument przemawiający za nieruchomością Ziemi był taki, że gdyby ona wirowała ciało swobodnie upuszczone ze szczytu wieży musiałoby spaść daleko na zachód od jej podnóża. Odmianami tego argumentu były doświadczenia z armatami: strzelając pionowo w górę, powinniśmy zaobserwować podobny efekt przesuwania się Ziemi pod pociskiem, który musiałby spaść daleko od miejsca wystrzału. Długości strzałów na wschód i na zachód powinny się różnić od siebie. „Jaka szkoda, że artyleria nie istniała za czasów Arystotelesa. Przy jej pomocy pokonałby on niewiedzę i mówił bez żadnego wahania o sprawach wszechświata” – stwierdza sarkastycznie Sagredo. Galileusz szczegółowo analizuje takie sytuacje, wykazując, że ruch Ziemi nie wpływa na obserwowany przebieg zjawisk.

Od czasu do czasu broniący wciąż stanowiska kopernikańskiego Salviati czuje się w obowiązku przypomnieć, że jest to jedynie jego rola w Dialogu, a nie wewnętrzne przekonanie. Ale zarówno zwolennicy, jak przeciwnicy Kopernika (i Galileusza) uznali, że gra toczy się bardziej serio, niż twierdziły persony Dialogu.

Badanie konsekwencji względności ruchu zajęło dużą część rozważań tego dnia. Pojawia się tam także dość osobliwy fragment, w którym Galileusz stara się spojrzeć na spadek swobodny na obracającej się Ziemi z punktu widzenia kogoś, kto się nie obraca razem z nią. Prędkość wirowania Ziemi udzieli się wówczas spadającemu ciału i jego tor będzie jakąś linią krzywą. Jaką konkretnie krzywą? Łukiem okręgu kończącym się w środku Ziemi – odpowiada Salviati. Sam Galileusz mówił o tym fragmencie bizzarrìa – czyli fantazja, i rzeczywiście koncepcja jest osobliwa (i nieprawdziwa). Dyskusje na takie wydumane tematy, jak tor spadku do środka Ziemi, miały już swoją tradycję i posunęły naprzód rozumienie fizyki ruchu; słynna wymiana listów na ten temat miała odbyć się w przyszłości między Robertem Hookiem a Isaakiem Newtonem i stała się ważnym bodźcem dla profesora z Cambridge.

Innym argumentem przeciwko ruchowi obrotowemu Ziemi był brak obserwowanej siły odśrodkowej. Galileusz stara się wykazać, że taka siła w ogóle w przypadku Ziemi nie występuje. Idzie tu zbyt daleko. Trzydzieści lat później Isaac Newton, nieznany wtedy jeszcze nikomu, czytając Dialog, obliczy wartość tej siły i udowodni, że jest ona wprawdzie znacznie mniejsza od siły ciążenia, ale różna od zera.

Dzieło Galileusza stanowiło raczej początek, wstęp do dalszych badań. Autor, wykazując cierpliwie, skutecznie i konsekwentnie, że Arystoteles nic nie wiedział o ruchu, działał na współczesnych mu konserwatystów zaiste jak artyleria.

Na celowniku uczonego znalazła się antykopernikańska książeczka Lochera, ucznia Christopha Scheinera, prawdopodobnie ich wspólne dzieło.

Spiralne spadanie ciał na obracającą się Ziemię ze sfery Księżyca. Trwa sześć dni (Johann Georg Locher, Disquisitiones mathematicae, de controversiis et novitatibus astronomicis, Ingolstadt 1614). Oś obrotu Ziemi νλ jest na rysunku pozioma; spadek kuli z punktu A nad równikiem odbywa się po spirali, która prostopadle przecina rysunek aż do punktu B. Linia przerywana zaczynająca się w γ jest torem kuli spadającej znad miejsca na Ziemi położonego w umiarkowanej szerokości geograficznej (tak jak Ingolstadt). Jezuici wyobrażali sobie, że cała sfera Księżyca musiałaby u Kopernika wirować w ciągu doby.

SAGREDO: Ach, jakież piękne rysunki, co za ptaki, co za kule – a co to za inne piękne rzeczy?

SIMPLICIO: To kule, które przybywają ze sfery księżycowej.

SAGREDO: A to, cóż to takiego?

SIMPLICIO: To małża, z gatunku tych, które u nas w Wenecji nazywają buovoli. I ona też przybywa ze sfery księżycowej.

SAGREDO: Tak jest istotnie. Oto dlaczego Księżyc wywiera tak wielki wpływ na pewne stwory morskie z gatunku ostrygowatych.

Otóż autorzy ci, chcąc zdyskredytować ideę ruchu Ziemi, postarali się wykonać pewne obliczenia: ile mil na godzinę przebywa punkt na równiku, a ile na innych równoleżnikach, a także jaką drogę przebędzie w ciągu minuty, a nawet sekundy. Cel propagandowy tych obliczeń był oczywisty: prędkość wirowania Ziemi jest porównywalna z prędkością dźwięku, a więc wydaje się ogromna nawet i dziś. Chodziło o to, by idea ruchu Ziemi wydała się absurdalna. Autorzy następnie wyobrażają sobie spadek kuli armatniej ze sfery Księżyca, co miałoby, ich zdaniem, trwać sześć dni.

„Otóż, jeśliby wszechmocą boską czy też za sprawą jakiegoś anioła cudownie została przeniesiona tam, wysoko, wielka kula armatnia, umieszczona w naszym zenicie i puszczona stamtąd swobodnie, to wówczas, zdaniem autora i moim – mówi Simplicio – byłoby rzeczą najbardziej niewiarygodną, by spadając w dół, utrzymywała się zawsze na linii naszego pionu, w ciągu tylu dni zachowując wciąż wraz z Ziemią ruch obrotowy naokoło jej środka, zakreślając na równiku linię spiralną w płaszczyźnie tego największego koła, podczas gdy na równoleżnikach zakreślałaby linie spiralne naokoło stożków, a na biegunach spadałaby po zwykłej linii prostej”. Salviati pyta o założenia dotyczące spadku ze sfery Księżyca na Ziemię. Jezuici wyobrażali sobie, że spadanie takie byłoby jednostajne, w dodatku popełnili prosty błąd obliczeniowy: skoro cała sfera Księżyca obraca się raz na dobę, to spadanie z taką prędkością do centrum powinno zająć 2π razy krócej, czyli mniej niż 4 godziny, a nie sześć dni. Już lepiej z geometrią radzą sobie bednarze – zauważa Salviati. Przy okazji przedstawia prawo spadku przyspieszonego: „Studiowałem wszystkie te sprawy z największą radością i zachwytem, widząc, że powstaje cała nowa dziedzina wiedzy. Dotyczy ona spraw, o których napisano już setki tomów, a żadne z nieskończenie wielu cudownych odkryć, które obejmuje, nie zostało zauważone i zrozumiane przez nikogo wcześniej, aż dopiero przez naszego przyjaciela [tj. Galileusza – J.K.]”. Galileusz oblicza, jak długo spadałaby kula z wysokości Księżyca, jeśli wiadomo, że z wysokości stu łokci spada w ciągu pięciu sekund. Oczywiście z punktu widzenia uczonego nie ma powodu, aby spadek następował po jakiejś linii spiralnej. Prawo spadku swobodnego i własności ruchu przyspieszonego po raz pierwszy pojawiają się tu w druku. Było to odkrycie rzeczywiście ogromnej wagi – jeszcze jedno z odkryć prowadzących w stronę mechaniki Newtona.

Prawo odkryte przez Galileusza stosować się miało do wszystkich ciał, bez rozróżnienia lekkich i ciężkich, inaczej niż u Arystotelesa, który ruch wiązał z naturą danego ciała. „Jeżeli wymienione tu rzeczy są z natury swej różne, a rzeczy z natury różne nie mogą mieć wspólnego ruchu, to należałoby (…) pomyśleć o czymś innym, aniżeli tylko o dwóch ruchach, w górę i w dół. Jeśli trzeba wynaleźć jeden ruch dla strzał, inny dla ślimaków, jeszcze inny dla kamieni – jakiś inny jeszcze dla ryb, to trzeba by pomyśleć również o dżdżownicach, topazach i grzybkach, które z przyrodzenia swego nie różnią się mniej jedne od drugich aniżeli grad i śnieg”. Książeczka Lochera i Scheinera zostaje wykpiona na wielu stronach, Galileusz zasłużenie traktuje ją jak stek głupstw. Bo też jezuiccy autorzy, gromadząc swe argumenty, nie próbowali w ogóle zrozumieć stanowiska strony kopernikańskiej. Straszyli katastrofami, jakie miałyby wynikać z ruchu Ziemi, nie zastanawiając się nad tym, że gdyby naprawdę teoria kopernikańska była taka łatwa do obalenia, to jej zwolennikami nie byliby najwybitniejsi uczeni epoki, Kepler i Galileusz. Istniała realna trudność przestawienia wyobraźni na kopernikanizm, nawet Galileusz miał z tym czasami kłopoty, było to dla ludzi tej epoki zadaniem trudnym. Ale istniał też opór przed kopernikanizmem wynikający ze złej nauki i złej naukowej wiary.

Następnym omawianym autorem jest Scipione Chiaramonti. „Gdybym nie miał nadziei, że od tego drugiego autora usłyszę coś mądrzejszego, to niewiem, czy nie zdecydowałbym się raczej na przejażdżkę gondolą w poszukiwaniu świeżości” – stwierdza bez ogródek Sagredo. Galileusz udowadnia, że Chiaramonti nie zna teorii, którą zawzięcie krytykuje. Tenże autor wystąpił też niefortunnie w sprawie odległości gwiazdy nowej obserwowanej przez Tychona, dowodząc, że z pewnością leży ona poniżej Księżyca.

Rozważania te należały już do dnia trzeciego Dialogu. Był on poświęcony ruchowi rocznemu Ziemi. Arystoteles dowodził, że gwiazdy zajmują obszar sferyczny i obracają się raz na dobę wokół Ziemi – z tego powodu uważał wszechświat za skończony. Jeśli jednak odrzucić jego założenie, przyjąć ruch dobowy Ziemi i zgodzić się na nieruchome gwiazdy, to znika powód, by uważać świat za skończony. Równie dobrze może on być nieskończony i nie mieć żadnego kształtu.

