Galileo Galilei, Dialog o dwu najważniejszych układach świata, 1632 (2/2)

Galileuszowy Dialog rozgrywa się w pałacu Sagreda w Wenecji, dokąd przybywają na dyskusję Filippo Salviati i Simplicio (pedanterią byłoby w tym miejscu wytykanie autorowi, że Sagredo i Salviati nigdy się nie spotkali). Ich wymiana myśli odbywa się więc nie później niż w roku 1614, kiedy obaj przyjaciele uczonego jeszcze żyli, a więc przed ogłoszeniem dekretu Kongregacji Indeksu w sprawie Kopernika, w czasie gdy swobodna dyskusja była jeszcze możliwa. Rozmowy podzielone są na cztery kolejne dni i nie zawsze trzymają się ściśle wyznaczonego tematu. Przydaje to Dialogowi naturalności, a autorowi stwarza okazję, aby zatrącić o pewne kwestie, nie trzymając się zawsze ustalonego porządku. Ten pozorny chaos Galileuszowych dyskusji był zamierzony, choć niektórzy czytelnicy czuli się z tego powodu zagubieni. Osobisty ton rozważań miał do odegrania niezwykle ważną rolę: czytelnik uświadamia sobie, że zwolennicy nowej kosmologii nie są jakimiś ignorantami czy szaleńcami, wręcz przeciwnie: znają większość tradycyjnej nauki i argumentów geocentrycznych, lecz odrzucają je po dojrzałym namyśle. Salviati jest Simpliciem, który nauczył się matematyki, przemyślał swoje poglądy i opanował wiele nowych idei. Sagredo, mając do wyboru argumenty tradycjonalistów i nowe idee, przychyla się z reguły do tych nowych, nie dlatego wszakże, że są nowe, lecz dlatego, że lepiej objaśniają świat, kiedy im się przyjrzeć bez uprzedzeń. Największą wartością Dialogu był właśnie pewien eksperyment poznawczy: wyobrażenie sobie świata na wzór kopernikański i rozważenie różnych tego konsekwencji. Okazuje się, że nie tylko można być zwolennikiem Kopernika, nie tracąc zdrowego rozsądku, ale że nie sposób już być konsekwentnym zwolennikiem Ptolemeusza. Galileusz sprowadził rozważania do ostrej dychotomii: albo Ptolemeusz, albo Kopernik. Pominął całkiem układ Tychona, choć można twierdzić, że z jego punktu widzenia rozwiązanie Tychona nic nie wnosiło, zajmował się bowiem głównie pytaniem, czy Ziemia jest planetą i się porusza, a w tej kwestii duński astronom był równie konserwatywny jak starożytni Grecy.

Giovanni Francesco Sagredo (Ashmolean Museum)

Pierwszy dzień rozmów poświęcony jest tematowi jedności materii we wszechświecie. Wedle Arystotelesa niebiosa zbudowane są z eteru, takie też stanowisko obowiązywało w zasadzie jezuitów, choć, jak pamiętamy, ich największy teolog, Bellarmin, prywatnie uważał, że niebiosa mogą być z ognia. Tak czy inaczej, zwolennicy tradycji nie chcieli żadną miarą uznać, aby Ziemia miała w czymś przypominać ciała niebieskie. Galileusz przede wszystkim pokazuje, że powszechnie znane i nauczane na uniwersytetach argumenty Arystotelesa są nic niewarte. Poprawia zresztą greckiego filozofa z upodobaniem niemal w każdej sprawie. Gdy Simplicio, który jest skarbnicą książkowych mądrości, przytacza opinię Arystotelesa, że ciała mają trzy wymiary: długość, szerokość i głębokość, gdyż liczba trzy jest doskonała, Salviati zauważa natychmiast, że nie ma czegoś takiego jak doskonałość sama przez się, gdyż doskonałość służy zawsze jakiemuś celowi: zwierzęta np. mają parę nóg albo cztery nogi, a nigdy trzy. Co do geometrii, proponuje inny sposób podejścia. Można bowiem z dowolnego punktu wytyczyć trzy wzajemnie prostopadłe proste. Simplicio nie całkiem rozumie, czemu akurat trzy – winę ponosi tu jego brak edukacji matematycznej. Galileusz nie wiedział, że mogą istnieć geometrie wielowymiarowe, ale jego podejście zadowoliłoby współczesnego fizyka: wymiar przestrzeni należy do faktów empirycznych i określamy go sprawdzając, jaki rodzaj geometrii stosuje się do przestrzeni. I oczywiście doskonałość liczby trzy nie ma tu nic do rzeczy.

