Konstandinos Kawafis: Czekając na barbarzyńców (1898)

Na cóż czekamy, zebrani na rynku?

Dziś mają tu przyjść barbarzyńcy.

Dlaczego taka bezczynność w senacie?
Senatorowie siedzą – czemuż praw nie uchwalą?

Dlatego że dziś mają przyjść barbarzyńcy.
Na cóż by się zdały prawa senatorów?
Barbarzyńcy, gdy przyjdą, ustanowią prawa.

Dlaczego nasz cesarz zbudził się tak wcześnie
i zasiadł – w największej z bram naszego miasta –
na tronie, w majestacie, z koroną na głowie?

Dlatego że dziś mają przyjść barbarzyńcy.
Cesarz czeka u bramy, aby tam powitać
ich naczelnika. Nawet przygotował
obszerne pismo, które chce mu wręczyć –
a wypisał w nim wiele godności i tytułów.

Czemu dwaj konsulowie nasi i pretorzy
przyszli dzisiaj w szkarłatnych, haftowanych togach?
Po co te bransolety, z tyloma ametystami,
i te pierścienie z blaskiem przepysznych szmaragdów?
Czemu trzymają w rękach drogocenne laski,
tak pięknie srebrem inkrustowane i złotem?

Dlatego że dziś mają przyjść barbarzyńcy,
a takie rzeczy barbarzyńców olśniewają.

Czemu retorzy świetni nie przychodzą, jak zwykle,
by wygłaszać oracje, które ułożyli?

Dlatego że dziś mają przyjść barbarzyńcy,
a ich nudzą deklamacje i przemowy.

Dlaczego wszystkich nagle ogarnął niepokój?
Skąd zamieszanie? (Twarze jakże spoważniały.)
Dlaczego tak szybko pustoszeją ulice
i place? Wszyscy do domu wracają zamyśleni.

Dlatego że noc zapadła, a barbarzyńcy nie przyszli.
Jacyś nasi, co właśnie od granicy przybyli,
mówią, że już nie ma żadnych barbarzyńców.

Bez barbarzyńców – cóż poczniemy teraz?
Ci ludzie byli jakimś rozwiązaniem.

(przeł. Z. Kubiak)

Nie jest to najlepszy wiersz Kawafisa, nieco zbyt retoryczny, zbudowany katechizmowo, nie odwołuje się do konkretnej sytuacji historycznej, ironia jest tu zbyt łatwa. Ale nawet słabszy, wczesny Kawafis, to wciąż Kawafis: z wyobraźnią ożywiającą historię, pozwalającą widzieć zarówno materialne i psychologiczne szczegóły, jak i głębszy sens spektaklu. Oto mamy rozwiniętą cywilizację, która nie ma siły trwać, jej elity skoncentrowane są na dogadzaniu własnej próżności, popisywaniu się bogactwem, pomysłowością w sprawach trzeciorzędnych, błyskotkami i błahostkami. Wszyscy czekają na potop, który by odnowił oblicze ziemi.

Na kilkanaście lat przed wielką wojną światową i wielką rewolucją rosyjską, przed czekistami, czarnymi koszulami i brunatnymi koszulami, stalinami i hitlerami, łagrami i lagrami, poeta z prowincjonalnej Aleksandrii umiał zaglądać w głąb czasu i dobrze rozumiał, na czym polega znużenie światem i tęsknota za rządami silnej ręki, przecinającymi beznadziejne dylematy. Tak słodko wyrzec się wolności. Miliony miały sobie powtarzać: co nam po wolności, skoro i tak nasze życie przypomina dożywotnie więzienie, którego murów sami nie przebijemy.

Każdy czytelnik musi zadać sobie nieuchronne pytanie: kim są owi barbarzyńcy. Dla Greków byli to ci, którzy nie mówili po grecku. Definicja ta w jakimś sensie pozostaje użyteczna do dziś, jeśli rozumieć ją szerzej, a więc nie tylko w odniesieniu do języka, ale i do tego, co się myśli. Grecy nauczyli nas szacunku dla człowieka, podziwu dla jego ciała, umysłu, czasem także charakteru. Uczyli pokory wobec świata, przestrzegali przed hybris, zgubną pychą, która narusza prawa boskie i nieuchronnie wiedzie do katastrofy. Zaszczepili nam zmysł tragedii i koncepcję filozofii. Arystotelesowska definicja prawdy nigdy nie przestała być aktualna (w sformułowaniu św. Tomasza jest to zgodność naszych pojęć z faktami, coś niełatwego do osiągnięcia, lecz bezcennego). Zresztą bez Greków chrześcijaństwo byłoby zaledwie jedną więcej egzotyczną żydowską sektą, nigdy nie osiągnęłoby metafizycznej subtelności i intelektualnej dojrzałości. Także prawa logiki i ich nadużycia, retoryka i demagogia, skodyfikowane zostały przez Greków. Ani druk, ani internet nie dodały tu nic nowego oprócz zgiełku i narastającego z czasem przeświadczenia, że liczy się tylko dzień dzisiejszy, a co wczoraj niewarte jest pamiętania. Zasypywani powodzią nieistotnych słów i obrazów, niczym nartniki po powierzchni wody, ślizgamy się po teraźniejszości, niewiele z niej rozumiejąc.

Jakich barbarzyńców obawia się dzisiejszy świat Zachodu? Islamskich terrorystów, chińskich producentów, kolorowych imigrantów, własnych społeczeństw? Cywilizacje mają swoje przypływy i odpływy, ta zachodnioeuropejska i amerykańska prawdopodobnie chyli się ku upadkowi, a ci, którzy chcą jej bronić są gorsi niż barbarzyńcy przybywający od granic. Zdegenerowane chrześcijaństwo, które nie rozumie, kim był żydowski prorok Jezus z Nazaretu i które jest tylko bezmyślnym klepaniem magicznych zaklęć, wznoszeniem nienawistnych okrzyków i paradowaniem z faszystowskimi symbolami, bez żadnej przyszłości. Ludzie, którzy kłamią, nawet wtedy, kiedy się nie odzywają. Uczestnicy polowań z nagonką na Bogu ducha winne ofiary – ale przecież nikt nie jest niewinny. Nowi dygnitarze, bezmyślni albo powtarzający sobie w duchu, że tak trzeba. Prymitywy, których uniwersum mieści się w telefonie. Barbarzyńców nie trzeba daleko szukać – oni są w nas, w naszych sąsiadach, krewnych i znajomych, wystarczą sprzyjające okoliczności, a chamstwo i brutalność wezmą górę. Jacyś barbarzyńcy zawsze się znajdą, wezmą władzę, która leży na ulicy, i ustanowią swoje prawa, proste jak pałka i płaskie jak umysł towarzysza Płaszczaka.

(grudzień 2016 r.)

Widmo wodoru i symetrie (1/2)

I. Od Balmera do Bohra

Naszym bohaterem jest zbiór linii widmowych wodoru i proste wyrażenie, które go opisuje. Widmo składa się z serii, z których najbardziej znana jest seria Balmera przypadająca na obszar widzialny i bliski nadfiolet.

 

Długości fali w angstremach (1 {\rm \AA}=10^{-10} {\rm m}).

Jakob Balmer, znając długości czterech pierwszych linii, odgadł ukrytą w nich prawidłowość. Długości fal spełniają równanie

\lambda=h\,\dfrac{n^2}{n^2-4},\;\;n=3,4,5,6,

gdzie h jest stałą. Okazało się, że seria linii jest nieskończona, jeszcze za życia Balmera jego wzór potwierdził się dla kilkunastu linii. Okazało się też, że istnieją inne serie widmowe. Wszystkie można opisać wzorem

\dfrac{1}{\lambda}=R\left(\dfrac{1}{m^2}-\dfrac{1}{n^2}\right),\; n=m+1,\,m+2,\,\ldots,

gdzie m=1,2,3, \ldots, a stała R zwana jest stałą Rydberga. Co ważne, wzór Balmera, w tej wersji zwany najczęściej wzorem Rydberga, w przypadku wodoru spełniony jest bardzo dokładnie, choć jeszcze pod koniec XIX wieku zaobserwowano, że linie widmowe wodoru są naprawdę dubletami: parami bardzo blisko położonych linii. Tą tzw. strukturą subtelną nie będziemy się tu zajmować. Wyjaśnia ją równanie Diraca, a więc uwzględnienie efektów relatywistycznych oraz spinu elektronu. Efekty relatywistyczne są jednak poprawkami do energii rzędu \alpha^2, gdzie \alpha\approx\frac{1}{137} jest stałą struktury subtelnej, a więc pięć rzędów wielkości mniejszymi.

Postać wzoru Rydberga łatwo zrozumieć jako zapis zasady zachowania energii, jeśli posłużymy się pojęciem fotonu, wprowadzonym przez Alberta Einsteina w 1905 r. (określenie foton jest dużo późniejsze). Cząstki światła mają energię

E=h\nu=\dfrac{h c}{\lambda},

h, c, \nu oznaczają odpowiednio stałą Plancka, prędkość światła i częstość fotonu. Zatem wzór Rydberga oznacza, że poziomy energetyczne elektronu w atomie wodoru dane są równaniem

E_n=-\dfrac{hcR}{n^2},\,\, n=1,2,3,\ldots.

Dlaczego taka, a nie inna wartość R? Dlaczego pojawia się tu kwadrat liczby naturalnej? Tak proste wyrażenie powinno mieć jakieś uzasadnienie. 

Niels Bohr pierwszy podał teoretyczne wyjaśnienie wartości stałej Rydberga w swoim planetarnym modelu atomu. Energie elektronu na dozwolonych orbitach są w nim równe

E_n=-\dfrac{me^4}{2\hbar^2 n^2},

tutaj m oznacza masę elektronu, e^2=\frac{q_e^2}{4\pi\epsilon_0} to kwadrat ładunku elementarnego razy stała z prawa Coulomba, \hbar\equiv h/2\pi. Liczba naturalna n jest u niego po prostu numerem orbity i konsekwencją postulatu kwantowego:

L=mvr=n\hbar.

Słowami: moment pędu L elektronu na orbicie o promieniu r i prędkości v jest wielokrotnością stałej Plancka. Postulat ten nie wynikał z głębszych rozważań, trzeba go było przyjąć, aby otrzymać prawidłowe wyniki. Można powiedzieć, że Bohr przesunął zgadywankę Balmera z numerologii na teren fizyki.

Ogromnym sukcesem było powiązanie stałej Rydberga z wielkościami elementarnymi: masą i ładunkiem elektronu, stałą Plancka i siłą oddziaływań elektrostatycznych. Zawsze kiedy uda się tego rodzaju sztuka, znaczy, że jesteśmy blisko jakieś bardziej fundamentalnej prawdy. Jednak model Bohra od początku był prowizoryczny. W myśl klasycznej elektrodynamiki elektron krążący po orbicie z pewną częstością f powinien promieniować falę elektromagnetyczną o częstości f. Tymczasem w jego modelu do emisji promieniowania dochodzi, gdy elektron przeskakuje między dwiema orbitami, z których każda charakteryzuje się jakąś częstością krążenia f_n. Podobieństwo do fizyki klasycznej pojawia się dopiero, gdy weźmiemy dwie orbity o dużych numerach, wtedy

\nu_{n+1 n}\approx f_{n}\approx f_{n+1}.

Niels Bohr bardzo niechętnie pogodził się z ideą fotonu. Rozumiał oczywiście, że eksperyment potwierdza proste równanie h\nu=E_n-E_m, tajemnicą był jednak mechanizm fizyczny, jaki za tym stał. Nie znał go ani Einstein, ani Bohr, foton wszedł do fizyki na dobre dopiero w roku 1925. Teorią, która poprawnie przewiduje wartości energii w atomie wodoru, jest mechanika kwantowa. A w pełni konsekwentny opis emisji fotonu daje dopiero kwantowa teoria pola, w której foton jest kwantem pola elektromagnetycznego.

II. Erwin Schrödinger, 1925

W połowie roku 1925 Werner Heisenberg wpadł na pomysł, aby wprowadzić do fizyki wielkości, których mnożenie jest nieprzemienne: operatory albo macierze. W krótkim czasie powstały trzy na pozór niezależne formalizmy do opisania fizyki kwantowej: macierze Heisenberga (oraz Maksa Borna i Pascuala Jordana, którzy wraz z Heisenbergiem rozwinęli tę ideę), funkcje falowe Erwina Schrödingera oraz abstrakcyjny formalizm Paula Diraca.

Krótkie omówienie formalizmu mechaniki kwantowej znajduje się na końcu wpisu.

Wersja Schrödingera najbardziej przypominała klasyczną fizykę drgań. Aby znaleźć dozwolone energie elektronu należy rozwiązać równanie 

-\dfrac{\hbar^2}{2m}\Delta\psi-\dfrac{e^2}{r}\psi=E\psi,

gdzie r jest odległością od jądra, a \Delta to laplasjan, czyli suma drugich pochodnych:

\Delta\equiv \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}.

Wyraz z laplasjanem odpowiada energii kinetycznej, drugi wyraz po lewej stronie odpowiada energii potencjalnej. Szukamy takich funkcji \psi(x,y,z), które wstawione po lewej stronie dadzą po prawej liczbę pomnożoną przez tę samą funkcję \psi. Funkcja taka to funkcja własna, a energia jest wartością własną. Otrzymujemy w ten sposób stany niezależne od czasu, stacjonarne, i tylko takimi będziemy się zajmować.