Obserwacje wskazują, że planety mają swój środek ruchu w Słońcu – w tym punkcie zgodni byli Tycho Brahe i Kopernik. Pozostaje więc do rozstrzygnięcia, czy Słońce, czy raczej Ziemia poruszają się ruchem rocznym. Zdaniem Salviatiego-Galileusza więcej przemawia za nieruchomym Słońcem. Oprócz dawniej już znanych argumentów przedstawił on nowy, wywodzący się z obserwacji plam słonecznych. Ich przesuwanie pokazuje, że Słońce wiruje wokół osi. Okazuje się jednak, że w różnych porach roku tory plam na tle tarczy słonecznej mają różny kształt. W czerwcu i grudniu są prostoliniowe i tworzą ustalony kąt z ekliptyką, w marcu i wrześniu natomiast mają kształt łuków. Najprostsze wyjaśnienie zjawiska daje teoria Kopernika: oś Słońca ma stałe nachylenie do płaszczyzny orbity Ziemi i w ciągu roku oglądamy raz nieco więcej południowej półkuli Słońca, raz nieco więcej jego półkuli północnej. Nie potrzeba już żadnych innych ruchów, aby objaśnić to, co się obserwuje. Dla Galileusza takie wirowanie wokół osi nie wymagało podtrzymywania. Podobnie rzecz się ma z Ziemią: jej oś obrotu nachylona jest do płaszczyzny orbity – czego skutkiem są zmiany pór roku. Kopernik, aby zachować stałość kierunku osi ziemskiej, przyjmował jeszcze dodatkowy trzeci ruch Ziemi, Galileusz go nie potrzebował.

W Dialogu Galileusz twierdzi, że odkrył nachylenie osi Słońca do ekliptyki prowadząc obserwacje z willi Le Selve, a więc przed rokiem 1614. Wydaje się to mało prawdopodobne; dokładne obserwacje plam i ich ruchu pojawiły się w monumentalnej książce Christopha Scheinera Rosa Ursina, która ujrzała światło dzienne w czasie, gdy Galileusz pisał Dialog. Dopiero w 1629 roku dostrzegł kopernikańskie wyjaśnienie zjawiska i zamieścił w książce. Znowu okazało się, że herkulesowe trudy Scheinera zaowocowały zgrabnym argumentem przeciwko Ptolemeuszowemu układowi świata. Oczywiście można wyjaśnić każde zjawisko równie dobrze w ziemskim układzie odniesienia, trzeba jednak przypisać wtedy Słońcu wiele ruchów zamiast jednego ruchu obrotowego. Z kopernikańskiego punktu widzenia wszystko układało się w konsystentną całość: wszystkie ruchy obrotowe i obiegowe zachodzą bowiem w jednym kierunku i nie potrzeba z każdym nowo odkrytym zjawiskiem dopisywać wciąż jakichś nowych ruchów.

Co do osobistej uczciwości Galileusza, nie ma twardych dowodów, że korzystał on z obserwacji Scheinera, pewne jest natomiast, iż ponownie dostrzegł on więcej niż jezuicki astronom, który poświęcił znaczną część swego dzieła na jałowy z natury (choć pasjonujący dla uczestników) spór o pierwszeństwo odkrycia plam na Słońcu. Trudno oprzeć się wrażeniu, że mnogość i dokładność obserwacji, jakkolwiek potrzebne, ważne są tylko wtedy, gdy pozwalają nam coś więcej zrozumieć ze sposobu funkcjonowania świata. Jeden koń arabski pobiegnie szybciej niż sto koni fryzyjskich.

W dniu trzecim Dialogu Galileusz wraca też do książeczki Lochera i przytacza inne jeszcze wnioski, do których – wedle jezuity – prowadzić miał kopernikanizm: „W tak fantastycznym układzie świata trzeba głosić różne kapitalne bzdury, na przykład takie, że Słońce, Wenus i Merkury znajdują się pod Ziemią, że materie ciężkie ruchem naturalnym poruszają się ku górze, a lekkie w dół; że Chrystus, nasz Pan i Zbawiciel, wstąpił do piekieł i zstąpił na niebiosa, gdy zbliżał się ku Słońcu; że gdy Jozue rozkazał Słońcu, by się zatrzymało, to Ziemia się zatrzymała, bądź też Słoń-

ce poruszać się zaczęło w kierunku przeciwnym do Ziemi; że gdy Słońce jest w znaku Raka, to Ziemia biegnie przez Koziorożca, że zimowe znaki zodiaku wywołują lato, a letnie zimę; że nie gwiazdy wschodzą i zachodzą dla Ziemi, lecz Ziemia wschodzi i zachodzi dla gwiazd; że wschód zaczyna się na zachodzie, a zachód na wschodzie i że jednym słowem, wywraca się cały porządek świata”.

Najsłabszą częścią Dialogu jest dzień czwarty, mający w zamyśle autora dostarczyć najsilniejszego argumentu za ruchem Ziemi. Tym argumentem jest istnienie pływów na morzach. Simplicio odnosi się do pomysłu sceptycznie:

„SIMPLICIO: Powiem jednakże z tą swobodą, która wśród nas jest dozwolona, że wprowadzanie tu ruchu Ziemi i robienie go przyczyną przypływu i odpływu w nie mniejszej mierze wydaje mi się pomysłem z bajki niż wszystkie inne, o których dotąd słyszałem; a gdyby mi nie podano innych wyjaśnień, bardziej odpowiadających prawom przyrody, to bez obawy powziąłbym przeświadczenie, że ma się tu do czynienia ze zjawiskiem nadprzyrodzonym, a więc cudownym i niedostępnym dla umysłów ludzkich, jak zresztą i nieskończona liczba innych zjawisk, zależnych bezpośrednio od wszechmogącej ręki Boga.

SALVIATI: (…) wśród wszystkich przyczyn, które przytoczone były dotychczas jako prawdziwe, żadna, jakiekolwiek byśmy stosowali zabiegi, nie byłaby w stanie wyjaśnić podobnych zjawisk. Albowiem ani przy pomocy światła Księżyca czy Słońca, ani umiarkowanej ciepłoty, ani różnic głębiny nie zdoła się w sztuczny sposób spowodować, aby woda zawarta w nieruchomym naczyniu poruszała się tam i z powrotem, aby wznosiła się i opadała, i to w jednym miejscu tak, a w drugim inaczej. Jeśli jednak bez żadnych sztuczek i w najnaturalniejszy sposób, wprowadzając naczynie w ruch, potrafię dokładnie odtworzyć wszystkie te zmiany, które widzi się na wodach mórz, to dlaczego mielibyście odrzucić takie wyjaśnienie i uciekać się do cudu.

Cały ten fragment i jego dalszy ciąg wkraczają na ryzykowny temat cudów, przynajmniej werbalnie. Galileusz tłumaczy, że gdyby w sposób cudowny nadać Ziemi niejednostajny ruch, to w jego następstwie wody zaczną – w sposób najzupełniej naturalny – poruszać się tak, jak to widzimyw zjawisku pływów. Dalej zaś wyjaśnia, że zamiast cudownego poruszania Ziemią wystarczy jej ruch naturalny, taki jak u Kopernika. Rozumowanie uczonego nie tylko odzierało zjawisko pływów z wszelkiej cudowności, ale też sprawiało wrażenie, iż inne wyjaśnienie jest niemożliwe. W ten sposób istnienie pływów byłoby dowodem, że ruch Ziemi jest „prawdą absolutną” – wbrew najgłębszemu przekonaniu Maffeo Barberiniego. Swoistym dowodem uznania ze strony Kościoła był fakt, że nikt nie próbował argumentacji Galileusza kwestionować na gruncie naukowym, jakby zgadzano się z nim, że inne wyjaśnienie naukowe i naturalne jest niemożliwe.

Tymczasem teoria Galileusza była pod wieloma względami nieudana: nie tłumaczyła okresów powtarzania się przypływów i nie wyjaśniała, czemu występują one dwa razy na dobę. Uczony niewiele wiedział na temat samego zjawiska i niezbyt przejmował się tym, co wiedział. Znane są w nauce, i nie tylko w nauce, takie przypadki ślepego przywiązania do własnych idei. Galileusz, który niezmiernie łatwo popadał w mentorski ton wobec innych, tutaj sam nie potrafił sprostać wymaganiom, jakie należy postawić porządnej teorii.

Nie zmienia to jednak faktu, że Dialog jest książką wyjątkową, pierwszą tak dobrze pomyślaną i przeprowadzoną argumentacją na rzecz ruchu Ziemi. Choć z naukowego punktu widzenia nie zawiera żadnego absolutnego dowodu słuszności kopernikanizmu, pokazuje, że jest to pogląd naukowo spójny, nie prowadzący do sprzeczności i zupełnie prawdopodobny. Dowody na rzecz kopernikanizmu jeszcze długo później były jedynie pośrednie, ale świat stawał się zrozumiały, gdy patrzeć na niego z tej właśnie perspektywy. Dyskusja Galileusza, mimo polemicznej werwy, jest na ogół rzetelna; mało kto tak dogłębnie jak on przemyślał argumenty zwolenników Arystotelesa i nikt wcześniej nie poddał ich tak druzgocącej krytyce. Wielką zasługą historyczną kopernikanizmu była właśnie zmiana spojrzenia na usytuowanie Ziemi i człowieka w kosmosie, Galileusz bardziej niż ktokolwiek inny przyczynił się do przeprowadzenia tej przemiany obrazu świata.

(*) Chodzi o słynną kopułę na katedrze florenckiej autorstwa Filippa Brunelleschiego

Galileo Galiei, Dialog o dwu najważniejszych układach świata, 1632 (1/2): Początek i końcowy medykament

Dialog stanowi opus magnum Galileusza. Dobiegający siedemdziesiątki uczony uznał, że nadszedł w końcu czas, by ogłosić swoje poglądy na wszechświat i zagadnienie ruchu. Druk książki zakończył się w lutym 1632 roku. Jej pełny tytuł brzmiał: Dialog Galileo Galilei z Akademii Lincei, matematyka nadzwyczajnego uniwersytetu w Pizie, pierwszego filozofa i matematyka najjaśniejszego Wielkiego Księcia Toskanii, gdzie podczas spotkań w ciągu czterech dni dyskutuje się na temat dwóch największych układów świata: ptolemeuszowego i kopernikowego, proponując w sposób nierozstrzygający argumenty zarówno za jedną, jak i za drugą stroną. Frontispis przedstawiał trzech uczonych: Arystotelesa, Ptolemeusza i Kopernika (ten ostatni miał rysy przypominające raczej Galileusza), dyskutujących na temat układu świata. Natomiast strona tytułowa zawierała aż pięć różnych pozwoleń: dwa rzymskie bez daty i trzy florenckie z września 1630 roku.

Władze przywiązywały szczególną wagę do początku dzieła i końcowego argumentu, pochodzącego od samego Urbana VIII i nazywanego la medicina del fine – końcowym medykamentem, bo miał podważyć wszystko, co zostało wcześniej powiedziane, i tym samym niejako „uleczyć” chroniczną chorobę naukowych dociekań. Przypomina to nieco praktykę stosowaną w zupełnie innych czasach: w socjalistycznej Czechosłowacji filozofowie, chcąc zapewnić sobie minimum swobody naukowej, dodawali do swych prac wstępy i posłowia naszpikowane cytatami z Marksa, Engelsa i Lenina – nazywano je balkonami. W środku można było wówczas przemycić jakieś myśli zupełnie innej proweniencji.

