Sprawa Oppenheimera (1942-1954)

Let me here remind you that the essence of dramatic tragedy is not unhappiness. It resides in the solemnity of the remorseless working of things. This inevitableness of destiny can only be illustrated in terms of human life by incidents which in fact involve unhappiness. For it is only by them that the futility of escape can be made evident in the drama. This remorseless inevitableness is what pervades scientific thought. The laws of physics are the decrees of fate.

„… istotą [greckiej] tragedii nie jest nieszczęście. Istotą jej jest powaga bezlitosnego działania rzeczy. W kategoriach życia ludzkiego nieuchronność przeznaczenia ilustrować mogą jedynie przypadki, które w rzeczywistości pociągają za sobą nieszczęście. Bowiem tylko w ten sposób można w dramacie ukazać daremność ucieczki. Myśl naukową przenika taka właśnie bezlitosna konieczność. Prawa fizyki to wyroki losu.” [A.N. Whitehead, przeł. M. Kozłowski, M. Pieńkowski]

Żyjemy w pożyczonym czasie. Wystarczy odrobina szaleństwa po którejś stronie Atlantyku i w ciągu paru godzin z Ameryki Północnej, Europy od Lizbony po Ural i jeszcze dalej zostaną radioaktywne zgliszcza. Pewnie ludzkość by to przetrwała jako gatunek biologiczny, może Chiny mogłyby wreszcie zapanować nad światem, jak marzy się Generalnemu Sekretarzowi Xi. Byłoby to jednak ponure zwieńczenie czterech wieków nauki nowożytnej: od Keplera i Galileusza do Feynmana, Weinberga, Salama, Glashowa, Grossa, Politzera, Wilczka i ‚t Hoofta. Zbudowanie i użycie bomby atomowej stało się symbolicznym początkiem ery nuklearnej, a także początkiem Stanów Zjednoczonych w roli supermocarstwa dominującego w światowej polityce. Jak do tej pory pierwotny zamysł, aby wyprodukować tę potworną broń szybciej, niż zrobią to naziści/komuniści, sprawdził się. Gdyby nie militarna dominacja Stanów Zjednoczonych, broni jądrowej użyto by już dawno na mniejszą albo raczej na większą skalę.

Znakomity film Christophera Nolana przypomniał dramat Roberta Oppenheimera, jednego z bohaterów amerykańskiej wyobraźni. Nie sądziłem, że można zrobić wysokobudżetowy film dla masowej widowni, upraszczając tak niewiele i wkładając tak wiele informacji historycznej i psychologicznej. (Wątek Einsteina brzmiał dość fałszywie: nikt by się nie zwracał do Einsteina w sprawie obliczeń Hansa Bethego dotyczących fizyki jądrowej, jeśli już to do Fermiego czy Szilarda; prawdziwe natomiast jest to, że Einstein niezbyt rozumiał, czemu Oppenheimer daje się upokarzać jakimś komisjom, jeśli nie musi. On sam nie wierzył w państwo jako instytucję, nie miał zbyt wielu złudzeń, choć uważał państwo amerykańskie za znacznie lepsze od swoich ojczystych Niemiec. Dlatego zresztą nawet nie myślał o powrocie do Niemiec po wojnie. Nb. ci agenci FBI grzebiący w śmieciach i podsłuchujący telefony to była rzeczywistość nie tylko Oppenheimera, ale i Einsteina, choć ten żadnych „tajemnic atomowych” nie znał ani nie chciał znać.)

Sprawa Oppenheimera była z pozoru intrygą biurokratyczną: wyznaczona arbitralnie komisja, działająca w sposób inkwizytorski, odmówiła uczonemu certyfikatu dostępu do tajemnic wojskowych i państwowych. W ten sposób jeden z największych patriotów amerykańskich odsunięty został od wpływu na decyzje w sprawach broni nuklearnej. W roku 1954 był to szok dla opinii publicznej, Oppenheimer znany był bowiem jako dyrektor programu budowy bomby atomowej w Los Alamos, jego sława przyćmiła nawet Einsteina. Zbombardowanie Hiroszimy i Nagasaki przyspieszyło kapitulację Japonii i koniec wojny, tak przynajmniej powszechnie wierzono. Oppenheimer stał się ikoną życia publicznego, twarzą amerykańskiej nauki, wierzono, że jest supergeniuszem. Nie był nawet szeregowym geniuszem, lecz umiejętnie kierował ludźmi od siebie znacznie wybitniejszymi, jak Isidor Rabi, Hans Bethe, Enrico Fermi, Richard Feynman, Rudolf Peierls, John von Neumann, Stanisław Ulam, a także Edward Teller – enfant terrible Programu Manhattan, obsesyjny zwolennik broni termojądrowej, chimeryczny i paranoiczny węgierski teoretyk niepasujący do żadnego zespołu ludzi, pełen jednak pomysłów, których ogromna większość była do niczego, ale kilka okazało się dobrych. W Projekcie Manhattan Teller był na uboczu, snując wizje broni termojądrowej.

Aż do roku 1951, do projektu Tellera-Ulama, bomba termojądrowa była tylko umykającym marzeniem Tellera bez realnej nadziei na sukces. Koła wojskowe naciskały, by realizować ten projekt nawet kosztem realnego programu budowy bomb rozszczepialnych. Nie chodziło tylko o podział wydatków, ale i decyzje, co produkować w reaktorach: więcej plutonu do bomb rozszczepialnych, czy trytu do superbomby Tellera. Decyzja polityczna podjęta została w roku 1949, gdy nie było żadnego realnie działającego pomysłu bomby termojądrowej. To, że gwiazdy potrafią syntetyzować wodór w hel, jest wskazówką niezbyt pomocną z technicznego punktu widzenia. Wiadomo było, że należy jakoś wykorzystać wybuch bomby rozszczepialnej, by stworzyć ekstremalnie wysoką temperaturę potrzebną do rozpoczęcia syntezy jąder. Jak jednak sprawić, żeby doszło do podtrzymującej się reakcji, zanim energia wybuchu rozproszy się w otoczeniu, nikt nie wiedział. Oppenheimer nie był entuzjastą superbomby z tego i z innych powodów. Zapowiadało się, że będzie to konstrukcja gigantyczna. Trzeba by ją wozić wołami na miejsce wybuchu, pierwsza amerykańska bomba Ivy Mike to było całe laboratorium z ciekłym deuterem wysadzone zdalnie w powietrze, nie było mowy o transportowaniu tego w całości w bezpieczny sposób nawet na okręcie. Istniała też wątpliwość strategiczna: czy wojsko może sensownie użyć bomby niszczącej nie tylko jedno miasto, ale i cały kilkudziesięciokilometrowy okręg wokół tego miasta. To jest niewątpliwie broń masowego ludobójstwa, żadne cele militarne tego nie usprawiedliwiają. Stanowisko Oppenheimera nie było zresztą pacyfistyczne, przeciwstawiał się on raczej entuzjastycznej postawie kół wojskowych, które sprowadzały rzecz do tego, kto będzie miał silniejsze bomby, nie wątpiąc ani na chwilę, że zawsze będą to Amerykanie. To się nie sprawdziło. Rosjanie mieli fizyków i zasoby, żeby zbudować sobie taką broń. Korzystali z informacji szpiegowskich, ale i bez nich historia wyglądałaby tak samo, dwa lata wcześniej, czy później nie miało tu żadnego znaczenia.

Oppenheimer miał przeciwników i wrogów. Teller doszukiwał się wpływów Oppenheimera w każdej decyzji, która była nie po jego myśli. Kompleks niższości wobec Oppenheimera żywił Lewis Strauss, sprzedawca butów, który dorobił się milionów na inwestycjach i po wojnie został admirałem, choć przesiedział ten okres w biurach zaopatrzenia (złośliwi nazywali go „admirałem holowników”). Strauss  pełnił różne funkcje w administracji waszyngtońskiej i szczerze znienawidził Oppenheimera za arogancję, co racjonalizował w podejrzeniach o szpiegostwo (składał też donosy, że Oppenheimer nie rozlicza się uczciwie z powierzonych funduszy). Rozpowiadał też, że Oppenheimer miał romans z Ruth Tolman, żoną znakomitego fizyka Richarda Tolmana z Caltechu i że sprawa ta przyspieszyła śmierć Richarda, co było paskudną plotką. Strauss nie dość, że nie skończył szkoły średniej i pieniądze miał w pierwszym pokoleniu, był bardzo religijnym Żydem i ktoś taki jak Oppenheimer: bogaty od urodzenia, właściciel van Goghów i Corotów, znający się nie tylko na kwestiach naukowych, ale i na sztuce, literaturze, w dodatku podobający się kobietom, będący w jego pojęciu niemoralnym ateistą, zdrajcą swej religii i tradycji, niemal na pewno był sowieckim szpiegiem. Gdzieś w ukryciu był J. Edgar Hoover, szef FBI, który śledził wszystkich, marzył, aby odebrać obywatelstwo amerykańskie Einsteinowi (za rzekomą działalność komunistyczną) i miał na oku na Oppenheimera jeszcze od lat czterdziestych. Gotów był zaakceptować i prowadzić każdy wątek w tym śledztwie: nawet podejrzenie, że uczony był homoseksualny (nie był; to Hoover był homoseksualistą, do czego zgodnie z ciągle żywą prawicową tradycją nigdy się nie przyznał).