U Arystotelesa kierunki do góry i w dół miały sens absolutny i związane były z elementami ognia i powietrza – naturalnie wznoszącymi się w górę, oraz wody i ziemi – naturalnie spadającymi w dół. Z eterem związany był ruch kolisty – co objaśniać miało wieczność i niezmienność świata nadksiężycowego. Galileusz kwestionuje te rozumowania, zawierające jako założenie to, czego się dopiero chce dowieść. „Wszystko to wygląda tak, jakby celem Arystotelesa było przemieszanie nam kart w ręku i dostosowanie planu architektonicznego do świata już zbudowanego, a nie budowanie świata wedle wskazań architektury. Jeżeli bowiem oświadczę, że we wszechświecie istnieć mogą tysiące ruchów kołowych, a co za tym idzie, tysiące ośrodków, to otrzymamy też wówczas tysiące ruchów w górę i w dół” – stwierdza Sagredo. Uczony rozmontowuje i unieszkodliwia krok po kroku całą arystotelesowską machinę argumentów, stanowiącą wówczas podstawową wiedzę, jaką wynosiło się z uniwersytetów. Trudno sobie wyobrazić, aby zadania tego podjął się ktoś przepełniony respektem dla instytucji akademickich. Galileusz nie mógł zniszczyć tradycyjnej kosmologii w sposób łagodny, operacja ta musiała też wywoływać reakcje obronne u tych, którzy wychowali się w arystotelesowskiej wierze. Nie doceniamy dziś siły tamtej tradycji i Dialog nie wywołuje już u nas wstrząsu intelektualnego, wtedy jednak chodziło o zakwestionowanie całego systemu wyjaśniania i wyobrażania sobie świata.

W niektórych założeniach Galileusz nie odbiega jednak od Arystotelesa: obaj uważali świat za doskonale uporządkowaną całość – po grecku „kosmos”. W kosmosie Arystotelesa ruchy prostoliniowe ograniczone były do bezpośredniego sąsiedztwa Ziemi, dlatego ruch prostoliniowy i naturalny musiał mieć początek i koniec. Także Galileusz wzdraga się przed ruchem prostoliniowym: „W dodatku zważmy, że ruch po linii prostej z natury swojej jest nieskończony, gdyż sama linia prosta jest nieskończona i nieokreślona. Jest więc niepodobieństwem, by coś ruchomego miało z przyrodzenia swego właściwość poruszania się po linii prostej, to jest do celu, którego nie sposób osiągnąć, ponieważ nie posiada on kresu. Jak zresztą sam Arystoteles bardzo słusznie zaznacza, przyroda nie nakreśla sobie zadań, które nie mogą być osiągnięte, i nie zwykła jest zmierzać tam, dokąd dojść nie można”. Widzimy, że droga do sformułowania I zasady dynamiki była jeszcze długa – Isaac Newton urodził się w roku śmierci Galileusza.