Wstęp „Do wyrozumiałego Czytelnika” to tekst ociekający obłudą tak wielką, że aż ociera się o szyderstwo.

W latach ubiegłych, celem uniknięcia niebezpiecznego wzburzenia wśród współczesnych, ogłoszony został w Rzymie zbawienny dekret, nakazujący uzasadnione przemilczanie poglądów pitagorejczyków dotyczących ruchu Ziemi. Nie zbrakło takich, którzy zuchwale utrzymywali, że dekret ten nie został jakoby powzięty po rozważnym zbadaniu samego zagadnienia, ale jedynie pod wpływem nieuzasadnionych namiętności. Słyszało się też wyrzekania, że zgoła niebiegli w naukach astronomicznych konsultorzy nie powinni byli nagłymi zakazami podcinać skrzydeł umysłów badawczych.

Poczucie obowiązku nie pozwoliło mi milczeć, gdy doszły do mnie tak zuchwałe wyrzekania. W pełnym zrozumieniu tego tak bardzo roztropnego postanowienia uznałem za właściwe wystąpić publicznie na arenie świata jako świadek najszczerszej prawdy. Byłem podówczas w Rzymie (…) i nie bez uprzedniego zasięgnięcia mojej opinii nastąpiło ogłoszenie tego dekretu. Dlatego też zamiarem moim jest wykazanie pracą niniejszą narodom obcym, że o sprawach tych we Włoszech, a zwłaszcza w Rzymie, równie wiele wiadomo jak to, co w najśmielszych wyobrażeniach osiągnął wysiłek badawczy zagranicy; że zebrane przeze mnie owoce własnych rozmyślań odnoszące się do układu Kopernika podane były uprzednio do wiadomości cenzury rzymskiej, że zatem ze środowiska Wiecznego Miasta promieniują nie tylko dogmaty dla zbawienia duszy, ale i zdobycze wiedzy ku radości dociekających umysłów.

Naszkicowany w ten sposób zamysł pokazania, że władza absolutna nie tylko decyduje, bo ma siłę, ale jeszcze decyduje słusznie, bo ma także rację, i to nawet w marginalnych z jej punktu widzenia sprawach – jak kopernikanizm – nie wygląda przekonująco. Zwłaszcza że „radości dociekającego umysłu” bywały w Rzymie określane raczej jako zuchwalstwo i nowinkarstwo. Uroczysta obrona kwalifikacji astronomicznych konsultorów zwracała tylko niepotrzebnie uwagę na kulisy procesu decyzyjnego, które lepiej było trzymać w ukryciu: kiedy król jest nagi, głośny podziw dla jego szat wygląda dość podejrzanie. Przykre wrażenie robi też uwaga o zasięganiu opinii Galileusza – wygląda to tak, jakby starał się przekonać nie tylko innych, ale i samego siebie, że dekret z roku 1616 nie był porażką. Zdecydowanie robił dobrą minę do bardzo złej gry. Pragnął pokazać, że i on, i Kościół byli cały czas po właściwej stronie, choć być może nie wszyscy zewnętrzni obserwatorzy to dobrze rozumieli. Prawdopodobnie Galileusz próbował twórczo zinterpretować przeszłość, aby umożliwić pewną zmianę polityki przy zachowaniu pozorów niezmienności. Wiadomo było, że Kościół nie cofnie oficjalnej decyzji, ale to wcale nie oznaczało, iż nie można było zmienić sposobu jej rozumienia. Campanella przytoczył kiedyś w liście do Galileusza następujący przykład: sobór nicejski II zadekretował, że wolno malować anioły, gdyż są one cielesne. I nikt tej decyzji nigdy nie odwołał, choć wszyscy scholastycy byli zdania, iż anioły nie są cielesne. W sprawie kopernikańskiej pierwszy krok został już uczyniony: Urban VIII inaczej kładł akcenty w interpretacji dekretu z roku 1616, a nawet dał do zrozumienia, że dekret był niepotrzebny. Może więc była szansa na w miarę swobodną dyskusję przy zachowaniu pozorów? Zanim wybuchła „sprawa Galileusza”, taka możliwość istniała. Ponieważ dalsze wydarzenia potoczyły się w sposób dramatyczny, ta próba wypracowania kompromisu wydaje się niepotrzebna i zostawia jakiś cień na intencjach Galileusza.

Jeśli chodzi o podejście do omawianego zagadnienia, Galileusz przedstawia je następująco: „W niniejszej rozprawie zająłem stanowisko Kopernika, traktując je jako czystą hipotezę matematyczną i starając się za pomocą wszelkich sztuczek wykazać, że jest ono lepsze nie w porównaniu z twierdzeniem o spoczynku Ziemi traktowanym w sposób absolutny, lecz od tego, jakiego bronią niektórzy, uważający się za perypatetyków, lecz będący nimi tylko z nazwy, zadowoleni, że mogą tkwić w bezruchu* i oddawać hołd złudzie, niezdolni do samodzielnego filozofowania, posługujący się jedynie utrzymanymi w pamięci a przy tym źle zrozumianymi pojęciami czterech elementów”. W tym proustowskim zdaniu Galileusz deklaruje, że celem jego ataku są tacy perypatetycy, którzy nie potrafią dobrze filozofować. Niskie mniemanie o współczesnych sobie perypatetykach uczony powtarzał wielokrotnie, głosząc, że sam Arystoteles, który był dobrym filozofem, szanującym fakty i obserwacje, nie mógłby zajmować takiego stanowiska jak rozmaici uczeni z bożej łaski, używający wielkiego imienia jako listka figowego dla własnej ignorancji. Oczywiście dyskusja tego rodzaju nie mogła być czysto „matematyczna”, musiała być „filozoficzna” – w ówczesnym sensie, obejmującym fizykę i filozofię. W każdym razie deklarowanym zamysłem autora było prowadzenie debaty w sposób przyjęty od średniowiecza na uniwersytetach. W debatach takich wolno było bronić różnych, nawet mocno nieortodoksyjnych, kwestii, traktowano to jako swego rodzaju ćwiczenie czy eksperymentowanie myślowe.

Mowa tu będzie o trzech głównych zagadnieniach. Najpierw postaram się dowieść, że wszelkie doświadczenia, jakie można przeprowadzić na Ziemi, są niewystarczające, aby udowodnić jej ruch, i że równie dobrze odnosić się mogą do Ziemi ruchomej, jak i do Ziemi nieruchomej. Mam nadzieję, że w tych rozważaniach pojawi się wiele spostrzeżeń nieznanych starożytności.

Najogólniej mówiąc chodzi tu o zasadę względności, a więc twierdzenie, iż zjawiska fizyczne przebiegają tak samo na ruchomej Ziemi, jak przebiegałyby na Ziemi nieruchomej. Wysuwano od starożytności wiele różnych argumentów mających wykazać, że ruch Ziemi pociągałby za sobą jakieś dziwaczne, a nawet katastrofalne skutki: ptaki i chmury zostawałyby w tyle, wciąż wiałby wschodni wiatr, budynki musiałyby się walić itd. Tymczasem Galileusz, analizując szczegółowo te argumenty, potrafił wykazać, że z punktu widzenia fizyka nie ma (prawie) różnicy między Ziemią ruchomą a nieruchomą.

Dalej badane będą zjawiska niebieskie, przemawiające na korzyść hipotezy Kopernika, jak gdyby ona koniecznie miała się ostać zwycięsko – z dodatkiem nowych rozważań, zmierzających raczej ku ułatwieniu zadań astronomii, aniżeli ku wykryciu konieczności w przyrodzie.

Z wiadomych przyczyn Galileusz stara się podkreślić, że nie pretenduje do żadnych absolutnych stwierdzeń w kwestii kopernikańskiej.

Na trzecim miejscu mówić będę o różnych pomysłowych fantazjach. Powiedziałem wiele lat temu, że na nieznane zjawisko przypływów morskich można by rzucić pewne światło, zakładając ruch Ziemi. Wypowiedź ta moja, przechodząc z ust do ust, znalazła miłosiernych ojców, którzy przyjęli ją jak swoją, przedstawiając jako płód własnego umysłu.

Galileusz ze ślepym uporem trzymał się swojej teorii pływów, nie reagując na żadne fakty obserwacyjne, to znaczy z łatwością dostosowując ją do nich – co przypominało najgorsze praktyki perypatetyków, tak przez niego ganione. Uczony wciąż tropił i znajdował u innych jakieś zapożyczenia ze swych prac; niektóre wypowiedzi tego rodzaju sprawiają dziś wrażenie paranoi, rażąc swą niewątpliwą przesadą. Teoria pływów miała być punktem kulminacyjnym Dialogu, choć w istocie jej główną zaletą było to, że dostarczyła pretekstu do napisania znakomitej książki.

Po oddaniu cenzurze tego, co konieczne, Galileusz przedstawił pięćset stron rozważań ściśle naukowych w formie dialogu trzech interlokutorów. Na samym końcu, po omówieniu pływów, znajduje się następująca wymiana zdań:

SIMPLICIO: O ile chodzi o rozważania, które miały tu miejsce, a w szczególności o te ostatnie, o przyczynach przypływu i odpływu morza, to naprawdę nie powiem, bym je w zupełności rozumiał (…) jednakowoż nie mogę ich uznać za odpowiadające prawdzie i ostateczne we wnioskach; co więcej, mam wciąż przed oczyma mego umysłu najbardziej niewzruszoną naukę, przekazaną mi przez wielkiego i wybitnego uczonego, przed którą należy zamilknąć. Wiem, że wy obaj na pytanie, czy Bóg swoją nieskończoną wszechmocą i mądrością mógł przyznać elementowi wody owe ruchy zmienne, które w nim dostrzegamy, i to innym sposobem aniżeli wprawiając w ruch zawierające je zbiorniki, odpowiedzielibyście, jestem tego pewien, że i mógłby, i umiałby tego dokonać wieloma sposobami, dla naszego umysłu nawet niewyobrażalnymi. Na mocy tego wysnuwam bezpośredni wniosek, że byłoby zbytnią śmiałością chcieć ograniczać i zacieśniać potęgę i mądrość boską do poziomu ludzkich urojeń.

SALVIATI: Jest to zaprawdę cudowna i anielska nauka: a w zupełnej z nią zgodzie znajduje się również inna, również boska, która zezwala wprawdzie na roztrząsanie budowy wszechświata, ale poucza również (być może po to, by działanie ludzkie nie stępiło się i nie skostniało w lenistwie), że jeszcze dalecy jesteśmy od poznania istoty dzieł Jego ręki. (…)

SAGREDO: Niech to będzie ostatnim słowem naszych czterodniowych rozważań. (…) A teraz będziemy mogli, naszym zwyczajem, popłynąć oczekującą nas gondolą i zażyć świeżości wieczornej godziny.