Funkcje falowe \psi powinny znikać w nieskończoności oraz nie mieć osobliwości. Warunki te prowadzą do skwantowanych poziomów energetycznych. Ponieważ problem jest sferycznie symetryczny (energia potencjalna zależy tylko od odległości elektronu od protonu r), więc można wprowadzić współrzędne sferyczne: odległość od początku układu r, dopełnienie szerokości geograficznej do 90^{\circ} oznaczane \vartheta oraz długość geograficzną oznaczaną \varphi.

spherical

Korzystamy z tożsamości

\Delta\equiv \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}=\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right)-\dfrac{L^2}{\hbar^2},

gdzie L^2 jest operatorem zależnym tylko od kątów, a nie od r. Możemy zapisać równanie Schrödingera w postaci

L^2 \psi=\hbar^2\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial\psi}{\partial r}\right)+2mr^2\left(E+\dfrac{e^2}{r}\right)\psi.

Sama funkcja falowa nie musi być jednak sferycznie symetryczna i można ją zapisać w postaci iloczynu funkcji zależnych od promienia i od kątów:

\psi(r,\vartheta,\varphi)=R(r)Y(\vartheta,\varphi).

Podstawiając tę funkcję do równania Schrödingera i dzieląc obustronnie przez \psi możemy doprowadzić je do postaci:

\dfrac{L^2 Y}{Y}=\lambda=\dfrac{1}{R}\, \hbar^2\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial R}{\partial r}\right)+2mr^2\left(E+\dfrac{e^2}{r}\right).

Po lewej stronie mamy funkcje zależne od kątów, po skrajnej prawej zależne od odległości. Rozseparowaliśmy zmienne, oba wyrażenia muszą równać się wspólnej stałej \lambda. Mamy więc dwa prostsze równania:

\begin{array}{c} -\dfrac{\hbar^2}{2m}\,\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial R}{\partial r}\right)+\left(\dfrac{\lambda}{2m r^2}-\dfrac{e^2}{r}\right)R=ER \\[20pt] L^2 Y=\lambda Y. \end{array}

Drugie z tych równań nie zawiera potencjału i jest stałym punktem programu dla wszystkich sytuacji z symetrią sferyczną. Rozwiązaniami są tzw. harmoniki sferyczne Y_{lm}(\vartheta,\varphi), gdzie l=0,1,2,\ldots, a dla każdej wartości l mamy 2l+1 różnych wartości m=-l,-l+1,\ldots. l Dozwolone wartości własne równe są \lambda=\hbar^2 l(l+1). Kształt przestrzenny tych funkcji każdy widział jako obrazki orbitali s,p,d itd. Funkcje te przydają się zawsze, gdy mamy do czynienia z rozkładem jakiejś wielkości na sferze, np. mapy promieniowania tła w kosmologii albo szczegóły ziemskiego pola grawitacyjnego z uwzględnieniem niesferyczności Ziemi itp (Wtedy oczywiście nie pojawia się w tych wzorach stała Plancka, ale to szczegół techniczny).

Spójrzmy raz jeszcze na pierwsze równanie (radialne), w którym wprowadzamy nową funkcję radialną: u(r)\equiv rR(r):

-\dfrac{\hbar^2}{2m}\,\dfrac{\partial^2 u}{\partial r^2}+\left(\dfrac{\hbar^2 l(l+1)}{2m r^2}-\dfrac{e^2}{r}\right)u=Eu.

Jest to równanie Schrödingera jednowymiarowe. mamy teraz jeden wymiar: radialny, ale bardziej skomplikowany potencjał: do energii elektrostatycznej doszedł dodatni człon z l(l+1). Jego znaczenie fizyczne dość łatwo zidentyfikować przez analogię do mechaniki klasycznej. W ruchu w polu kulombowskim możemy w każdej chwili rozłożyć wektor pędu elektronu na składową radialną p_r i prostopadłą do niego składową styczną p_t. Zgodnie z tw. Pitagorasa energia kinetyczna ma postać

E_k=\dfrac{p_r^2}{2m}+\dfrac{p_t^2}{2m}=\dfrac{p_r^2}{2m}+\dfrac{L^2}{2mr^2},

w ostatniej równości skorzystaliśmy z faktu, że moment pędu elektronu L=rp_{t}. Gdybyśmy dla takiego radialnego problemu napisali równanie Schrödingera, byłoby to właśnie równanie, które uzyskaliśmy w wyniku separacji zmiennych. Zatem dozwolone kwantowe wartości kwadratu momentu pędu są równe L^2=\hbar^2 l(l+1). Nie jest to, rzecz jasna, dowód, lecz wskazanie prawdopodobnej (i prawdziwej) interpretacji fizycznej naszego równania. Mamy więc efektywne potencjały zależne od nieujemnej całkowitej liczby kwantowej l. Wyglądają one w przypadku atomu wodoru następująco:

tmp_iispvexy

Studnia potencjału tylko w przypadku l=0 jest nieskończenie głęboka, wraz z rosnącym l staje się ona coraz płytsza. Nie będziemy rozwiązywać do końca tego równania radialnego. Okazuje się, że aby uzyskać funkcje znikające w nieskończoności i nie wybuchające w pobliżu r=0, rozwiązania mają postać

R_{nl}(r)=W_{n-1 l}(r)e^{-r/na_0},

gdzie n jest tzw. główną liczbą kwantową, a_0 promieniem Bohra (promieniem pierwszej orbity w modelu Bohra), a W jest wielomianem stopnia n-1. Dozwolone wartości l=0,1,\ldots, n-1. Prawdopodobieństwa dane są kwadratami funkcji falowej. Np. dla stanu podstawowego wodoru wygląda to tak.

tmp_72yjso5t

Pionowa linia wskazuje granicę obszaru dozwolonego klasycznie, tzn. takiego, że energia całkowita jest większa od energii potencjalnej (poza tym obszarem energia kinetyczna powinna być ujemna). Falowy charakter równania przejawia się w tym, że nic nie dzieje się nagle, funkcja zanika płynnie w pewnym obszarze. Fizycznie oznacza to możliwość przenikania barier potencjału, czyli efekt tunelowy, odpowiedzialny m.in. za świecenie gwiazd.

Energie stanów równe są dokładnie temu, co obliczył Bohr. Zależą one tylko od n, a nie zależą od wartości l, mimo że potencjał efektywny jest zupełnie inny przy różnych l. Łącznie danej wartości n odpowiada n^2 różnych rozwiązań. Bezpośrednie rozwiązanie równania Schrödingera nie bardzo pozwala zrozumieć, skąd się bierze aż taka rozmaitość. Te same energie powinniśmy otrzymywać dla jednakowego l i różnych wartości m, bo oznaczają one różne wartości rzutu momentu pędu na oś z. Zatem symetria obrotowa wyjaśnia tylko część degeneracji stanów w atomie wodoru. Jeśli weźmiemy pod uwagę potencjał inny niż kulombowski, to ta dodatkowa degeneracja zniknie: stany o różnych l rozszczepią się energetycznie. Tak jest np. w atomie litu, gdzie elektron walencyjny porusza się w efektywnym polu jądra oraz dwóch pozostałych elektronów. Z daleka mamy więc tylko ładunek (3-2)q_e=q_e, tak jak w atomie wodoru, z bliska jednak potencjał jest inny, choć nadal sferycznie symetryczny.

lithlev

Nawet po rozwiązaniu zagadnienia atomu wodoru za pomocą równania Schrödingera nadal niezbyt dobrze rozumiemy, dlaczego stany są zdegenerowane: E_{2s}=E_{2p}, E_{3s}=E_{3p}=E_{3d}, itd. W przyszłości pokażemy, że stany związane atomu wodoru wykazują  dodatkową symetrię i że łącznie grupą symetrii jest tu grupa obrotów w przestrzeni czterowymiarowej. Dopiero ten fakt wyjaśnia głębiej wzór Balmera.

Poniżej przedstawiłem niektóre szczegóły matematyczne dla zainteresowanych.

Zasady mechaniki kwantowej w przypadku jednej cząstki

Stany cząstki

Stan elektronu w formalizmie Schrödingera opisujemy za pomocą pewnej funkcji (zespolonej) falowej \psi(x,y,z,t). Rozmaite dopuszczalne funkcje można traktować jak wektory: dodawanie funkcji i mnożenie przez liczbę (zespoloną) daje inną dopuszczalną funkcję. Zbiorem funkcji może być np. zbiór funkcji znikających dostatecznie szybko w nieskończoności:

{\displaystyle \int_{{\bf R}^3}}\; |\psi(x,y,z)|^2 \, dV<\infty.

Określamy także operację iloczynu skalarnego dwóch funkcji:

(\psi,\chi)={\displaystyle \int_{{\bf R}^3}}\; \psi^{\star}\chi\, dV.

Iloczyn wektora przez siebie jest kwadratem jego długości, czyli normy:

\lVert \psi \rVert^2=(\psi,\psi)={\displaystyle \int_{{\bf R}^3}}\; |\psi(x,y,z)|^2 \,dV.

Definiując odległość dwóch wektorów \psi, \chi jako \Vert \psi-\chi\rVert otrzymujemy przestrzeń Hilberta (do definicji należy jeszcze dodać warunek zupełności: żeby ciągi zbieżne w normie nie wyprowadzały poza naszą przestrzeń).

Wielkości fizyczne

Wielkościom fizycznym odpowiadają operatory, czyli przekształcenia liniowe określone na przestrzeni funkcji. Liniowość oparatora A oznacza, że dla dowolnych dwóch wektorów \psi,\chi i dowolnych dwóch liczb zespolonych \alpha,\beta, mamy

A(\alpha \psi+\beta\chi)=\alpha A\psi+\beta A\chi.

Łatwo to sprawdzić w poszczególnych przypadkach, np. dla składowej x pędu otrzymamy: p_x(\psi_1+\psi_2)=p_x\psi_1+p_x\psi_2, bo pochodna sumy funkcji, to suma pochodnych itd. Operatory odpowiadające wielkościom fizycznym muszą być hermitowskie, tzn. dla dowolnych wektorów mamy

(\chi, A\psi)=(A\chi,\psi).

Warunek ten zapewnia, że mierzone wartości wielkości fizycznych są rzeczywiste, mimo że cały formalizm oparty jest na liczbach zespolonych.

Operatory można składać, czyli mnożyć, wykonując po prostu jedną operację po drugiej. Składając więc operator B i następnie operator A otrzymujemy AB, który działa następująco na wektor:

(AB)\psi=A(B\psi).

Jasne jest, że tak określone mnożenie operatorów na ogół jest nieprzemienne, tzn. wynik zależy od kolejności. W fizyce kwantowej szczególne znaczenie mają tzw. komutatory operatorów, zdefiniowane jako różnica między pomnożeniem ich w odmiennej kolejności: [A,B]=AB-BA.

Komutatory tej samej składowej współrzędnej i pędu nie komutują i muszą spełniać warunek odkryty przez Heisenberga:

[x,p_x]=i\hbar,

ale [x,p_y]=[x,p_z]=0. Komutują też między sobą operatory różnych składowych współrzędnej albo pędu. Z operatorów pędu i współrzędnych budować możemy operatory innych wielkości fizycznych, np. momentu pędu badź energii (hamiltonian). Wszystkie one muszą być hermitowskie. Szczególną rolę odgrywa hamiltonian H({\bf x},{\bf p}), gdyż określa ewolucję czasową układu. Spełnione musi być w każdej chwili równanie Schrödingera

i\hbar\dfrac{\partial\psi}{\partial t}=H\psi.

Gdy hamiltonian nie zależy od czasu, możemy szukać funkcji spełniających równanie 

H\chi=E\chi,

tzw. równanie Schrödingera bez czasu. Wówczas 

\psi(t)= \exp{\left(-\dfrac{iEt}{\hbar}\right)}\chi,

jest rozwiązaniem ogólniejszego równania Schrödingera. Ewolucja w czasie polega wówczas tylko na zmianie fazy zespolonej, jest to stan kwantowy o ustalonej energii, stan stacjonarny.

Postulat interpretacyjny

Wartość oczekiwana wielkości fizycznej A w stanie \psi dana jest równaniem

\langle A\rangle=\dfrac{(\psi,A\psi)}{(\psi,\psi)}.

Gdy używamy funkcji unormowanej (\psi,\psi)=1 z wyrażenia tego zostaje tylko licznik. Widzimy, że zawsze można funkcję falową pomnożyć przez dowolny niezerowy czynnik, nie zmieniając wyników doświadczenia. Jeśli interesuje nas pytanie, czy cząstka znajduje się w obszarze V możemy za operator A_V wziąć mnożenie przez funkcję charakterystyczną tego obszaru (równą 1 dla {\bf x}\in V oraz 0 poza obszarem), wtedy prawdopodobieństwo znalezienia cząstki wenątrz V dane jest

Pr(V)={\displaystyle \int_V}|\psi|^2\, dV.

(Zakładamy unormowanie funkcji \psi.)

Widać też szczególną rolę wektorów i stanów własnych. Jeśli spełnione jest równanie 

A\psi=a\psi,

to mówimy, że funkcja \psi jest wektorem własnym, a wartość a wartością własną. Z postulatu interpretacyjnego wynika, że w wyniku pomiaru wielkości A otrzymamy wartość a. A więc w tym przypadku wielkość fizyczna przyjmuje ściśle określoną wartość, nie ma żadnego kwantowego rozmycia. Łatwo zauważyć, że tylko w takim przypadku możemy mówić o ściśle określonej wartości wielkości fizycznej. Tworząc operator (A-a)^2 widzimy, że

\langle (A-a)^2\rangle=0 \Leftrightarrow A\psi=a\psi.

