Emmy Noether i jej twierdzenie, część II (1918) Albo: Formalizm Lagrange’a w kwadrans

Podamy tu uproszczoną postać twierdzenia Noether, słuszną w mechanice punktów materialnych. Najważniejsze zastosowania tego twierdzenia dotyczą sytuacji ogólniejszej, to znaczy pól, czyli pewnych funkcji zależnych od położenia i czasu. Uogólnienie jest zresztą dość oczywiste. Jeszcze jedna rzecz: Noether udowodniła dwa twierdzenia, nas interesuje tu tylko pierwsze z nich.

Zaczniemy od mechaniki w sformułowaniu Lagrange’a. Zamiast mówić o siłach, możemy użyć energii potencjalnej V i zbudować lagranżian {\cal L}=E_k-V. Dwa przykłady, które nam się w dalszym ciągu przydadzą:

Przykład 1 Jednowymiarowy ruch dwóch punktów materialnych o współrzędnych x_1, x_2 oraz masach m_1, m_2. Energia potencjalna zależy tylko od względnego położenia obu punktów (co oznacza, że oddziałują one tylko na siebie nawzajem, nie ma żadnych sił zewnętrznych). Lagranżian ma postać:

{\cal L}=\dfrac{m_1\dot{x_1}^2}{2}+\dfrac{m_2\dot{x_1}^2}{2}-V(x_1-x_2).

Kropki oznaczają pochodne po czasie: pochodna współrzędnej po czasie to oczywiście prędkość.

Przykład 2 Punkt na płaszczyźnie poruszający się w potencjale zależnym tylko od odległości od pewnego punktu centralnego (jak planety wokół Słońca). Lagranżian ma w tym przypadku postać:

{\cal L}=\dfrac{m\dot{x}^2}{2}+\dfrac{m\dot{y}^2}{2}-V(\sqrt{x^2+y^2}).

Zauważmy, że te lagranżiany są dość podobne: w obu mamy do czynienia z dwoma stopniami swobody. Z formalnego punktu widzenia to liczba stopni swobody jest ważna, a nie liczba cząstek. Będziemy pisać lagranżian w postaci ogólnej jako {\cal L}={\cal L}(q,\dot{q}), co znaczy, że współrzędnymi są q. Lagranżian będzie też zależał od prędkości \dot{q}. Gdyby liczba stopni swobody była n to powinniśmy te współrzędne ponumerować jakimś wskaźnikiem i=1\ldots n. Wolimy nie wypisywać tych wskaźników, żeby nie gmatwać zapisu.

Następny krok to równania ruchu. Zamiast praw Newtona stosujemy zasadę najmniejszego działania i otrzymujemy równania Lagrange’a. Konkretnie wygląda to tak, tworzymy działanie S,

\displaystyle{S=\int_{0}^{\tau}{\cal L} (q, \dot{q}) dt.}

Szukamy minimum działania (dokładnie: ekstremum), wyobrażając sobie, że do ruchu q=q(t) dodajemy niewielką funkcję \delta q(t). Żądamy teraz, aby zmiana (wariacja) działania znikała. Rozpatrujemy przy tym z założenia tylko takie ruchy, które zaczynają się kończą w ustalonych punktach. Sytuację tę ilustruje rysunek poniżej. Oczywiście do \dot{q} musimy dodać pochodną \dot{\delta q}=\delta\dot{q}.

Łatwo teraz pokazać (co robimy na końcu), że

\delta S=0\iff \dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}=0.

Otrzymaliśmy równania Lagrange’a, które zastępują teraz równania Newtona. W gruncie rzeczy przypominają one równania Newtona: pochodna po czasie z pewnej wielkości p\equiv \frac{\partial {\cal L}}{\partial \dot{q}} nazywanej pędem uogólnionym jest równe sile (uogólnionej). Sprawdźmy to na przykładzie pierwszym. Mamy w istocie dwa równania dla obu naszych zmiennych:

\begin{array}{l}-V'(x_1-x_2)=\dfrac{d}{dt}(m_1 \dot{x_1})\\  \\  V'(x_1-x_2)=\dfrac{d}{dt}(m_2 \dot{x_2}).\end{array}

W równaniach tych V' oznacza pochodną, dostajemy parę sił o przeciwnych znakach, czyli spełniona jest III zasada dynamiki, jak być powinno. Na razie wygląda to wszystko na zawiły sposób sformułowania prostych równań Newtona. Lagrange wiedział jednak, co robi i czemu ogólniejsze podejście jest lepsze. Sformułowanie Lagrange’a łatwo pozwala zastosować inne zmienne niż kartezjańskie. Nasz przykład 2 ma symetrię radialną. Możemy użyć zamiast współrzędnych kartezjańskich współrzędnych biegunowych r, \varphi. Lagranżian przyjmuje wówczas postać:

{\cal L}=\dfrac{m\dot{r}^2}{2}+\dfrac{mr^2\dot{\varphi}^2}{2}-V(r).

Teraz lagranżian nie zależy od jednej ze zmiennych (\varphi), mamy więc dla niej proste równanie:

\dfrac{d}{dt}(mr^2 \dot{\varphi})=0

Inaczej mówiąc, wielkość p_{\varphi}=J=mr^2\dot{\varphi} jest stała. Okazuje się, że pędem uogólnionym sprzężonym z \varphi jest moment pędu J, jak powinno być, gdyż energia potencjalna nie zależy od kierunku, a więc siły są centralne (skierowane do albo od początku układu współrzędnych). Widzimy, że zastosowanie sprytnie dobranych współrzędnych upraszcza nam od razu problem. Jeśli tylko znajdziemy odpowiednie współrzędne, to niektóre pędy uogólnione będą stałe podczas ruchu.

Twierdzenie Noether pozwala nam od symetrii lagranżianu przejść od razu do pewnej wielkości, która musi być zachowana podczas ruchu. Nie musimy przy tym wymyślać jakichś szczególnych współrzędnych. Każdej symetrii odpowiada pewna wielkość, która nie zmienia się z czasem.

Zaczniemy od określenia, czym jest symetria. Żądamy, aby podstawienie (gdzie \delta q jest niewielkie):

\begin{array}{l} q(t) \rightarrow  q(t)+\delta q(t)\\  \\  \dot{q}(t) \rightarrow  \dot{q}(t)+\delta \dot{q}(t).\end{array}

nie zmieniało lagranżianu:

{\cal L}(q,\dot{q})={\cal L}(q+\delta q, \dot{q}+\delta\dot{q}).

Twierdzenie Noether głosi, że wielkość A określona równaniem

A=\delta q_i\dfrac{\partial {\cal L}}{\partial \dot{q_i}}\equiv \delta q_i \cdot p_i

nie zmienia się podczas ruchu. Wprowadziliśmy tu wskaźniki numerujące stopnie swobody, należy po nich wysumować. Dowód można znaleźć na końcu tekstu.

Najłatwiej wyjaśnić sens twierdzenia na naszych przykładach. W pierwszym z nich operacja przesunięcia jednocześnie obu punktów materialnych o wspólną niezależną od czasu wielkość \delta a, tzn.:

\begin{array}{l} x_1(t) \rightarrow  x_1(t)+\delta a\\  \\  x_2(t) \rightarrow  x_2(t) + \delta a.\end{array}

nie zmienia energii potencjalnej. Energia kinetyczna też się nie zmienia, ponieważ pochodna funkcji stałej jest równa zeru. Zatem jednoczesne przesunięcie obu punktów materialnych nie wpływa na ich ruch względny, co z fizycznego punktu widzenia brzmi rozsądnie. W myśl tw. Noether zachowana powinna być tu wielkość

A=\delta a m_1\dot{x}_1+\delta a m_2\dot{x}_2=\delta a(m_1\dot{x}_1+m_2\dot{x}_2).

Jest to oczywiście pęd całkowity.