Strauss jako przewodniczący Komisji Energii Atomowej (AEC) postanowił odebrać Oppenheimerowi poświadczenie bezpieczeństwa. Wygasało ono wprawdzie automatycznie w połowie roku 1954, chodziło jednak o to, by odebrać je wcześniej i upokorzyć uczonego. Oznaczało to także, że Oppenheimer nie będzie konsultantem nie tylko w AEC, ale i we wszystkich agencjach i komitetach rządowych. Skład trzyosobowej specjalnej komisji prowadzącej postępowanie (Personnel Security Board, PBS) w sprawie poświadczenia bezpieczeństwa wybrał Strauss, on także wybrał prawnika prowadzącego postępowanie, agresywnego specjalistę od przesłuchań Rogera Robba. FBI zapewniła podsłuchy codziennych konsultacji Oppenheimera i jego prawników, tak że Strauss na bieżąco kontrolował przebieg postępowania, znając rozmowy i nastroje strony przeciwnej. Przygotowywał też świadków, np. Edward Teller powtórzył tylko przed komisją to, co wcześniej uzgodnił ze Straussem. Obrona nie miała dostępu do tajnych materiałów, Robb mógł więc łapać Oppenheimera na nieścisłościach w jego wypowiedziach sprzed dwunastu lat podsłuchanych przez FBI. Uczonemu nie udostępniono tych taśm, musiał więc wierzyć na słowo, że mówił to, co mówił.

Oppenheimer miał polityczną przeszłość, która mobilizowała agentów do grzebania w poszukiwaniu podejrzanych kontaktów. W latach trzydziestych i na początku czterdziestych wśród jego znajomych, studentów, doktorantów, przyjaciół i kochanek pełno było komunistów. Członkiem partii komunistycznej był także jego młodszy brat Frank. Do dziś spekuluje się, czy Robert Oppenheimer był członkiem partii komunistycznej, czy nie. Jest to trochę talmudyczna dyskusja, rozstrzygnęłoby ją może dopiero znalezienie legitymacji członkowskiej Oppenheimera. Bez wątpienia sympatyzował z lewicą, ale w Kalifornii przed wojną nie musiało to oznaczać działania na rzecz państwa sowieckiego. Oppenheimer, podobnie jak Jean Tatlock, jego kochanka, córka profesora literatury w Berkeley, byli raczej kawiorową lewicą, ludźmi uprzywilejowanymi, którzy nie chcieli, aby te przywileje dostępne były jedynie wybrańcom losu. Kto nie był za młodu lewicowy, ten na starość staje się świnią. Nie było nigdy dowodów, aby Robert Oppenheimer był lojalny wobec jakiegokolwiek innego państwa poza swoim własnym. Czuł się stuprocentowym amerykańskim patriotą i pragnął pomóc własnemu krajowi, a także światu, wygrać wojnę światową. Rosjanie aż do końca wojny byli zresztą sojusznikami Zachodu – z tego powodu nie można było skazać Klausa Fuchsa na więcej niż czternaście lat, jego szpiegostwo nie dotyczyło bowiem kraju wrogiego.

W roku 1954 nie było żadnych informacji, które nie byłyby znane w roku 1947, kiedy to przedłużono Oppenheimerowi dostęp do tajemnic. Wcześniej oczywiście był projekt Manhattan, wtedy pomimo zastrzeżeń służb generał Leslie Groves zadecydował, że uczony ma otrzymać poświadczenie bezpieczeństwa, ponieważ jest zbyt ważny dla całego programu. Groves miał rację, bez Oppenheimera, który potrafił zmotywować swoim entuzjazmem i zaangażowaniem wszystkich pracujących nad projektem, od noblistów i przyszłych noblistów aż po sekretarki i kobiety zatrudnione do obliczeń na arytmometrach jako „human computers”, Projekt Manhattan nie powiódłby się w tak krótkim czasie. Pod koniec prac Oppenheimer ważył 52 kg przy wzroście 178 cm. Udało się jednak w ciągu dwóch lat zaprojektować i zbudować nie jeden, ale dwa rodzaje bomb rozszczepialnych: uranową i plutonową. Przy czym w przypadku tej drugiej trudności techniczne były ogromne i jeszcze pod koniec roku 1944 nie było pewności, czy się uda. Pluton jest bowiem najpierw ściskany energią implozji, co zapoczątkowuje reakcję łańcuchową. Jak na ironię, mechanizmami implozji zajmował się m.in. Klaus Fuchs, niemiecki fizyk, który dołączył do programu ze strony brytyjskiej. Był ważnym członkiem zespołu, zaraz po wojnie wraz z Johnem von Neumannem zgłosił tajny patent na zapłon reakcji termojądrowej za pomocą implozji materiału rozszczepialnego – był to już wstęp do prac nad bombą termojądrową. Fuchs uchodził za jednego z najzdolniejszych teoretyków w projekcie Manhattan. Nikt się nie domyślał, że ma jedną wadę: jest fanatycznym komunistą i przekaże informacje Sowietom. Oczywiście służby wytrwale szczekały nie pod tym drzewem. Identyfikacja Fuchsa okazała się możliwa dopiero po wojnie dzięki projektowi Venona, wytrwałej pracy nad rozszyfrowywaniem sowieckich depesz. Sukces ten był głównie dziełem kobiet zatrudnionych w tym żmudnym projekcie, a nie dzielnych agentów FBI podsłuchujących i śledzących podejrzane kontakty lewicowych uczonych.

Komisja drążyła głównie dwie kwestie: wątek Eltentona i niechętny stosunek do superbomby. Ten pierwszy problem stworzył sobie sam uczony, informując w połowie roku 1943 służby wojskowe, że niejaki George Eltenton, inżynier pracujący w Shell Oil, w imieniu Rosjan próbował szukać kontaktu z uczonymi związanymi z programem atomowym. Oppenheimer mówił o trzech takich próbach i nie chciał wymienić żadnych nazwisk. Służby, zarówno wojskowe, jak i FBI,  przez następne lata bezskutecznie próbowały ustalić, kto był tym pośrednikiem i do kogo się zwracano. Ostatecznie okazało się, że chodziło jeden taki przypadek, o rozmowę w kuchni między Oppenheimerem a Haakonem Chevalierem, profesorem romanistyki z Berkeley. Chevalier poinformował Oppenheimera, że Eltenton ofiarowywał się jako pośrednik w przekazaniu informacji o programie Rosjanom. Oppenheimer uciął rozmowę, uważając, że byłaby to zdrada. Nie wydarzyło się nic więcej. Wzmianka o trzech osobach była niepotrzebnym kłamstewkiem, mającym zapewne odwrócić uwagę od faktu, że chodziło o samego Oppenheimera. Epizod ten wydarzył się na początku roku 1943, kiedy było bardzo niewiele „tajemnic atomowych”, nie powstał jeszcze ośrodek w Los Alamos, nie zaczęła się na serio praca nad rozdzielaniem izotopów uranu, zaledwie miesiąc wcześniej zaczął działać eksperymentalny reaktor jądrowy w Chicago. Naiwność/głupota Oppenheimera sprawiła, że epizod z Chevalierem znalazł się w polu zainteresowania służb. Wracano do tego w trakcie projektu Manhattan, a także po wojnie. Sprawę tę rozdęto do ponadnaturalnych rozmiarów w roku 1954, uznając, że świadczy o niefrasobliwym podejściu do kwestii bezpieczeństwa. Innym argumentem było spotkanie z Jean Tatlock w roku 1943, które dla śledzących uczonego agentów było co najmniej podejrzane, Tatlock była bowiem komunistką i w spotkaniu tym upatrywano potencjalnego kontaktu z Rosjanami. W rzeczywistości w tym czasie Tatlock nie interesowała się polityką, była lekarzem-psychiatrą i cierpiała na depresję. Niedługo później popełniła samobójstwo i nie miało to nic wspólnego z polityką, lecz najprawdopodobniej z jej orientacją seksualną (nawet lekarze sądzili wówczas, że homo czy biseksualizm jest chorobą). Wyciągnięto ten epizod prawdopodobnie także dlatego, żeby w trakcie przesłuchań dowiedziała się o nim Kitty Oppenheimer, żona uczonego, może liczono na to, że rozgniewana tymi rewelacjami ujawni coś kompromitującego na temat męża. Oppenheimer rzeczywiście kręcił w sprawie Eltentona, choć trzeba też stwierdzić, że to przez jego skrupuły zaistniał cały ów problem. Gdyby Oppenheimer nie wspomniał o Eltentonie, służby nic by o tym epizodzie nie wiedziały. Uczony chciał zapewne chronić tożsamość Chevaliera, ale później, pod naciskiem wyjawił nazwisko Chevaliera Grovesowi, a w 1946 roku FBI. Chevalier stracił posadę w Kalifornii i po kilku latach życia na marginesie udało mu się wyjechać do Francji (miał także obywatelstwo francuskie).