Chcąc, aby kosmos był uporządkowany, Galileusz zakłada w nim istnienie ruchów kołowych. W odróżnieniu od Arystotelesa uważa, że nie potrzebują one jednak żadnego poruszyciela, mogą trwać niezakłócone w nieskończoność. By wyjaśnić początek układu planetarnego, odwołuje się do swej hipotezy, w myśl której Stwórca wypuścił na początku planety z jednego punktu i spadały one ku Słońcu ruchem przyspieszonym aż do chwili, gdy każda osiągnęła przepisaną odległość od Słońca. Wówczas ich ruch zmienił kierunek na obiegowy, ale wartości ich prędkości się nie zmieniła. Kosmogonia w wydaniu Galileusza przypomina nieco jego własne eksperymenty, w których zmieniał on kierunek prędkości – np. po stoczeniu się kulki z równi pochyłej na płaski stół – i obserwował, że jej wartość pozostaje taka sama. Uczony traktował te spekulacje jako pewne uzupełnienie Platońskiego Timajosa, gdzie opowiedziana jest historia o zbudowaniu świata przez demiurga. Wyniki jego obliczeń zdawały się zgodne z danymi na temat planet. Matematyk Wielkiego Księcia nie mówił o siłach i ciężkości, tym bardziej ciężkości powszechnej, jego mechanika była kinematyką. Hipoteza kosmogoniczna Galileusza była później rozważana z całą powagą przez Isaaca Newtona, który zauważył, że grawitacja Słońca musiałaby zostać podwojona w chwili zmiany kierunku prędkości.

Sagredo pyta, czy prędkość nie mogłaby zostać nadana planecie w sposób skokowy, po co to spadanie i przechodzenie kolejnych prędkości? „Ja nie powiedziałem i nie śmiałbym twierdzić, że dla natury i Boga byłoby niemożliwe nadanie takiej, jak mówicie, prędkości, i to natychmiast. Twierdzę jedynie, że de facto natura tego nie czyni. Takie rozwiązanie stałoby poza naturalnym biegiem rzeczy, a więc należałoby do dziedziny cudów” – odpowiada Salviati. Galileusz podkreśla, że nie ogranicza w ten sposób boskiej wszechmocy, bada jedynie świat taki, jaki dany jest nam w doświadczeniu, tak a nie inaczej stworzony. Koronny zarzut wobec niego będzie oparty na niezrozumieniu natury działalności naukowej. Florentyńczyk czuł się badaczem kosmosu już stworzonego, zupełnie nie interesowały go pytania o atrybuty samego Stwórcy. Rozważając choćby niezobowiązująco, jak mógł powstać układ planetarny, ryzykował oskarżenie, że wkracza na teren zastrzeżony dla Księgi Rodzaju. Spekulacje na temat puszczenia w ruch machiny kosmicznej prowadził zresztą także Kartezjusz, katolik z pewnością nie mniej liczący się z głosem Kościoła niż Galileusz. W miarę poznawania praw ruchu nieuniknione były tego rodzaju spekulacje, zaglądające niejako Stwórcy przez ramię.

Rozumowania Arystotelesa nie miały wartości: „Ani Arystoteles, ani wy sami nigdy nie będziecie w stanie dowieść, że Ziemia de facto znajduje się w środku wszechświata. A jeżeli może być mowa o określeniu jakiegoś środka wszechświata, to okaże się, że raczej Słońce może być w nim umieszczone”. W trakcie dalszych rozważań Galileusz podkreśla, że nie sposób ustalić, czy wszechświat w ogóle ma jakiś środek. Słońce jest środkiem ruchu planet, nie znaczy to jednak wcale, że musi być zarazem środkiem całego wszechświata. Urzędowi czytelnicy ze Świętego Oficjum nie zwrócili bądź woleli nie zwracać uwagi na te stwierdzenia Dialogu i przypisano Galileuszowi pogląd, że Słońce jest w środku świata. Jeśli ani Ziemia, ani Słońce nie były środkiem, to pozostawała wizja Bruna i Kartezjusza: nieskończonego wszechświata z nieskończoną mnogością „środków” w postaci gwiazd okrążanych przez planety.