W sytuacji takiej nie ma żadnego rozrzutu wyników, otrzymujemy zawsze tylko i wyłącznie wartość a.

Dwa fakty matematyczne

Gdy pewien stan \psi jest jednocześnie stanem własnym dwóch operatorów A\psi=a\psi oraz B\psi=b\psi, to operatory te komutują na tym stanie:

AB\psi=Ab\psi=ab\psi=ba\psi=BA\psi.

Z kolei stany należące do różnych wartości własnych danego operatora A są ortogonalne, tzn. gdy A\psi=a\psi oraz A\chi=b\chi, to mamy

a(\psi,\chi)=(A\psi,\chi)=(\psi, A\chi)=b(\psi,\chi) \Leftrightarrow (a-b)(\psi,\chi)=0.

Szczegóły matematyczne problemu atomu wodoru

Laplasjan

Dla laplasjanu mamy tożsamość:

\Delta\equiv \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}=\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right)-\dfrac{({\bf x}\times {\bf \nabla})^2}{\hbar^2},

Najłatwiej sprawdzić to we współrzędnych kartezjańskich, licząc operator ({\bf x}\times {\bf \nabla})^2 i wyrażając operator r\frac{\partial}{\partial r} przez pochodne kartezjańskie:

r\dfrac{\partial }{\partial r}=x\dfrac{\partial }{\partial x}+y\dfrac{\partial }{\partial y}+z\dfrac{\partial }{\partial z},

gdzie korzystamy wielokrotnie z równości r^2=x^2+y^2+z^2. Podobnie możemy obliczyć kwadrat operatora po lewej stronie.

Moment pędu

Procedura przejścia do mechaniki kwantowej polega na zastąpieniu każdej zmiennej fizycznej odpowiednim operatorem. Każdą ze współrzędnych x,y,z zastępujemy mnożeniem przez odpowiednią współrzędną. Działając na funkcję \psi dają one nowe funkcję, x\psi,y\psi, z\psi. Podobnie operatory składowych pędu działając na funkcję, dają pochodne, \frac{\hbar}{i}\frac{\partial\psi}{\partial x} itd. 

W przypadku atomu wodoru z punktowym protonem w początku układu dowolny obrót wokół początku układu nie powinien zmieniać fizyki. W fizyce klasycznej oznacza to, że moment pędu układu jest stały. Jest on zdefiniowany jako

{\bf L}={\bf x} \times {\bf p}, \, \Leftrightarrow L_x=y p_z-z p_y, \, L_y=z p_x-x p_z, \, L_z=x p_y-y p_x,

w ostatnich trzech równaniach możemy cyklicznie przestawiać wskaźniki x\rightarrow y\rightarrow\ z\rightarrow x \ldots. Krócej zapisać można te związki w postaci:

L_i=\varepsilon_{ijk}x_jp_k,

gdzie zamiast x,y,z piszemy x_i, a symbol całkowicie antysymetryczny \varepsilon_{123}=1 i zmienia znak przy każdym przestawieniu dwóch wskaźników oraz \varepsilon_{ijk}=0, gdy jakieś wskaźniki się powtarzają. Zakładamy sumowanie po każdej parze powtarzających się wskaźników.

W mechanice kwantowej operatory L_i tworzymy dokładnie tak samo, tyle że teraz musimy pamiętać, że kolejność operatorów może być istotna. Operatory momentu pędu komutują z hamiltonianem atomu wodoru:

[H,L_i]=0,

Także operator kwadratu momentu pędu L^2=L_1^2+L_2^2+L_3^2 komutuje z hamiltonianem, a także z poszczególnymi składowymi momentu pędu:

[L^2,H]=0,\;\; [L^2,L_i]=0, \,\, i=1,2,3.

Jednakże operatory L_i nie komutują ze sobą:

[L_i,L_j]=i\hbar\varepsilon_{ijk} L_k.

Maksymalnym zbiorem komutujących operatorów jest więc H, L^2 oraz jedna z trzech składowych momentu pędu. Standardowo wybiera się tu L_3\equiv L_z. Możemy więc szukać funkcji własnych hamiltonianu, które będą zarazem funkcjami własnymi L^2 oraz L_3.

Wprowadzimy współrzędne sferyczne punktu,  Łatwo sprawdzić, że operatory momentu pędu zależą tylko od kątów, nie od r  Np.

L_3=\dfrac{\hbar}{i} \dfrac{\partial}{\partial \varphi}.

Możemy to sprawdzić, korzystając z wyrażeń na współrzędne kartezjańskie:

\left\{ \begin{array}{l} x=r\sin\vartheta\cos\varphi \\ y=r\sin\vartheta\sin\varphi \\ z=r\cos\vartheta. \end{array}\right.

Obliczamy, stosując wzór na pochodną funkcji złożonej:

\dfrac{\partial}{\partial \varphi}=\dfrac{\partial x}{\partial \varphi}\dfrac{\partial}{\partial x}+\dfrac{\partial y}{\partial \varphi}\dfrac{\partial}{\partial y}=-y\dfrac{\partial}{\partial x}+x\dfrac{\partial}{\partial y}.

W pozostałych składowych momentu pędy odległość r pojawia się raz w liczniku, a drugi raz w mianowniku przy różniczkowaniu, ostatecznie zostają wyrażenia zależne wyłącznie od kątów \vartheta, \varphi. Wracając do naszego równania z głównego tekstu:

L^2 \psi=\hbar^2\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial\psi}{\partial r}\right)+2mr^2\left(E+\dfrac{e^2}{r}\right)\psi.

Funkcja falowa \psi powinna być w pobliżu początku układu analityczna, tzn. zachowywać się jak wielomian stopnia l (może być stała, wtedy l=0) plus wyrazy wyższego stopnia. Można ją w pobliżu r=0 zapisać jako \psi=r^{l}Y(\frac{ {\bf x}}{r}) – wyłączyliśmy przed funkcję wszystkie potęgi r, pozostała część jest funkcją wektora jednostkowego, tzn. zależy tylko od kierunku. Drugi składnik po prawej stronie zawiera r w potęgach wyższych niż l-2, jest więc do pominięcia blisko początku układu. Obliczając pierwszy składnik po prawej stronie, dostaniemy

L^2 Y \rightarrow \hbar l(l+1) Y.

Funkcje własne kwadratu momentu pędu to wielomiany jednorodne (wszystkie składniki są tego samego stopnia  l) zmiennych x,y,z. Łatwo sprawdzić, że spełniają one warunek

\Delta(r^l Y)=0.

Funkcje Y_{lm} nazywane są harmonikami sferycznymi. Drugi wskaźnik informuje o wartości L_3\equiv L_z. Dla l=1 mamy funkcje (nie wypisujemy stałych normalizacyjnych), tzw. orbitale p:

\left\{ \begin{array}{l} Y_{1\pm 1} \sim\dfrac{x\pm iy}{r}= \sin\vartheta e^{\pm i\varphi}\\[5pt] Y_{10} \sim\dfrac{z}{r}=\cos\vartheta.\end{array}\right.

Dla l=2 otrzymujemy pięć orbitali d:

\left\{ \begin{array}{l} Y_{2\pm 2} \sim\dfrac{(x\pm iy)^2}{r^2}= \sin^2\vartheta e^{\pm i2\varphi}\\[8pt]Y_{2\pm 1} \sim\dfrac{(x\pm iy)z}{r^2}=\sin\theta\cos\vartheta e^{\pm i\varphi}\\[8pt] Y_{20}\sim \dfrac{2z^2-x^2-y^2}{r^2}=3\cos^2\vartheta-1.\end{array}\right.

Czynnik e^{im\varphi} określa wartość składowej z momentu pędu:

\dfrac{\hbar}{i}(e^{im\varphi})=m\hbar e^{im\varphi}.

Dla każdej wartości l mamy 2l+1 dopuszczalnych wartości L_z. Stany te powinny mieć taką samą energię.

 

 

Dlaczego atomy są trwałe?

Atomów nie można opisać za pomocą dziewiętnastowiecznej fizyki klasycznej. W doświadczeniach Hansa Geigera i Ernesta Marsdena, prowadzonych pod kierunkiem Ernesta Rutherforda w Manchesterze w latach 1909-1913, okazało się, że praktycznie cała masa atomu mieści się w bardzo małym obszarze o promieniu pojedynczych femtometrów (1 {\rm fm}=10^{-15} {\rm m}). Przedtem sądzono (model J.J. Thomsona), że atom zawiera rozmyty ładunek dodatni, w którym znadują się, niczym rodzynki w cieście, lekkie punktowe elektrony. Przy bombardowaniu cienkiej złotej folii za pomocą cząstek α (jąder helu) zdarzało się jednak, że cząstki te rozpraszały się pod wielkimi kątami, niemal zawracały. Byłoby to niemożliwe, gdyby dodatni ładunek rozmyty był na znacznym obszarze. Tak silne pole elektryczne wymagało niemal punktowego ładunku – atom musi więc zawierać niewielkie jądro. Tak narodził się model planetarny Ernesta Rutherforda.

Na rysunku nie można oddać różnicy skali między modelami Thomsona i Rutherforda. Elektrony krążą w znacznie większym obszarze kilkudziesięciu pikometrów (1 {\rm pm}=10^{-12} {\rm m}): w przypadku wodoru objętość atomu jest 2\cdot 10^{14} razy większa od objętości protonu w centrum. Znaczy to, że atom jest praktycznie pusty. Analogia z planetami krążącymi wokół Słońca niezbyt się tu jednak stosuje, ponieważ poruszający się z  przyspieszeniem elektron powinien emitować energię w postaci fal elektromagnetycznych. Z teorii Maxwella wynika, że w czasie rzędu 10^{-11} \,{\rm s} elektron powinien spaść na jądro. Atomy nie są stabilne – do takiego wniosku prowadzi Newtonowska mechanika w połączeniu z elektrodynamiką Maxwella.

Prowizorycznym wyjściem z sytuacji był model Nielsa Bohra: wprowadzał on dozwolone orbity elektronów i jakimś cudem przewidywał prawidłowo długości fal w widmie wodoru. Postulat kwantowania orbit jest nie do pogodzenia z fizyką klasyczną: trzeba bowiem założyć, że elektrodynamika czasem działa, a czasem nie. Jej prawa są z jakiegoś powodu zawieszone w przypadku orbit Bohra.

 Problem rozwiązała dopiero mechanika kwantowa. Przyjrzymy się, jak objaśnia ona stabilność atomu wodoru. Dla uproszczenia będziemy mówić o ruchu elektronu w polu elektrostatycznym nieruchomego jądra (wprowadzane w ten sposób przybliżenie łatwo zastąpić dokładniejszymi rachunkami). Mamy więc elektron o energii składającej się z energii kinetycznej oraz elektrostatycznej energii potencjalnej:

E=\dfrac{{\mathbf p}^2}{2m}-\dfrac{e^2}{r},

gdzie {\mathbf p} oraz m są odpowiednio pędem i masą elektronu, r jest jego odległością od punktowego jądra, a stała e^2\equiv\frac{q_e^2}{4\pi\varepsilon_0}. Nasz problem stabilności łatwiej zrozumieć, patrząc na wykres energii potencjalnej. 

Energia potencjalna w funkcji odległości elektronu od protonu (zaznaczone są dwa najniższe poziomy energetyczne atomu wodoru)

Zaznaczone są dozwolone wartości energii całkowitej. Energia krążącego elektronu jest stała tylko pod warunkiem pominięcia promieniowania. Inaczej będzie ona szybko się zmniejszać, a więc jak widać z wykresu nasz elektron będzie coraz ciaśniej okrążał proton. Studnia potencjału jest nieskończenie głęboka, bez dna (w przybliżeniu punktowego protonu). 

Mechanika kwantowa opisuje stany elektronu za pomocą funkcji falowej \psi(x,y,z)=\psi({\mathbf r}). Jej znaczenie jest statystyczne, pozwala ona obliczać rozmaite wartości średnie: np. średnią wartość energii kinetycznej, albo potencjalnej. Prawdopodobieństwo znalezienia elektronu w danym obszarze przestrzeni V jest równe

Pr(V)={\displaystyle \int_{V} |\psi|^2 dV}.

Oznacza to, że całka po całej przestrzeni musi być równa 1, mówimy wtedy, że funkcja falowa jest unormowana. Aby otrzymać rozmaite wartości średnie, musimy mieć przepis na ich tworzenie. Jest on następujący: każdej wielkości fizycznej przypisuje się operator. Np. operatorem składowej x położenia jest mnożenie przez x. Znaczy to, że pod działaniem tego operatora funkcja \psi przechodzi w x\psi. Bardziej skomplikowanym przypadkiem jest pęd. Składowa x pędu zastępowana jest braniem pochodnej po x:

\psi \mapsto \dfrac{\hbar}{i} \dfrac{\partial\psi}{\partial x}.

Pojawia się tutaj stała Plancka \hbar znak niechybny, że mamy do czynienia z fizyką kwantową, i jest tu jednostką urojoną – nasza funkcja \psi ma wartości zespolone. Z początku budziło to pewne zdumienie ojców mechaniki kwantowej, dziś wiemy, że liczby zespolone są tu nieodzowne. 

Mając pęd i położenie, możemy zbudować operator energii, czyli hamiltonian: zastępujemy po prostu pędy i położenia ich operatorami.  W jednym wymiarze wyglądałoby to następująco

H=-\dfrac{\hbar^2}{2m}\dfrac{\partial ^2}{\partial x^2}- \dfrac{e^2}{x}.