Jednym z zarzutów wobec Galileusza miało być to, że „włożył końcowy medykament w usta głupka”, tj. Simplicia, który zresztą przedstawiany jest raczej jako chodzący worek komunałów i człowiek może nie nadzwyczajnie przenikliwy, ale dość pogodnego usposobienia, pozbawiony zjadliwości realnych przeciwników uczonego. Rzeczywiście argument papieski nie wypada najlepiej w kontekście Dialogu, wydaje się jednak, że Galileusz nie miał świadomego zamiaru szydzenia z jego wartości. Starał się raczej, ustami Salviatiego, inaczej go ukierunkować: boska wszechmoc objawia się także w niewyczerpanym bogactwie przyrody – tu Galileusz jest całkowicie szczery i wyraża swoje głębokie przekonanie. Jeśli w jego poglądach pojawiał się gdzieś Bóg, to chyba najbardziej bezpośrednio tam, gdzie ujawniały się tajniki przemyślnego urządzenia świata. Był to raczej Wielki Architekt niż Absolutny Władca z wizji Urbana VIII. Można powiedzieć, że dwaj wybitni Toskańczycy spotkali się w kwestiach kończących Dialog i żaden nie chciał ustąpić z racji bliskich swemu sercu.

Sformułowania Galileusza mogły razić pobożne uszy, nie było to jednak zamiarem uczonego, a wynikało raczej z jego chwilami zaskakującej niewrażliwości czy nawet braku słuchu na sposób myślenia ludzi reprezentujących tradycyjny Kościół. Ich argumenty docierały do niego tylko na poziomie intelektualnym, nie rozumiał jednak postawy, jaka się za tym kryła; wydaje się, że i oni w zetknięciu z nim odczuwali jakąś obcość – nie mogło to skończyć się dobrze.

* Galileusz robi tu aluzję do nazwy szkoły filozoficznej: „perypatetycy” tzn. chodzący, więc nieruchomy perypatetyk to oksymoron.

Cytaty z polskiego przekładu Dialogu E. Ligockiego przy współudziale K. Giustiniani-Kępińskiej (PWN Warszawa 1953)

Szczęśliwy rok Erwina Schrödingera (1926)

W listopadzie 1926 roku seria sześciu ostatnich prac Schrödingera ukazała się w wydaniu książkowym. Jak sam pisał we wstępie do tego przedruku:

Młoda przyjaciółka powiedziała o nich niedawno: „Popatrz, kiedy je zaczynałeś, nie myślałeś w ogóle pojęcia, że wyjdzie z nich tak wiele sensownych rzeczy”. Powiedzenie to, z którym (prócz pochlebnego przymiotnika) w pełni się zgadzam, podkreśla fakt, że prace zebrane w tym tomie powstawały jedna po drugiej. Ich autor, pisząc wcześniejsze części, nie znał jeszcze części późniejszych.

Erwin Schrödinger stał się dzięki nim sławny i choć także wcześniej i później tworzył prace interesujące bądź nawet wybitne, żadna z nich nie dorównywała tej złotej serii.

Ową przyjaciółką była czternastoletnia Itha Junger („Ithi”). Ich dziadek Georg Junger był bogatym obywatelem Salzburga, właścicielem firmy zajmującej się handlem hurtowym. Interes prowadzili nadal jego dwaj synowie, to jeden z nich, Hans, był ojcem dwóch niejednakowych bliźniaczek: Ithy i Roswithy, uczęszczających do szkoły klasztornej. Mówiło się, że matka żony Schrödingera Anny była nieślubną córką Georga Jungera. W każdym razie obie rodziny były blisko i żona Hansa była matką chrzestną Anny. Itha miała kłopoty z matematyki, Anny zaproponowała, że Erwin mógłby pomóc, bliźniaczki przeniesiono do klasztoru blisko Zurychu, żeby mogły korzystać z korepetycji. Erwin bardzo się z nimi zaprzyjaźnił, a wkrótce i zakochał w Ithi. Ich osobliwy, nawet w tych swobodnych czasach, romans trwał wiele lat, związek został skonsumowany wkrótce po siedemnastych urodzinach Ithi.

Mechanika kwantowa Heisenberga i jego kolegów z Getyngi przyjmowana była z mieszanymi uczuciami przez środowisko fizyków. Przeskoki kwantowe, abstrakcyjny formalizm macierzowy, filozofia ograniczenia się tylko do wielkości bezpośrednio obserwowalnych i porzucenia raz na zawsze poglądowych wyobrażeń atomu – wszystko to traktowane było z rezerwą. Podejście Schrödingera wydawało się nie tylko bardziej zrozumiałe matematycznie, ale także umożliwiało wyobrażenie sobie, co właściwie dzieje się wewnątrz układów o skali atomowej. Schrödinger wykazał także, że przynajmniej w prostych sytuacjach oba podejścia są równoważne. Mimo to, Heisenberg wykazywał wobec „mechaniki falowej” postawę wrogą i nieprzejednaną. Jego mentor, Niels Bohr, zaprosił Schrödingera do Kopenhagi, gdzie zadręczał wręcz swojego gościa, atakując jego sposób myślenia.

Dla zwolenników Bohra elektron był punktową cząstką, a prawa kwantowe dotyczyły tylko prawdopodobieństw. Historia przyznała im rację, choć pewne problemy interpretacyjne mechaniki kwantowej pozostały do dziś. Trzeba jednak wyraźnie powiedzieć, że jak dotąd żaden eksperyment nie zaprzeczył prawom mechaniki kwantowej, „szara strefa” dotyczy raczej filozoficznego samopoczucia. Wciąż nie znamy wszystkich szczegółów przejścia z poziomu mikroświata do makroświata, w którym żyjemy i w którym powstała fizyka klasyczna.

Błyskawiczna kariera Schrödingera wiązała się z tym, że dla konserwatywnie nastawionych fizyków, jego podejście wydawało się łatwiejszą do przyjęcia wersją teorii kwantowej. Schrödinger został zasypany listami i zaproszeniami od luminarzy ówczesnej fizyki: od sędziwego Hednrika Lorentza, przez Maksa Plancka, Alberta Einsteina aż do Wilhelma Wiena i Arnolda Sommerfelda. Został członkiem bardzo elitarnego grona: Planck gościł go w swoim domu podczas wizyty w Berlinie. Dobiegający siedemdziesiątki i wieku emerytalnego Planck niewątpliwie myślał przy tym o przyszłości swojej katedry w Berlinie, najbardziej prestiżowego stanowiska w dziedzinie fizyki teoretycznej na świecie. Niedługo później Schrödinger trafił na krótką listę kandydatów i uzyskał to stanowisko. Uznano przy tym, że Werner Heisenberg, choć niewątpliwie genialny, jest po prostu jeszcze za młody na katedrę. Schrödinger odbył też podróż do Stanów Zjednoczonych, stając się jednym z długiego szeregu wizytujących sław europejskich. Amerykanie nie byli jeszcze potęgą w fizyce teoretycznej, ale starali się kusić wysokimi honorariami, uzyskując przynajmniej tyle, że odwiedzali Stany Zjednoczone wszyscy właściwie wybitni fizycy i matematycy. Schrödinger też dostał oferty pracy w USA, ale nie rozpatrywał ich poważnie. Ameryka mu się nie podobała, duch purytański, przejawiający się w owych latach, m.in. w prohibicji, wydawał mu się barbarzyństwem. Na widok Statui Wolności miał powiedzieć, że brakuje jej tylko zegarka na ręku.

William F. Meggers Gallery of Nobel Laureates

Erwin Schrödinger bronił w roku 1926 i później stanowiska, że elektron nie jest punktową cząstką, lecz raczej pewnym rozmytym obiektem. Stanowisko to nie dało się obronić. Przedstawimy jeden z argumentów Schrödingera. Jest on prawdziwy, lecz sytuacja, której dotyczy, okazała się nietypowa. Nie można było tego jednak wiedzieć latem 1926 roku.

Rozpatrzmy oscylator harmoniczny, czyli cząstkę oscylującą wokół minimum energii potencjalnej. Ponieważ każdą funkcję wokół minimum można w przybliżeniu uważać za parabolę, więc jest sens rozważać przypadek kwadratowej, czyli parabolicznej, energii potencjalnej. Rozwiązanie równania Schrödingera daje nam wówczas następujące funkcje falowe.

skrypt Sagemath do generowania obrazka

Są to drgania o różnych dopuszczalnych energiach (nieparzyste wielokrotności wielkości \frac{1}{2}\hbar \omega, gdzie \omega jest częstością kołową naszego oscylatora). Klasycznie biorąc, obszar położony poza przecięciem potencjału z poziomą prostą danej energii całkowitej jest niedostępny; cząstka nie może się tam znaleźć, ponieważ musiałaby mieć ujemną energię kinetyczną. W fizyce kwantowej funkcja falowa rozlewa się poza ten klasycznie dostępny obszar, co jest tzw. zjawiskiem tunelowym. Każdy z tych stanów stacjonarnych ma bardzo prostą zależność od czasu. Należy funkcję z wykresu pomnożyć przez czynnik

\exp(-i\frac{Et}{\hbar})=\exp(-i\omega(n+\frac{1}{2})t).

Znaczy to, że zależność od czasu jest trywialna, nic się w naszej funkcji falowej nie porusza, opisane stany są falami stojącymi. Schrödinger zauważył, jak ze stanów o ustalonej energii zbudować rozwiązanie równania, które opisuje drgania w czasie. W gruncie rzeczy jest to bardzo proste. Chcąc zapoczątkować drgania oscylatora, wystarczy wychylić jego masę z położenia równowagi, a następnie puścić ciężarek, który zacznie wykonywać oscylacje.

Można analogicznie, wziąć funkcję falową stanu podstawowego oscylatora

\Psi_0(x)=C\exp(-\frac{x^2}{2}),

a następnie przesunąć ją do jakiegoś nowego położenia x_0:

\Psi(x)=C\exp(-\frac{(x-x_0)^2}{2}),

Jeśli tę ostatnią funkcję potraktujemy jako warunek początkowy w równaniu Schrödingera, to otrzymamy funkcje opisujące paczkę falową poruszającą się oscylacyjnie wokół położenia równowagi. W pracy Schrödingera („Naturwissenschaften”, 1926) przedstawiona została jej część rzeczywista:

Jest to zdjęcie migawkowe, paczka falowa będzie bowiem oscylować wokół położenia równowagi. Zdaniem Schrödingera ta właśnie fala jest elektronem. Ponieważ ciągle traktował on liczby zespolone jako wypadek przy pracy, więc wziął cząść rzeczywistą rozwiązania.

Wiemy jednak, że rację miał tu Max Born: należy obliczyć kwadrat zespolonego modułu funkcji falowej i jego wielkość określa rozkład prawdopodobieństwa. Otrzymamy wówczas klasyczne drgania rozmytej funkcji falowej.