Kosmos Galileusza nie musi być niezmienny. Podobnie jak Ziemia nie byłaby doskonalsza, gdyby „była cała jednym rozległym piaszczystym pustkowiem czy kulą z jaspisu, czy też gdyby w czasie potopu zamarzły pokrywające ją wody, a ona stała się olbrzymim globem zlodowaciałym; gdyby na niej nic się nie rodziło, nic nie przeobrażało i nie zmieniało (…) Im bardziej zagłębiam się w niedorzeczność rozpowszechnionych pojęć, tym bardziej stają się one dla mnie lekkomyślne i bezsensowne. Czyż można sobie wyobrazić większą głupotę aniżeli nazywanie rzadkich kamieni, srebra i złota kosztownościami – a ziemi i błota marnościami? I jakże tym ludziom nie przychodzi tu na myśl, że jeśliby ziemia należała do takich rzadkości jak klejnoty i najcenniejsze metale, to nie znalazłby się książę, który by nie poświęcił worka diamentów i rubinów oraz czterech wozów złota, by mieć przynajmniej garść ziemi, wystarczającą do posadzenia w małym wazoniku jaśminu czy zasiania pomarańczy chińskiej, aby przyglądać się, jak wschodzi, rośnie, okrywa się pięknymi liśćmi, pachnącymi kwiatami, wdzięcznymi owocami. (…) Ci, którzy egzaltują się niezniszczalnością, niezmiennością itd., dochodzą, jak sądzę, do wypowiadania podobnych stwierdzeń jedynie dlatego, że w obawie przed śmiercią pragną przetrwać jak najdłużej”. Dla Galileusza Ziemia – taka, jaka jest – nie jest niedoskonała. Wcale nie przeszkadza mu myśl, że podobne do niej mogą być inne ciała niebieskie. Przekonanie, że cały kosmos ma służyć jedynie Ziemi i jej mieszkańcom, wkłada w usta Simplicia: „Dla wygody człowieka rodzą się konie, dla żywienia koni ziemia wydaje trawę, a obłoki dostarczają jej wody. Dla wygody i wyżywienia ludzi rodzą się trawy, zboża, owoce, zwierzęta, ptaki, ryby, i w ogóle, jeśli starannie zbadamy i zgłębimy wszystkie te rzeczy, dojdziemy do wniosku, że cel, ku któremu wszystko to zmierza, to potrzeba, pożytek, wygoda i przyjemność człowieka. A jaki pożytek mogłyby mieć dla rodzaju ludzkiego płody powstające na Księżycu czy na innej planecie? Bo chyba nie chcielibyście mnie przekonywać, że na Księżycu są również ludzie, korzystający z rodzących się na nim owoców; myśl taka bądź trąci bajką, bądź jest bezbożna”. Z argumentami tego rodzaju spotykał się Galileusz nie raz. Odpowiada, że nie wydaje mu się prawdopodobne, by na Księżycu byli ludzie, ale to jeszcze wcale nie oznacza, że nie może tam być żadnych zmian. Naszą wyobraźnię kształtują doświadczenia; ktoś, kto mieszkałby w lesie i nie znał żadnych zbiorników wodnych, nie potrafiłby sobie wyobrazić ryb ani statków przepływających oceany. Wrażliwość Galileusza jest raczej panteistyczna niż antropocentryczna: różnorodność i porządek w naturze są dla niego źródłem zachwytu, Stwórca w jego pojęciu nie ograniczył się tylko do zapewnienia bytu ludziom, lecz stworzył naturę godną podziwu i badania dla niej samej.