Pierwszy składnik oznacza, że należy dea razy wziąć pochodną po x i pomnożyć przez odpwoednią stałą, drugi składnik jest zwykłym mnożeniem funkcji. W trzech wymiarach mamy trzy składowe pędu, czyli trzy pochodne składające się w symbol zwany laplasjanem (czyli operatorem Laplace’a):

\Delta=\dfrac{\partial ^2}{\partial x^2}+\dfrac{\partial ^2}{\partial y^2}+\dfrac{\partial ^2}{\partial z^2}.

Zapisany w ten sposób hamiltonian ma postać:

H=-\dfrac{\hbar^2}{2m}\Delta-\dfrac{e^2}{r}.

Ostatni potrzebny nam składnik formalizmu to przepis na znajdowanie wartości średnich. Jeśli operator przypisany szukanej zmiennej nazwiemy A, to wartość średnia zmiennej jest równa

\langle A \rangle={\bf \int }\psi^{\star}A\psi dV.

Pojawia się tu funkcja zespolona sprzężona \psi^{\star}. Operatory odpowiadające wielkościom mierzalnym fizycznie (obserwablom) to tzw. operatory hermitowskie, które dają w powyższym przepisie wynik rzeczywisty, tak jak tego oczekujemy w eksperymencie. Hermitowskie są w szczególności operatory pędu, położenia i hamiltonian.

W zasadzie tyle formalizmu wystarczy, bez rozwiązywania równań różniczkowych, by pokazać, że dla dowolnej rozsądnej funkcji falowej (normowalnej) energia ograniczona jest z dołu. Czyli nie możemy uzyskać w żadnym eksperymencie mniej niż owo dolne ograniczenie. Co więcej, w każdym stanie związanym prawdopodobieństwo, że elektron znajdzie się bardzo blisko jądra jest znikome. Formalizm mechaniki kwantowej osiąga to dzięki wprowadzeniu funkcji \psi, która skoncentrowana w małym obszarze wymusza dużą energię kinetyczną. Jakościowo odpowiada to zasadzie nieoznaczoności: mała nieoznaczoność położenia oznacza dużą nieoznaczoność pędu, a więc i energii kinetycznej. Jednak zasady nieoznaczoności nie możemy tu zastosować wprost. 

Rozpatrzmy operator {\bf A} dany równaniem

{\bf A}={\bf p}-i\beta \dfrac{{\bf r}}{r},

gdzie \beta jest dowolną liczbą rzeczywistą. Ponieważ całka z kwadratu modułu {\bf A}\psi nie może być ujemna, otrzymujemy nierówność

\langle {\bf p}^2\rangle-2\beta\hbar\left\langle\dfrac{1}{r}\right\rangle+\beta^2\ge 0,\mbox{(*)}

słuszną dla każdego \beta. Bierzemy najpierw \beta=\hbar\langle\frac{1}{r}\rangle. Dostajemy nierówność

\langle {\bf p}^2\rangle\ge \hbar^2\left\langle \dfrac{1}{r}\right\rangle^2.

Dla dowolnej wartości r_0>0 możemy ograniczyć wartość całki do obszaru r<r_0, gdzie 1/r>1/r_0, otrzymujemy w ten sposób nierówność

\langle {\bf p}^2\rangle^{\frac{1}{2}}\ge \dfrac{\hbar}{r_0} Pr(r<r_0). 

Wrócimy do niej za chwilę. Raz jeszcze korzystamy z (*), tym razem dla \beta=\frac{me^2}{\hbar}. Porządkując wyrazy, otrzymujemy wartość oczekiwaną energii:

\boxed{ \left\langle \dfrac{{\mathbf p}^2}{2m}-\dfrac{e^2}{r}\right\rangle\ge -\dfrac{me^4}{2\hbar^2.}}

Mechanika kwantowa przewiduje zatem dolną wartość energii, równą -13,6\, \rm{eV}.

Aby oszacować \langle{\mathbf p}^2\rangle , założymy, że mamy elektron w stanie związanym, a więc całkowita energia jest ujemna – klasycznie znaczy to, że elektron nie może uciec z pola elektrostatycznego protonu. 

Mamy

\left\langle \dfrac{{\mathbf p}^2}{2m}-\dfrac{e^2}{r}\right\rangle<0,

co można przepisać w postaci

\left\langle \dfrac{{\mathbf p}^2}{4m}\right\rangle<-\left\langle \dfrac{{\mathbf p}^2}{4m}-\dfrac{e^2}{r}\right\rangle.

Do prawej strony możemy zastosować nierówność z ramki przy masie cząstki równej 2m. Otrzymujemy stąd szacowanie dla

\left\langle {\mathbf p}^2\right\rangle \le \dfrac{2me^2}{\hbar}.

Ostatecznie, prawdopodobieństwo znalezienia elektronu nie dalej niż r_0 od jądra spełnia nierówność

\boxed{Pr(r<r_0)<\dfrac{2 r_0}{a_0},}

gdzie a_0\equiv \frac{\hbar}{me^2}\approx 53 \,{\rm pm} zwane jest promieniem Bohra. Jest to promień pierwszej orbity w modelu Bohra.

Widzimy więc, że formalizm mechaniki kwantowej dostarcza wyjaśnienia, czemu atomy są trwałe, co jest niezmiernie ważnym faktem. Uwzględnienie poprawek relatywistycznych itd. niewiele tu zmienia. Można udowodnić więcej: także w układzie wielu jąder i wielu oddziałujących ze sobą elektronów kolaps jest niemożliwy. W tym przypadku ważną rolę odgrywa także fakt, iż elektrony są fermionami, tzn. żadne dwa z nich nie mogą zajmować tych samych stanów (wliczając spin). Podstawowe wyniki w tym obszarze należą do Elliotta Lieba i Waltera Thirringa. Rozważania takie są interesujące ze względów poznawczych, ale także pomagają zrozumieć zachowanie dużych układów, dla których bezpośrednie rachunki bez żadnych przybliżeń są niemożliwe.

Korzystałem z książki E. B. Manoukian, 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand.
Integrated Technical Treatment, Springer Nature 2020.

Satyendra Nath Bose i ostatnia wielka praca Alberta Einsteina (1925)

Einstein w latach dwudziestych zasypywany był listami. Pisali do niego tacy, którzy właśnie rozwiązali zagadkę świata, inni znaleźli błędy w teorii względności i żądali, by się do nich ustosunkował, ktoś prosił o wsparcie albo pomoc w dostaniu się na uczelnię. Pisali także oczywiście nieznani naukowcy. W czerwcu 1924 roku otrzymał list z Indii od Satyendry Bosego wraz z załączoną pracą. Autor pragnął ni mniej, ni więcej, tylko by Einstein przełożył jego pracę na niemiecki oraz posłał do druku w „Zeitschrift für Physik” (nie wspomniał przy tym, że praca została odrzucona przez „Philosophical Magazine”):

Wielce szanowny panie, ośmielam się przesłać panu załączony artykuł do przejrzenia i zaopiniowania. Chciałbym wiedzieć, co pan o nim sądzi. (…) Nie znam niemieckiego w stopniu wystarczającym, aby przetłumaczyć artykuł. Jeśli uważa pan, że artykuł wart jest publikacji, to będę wdzięczny, jeśli przekaże go pan do publikacji w «Zeitschrift für Physik». Choć zupełnie mnie pan nie zna, to bez wahania proszę pana o taką rzecz. Gdyż wszyscy jesteśmy pańskimi uczniami poprzez pańskie prace. Nie wiem, czy jeszcze pan pamięta, że ktoś z Kalkuty prosił o pozwolenie na przekład pańskich prac z teorii względności na angielski. Udzielił pan zgody. Książka została opublikowana. Ja przełożyłem pański artykuł na temat ogólnej względności.

Rzeczywiście, praca Bosego na początku lipca została posłana do druku, pod tekstem jest notka: „przełożone przez A. Einsteina” oraz uwaga tłumacza, iż praca stanowi „ważny postęp”. Warto zwrócić uwagę na pokorę Alberta Einsteina: był najsławniejszym uczonym świata, niedawno przyznano mu Nagrodę Nobla, lecz zdecydował się na przekład i zarekomendowanie pracy kogoś zupełnie nieznanego (w dodatku jego znajomość angielskiego nie była zbyt dobra, więc rzecz nastręczała kłopoty praktyczne, podejrzewam, że pomagała mu jego pasierbica Ilse albo sekretarka Betty Neumann). Niewątpliwie uczynił to w interesie nauki, ponieważ praca Bosego wydała mu się oryginalna. Trzydziestoletni Bose uczył fizyki na uniwersytecie w Dakce i przedstawił nowe wyprowadzenie wzoru Plancka dla promieniowania cieplnego. Wzór ten wyprowadzano wciąż na nowo, nie tylko dlatego, że był ważny, ale i dlatego że te wszystkie wyprowadzenia nie były do końca zadowalające. Praca Bosego zawierała istotny szczegół techniczny, który zainteresował Einsteina, a mianowicie inne liczenie stanów dla gazu fotonów. Najkrócej mówiąc, Bose obliczał liczbę stanów gazu tak, jakby fotony były nierozróżnialne. Wyobraźmy sobie rzut monetą: mamy dwa wyniki (stany monety): orzeł albo reszka. Rozważmy teraz jednoczesny rzut dwiema monetami. Jakie są możliwe stany? dwa orły; dwie reszki; orzeł i reszka. W przypadku monet zawsze możemy odróżnić od siebie dwa wyniki: reszka na pierwszej i orzeł na drugiej oraz orzeł na pierwszej i reszka na drugiej. Gdy obliczamy prawdopodobieństwa, mamy 4 stany. W przypadku fotonów należy liczyć tak, jakby był tylko jeden stan orzeł-reszka, bo nasze monety są z natury nierozróżnialne.

satyendra
Einstein przełożył na niemiecki jeszcze jedną pracę Bosego, choć się z nią nie zgadzał. Hinduski uczony na podstawie pocztówki od Einsteina uzyskał na uczelni dwuletnie stypendium do Europy oraz – na tej samej podstawie – bezpłatną wizę niemiecką. Przyjechał do Europy, ale nie zrobił już nic podobnej wagi.

Einstein natomiast zastosował podejście Bosego do gazu kwantowego, tzn. zwykłego gazu atomów, lecz potraktowanego kwantowo. Okazało się, że ma on pewną niezwykłą własność: w dostatecznie niskiej temperaturze pewien ułamek atomów zgromadzi się w stanie o najniższej energii, a reszta będzie nadal tworzyć gaz, czyli przyjmować rozmaite dostępne energie. Było to przejście fazowe, jak skraplanie pary albo pojawianie się namagnesowania w żelazie, gdy obniżamy temperaturę. Zjawisko znane jest pod nazwą kondensacji Bosego-Einsteina, choć Bose nie ma z nim zupełnie nic wspólnego(*).

Kondensacja Bosego-Einsteina zachodzi tylko z tego powodu, że atomy „chętnie” zajmują ten sam stan, nie muszą się wcale przyciągać. Praca Einsteina stanowiła pierwszy przykład teoretycznego opisu przejścia fazowego i z tego powodu była zamieszczana w podręcznikach. Wyjaśniło się później, że nie wszystkie atomy będą się tak zachowywać, bo cząstki kwantowe dzielą się na dwie grupy: bozony i fermiony. Pierwsze mogą obsadzać licznie ten sam stan, drugie – tylko pojedynczo – jak np. elektrony. Tylko bozony mogą podlegać kondensacji, chyba że fermiony połączą się np. w pary, które będą już bozonami.

W roku 1925 Einstein zajmował się głównie nie fizyką kwantową, lecz konstruowaniem jednolitej teorii grawitacji i pola elektromagnetycznego. Miał to robić bez powodzenia przez następne 30 lat. W lipcu 1925 zaczęła się kwantowa rewolucja – Werner Heisenberg wysłał pierwszą pracę nt. mechaniki kwantowej, w ciągu miesięcy rozpoczął się najważniejszy przewrót w fizyce XX wieku. Einstein obserwował go z bliska, lecz nie wziął w nim udziału. Nie podzielał entuzjazmu młodszych kolegów i Nielsa Bohra dla nowej fizyki. Dlatego ta praca o gazie kwantowym jest ostatnią, która ma znaczenie, by tak rzec, podręcznikowe.
W końcu roku 1924 Einstein zapisał równania dla takiego gazu nieoddziałujących bozonów i przewidział kondensację (praca została opublikowana w styczniu 1925 r.). W roku 1995, równo siedemdziesiąt lat później, udało się ten podręcznikowy przykład zrealizować doświadczalnie. Wygląda to tak:

640px-Bose_Einstein_condensate

Widzimy tu rozkład prędkości atomów rubidu dla kilku zmniejszających się temperatur. Temperatura kondensatu to 170 nK (nanokelwinów, czyli 10^{-9} K). Atomy kondensują w stanie podstawowym, który ma postać spłaszczonej górki: odzwierciedla to kształt pułapki, w jednym kierunku bardziej stromej niż w drugim (prędkości zachowują się odwrotnie: rozkład jest szerszy w tym kierunku, w którym pułapka jest bardziej stroma – jest to przejaw zasady nieoznaczoności).

Autorzy tych eksperymentów, Eric Cornell i Carl Wieman, kilka lat później dostali Nagrodę Nobla, jest to obecnie cała dziedzina badań eksperymentalnych i teoretycznych.