Niechętny stosunek do superbomby dziś brzmi raczej jak głos rozsądku. W tamtym czasie wojsko chciało mieć wszystko atomowe: samoloty, statki, działa. Chciano zarazem silniejszych bomb, ale i słabszych, które mogłyby się przydać na froncie. Lotnictwo uważało, że Oppenheimer działa na rzecz marynarki, twierdząc, iż nie będzie samolotów z napędem nuklearnym. W ogóle armia amerykańska była cichym uczestnikiem tego postępowania przeciwko Oppenheimerowi, o czym film Nolana prawie nie wspomina. Warto też pamiętać, że Oppenheimer po wojnie i po Hiroszimie nie był jakimś nawiedzonym pacyfistą, który chciał z wujkiem Stalinem pod rękę zaprowadzić wieczny pokój. Zdawał sobie sprawę, jak wygląda reżim sowiecki, jego bliskim przyjacielem był George Kennan, architekt zimnej wojny. Starał się jednak szukać szansy na powstrzymanie wyścigu zbrojeń, może naiwnie, ale wojny nuklearnej powinniśmy się obawiać także i dziś (co  wcale nie znaczy, iż należy np. ustępować przed rosyjskim szantażem). Podejście uczonego do spraw broni nuklearnej było złożone, zmieniało się też z czasem i sytuacją. Ktoś napisał, że film „Oppenheimer” pokazuje, iż łatwiej być fizykiem niż politykiem. Cóż, i tak, i nie. Obie dziedziny niosą inny rodzaj trudności. Uczony wiedział, jak trudno być naprawdę twórczym fizykiem: znał Heisenberga, Pauliego, Bohra, Fermiego, Diraca i musiał czuć się przy nich chwilami jak Strauss przy Oppenheimerze. Był za inteligentny na to, żeby nie dostrzegać różnicy między kimś wszechstronnie uzdolnionym a geniuszem. Polityka jest sztuką zarządzania ludźmi i ich emocjami, co może wydawać się czasem trudniejsze niż powstrzymanie reakcji łańcuchowej w uranie. Z pewnością Oppenheimer nie był człowiekiem prostym i politycznie naiwnym, ale nie był też cynikiem i dlatego całe to dochodzenie w sprawie dostępu do tajemnic złamało go. Wynikiem postępowania nie było zresztą odebranie głosu fizykom, ale oddanie go Edwardowi Tellerowi, też fizykowi, tyle że dość paranoidalnemu. Oppenheimer wycofał się z życia publicznego, pilnował się, żeby nie wypowiadać się na żadne drażliwe tematy. Jego przeciwnicy sądzili, że może uciec do Związku Sowieckiego, choć jemu nawet Europa zachodnia wydawała się obcym światem, mimo tego, że znał języki, literaturę, miał przyjaciół.

Być może w naturze ludzkiej leży, by nie rezygnować ze zdobycia tego, co jest możliwe, nawet gdy czujemy, jakie to niebezpieczne. Oppenheimer miał daleko posunięte upodobanie do sytuacji granicznych i niebezpiecznych. Ludzie, którzy jeździli z nim po Nowym Meksyku konno, wspominali to często jako doświadczenie ekstremalne. Koń Oppenheimera nauczony był kłusować tak, aby zawsze tylko jednym kopytem dotykać ziemi, dzięki czemu i on, i jeździec radzili sobie w najtrudniejszym terenie, w nocy, podczas burzy. Być może ludzkość skazana jest na najgorsze, na rządy kolejnych wujków Stalinów i Putinów, paranoicznych miłośników tajnych służb i realpolitik, ale może jednak jest jeszcze jakaś nadzieja, że nie tylko złe prognozy muszą się spełniać.

 

 

Stanisław Ulam (2/2)

Wciąż jest dla mnie źródłem nieustającego zdziwienia, że kilka znaków nagryzmolonych na tablicy lub na kartce papieru może zmienić bieg ludzkich spraw. [S. Ulam]

Każdego roku, od 1936 aż do 1939, Stanisław Ulam spędzał lato w Polsce. Spotykał się ze swoimi matematycznymi przyjaciółmi, w tym Banachem i Mazurem, we Lwowie albo gdzieś w okolicach, gdzie spędzali wakacje. Jego dorobek matematyczny obejmował szereg dziedzin: teorię mnogości, teorię miary i rachunek prawdopodobieństwa, teorię transformacji, teorię grup. Były to na ogół niewielkie prace rozwiązujące lub stawiające jakiś problem. Na uniwersytecie Harvarda we współpracy z Johnem Oxtobym Ulam napisał swoją najdłuższą pracę, opublikowaną następnie w „Annals of Mathematics”, wysoko cenionym piśmie wydawanym w Princeton. Praca dotyczyła teorii ergodycznej. W mechanice klasycznej każdy nietrywialny układ fizyczny wędruje po swojej przestrzeni stanów (in. przestrzeni fazowej) w taki sposób, że wraca kiedyś w sąsiedztwo każdego punktu już odwiedzonego. Fakt ten jest podstawą fizyki statystycznej, w której zakłada się, że wszystkie stany o określonej energii są jednakowo prawdopodobne. Praca Ulama i Oxtoby’ego dowodziła, że przekształcenia spełniające warunek ergodyczności są w pewnym sensie typowe. Uzyskany przez nich wynik nie mógł być wprost zastosowany do fizyki, ale tak jest bardzo często: ścisłe potwierdzenie intuicji fizyków zazwyczaj nie jest łatwe.

Stanisław Ulam łatwo przywykł do amerykańskiego życia i z przyjemnością wracał do niego po wakacjach. Latem 1939 roku zabrał ze sobą młodszego brata, Adama. Na statek w Gdyni odprowadzili ich ojciec i stryj. Widmo wojny wisiało nad Polską, choć, jak zauważył Ulam, zagrożenie to wyraźniej dostrzegano w Stanach Zjednoczonych niż w Polsce, gdzie do ostatniej chwili łudzono się nadziejami na jakiś zwrot dyplomatyczny w zaostrzającym się napięciu. Różnice w sposobie oceny wynikały zapewne nie tylko z dystansu Amerykanów. Do Stanów Zjednoczonych dotarło w ostatnich latach wielu uchodźców z Niemiec, którzy lepiej niż inni rozumieli istotę nazistowskiego reżimu. W Polsce prasa, koła wojskowe i politycy zgodnie uprawiali propagandę w stylu „nie oddamy ani guzika”, co skończyło się klęską nie tylko militarną i polityczną, ale także klęską moralną – kraj był bowiem zupełnie nieprzygotowany do wojny i tysiące, może miliony ludzi, rzuciły się do panicznej i bezładnej ucieczki: jedni na wschód, inni na zachód. Dowódcy niemieccy zdumieni byli łatwością tego zwycięstwa, które po dwu tygodniach było już w zasadzie zupełne.

Dla Stanisława Ulama wojna oznaczała nie tylko lęk o najbliższych i przyjaciół pozostawionych w kraju, ale i obowiązek utrzymywania młodszego brata, który zaczął jesienią studia (z czasem został znanym sowietologiem). Znalezienie płatnej pracy akademickiej nie było łatwe, Ulam musiał zadowolić się uniwersytetem stanu Wisconsin w Madison. Po Harvardzie i Princeton nie było to wymarzonym rozwiązaniem, jednak uczelnia okazała się całkiem przyzwoita, Ulam zaprzyjaźnił się tam z wieloma wykładowcami, nie tylko zresztą z matematykami, ale i z fizykami, ekonomistami. Wygłosił kiedyś zaimprowizowany wykład na zjeździe astronomów (na temat wyboru układu odniesienia, w którym ruch ciał wygląda prościej – była to topologiczna wersja problemu kopernikańskiego). W tym okresie wielu wybitnych uczonych, zwłaszcza pochodzących z Europy, pracowało na mniejszych uczelniach, fala emigracji wywołała bowiem nadmiar szukających pracy akademików. W Madison pracował Eugene Wigner, fizyk i szkolny kolega von Neumanna, przyszły noblista. Na seminaria prowadzone przez Ulama przyjeżdżali do Madison matematycy tej klasy co André Weil, urodzony w Warszawie Samuel Eilenberg czy Paul Erdös, wszyscy oni stali się sławami światowego formatu. Erdös zaprzyjaźnił się z Ulamem i odwiedzał go czasami, rozmowy były jego ulubioną formą pracy matematycznej, z czasem opublikował wspólne prace z kilkuset innymi badaczami. Matematycy obliczają liczbę Erdösa: on sam ma liczbę zero; ci, którzy z nim pracowali, mają liczbę jeden; ci, którzy pracowali z posiadającymi liczbę jeden, mają liczbę dwa itd. Oczywiście, Ulam miał liczbę Erdösa równą jeden. Zabawa ta unaocznia, jak silną rolę odgrywa współpraca nawet w dziedzinie tak z pozoru indywidualnej jak matematyka (choć trzeba też dodać, że Erdös, podobnie jak Ulam, wyjątkowo lubił pracę w towarzystwie innych).

W 1941 roku Ulam otrzymał obywatelstwo amerykańskie i kiedy Stany Zjednoczone przystąpiły do wojny, chciał pracować na rzecz wojska. Dzięki rekomendacji von Neumanna trafił do Los Alamos i Projektu Manhattan jako jeden z niewielu matematyków. Spotkał tam i poznał osobiście wielu fizyków i chemików o głośnych nazwiskach, nigdy chyba w historii nie zgromadzono w jednym miejscu w pracy nad wspólnym projektem tak wielu wybitnych specjalistów. Wielu z nich było emigrantami, których dotychczasowe życie zburzył mniej lub bardziej nazizm. Wśród kierujących projektem byli dwaj znakomici fizycy jądrowi: Hans Bethe i Enrico Fermi. Pierwszy miał babkę Żydówkę, przez co stracił profesurę w Tybindze, drugi miał za żonę Żydówkę i w roku 1938 zmuszony był opuścić Włochy. Ulam obu uczonych bardzo szanował, lecz szczególny respekt budził w nim Fermi – ostatni chyba fizyk będący zarazem eksperymentatorem i teoretykiem. Nie rozstający się z suwakiem logarytmicznym Fermi, który umiał szybko obliczyć każdą potrzebną wielkość, miał też solidne przygotowanie matematyczne i okazało się, że zna np. pracę Oxtoby’ego i Ulama. Dzięki Projektowi Manhattan Stanisław Ulam zaczął pracować z fizykami i tak już miało zostać przez długie lata. Jego talent matematyczny niespodziewanie okazał się przydatny w zagadnieniach z pogranicza inżynierii. Taki przeskok z podstaw matematyki do zagadnień praktycznych byłby niewyobrażalny dla większości matematyków. Ulam trafił do grupy kierowanej przez Edwarda Tellera, jeszcze jednego emigranta z Węgier. Pierwszym zagadnieniem, którym się tam zajął, było oddziaływanie gazu elektronowego z promieniowaniem. Teller uzyskał z rozważań wymiarowych postać równania, chciał aby te rozważania uściślić. Ulam zaproponował własne dość elementarne rozwiązanie, z którego wynikało, że wzór Tellera trzeba uzupełnić współczynnikiem cztery. Niezadowolony Teller zlecił to samo zadanie komuś innemu, kto posługując się znacznie bardziej rozbudowanym aparatem matematycznym, uzyskał dla owego współczynnika liczbowego także wartość zbliżoną do czterech.