Simplicio opisuje swym rozmówcom Księżyc i wychodzi mu z rozumowań, że musi on być zrobiony ze szczególnie twardej i nieprzenikliwej materii. „Jakżeż piękny byłby ten materiał niebieski do budowania pałaców, jeśliby można było nabyć coś równie twardego i przezroczystego” – wzdycha Sagredo, po czym obaj z Salviatim zastanawiają się, czy mieszkańcy obijaliby się o te niewidzialne ściany, czy też nie – biorąc pod uwagę, że materia niebios jest także niedotykalna. Galileusz przedstawia argumenty za tym, że także Ziemia widziana z daleka byłaby podobna do Księżyca. Charakterystyczna jest jednak ostrożność, z jaką uczony przedstawia wnioski dotyczące tak odległych światów, jak dalekie planety – ostrożność ta bardzo kontrastuje z beztroską pewnością siebie wszystkich Simpliciów, z którymi przychodziło mu się stykać. Galileusz cały czas podkreśla, że rozumiemy bardzo niewiele. Wprowadza tu rozróżnienie poznania ekstensywnego i intensywnego. W sensie ekstensywnym zawsze skazani jesteśmy na znajomość drobnego ułamka tego, co jest we wszechświecie. „Ale biorąc pod uwagę drogę intensywną – o ile pojęcie intensywności oznacza intensywne, a więc doskonałe zrozumienie – umysł ludzki poznaje, zdaniem moim, niektóre zagadnienia tak doskonale i z taką absolutną pewnością, jaką posiada tylko przyroda. Takimi są właśnie czyste nauki matematyczne, a więc geometria i arytmetyka – w których rozum boży zna nieskończenie większą liczbę prawd – gdyż zna je wszystkie – jednak z tych niewielu znanych rozumowi ludzkiemu mieści się, według mnie, poznanie równe bożemu w obiektywnej pewności, gdyż dochodzi do zrozumienia zawartej w nich konieczności – a nie może chyba istnieć większa pewność aniżeli właśnie ta”. Ta piękna intuicja platońska stała się jednym więcej kamieniem obrazy dla sędziów uczonego. Warto zwrócić uwagę, że podobne przekonania nie były wyłączną własnością Galileusza: tak samo myśleli Kepler i Kartezjusz, i większość tych, którzy w XVII wieku stworzyli nowożytną naukę.

Dzień drugi Dialogu poświęcony jest kwestii ruchu obrotowego Ziemi wokół osi. Galileusz przytacza (ustami Sagreda) charakterystyczną anegdotę: „Byłem pewnego dnia w domu bardzo szanowanego w Wenecji lekarza. Jedni odwiedzali go ze względu na swoje studia, a inni przez ciekawość, by zobaczyć sekcję, przeprowadzaną ręką tego równie uczonego, jak sumiennego i zręcznego anatoma. Tego dnia właśnie zdarzyło się, że poszukiwał on miejsca, skąd biorą początek nerwy, na temat których toczy się sławny spór między lekarzami-galenistami i perypatetykami. Anatom pokazał, jak wielki pęk nerwów, wychodząc z mózgu i idąc przez potylicę, schodzi wzdłuż stosu pacierzowego, rozgałęziając się na całe ciało, tak że jedno tylko włókno, cieniutkie jak nić, dochodzi do serca. Zwracając się następnie do pewnego szlachcica, którego znał jako filozofa-perypatetyka i gwoli którego ze szczególną dokładnością odsłonił i zademonstrował to wszystko, zapytał go, czy mu to wystarcza i czy nabrał pewności, że nerwy biorą początek w mózgu, a nie w sercu, na co ów filozof po krótkim namyśle odpowiedział: «Pokazaliście mi to wszystko w sposób tak jasny i dotykalny, że gdyby tekst Arystotelesa, według którego nerwy powstają w sercu, nie był z tym sprzeczny, to musiałbym siłą rzeczy uznać wasze twierdzenie za prawdę»”. Galileusz uwielbiał dworować z niesamodzielności intelektualnej zwolenników Arystotelesa, którzy uznawali greckiego filozofa za wyrocznię we wszystkich sprawach, choć po części rozumiał, skąd się to bierze. Simplicio tłumaczy, że pisma Arystotelesa tworzą wspaniały, skomplikowany gmach i trzeba znać je wszystkie, by rozumieć właściwie ich treść. Rzeczywiście gmach wiedzy zbudowany, czy raczej nadbudowany, przez średniowiecze nad naukami Greka mógł imponować i stwarzać wrażenie ostatecznej prawdy. W czasach Galileusza tacy filozofowie, jak Borro czy Cremonini, przez całe życie nie zajmowali się niczym innym jak komentowaniem tego korpusu wiedzy i dociekaniem, co Filozof naprawdę miał na myśli. Ludzie o takim nastawieniu, nawet słysząc o wynalazku teleskopu, potrafili znaleźć ustęp u Arystotelesa, gdzie się o nim wspomina. Oczywiście Sagredo i Salviati bawią się, przywołując anegdoty tego rodzaju. Także astrologia i alchemia traktowane są niezbyt serio: „W podobny sposób alchemicy, pod wpływem uporczywego maniactwa, utrzymują, że wszystkie najwznioślejsze umysły świata zajęte były jedynie opisywaniem sposobów wytwarzania złota (…) Jest rzeczą nadzwyczaj zabawną rozczytywanie się w ich komentarzach do poetów antycznych, u których dopatrują się największych tajemnic ukrytych pod osłoną baśni: co oznaczały miłostki bogini Księżyca i jej zejście na ziemię w pogoni za Endymionem, jej gniew na Akteona, przemiana Jowisza raz w złoty deszcz – to znów w palące się płomienie”. Czytając takie fragmenty, zaczynamy się zastanawiać, jak bardzo wiarygodne były dla Galileusza opisy cudów chrześcijańskich, czy jeśli w ogóle traktował je serio, to nie sądził, że należałoby je odrzeć z otoczki zbyt naiwnych stwierdzeń. Jak się zdaje, niedługo przed Dialogiem uczony napisał jakiś traktat poświęcony naturalistycznym wyjaśnieniom cudów, który się jednak nie zachował.