Przyjrzyjmy się bliżej efektowi odkrytemu przez Einsteina. Bose najprawdopodobniej nie zdawał sobie sprawy, że traktuje fotony jak cząstki nierozróżnialne. Einstein zastosował podejście Bosego do cząstek „zwykłego” gazu jednoatomowego (można wtedy nie zajmować się drganiami i obrotami, które ważne są w przypadku cząsteczek chemicznych). Otrzymał zmodyfikowane równanie stanu gazu doskonałego, w którym ciśnienie jest mniejsze niż wynikałoby z równania Clapeyrona (pV=nRT). Koledzy, m.in. Paul Ehrenfest i Erwin Schrödinger, zwrócili mu uwagę, że licząc stany gazu na sposób Bosego, odchodzi od przyjętych zasad mechaniki statystycznej Boltzmanna. Można to przedstawić na obrazku. Mamy tu dwa stany i dwie cząstki do rozmieszczenia.

W statystyce Bosego-Einsteina cząstki są nierozróżnialne. To nowa cecha mechaniki kwantowej (której, pamiętajmy, wciąż jeszcze nie ma). Wiadomo było, że atomy są jednakowe, ale fizyka klasyczna nie bardzo potrafiła sobie z tym faktem poradzić. James Clerk Maxwell porównywał atomy do standaryzowanych wytworów fabrycznych (fabrykantem byłby tu Bóg). W zasadzie jednak atomy klasyczne powinny być rozróżnialne, co na obrazku statystyki Boltzmanna zaznaczyłem kolorami. Klasyczna fizyka statystyczna Boltzmanna była tu nie do końca konsekwentna, ponieważ we wzorach na entropię, należało wprowadzić dodatkowy czynnik ad hoc (tzw. poprawne zliczanie boltzmannowskie). W roku 1926 pojawił się drugi rodzaj statystyki, obowiązujący dla fermionów. Paul Dirac zauważył, że chodzi o symetrię funkcji falowej, która w przypadku bozonów jest całkowicie symetryczna na przestawienia cząstek identycznych, a w przypadku fermionów – antysymetryczna. Zapełnianie powłok elektronowych i orbitali w chemii są konsekwencją faktu, że elektrony są fermionami.

W świecie kwantowym (czyli naszym) każda cząstka jest albo bozonem, albo fermionem. Jest to fakt fundamentalny. Einstein, idąc w ślady Bosego, wprowadził do fizyki cząstki identyczne. Sam Bose prawdopodobnie nie zdawał sobie sprawy z konsekwencji nowego sposobu liczenia stanów. Zdroworozsądkowe liczenie stanów jak u Boltzmanna nie odpowiada rzeczywistości i nie jest zgodne z doświadczeniem. 

Wróćmy do gazu atomowych bozonów. Różni się on od fotonów tym, że liczba cząstek powinna być zachowana: atomy w naczyniu nie znikają ani nie pojawiają się znienacka, podczas gdy fotony mogą być emitowane i pochłaniane przez ścianki naczynia. W danej temperaturze T średnie zapełnienie stanów o energii \varepsilon_i jest równe wg statystyki Boltzmanna

\overline{n}_i=\lambda g_i \exp{\left(-\dfrac{\varepsilon_i}{kT}\right)},

gdzie \lambda jest pewną stałą normalizacyjną, g_i – liczbą stanów o energii \varepsilon_i, a k – stałą Boltzmanna. Iloczyn kT jest temperaturą wyrażoną w jednostkach energii i co do rzędu wielkości jest równy średniej energii cząstek w danej temperaturze (np. w jednoatomowym gazie doskonałym średnia energia kinetyczna atomów jest równa \frac{3}{2}kT).

Wynik otrzymany przez Einsteina dla gazu bozonów miał postać następującą:

\overline{n}_i=\dfrac{g_i}{\lambda^{-1}\exp{\left(\dfrac{\varepsilon_i}{kT}\right)}-1}.

Łatwo zauważyć, że oba wyrażenia dadzą ten sam wynik, gdy wartość eksponenty jest dużo większa od 1 i można tę jedynkę w mianowniku pominąć. Na ogół średnia liczba obsadzonych stanów bozonowych jest większa, niż przewiduje to statystyka Boltzmanna. Podobne wyrażenie można też uzyskać dla fermionów, mamy wtedy do czynienia z gazem fermionów. Przykłady to gaz elektronów w metalu albo białym karle. Wyrażenie różni się znakiem jedynki w mianowniku, ale nie bedziemy tej kwestii rozwijać.

Einstein zastosował statystykę BE do gazu nieoddziałujących atomów zamkniętych w pudle. My zastosujemy ją do innej sytuacji, a mianowicie nieoddziałujących bozonów zamkniętych w parabolicznym potencjale. Jest to zwykły oscylator harmoniczny. Okazuje się, że sytuację taką można zrealizować eksperymentalnie, a w dodatku jest ona fizycznie przejrzysta i Einstein nie miałby żadnych trudności z zapisaniem wyrażeń, które rozpatrzymy niżej. Po prostu nikomu się wówczas nie śniło, że można będzie taki eksperyment zrealizować, więc nie miało sensu robić obliczenia dla tego przypadku. Choć mechaniki kwantowej ciągle jeszcze nie było, to wiadomo było, że energia oscylatora jest skwantowana i równa

E=h\nu(n_x+n_y+n_z),

gdzie h jest stałą Plancka, \nu – częstością oscylatora, a liczby kwantowe n_i są całkowite i nieujemne, przy czym . Kolejne dozwolone tworzą drabinę stanów oddalonych o h\nu. Inaczej mówiąc, dozwolone energie są równe

E=nh\nu,\,\,\, \mbox{gdzie}\,\,\, n=n_x+n_y+n_z.

Jak łatwo obliczyć, liczba stanów o takiej energii równa jest

g_n=\dfrac{(n+1)(n+2)}{2}.

Jeśli do takiego harmonicznego potencjału wprowadzimy N bozonów, to suma średnich liczb obsadzeń musi się równać N:

{\displaystyle N=\sum_{k=0}^{\infty}\overline{n}_k=\sum_{k=0}^{\infty}\dfrac{g_k}{\lambda^{-1}\exp{\left(\dfrac{k}{T}\right)}-1}.}

W ostatnim wyrażeniu wprowadziliśmy temperaturę mierzoną w jednostkach h\nu, tzn. nasze nowe T jest równe \frac{kT}{h\nu}. Jest to jedyny parametr teorii. Wartość \lambda musi być taka, żeby ostatnie równanie było spełnione. Ponadto mianownik z funkcją wykładniczą musi być dodatni, więc \lambda<1 (średnie liczby obsadzeń nie mogą być ujemne, tak samo jak np. średnia liczba brunetów w próbce ludzi).

Dalej niesie nas już formalizm, tak jak poniósł Einsteina w grudniu 1924 roku. Możemy z N wydzielić obsadzenie stanu postawowego N_0:

{\displaystyle N=N_0+ \sum_{k=1}^{\infty}\dfrac{g_k}{\lambda^{-1}\exp{\left(\dfrac{k}{T}\right)}-1}\equiv N_0+N_{exc}(T,\lambda).}

Suma N_{exc}(T,\lambda) osiąga maksymalną wartość przy \lambda=1:

{\displaystyle N_{max}(T)=\sum_{k=1}^{\infty}\dfrac{g_k}{\exp{\left(\dfrac{k}{T}\right)}-1}.}

Suma ta zależy wyłącznie od temperatury! Wykrzyknik oznacza nasze (i Einsteina) zdziwienie w tym miejscu. Zobaczmy, jak wygląda ta suma w funkcji temperatury.

Przedstawiliśmy tu obliczenia numeryczne (punkty) oraz przybliżenie analityczne:

N_{max}\approx 1.202 T^3\equiv 1.202 \left(\dfrac{kT}{h\nu}\right)^3.

Czemu ten wynik jest dziwny? Ano dlatego, że dla danej temperatury mamy pewną maksymalną liczbę cząstek, jakie można umieścić w danym potencjale. Tymczasem liczba N powinna być dowolnie duża. Ostatnie równanie oznacza, że obniżając temperaturę, osiągniemy w końcu sytuację, w której mamy mniej miejsc do obsadzenia niż cząstek. To oczywiście niemożliwe. Poniżej temperatury zadanej ostatnim równaniem, jakaś część atomów musi znajdować się w stanie podstawowym, i to część makroskopowo zauważalna. Inaczej mówiąc, atomy zaczną się kondensować w stanie o energii zerowej. W tym obszarze temperatur, parametr \lambda jest praktycznie równy 1. Mamy więc warunek

N\approx 1.202 T_{0}^3, \,\, \mbox{(**)}

określający temperaturę krytyczną T_0 przy danej liczbie atomów oraz liczbę atomów w stanach wzbudzonych poniżej temperatury krytycznej:

N_{exc}=N_{max}(T)=N \left(\dfrac{T}{T_0}\right)^3.

Atomy, które nie są wzbudzone, są w stanie podstawowym, zatem ich liczba równa się

N_0=N\left(1-\left(\dfrac{T}{T_0}\right)^3\right).

Funkcję tę przedstawiliśmy na wykresie.

Ważne jest, aby odróżniać kondensację Bosego-Einsteina od zwykłego wzrostu liczby obsadzeń stanu podstawowego wraz ze spadkiem temperatury. Tutaj mamy do czynienia z przejściem fazowym, pierwszym, jakie zostało opisane w fizyce statystycznej. Rozumowanie Einsteina było nieoczywiste dla kolegów. Nie było wcale jasne, czy formalizm fizyki statystycznej w ogóle może opisać przejścia fazowe. Tutaj w dodatku Einstein zaproponował nową statystykę, która mogła, ale wcale nie musiała okazać się prawdziwa. Ponadto model nieoddziałujących atomów jest nadmiernie uproszczony, co jest zarzutem technicznym, ale potencjalnie istotnym dla słuszności konkluzji. Sam Einstein nie był pewien i podkreślał, że tak może być, lecz nie ma co do tego pewności. Jednak jego dwudziestoletnie doświadczenie z fizyką statystyczną nie zawiodło. Statystyka okazała się prawdziwa (dla bozonów). Przejścia fazowe zaczęto na serio badać dopiero w latach trzydziestych (por. Lars Onsager i model Isinga). Jedna ze współpracowniczek Einsteina w latach czterdziestych Bruria Kaufman współpracowała z Larsem Onsagerem przy uproszczeniu jego monumentalnej pracy nt. modelu Isinga w dwóch wymiarach. Także Chen Ning Yang zajmował się modelem Isinga i nawet starał się zainteresować tym tematem Einsteina, gdy pracował w IAS w Princeton.

Ze współczesnego punktu widzenia faza skondensowana jest makroskopowo widocznym stanem kwantowym. Pewien odsetek atomów znajduje się w tym samym stanie, w przypadku pułapki harmonicznej gęstość atomów zarówno w przestrzeni położeń, jak i pędów, jest gaussowska, co odpowiada funkcji falowej stanu podstawowego oscylatora.

Wygląda to jak na obrazkach: w miarę obniżania temperatury pojawia się gaussowskie wąskie skupienie atomów, które rośnie w miarę zbliżania się do zera bezwzględnego. Czerwona linia pionowa obrazuje temperaturę. Widzimy też skok ciepła właściwego, co jest jednym ze wskaźników przejścia fazowego (Obrazki wg Bose-Einstein Condensation in a Harmonic Trap).

Atomy rubidu 87 użyte przez odkrywców kondensacji mają 37 elektronów i 87 nukleonów w jądrze, a więc parzystą liczbę fermionów, dlatego są bozonami. Pułapki stosowane w eksperymencie mają nieco odmienne częstości w różnych kierunkach, przez co rozkłady są iloczynami trzech funkcji Gaussa z róńymi szerokościami wzdłuż osi x,y,z.

(*) Obowiązują w historii nauki dwie zasady:
Zasada Arnolda: Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy.
Zasada Berry’ego: Zasada Arnolda stosuje się do samej siebie.
(Chodzi o Michaela Berry’ego i Vladimira Arnolda)

(**) W niskich temperaturach suma może być zastąpiona całką, ponieważ funkcja zmienia się bardzo wolno. Otrzymuje się wówczas

{\displaystyle N_{max}(T)\approx\dfrac{T^3}{2}\int_{0}^{\infty}\dfrac{x^2 dx}{e^{x}-1}= \dfrac{T^3}{2} \Gamma(3)\zeta(3),}

gdzie \Gamma i \zeta to funkcje Eulera i Riemanna.

Flaszki Kleista i butelki lejdejskie: elektryczny szok uczonej Europy (1745-1746)

Ważne odkrycia niemal zawsze są niespodziewane, bywają także niebezpieczne, gdyż odkrywcy zwykle są w roli ucznia czarnoksiężnika, rozpętując moce, nad którymi nie potrafią zapanować. Odkrycie butelki lejdejskiej stanowiło przełom w badaniach elektryczności. Do tej pory była ona jedynie źródłem interesujących i zabawnych pokazów. Elektron znaczy po grecku bursztyn, i to bursztyn był pierwszą substancją używaną do wywołania zjawisk przyciągania i odpychania lekkich drobnych przedmiotów w rodzaju skrawków papieru. Zauważono, że także inne materiały, jak siarka albo szkło, elektryzują się przez tarcie. Znane było doświadczenie Graya, pokazujące, że elektryczność może być przekazywana także przez ciało ludzkie.