Wikimedia Commons

Nie jest to jednak elektron, lecz prawdopodobieństwo jego znalezienia w danym miejscu i czasie. Dziś stany takie znane są jako stany koherentne. Przypadek oscylatora jest wyjątkowy: na ogół taka zlokalizowana funkcja falowa rozmywa się w czasie, choć w niektórych przypadkach może się później odbudowywać, jak na poniższym obrazku (chodzi tu o wysokowzbudzone stany atomu wodoru: mogą one przez chwilę przypominać klasyczny elektron na orbicie Bohra, potem ten obraz się rozmywa.

Mamy tu trzydzieści keplerowskich obiegów elektronu zbudowanych ze stanów wokół n=180

Erwin Schrödinger nie pogodził się z kopenhaską interpretacją mechaniki kwantowej, stał się jednym z jej krytyków, podobnie jak Einstein poszukujących innej drogi. Romans z Ithi kontyuowany był w latach berlińskich, w jakimś momencie uczony chciał się nawet z nią ożenić, ale do tego nie doszło. Po roku 1933 nie chciał zostać w nazistowskich Niemczech (co było dość wyjątkowe, ponieważ nie był Żydem i nie musiał rezygnować), wrócił na trochę do Austrii, ale wskutek Anschlussu także Austria stała się brunatna. Jego późniejsze afery uczuciowo-erotyczne stanowiły przeszkodę w objęciu katedr w Oxfordzie i Princeton, ostatecznie znalazł sobie miejsce w katolickiej Irlandii.

Stanisław Ulam (1/2)

Wyraz jego twarzy jest zazwyczaj ironiczny i kpiący. W istocie porusza go bardzo wszystko, co jest komiczne. Być może posiada pewien dar rozpoznawania i natychmiastowego wychwytywania śmieszności, nic więc dziwnego, że maluje się to na jego twarzy.
Jego wypowiedzi są bardzo nierówne, czasem poważne, czasem wesołe, ale nigdy nudne. Stara się bawić i rozweselać ludzi, których lubi. Nic, z wyjątkiem nauk ścisłych, nie wydaje mi się aż tak pewne czy oczywiste, by nie dopuszczał możliwości istnienia różnych opinii: sądzi, że na niemal każdy temat można powiedzieć niemal wszystko.
Posiada pewien talent matematyczny i zręczność, które pozwoliły mu zdobyć rozgłos w młodym wieku. Pracując w samotności aż do ukończenia dwudziestu pięciu lat, raczej późno stał się człowiekiem bardziej światowym. Jednak nigdy nie bywa nieuprzejmy, gdyż nie jest szorstki ani surowy. Jeżeli czasem kogoś obrazi, to przez nieuwagę lub niewiedzę.
Jego mowa nie jest gładka ani pełna wdzięku. Kiedy mówi coś miłego, to dlatego, że tak myśli. Cechuje go szczerość i prawdomówność, czasem nieco zbyt wielka, ale nigdy brutalna.
Niecierpliwy i choleryczny, czasami bywa gwałtowny. Bardzo bierze sobie do serca wszystko, co go rani, ale uraza zazwyczaj mija, kiedy da ujście swoim uczuciom. Łatwo na niego wpływać i nim kierować, pod warunkiem, że nie zdaje sobie z tego sprawy.
Niektórzy sądzą, że jest złośliwy, ponieważ bezlitośnie naśmiewa się z pretensjonalnych głupców. W rzeczywistości ma wrażliwe usposobienie, co sprawia, że jego nastrój często się zmienia. Może być jednocześnie wesoły i smutny.
Pan U. zachowuje się zgodnie z następującą zasadą: mówi mnóstwo głupich rzeczy, rzadko je zapisuje i nigdy żadnej z nich nie robi. (przeł. A. Górnicka, przekład nieco poprawiony za oryginałem d’Alemberta)

Autocharakterystykę tę przedstawił (oczywiście po francusku) Stanisław Ulam swojej przyszłej żonie Françoise, dopiero na końcu dodając, że napisał ją Jean Le Rond d’Alembert, jeden ze sławnych fizyków matematycznych XVIII stulecia i autor większości artykułów na temat nauk ścisłych w Wielkiej Encyklopedii Francuskiej.

Czy jest to tylko zabawny zbieg okoliczności, czy też obu uczonych łączy jakieś głębsze powinowactwo? Z pewnością obaj starali się przez całe życie uparcie zachować wolność, d′Alembert przytacza określenie jednego ze swych przyjaciół, że stał się „niewolnikiem swej wolności” – określenie to dobrze pasuje także do Ulama. Wbrew pozorom zachowanie takiej suwerenności poczynań jest w dzisiejszej nauce równie trudne co w XVIII wieku. Stanisław Ulam starał się pracować tak, żeby sprawiało mu to przyjemność, nie lubił presji. Cenił pomysłowość, szybkość rozumowań, nie był z tych, którzy latami rozwijają jakąś jedną metodę czy teorię, choć oczywiście miał swoje ulubione tematy czy sposoby podejścia. W najlepszym sensie tego słowa (pochodzącego od łacińskiego „kochać”) był raczej amatorem niż profesjonalnym uczonym akademickim – co w XX wieku było znacznie rzadsze niż w XVIII.
Już Galileusz pisał przy okazji pewnej uczonej polemiki:

Jeśliby roztrząsanie trudnych problemów było tym samym co przenoszenie ciężarów, czynność, przy której wiele koni przenosi więcej worków ziarna niż jeden koń, zgodziłbym się z tym, że wiele dysput wartych jest więcej niż jedna; ale dysputowanie (discorrere) przypomina bieganie (correre), a nie dźwiganie, toteż jeden koń berberyjski pobiegnie dalej niż sto koni fryzyjskich. (przeł. A. Wasilewska)

W osiemnastowiecznym Paryżu grzechem było mówić głupstwa, a jeszcze większym mówić głupstwa z wysiłkiem. Coś z tej atmosfery przetrwało może w środkowoeuropejskich kawiarniach, w których na początku XX wieku tak chętnie spotykali się artyści i uczeni. Ulam starał się trzymać rzeczy istotnych. Nie słuchał np. dłużej niż dziesięć minut wykładów zaproszonych uczonych, ponieważ jeśli ktoś w ciągu dziesięciu minut nie powiedział nic ciekawego, to zapewne nie będzie miał nic do powiedzenia i potem.

Cechą, która zdecydowanie różni d’Alemberta i Ulama jest stosunek do priorytetu własnych odkryć. Pierwszy zaciekle walczył o pierwszeństwo, drugi natomiast zupełnie się nie wdawał w spory tego rodzaju, uważając je za uwłaczające godności. Paradoksalnie w obu przypadkach – d’Alemberta i Ulama – przyczyną mogła być duma zraniona postępowaniem ludzi, których niezbyt się ceni.

Stanisław Ulam początkowo nie zamierzał zostać matematykiem. W rodzinnym Lwowie uczęszczał do gimnazjum klasycznego. Program nauczania takich szkół, podobny w większości Europy: daleki od problemów świata współczesnego, z naciskiem na historię i naukę martwych języków. Te abstrakcyjne zajęcia kształtować miały przyszłą elitę: urzędników, lekarzy, prawników, uczonych. Były czymś w rodzaju wieloletniej próby i budowały wspólną kulturę absolwentów. Wiemy, że Albert Einstein nie zniósł bezdusznej dyscypliny panującej w gimnazjum monachijskim i rzucił szkołę dwa lata przed maturą. Utalentowanemu językowo Ulamowi nauka przychodziła z łatwością, maturę zdał znakomicie, a greka i łacina towarzyszyły mu przez resztę życia, stanowiąc rodzaj kodu, jakim mógł się porozumiewać z kolegami, którzy przeszli podobną edukację. Uważał zresztą gramatykę łacińską za dobre wprowadzenie do myślenia logicznego.

Jako uczeń interesował się astronomią i fizyką. Ojciec, prawnik, dumny był, że jego nastoletni syn „rozumie” teorię względności, która w latach dwudziestych ubiegłego wieku stała się sensacją daleko wykraczającą poza kręgi naukowe. Młody Ulam zafascynowany też był niektórymi zagadnieniami matematycznymi, np. czy istnieją nieparzyste liczby doskonałe (liczby doskonałe są sumą swoich dzielników właściwych, jak 6=1+2+3. Rozwiązanie nie jest znane do dziś). Nie chciał zostać prawnikiem, w ówczesnej Polsce Żydzi niełatwo zostawali profesorami, więc i kariera naukowa wydawała się utrudniona. Postanowił zapisać się na miejscową politechnikę, z jakichś powodów był to Wydział Ogólny, a nie Elektryczny, który dawał konkretny zawód. Ponieważ młody człowiek nieco nudził się na wykładach dla pierwszego roku, zaczął chodzić na wykłady Kazimierza Kuratowskiego z teorii mnogości. Młody profesor chętnie rozmawiał ze swym studentem, Ulam odprowadzał go do domu i gawędzili o matematyce. Kuratowski, widząc inteligencję swego studenta, podsunął mu do rozwiązania pewne zagadnienie z teorii mnogości. Ulamowi udało się rozwiązać problem i praca została opublikowana w „Fundamenta Mathematicae”, polskim piśmie poświęconym głównie teorii mnogości i będącym czymś w rodzaju organu polskiej szkoły matematycznej. Dopiero jednak po rozwiązaniu drugiego problemu zasugerowanego przez Kuratowskiego Ulam zdecydował się zostać matematykiem, stało się to przed końcem jego pierwszego roku studiów.

Wkrótce poznał też innych matematyków lwowskich i wiele czasu spędzał w ich pokojach na dyskusjach. Później rozmowy te przenosiły się często do kawiarni. Jedna z takich sesji w kawiarni „Szkockiej” ze Stanisławem Mazurem i Stefanem Banachem trwała, jak wspomina Ulam, siedemnaście godzin z przerwami na posiłki. Z rozmów tych pochodził materiał do jego prac, jak też znaczna część jego wiedzy matematycznej. Ulam nigdy nie należał do uczonych, którzy pilnie śledzą postępy w wybranych dziedzinach i wiedzą na ten temat wszystko. Lubił rozpoczynać od zera, nawet gdy przy okazji odkrywał po raz drugi pojęcia czy fakty znane już w literaturze.