Zobaczmy, jak opisać symetrię w przykładzie drugim. Operacją nie zmieniającą lagranżianu będzie oczywiście obrót w płaszczyźnie xy (najprostsze obroty zmieniają dwie współrzędne, dlatego mamy jeden taki obrót na płaszczyźnie, trzy w przestrzeni trójwymiarowej: xy, xz, yz i sześć w przestrzeni czterowymiarowej). Niewielki obrót o kąt \delta\varphi   w płaszczyźnie dany jest równaniami:

\begin{array}{l}x\rightarrow x-y\delta\varphi\\ \\ y\rightarrow y+x\delta\varphi.\end{array}

Szczegóły można znaleźć poniżej. Wielkością zachowaną jest teraz oczywiście moment pędu:

A=\delta\varphi (xp_y-yp_x)=\delta\varphi J.

Widać, skąd tak naprawdę pochodzi ta dziwaczna kombinacja pędów i współrzędnych: bierze się ona z rozpatrzenia obrotów w płaszczyźnie. W przestrzeni trójwymiarowej mielibyśmy trzy składowe momentu pędu, w przestrzeni czterowymiarowej sześć. Moment pędu można uważać za wektor tylko w przypadku trójwymiarowym, tak się składa, że jest to przypadek ważny dla nas, ale z matematycznego punktu widzenia liczba składowych momentu pędu zazwyczaj nie jest równa wymiarowi przestrzeni.

Jeszcze jedna uwaga: nasze transformacje symetrii są niewielkie. Co to dokładnie znaczy, widać intuicyjnie w przypadku translacji czy obrotów. Rzecz w tym, że np. do symetrii zwierciadlanej tw. Noether się nie stosuje.

Tak to wygląda w najprostszej wersji, możliwe są rozmaite uogólnienia. Jednym z najważniejszych są operacje symetrii zawierające czas. Nasze lagranżiany nie zależą jawnie od czasu. W takim przypadku translacja w czasie jest operacją symetrii. Wielkością zachowywaną w tym przypadku jest A=\dot{q_i}p_i-{\cal L}=E_k+V, czyli całkowita energia układu. Poza symetriami fundamentalnymi możliwe są oczywiście rozmaite symetrie obowiązujące dla konkretnego zagadnienia, każda z nich prowadzi do zachowywanej podczas ruchu wielkości.

(*) Łatwo uzyskać można wyrażenie dla wariacji działania.

\displaystyle{\delta S=\int_{0}^{\tau}\left(\delta q \dfrac{\partial {\cal L}}{\partial q}+\delta\dot{q}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt}

Nie zakładamy tu żadnego szczególnego zachowania \delta q(t) na końcach przedziału czasu. Sytuację przedstawia rysunek.

Całkując drugi wyraz przez części, otrzymujemy następującą postać wariacji;

\displaystyle{\delta S=\int_{0}^{\tau}\delta q \left(\dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt+\left. \delta q\dfrac{\partial {\cal L}}{\partial\dot{q}}\right|^{\tau}_{0}}.

Wynikają stąd zarówno równania Lagrange’a, jak i tw. Noether.

W przypadku zasady najmniejszego działania żądamy, aby \delta S=0. Ponieważ na początku i końcu wariacja \delta q(0)=\delta q(\tau)=0, więc znika też ostatni, scałkowany, wyraz w powyższym wyrażeniu. A to z kolei oznacza, że wyrażenie w nawiasie znika (gdyż \delta q(t) poza tym, że jest niewielkie, może być dowolne i gdyby nawias w jakimś przedziale był różny od zera, to moglibyśmy tak dobrać \delta q(t), żeby całka była różna od zera).

W przypadku tw. Noether wiemy, że działanie się nie zmienia, ponieważ nie zmienia się lagranżian i przedział całkowania, czyli przy tych założeniach \delta S=0. Zakładamy też, że ruch odbywa się zgodnie z równaniami Lagrange’a, co oznacza, że nawias pod całką jest równy zeru, całka też musi być równa zeru. Zostaje nam warunek A(\tau)-A(0)=0. Zatem A(t) od czasu nie zależy.

Wyrażenia dla współrzędnych przy niewielkim obrocie otrzymujemy, przyjmując \cos\delta\varphi=1 oraz \sin\delta\varphi=\delta\varphi. Pokazuje to, co znaczą małe obroty: zostawiamy wyrazy liniowe w \delta\varphi, pomijamy natomiast wyrazy wyższych rzędów.

Reklamy

Emmy Noether i jej twierdzenie, część I (1918)

W fizyce XX wieku ogromną rolę odegrały zasady zachowania oraz symetrie. Zasady zachowania energii, pędu, momentu pędu itd. uważa się dziś za podstawowe prawa przyrody. Zarówno na gruncie fizyki klasycznej, jak i kwantowej, zasady zachowania związane są z symetriami układów fizycznych. Np. niezmienność w czasie praw fizycznych wiąże się z zasadą zachowania energii, symetria translacyjna wiąże się z zasadą zachowania pędu itp. Związek między symetriami a zasadami zachowania określa jedno z twierdzeń udowodnionych przez Emmy Noether. Najpierw powiemy trochę o postaci Emmy Noether, której ranga naukowa daleko wykracza poza twierdzenia znane każdemu fizykowi. W drugiej części przedstawimy szczególny przypadek twierdzenia Noether, obowiązujący w mechanice punktów materialnych. Pamiętać jednak trzeba, że twierdzenie Noether stało się ważną częścią współczesnej fizyki w ogóle, a nie wyłącznie mechaniki.

W roku 1935, gdy Emmy Noether niespodziewanie zmarła w Stanach Zjednoczonych wskutek powikłań pooperacyjnych, wspomnienie pośmiertne o jej osiągnięciach znalazło się w liście Alberta Einsteina do „New York Timesa”. Najwybitniejszy z naukowych uchodźców niemieckich uhonorował w ten sposób pierwszą tej rangi matematyczkę w historii. Mimo że w latach 1915-1933 pracowała ona w Getyndze, najlepszym wówczas ośrodku matematycznym świata, była znana wśród kolegów, miała uczniów, doktorantów itd., nie udało się jej nigdy uzyskać pełnej profesury, i to pomimo wsparcia Feliksa Kleina oraz Davida Hilberta. Opór przed powołaniem kobiety na katedrę był zbyt silny. W tym czasie w Niemczech profesurę z fizyki eksperymentalnej przyznano tylko jednej kobiecie: Lise Meitner w Berlinie, który uchodził za bardziej postępowy. Pierwszą katedrę matematyki objęła w Niemczech w 1957 r., a więc w zupełnie innych czasach, Ruth Moufang. Noether pracowała przez większą część życia za darmo albo otrzymując niewielkie pieniądze za prowadzenie zajęć na uczelni. Żyła skromnie, nie była zamożna, ale i nie biedna, jej ojciec Max był profesorem matematyki w Erlangen. Emmy miała także braci utalentowanych w kierunkach ścisłych, choć ostatecznie okazało się, że to ona była najwybitniejszym uczonym w rodzinie. Emmy nie uczyła się nigdy w szkole średniej, maturę zdała eksternistycznie. Także na uniwersytecie, w Erlangen i w Getyndze, miała jedynie prawo słuchania wykładów, bez możliwości formalnego ukończenia studiów. Co ciekawe, jej talent matematyczny rozwinął się dość późno. Swój przyzwoity i bardzo pracochłonny doktorat uważała później za nieistotny (obliczyła w nim postać 331 kowariantnych form czwartego stopnia trzech zmiennych). Było to rozszerzenie pracy opiekuna jej doktoratu Paula Gordana. Ówczesna algebra sprawiała na postronnych widzach wrażenie dziedziny zupełnie oderwanej od zastosowań, choć prawie nigdy nie da się tego uczciwie stwierdzić o żadnym dziale matematyki. Prace Gordana i jeszcze starszego Alfreda Clebscha zawierają np. znane w fizyce kwantowej współczynniki Clebscha-Gordana. Współczynniki te są więc kilkadziesiąt lat starsze niż sama mechanika kwantowa.