0154.P.2.1612.1032

Stephen Gray, farbiarz, astronom i okazjonalnie demonstrator eksperymentów w Towarzystwie Królewskim, został pod koniec życia pensjonariuszem Charterhouse, czegoś w rodzaju szpitala z domem starców dla gentlemanów (pojęcie w Anglii bardzo rozciągliwe) połączonego z sierocińcem i szkołą. Do eksperymentów używał czterdziestosiedmiofuntowego chłopca zawieszonego na jedwabnych izolujących pasach. Na rysunku widzimy jeden z wariantów takiego doświadczenia. Osoba B obraca tu za pomocą przekładni szklaną kulę C, która jest pocierana ręką osoby D. Zawieszony w powietrzu chłopiec stopami dotyka kuli, podając rękę dziewczynce G (stojącej na izolacyjnej podkładce z żywicy albo smoły). Jej ręka przyciąga skrawki złotej folii leżące na gerydonie H. Na drugim rysunku mamy naelektryzowaną szklaną rurkę TT, która za pomocą brązowego drutu B połączona jest z dzwonkiem A. Młoteczek C zawieszony jest na jedwabnym sznurze i jest na przemian przyciągany oraz odpychany przez A, w rezultacie oscyluje między dzwonkami A i E, wywołując ich dzwonienie.

Georg Matthias Bose, profesor filozofii naturalnej z Wittenbergi i autor marnych francuskich wierszy, w swych eksperymentach przejawiał iście germańskie poczucie humoru. Jeden z nich, znany jako Venus electrificata, polegał na tym, by naelektryzować damę stojącą na izolowanej podkładce. Gdy następnie jakiś kawaler próbował ją pocałować, rażony był iskrą wybiegającą z warg wybranki. Innym jego popisowym doświadczeniem była „beatyfikacja”: delikwent wkładał na głowę specjalną koronę, która po naelektryzowaniu świeciła. Mimo tak bezceremonialnego podejścia do aureoli i świętości starał się Bose o uznanie wszędzie, nawet w Turcji i u Ojca Świętego Benedykta XIV. To ostatnie ściągnęło na niego represje na macierzystej uczelni, kolebce luteranizmu, spór musiał zażegnywać król Fryderyk.

bub_gb_FSJWAAAAcAAJ-xx

Jesienią 1745 roku eksperymentami elektrycznymi zajął się dziekan luterańskiej kapituły katedralnej w Kamieniu Pomorskim, Ewald Georg von Kleist. Dwadzieścia lat wcześniej studiował on w Lipsku i w Lejdzie i mógł się już wtedy zetknąć z elektrycznością, choć bezpośredniej inspiracji dostarczyły mu stosunkowo niedawne eksperymenty Bosego, m.in. uzyskiwanie iskry z wody oraz zapalanie spirytusu za pomocą elektryczności. Wyobrażano sobie wówczas elektryczność jako jakiś pewien rodzaj rodzaj subtelnej materii jakoś spowinowaconej z ogniem, mówiono nawet o ogniu elektrycznym. Eksperymenty z czerpaniem ognia z wody bądź zamianą iskry elektrycznej na rzeczywisty płomień zdawały się potwierdzać bliski związek obu tych tajemniczych substancji. Kleist pragnął naelektryzować wodę i udało mu się to w następujący sposób: butelkę napełniał częściowo wodą, rtęcią albo spirytusem, następnie zatykał korkiem, przez który przechodził drut albo gwóźdź. Jeśli trzymało się ten wynalazek w ręku, podczas gdy gwóźdź podłączony był do machiny elektrostatycznej, można było go bardzo mocno naelektryzować. Kolba średnicy czterech cali po naelektryzowaniu potrafiła powalić chłopca w wieku ośmiu bądź dziewięciu lat, jak starannie odnotował dobry dziekan (nie podając wszakże wagi chłopca). Po raz pierwszy wytworzona przez człowieka elektryczność przestała być niewinną salonową zabawą. Jak pisał Kleist, każdemu odechciałoby się całowania tak naelektryzowanej Wenus.

flasche-xx

Rysunek von Kleista z listu do Pawła Świetlickiego, diakona luterańskiego kościoła św. Jana w Gdańsku, przedstawiający jego urządzenie (z listu tego korzystał D. Gralath)

Odkrycie von Kleista było przypadkowe: nie rozumiał on, dlaczego musi trzymać swoje urządzenie w ręku, aby działało. Chcąc nagromadzić dużą ilość elektrycznego ognia, należałoby raczej izolować naczynie zamiast trzymać je w ręku i w ten sposób uziemiać. Dziś wiemy, że flaszka Kleista, jak nazywano ją czasem w Niemczech, była po prostu kondensatorem: ręka i woda z gwoździem stanowiły jego dwie okładki rozdzielone szkłem. Z punktu widzenia ówczesnej wiedzy działanie tego urządzenia było jednak niezrozumiałe. Spośród kilku uczonych, którzy otrzymali listowne doniesienia Kleista, eksperyment zdołał powtórzyć chyba tylko Daniel Gralath (a właściwie jego pomocnik Gottfried Reyger) w Gdańsku. Niedługo później, już w roku 1746, podobne doświadczenie przeprowadzono niezależnie w Lejdzie. Także i tu pierwszym odkrywcą był naukowy amator, Andreas Cunaeus, prawnik, zabawiający się eksperymentami w pracowni miejscowego profesora Pietera van Musshenbroeka. Przypadkowo zauważył on to samo co Kleist, jego eksperyment powtórzył później pomocnik profesora, Jean Nicolas Allamand, a na koniec i sam Musshenbroek, który był nim tak mocno wstrząśnięty, że, jak wyznał swemu paryskiemu koledze, nawet za całe królestwo Francji nie chciałby tego przeżyć po raz drugi.

leiden exp-x

Strach niebawem minął i elektrowstrząsy za pomocą butelek lejdejskich zaczęli wytwarzać wszyscy eksperymentatorzy, choć przez pewien czas do dobrego tonu należało informować o przypadkach konwulsji, paraliżu, zawrotów głowy itp. Żona profesora z Lipska, Johanna Heinricha Wincklera, po dwóch wyładowaniach poczuła się tak słabo, że ledwie mogła mówić. Tydzień później mąż zaaplikował jej jeszcze jedno wyładowanie, po którym krew się jej puściła z nosa. Profesor Winckler humanitarnie wstrzymał się jednak od przeprowadzania eksperymentów na ptakach, nie chcąc zadawać owym stworzeniom niepotrzebnych cierpień. Abbé Jean Antoine Nollet, mistrz pokazów fizycznych, utrzymujący się z produkcji naukowych urządzeń dla bogatych klientów, takich jak np. Voltaire i pani du Châtelet, zaprezentował w obecności króla Ludwika XV żywy łańcuch 180 grenadierów, poprzez który rozładowywała się butelka lejdejska. Wszyscy oni jednocześnie podskakiwali, co tak bardzo podobało się suwerenowi, że kazał sobie ten eksperyment powtarzać.

Stanisław Ulam (1/2)

Wyraz jego twarzy jest zazwyczaj ironiczny i kpiący. W istocie porusza go bardzo wszystko, co jest komiczne. Być może posiada pewien dar rozpoznawania i natychmiastowego wychwytywania śmieszności, nic więc dziwnego, że maluje się to na jego twarzy.
Jego wypowiedzi są bardzo nierówne, czasem poważne, czasem wesołe, ale nigdy nudne. Stara się bawić i rozweselać ludzi, których lubi. Nic, z wyjątkiem nauk ścisłych, nie wydaje mi się aż tak pewne czy oczywiste, by nie dopuszczał możliwości istnienia różnych opinii: sądzi, że na niemal każdy temat można powiedzieć niemal wszystko.
Posiada pewien talent matematyczny i zręczność, które pozwoliły mu zdobyć rozgłos w młodym wieku. Pracując w samotności aż do ukończenia dwudziestu pięciu lat, raczej późno stał się człowiekiem bardziej światowym. Jednak nigdy nie bywa nieuprzejmy, gdyż nie jest szorstki ani surowy. Jeżeli czasem kogoś obrazi, to przez nieuwagę lub niewiedzę.
Jego mowa nie jest gładka ani pełna wdzięku. Kiedy mówi coś miłego, to dlatego, że tak myśli. Cechuje go szczerość i prawdomówność, czasem nieco zbyt wielka, ale nigdy brutalna.
Niecierpliwy i choleryczny, czasami bywa gwałtowny. Bardzo bierze sobie do serca wszystko, co go rani, ale uraza zazwyczaj mija, kiedy da ujście swoim uczuciom. Łatwo na niego wpływać i nim kierować, pod warunkiem, że nie zdaje sobie z tego sprawy.
Niektórzy sądzą, że jest złośliwy, ponieważ bezlitośnie naśmiewa się z pretensjonalnych głupców. W rzeczywistości ma wrażliwe usposobienie, co sprawia, że jego nastrój często się zmienia. Może być jednocześnie wesoły i smutny.
Pan U. zachowuje się zgodnie z następującą zasadą: mówi mnóstwo głupich rzeczy, rzadko je zapisuje i nigdy żadnej z nich nie robi. (przeł. A. Górnicka, przekład nieco poprawiony za oryginałem d’Alemberta)

Autocharakterystykę tę przedstawił (oczywiście po francusku) Stanisław Ulam swojej przyszłej żonie Françoise, dopiero na końcu dodając, że napisał ją Jean Le Rond d’Alembert, jeden ze sławnych fizyków matematycznych XVIII stulecia i autor większości artykułów na temat nauk ścisłych w Wielkiej Encyklopedii Francuskiej.

Czy jest to tylko zabawny zbieg okoliczności, czy też obu uczonych łączy jakieś głębsze powinowactwo? Z pewnością obaj starali się przez całe życie uparcie zachować wolność, d′Alembert przytacza określenie jednego ze swych przyjaciół, że stał się „niewolnikiem swej wolności” – określenie to dobrze pasuje także do Ulama. Wbrew pozorom zachowanie takiej suwerenności poczynań jest w dzisiejszej nauce równie trudne co w XVIII wieku. Stanisław Ulam starał się pracować tak, żeby sprawiało mu to przyjemność, nie lubił presji. Cenił pomysłowość, szybkość rozumowań, nie był z tych, którzy latami rozwijają jakąś jedną metodę czy teorię, choć oczywiście miał swoje ulubione tematy czy sposoby podejścia. W najlepszym sensie tego słowa (pochodzącego od łacińskiego „kochać”) był raczej amatorem niż profesjonalnym uczonym akademickim – co w XX wieku było znacznie rzadsze niż w XVIII.
Już Galileusz pisał przy okazji pewnej uczonej polemiki:

Jeśliby roztrząsanie trudnych problemów było tym samym co przenoszenie ciężarów, czynność, przy której wiele koni przenosi więcej worków ziarna niż jeden koń, zgodziłbym się z tym, że wiele dysput wartych jest więcej niż jedna; ale dysputowanie (discorrere) przypomina bieganie (correre), a nie dźwiganie, toteż jeden koń berberyjski pobiegnie dalej niż sto koni fryzyjskich. (przeł. A. Wasilewska)

W osiemnastowiecznym Paryżu grzechem było mówić głupstwa, a jeszcze większym mówić głupstwa z wysiłkiem. Coś z tej atmosfery przetrwało może w środkowoeuropejskich kawiarniach, w których na początku XX wieku tak chętnie spotykali się artyści i uczeni. Ulam starał się trzymać rzeczy istotnych. Nie słuchał np. dłużej niż dziesięć minut wykładów zaproszonych uczonych, ponieważ jeśli ktoś w ciągu dziesięciu minut nie powiedział nic ciekawego, to zapewne nie będzie miał nic do powiedzenia i potem.

Cechą, która zdecydowanie różni d’Alemberta i Ulama jest stosunek do priorytetu własnych odkryć. Pierwszy zaciekle walczył o pierwszeństwo, drugi natomiast zupełnie się nie wdawał w spory tego rodzaju, uważając je za uwłaczające godności. Paradoksalnie w obu przypadkach – d’Alemberta i Ulama – przyczyną mogła być duma zraniona postępowaniem ludzi, których niezbyt się ceni.

Stanisław Ulam początkowo nie zamierzał zostać matematykiem. W rodzinnym Lwowie uczęszczał do gimnazjum klasycznego. Program nauczania takich szkół, podobny w większości Europy: daleki od problemów świata współczesnego, z naciskiem na historię i naukę martwych języków. Te abstrakcyjne zajęcia kształtować miały przyszłą elitę: urzędników, lekarzy, prawników, uczonych. Były czymś w rodzaju wieloletniej próby i budowały wspólną kulturę absolwentów. Wiemy, że Albert Einstein nie zniósł bezdusznej dyscypliny panującej w gimnazjum monachijskim i rzucił szkołę dwa lata przed maturą. Utalentowanemu językowo Ulamowi nauka przychodziła z łatwością, maturę zdał znakomicie, a greka i łacina towarzyszyły mu przez resztę życia, stanowiąc rodzaj kodu, jakim mógł się porozumiewać z kolegami, którzy przeszli podobną edukację. Uważał zresztą gramatykę łacińską za dobre wprowadzenie do myślenia logicznego.