Nieformalny sposób uprawiania nauki bardzo odpowiadał towarzyskiemu Ulamowi, który z trudem naginał się do formalnych wymagań i zdawania egzaminów. W 1932 roku jako student został zaproszony do wygłoszenia komunikatu na Kongresie Matematycznym w Zurychu, gdzie spotkał wielu sławnych uczonych, potem jesienią w ciągu kilku tygodni napisał pracę magisterską, w roku następnym doktorat. Miał wtedy dwadzieścia cztery lata i coraz mniejsze szanse na karierę w Polsce. W sąsiednich Niemczech do władzy doszedł Adolf Hitler, bardzo wielu uczonych żydowskiego pochodzenia, w tym matematyków, musiało opuścić Niemcy. Odbywając w 1934 roku podróż po ośrodkach matematycznych Europy, pochłonięty matematyką Stanisław Ulam ledwie zdawał sobie jednak sprawę z tego, co się dzieje w świecie polityki. W roku następnym poznał Johna von Neumanna, który choć tylko kilka lat od niego starszy, był już sławny. Von Neumann, syn budapeszteńskiego bankiera żydowskiego pochodzenia, nie miał złudzeń co do sytuacji w Europie, toteż wyemigrował do Stanów Zjednoczonych, stary kontynent odwiedzając tylko z okazji jakichś konferencji czy spotkań. Obaj uczeni zaprzyjaźnili się. Poza matematyką łączyło ich sporo: dawne Austro-Węgry, kultura żydowska, klasyczne wykształcenie, pewna kosmopolityczna ogłada i dobre wychowanie. Von Neumann cenił ogromną pewność siebie Ulama, a także jego trudny do przewidzenia tok myślenia. Coś podobnego stwierdził też kiedyś na temat Ulama Stefan Banach: że formułuje on problemy w sposób „dziwny” i proponuje też „dziwne” rozwiązania, które często są skuteczne.

Von Neumann sprawił, że zaproszono Stanisława Ulama do Instytutu Badań Zaawansowanych w Princeton, gdzie tworzono coś w rodzaju ziemskiego raju dla uczonych, zaczynając od matematyków i fizyków teoretycznych. Jedną z pierwszych gwiazd tego Instytutu stał się Albert Einstein. Najmłodszym profesorem był tam von Neumann. Ulam należał do grupy młodych badaczy zapraszanych, by mieli okazję popracować wśród uznanych kolegów. Semestr w Princeton zaowocował trzyletnim stypendium na uniwersytecie Harvarda w Society of Fellows, organizacji finansującej dobrze zapowiadających się młodych uczonych.

Erwin Schrödinger: trzeci początek mechaniki kwantowej (1926)

Równanie Schrödingera zasługuje na swoją sławę: dzięki niemu znamy nie tylko budowę atomów, ale i cząsteczek chemicznych czy ciał skondensowanych. Wynikają z niego najprzeróżniejsze własności materii, która nas otacza, a także materii we wszechświecie. Jest więc równaniem niezwykle istotnym tak dla fundamentów fizyki, jak i dla zastosowań.

Autor najsłynniejszego równania dwudziestowiecznej fizyki aż do roku 1926 nie należał do ścisłej czołówki fizyków teoretycznych. Zaledwie osiem lat młodszy od Einsteina, dopiero od 1921 roku zajmował katedrę na uniwersytecie w Zurychu. Studiował w Wiedniu, zbyt późno by zetknąć się osobiście z Ludwigiem Boltzmannem czy Ernstem Machem, choć wpływ obu tych uczonych wciąż dawał się tam odczuć. Fizyki teoretycznej uczył się u Friedricha Hasenöhrla, bliskiego przyjaciela Mariana Smoluchowskiego. Do tej pory niewiele zajmował się teorią kwantową, ponieważ opierała się ona wciąż na bardzo grząskich podstawach, korzystając po trosze z fizyki klasycznej, a po trosze z postulatów kwantowania, wyraźnie z nią sprzecznych. Zwrócił jednak uwagę na pracę Louisa de Broglie na temat fal materii. Postulowała ona, że zarówno fotony, jak i inne cząstki mikroświata mają dualną naturę: zachowują się czasem jak cząstki, a czasem jak fale. Obowiązywał przy tym jeden uniwersalny przelicznik własności cząstkowych: energii E i pędu p na wielkości falowe: częstość (kołową) \omega i liczbę falową k\equiv\frac{2\pi}{\lambda} (\lambda jest długością fali). Współczynnikiem proporcjonalności w obu przypadakch miała być stała Plancka \hbar:

E=\hbar\omega,\,p=\hbar k.

Felix Bloch, wówczas początkujący fizyk, tak wspomina wspólne kolokwia (dziś powiedzielibyśmy raczej seminaria) fizyków z uniwersytetu w Zurychu i z ETH, gdzie najważniejszą postacią był Peter Debye.

Pewnego razu pod koniec kolokwium Debye powiedział coś w tym rodzaju: „Schrödinger nie zajmujesz się teraz żadnym ważnym tematem. Może opowiedziałbyś nam któregoś dnia o tym doktoracie de Broglie’a, który, zdaje się, przyciągnął sporo uwagi”. Więc na jednym z następnych kolokwiów Schrödinger przedstawił cudownie przejrzysty wykład o tym, jak de Broglie wiąże fale z cząstkami i w jaki sposób zdołał on uzyskać reguły kwantyzacji Bohra i Sommerfelda (…) Kiedy skończył, Debye stwierdził od niechcenia, że taki sposób ujęcia jest raczej dziecinny. Jako student Sommerfelda nauczył się, że właściwy sposób podejścia do fal wiedzie przez równanie falowe. Brzmiało to dość trywialnie i na pozór nie zrobiło głębszego wrażenia, ale Schrödinger najwyraźniej wrócił później do tego pomysłu. Zaledwie kilka tygodni później dał następne kolokwium, zaczynając od słów: „Kolega Debye zasugerował, że należy mieć równanie falowe, toteż je znalazłem”. [„Physics Today”, t. 29 (1976), nr 12, s. 23-24]

Najwyraźniej w pierwszej chwili obaj nie zdawali sobie sprawy z wagi tych badań. Erwin Schrödinger dzięki pracom z końca roku 1925 i roku 1926 stał się błyskawicznie jednym z najgłośniejszych fizyków świata. Seria jego artykułów natychmiast zyskała uznanie. Chwalili je Albert Einstein i Arnold Sommerfeld, który wraz ze swymi uczniami rozwijał od lat fizykę kwantową. Napisał do niego sędziwy Hendrik Lorentz, który uważnie śledził nowości i miał parę istotnych uwag. Surowy i poważny Max Planck, profesor najbardziej prestiżowej katedry w Niemczech (co wtedy znaczyło: najbardziej prestiżowej na świecie) – na uniwersytecie w Berlinie, pisał entuzjastycznie do Schrödingera:

Czytam pański artykuł tak, jak ciekawe dziecko, słuchające w napięciu rozwiązania zagadki, nad którą się długo głowiło, i cieszę się bardzo wszystkimi pięknościami, jakie tam dostrzegam, choć muszę go jeszcze dokładniej przestudiować, by wszystko z niego pojąć.

Kiedy w grudniu 1925 roku Schrödinger znalazł swe równanie, był to trzeci początek mechaniki kwantowej albo – jak wolał o tym mówić autor odkrycia – mechaniki falowej. Na pierwszy rzut oka nie miało to nic wspólnego z teorią Heisenberga, Borna, Jordana i Diraca. U Schrödingera nie było żadnych skoków kwantowych, żadnych wielkości macierzowych, nieprzemiennych iloczynów. Język był całkowicie klasyczny – była to matematyka drgań, dobrze już wówczas opracowana. W roku 1924 wyszła dwutomowa monografia Methoden der mathematischen Physik („Metody fizyki matematycznej”) zredagowana przez Richarda Couranta i innych matematyków z Getyngi na podstawie wykładów Davida Hilberta. Zawierała ona wiele materiału, który miał się okazać potrzebny fizykom za kilka lat. Jak na ironię metody Hilberta zastosowali pierwsi nie fizycy z grupy Maksa Borna, pracujący przecież głównie pod bokiem Hilberta w Getyndze, ale Erwin Schrödinger, outsider i naukowy samotnik. Fizycy z Getyngi zlekceważyli nawet wyraźną sugestię Hilberta w jednej z rozmów, że powinni poszukać równania różniczkowego, które opisuje skwantowane wartości energii. Nie próbowali iść tym tropem, przekonani, że ich mechanika kwantowa jest czymś całkowicie nowym i nie może się zawierać w książce sprzed paru lat. Źle przyjęli też pracę Schrödingera, która wydawała się recydywą fizyki klasycznej, odwrotem od kwantowej rewolucji spod sztandaru Heisenberga.

Fizycy klasyczni znali wiele przypadków drgań układów rozciągłych, czyli fal stojących. Są one np. podstawą wytwarzania dźwięku w instrumentach muzycznych takich, jak organy, flet, trąbka czy skrzypce. Wiadomo, że zamocowana na końcach struna drgać może tylko z określonymi ściśle częstościami: podstawową oraz jej wielokrotnościami. Rozważano różne bardziej skomplikowane możliwości, pisaliśmy tu o rówieśniku Einsteina, fizyku z Getyngi, Waltherze Ritzu. Idea Schrödingera polegała na tym, by wartości energii w atomie potraktować analogicznie do częstości dźwięku w pudle rezonansowym, stosując równanie falowe. Ma ono w przypadku trójwymiarowym postać:

\dfrac{\partial^2\psi}{\partial x^2}+\dfrac{\partial^2\psi}{\partial y^2}+\dfrac{\partial^2\psi}{\partial z^2}-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}\equiv \Delta\psi-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}=0,

gdzie v jest prędkością fal. Jeśli przyjmiemy, że nasze fale są okresowe i mają częstość \omega, możemy rozwiązania zapisać jako

\psi(x,y,z, t)=\psi(x,y,z)e^{\pm i\omega t}.

Drugą pochodna po czasie jest ta sama funkcja wykładnicza pomnożona przez stałą. Wstawiając to do równania falowego, otrzymujemy tzw. równanie Helmholtza (który pod koniec XIX wieku był profesorem w Berlinie):

\Delta \psi+k^2 \psi=0.

W równaniu tym skorzystaliśmy z tego, że \dfrac{\omega}{v}=k. Droga Schrödingera do odkrycia była dość zawikłana. Związki de Broglie’a są relatywistyczne, naturalne wydawało się więc zapisanie równania relatywistycznego. Jednak kiedy spróbujemy je rozwiązać w najprostszym przypadku atomu wodoru, okazuje się, że dopuszczalne energie nie zgadzają się z tym, co wcześniej, w starej teorii kwantów obliczył Sommerfeld i co zgadzało się z doświadczeniem (szczegóły można znaleźć u L. Schiffa, Mechanika kwantowa, s. 409 i n.). Dwa lata później sytuacja się wyjaśniła: potrzebne tu jest równanie Diraca. Dwa lata w tamtej chwili rozwoju fizyki to było więcej niż epoka, Schrödinger znajdował się dopiero u początków tej drogi i nie mógł wiedzieć, co stanie się dalej. Rozsądnie zdecydował się więc na przybliżenie nierelatywistyczne, robiąc niejako krok wstecz w porównaniu do de Broglie’a. Nie pójdziemy tu jego drogą, a właściwie kilkoma różnymi drogami, jakimi próbował uzasadnić swe równanie. Wybierzemy podejście najprostsze zaproponowane pół roku później przez Maksa Borna – musimy jednak pamiętać, że nie jest to wyprowadzenie. Nie można bowiem wyprowadzić praw mechaniki kwantowej z praw klasycznych. Dla cząstki o masie m i całkowitej energii E możemy napisać równanie zachowania energii:

E=\dfrac{\hbar^2 k^2}{2m}+V(x,y,z),

gdzie V jest energią potencjalną (pierwszy składnik to zwykła energia kinetyczna). Jeśli wyznaczymy k^2 z ostatniego równania i wstawimy do równania Helmholtza, otrzymamy tzw. równanie Schrödingera bez czasu:

-\dfrac{\hbar^2}{2m}\Delta\psi+V\psi=E\psi.