Fotografia ok. 1915 r. (http://physikerinnen.de)

Już po trzydziestce trafiła do Getyngi z inicjatywy Kleina i Hilberta. Zajęła się tam kwestią symetrii oraz zasad zachowania. Udowodniła dwa słynne dziś twierdzenia na ten temat. Wówczas nie były one tak znane, choć ich udowodnienie miało spore znaczenie dla ogólnej teorii względności. Hilbert zajmował się tą teorią równolegle do Einsteina, wyraźnie z się z nim ścigając. Był to skutek wykładów Einsteina w Getyndze w połowie roku 1915. David Hilbert zapalił się do tego podejścia, jednak jego cel był inny niż Einsteina: pragnął bowiem zaproponować teorię wszystkiego, obejmującą także materię. Ten ambitny zamysł był zdecydowanie przedwczesny, lecz jesienią roku 1915 Hilbert deptał Einsteinowi po piętach. Stanowiło to przykład szeroko wtedy znanego zwyczaju matematyków z Getyngi, że bez większych skrupułów wchodzili w tematykę prac innych kolegów. Nazywano to złośliwie „nostryfikacją”. Einstein o mały włos nie padł ofiarą takiej nostryfikacji. Wielu historyków sądziło zresztą, że to Hilbert pierwszy napisał równania pola ogólnej teorii względności. Tak jednak nie było i sam Hilbert nigdy nie zgłaszał w tej kwestii żadnych roszczeń. Dziś wiemy zresztą, że nie miałby do tego podstaw. Równania pola ogólnej teorii względności sformułował Einstein w listopadzie 1915 roku. Stosunki obu uczonych, przez chwilę dość napięte, wróciły potem do poprzedniego przyjaznego tonu. Hilbert, a później i Klein, interesowali się dość żywo teorią Einsteina, szczególnie kwestią zasady zachowania energii-pędu. Z pracy Noether wynikało, że tensor Einsteina G oraz tensor energii-pędu T muszą spełniać związek {G^{\mu\nu}}_{;\nu}=0={T^{\mu\nu}}_{;\nu}. Dopiero później zauważono, iż włoski geometra Luigi Bianchi już w 1902 ogłosił tożsamości nazwane dziś jego imieniem (nb. tożsamości te znał już Gregorio Ricci dwie dekady wcześniej), z których fakt powyższy wynika. Pokazuje to spory zamęt, jaki istniał nie tylko w samej nowej fizyce, ale także i w stosowanej do niej nienowej matematyce, która jednak nie była znana nawet największym ówczesnym matematykom (wyjątkiem był tu Tullio Levi-Civita).

Największe osiągnięcia Emmy Noether przypadają na lata dwudzieste. Stała się ona ważną postacią w rozwoju nowoczesnej algebry abstrakcyjnej, w której bada się struktury określone za pomocą aksjomatów, niezależnie od konkretnej reprezentacji. Prace te prowadzone były w duchu Hilberta, który od dawna zabiegał o ścisłą aksjomatyzację zarówno matematyki, jak i fizyki. W fizyce podejście tego rodzaju niezbyt się przyjęło, w matematyce szukanie ogólniejszych struktur jest często skuteczną metodą atakowania szczegółowych problemów, tak np. udowodniono wielkie twierdzenie Fermata. Emmy Noether prowadziła w Getyndze słynne z czasem wykłady. Początkowo miały one formę stałego zastępstwa za Davida Hilberta. Chodziło o ominięcie formalnej trudności: Noether nie miała prawa nauczania. Wykłady te przyciągały niezbyt liczne, lecz ważne grono młodych badaczy. W formie przypominały raczej głośne myślenie na temat matematyki niż uporządkowane rozdziały podręcznika. Jednak drugi tom znanej wówczas monografii Moderne Algebra Bartela van der Waerdena w znacznym stopniu był opracowaniem idei z wykładów Noether w Getyndze. W wieku pięćdziesięciu lat osiągnęła niemal wszystko, czego może sobie życzyć uczony: miała liczne publikacje, wielu uczniów, którzy rozwijali jej idee (chętnie się nimi dzieliła i nie zgłaszała roszczeń do pierwszeństwa, nawet gdy się jej ono należało), dwa razy zaproszona była do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała „Mathematische Annalen”. Nie była tylko wciąż profesorem, choć jej młodszy i nie tak wybitny brat, Fritz, uzyskał katedrę na Politechnice Wrocławskiej (wówczas Technische Hochschule) już w 1922 roku.

Na dworcu w Getyndze jesienią 1933 r. (http://physikerinnen.de)

Aż nadeszła katastrofa roku 1933. Oczywiście, większość Niemców uznawała ją w tamtej chwili za zwycięstwo albo przynajmniej za krok w dobrym kierunku. Społeczeństwo, karmione od dziesiątków lat rasistowskimi bredniami o wyższości Niemców nad Żydami, nie protestowało, gdy władze polityczne wyciągnęły wnioski z tych nauk i na początek wyrzuciły wszystkich Żydów ze stanowisk państwowych, w tym z uniwersytetów. Emmy Noether nie interesowała się polityką. Nie reagowała nawet, gdy któryś z jej studentów przyszedł na wykład w brunatnej koszuli. Teraz jednak straciła swą i tak mało znaczącą posadę i nie mogła uczyć. Jak wielu rozsądnych ludzi, miała nadzieję, że to szaleństwo skończy się jak zły sen. Znalazła pracę w Stanach Zjednoczonych, w roku 1934 odwiedziła Niemcy jako uczona z zagranicy. Żona jej współpracownika, profesora z Hamburga, Emila Artina wspominała:

Rzeczą, która najbardziej zapadła mi w pamięci, była jazda metrem w Hamburgu. Zabraliśmy Emmy spod Instytutu i natychmiast oboje z Artinem zaczęli rozmawiać o matematyce. Chodziło wtedy o teorię ideałów (Idealtheorie) i mówili o pojęciach takich, jak Ideal, Führer, Gruppe i Untergruppe, po chwili cały wagon zaczął nadstawiać uszu. Byłam śmiertelnie przerażona, myślałam, Boże, za chwilę ktoś nas aresztuje. Był to już rok 1934, a Emmy, nie zwracając na nic uwagi, mówiła bardzo głośno i w podnieceniu coraz głośniej i głośniej, i co chwila pojawiały się słowa Führer oraz Ideal. Była pełna temperamentu i zawsze mówiła bardzo szybko i bardzo głośno.

Terminologia matematyczna nałożyła się tu na partyjną nowomowę, której Emmy zapewne nie znała albo nie zwracała na nią uwagi jako na bełkot. Żona Artina była Żydówką i miała wszelkie powody, by się bać. Rok rządów nazistów pogłębił różnice miedzy wolnym światem a narodowo-socjalistycznym obłędem, przy czym rewolucja dopiero się rozkręcała. Trzy lata później także Artin musiał wyjechać, bo już nawet żona Żydówka nie mogła być tolerowana w czystym rasowo państwie. Emmy zlikwidowała tamtego lata swoje mieszkanie w Getyndze i zrozumiała, że nie wróci szybko do Niemiec. Najbardziej gorzkim aspektem rasistowskiego obłędu było to, że ludzie tacy jak Noether czuli się zawsze Niemcami, nie byli w żaden sposób ludnością napływową, od wieków mieszkali w Niemczech, od XIX wieku tworzyli w coraz większym stopniu ich naukę i kulturę. Żeby nie kończyć myślami o zniszczeniu i nienawiści, przytoczmy słowa Einsteina ze wspomnianego listu do NYT:

Istnieje, na szczęście, mniejszość złożona z tych, którzy wcześnie zdali sobie sprawę, że najpiękniejsze i przynoszące najwięcej satysfakcji przeżycia dostępne człowiekowi nie pochodzą ze świata zewnętrznego, lecz z rozwoju indywidualnych uczuć, myśli i działań. Prawdziwi artyści, badacze i myśliciele zawsze byli osobami tego rodzaju. I choćby życie takich jednostek upłynęło całkiem niepozornie, to jednak owoce ich wysiłków są najcenniejszym dziedzictwem każdego pokolenia dla swych następców.