Ulam, Richard Feynman i John von Neumann w Los Alamos

Rodzaj talentu matematycznego Stanisława Ulama był nietypowy, jedyny w swoim rodzaju. Posiadał on dar formułowania problemów w sposób jak najprostszy, zachowując jedynie najistotniejsze ich cechy. Wyobrażał sobie przy tym zjawiska, a nie tylko równania, które je opisują. Łatwo też przychodziły mu oszacowania liczbowe, co w Los Alamos było niezwykle ważne – nie chodziło tam przecież o zrozumienie idealnej sytuacji laboratoryjnej, ale o skonstruowanie jak najefektywniejszej bomby. Należało więc wejść w świat rzeczywistych obiektów, kształtów, własności różnych materiałów, współwystępowania rozmaitych zjawisk. Zazwyczaj praca fizyków polega na czymś odwrotnym: szuka się najprostszych i „najczystszych” sytuacji, w których można zmierzyć dane zjawisko.

Po zakończeniu wojny i Projektu Manhattan Stanisław Ulam wrócił do pracy akademickiej. Został profesorem nadzwyczajnym na Uniwersytecie Południowej Kalifornii (USC). Uczelnia okazała się słaba, Los Angeles było miastem trudnym do mieszkania i poruszania się z powodu korków ulicznych. Pewnego dnia Ulam poważnie zachorował, zaczął mieć problemy z mówieniem. Przeprowadzono operację, otwierając czaszkę. Znaleziono ostry stan zapalny, który leczono nowymi wówczas antybiotykami, podawanymi bezpośrednio do wnętrza czaszki. Uczony po pewnym czasie doszedł do siebie, jednak z obawą myślał, czy po tym wszystkim jego umysł wróci do dawnej sprawności. Przekonał się o tym, kiedy odwiedził go Paul Erdös. Zagrali w szachy i Ulam wygrał. Zaczął podejrzewać, że może przyjaciel pozwolił mu wygrać dla podtrzymania go na duchu. Zagrali więc jeszcze raz. Uspokoił się dopiero, kiedy wygrał po raz drugi, a Erdös wyraźnie się tym zirytował.

Nie pozostał na USC długo, tym bardziej że po chorobie wpadł w długi. Otrzymał propozycję pracy w Los Alamos dla armii amerykańskiej. Wprawdzie sławni i wielcy po zakończeniu Projektu Manhattan rozjechali się po różnych ośrodkach, ale laboratorium w Los Alamos zostało i nieoczekiwanie dawało Ulamowi możliwość ciekawej i względnie niezależnej pracy. Problemy, nad którymi tam pracowano, były konkretne, co zdaniem Ulama bardzo się liczyło. Sądził on bowiem, że naprawdę ważne problemy wywodzą się z praktyki, a nie filozoficznych rozważań. Mógł dobierać sobie współpracowników, co było szczególnie ważne wobec jego metody pracy. Polegała ona na tym, że Ulam szkicował możliwości rozwiązania danego zagadnienia, a współpracownicy starali się te pomysły zrealizować. Niewykluczone, że przebyta choroba odebrała Ulamowi czysto techniczną sprawność dokonywania obliczeń czy prowadzenia jakiegoś długiego dowodu. Starał się tego po sobie nie pokazywać. Pozostała mu jednak wyobraźnia i umiejętność dostrzegania bez dowodu, czy twierdzenie jest prawdziwe, czy nie, i w jaki sposób można dążyć do wytyczonego celu. Toteż pracował przede wszystkim nad wytyczaniem kierunków i formułowaniem problemów – co w sumie jest może ważniejsze niż szczegółowe rozwiązania. Przypominał swoim stylem pracy pracującego po przeciwnej stronie Atlantyku Jakowa Zeldowicza.

Dzięki pracy dla armii Ulam należał do pionierów stosowania komputerów. Układając pewien trudny pasjans w okresie rekonwalescencji, zdał sobie sprawę, że bardzo trudno byłoby obliczyć, jakie jest prawdopodobieństwo ułożenia tego pasjansa, łatwo natomiast można by go było modelować za pomocą komputera, który mógłby przeprowadzić wiele prób, dzięki czemu można by empirycznie stwierdzić, jakie jest szukane prawdopodobieństwo. Rozwinięciem tej idei opracowanym we współpracy z von Neumannem i Nickiem Metropolisem są metody Monte Carlo (nazwa zaczerpnięta ze skojarzenia z wujem Ulama, który pożyczał od krewnych pieniądze i następnie przepuszczał je w Monte Carlo). Zamiast np. rozwiązywać równanie różniczkowe, opisujące dyfuzję neutronów z pewnego stanu początkowego, możemy prześledzić losy wielu neutronów i zobaczyć, jakie są charakterystyczne cechy ich rozkładu. Dla pięćdziesięciu cząstek startujących z punktu x=0 tory w błądzeniu przypadkowym mogą być np. takie jak na wykresie.

Po zebraniu pewnej statystyki można znaleźć kształt rozkładu końcowego. Im więcej wykonamy losowań, tym dokładniej będziemy znali rozkład cząstek po danym czasie.

Rozkład uzyskany w tym przypadku jest łatwy do obliczenia analitycznego (jest rozkładem normalnym). Wystarczy jednak nieco zmodyfikować zagadnienie: dodać dwa wymiary, różne kształty i materiały, a problem dyfuzji stanie się bardzo trudny do rozwiązania metodami analitycznymi, choć symulacja komputerowa nadal będzie stosunkowo prosta. Pionierzy tej metody musieli zaczynać kompletnie od zera, rozwiązując np. zagadnienie, jak komputer, który prowadzi obliczenia arytmetyczne na liczbach – a więc otrzymując zawsze ściśle określony i jednoznaczny wynik, może generować liczby losowe. Jak sprawić, aby liczby te podlegały określonemu prawu statystycznemu? Jak sprawdzać uzyskane wyniki itd itp. Metoda Monte Carlo używana jest dziś w wielu dziedzinach od fizyki do finansów i stała się zespołem wyspecjalizowanych praktyk.

Stanisław Ulam odegrał istotną rolę w projekcie bomby wodorowej. Była to idée fixe Tellera: zbudować bombę opartą na procesie syntezy lekkich pierwiastków w cięższe. W przyrodzie procesy takie odbywają się we wnętrzu gwiazd, gdzie panują ogromne temperatury i materia jest bardzo gęsta. Warunki tak ekstremalne potrzebne są do tego, by dodatnio naładowane jądra mogły zbliżyć się do siebie, pokonując odpychanie elektrostatyczne. Dopiero bowiem w odległościach rzędu 10^{-15} m możliwe jest przegrupowanie nukleonów, wskutek czego wyzwala się energia.

Synteza helu z dwóch izotopów wodoru: deuteru i trytu; bomby wykorzystują głównie deuter (rys. Wikipedia)

Warunki takie można by wytworzyć za pomocą wstępnego wybuchu zwykłej bomby atomowej. Edward Teller (jeszcze jeden żydowski emigrant z Węgier) pracował nad pomysłem „superbomby” już w trakcie Projektu Manhattan. Nie zrezygnował z niego także i później. W roku 1950 prezydent Harry Truman podjął decyzję o pracach nad superbombą. Okazało się jednak szybko, że początkowy pomysł Tellera nie nadaje się do realizacji. Udowodnił to Stanisław Ulam ze współpracownikami, potwierdziły zaś obliczenia Ulama i Enrico Fermiego. Także obliczenia komputerowe von Neumanna dawały ten sam wynik. Sytuacja stała się trudna dla Tellera, którego oskarżano, że nakłonił władze polityczne do decyzji, nie mając w ręku żadnej rozsądnej teorii działania superbomby. Koszt przedsięwzięcia był ogromny, rywalizacja z Rosją zawzięta, a więc i stawka projektu bardzo wysoka. Impas przełamał Stanisław Ulam, który zaproponował implozyjny mechanizm działania superbomby. Razem z Tellerem napisali raport, który stał się podstawą amerykańskiego projektu. Bomba została zbudowana, lecz stosunki miedzy Tellerem a Ulamem gwałtownie się oziębiły. Teller nie potrafił prawdopodobnie wybaczyć Ulamowi dwukrotnej porażki prestiżowej. Ulam natomiast uważał, że zainteresowani i tak wiedzą, ile kto jest wart.

Raport Tellera i Ulama został po latach odtajniony, lecz większość z kilkunastu jego stron jest kompletnie pusta. Armia amerykańska najwyraźniej uznała, że wciąż jest za wcześnie na publiczne informowanie o technologii bomb wodorowych. Może to być zresztą także przykład nadmiernej ostrożności wojskowych w kwestiach tajemnic, militarne znaczenie bomb wodorowych nie jest bowiem aż tak wielkie, jak sądzono na początku. Dalsze prace szły raczej nad zmniejszaniem siły rażenia, bo co po wygranej wojnie, skoro zwycięzcy zostaną w niej zabici powiedzmy dziesięć razy, a pokonani – dwadzieścia. Angielszczyzna ma na to zgrabne słówko: overkill (*).

Gian-Carlo Rota charakteryzuje Ulama następująco:

Dopiero po kilku latach zdałem sobie sprawę z tego, co jest prawdziwą profesją Stana Ulama. Wielu z nas, pracujących w Laboratorium i mających z nim styczność, wiedziało, jak bardzo nie lubi on zostawać sam, że wzywa nas o zaskakujących porach, by wybawić go od samotności hotelowego pokoju albo czterech ścian swego gabinetu, kiedy już skończył codzienną rundę rozmów międzymiastowych.