Wśród argumentów przemawiających za wirowaniem Ziemi był i ten, że łatwiej wyobrazić sobie nieruchomy wszechświat z niewielką wirującą Ziemią niż odwrotnie. Sagredo mówi: „Uważałbym tego, kto mniema, że słuszniej jest kazać poruszać się całemu światu, byle tylko utrzymać w bezruchu Ziemię, za mniej rozsądnego od kogoś, kto wzniósłby się na szczyt waszej kopuły (*) tylko po to, by spojrzeć na miasto wraz z otaczającymi je osiedlami, i domagał się, by cała okolica obracała się dokoła niego, byleby on nie ponosił trudu obracania głowy”. Simplicio widzi jednak sytuację inaczej: „O ile jednak chodzi o potęgę Tego, który wszystko wprawia w ruch – a przecież jest ona nieskończona – to nie mniej Mu łatwo poruszyć wszechświat aniżeli Ziemię czy słomkę. A skoro ta potęga jest nieskończona, to dlaczego nie miałaby raczej objawiać się większa jej część aniżeli mniejsza?”

Standardowy argument przemawiający za nieruchomością Ziemi był taki, że gdyby ona wirowała ciało swobodnie upuszczone ze szczytu wieży musiałoby spaść daleko na zachód od jej podnóża. Odmianami tego argumentu były doświadczenia z armatami: strzelając pionowo w górę, powinniśmy zaobserwować podobny efekt przesuwania się Ziemi pod pociskiem, który musiałby spaść daleko od miejsca wystrzału. Długości strzałów na wschód i na zachód powinny się różnić od siebie. „Jaka szkoda, że artyleria nie istniała za czasów Arystotelesa. Przy jej pomocy pokonałby on niewiedzę i mówił bez żadnego wahania o sprawach wszechświata” – stwierdza sarkastycznie Sagredo. Galileusz szczegółowo analizuje takie sytuacje, wykazując, że ruch Ziemi nie wpływa na obserwowany przebieg zjawisk.

Od czasu do czasu broniący wciąż stanowiska kopernikańskiego Salviati czuje się w obowiązku przypomnieć, że jest to jedynie jego rola w Dialogu, a nie wewnętrzne przekonanie. Ale zarówno zwolennicy, jak przeciwnicy Kopernika (i Galileusza) uznali, że gra toczy się bardziej serio, niż twierdziły persony Dialogu.