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

Einstein nie pisał takich tekstów bez zastanowienia. Zawsze przemawiał do niego ideał życia odosobnionego, niemal klasztornego, i poświęconego spokojnemu namysłowi nad światem. Niezbyt lubił błyszczeć, a przynajmniej szybko go to nudziło. Wielki rozgłos, jaki go otaczał, przyjmował raczej z rozbawieniem, jako coś w istocie niepoważnego i nieco wstydliwego. Przyjaźnił się zresztą nie tylko z wybitnymi uczonymi, ale także z różnego rodzaju dziwakami i oryginałami, cenił osobowość, nie lubił ludzi nijakich. O skali osiągnięć Emmy Noether wiedział zapewne od Hermanna Weyla, który mógł to kompetentnie ocenić. Jego podziw dla matematyki narastał z czasem; w latach trzydziestych w jego pracy nie odgrywało już żadnej roli eksperyment, musiał więc kierować się względami formalnymi, czysto matematycznymi. I rzeczywiście, każdy niemal rodzaj matematyki, prędzej czy później znajduje zastosowanie w naukach o przyrodzie czy świecie społecznym.

 

Albert Einstein: Czy Europa okazała się sukcesem? (1934)

Żyjemy w dziwnych czasach. Być może przyszły historyk Polski napisze: „W latach 2015-2025 Polska stała się jednym z państw buforowych między Rosją a Europą, politycznie zależnym od Rosji przy pozorach niezawisłości i antyrosyjskiej retoryce mediów rządowych. Praktyka rządzenia zbliżyła kraj do innych państw buforowych: Ukrainy, Mołdawii, Białorusi”.

Albert Einstein miał dystans do własnej osoby, z pewnością nie był jednak „dużym dzieckiem” ani w nauce, ani w polityce. W roku 1934 redakcja amerykańskiego pisma „The Nation” zwróciła się do niego z prośbą o wypowiedź na temat Europy. Uczony czuł się europejczykiem właściwie od początku, od czasów gimnazjalnych w Monachium. Już wtedy przeszkadzał mu niemiecki nacjonalizm, choć była to jego stosunkowo łagodna wersja z czasów Drugiej Rzeszy. Mieszkał we Włoszech, w Szwajcarii, w Austro-Węgrzech, potem znowu w Niemczech. Jeździł stale do Austrii, do Francji, do Belgii, do Holandii. Zawsze opowiadał się za tym, co stanowi najważniejszy wkład Europy do historii, tzn. za prawem do wolności wyrażania poglądów. Być może Chińczycy zbudują wielką cywilizację bez wolności indywidualnej i bez demokracji, ale na razie stworzyli jedynie bardzo opresyjne, choć skuteczne technologicznie państwo, w którym niewielu z nas miałoby chęć żyć. Europa i jej amerykańskie przedłużenia: Kanada i Stany Zjednoczone to wciąż miejsca, gdzie tworzy się najwięcej wszystkiego, co składa się na cywilizację i kulturę, i czego warto bronić.

Albert Einstein, nowojorski rabin Stephen Wise oraz Thomas Mann na premierze antywojennego filmu The Fight For Peace, 1938

W 1934 roku Europa była podzielona bardziej niż kiedykolwiek: we Włoszech panował faszyzm, Niemcy bezwolnie poddawały się kolejnym „reformom” narodowych socjalistów, w Polsce rozkwitały ruchy takie, jak ONR (choć władze sanacyjne potrafiły szybko ich zdelegalizować). Wielu oglądało się na wschód: z daleka mogło się wydawać, że w Związku Sowieckim kapitalizm został przezwyciężony. Einstein znał wady kapitalizmu, lecz nie podzielał takiego złudzenia, nigdy nie wierzył, aby siłą, odgórnie, bez współpracy i solidarności można było zbudować cokolwiek trwałego i wartego trwania.

Humanitarny ideał Europy wydaje się nierozerwalnie związany ze swobodą wyrażania poglądów, z wolną wolą jednostki, z dążeniem do obiektywizmu myśli, nie kierującym się jedynie względami użyteczności, i z popieraniem różnic w sferze umysłu i upodobań. Te wymagania i ideały należą do istoty europejskiego ducha. Nie można owych wartości i haseł dowieść na drodze rozumowej, gdyż dotyczą podstawowych kwestii w podejściu do życia i stanowią punkt wyjścia, który przyjmuje się bądź odrzuca z przyczyn emocjonalnych. Wiem tylko, że popieram je z całego serca i byłoby dla mnie czymś nie do zniesienia należeć do społeczeństwa, które je konsekwentnie odrzuca. Nie podzielam pesymizmu tych, co sądzą, iż pełnia intelektualnego rozwoju możliwa jest tylko na fundamencie otwartego czy skrywanego niewolnictwa. Mogło to być prawdą w czasach prymitywnej techniki, gdy wyprodukowanie tego, co niezbędne do życia, wymagało wyczerpującej fizycznej pracy większości ludzi. W naszej epoce wysokiego poziomu techniki, przy rozsądnie wyrównanym podziale pracy i odpowiednich świadczeniach dla wszystkich, jednostka powinna mieć zarówno czas, jak i siłę, aby biernie oraz czynnie uczestniczyć w najwyższych osiągnięciach umysłowych i artystycznych w takim stopniu, w jakim pozwalają na to jej skłonności i zdolności. Niestety, społeczeństwo nasze jest bardzo dalekie od spełnienia tych warunków. (…)

Czy uzasadnione jest zawieszenie na jakiś czas podstawowych wolności jednostek ze względu na wyższy cel poprawy organizacji ekonomicznej? Pewien znakomity i bystry uczony rosyjski bronił w dyskusji ze mną takiego poglądu, wskazując na powodzenie przymusu i terroru – przynajmniej na początku – w funkcjonowaniu komunizmu rosyjskiego i na klęskę niemieckiej socjaldemokracji po wojnie. Nie przekonał mnie. Żaden cel nie wydaje mi się tak wzniosły, by można nim było usprawiedliwiać tak niegodne metody. W niektórych wypadkach przemoc może szybko usuwać przeszkody, ale nigdy nie okazała się twórcza.

Pitagoras i Vincenzo Galilei: początek i koniec tradycji pitagorejskiej (VI w. p.n.e., 1588)

Pitagoras pierwszy nazwał się filozofem, lecz stał się założycielem sekty na poły religijnej, która przekazywała sobie wierzenia, obyczaje, obrządki i nie dopuszczała nikogo bez długiego procesu formowania charakteru i umysłu. Pitagorejczycy wierzyli w wędrówkę dusz, obejmującą także dusze zwierzęce, więc nie składali ofiar ze zwierząt i starali się nie jeść mięsa, zazwyczaj zadowalali się warzywami, kaszą i przyprawami. Mieli też osobliwą na tle ówczesnej Grecji koncepcję piękna:

Piękny jest więc widok całego nieba i poruszających się po nim gwiazd, jeśli ktoś potrafi dostrzec ich porządek; a piękne jest to wszystko przez uczestniczenie w tym, co pierwsze i dostrzegalne umysłem. Pierwsza zaś jest dla Pitagorasa natura liczb i stosunków liczbowych, ogarniająca całość rzeczywistości, zgodnie z nimi bowiem wszechświat jest mądrze zbudowany i prawidłowo uporządkowany; mądrość zaś jest wiedzą o tym, co piękne i pierwsze, boskie i niezniszczalne, zawsze takie samo i podlegające takiemu samemu porządkowi (…) filozofia natomiast to umiłowanie takiej kontemplacji [Jamblich, O życiu pitagorejskim, przeł. J. Gajda-Krynicka].