Jako uczeń interesował się astronomią i fizyką. Ojciec, prawnik, dumny był, że jego nastoletni syn „rozumie” teorię względności, która w latach dwudziestych ubiegłego wieku stała się sensacją daleko wykraczającą poza kręgi naukowe. Młody Ulam zafascynowany też był niektórymi zagadnieniami matematycznymi, np. czy istnieją nieparzyste liczby doskonałe (liczby doskonałe są sumą swoich dzielników właściwych, jak 6=1+2+3. Rozwiązanie nie jest znane do dziś). Nie chciał zostać prawnikiem, w ówczesnej Polsce Żydzi niełatwo zostawali profesorami, więc i kariera naukowa wydawała się utrudniona. Postanowił zapisać się na miejscową politechnikę, z jakichś powodów był to Wydział Ogólny, a nie Elektryczny, który dawał konkretny zawód. Ponieważ młody człowiek nieco nudził się na wykładach dla pierwszego roku, zaczął chodzić na wykłady Kazimierza Kuratowskiego z teorii mnogości. Młody profesor chętnie rozmawiał ze swym studentem, Ulam odprowadzał go do domu i gawędzili o matematyce. Kuratowski, widząc inteligencję swego studenta, podsunął mu do rozwiązania pewne zagadnienie z teorii mnogości. Ulamowi udało się rozwiązać problem i praca została opublikowana w „Fundamenta Mathematicae”, polskim piśmie poświęconym głównie teorii mnogości i będącym czymś w rodzaju organu polskiej szkoły matematycznej. Dopiero jednak po rozwiązaniu drugiego problemu zasugerowanego przez Kuratowskiego Ulam zdecydował się zostać matematykiem, stało się to przed końcem jego pierwszego roku studiów.

Wkrótce poznał też innych matematyków lwowskich i wiele czasu spędzał w ich pokojach na dyskusjach. Później rozmowy te przenosiły się często do kawiarni. Jedna z takich sesji w kawiarni „Szkockiej” ze Stanisławem Mazurem i Stefanem Banachem trwała, jak wspomina Ulam, siedemnaście godzin z przerwami na posiłki. Z rozmów tych pochodził materiał do jego prac, jak też znaczna część jego wiedzy matematycznej. Ulam nigdy nie należał do uczonych, którzy pilnie śledzą postępy w wybranych dziedzinach i wiedzą na ten temat wszystko. Lubił rozpoczynać od zera, nawet gdy przy okazji odkrywał po raz drugi pojęcia czy fakty znane już w literaturze.

Nieformalny sposób uprawiania nauki bardzo odpowiadał towarzyskiemu Ulamowi, który z trudem naginał się do formalnych wymagań i zdawania egzaminów. W 1932 roku jako student został zaproszony do wygłoszenia komunikatu na Kongresie Matematycznym w Zurychu, gdzie spotkał wielu sławnych uczonych, potem jesienią w ciągu kilku tygodni napisał pracę magisterską, w roku następnym doktorat. Miał wtedy dwadzieścia cztery lata i coraz mniejsze szanse na karierę w Polsce. W sąsiednich Niemczech do władzy doszedł Adolf Hitler, bardzo wielu uczonych żydowskiego pochodzenia, w tym matematyków, musiało opuścić Niemcy. Odbywając w 1934 roku podróż po ośrodkach matematycznych Europy, pochłonięty matematyką Stanisław Ulam ledwie zdawał sobie jednak sprawę z tego, co się dzieje w świecie polityki. W roku następnym poznał Johna von Neumanna, który choć tylko kilka lat od niego starszy, był już sławny. Von Neumann, syn budapeszteńskiego bankiera żydowskiego pochodzenia, nie miał złudzeń co do sytuacji w Europie, toteż wyemigrował do Stanów Zjednoczonych, stary kontynent odwiedzając tylko z okazji jakichś konferencji czy spotkań. Obaj uczeni zaprzyjaźnili się. Poza matematyką łączyło ich sporo: dawne Austro-Węgry, kultura żydowska, klasyczne wykształcenie, pewna kosmopolityczna ogłada i dobre wychowanie. Von Neumann cenił ogromną pewność siebie Ulama, a także jego trudny do przewidzenia tok myślenia. Coś podobnego stwierdził też kiedyś na temat Ulama Stefan Banach: że formułuje on problemy w sposób „dziwny” i proponuje też „dziwne” rozwiązania, które często są skuteczne.

Von Neumann sprawił, że zaproszono Stanisława Ulama do Instytutu Badań Zaawansowanych w Princeton, gdzie tworzono coś w rodzaju ziemskiego raju dla uczonych, zaczynając od matematyków i fizyków teoretycznych. Jedną z pierwszych gwiazd tego Instytutu stał się Albert Einstein. Najmłodszym profesorem był tam von Neumann. Ulam należał do grupy młodych badaczy zapraszanych, by mieli okazję popracować wśród uznanych kolegów. Semestr w Princeton zaowocował trzyletnim stypendium na uniwersytecie Harvarda w Society of Fellows, organizacji finansującej dobrze zapowiadających się młodych uczonych.

Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Najważniejsze wydarzenia w dziejach ludzkości

Zacznijmy od fraszki C.K. Norwida:

DOBRA WOLA

– Przepraszam państwo, lecz przyszła wiadomość,

Że się Uranus wstrząsa

*

– Mniejsza o to

– Co tam po niebie gdzieś patrzysz Jegomość,

To astronomów rzecz, niech sobie plotą…

*

– Przepraszam państwo – ale panna Klara

Na pannę Różę powiedziała: „stara” –

I ten pod wachlarz bilecik schowała…

*

– Gdzie?! jaki?! dawaj!… to rzecz doskonała!

Norwid pisał tu o niezgodnościach ruchu Urana ze znanymi faktami. Okazało się, że niezgodności owe wywołane są przyciąganiem następnej planety, Neptuna. Jej położenie najpierw obliczono, a następnie znaleziono ją na niebie niemal dokładnie w tym miejscu, gdzie wskazywały obliczenia. Samo wydarzenie jest dobrą ilustracją różnicy między nauką nowożytną a innymi przykładami działalności „naukopodobnej” prowadzonej w najróżniejszych cywilizacjach.

Fraszka Norwida wskazuje też na zjawisko szersze niż salonowy brak zainteresowania nauką. Jesteśmy istotami społecznymi, czasem może nawet zanadto społecznymi: w tym sensie, że skłonni jesteśmy uważać świat międzyludzki za cały wszechświat, a nas samych za istoty stworzone nie mniej, ni więcej, tylko na podobieństwo Boga.

David Christian jest zawodowym historykiem. Zrobił jednak coś, na co nie poważyłaby się większość jego kolegów: prowadzi kurs historii wszechświata, od Wielkiego Wybuchu do dziś. Siłą rzeczy większa część materiału pochodzi z innych dziedzin niż historia: z kosmologii, geologii, biologii itd. Spojrzenie z tej perspektywy na dzieje ludzkości uważam za niezwykle ożywcze. Nigdy nie mogłem się nadziwić pasji, jaką większość historyków wkłada w badanie faktów drugo- albo nawet dziesięciorzędnych: jakaś potyczka pod Straconką (w zasadzie trochę większa bójka) albo śledzenie meandrów polityki jakiegoś nieistotnego władcy. Oczywiście rozumiem, czemu można się zajmować tego rodzaju tematem, podobnie jak rozumiem, czemu można się zajmować badaniem jednego gatunku chrząszczy (a jest ich blisko pół miliona). I wcale nie lekceważę „badaczy owadzich nogów”. Nie rozumiem jedynie, czemu nie widzę prób syntezy, innego spojrzenia, mniej uwikłanego w politykę, mity narodowe, mity religijne; mniej prowincjonalnego geograficznie, kulturowo i cywilizacyjnie.

Jakie więc były najważniejsze wydarzenia w dziejach ludzkości? Większość z nich zaszła w prehistorii albo historii bardzo zamierzchłej: wynalezienie rolnictwa, różnych technik pozwalających odziać się, lepić garnki i przede wszystkim tworzyć narzędzia. W dziejach intelektualnych decydujące znaczenie miało pismo i jego ulepszenie w postaci pisma alfabetycznego: dzięki temu ostatniemu nie tylko zawodowcy mogli umieć pisać – była to rewolucja podobna do rozpowszechnienia w latach osiemdziesiątych XX wieku komputerów osobistych, pozwalających każdemu korzystać z narzędzia przedtem zarezerwowanego dla personelu w białych kitlach (sam pamiętam sale z komputerami typu „Odra”, do których nie wolno było wchodzić, należało zostawić przed wejściem karty perforowane z programem i mieć nadzieję, że przejdzie on pomyślnie kompilację, a może nawet się policzy). Nie jest przypadkiem, że cywilizacja grecka rozkwitła w tym samym czasie, gdy rozpowszechniło się pismo alfabetyczne.

Grecy stworzyli też matematykę ujętą w sposób aksjomatyczny – do dziś jest to ideał przedstawiania wiedzy ścisłej. Geometria grecka i jej najważniejsze zastosowanie: opis ruchu planet stworzyły podstawy przyszłego rozwoju nauki, choć ciąg dalszy nastąpił dopiero po piętnastu wiekach i nie był oczywisty. Cywilizacja przeniosła się na północny zachód Europy. Średniowieczne chrześcijaństwo pokazało swą wielkość w gotyckich katedrach, jak też w tym, że potrafiło zasymilować grecką filozofię i naukę – był to zresztą jego szczytowy moment. Reformacja, która podzieliła chrześcijan, była w znacznym stopniu ujawnieniem się nowej wrażliwości i nowego podejścia do świata, czegoś bardziej fundamentalnego niż dogmaty wiary czy uznawanie bądź nieuznawanie papieża. Nowoczesna cywilizacja wywodzi się z chrześcijaństwa zreformowanego w Europie północnej i w Stanach Zjednoczonych. Katolicyzm definitywnie utracił kontakt z nowoczesnością w wieku XVII, w czasach Galileusza. I sądzę, że nigdy go nie odzyskał, choć w każdej epoce aż do dziś wielu było uczonych katolików i niemal każdy papież deklarował, iż ceni i popiera naukę.

Reformacja związana była od początku z wynalezieniem druku: zapewne nie rozszerzyłaby się tak szybko w innych warunkach. Druk i powszechna umiejętność pisania (głównie jednak w krajach protestanckich) były kolejnym progiem udostępniania wiedzy szerokim rzeszom. Jednak nie podział religijny był najważniejszy w wieku XVI i XVII. Nawet wojna trzydziestoletnia z dłuższej perspektywy jest epizodem bez znaczenia. To rewolucja naukowa przesądziła o znaczeniu tej epoki, a także o znaczeniu Europy w dziejach naszej planety. Jakąś nauką zajmowały się wszystkie cywilizacje, lecz to europejska znalazła skuteczny klucz do poznania przyrody. Najpełniej widać to w dziele Isaaca Newtona: modele matematyczne ściśle opisują rzeczywistość fizyczną. Połączenie matematyki i eksperymentu pozwala dowiedzieć się rzeczy, o których się filozofom nie śniło i które są sprawdzalne. Tym się różnimy od innych cywilizacji, że nasze samoloty latają, nie musimy sobie tego jedynie wyobrażać.

Rewolucja naukowa XVII wieku nie dotyczyła biologii. Wydawało się, że istoty żywe nie podlegają dokładnie tym samym prawom, co reszta materii. Świat biologiczny stał się ostatnim azylem zwolenników celowości. Przypomnijmy: już Arystoteles doszukiwał się w przyrodzie przyczyn celowych. Stopniowo celowość została wyeliminowana z astronomii i fizyki. Nie pytamy: w jakim celu Układ Słoneczny zawiera te a nie inne planety krążące po takich a nie innych orbitach. Wydawało się jednak, że oko ludzkie „zostało stworzone” do patrzenia, podobnie jak piękne, smukłe ciało geparda do szybkiego biegania. Charles Darwin i Alfred Russel Wallace pierwsi zauważyli, że przystosowanie do funkcji jest skutkiem doboru naturalnego, a nie celem. Oko naszych przodków (również czworonożnych, również pływających) doskonaliło się stopniowo, aż osiągnęło dzisiejszy stan (wcale zresztą nie idealny: można dobrać soczewki indywidualnie korygujące wzrok, które sprawiają, że widzimy szczegóły, o jakich dotąd nie mieliśmy pojęcia). Podobnie gepardy doskonaliły się w sztuce biegania, w miarę jak gazele doskonaliły się w sztuce uciekania. Ewolucja za pomocą sekwencji niezliczonych drobnych kroków stworzyła całą biosferę. Wielu ludziom wydaje się to nadal trudne do pojęcia i z uporem szukają luk w teorii ewolucji. Ci sami ludzie nie czują na ogół skrupułów, gdy dzięki nowoczesnej terapii zostają wyleczeni. Podobnie jak niektórzy postmoderniści, którzy twierdzą, że fizyka jest formą dominacji białego człowieka i nie jest więcej warta od mitów jakiegoś plemienia, a potem wsiadają w samolot, aby udać się na kolejną konferencję, gdzie będą o tym nauczać młodzież, żądną zdobycia, jeśli nie wiedzy, to przynajmniej stopni naukowych.

Ojciec Gregor Mendel, 1865

Johann Mendel urodził się w chłopskiej rodzinie na Śląsku, był jednym z tych, których miano nazywać później Niemcami Sudeckimi. Chłopiec miał nieco szczęścia: w jego rodzinnej wsi była szkoła, gdyż lokalna właścicielka, hrabina Walpurga Truchsess-Zeil, dbała edukację poddanych. Ponieważ okazał się zdolny, poszedł do następnej szkoły, a później do gimnazjum w Opawie. Przypominało to chyba edukację Jędrzeja Radka z Syzyfowych prac, rodzice z trudem łożyli na utrzymanie syna w mieście. Niewątpliwie pragnęli też zostawić mu gospodarstwo – był bowiem jedynym chłopcem. Po ukończeniu gimnazjum Johann przeniósł się na studia do Ołomuńca, wciąż brakowało mu pieniędzy, sporo chorował. Jego pilność i talent zwróciły uwagę jednego z wykładowców i młodzieniec został przyjęty do augustianów w Brnie. Przyjął zakonne imię Gregor.

