Thomas Young i George Airy: nadliczbowe łuki tęczy

Podstawowy mechanizm powstawania tęczy wyjaśnił już Kartezjusz. Łuki tęczy odpowiadają najmniejszym albo największym kątom odchylenia promieni świetlnych odbijających się wewnątrz kropli wody. Wynika to z prawa załamania.

descartes2

Czy na przebieg tego zjawiska ma jakiś wpływ falowy charakter światła? Pierwszy zastanowił się nad tym Thomas Young. Rozpatrzmy to na przykładzie wewnętrznego łuku tęczy. Kąt padania promienia na powierzchnię kropli związany jest z tym, jak daleko od jej środka biegnie ów promień. Dalsze jego losy są już określone: można obliczyć, jak się załamie i pod jakim kątem ostatecznie wybiegnie z naszej kropli. W pewnej odległości od środka kropli otrzymuje się promień Kartezjusza – ten odpowiadający kątowi 42º. Dla każdego kąta mniejszego niż owe 42º możemy znaleźć dwa promienie, które wychodzą pod tym kątem z kropli: jeden wchodzący do kropli nieco bliżej środka niż promień Kartezjusza, drugi zaś nieco od niego dalej. Wynika to po prostu stąd, że jeśli mamy w pewnym miejscu maksimum wykresu, to każdej wartości funkcji mniejszej od maksimum odpowiadają co najmniej dwie wartości argumentu: jedna na lewo, a druga na prawo od maksimum. Promienie takie biegną w tym samym kierunku pod pewnym kątem mniejszym niż 42º. Jeśli światło jest falą, to promienie te powinny interferować. Oba przebiegają nieco inną drogę, gdy ta różnica dróg będzie równa długości fali, promienie się wzmocnią, a my zaobserwujemy dodatkowy łuk tęczy wewnątrz zwykłej tęczy, tzw. łuk nadliczbowy.

rainbow_wave

Young wykonał jakieś obliczenia na ten temat, ale wspomniał tylko o ich wyniku w jednej ze swych prac. Dla kropli o średnicy 1/76 cala przewidywał on łuk nadliczbowy 2º wewnątrz zwykłego łuku tęczy. Bliżej tematem tym zajął się George Biddell Airy w latach 1836-1838. Wystarczy do tego falowa teoria Fresnela i trochę matematyki. Ograniczając się do promieni bliskich promienia Kartezjusza, można poczynić pewne przybliżenia matematyczne prowadzące do nowego rodzaju funkcji, tzw. funkcji Airy’ego. Jakościowo rzecz biorąc, fala wypadkowa powstaje z czoła fali o kształcie litery S, jak na rysunku. Astronom pracowicie wyznaczył wartości natężenia światła za pomocą obliczeń numerycznych.

airy

Pozioma oś wyskalowana jest w kątach. Pionowa oś wykresu odpowiada położeniu promienia Kartezjusza. Linia kropkowana to natężenie światła w teorii Kartezjusza, cienka linia ciągła byłaby wynikiem Younga, a gruba linia ciągła jest bliższym rzeczywistości wynikiem Airy’ego. Już pierwsze maksimum natężenia wypada dla kąta mniejszego niż owe 42º Kartezjusza, jak widać, powinny też pojawiać się kolejne maksima odpowiadające jeszcze mniejszym kątom – są to właśnie łuki nadliczbowe. Skala pozioma wykresu zależy od wielkości kropli wyrażonej w długościach fali światła. Wykres poniżej przedstawia teorię Airy’ego dla kropli o średnicy 1/76 cala i długości fali 0,7 μm (barwa czerwona) pierwszy dodatkowy łuk leży niecałe 2º wewnątrz łuku głównego – mniej więcej tak, jak to opisał Young (wszędzie poniżej skala pozioma jest w stopniach).

Airy1.76cala red

Jego jakościowa teoria staje się jeszcze bliższa prawdy, gdy nieco przesunie się różnicę faz obu promieni (o \frac{1}{2}\pi), co widać na wykresie z pracy Airy’ego. Gdy krople są większe, kąty między łukami stają się mniejsze. Oto wykres dla kropli o średnicy 1 mm:

airy1mm red

W rzeczywistych warunkach obserwujemy wszystkie długości fal światła widzialnego jednocześnie, powoduje to nakładanie się łuków: niżej na wykres dla światła czerwonego nałożyliśmy jeszcze wykres dla fioletu. Łuki będą się więc zacierać.

airy1mm violet red

Podobny skutek wywoła zróżnicowanie rozmiarów kropli, w rezultacie nie zawsze udaje się te dodatkowe łuki zaobserwować. Czasem jednak są widoczne. Mamy wtedy naoczny dowód, że światło jest falą.

p7285210_2

fotografia: https://collectingtokens.wordpress.com/tag/supernumerary-rainbow/

Uwaga:
Słynna całka tęczy Airy’ego ma postać:

\mbox{Ai}(-\eta)=\dfrac{1}{\pi}\int\limits_{0}^{\infty}\cos(t^3/3-\eta t) dt.

Dla dużych rozmiarów kropli trzeba stosować bardziej realistyczne i mniej eleganckie przybliżenia. Dlatego wynik dla kropli o wielkości 1 mm ma sens tylko jakościowy.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Log Out / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Log Out / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Log Out / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Log Out / Zmień )

Connecting to %s