Wszechświat postrzegali pitagorejczycy jako κόσμος – kosmos, czyli pięknie złożoną harmonijną całość. Pitagoras odkrył, że prostym proporcjom liczbowym, takim jak 2:1; 3:2 oraz 4:3 odpowiadają harmonijnie współbrzmiące interwały dźwięków: oktawa, kwinta i kwarta. Fakt ten stał się punktem wyjścia całej jego filozofii i kosmologii. Odgrywały w nich rolę muzyka i matematyka, ich związek był fundamentalny. Muzyka miała bowiem swe odbicie w strukturze wszechświata, nie była jedynie sztuką wydawania sugestywnych dźwięków. W ten sposób, po raz pierwszy, wszechświat stał się matematyczny.

Pitagorejczycy uzasadniali owe proporcje dźwięków w sposób numerologiczny. Ich zdaniem liczby 1, 2, 3, 4, były wieloznacznymi symbolami. Suma tych czterech liczb nazywana była tetraktys – arcyczwórką. Arytmetyka miała być także podstawą geometrii: przestrzeń wyobrażali sobie pitagorejczycy jako „skwantowaną”, złożoną z dyskretnych wielkości. Doprowadziło to do kryzysu: zgodnie bowiem z twierdzeniem Pitagorasa długość przekątnej kwadratu o boku równym 1 wynosi \sqrt{2}. Jeśli przyjąć, że można tę liczbę zapisać jako stosunek liczb całkowitych (jak powinno być w dyskretnej przestrzeni), dochodzi się do sprzeczności. Dziś mówimy, że \sqrt{2} jest liczbą niewymierną. Odkrycie tego faktu wstrząsnęło pitagorejczykami.

Wróćmy jednak do harmonii dźwięków. Mamy tu początek fizyki matematycznej – oto pewne stosunki w przyrodzie poddane są zasadom matematyki. Z czasem miało się okazać, że jest to prawda w odniesieniu do całej przyrody, choć uznanie tego faktu zajęło ludzkości ponad dwa tysiące lat. Dziś nie mamy wątpliwości co do nadzwyczajnej skuteczności matematyki w badaniu przyrody. Niektórzy uważają nawet, że w każdej nauce tyle jest prawdy, ile jest w niej matematyki.

W jakim sensie proporcje związane są z parami dźwięków?

Jamblich tak pisze o okolicznościach dokonania owego odkrycia przez Pitagorasa:

Rozmyślał kiedyś i zastanawiał się, czy da się wymyślić dla słuchu jakieś pomocnicze narzędzie, pewne i nieomylne, jakie ma wzrok w cyrklu, w miarce (…), dotyk zaś w wadze i w wynalazku miar; a przechadzając się w pobliżu warsztatu kowalskiego, jakimś boskim zrządzeniem losu usłyszał młoty kujące żelazo na kowadle i wydające dźwięki zgodne ze sobą, z wyjątkiem jednej kombinacji. Rozpoznał zaś w nich współbrzmienie oktawy, kwinty i kwarty. Dostrzegł natomiast, że dźwięk pośredni między oktawą a kwintą sam w sobie pozbawiony jest harmonii, lecz uzupełnia to, czego w innych jest w nadmiarze. Zadowolony zatem, ponieważ została mu zesłana pomoc od boga, poszedł do warsztatu i po wielu rozmaitych próbach odkrył, iż różnica dźwięków rodzi się z ciężaru młotów, nie z siły uderzających, nie z kształtu narzędzi ani też nie z przekształceń kutego żelaza; a zbadawszy dokładnie odpowiednie wagi i ciężary młotów, poszedł do domu i wbił między ściany, od kąta do kąta, jeden kołek, jeden by z wielości kołków albo też z różnej ich natury nie zrodziła się jakaś różnica; następnie przywiesił do kołka w równym od siebie oddaleniu cztery struny z jednakowej materii, jednakowej długości, grubości i jednakowo sporządzone, przywiązawszy do każdej z dołu ciężar i wyrównawszy całkowicie długość strun. Następnie uderzając jednocześnie w dwie struny na przemian, odnalazł wymienione wyżej współbrzmienia, inne w każdym ze związków. Odkrył bowiem, że ta, która obciążona była największym ciężarem wraz z tą, która miała ciężar najmniejszy, razem uderzone tworzą stosunek oktawy. Jedna bowiem miała dwanaście ciężarków, druga zaś sześć; w podwójnej proporcji ujawniła się oktawa, jak to wskazywały same ciężarki. [przeł. J. Gajda-Krynicka]

Jamblich był syryjskim pitagorejczykiem żyjącym w III/IV w. n.e., a więc niemal tysiąc lat po filozofie z Samos. Dlatego, jak to się zdarza zwolennikom bardziej entuzjastycznym niż rozumiejącym, poplątał to i owo w tej historii. Wiemy, że pragnął swymi opowieściami przewyższyć zdobywające sobie popularność historie o innym mistrzu, Jezusie Chrystusie.

Jamblich przedstawia nam etapy odkrycia: mamy więc problem (jak proporcje mogą być odwzorowane dźwiękami?), iluminację pod wpływem przypadkowego bodźca (młoty kowalskie), analizę i wyjaśnienie sensu owej iluminacji, a następnie przeprowadzenie eksperymentu, w którym początkowa sytuacja zostaje sprowadzona do najważniejszej istotnej zależności: chodzi nie młoty, lecz dźwięki; można je badać za pomocą jednakowych strun pod działaniem różnych sił naciągu.

Mamy właściwie przepis, jak należy odkrywać matematyczne prawa przyrody, oczywiście w stosownej chwili musimy otrzymać pomoc od boga, inaczej wkroczymy w jedną z tych niezliczonych ścieżek, które nigdy nie zawiodły do żadnego rozsądnego punktu. Bywa i tak, że ciąg dalszy odnajduje się po wielu latach – w tym sensie z oceną wartości pewnych prac naukowych należy poczekać.

Niestety, ciąg dalszy opowieści Jamblicha dowodzi, że nie zrozumiał on odkrycia mistrza. Nie chodzi bowiem o siły naciągu, lecz długości strun. To one muszą być w odpowiedniej proporcji. Np. kwintę otrzymamy, biorąc taką samą strunę z takim samym naciągiem, lecz o długości krótszej w proporcji 2:3. Przez wieki powtarzano błąd Jamblicha, nie zadając sobie trudu mierzenia czegokolwiek. Powszechnie sądzono, że owe proporcje zawarte są we wszystkich sposobach wydobywania dźwięków tak, jak to widzimy na ilustracji poniżej, pochodzącej z przełomu XV i XVI wieku.

W XVI wieku powiększono listę dźwięków współbrzmiących harmonijnie, uzasadniając to zresztą także na sposób pitagorejski. Gioseffo Zarlino, maestro di capella San Marco w Wenecji, proponował dołączenie 5 i 6 do starożytnego zestawu. Uzasadniał to rozmaitymi „nadzwyczajnymi” własnościami liczby sześć: jest liczbą doskonałą (równą sumie swych podzielników), sześć było dni Stworzenia itd.