Badanie konsekwencji względności ruchu zajęło dużą część rozważań tego dnia. Pojawia się tam także dość osobliwy fragment, w którym Galileusz stara się spojrzeć na spadek swobodny na obracającej się Ziemi z punktu widzenia kogoś, kto się nie obraca razem z nią. Prędkość wirowania Ziemi udzieli się wówczas spadającemu ciału i jego tor będzie jakąś linią krzywą. Jaką konkretnie krzywą? Łukiem okręgu kończącym się w środku Ziemi – odpowiada Salviati. Sam Galileusz mówił o tym fragmencie bizzarrìa – czyli fantazja, i rzeczywiście koncepcja jest osobliwa (i nieprawdziwa). Dyskusje na takie wydumane tematy, jak tor spadku do środka Ziemi, miały już swoją tradycję i posunęły naprzód rozumienie fizyki ruchu; słynna wymiana listów na ten temat miała odbyć się w przyszłości między Robertem Hookiem a Isaakiem Newtonem i stała się ważnym bodźcem dla profesora z Cambridge.

Innym argumentem przeciwko ruchowi obrotowemu Ziemi był brak obserwowanej siły odśrodkowej. Galileusz stara się wykazać, że taka siła w ogóle w przypadku Ziemi nie występuje. Idzie tu zbyt daleko. Trzydzieści lat później Isaac Newton, nieznany wtedy jeszcze nikomu, czytając Dialog, obliczy wartość tej siły i udowodni, że jest ona wprawdzie znacznie mniejsza od siły ciążenia, ale różna od zera.

Dzieło Galileusza stanowiło raczej początek, wstęp do dalszych badań. Autor, wykazując cierpliwie, skutecznie i konsekwentnie, że Arystoteles nic nie wiedział o ruchu, działał na współczesnych mu konserwatystów zaiste jak artyleria.

Na celowniku uczonego znalazła się antykopernikańska książeczka Lochera, ucznia Christopha Scheinera, prawdopodobnie ich wspólne dzieło.

Spiralne spadanie ciał na obracającą się Ziemię ze sfery Księżyca. Trwa sześć dni (Johann Georg Locher, Disquisitiones mathematicae, de controversiis et novitatibus astronomicis, Ingolstadt 1614). Oś obrotu Ziemi νλ jest na rysunku pozioma; spadek kuli z punktu A nad równikiem odbywa się po spirali, która prostopadle przecina rysunek aż do punktu B. Linia przerywana zaczynająca się w γ jest torem kuli spadającej znad miejsca na Ziemi położonego w umiarkowanej szerokości geograficznej (tak jak Ingolstadt). Jezuici wyobrażali sobie, że cała sfera Księżyca musiałaby u Kopernika wirować w ciągu doby.

SAGREDO: Ach, jakież piękne rysunki, co za ptaki, co za kule – a co to za inne piękne rzeczy?

SIMPLICIO: To kule, które przybywają ze sfery księżycowej.

SAGREDO: A to, cóż to takiego?

SIMPLICIO: To małża, z gatunku tych, które u nas w Wenecji nazywają buovoli. I ona też przybywa ze sfery księżycowej.

SAGREDO: Tak jest istotnie. Oto dlaczego Księżyc wywiera tak wielki wpływ na pewne stwory morskie z gatunku ostrygowatych.

Otóż autorzy ci, chcąc zdyskredytować ideę ruchu Ziemi, postarali się wykonać pewne obliczenia: ile mil na godzinę przebywa punkt na równiku, a ile na innych równoleżnikach, a także jaką drogę przebędzie w ciągu minuty, a nawet sekundy. Cel propagandowy tych obliczeń był oczywisty: prędkość wirowania Ziemi jest porównywalna z prędkością dźwięku, a więc wydaje się ogromna nawet i dziś. Chodziło o to, by idea ruchu Ziemi wydała się absurdalna. Autorzy następnie wyobrażają sobie spadek kuli armatniej ze sfery Księżyca, co miałoby, ich zdaniem, trwać sześć dni.