Pewnego dnia zebrałem się na odwagę i zapytałem, czemu stale potrzebuje towarzystwa; odpowiedź, jakiej udzielił była wielce znamienna. „Kiedy jestem sam – zwierzył się – zmuszony jestem przemyśleć różne rzeczy i widzę ich tak wiele, że wolę nie myśleć”. Ujrzałem go wtedy w prawdziwym świetle: ten człowiek, mający na koncie największą liczbę trafnych przypuszczeń w matematyce, który potrafi pokonać inżynierów na ich własnym polu, który w jednej chwili ocenia zdarzenia i ludzi, należy do niemal już doszczętnie wymarłej profesji proroków.

Z mężami Starego Testamentu i wyrocznią delficką dźwigał on ciężkie brzemię natychmiastowego widzenia. I jak wszyscy zawodowi prorocy cierpiał na coś, co Sigmund Freud nazwałby „kompleksem Proteusza”. Wielka szkoda, że wśród pacjentów Freuda nie było żadnych proroków.

W dawnych czasach ciemne orzeczenia Sybilli interpretowane były przez wyszkolonych specjalistów, tak zwanych hermeneutów, których zadaniem było przełożenie kryptycznych fraz na greckie zdania. W przypadku Ulama laboratorium w Los Alamos wynajmowało konsultantów, których zadaniem było wyrażenie jego kryptycznych komunikatów w popsutym żargonie współczesnej matematyki.

Stanisław Ulam zmarł niespodziewanie w wieku 75 lat na atak serca. Jak pisze Françoise Ulam:

mawiał, że „najlepszym rodzajem śmierci jest nagły atak serca lub zastrzelenie przez zazdrosnego męża”. Miał szczęście umrzeć w ten pierwszy sposób, choć myślę, że chyba wolałby ten drugi.

(*) Ulam komentował w roku 1965: „Mam wrażenie, iż to interesujące pojęcie, jakim jest overkill, przez lewicę atakowane jest z powodu marnotrawstwa – jako nieekonomiczne, podczas gdy skrajna prawica popiera je z przyczyn psychologicznych: gdyż daje im poczucie męskości, której brak odczuwają.”

Toczyła się wówczas debata, czy Stany Zjednoczone powinny zgodzić się na zakaz prób jądrowych. Ulam i Teller stali na odmiennych stanowiskach, ilustruje to rysunek Herblocka: „Mądry ojciec zna swoje dziecko”.

Stanisław Ulam (2/2)

Wciąż jest dla mnie źródłem nieustającego zdziwienia, że kilka znaków nagryzmolonych na tablicy lub na kartce papieru może zmienić bieg ludzkich spraw. [S. Ulam]

Każdego roku, od 1936 aż do 1939, Stanisław Ulam spędzał lato w Polsce. Spotykał się ze swoimi matematycznymi przyjaciółmi, w tym Banachem i Mazurem, we Lwowie albo gdzieś w okolicach, gdzie spędzali wakacje. Jego dorobek matematyczny obejmował szereg dziedzin: teorię mnogości, teorię miary i rachunek prawdopodobieństwa, teorię transformacji, teorię grup. Były to na ogół niewielkie prace rozwiązujące lub stawiające jakiś problem. Na uniwersytecie Harvarda we współpracy z Johnem Oxtobym Ulam napisał swoją najdłuższą pracę, opublikowaną następnie w „Annals of Mathematics”, wysoko cenionym piśmie wydawanym w Princeton. Praca dotyczyła teorii ergodycznej. W mechanice klasycznej każdy nietrywialny układ fizyczny wędruje po swojej przestrzeni stanów (in. przestrzeni fazowej) w taki sposób, że wraca kiedyś w sąsiedztwo każdego punktu już odwiedzonego. Fakt ten jest podstawą fizyki statystycznej, w której zakłada się, że wszystkie stany o określonej energii są jednakowo prawdopodobne. Praca Ulama i Oxtoby’ego dowodziła, że przekształcenia spełniające warunek ergodyczności są w pewnym sensie typowe. Uzyskany przez nich wynik nie mógł być wprost zastosowany do fizyki, ale tak jest bardzo często: ścisłe potwierdzenie intuicji fizyków zazwyczaj nie jest łatwe.

Stanisław Ulam łatwo przywykł do amerykańskiego życia i z przyjemnością wracał do niego po wakacjach. Latem 1939 roku zabrał ze sobą młodszego brata, Adama. Na statek w Gdyni odprowadzili ich ojciec i stryj. Widmo wojny wisiało nad Polską, choć, jak zauważył Ulam, zagrożenie to wyraźniej dostrzegano w Stanach Zjednoczonych niż w Polsce, gdzie do ostatniej chwili łudzono się nadziejami na jakiś zwrot dyplomatyczny w zaostrzającym się napięciu. Różnice w sposobie oceny wynikały zapewne nie tylko z dystansu Amerykanów. Do Stanów Zjednoczonych dotarło w ostatnich latach wielu uchodźców z Niemiec, którzy lepiej niż inni rozumieli istotę nazistowskiego reżimu. W Polsce prasa, koła wojskowe i politycy zgodnie uprawiali propagandę w stylu „nie oddamy ani guzika”, co skończyło się klęską nie tylko militarną i polityczną, ale także klęską moralną – kraj był bowiem zupełnie nieprzygotowany do wojny i tysiące, może miliony ludzi, rzuciły się do panicznej i bezładnej ucieczki: jedni na wschód, inni na zachód. Dowódcy niemieccy zdumieni byli łatwością tego zwycięstwa, które po dwu tygodniach było już w zasadzie zupełne.

Dla Stanisława Ulama wojna oznaczała nie tylko lęk o najbliższych i przyjaciół pozostawionych w kraju, ale i obowiązek utrzymywania młodszego brata, który zaczął jesienią studia (z czasem został znanym sowietologiem). Znalezienie płatnej pracy akademickiej nie było łatwe, Ulam musiał zadowolić się uniwersytetem stanu Wisconsin w Madison. Po Harvardzie i Princeton nie było to wymarzonym rozwiązaniem, jednak uczelnia okazała się całkiem przyzwoita, Ulam zaprzyjaźnił się tam z wieloma wykładowcami, nie tylko zresztą z matematykami, ale i z fizykami, ekonomistami. Wygłosił kiedyś zaimprowizowany wykład na zjeździe astronomów (na temat wyboru układu odniesienia, w którym ruch ciał wygląda prościej – była to topologiczna wersja problemu kopernikańskiego). W tym okresie wielu wybitnych uczonych, zwłaszcza pochodzących z Europy, pracowało na mniejszych uczelniach, fala emigracji wywołała bowiem nadmiar szukających pracy akademików. W Madison pracował Eugene Wigner, fizyk i szkolny kolega von Neumanna, przyszły noblista. Na seminaria prowadzone przez Ulama przyjeżdżali do Madison matematycy tej klasy co André Weil, urodzony w Warszawie Samuel Eilenberg czy Paul Erdös, wszyscy oni stali się sławami światowego formatu. Erdös zaprzyjaźnił się z Ulamem i odwiedzał go czasami, rozmowy były jego ulubioną formą pracy matematycznej, z czasem opublikował wspólne prace z kilkuset innymi badaczami. Matematycy obliczają liczbę Erdösa: on sam ma liczbę zero; ci, którzy z nim pracowali, mają liczbę jeden; ci, którzy pracowali z posiadającymi liczbę jeden, mają liczbę dwa itd. Oczywiście, Ulam miał liczbę Erdösa równą jeden. Zabawa ta unaocznia, jak silną rolę odgrywa współpraca nawet w dziedzinie tak z pozoru indywidualnej jak matematyka (choć trzeba też dodać, że Erdös, podobnie jak Ulam, wyjątkowo lubił pracę w towarzystwie innych).

W 1941 roku Ulam otrzymał obywatelstwo amerykańskie i kiedy Stany Zjednoczone przystąpiły do wojny, chciał pracować na rzecz wojska. Dzięki rekomendacji von Neumanna trafił do Los Alamos i Projektu Manhattan jako jeden z niewielu matematyków. Spotkał tam i poznał osobiście wielu fizyków i chemików o głośnych nazwiskach, nigdy chyba w historii nie zgromadzono w jednym miejscu w pracy nad wspólnym projektem tak wielu wybitnych specjalistów. Wielu z nich było emigrantami, których dotychczasowe życie zburzył mniej lub bardziej nazizm. Wśród kierujących projektem byli dwaj znakomici fizycy jądrowi: Hans Bethe i Enrico Fermi. Pierwszy miał babkę Żydówkę, przez co stracił profesurę w Tybindze, drugi miał za żonę Żydówkę i w roku 1938 zmuszony był opuścić Włochy. Ulam obu uczonych bardzo szanował, lecz szczególny respekt budził w nim Fermi – ostatni chyba fizyk będący zarazem eksperymentatorem i teoretykiem. Nie rozstający się z suwakiem logarytmicznym Fermi, który umiał szybko obliczyć każdą potrzebną wielkość, miał też solidne przygotowanie matematyczne i okazało się, że zna np. pracę Oxtoby’ego i Ulama. Dzięki Projektowi Manhattan Stanisław Ulam zaczął pracować z fizykami i tak już miało zostać przez długie lata. Jego talent matematyczny niespodziewanie okazał się przydatny w zagadnieniach z pogranicza inżynierii. Taki przeskok z podstaw matematyki do zagadnień praktycznych byłby niewyobrażalny dla większości matematyków. Ulam trafił do grupy kierowanej przez Edwarda Tellera, jeszcze jednego emigranta z Węgier. Pierwszym zagadnieniem, którym się tam zajął, było oddziaływanie gazu elektronowego z promieniowaniem. Teller uzyskał z rozważań wymiarowych postać równania, chciał aby te rozważania uściślić. Ulam zaproponował własne dość elementarne rozwiązanie, z którego wynikało, że wzór Tellera trzeba uzupełnić współczynnikiem cztery. Niezadowolony Teller zlecił to samo zadanie komuś innemu, kto posługując się znacznie bardziej rozbudowanym aparatem matematycznym, uzyskał dla owego współczynnika liczbowego także wartość zbliżoną do czterech.