Chcąc np. opisać ruch elektronu wokół nieruchomego jądra atomowego o ładunku Ze, należy wstawić do równania Schrödingera energię potencjalną postaci

V(r)=-\dfrac{Ze^2}{4\pi \epsilon_0 r},

czyli zwykłą energię potencjalną przyciągania elektrostatycznego dwóch ładunków Ze oraz -e w odległości r. Szukamy takich funkcji \psi(x,y,z), które daleko od jądra zanikają. Okazuje się, że rozwiązania takie są możliwe tylko dla dyskretnych wartości energii równych

E_n=-\dfrac{me^4}{2(4\pi\epsilon_0)^2 \hbar^2}\dfrac{1}{n^2}, \mbox{ gdzie } n=1,2, 3, \ldots.

 Jest to wynik uzyskany w roku 1913 przez Bohra z założeń, które od początku wydawały się aktem rozpaczy, a nie solidną nauką. Równanie Schrödingera miało więc sens, choć nadal brakowało pewnych elementów do kompletnej teorii. Jednym z najważniejszych było znaczenie samej funkcji \psi. Kiedy w piszczałce organowej czy w rurce fletu wytwarzany jest dźwięk, wiemy, co drga – jest to powietrze, które ściśnięte się rozpręża, a rozprężone wraca do początkowej gęstości. Co drga w atomie wodoru? Jakie jest znaczenie funkcji \psi? Co gorsza, okazało się, że powinna ona mieć wartości zespolone, z pewnością nie było to żadne proste drganie klasyczne. Geniusz Schrödingera ujawnił się i w tym, że nie próbował odpowiedzieć na wszystkie pytania naraz i pozwolił swoim ideom rozwijać się w czasie. Publikacje uczonego z pierwszego półrocza 1926 roku wystarczyły na Nagrodę Nobla i objęcie w roku 1927 katedry w Berlinie po odchodzącym na emeryturę Maksie Plancku.

Erwin Schrödinger, człowiek wszechstronnie wykształcony, o szerokich zainteresowaniach, całkowicie zaprzecza ascetycznej wizji uczonego, który nie ma czasu na nic oprócz nauki. Wydaje się wręcz, że jego pomysłowość przy stworzeniu słynnego równania szła w parze z gorączką miłosną. Praca ta powstała w uzdrowisku Arosa, gdzie wybrał się w towarzystwie do dziś nie znanej flamy. Jego małżeństwo należało do nowoczesnych i partnerzy pozostawiali sobie bardzo wielką swobodę. Były przecież lata dwudzieste: kobiety odsłoniły nogi, tańczono charlestona, wszyscy chcieli zapomnieć o koszmarze niedawnej wielkiej wojny.

 

 

 

 

 

Werner Heisenberg: pierwsza praca z mechaniki kwantowej (1925)

Dwudziestotrzyletni Heisenberg już od kilku lat był aktywnym uczonym zajmującym się fizyką teoretyczną atomu. Dwa lata wcześniej, po trzech latach studiów, zrobił doktorat w Monachium u Arnolda Sommerfelda, który pierwszy zwrócił uwagę na jego talent. Sommerfeld, aktywny uczestnik w rozwoju nowej dziedziny, miał dar przyciągania zdolnych studentów: czterech jego doktorantów otrzymało Nagrody Nobla, a wielu studentów i stażystów przewijających się przez jego instytut zyskało międzynarodową sławę. W latach dwudziestych Monachium traciło pomału pozycję na rzecz Getyngi, gdzie teoretykom przewodził Max Born. Mechanika kwantowa powstała w Getyndze, a także w Kopenhadze, dokąd Niels Bohr stale zapraszał młodych naukowców z całego świata. Heisenberg zdążył już spędzić długi staż u Bohra, wiosną roku 1925 pracowali tam intensywnie wraz ze starszym o półtora roku Wolfgangiem Paulim, który już wtedy stał się dla Heisenberga punktem odniesienia. Pauli zaczął pracę naukową zaraz po maturze publikacją na temat ogólnej teorii względności. Doktorat u Sommerfelda zrobił także po trzech latach studiów – w najkrótszym prawnie dopuszczalnym terminie. Napisał też w tym czasie długi, ponaddwustustronicowy artykuł przeglądowy na temat teorii względności, w którym omówiona została krytycznie cała literatura przedmiotu. Niezwykle utalentowany, Pauli znany był też z bezwzględnego atakowania prac, które uważał za bezwartościowe. W późniejszych latach słynne było jego powiedzenie o jakiejś słabej pracy: „to nawet nie jest błędne”.

Heisenberg w 1924 roku, podczas wykładu habilitacyjnego w Getyndze.

Chłopięco wyglądający Heisenberg zaangażowany był w ruch skautingowy, spędzał sporo czasu na wycieczkach z młodymi ludźmi. Panowała tam beztroska atmosfera braterstwa i wspólnego przeżywania przygód. Była to jednak organizacja stawiająca sobie cele paramilitarne. Werner Heisenberg wraz z kolegami odwiedzali np. regiony zamieszkane przez Niemców, a pozostające poza granicami Rzeszy, jak np. Górny Tyrol, Finlandia, gdzie było trochę niemieckich emigrantów, a także niektóre tereny Węgier i Polski. W przypadku Heisenberga chodziło chyba raczej o młodzieńczą przygodę, a także odskocznię od intensywnej pracy naukowej. Nie był zwolennikiem skrajnej prawicy, starał się być apolityczny, choć można o nim chyba powiedzieć, że był nacjonalistą. Podczas II wojny światowej nie widział nic niewłaściwego w wizytach w okupowanej Kopenhadze czy Krakowie. Zamiłowanie Heisenberga do spędzania czasu  wyłącznie w męskim towarzystwie wydało się potem podejrzane, gdy jego biografii zaczęło przyglądać się SS. Nie doszukali się jednak niczego nieobyczajnego, do tej pory zresztą uczony miał już żonę i powiększającą się gromadkę dzieci.

Niels Bohr stał się dla młodego Wernera nie tylko mentorem, ale także wzorem i duchowym ojcem. Z prawdziwym ojcem Augustem Heisenbergiem, profesorem bizantynistyki w Monachium, Werner miał stosunki dość napięte. Jak się zdaje, ojciec nie wierzył w jego talent, a może w ogóle w fizykę teoretyczną, która wciąż uchodziła za coś mniej solidnego niż prowadzenie eksperymentów. Werner jako nastolatek chciał zostać pianistą, fizykę wybrał dość późno. August źle reagował na złe wieści o synu, kiedy np. dowiedział się, że Werner ledwo zdał egzamin doktorski. Egzaminatorów było dwóch: teoretyk Sommerfeld oraz eksperymentator Willy Wien. Ten drugi szybko wykrył braki w wiedzy młodego człowieka, który nie potrafił obliczyć zdolności rozdzielczej mikroskopu ani powiedzieć, jak działa ogniwo elektryczne (cztery lata później mikroskop pojawi się w pracy Heisenberga na temat zasady nieoznaczoności). Wien dopiero po dyskusji z Sommerfeldem zgodził się przepuścić Heisenberga, ale jego ocena końcowa była słaba: cum laude (można było otrzymać doktorat summa cum laude, magno cum laude, cum laude i bez żadnego dodatkowego określenia). Wien w senacie uniwersytetu spotykał się z profesorem Heisenbergiem i nie omieszkał się poskarżyć. Werner potrzebował pomocy finansowej, ponieważ nie od razu uzyskał płatną posadę. Ojciec napisał do Borna, pytając o perspektywy naukowe syna. Prosił też Jamesa Francka, eksperymentatora z Getyngi, przyszłego noblistę, aby umożliwił Wernerowi pracę w swoim laboratorium. Franck się zgodził, ale niewiele z tego wyszło i Werner wrócił do pracy teoretyka. Bohr, skracający dystans, biorący udział we wspólnych wycieczkach z młodymi ludźmi, a także zapraszający ich do domu, stał się Heisenbergowi bardzo bliski zarówno pod względem naukowym, jak i prywatnym.

Co ciekawe, najważniejszą swą pracę naukową Heisenberg napisał z dala od Bohra i Pauliego, nie zwierzając się także Maksowi Bornowi. Jak się zdaje, Bohr przy całej swej życzliwości wywierał silną presję na otoczenie, co nie zawsze służyło młodszym, mniej asertywnym uczonym. W kwietniu 1925 roku Heisenberg dostał silnego ataku kataru siennego i wyjechał na wyspę Helgoland, gdzie nie było roślin i w związku z tym pyłku w powietrzu. Tam zdał sobie sprawę, że jedna z ostatnich prac Bohra jest błędna (chodziło w niej o podważenie zasady zachowania energii, tzw. praca BKS). Odbyło się to w scenerii godnej obrazów Caspara Friedricha, Werner spędził noc duchowych zmagań na skalistym wybrzeżu, czekając na wschód słońca. Udało mu się znaleźć nową metodę postępowania, zastosował ją do prostych przypadków. Nie był jednak pewny, czy jest na dobrym tropie. Po powrocie z Helgolandu wręczył gotową pracę Bornowi, pytając o opinię. Do ojca pisał w tym czasie: „Moja własna praca nie idzie w tej chwili najlepiej. Nie uzyskuję zbyt wielu rezultatów i nie wiem, czy w tym semestrze wyjdzie z tego następny artykuł”.

Max Born zadecydował, że pracę trzeba opublikować, mimo że nie rozumiał jej do końca. Pisał w lipcu 1925 roku do Alberta Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Heisenberg po jej napisaniu wyjechał do Cambridge, a później do Kopenhagi. W tym czasie Born wraz z Jordanem starali się zrozumieć, co właściwie Heisenberg zaproponował. Okazało się, że jest to decydujący krok w oderwaniu się od tzw. starej teorii kwantów, czyli fizyki klasycznej z kwantowymi dodatkami, jak model atomu Bohra – gdzie orbity elektronów są obliczane klasycznie, tak jak orbity planet, a do tego dokłada się warunek kwantowania, mówiący, jakie orbity są dozwolone. Problemem tego modelu i jego późniejszych coraz bardziej wyrafinowanych matematycznie ulepszeń była wewnętrzna sprzeczność: w fizyce klasycznej niemożliwe są stabilne orbity elektronów. Cały obraz atomu jako kłębowiska orbit elektronowych jest fałszywy. Stawało się to coraz bardziej widoczne przed rokiem 1925.