Ojciec Gregor był zbyt delikatny i nieśmiały, aby dobrze czuć się w roli duszpasterza. Pasjonowała go natomiast przyroda, zajmował się klasztornym ogrodem, uczył w różnych szkołach, był jednym z założycieli lokalnego towarzystwa naukowego w Brnie. W lutym i marcu 1865 roku zreferował na kolejnych posiedzeniach owego Towarzystwa swoje badania dotyczące krzyżowania grochu. Nie było to zapewne gremium, które mogłoby docenić wyniki ojca Mendla. Być może zresztą jego wyniki na tyle odbiegały od ówczesnego rozumienia dziedziczności, że nawet gdyby ich autor nie był prowincjonalnym nauczycielem przyrody, i tak nikt by na nie nie zwrócił większej uwagi. Bywają prace, których w momencie powstania nikt nie czyta, a które później stają się początkiem nowej dziedziny. Tak było z pracą Mendla, około roku 1900 zrozumiano, że kładzie ona podwaliny pod nową dziedzinę wiedzy: genetykę.

Co w pracy Mendla tak bardzo odbiegało od tego, co uczeni pragnęli usłyszeć? Były to lata Charlesa Darwina, niewątpliwie ewolucja była tematem nr 1. Nawet w Brnie miesiąc przed referatem Mendla jeden z członków Towarzystwa omawiał właśnie ewolucję. Wiemy także, że Mendel przeczytał O powstawaniu gatunków. Darwin jednak niewiele miał do powiedzenia na temat zmienności i na temat mechanizmu dziedziczenia, a to, co mówił było zwykle bałamutne.

Mendel_seven_characters-ger.svg

Ojciec Gregor cierpliwie prowadził doświadczenia nad pewnymi określonymi wyraźnie cechami grochu: mogły one występować w jednej albo drugiej wersji: kwiaty mają jeden albo drugi kolor, łodyga jest niska albo wysoka itp. Prace Mendla dowodziły, że dziedziczenie ma charakter losowy i w dodatku dyskretny, cyfrowy: są pewne jednostki dziedziczenia, które łączą się w organizmie potomnym i określają jednoznacznie, która z ewentualności wystąpi: np. czy nasiona będą gładkie, czy pomarszczone. W dodatku Mendel założył, że gdy w roślinie zawarte są obie „skłonności”, to uwidacznia się tylko jedna z nich, a druga może być ukryta i ujawnić się dopiero w potomstwie. Wierzono wtedy raczej w jakieś mieszanie się cech, podobne do mieszania barw na palecie, a nie w coś tak zero-jedynkowego.

Także przypadkowość procesu dziedziczenia trudna była do przyjęcia. Często zarzucano Darwinowi, że Opatrzność chciałby zastąpić przypadkiem, ślepym losem. Prawdopodobnie nie było to prawdą w odniesieniu do poglądów samego Darwina, ale pokazuje, jak broniono się przed uznaniem roli losowości w świecie przyrody ożywionej.

Dopiero wiek dwudziesty wprowadził losowość i przypadkowość na naukowe salony. Zakrawa na ironię, że w 1936 roku Ronald Fisher, jeden z pionierów genetyki i statystyki matematycznej, zakwestionował wyniki liczbowe Mendla jako właśnie zbyt regularne jak na dzieło przypadku. Fisher zastosował do wyników Mendla test chi kwadrat i wykazał, że uzyskanie tak regularnych wyników jest niezwykle mało prawdopodobne. Wywołało to dyskusję, której echa do dziś przewijają się w literaturze dotyczącej genetyki oraz statystyki.

Dante Alighieri i 3-sfera

Zaczniemy od Dantego. Jak Rembrandt czy Michał Anioł, jest Dante jednym z tych artystów, których pamiętamy z imienia. W XIV wieku, gdy opisał swą podróż po zaświatach, kosmologia spleciona była ściśle z teologią. Arystotelesowski system sfer (wywodzący się od Eudoksosa) został schrystianizowany przez Tomasza z Akwinu. Świat z boskiego zwierzęcia, które porusza się samo, stał się areną dramatu moralnego. U Dantego dokładnie w środku Ziemi znajduje się głowa upadłego Lucyfera. Humanista Antonio Manetti przedstawił je w roku 1506 następująco:

Młody Galileusz wygłosił w Accademia Fiorentina dwa wykłady, poświęcone topografii dantejskiego piekła. Wykłady te pomyślane były jako sposób kultywowania „czystej mowy toskańskiej”, co należało do celów działalności Akademii. W grę wchodził także patriotyzm: młody uczony bronił poglądów swego rodaka, Antonia Manettiego, przed niezasłużoną krytyką Alessandra Velutella z Lukki. Piekło bowiem, jak wiadomo, znajduje się dokładnie pod Jerozolimą i ma kształt stożka o kącie rozwarcia 60º i wierzchołku w środku Ziemi. Poszczególne jego kręgi tworzą coś w rodzaju amfiteatru – infernal teatro – na którego samym dole znajduje się Lucyfer, a w jego trzech paszczach trzej najwięksi zdrajcy:
Judasz oraz Brutus i Kasjusz, organizatorzy zamachu na Juliusza Cezara.


Galileusz, podobnie jak jego poprzednicy, starał się wyczytać z tekstu Dantego matematyczne szczegóły. Fragment opisu Lucyfera w Pieśni XXIV można było potraktować jako proporcję.

Cesarz, władnący nad krainą nędzy,
Z lodu wysterczał do połowy łona,
A olbrzym ze mną porówna się prędzej
Niż z olbrzymami jego dwa ramiona.

Wynika stąd, że wzrost Dantego ma się do wzrostu olbrzyma tak, jak wzrost olbrzyma do długości ramion Lucyfera. Wzrost Dantego znamy: wynosił on 3 braccia. Potrzebny jest jeszcze wzrost olbrzyma. Informację tę daje Pieśń XXXI:

Jako Piotrowa szyszka, tej wielkości
Była ogromna głowa wielkoluda.

Chodziło o szyszkę z brązu znajdującą się w Rzymie i mającą wielkość 5½ braccia, taką samą wielkość ma zatem głowa olbrzyma. Ponieważ wysokość człowieka równa jest ośmiu rozmiarom głowy, więc wysokość olbrzyma równa jest 44 braccia. Korzystając z tej wielkości obliczamy wielkość ramienia Lucyfera: będzie ona równa 645 braccia. Wzrost człowieka jest trzykrotnie większy niż długość ramienia, stosując tę proporcję otrzymujemy 1935 braccia. Jako prawdziwy humanista, młody uczony także do olbrzyma i Lucyfera przykłada ludzką miarę; po latach udowodni, że proporcje ciała muszą zmieniać się z rozmiarami każdego stworzenia, inaczej kości nie wytrzymałyby ciężaru. Po uwzględnieniu uwagi poety, że Lucyfer jest jeszcze nieco większy („olbrzym ze mną porówna się prędzej…”), dostajemy na wzrost Lucyfera okrągło 2000 braccia. W podobny sposób oblicza Galileusz inne wielkości charakteryzujące Dantejskie Piekło.

Jak traktować tego typu rozważania? Zapewne podobnie jak dzisiejsze doktoraty: nie wszystko musi być tu prawdą, chodzi raczej o pewne ćwiczenie formalne, w którym startując z określonych założeń, adept stara się wykazać swobodą w posługiwaniu się metodami naukowymi: tym razem warsztatem humanisty z matematyczną ogładą. W dużo mniejszym stopniu chodziło zapewne o samo Piekło, choć bowiem Dante miał status wizjonera, to Boska Komedia nie była nigdy oficjalnym stanowiskiem Kościoła. W samo istnienie Piekła, gdzieś pod ziemią, wierzono chyba dość
powszechnie i zapewne wierzyć w nie mógł także młody Galileusz. Nie zetknął się jeszcze z kopernikanizmem i nie zdążył przemyśleć zagadnień kosmologii. W dojrzałym wieku uzna argument o centralnym miejscu Piekła we wszechświecie za śmiechu warty.

Ziemia i jej na ogół nieszczęśni mieszkańcy była w środku, lecz moralnie najniżej. Doskonalsze, bo zbudowane z niezniszczalnego tworzywa – eteru – były sfery planetarne. Doskonalszy także, bo kołowy, był ich ruch. Całość przedstawił Peter Apian, już po śmierci Kopernika, na znanym drzeworycie.

Jest to wersja wszechświata przeznaczona dla filozofów i poetów, astronomowie korzystali z innej. Ponad siódmą sferą Saturna mamy ósmą zawierającą gwiazdy, a także dziewiątą, kryształową, oraz dziesiątą: Primum Mobile. Owa dziesiąta (u Dantego – dziewiąta) sfera wprawiała w ruch wszystko poniżej, a poruszała się siłą intelektualnej miłości do Boga, który oczywiście u Arystotelesa znaczył zupełnie co innego niż u Dantego.

Świat jest więc skończony, a nawet zdaje się mieć brzeg, poza który wychynąć nie można. Otóż w XXVIII Pieśni Raju Dante dociera do owej największej sfery i opisuje nam to, co zobaczył i co objaśnia mu niezawodna przewodniczka, Beatrycze (w życiu ziemskim była mężatką, a on miał czworo dzieci z żoną, w zaświatach jednak stosunki ich przybrały inny obrót). Spoglądając, wydawałoby się z brzegu wszechświata, widzi Dante cały nowy świat wirujący wokół centralnego boskiego ognia. Jest tam też dziewięć sfer, ale zamieszkałych przez istoty wyższe, całą hierarchię anielską.

Poeta znajduje się gdzieś w punkcie P.

Interpretatorzy mieli zazwyczaj kłopot z tym drugim światem. Tymczasem z matematycznego punktu widzenia oba te kuliste światy mogłyby być połówkami 3-sfery, czyli sfery trójwymiarowej, S^3. Sferę taką stanowił świat Einsteina, pierwszy nowoczesny model kosmologiczny. Przestrzeń ma ograniczoną objętość, lecz nie ma brzegu, podobnie jak powierzchnia kuli. Przyjrzyjmy się temu bliżej.

Kula (jednostkowa) to zbiór punktów leżących bliżej niż 1 od pewnego punktu środkowego. W jednym wymiarze K^1 to po prostu odcinek otwarty (-1,1). Jego brzeg, czyli 0-sferę stanowią dwa punkty (-1),(1). W dwóch wymiarach kula K^2 to wnętrze koła, jej brzeg to 1-sfera S^1, czyli okrąg.

Zauważmy, że okrąg stanowią punkty spełniające równanie x^2+y^2=1. Możemy okrąg uważać za złożony z dwóch części: dodatniej S^1_{+} (y>0) i ujemnej S^1_{-} (y<0). Każdą z tych części możemy w sposób ciągły i wzajemnie jednoznaczny zrzutować na kulę K^1, czyli odcinek: (x,y)\mapsto (x), gdzie y=\sqrt{1-x^2}. Aby uzyskać cały okrąg (1-sferę), musimy dodać jeszcze dwa brakujące punkty (-1,0),(1,0), czyli 0-sferę.

Można zatem 1-sferę uważać za sumę dwóch oddzielnych egzemplarzy K^1 oraz 0-sfery. Taki podział daje się też przeprowadzić dla 2-sfery.

Każą z dwóch półsfer: dodatnią i ujemną można zrzutować w sposób ciągły i wzajemnie jednoznaczny na kulę K^2. Jeśli dodamy do tego 1-sferę S^1, otrzymamy całą 2-sferę, czyli brzeg kuli K^3. W przypadku 3-sfery, czyli brzegu kuli czterowymiarowej nie możemy sporządzić wprawdzie rysunku, ale postępowanie da się łatwo uogólnić. 3-sfera jest zbiorem punktów w przestrzeni czterowymiarowej x,y,z, w spełniających równanie x^2+y^2+z^2+w^2=1, skąd w=\pm\sqrt{1-x^2-y^2-z^2}. Możemy więc każdemu punktowi K^3 przypisać dokładnie dwa punkty na 3-sferze:

(x,y,z)\mapsto (x,y,z, \pm w).

Otrzymamy w ten sposób dwie połsfery S^3, które należy jeszcze uzupełnić o sferę „równikową” S^2. Przecinając sferę S^3 rozmaitymi płaszczyznami w=const począwszy od „bieguna północnego” (x,y,z,1), otrzymywać bedziemy coraz większe 2-sfery odgrywające rolę równoleżników. Największą 2-sferą jest równik: przecięcie płaszczyzną w=0, następnie dla ujemnych wartości w przecięcia będą 2-sferami o coraz mniejszym promieniu aż zbiegną się w „biegun południowy”. 

Dante znajdując się w punkcie równika 3-sfery miał więc przed sobą dwie połówki owej 3-sfery, z których każda równoważna jest kuli K^3 – inaczej mówiąc miał przed oczami dwa zbiory koncentrycznych 2-sfer: środek jednej stanowiła Ziemia, a dokładniej Lucyfer, środek drugiej – Bóg widziany jako gorejący świetlisty punkt. Można 3-sferę przedstawić jako złożenie dwóch (np. jednakowych, ale różnych) kul, w których odpowiadające sobie, „tak samo położone” punkty brzegu zostały utożsamione. Idąc więc od Ziemi, w punkcie P znajdujemy się na wspólnym brzegu obu kul i podziwiać możemy oba światy. Poeta wykazał się tu znakomitą intuicją topologiczną. Całość tej konstrukcji, 3-sfera, nie ma brzegu, tak jak świat Dantego.

Wykorzystałem artykuł Marka Petersona Dante and 3-sphere, „American Journal of Physics”, t. 47(12), (1979), s. 1031-1035.