Ulam, Richard Feynman i John von Neumann w Los Alamos

Rodzaj talentu matematycznego Stanisława Ulama był nietypowy, jedyny w swoim rodzaju. Posiadał on dar formułowania problemów w sposób jak najprostszy, zachowując jedynie najistotniejsze ich cechy. Wyobrażał sobie przy tym zjawiska, a nie tylko równania, które je opisują. Łatwo też przychodziły mu oszacowania liczbowe, co w Los Alamos było niezwykle ważne – nie chodziło tam przecież o zrozumienie idealnej sytuacji laboratoryjnej, ale o skonstruowanie jak najefektywniejszej bomby. Należało więc wejść w świat rzeczywistych obiektów, kształtów, własności różnych materiałów, współwystępowania rozmaitych zjawisk. Zazwyczaj praca fizyków polega na czymś odwrotnym: szuka się najprostszych i „najczystszych” sytuacji, w których można zmierzyć dane zjawisko.

Po zakończeniu wojny i Projektu Manhattan Stanisław Ulam wrócił do pracy akademickiej. Został profesorem nadzwyczajnym na Uniwersytecie Południowej Kalifornii (USC). Uczelnia okazała się słaba, Los Angeles było miastem trudnym do mieszkania i poruszania się z powodu korków ulicznych. Pewnego dnia Ulam poważnie zachorował, zaczął mieć problemy z mówieniem. Przeprowadzono operację, otwierając czaszkę. Znaleziono ostry stan zapalny, który leczono nowymi wówczas antybiotykami, podawanymi bezpośrednio do wnętrza czaszki. Uczony po pewnym czasie doszedł do siebie, jednak z obawą myślał, czy po tym wszystkim jego umysł wróci do dawnej sprawności. Przekonał się o tym, kiedy odwiedził go Paul Erdös. Zagrali w szachy i Ulam wygrał. Zaczął podejrzewać, że może przyjaciel pozwolił mu wygrać dla podtrzymania go na duchu. Zagrali więc jeszcze raz. Uspokoił się dopiero, kiedy wygrał po raz drugi, a Erdös wyraźnie się tym zirytował.

Nie pozostał na USC długo, tym bardziej że po chorobie wpadł w długi. Otrzymał propozycję pracy w Los Alamos dla armii amerykańskiej. Wprawdzie sławni i wielcy po zakończeniu Projektu Manhattan rozjechali się po różnych ośrodkach, ale laboratorium w Los Alamos zostało i nieoczekiwanie dawało Ulamowi możliwość ciekawej i względnie niezależnej pracy. Problemy, nad którymi tam pracowano, były konkretne, co zdaniem Ulama bardzo się liczyło. Sądził on bowiem, że naprawdę ważne problemy wywodzą się z praktyki, a nie filozoficznych rozważań. Mógł dobierać sobie współpracowników, co było szczególnie ważne wobec jego metody pracy. Polegała ona na tym, że Ulam szkicował możliwości rozwiązania danego zagadnienia, a współpracownicy starali się te pomysły zrealizować. Niewykluczone, że przebyta choroba odebrała Ulamowi czysto techniczną sprawność dokonywania obliczeń czy prowadzenia jakiegoś długiego dowodu. Starał się tego po sobie nie pokazywać. Pozostała mu jednak wyobraźnia i umiejętność dostrzegania bez dowodu, czy twierdzenie jest prawdziwe, czy nie, i w jaki sposób można dążyć do wytyczonego celu. Toteż pracował przede wszystkim nad wytyczaniem kierunków i formułowaniem problemów – co w sumie jest może ważniejsze niż szczegółowe rozwiązania. Przypominał swoim stylem pracy pracującego po przeciwnej stronie Atlantyku Jakowa Zeldowicza.

Dzięki pracy dla armii Ulam należał do pionierów stosowania komputerów. Układając pewien trudny pasjans w okresie rekonwalescencji, zdał sobie sprawę, że bardzo trudno byłoby obliczyć, jakie jest prawdopodobieństwo ułożenia tego pasjansa, łatwo natomiast można by go było modelować za pomocą komputera, który mógłby przeprowadzić wiele prób, dzięki czemu można by empirycznie stwierdzić, jakie jest szukane prawdopodobieństwo. Rozwinięciem tej idei opracowanym we współpracy z von Neumannem i Nickiem Metropolisem są metody Monte Carlo (nazwa zaczerpnięta ze skojarzenia z wujem Ulama, który pożyczał od krewnych pieniądze i następnie przepuszczał je w Monte Carlo). Zamiast np. rozwiązywać równanie różniczkowe, opisujące dyfuzję neutronów z pewnego stanu początkowego, możemy prześledzić losy wielu neutronów i zobaczyć, jakie są charakterystyczne cechy ich rozkładu. Dla pięćdziesięciu cząstek startujących z punktu x=0 tory w błądzeniu przypadkowym mogą być np. takie jak na wykresie.

Po zebraniu pewnej statystyki można znaleźć kształt rozkładu końcowego. Im więcej wykonamy losowań, tym dokładniej będziemy znali rozkład cząstek po danym czasie.

Rozkład uzyskany w tym przypadku jest łatwy do obliczenia analitycznego (jest rozkładem normalnym). Wystarczy jednak nieco zmodyfikować zagadnienie: dodać dwa wymiary, różne kształty i materiały, a problem dyfuzji stanie się bardzo trudny do rozwiązania metodami analitycznymi, choć symulacja komputerowa nadal będzie stosunkowo prosta. Pionierzy tej metody musieli zaczynać kompletnie od zera, rozwiązując np. zagadnienie, jak komputer, który prowadzi obliczenia arytmetyczne na liczbach – a więc otrzymując zawsze ściśle określony i jednoznaczny wynik, może generować liczby losowe. Jak sprawić, aby liczby te podlegały określonemu prawu statystycznemu? Jak sprawdzać uzyskane wyniki itd itp. Metoda Monte Carlo używana jest dziś w wielu dziedzinach od fizyki do finansów i stała się zespołem wyspecjalizowanych praktyk.

Stanisław Ulam odegrał istotną rolę w projekcie bomby wodorowej. Była to idée fixe Tellera: zbudować bombę opartą na procesie syntezy lekkich pierwiastków w cięższe. W przyrodzie procesy takie odbywają się we wnętrzu gwiazd, gdzie panują ogromne temperatury i materia jest bardzo gęsta. Warunki tak ekstremalne potrzebne są do tego, by dodatnio naładowane jądra mogły zbliżyć się do siebie, pokonując odpychanie elektrostatyczne. Dopiero bowiem w odległościach rzędu 10^{-15} m możliwe jest przegrupowanie nukleonów, wskutek czego wyzwala się energia.

Synteza helu z dwóch izotopów wodoru: deuteru i trytu; bomby wykorzystują głównie deuter (rys. Wikipedia)

Warunki takie można by wytworzyć za pomocą wstępnego wybuchu zwykłej bomby atomowej. Edward Teller (jeszcze jeden żydowski emigrant z Węgier) pracował nad pomysłem „superbomby” już w trakcie Projektu Manhattan. Nie zrezygnował z niego także i później. W roku 1950 prezydent Harry Truman podjął decyzję o pracach nad superbombą. Okazało się jednak szybko, że początkowy pomysł Tellera nie nadaje się do realizacji. Udowodnił to Stanisław Ulam ze współpracownikami, potwierdziły zaś obliczenia Ulama i Enrico Fermiego. Także obliczenia komputerowe von Neumanna dawały ten sam wynik. Sytuacja stała się trudna dla Tellera, którego oskarżano, że nakłonił władze polityczne do decyzji, nie mając w ręku żadnej rozsądnej teorii działania superbomby. Koszt przedsięwzięcia był ogromny, rywalizacja z Rosją zawzięta, a więc i stawka projektu bardzo wysoka. Impas przełamał Stanisław Ulam, który zaproponował implozyjny mechanizm działania superbomby. Razem z Tellerem napisali raport, który stał się podstawą amerykańskiego projektu. Bomba została zbudowana, lecz stosunki miedzy Tellerem a Ulamem gwałtownie się oziębiły. Teller nie potrafił prawdopodobnie wybaczyć Ulamowi dwukrotnej porażki prestiżowej. Ulam natomiast uważał, że zainteresowani i tak wiedzą, ile kto jest wart.

Raport Tellera i Ulama został po latach odtajniony, lecz większość z kilkunastu jego stron jest kompletnie pusta. Armia amerykańska najwyraźniej uznała, że wciąż jest za wcześnie na publiczne informowanie o technologii bomb wodorowych. Może to być zresztą także przykład nadmiernej ostrożności wojskowych w kwestiach tajemnic, militarne znaczenie bomb wodorowych nie jest bowiem aż tak wielkie, jak sądzono na początku. Dalsze prace szły raczej nad zmniejszaniem siły rażenia, bo co po wygranej wojnie, skoro zwycięzcy zostaną w niej zabici powiedzmy dziesięć razy, a pokonani – dwadzieścia. Angielszczyzna ma na to zgrabne słówko: overkill (*).