Heisenberg postanowił z konieczności zrobić cnotę: Nie powinniśmy w ogóle wyobrażać sobie żadnych orbit, nikt nie zaobserwował elektronu na orbicie i nie ma sensu mówić tutaj o ruchu w sposób klasyczny. Należy ograniczyć się do wielkości, które są możliwe do zaobserwowania w doświadczeniach, porzucając spekulacje na temat ruchu elektronu w atomie. Trzeba zmienić fizykę na poziomie kinematyki: nie można opisywać ruchu elektronu tak, jak ruchu kamienia czy innego obiektu makroskopowego. Powoływał się przy tym na podejście Einsteina, który zwracał w teorii względności uwagę, że aby np. mówić o równoczesności, należy podać metodę eksperymentalnego rozstrzygnięcia, czy dane zdarzenia są równoczesne. Metodologia tego rodzaju niekoniecznie sprawdza się w budowaniu teorii fizycznych, ale Heisenbergowi w tamtym momencie pomogła.

Podstawową informacją na temat atomów były linie widmowe. Atom promieniuje fale elektromagnetyczne o pewnych określonych częstościach. Najprostszym układem, który wysyła taką falę, jest drgający elektron. Aby mieć układ drgający należy wyobrazić sobie, że na elektron działa siła zależna od wychylenia, tak jakby nasz elektron był na sprężynie. Jednowymiarowy układ tego rodzaju jest najprostszym oscylatorem (masa na sprężynie, innym przykładem jest wahadło). Do opisania fal emitowanych przez oscylatory atomowe w przypadku klasycznym możemy zastosować analizę Fouriera. Współrzędna naszego oscylatora (o częstości kołowej \omega) jest funkcją okresową, można ją więc przedstawić jako sumę sinusów i cosinusów:

{\displaystyle x(t)=\sum_{n=0}^{\infty}(A_n\cos n\omega t+B_n \sin\omega t)}.

Dwa ciągi liczb rzeczywistych A_n, B_n określają jednoznacznie funkcję. Możemy także zapisać tę sumę krócej w postaci zespolonej:

{\displaystyle x(t)=\sum_{n=-\infty}^{+\infty}x(n) e^{i\omega n t}, \mbox{ (*)}}

gdzie korzystamy ze wzoru Eulera: e^{iz}=\cos z+i\sin z. Z punktu widzenia fizyki ważna jest nie tylko częstość, ale także amplituda drgań. Wypromieniowywana przez oscylator moc jest proporcjonalna do kwadratu amplitudy, czyli sumy |x(n)|^2.

Heisenberg uznał, że zamiast budować model atomu, w którym elektron jakoś się porusza, należy skupić się na wielkościach możliwych do zaobserwowania, czyli częstościach i kwadratach amplitudy.

Przeanalizował następnie, w jaki sposób buduje się kwadrat x(t). Zgodnie z naszym rozwinięciem w szereg Fouriera kwadrat funkcji będzie równy

x^2(t)=\sum_{n}\sum_{m}x(n)x(m)e^{i\omega(n+m)t}.

Wyrażenie to ma postać rozwinięcia Fouriera, jeśli wprowadzimy nową nazwę indeksu p=n+m, to nasz kwadrat można zapisać następująco:

x^2=\sum_{p} e^{i\omega pt}\left(\sum_{n}x(n)x(p-n)\right).

Wyrażenie w nawiasie mówi nam, jak otrzymać rozwinięcie fourierowskie kwadratu funkcji:

x^2(p)=\sum_{n}x(n)x(p-n).

Inaczej mówiąc, aby otrzymać wyraz o częstości \omega p, musimy wysumować wszystkie iloczyny x(n), w których suma częstości jest równa \omega p.

Następnie, i to był najważniejszy pomysł pracy, zastanowił się Heisenberg nad tym, co powinno zastąpić rozwinięcie fourierowskie w sytuacji kwantowej. Pojawia się wtedy oczywiście wiele różnych częstości, nie można przyjąć, że są one wielokrotnością jednej tylko częstości \omega. Co więcej, częstości zależą teraz od dwóch wskaźników:

\omega_{mn}=\dfrac{E_{m}-E_{n}}{\hbar}, \mbox{  (**)}

jest to warunek Bohra, będący w istocie zasadą zachowania energii (\hbar jest stałą Plancka podzieloną przez 2\pi). Można więc uznać, że teraz potrzebujemy także amplitud zależnych od dwóch wskaźników. Współrzędna x naszego oscylatora powinna być jakoś reprezentowana przez zbiór owych amplitud:

x \rightarrow \left\{ x_{mn}e^{i\omega_{mn} t} \right\} .

Nie powinniśmy teraz liczyć na to, że x(t) jest sumą takich wyrazów, raczej mówimy o pewnym zbiorze, który reprezentuje współrzędną w mechanice kwantowej, Heisenberg był tu nieprecyzyjny, bo prawdopodobnie nie potrafił lepiej tego wyrazić.

Czym będzie w takim razie kwadrat współrzędnej albo – co ciekawsze – iloczyn dwóch współrzędnych x oraz y? Mówimy o tym samym układzie, którego zestaw energii, a więc i częstości, jest ustalony. Jeśli także y dane będzie podobnym zestawem co x powyżej, to iloczynowi powinien odpowiadać zbiór

xy \rightarrow \left\{ (xy)_{mp}e^{i\omega_{mp}t} \right\},

gdzie

\boxed{(xy)_{mp}=\sum_{n} x_{mn}y_{np}.}

Zauważmy, że definicja ta daje prawidłowy czynnik wykładniczy:

e^{i\omega_{mp}t}=e^{i\omega_{mn}t}e^{i\omega_{np}t},

gdyż korzystając z (**), otrzymujemy:

\omega_{mp}=\omega_{mn}+\omega_{np}.

Definicja z ramki okazała się najważniejszym wynikiem tej przełomowej pracy Heisenberga. Zauważył on natychmiast, że przy takiej definicji xy\neq yx, czyli mnożenie dwóch wielkości będzie na ogół nieprzemienne.

Potrzebował jeszcze warunku kwantowania, uzyskał go w dość skomplikowanej postaci. Następnie zastosował wynaleziony formalizm do przypadku oscylatora anharmonicznego, tzn. gdy siła oprócz składnika proporcjonalnego do wychylenia zawiera także poprawkę kwadratową w wychyleniu. Nie będziemy powtarzać jego rachunków, pokażemy tylko, co stało się w następnym miesiącu.

Otóż w czasie gdy Heisenberg wojażował, Born wraz z Jordanem (młodszym o rok od Heisenberga, a więc mającym dwadzieścia dwa lata!) przyjrzeli się jego pracy z bardziej matematycznego punktu widzenia. Max Born skojarzył po kilku dniach, że widział już kiedyś takie mnożenie jak w ramce. Było to jeszcze na studiach we Wrocławiu, a chodziło o mnożenie macierzy. Wielkości Heisenberga były po prostu macierzami. Zauważyli też obaj, że ów skomplikowany warunek Heisenberga można macierzowo zapisać jako

\boxed{xp-px=i\hbar \mathbf{I},}

gdzie x,p były macierzami położenia i pędu, a \mathbf{I} macierzą jednostkową. Wielkości kwantowomechaniczne były więc macierzami i to takimi, które nie komutują. Od komutowania dzieli je niewiele, bo tylko stała Plancka – znaczy to, że w wielu sytuacjach różnica ta będzie nie do wykrycia, gdyż stała Plancka jest mała w zwykłych jednostkach (ujmując to inaczej, to nasze, dostosowane do ludzkiego ciała, jednostki są ogromne w skali atomowej, bo my sami składamy się z ogromnej liczby atomów).

Trudno dziś uwierzyć, że Max Born, matematyk z wykształcenia, dawny asystent Hermanna Minkowskiego, musiał wygrzebywać z zakamarków pamięci definicję mnożenia macierzy. Algebra liniowa przez ostatnie sto lat stała się dziedziną bardzo podstawową i uczy się jej powszechnie, nie tylko ze względu na mechanikę kwantową, ale także różne bardziej przyziemne zastosowania, np. w statystyce.

Najprostszym zastosowaniem mechaniki macierzowej jest oscylator harmoniczny. Jego energia ma postać:

H=\dfrac{1}{2}m\dot{x}^2+\dfrac{1}{2}m\omega^2 x^2,

(gdzie m to masa oscylatora), a równanie ruchu (odpowiednik równania Newtona):

\ddot{x}+\omega^2 x=0.

Wyrażenia mają tę samą postać co w mechanice klasycznej (kropki oznaczają pochodną po czasie), ale wszystkie wielkości x,\dot{x},\ddot{x} są teraz macierzami. Nietrudno znaleźć postać macierzy x_{mn}. Można wybrać ją jako macierz symetryczną: x_{mn}=x_{nm} i jedyne nieznikające wyrazy równe są

x_{n,n-1}=x_{n-1,n}=\sqrt{\dfrac{n\hbar}{2m\omega}}.

Macierz energii (zwana hamiltonianem) staje się diagonalna, tzn. nie znikają jedynie wyrazy z jednakowymi wskaźnikami:

H_{nn}=\hbar\omega\left(n+\dfrac{1}{2}\right), \mbox{ gdzie }\, n=0,1,2,\ldots.

Nasze macierze są nieskończone, gdyż oscylator ma nieskończenie wiele stanów wzbudzonych. Całe obliczenie znaleźć można w klasycznej książce L.D. Landaua i E.M. Lifszyca, Mechanika kwantowa.

Mechanikę kwantową rozwijali ludzie młodzi pod kierunkiem starszych oraz Erwin Schrödinger. Isnieje dość zabawne zdjęcie z uroczystości noblowskich w roku 1933, gdy twórcy mechaniki kwantowej odbierali swoje nagrody. Mamy tam Diraca i Heisenberga z matkami oraz Schrödingera z żoną. Ten ostatni, już po czterdziestce, mógł być niemalże ojcem młodszych laureatów.

Warto dodać może parę słów o Pacualu Jordanie. Był potomkiem hiszpańskiego oficera wojsk napoleońskich i zawziętym nacjonalistą, a także nazistą. W roku 1933 Born z racji żydowskiego pochodzenia był już na emigracji, Getynga wyglądała zupełnie inaczej. Jordan, który brał od początku udział w powstaniu mechaniki kwantowej, współtworzył także równolegle do Paula Diraca kwantową teorię pola, czyli relatywistyczną mechanikę kwantową. Gdyby nie nazistowskie sympatie, z pewnością zostałby laureatem Nagrody Nobla. Z czysto naukowego punktu widzenia należała mu się ona, choć trudno nie podzielać wątpliwości szwedzkiego komitetu, że przyznanie nagrody w takich okolicznościach byłoby złym sygnałem dla świata.