Empiryczne podejście do tego zagadnienia zawdzięczamy sceptycyzmowi i jadowitemu charakterowi Vincenza Galilei, muzyka i teoretyka muzyki z Florencji. Był on uczniem Zarlina, lecz zaatakował go bezpardonowo w wydanym w roku 1589 traktacie. Uważał wszelką numerologię za nonsens i postanowił wykazać to doświadczalnie. Stosunki dźwięków nie są bowiem związane jednoznacznie ze stosunkami liczbowymi. Np. kwintę możemy uzyskać nie tylko skracając strunę w stosunku 3/2, ale także zwiększając siłę naciągu w proporcji (3/2)^2=9/4. Mamy więc następujące prawo: chcąc otrzymać dany wyższy dźwięk możemy albo skrócić strunę x razy, albo zwiększyć siłę naciągu x^2 razy. Było to pierwsze w ogóle nowożytne prawo fizyki matematycznej.
W ten sposób numerologia została pogrążona, gdyż widzimy, że równie dobrze można by wiązać kwintę z proporcją 9/4. Był to tylko jeden z wielu argumentów wysuwanych w traktacie przeciwko Zarlinowi. Vincenzo Galilei miał zdolnego syna o imieniu Galileo, któremu przekazał swój choleryczny temperament i namiętną pogardę dla umysłowej niższości. Niewykluczone, że eksperymenty nad tą kwestią prowadzili zresztą obaj razem, zapewne w roku 1588. W roku następnym Galileo uzyskał skromną posadę na uniwersytecie w Pizie. Napisał tam poemat na temat noszenia togi, w którym drwił z księży (wrogowie wszelkiej niewygody), uczonych kolegów (są jak flaszki wina: nieraz we wspaniale oplecionych butelkach zamiast bukietu czuje się wiatr albo perfumowaną wodę i nadają się tylko do tego, by do nich nasikać), a także twierdził, że chodzenie nago jest największym dobrem. Zajął się też poważnie mechaniką. Możliwe, że to ciężarki zawieszone na końcu struny w eksperymentach prowadzonych z ojcem, a nie kandelabr w katedrze, nasunęły mu myśl o wahadle.

Prawo odkryte przez Vincenza Galileo łatwo uzasadnić. Prędkość rozchodzenia się dźwięku v w strunie naciągniętej siłą T, która ma gęstość liniową (masa na jednostkę długości) \varrho równa się

v=\sqrt{\dfrac{T}{\varrho}}.

Jeśli końce struny są nieruchome, to długość powstającej fali \lambda jest dwa razy większa niż długość struny L: \lambda=2L. Zatem częstość drgań struny \nu jest równa

\nu=\dfrac{1}{2L}\sqrt{\dfrac{T}{\varrho}}.

Napięcie struny wchodzi więc w potędze 1/2, stąd wynik Vinzenza Galileo.

Johann Heinrich Lambert i Immanuel Kant: astronomia gwiazdowa po kolacji (1749, 1755)

Niegdyś młodzi uczeni zaczynali często życie zawodowe jako guwernerzy w bogatych domach. Tak było w przypadku Lamberta – syna krawca, zamieszkałego w Szwajcarii hugonockiego emigranta z Francji, i Kanta – syna siodlarza z Królewca. Obaj z czasem wyzwolili się z prostego nauczycielstwa i doszli do znacznej pozycji naukowej. Lambert został członkiem Pruskiej Akademii Nauk i wybitnym matematykiem. Kant, po wielu latach spędzonych na nauczaniu studentów, wyrósł na najważniejszego filozofa epoki, stając się nie tylko najsławniejszym profesorem w Królewcu, ale i w Niemczech, a z czasem w całej Europie.
Obaj wnieśli pewien wkład do poznania budowy Galaktyki. W tamtych czasach, pozbawionych silnych źródeł światła, wszyscy znali widok nocnego nieba. Wywierał on głębokie wrażenie na naturach skłonnych do kontemplacji. Z górą sześćdziesięcioletni Kant wciąż czerpał z tego widoku natchnienie do pracy: „Dwie rzeczy napełniają umysł coraz to nowym i rosnącym podziwem i pełnym pokory szacunkiem, im częściej i trwalej zastanawiamy się nad nimi: Gwiazdami okryte niebo nade mną i prawo moralne we mnie.” (przeł. K. Kierski). Dodawał jednak Kant w dalszym ciągu wywodu:

Atoli podziw i szacunek mogą wprawdzie pobudzić do badania, ale nie mogą zastąpić jego braku. (…) Zastanawianie się nad światem zaczęło się od najwspanialszego widoku, jaki tylko ludzkie zmysły przedstawić mogą i jaki tylko rozsądek nasz znieść może, by śledzić go w jego dalekim zakresie, a zakończyło się – astrologią. Etyka rozpoczęła od najszlachetniejszej własności ludzkiej natury, której rozwój i kultura niezmierną korzyść obiecuje, a zakończyła – fantastycznością albo zabobonem. (…) Kiedy zaś, chociaż późno, weszła w życie maksyma, aby poprzednio dobrze rozważyć wszystkie kroki, które rozum zamierza uczynić, i nie pozwolić mu postępować inaczej, jak torem przedtem dobrze obmyślanej metody, wówczas sąd o budowie świata uzyskał zupełnie inny kierunek, a z nim zarazem bez porównania pomyślniejszy wynik. Rozłożenie spadania kamienia, ruchu procy na ich pierwiastki i ujawniające się przy tym siły, tudzież matematyczne ich opracowanie, spowodowało w końcu to jasne i po wszystkie czasy niezmienne poznanie budowy świata, które przy postępującej obserwacji może spodziewać się zawsze tylko swego rozszerzenia, nigdy zaś nie potrzebuje obawiać się, że będzie musiało się cofać.

Krytyka praktycznego rozumu, z której Zakończenia pochodzą powyższe słowa, prowadzić miała do ustanowienia nauki o moralności godnej istot rozumnych. Moralność ta powinna stosować się wszędzie tam, gdzie występują takie stworzenia, Kant wierzył, że wszechświat, a nawet nasz Układ Słoneczny, pełen jest zamieszkałych planet. Wyobrażał sobie, że im dalej od Słońca, tym lotniejsze i z subtelniejszej materii zbudowane są owe istoty. Co do rasy ludzkiej nie miał wielkich złudzeń, oprócz tego jednego, że można ją nieco poprawić dzięki rozumnemu postępowaniu nauczycieli. Po dwóch wiekach możemy stwierdzić, że nawet to chyba jest niemożliwe. Nauka Kanta stosuje się jedynie do rozumnych kosmitów, jeśli gdzieś tacy istnieją.

Zostawmy więc z boku wiarę filozofa w ludzką moralność jako źródło ładu i zajmijmy się astronomią gwiazd, gdzie postęp jest niewątpliwy.

Od czasu Kopernika gwiazdy przestały jawić się jako światełka na dwuwymiarowej sferze. Przestrzeń kosmiczna zyskała trzeci wymiar. Bardzo prawdopodobne było, że odległości do gwiazd są rozmaite i otacza nas bezmiar, o jakim nie śniło się filozofom (tych, którym się to śniło, palono na wszelki wypadek na stosie). Przeżycie nowego spojrzenia na znany od dawna widok nieba było także udziałem Genezypa Kapena:

Szedł potykając się, zapatrzony w niebo, na którym odprawiało się codzienne (nie każdodzienne oczywiście) misterium gwiaździstej nocy. Astronomia taka, jaką nauczył się ją pojmować w szkole, nie przedstawiała dla niego wielkiego uroku. Horyzont i azymut, kąty i deklinacje, skomplikowane wyliczenia, precesje i nutacje nudziły go okropnie. Krótki zarys astrofizyki i kosmogonii, zagubiony w nawale innych przedmiotów, był jedyną sferą, wzbudzającą lekki niepokój, graniczący z bardzo pierwotnym wzburzeniem metafizycznym. Ale „niepokój astronomiczny”, tak bliski niekiedy wyższym stanom, wiodącym do filozoficznych rozmyślań, codzienny dzień usuwa w dzisiejszych czasach szybko, jako niepotrzebny nikomu zbytek. Idąc teraz, Genezyp miał wrażenie, że patrzy w nocne niebo po raz pierwszy w życiu. Dotąd było ono dlań, mimo wszelkich wiadomości, dwuwymiarową płaszczyzną, pokrytą mniej lub więcej świecącymi punktami. Mimo poznania teorii, uczuciowo nie wychodził nigdy poza tę prymitywną koncepcję. Teraz przestrzeń dostała nagle trzeciego wymiaru, ukazując różnice odległości i nieskończone perspektywy. Myśl rzucona z szaloną siłą okrążyła dalekie światy, starając się przeniknąć ich sens ostateczny. Wiadomości nabyte, leżące w pamięci jak bezwładna masa, zaczęły teraz wydobywać się na wierzch i grupować koło pytań postawionych w nowej formie, nie jako zagadnienia umysłu, ale jako krzyk przerażenia wszechtajemnicą, zawartą w nieskończoności czasu i przestrzeni i w tym pozornie prostym fakcie, że wszystko było właśnie takim, a nie innym.
(…)
Genezyp patrząc w gwiazdy doznawał zawrotu głowy. Góra i dół przestały istnieć — wisiał w straszliwej przepaści, amorficznej, bezjakościowej. Uświadomił sobie na chwilę aktualną nieskończoność przestrzeni: wszystko to istniało i trwało w tej właśnie sekundzie, którą przeżywał. Wieczność wydała mu się niczym wobec potworności istniejącej w nieskończonostce czasu całej nieskończonej przestrzeni i istniejących w niej światów. Jak tu pojąć tę rzecz? Coś niewyobrażalnego, co narzuca się z absolutną ontologiczną koniecznością. Ta sama tajemnica ukazała mu znowu swą twarz zamaskowaną, ale inaczej. [S.I. Witkiewicz, Nienasycenie, s. 22-23].

Dwudziestojednoletni Lambert od dzieciństwa lubił wieczorem przesiadywać przy oknie otwartym na rozgwieżdżone niebo. Widział w nim świątynię Boga, po której rozświetlonym wnętrzu może błądzić wzrokiem. Nie poprzestał na zachwycie. Zwrócił uwagę na gwiazdy widoczne na tle pasa Drogi Mlecznej. Najwyraźniej są one bliżej Słońca niż te, których światło zlewa się w naszych oczach w mglistą poświatę owego pasa. Znaczy to, że układ gwiazd jest płaskim dyskiem, wewnątrz którego się znajdujemy. Był, wedle jego własnych słów, rok 1749.

Kilka lat później, w roku 1755, Immanuel Kant, starający się o posadę na uniwersytecie, ogłosił książkę zatytułowaną ambitnie: Powszechna historia naturalna i teoria nieba i zadedykowaną królowi Fryderykowi II. Podtytuł dzieła wyjaśniał, że oparte jest ono na „prawach Newtona”. Nie wiemy, czy dziełko to dotarło do króla, niebawem drukarz zbankrutował i książka nigdy nie stała się znana. Zaczęto o niej mówić dopiero kilkadziesiąt lat później, gdy Kant zdobył sławę jako filozof i wszelkie jego pisma zaczęły zwracać uwagę.

Punktem wyjścia Kanta była myśl wyczytana w gazecie: chodziło o recenzję dzieła Thomasa Wrighta. Kant uznał, że system gwiezdny, w którym znajduje się Słońce musi być płaski i że gwiazdy poruszają się, podobnie do planet, po orbitach wokół jednego lub większej liczby centrów. Ponieważ wyczytał (u Derhama), że obserwuje się mgławice o kształcie eliptycznym, uznał, iż są to inne systemy gwiezdne widziane z ukosa: dysk wyglądać powinien wówczas jak elipsa. Słyszał też o wykryciu ruchu niektórych gwiazd: porównując dawne i nowe obserwacje astronomowie wykryli zmiany położenia kilku jasnych gwiazd.

Reszta u Kanta jest czystą spekulacją. Stara się on wykazać, że prawa mechaniki muszą prowadzić do takiego właśnie świata, jaki widzimy. W ten sposób z pierwotnego chaosu wyłonić się miał kosmos, czyli porządek. Krążenie ciał zapewnić miała druga, obok ciążenia, siła działająca we wszechświecie, a mianowicie odpychanie. Newton nie mówi wiele o siłach odpychających, choć uznawał, że działają one między cząsteczkami gazów – dzięki temu gazy rozprężają się, wypełniając całą dostępną objętość. Odpychająca siła Kanta nie jest jednak tym samym co u Newtona. Jego fizyka jest bliższa poglądom Leibniza: ruch po okręgu jest w niej stanem równowagi między siłą grawitacyjną i odśrodkową (podobnie widzą to czasem dzisiejsi studenci, co jednak nie znaczy, że studiowali Leibniza). W istocie chodzi tu nie tyle o siłę odpychającą, co o moment pędu, czyli ilość ruchu obrotowego, która musi być zachowana.

Spekulacje Kanta dość przypadkowo najbliższe były rzeczywistości i jego teoria nazwana została teorią wszechświatów wyspowych (czyli galaktyk poprzedzielanych pustą przestrzenią). Był to zbieg okoliczności: filozof z Królewca powoływał się np. na dane Williama Derhama nt. mgławic. Spośród 21 wymienionych przez niego mgławic, pięć miało być eliptycznych (naprawdę tylko jedna z nich ma kształt eliptyczny). Kant niezbyt troszczył się o fakty obserwacyjne, były one dla niego raczej punktem wyjścia do rozważań spekulatywnych.

W XVIII wieku zawodowi astronomowie nie zajmowali się ruchem gwiazd, wiedziano tylko o nieznacznych przesunięciach paru gwiazd, nie znano ich odległości, niewiele można było w tej sytuacji zrobić. Jednak Newtonowskie prawo ciążenia pozwalało na pewne wnioski. Siła przyciągająca działa między dowolnymi rodzajami materii i maleje jak odwrotność kwadratu odległości, a więc nigdy nie staje się równa zeru. Oznacza to, że niemożliwy jest wszechświat statyczny. Ciała we wszechświecie muszą się poruszać.

Dziś wiemy, że także wszechświat jako całość nie może znajdować się w spoczynku, bo byłaby to sytuacja nietrwała. Na skalę kosmiczną działa jedynie grawitacja. Inne siły, np. elektromagnetyczne, są w praktyce krótkozasięgowe (ponieważ mamy tyle samo ładunków dodatnich i ujemnych). Tym, co chroni świat od zapadnięcia się, kolapsu grawitacyjnego albo elektromagnetycznego, jest w ostatecznym rachunku nie jakiś nowy rodzaj sił, lecz inna mechanika: kwantowa. Zasada nieoznaczoności nie pozwala cząstkom zajmować dowolnie małego obszaru przestrzeni, a zakaz Pauliego sprawia, że stany kwantowe cząstek takich, jak elektrony, zajmowane są po kolei (co wyjaśnia układ okresowy pierwiastków). Możliwe są też sytuacje, kiedy grawitacja przeważa i ciało zapada się, tworząc czarna dziurę, czyli obiekt, w którym materia traci jakąkolwiek tożsamość i swoje indywidualne charakterystyki. Zostaje czysta czasoprzestrzeń ukryta za horyzontem zdarzeń. O takiej możliwości także zresztą spekulowano już w wieku XVIII.

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Einstein i Mann: o tym, co pozostaje, kiedy wszystko jest stracone (1933)

Nie sądziłem, że dożyję czasów ciekawych dla historyka interesującego się fenomenem nazizmu. Bez wątpienia życie polityczne przyniesie w najbliższym czasie sporo materiału do przemyśleń. Oczywiście, wiem, wiem, obecna „pomarszczona rewolucja” w naszym kraju, to nie to samo. Ale i podobieństw nie brak.