Gian-Carlo Rota charakteryzuje Ulama następująco:

Dopiero po kilku latach zdałem sobie sprawę z tego, co jest prawdziwą profesją Stana Ulama. Wielu z nas, pracujących w Laboratorium i mających z nim styczność, wiedziało, jak bardzo nie lubi on zostawać sam, że wzywa nas o zaskakujących porach, by wybawić go od samotności hotelowego pokoju albo czterech ścian swego gabinetu, kiedy już skończył codzienną rundę rozmów międzymiastowych.

Pewnego dnia zebrałem się na odwagę i zapytałem, czemu stale potrzebuje towarzystwa; odpowiedź, jakiej udzielił była wielce znamienna. „Kiedy jestem sam – zwierzył się – zmuszony jestem przemyśleć różne rzeczy i widzę ich tak wiele, że wolę nie myśleć”. Ujrzałem go wtedy w prawdziwym świetle: ten człowiek, mający na koncie największą liczbę trafnych przypuszczeń w matematyce, który potrafi pokonać inżynierów na ich własnym polu, który w jednej chwili ocenia zdarzenia i ludzi, należy do niemal już doszczętnie wymarłej profesji proroków.

Z mężami Starego Testamentu i wyrocznią delficką dźwigał on ciężkie brzemię natychmiastowego widzenia. I jak wszyscy zawodowi prorocy cierpiał na coś, co Sigmund Freud nazwałby „kompleksem Proteusza”. Wielka szkoda, że wśród pacjentów Freuda nie było żadnych proroków.

W dawnych czasach ciemne orzeczenia Sybilli interpretowane były przez wyszkolonych specjalistów, tak zwanych hermeneutów, których zadaniem było przełożenie kryptycznych fraz na greckie zdania. W przypadku Ulama laboratorium w Los Alamos wynajmowało konsultantów, których zadaniem było wyrażenie jego kryptycznych komunikatów w popsutym żargonie współczesnej matematyki.

Stanisław Ulam zmarł niespodziewanie w wieku 75 lat na atak serca. Jak pisze Françoise Ulam:

mawiał, że „najlepszym rodzajem śmierci jest nagły atak serca lub zastrzelenie przez zazdrosnego męża”. Miał szczęście umrzeć w ten pierwszy sposób, choć myślę, że chyba wolałby ten drugi.

(*) Ulam komentował w roku 1965: „Mam wrażenie, iż to interesujące pojęcie, jakim jest overkill, przez lewicę atakowane jest z powodu marnotrawstwa – jako nieekonomiczne, podczas gdy skrajna prawica popiera je z przyczyn psychologicznych: gdyż daje im poczucie męskości, której brak odczuwają.”

Toczyła się wówczas debata, czy Stany Zjednoczone powinny zgodzić się na zakaz prób jądrowych. Ulam i Teller stali na odmiennych stanowiskach, ilustruje to rysunek Herblocka: „Mądry ojciec zna swoje własne dziecko”.

Kto zamawiał cząstkę Higgsa? Dość krótka historia Modelu Standardowego

Tytuł nawiązuje do powiedzenia jednego z wybitnych eksperymentatorów, I. I. Rabiego, który na wieść o odkryciu kolejnej nowej cząstki (chodziło o mion) jęknął: „Kto to zamawiał?” Przez długi czas wydawało się, że nie sposób ułożyć w sensowną całość kolekcji znanych cząstek. Przypominało to chemię przed odkryciem układu okresowego. Spróbuję przedstawić logikę rozwoju teorii cząstek i wyjaśnić, czemu fizycy tak bardzo ekscytują się możliwością odkrycia cząstki Higgsa.

Pierwsze cząstki

Najwcześniej, bo pod koniec XIX wieku, odkryto elektrony: naładowane ujemnie, dwa tysiące razy lżejsze od atomu wodoru. Następnie stwierdzono, że każdy atom ma jądro złożone z protonów i neutronów. Te dwa rodzaje cząstek odpowiadają za większą część masy atomów, a więc i nas samych. Wszystkie cząstki naładowane przyciągają się bądź odpychają, wytwarzając pole elektromagnetyczne. Kwantowo oznacza to, że potrzebujemy jeszcze jednego rodzaju cząstek: fotonów, kwantów pola elektromagnetycznego. Szczególną cechą oddziaływań elektromagnetycznych jest ich długi zasięg: siła maleje odwrotnie proporcjonalnie do kwadratu odległości (znane ze szkoły prawo Coulomba). Innym przykładem tak wolno malejących sił jest grawitacja i dlatego (nieodkryte dotąd) kwanty pola grawitacyjnego – grawitony – pod pewnymi względami powinny przypominać fotony. Problem grawitacji kwantowej nie został jednak dotąd rozwiązany i nie będziemy o nim mówić.

Oddziaływania

Dość szybko się wyjaśniło, że wyliczone wyżej cząstki nie wystarczają do opisu świata. Przede wszystkim oprócz sił elektromagnetycznych i grawitacyjnych muszą istnieć jakieś inne rodzaje oddziaływań. Dodatnio naładowane protony znajdują się bardzo blisko siebie w jądrze atomowym, a więc silnie się odpychają, a mimo to jądra są stabilne – fakt niesłychanie ważny, bo my sami składamy się z takich stabilnych jąder. Musi więc istnieć jakieś oddziaływanie sklejające protony i neutrony i musi ono być „silne”, aby pokonać odpychanie elektryczne. Nazwano je po prostu oddziaływaniem silnym. Nie wyczerpuje to listy oddziaływań: wiadomo, że niektóre jądra atomowe rozpadają się samorzutnie i przekształcają na inne lżejsze. Jest to zjawisko promieniotwórczości badane m.in. przez Marię Skłodowską-Curie. Oddziaływania związane z rozpadami są dużo słabsze, niż te dotąd opisywane, dlatego zyskały niezbyt pomysłową nazwę oddziaływań słabych. Ostatecznie mamy więc w przyrodzie cztery rodzaje oddziaływań: silne, elektromagnetyczne, słabe i grawitacyjne. Model Standardowy zajmuje się pierwszymi trzema. Jest jednolitą teorią cząstek i oddziaływań, stworzoną w latach sześćdziesiątych i siedemdziesiątych XX wieku.

Bozony i fermiony

Wszystkie cząstki w przyrodzie dzielą się na fermiony i bozony (od uczonych: Fermiego i Bosego). Pamiętamy, jak w komedii Moliera Mieszczanin szlachcicem pan Jourdain dowiedział się ze zdumieniem, że całe życie mówił prozą: bo co nie jest wierszem, jest prozą. Podobnie w fizyce: każda cząstka należy do jednej z wymienionych wyżej kategorii. Fermionami są elektrony, protony i neutrony – podstawowe składniki „zwykłej” materii. Mają one wszystkie tę cechę, że unikają się wzajemnie: np. elektrony w atomie nie mogą zajmować tego samego stanu, stąd powłoki elektronowe, co z kolei określa własności chemiczne danego pierwiastka. Bozonem jest natomiast foton. Bozony nie unikają się wzajemnie, dlatego można wytworzyć silną wiązkę światła za pomocą lasera. Oddziaływania są przenoszone przez bozony.

Elektrodynamika kwantowa

Elektrodynamika kwantowa jest kwantową teorią oddziaływań elektromagnetycznych. Jest jedną z najdokładniejszych teorii fizyki. Każdy elektron oprócz ładunku elektrycznego ma także moment magnetyczny (w namagnesowanym kawałku żelaza te momenty magnetyczne, które można sobie wyobrażać jako małe strzałki, ustawione są równolegle do siebie). Elektrodynamika kwantowa pozwala obliczyć wielkość momentu magnetycznego elektronu i wartość ta zgadza się z wynikami pomiarów z imponującą dokładnością kilkunastu cyfr znaczących. Co ważniejsze, teoria ta pozwala rozumieć, co się dzieje w różnych sytuacjach.

Czy warto szukać ogólnej teorii wszystkiego?

Fizycy dążą zawsze do zastąpienia wielu teorii jedną ogólniejszą. W ten sposób w XIX w. powstała klasyczna teoria elektromagnetyzmu, łącząc optykę, elektryczność i magnetyzm w jedną wspólną dziedzinę opisywaną kilkoma równaniami. Ten pęd ku uogólnieniom nie wynika jedynie z ambicji teoretyków: każdy kolejny szczebel oznacza ogarnięcie szerszego zakresu zjawisk i zrozumienie nowych aspektów świata. Bez klasycznej teorii elektromagnetyzmu nie odkryto by zapewne np. fal elektromagnetycznych – nie trzeba przekonywać, że nasza cywilizacja byłaby niemożliwa bez systemów łączności, telewizji, telefonów komórkowych czy sieci bezprzewodowych. Abstrakcyjne równania teorii mają więc zawsze istotne konsekwencje, również praktyczne – jak dzieje się zawsze, gdy uda nam się coś prawidłowo zrozumieć.

Trudności z oddziaływaniami słabymi

Oddziaływania słabe wydawały się naturalnym obszarem do uogólnienia elektrodynamiki. Są „słabe”, więc obliczenia powinny być łatwiejsze. Oddziaływania te w odróżnieniu od elektromagnetycznych mają jednak bardzo krótki zasięg, mniejszy od rozmiarów jądra atomowego. Jeśli oddziaływania mają niewielki zasięg, to należy oczekiwać, że przenoszące je cząstki, tzw. bozony W i Z, powinny mieć dużą masę.

Fotony są wyjątkowe: zawsze poruszają się z prędkością światła, nie można zaobserwować spoczywającego fotonu, mówi się w takich sytuacjach, że cząstka ma zerową masę (jest bezmasowa). Foton ma zerową masę. Bozony W i Z są pod tym względem zupełnie zwyczajne, mogą się poruszać z dowolną prędkością (mniejszą od prędkości światła) albo spoczywać.

Z wyjątkowością fotonu związany jest też inny, wyjątkowy fakt: fotony występują w dwóch stanach polaryzacyjnych, mogą być prawoskrętne albo lewoskrętne. W języku fizyki klasycznej mówi się o polaryzacji światła. Ponieważ w przypadku fal elektromagnetycznych wektor pola jest zawsze prostopadły do kierunku rozchodzenia się fali, możliwe są dwie niezależne polaryzacje.

Skoro bozony przenoszące oddziaływania słabe nie są bezmasowe, to powinny występować nie w dwóch, lecz w trzech stanach polaryzacyjnych. Jednak kiedy próbowano konstruować teorie, w których zakłada się od początku, że cząstki W i Z mają masę, modele takie okazywały się matematycznie wadliwe (w żargonie: nierenormalizowalne). Wydawało się, że sukcesu elektrodynamiki nie da się powtórzyć.

Spontaniczne łamanie symetrii

Chodzi o sytuację, w której symetria jest ukryta. Przykładem może być magnetyzm kawałka żelaza. Momenty magnetyczne w magnesie („strzałki”) mają najmniejszą energię, gdy ułożone są w tym samym kierunku co sąsiedzi. W wysokich temperaturach, gdy każda strzałka dysponuje dużą energią, jej ułożenie może być niemal dowolne. Gdy ogólna energia strzałek maleje, a wraz z nią temperatura, następuje coraz większe porządkowanie się strzałek. Wreszcie, w dostatecznie niskiej temperaturze, wszystkie wybierają jakiś jeden wspólny kierunek. Kierunek ten jest zupełnie dowolny. Strzałki mogły ustawiać się w każdym kierunku, w równaniach, które opisują ich zachowanie wszystkie kierunki są równouprawnione. Jednak namagnesowanie próbki ma jakiś jeden konkretny kierunek. Patrząc na taką próbkę, widzimy kierunek wyróżniony. Symetria obrotowa naszego układu jest tu ukryta albo spontanicznie złamana.

Z teoretycznego punktu widzenia jest to sytuacja atrakcyjna, ponieważ im bardziej symetryczne równania, tym większa nadzieja na ich rozwiązanie. Okazuje się także często, że bardziej symetryczne, elegantsze równania lepiej opisują rzeczywistość.

Meksykański kapelusz

Teoretycy sporo czasu spędzają na analizowaniu różnych przykładów, które są swoistymi eksperymentami myślowymi: wiadomo z góry, że nie będzie to opis rzeczywistego świata, warto jednak prześledzić konsekwencje jakichś założeń. Takim modelem może być np. pole skalarne, opisywane jedną liczbą w każdym punkcie przestrzeni. W najprostszej sytuacji możemy sobie wyobrazić, że pole jest wszędzie takie same. Energię można wówczas wykreślić w funkcji wartości pola. Wygląda to następująco:

Mamy dołek energii. Przy pewnej wartości pola energia osiąga minimum. Zakrzywienie wokół tego minimum informuje o masie: im bardziej strome są zbocza, tym większa masa cząstki kwantowej. Cząstka taka byłaby bozonem.
Można też przeanalizować bardziej skomplikowaną sytuację. Wyobraźmy sobie, że pole jest scharakteryzowane parą liczb, jego wartość można teraz przedstawić jako punkt na płaszczyźnie. Wykreślając energię jako wysokość nad płaszczyzną otrzymamy pewną powierzchnię. Ciekawe rezultaty uzyskuje się biorąc powierzchnię energii o kształcie przypominającym meksykańskie sombrero.

Punkty o najniższej energii leżą teraz na okręgu: każdy z tych punktów jest równie dobrym stanem o najniższej energii. Kapelusz ma oś symetrii, ale wybór dowolnego punktu na dnie kapelusza będzie oznaczał złamanie tej symetrii obrotowej. Załóżmy, że któryś z punktów został wybrany. Jeśli przesuniemy się w kierunku do środka albo na zewnątrz, będziemy musieli wspiąć się na zbocze powierzchni energii – a to oznacza, że odpowiednie cząstki kwantowe będą miały masę (tak jak w poprzednim przykładzie). Teraz jednak możemy także poruszać się wzdłuż doliny, co nie wymaga energii – kwantowo odpowiada to cząstkom o zerowej masie. Tak więc w przypadku meksykańskiego kapelusza z dwuskładnikowego pola dostajemy dwa rodzaje cząstek: jedne obdarzone masą, drugie bezmasowe. Ta pierwsza cząstka jest prototypem cząstki Higgsa, okazuje się, że także i ta druga jest niezbędna.

Higgs i inni

Do przedstawionego przed chwilą modelu można dołączyć coś, co wygląda na pole elektromagnetyczne. To dodatkowe pole, tak jak w przypadku fotonów, powinno mieć tylko dwie polaryzacje. Jednakże w połączeniu z cząstkami z meksykańskiego kapelusza staje się ono trójskładnikowe i zachowuje się tak, jakby miało masę. Otrzymujemy w ten sposób zamiast fotonów masywne bozony przenoszące oddziaływania, mimo że w wyjściowych równaniach nie było żadnej masy. Cud polega na swego rodzaju wchłonięciu cząstek bezmasowych z meksykańskiego kapelusza – od nich pochodzi trzecia brakująca polaryzacja. Po przegrupowaniu całości zostaje nam jeszcze jedna cząstka z meksykańskiego kapelusza, ta masywna. Jest to właśnie cząstka Higgsa.

Podsumowując: równania teorii wyglądają tak, jakby nasze cząstki nie miały masy, jednak dzięki mechanizmowi meksykańskiego kapelusza zarówno bozon Higgsa, jak i bozon pośredniczący uzyskują masę.

Wyniki te uzyskali w roku 1964 Peter Higgs, a także François Englert, Robert Brout, G. S. Guralnik, C. R. Hagen i T. W. B. Kibble (kłopot dla Komitetu Noblowskiego, nagrodę wolno przyznawać najwyżej trzem uczonym).

Praca Stevena Weinberga z 1967 roku

W zasadzie istniał więc w 1964 r. sposób, aby uzyskać masywne bozony pośredniczące, czyli to, co było potrzebne, by oddziaływania słabe i elektromagnetyczne połączyć w jedną teorię. Rzecz nie była jednak oczywista, opisany mechanizm Higgsa został zastosowany do prawdziwego świata dopiero trzy lata później przez Stevena Weinberga. Niezależnie pracowali nad tym problemem Abdus Salam i Sheldon Glashow, wszyscy trzej otrzymali nagrodę Nobla w 1979 roku.

Wydaje się, że z początku sami autorzy tej teorii nie byli pewni, czy jest ona prawdziwa. Praca Weinberga, która z czasem stała się najczęściej cytowaną pracą z fizyki, przez kilka lat nie była w ogóle dostrzegana, i to mimo faktu, że autor publikował już od dekady i nie był bynajmniej outsiderem. Główny kłopot polegał na tym, że nie było jasne, czy model tego rodzaju, choć formalnie podobny do elektrodynamiki kwantowej, jest dobrze określony w sensie matematycznym – czy jest renormalizowalny. Bez ustalenia tego faktu nie można było twierdzić, że mamy prawdziwą teorię. Weinberg wyraził w swym artykule silną nadzieję, że tak jest, ale nie potrafił tego wykazać. Przez kilka lat nikomu nie udawało się pokonać trudności matematycznych. Dokonali tego dopiero Martinus Veltman i Gerard ‚t Hooft w 1974 roku (otrzymali za to nagrodę Nobla w 1999 roku). Dopiero wtedy nastąpił przełom, widoczny też w liczbie cytowań pracy Weinberga. Do oddziaływań elektromagnetycznych i słabych dołączono wkrótce także i silne, ale to już inna opowieść.

Epilog: Cząstka Higgsa?

Mówiliśmy dotąd o tym, jak uzyskać bozony W i Z, nie psując teorii. Okazuje się, że za pośrednictwem pola Higgsa uzyskać można także masy fermionów. Nie dotyczy to nukleonów, które są zbudowane z kwarków za pomocą oddziaływań silnych. Ale np. elektrony nie oddziałują silnie i bez Higgsa nie miałyby masy. Jest to więc cząstka niezbędna do tego, aby cała skomplikowana konstrukcja Modelu Standardowego się nie rozsypała. Okazało się też, że warto mieć w pewnych sytuacjach krótkie anglosaskie nazwisko, najlepiej jednosylabowe – wszyscy mówią o cząstkach i mechanizmie Higgsa, zapominając o pozostałych odkrywcach.

Przez lata nagromadzono wiele danych wskazujących na sensowność tego modelu teoretycznego, zaczęto nawet nazywać go Modelem Standardowym. Dopiero teraz jednak eksperymentatorzy będą mogli przyjrzeć się bezpośrednio samej cząstce Higgsa. Latem 2012 doniesiono o odkryciu bozonu, który może okazać się poszukiwaną cząstką. Trzeba poczekać na dalsze doniesienia z CERN-u, nikt ich w tym nie ubiegnie, ponieważ nie ma na świecie drugiego takiego urządzenia.

Istnieje też sporo różnych uogólnień Modelu Standardowego, być może zaczniemy się dowiadywać, które z nich odpowiadają rzeczywistości. Niewykluczone, że sytuacja jest bardziej złożona, niż wynikałoby z najprostszej wersji Modelu Standardowego. Tak czy inaczej docieramy do podstawowych założeń całej fizyki cząstek, a więc w pewnym sensie i fizyki w ogóle. Każde rozstrzygnięcie w tym obszarze warte jest nie jednej, lecz wielu nagród Nobla i może sprawić, że zmieni się treść podręczników fizyki.