Mamy przede wszystkim różnicę skali. Nie ma co porównywać Niemiec z lat trzydziestych do Polski. Giganta i średniaka. Kraju najbardziej zaawansowanego przemysłu z krajem z samego ogona Europy. Kraju teologów i intelektualistów z krajem, gdzie magicznym kultem otacza się nawet samochody, święcąc je uroczyście. Kraju gotyckich katedr i kraju bazyliki w Licheniu. Kraju wzorowej organizacji i kraju legendarnego bałaganu. Ojczyzny Wolfganga Goethego i ojczyzny Jarosława Marka Rymkiewicza. Kraju Richarda Wagnera i kraju Zenka Martyniuka. Kraju palącego ciała Żydów i kraju palącego kukły Żydów. Atmosferę linczu i przemocy już mamy, na razie jest to lincz medialny i przemoc symboliczna. Przemarsze kwazimodlitewne w ochronie tysięcy policjantów, zwalnianie z pracy ludzi o innych poglądach, i to nawet wtedy, gdy ich poglądy nie mają w danej pracy specjalnego znaczenia. Kary za udział w protestach. Brutalność mediów państwowych dorównujących już chyba propagandzie Goebbelsa, w dodatku działalność owych mediów finansowana jest w znacznej części z przymusowych składek pobieranych także od przeciwników reżimu (szatański pomysł, prawda?). Wszystko w dymie kadzideł i przy aprobacie niemal całego kościoła, który głosi jakąś przedziwną ewangelię rasy i narodu, a czasem ubogaca nas takimi myślami spod ołtarza, jak opinia arcybiskupa Marka, że pod Smoleńskiem prawa fizyki działały i dlatego był to zamach. To rzeczywiście jest zamach na zdrowy rozsądek i na moralność. Nie wierzę, by subtelny znawca francuskiej filozofii, uczeń Tischnera, nie rozumiał, czemu marsze z ONR-em są niezupełnie tym samym, co głosił Jezus.

Odbywa się to wszystko, jeśli nie z woli, to bez protestu narodu, który sam sobie zgotował ten los i będzie przez długi, długi czas za to płacił. Widać Polska nie potrafi zbudować państwa na dłużej niż dwadzieścia lat.

Zwolennicy Hitlera też myśleli, że budują lepszy i sprawiedliwszy kraj, w którym dla prawdziwych Niemców nastaną tysiącletnie rządy prawa i sprawiedliwości, a o tych paru Żydów i liberałów nie ma co się kłócić.

Trzeba pamiętać, że nawet w roku 1933 naziści dopiero zaczynali się rozkręcać i wciąż starali się zachować jakieś pozory. Nie wszyscy i nie od razu byli ludobójcami, to ich własny system zrobił z nich zbrodniarzy i skorumpował w miarę zdobywania i umacniania władzy. U nas też się będzie rozkręcało, tamy zostały zerwane, choć może nie zajdziemy na tej drodze tak daleko i skończy się na standardach ukraińskich albo białoruskich. Ale może i putinowskich, kto wie. Rosja Putina była zresztą zupełnie inna, kiedy zaczynał on rządzić i zupełnie inna jest teraz.

Wiosną 1932 roku Adolf Hitler przegrał wybory prezydenckie. W wyborach do Reichstagu jego partia zdobyła w lipcu tego roku 37% głosów, a w powtórnych wyborach w listopadzie już tylko 32%. Wystarczyło to jednak, aby przejąć władzę w kraju. W styczniu 1933 roku Hitler został kanclerzem.

W listopadzie 1933 w wyborach brała udział już tylko jedna partia, NSDAP, i zgadnijcie, kto wygrał? NSDAP oczywiście, choć nie otrzymała wszystkich głosów: 8% głosów było nieważnych. Tak sobie postanowiono, więc takie były wyniki wyborów.

Einstein i Mann byli ludźmi z innych światów: Żyd-internacjonalista i pisarz, który czuł się wcieleniem Goethego i niemieckiej tradycji mieszczańskiej i artystycznej. Obaj zmuszeni zostali do emigracji, niewątpliwie bardziej bolesnej dla Thomasa Manna, który nie był ani liberałem, ani Żydem, ani marksistą, ani dekadentem, ani zimnym spekulantem (wszystko to zarzucali mu naraz albo po kolei w Niemczech). Jego brat, Heinrich, pasował natomiast nieźle do tych karykaturalnych epitetów oprócz „zarzutu”, że jest Żydem, ma się rozumieć.

List Alberta Einsteina do Thomasa Manna, 29 IV 1933

Le Coq pod Ostendą 29 IV 1933

Pragnę powiedzieć panu coś zupełnie oczywistego: świadoma odpowiedzialności postawa, jaką zajął Pan i Pański Brat, stanowiła jeden z nielicznych jasnych punktów pośród wydarzeń rozgrywających się ostatnio w Niemczech. Pozostali powołani do duchowego przywództwa nie wykazali odwagi ani siły charakteru, aby odciąć się wyraźnie od tych, którzy dzięki posiadaniu środków przymusu występują dziś jako reprezentanci państwa. Poprzez to zaniechanie powiększyli jeszcze władzę, jaką posiada ten fatalny element, który szkodzi niewymownie imieniu Niemiec. Narazili się Panowie tym samym na niebezpieczeństwo, że ten sam motłoch, któremu tamci schlebiają, będzie miał Panów w pogardzie.

Jeszcze raz widać, że losy wspólnoty określone są w przeważającej mierze przez jej moralny poziom. Kiedy znowu utworzy się przywództwo godne tego miana, to odrodzi się ono tylko dzięki stopniowej krystalizacji wokół takich ośrodków, jakimi stali się Pan i Pański Brat. Nawet gdyby miał Pan tego nie dożyć, niech stanie się to dla Pana najlepszą pociechą w tych gorzkich czasach, jakie przeżywamy obecnie i jakie jeszcze przyjdzie nam przeżywać.

List Thomasa Mann do Alberta Einsteina, 15 V 1933

Bandol (departament Var)

Grand Hotel

Kilkakrotna zmiana miejsca pobytu sprawiła, że dopiero dziś mogę panu podziękować za Jego łaskawy list.

Był to największy zaszczyt, jaki spotkał mnie nie tylko w tych ciężkich miesiącach, ale może w ogóle w całym moim życiu; jednakże Pan chwali mnie za zachowanie, które było moim naturalnym odruchem, a więc nie zasługuje właściwie na pochwałę. Mniej naturalna jest dla mnie sytuacja, w którą przez to popadłem: jestem bowiem z natury zbyt dobrym Niemcem, aby perspektywa trwałego wygnania mogła nie być dla mnie bardzo ciężkim przeżyciem. Zerwanie z krajem, prawie nieuniknione, przygnębia i trwoży mnie bardzo, co jest dowodem, że stan ten nie odpowiada zupełnie mojej naturze, zdeterminowanej przez Goethowsko-reprezentatywne elementy tradycji i bynajmniej nie stworzonej do martyrologii. Tylko wyjątkowe zło i fałsz mogły mi narzucić tę rolę; bo też według mego najgłębszego przekonania cała ta „niemiecka rewolucja” jest z gruntu zła i fałszywa. Brakuje jej cech, które zjednywały sympatię świata prawdziwym rewolucjom, nawet najkrwawszym. W całej swej istocie jest nie „odrodzeniem” – cokolwiek by o tym mówili i wrzeszczeli jej wyznawcy – lecz nienawiścią, zemstą, pospolitą żądzą mordu i drobnomieszczańską małostkowością. Nie uwierzę nigdy, by mogło z tego wyniknąć coś dobrego, czy to dla Niemiec, czy to dla świata. Fakt, żeśmy do ostatka ostrzegali przed siłami, które doprowadziły do tej katastrofy moralnej i intelektualnej, na pewno będzie kiedyś dla nas tytułem do chwały, ale my zapewne przedtem zginiemy.

w: Tomasz Mann. Listy 1889-1936, przeł. W. Jedlicka, Czytelnik, Warszawa 1966, s. 436-437.

Nie ma w historii niezawinionych upadków, społeczeństwa albo stają na wysokości swego losu, albo nie.