„Otóż, jeśliby wszechmocą boską czy też za sprawą jakiegoś anioła cudownie została przeniesiona tam, wysoko, wielka kula armatnia, umieszczona w naszym zenicie i puszczona stamtąd swobodnie, to wówczas, zdaniem autora i moim – mówi Simplicio – byłoby rzeczą najbardziej niewiarygodną, by spadając w dół, utrzymywała się zawsze na linii naszego pionu, w ciągu tylu dni zachowując wciąż wraz z Ziemią ruch obrotowy naokoło jej środka, zakreślając na równiku linię spiralną w płaszczyźnie tego największego koła, podczas gdy na równoleżnikach zakreślałaby linie spiralne naokoło stożków, a na biegunach spadałaby po zwykłej linii prostej”. Salviati pyta o założenia dotyczące spadku ze sfery Księżyca na Ziemię. Jezuici wyobrażali sobie, że spadanie takie byłoby jednostajne, w dodatku popełnili prosty błąd obliczeniowy: skoro cała sfera Księżyca obraca się raz na dobę, to spadanie z taką prędkością do centrum powinno zająć 2π razy krócej, czyli mniej niż 4 godziny, a nie sześć dni. Już lepiej z geometrią radzą sobie bednarze – zauważa Salviati. Przy okazji przedstawia prawo spadku przyspieszonego: „Studiowałem wszystkie te sprawy z największą radością i zachwytem, widząc, że powstaje cała nowa dziedzina wiedzy. Dotyczy ona spraw, o których napisano już setki tomów, a żadne z nieskończenie wielu cudownych odkryć, które obejmuje, nie zostało zauważone i zrozumiane przez nikogo wcześniej, aż dopiero przez naszego przyjaciela [tj. Galileusza – J.K.]”. Galileusz oblicza, jak długo spadałaby kula z wysokości Księżyca, jeśli wiadomo, że z wysokości stu łokci spada w ciągu pięciu sekund. Oczywiście z punktu widzenia uczonego nie ma powodu, aby spadek następował po jakiejś linii spiralnej. Prawo spadku swobodnego i własności ruchu przyspieszonego po raz pierwszy pojawiają się tu w druku. Było to odkrycie rzeczywiście ogromnej wagi – jeszcze jedno z odkryć prowadzących w stronę mechaniki Newtona.

Prawo odkryte przez Galileusza stosować się miało do wszystkich ciał, bez rozróżnienia lekkich i ciężkich, inaczej niż u Arystotelesa, który ruch wiązał z naturą danego ciała. „Jeżeli wymienione tu rzeczy są z natury swej różne, a rzeczy z natury różne nie mogą mieć wspólnego ruchu, to należałoby (…) pomyśleć o czymś innym, aniżeli tylko o dwóch ruchach, w górę i w dół. Jeśli trzeba wynaleźć jeden ruch dla strzał, inny dla ślimaków, jeszcze inny dla kamieni – jakiś inny jeszcze dla ryb, to trzeba by pomyśleć również o dżdżownicach, topazach i grzybkach, które z przyrodzenia swego nie różnią się mniej jedne od drugich aniżeli grad i śnieg”. Książeczka Lochera i Scheinera zostaje wykpiona na wielu stronach, Galileusz zasłużenie traktuje ją jak stek głupstw. Bo też jezuiccy autorzy, gromadząc swe argumenty, nie próbowali w ogóle zrozumieć stanowiska strony kopernikańskiej. Straszyli katastrofami, jakie miałyby wynikać z ruchu Ziemi, nie zastanawiając się nad tym, że gdyby naprawdę teoria kopernikańska była taka łatwa do obalenia, to jej zwolennikami nie byliby najwybitniejsi uczeni epoki, Kepler i Galileusz. Istniała realna trudność przestawienia wyobraźni na kopernikanizm, nawet Galileusz miał z tym czasami kłopoty, było to dla ludzi tej epoki zadaniem trudnym. Ale istniał też opór przed kopernikanizmem wynikający ze złej nauki i złej naukowej wiary.

Następnym omawianym autorem jest Scipione Chiaramonti. „Gdybym nie miał nadziei, że od tego drugiego autora usłyszę coś mądrzejszego, to niewiem, czy nie zdecydowałbym się raczej na przejażdżkę gondolą w poszukiwaniu świeżości” – stwierdza bez ogródek Sagredo. Galileusz udowadnia, że Chiaramonti nie zna teorii, którą zawzięcie krytykuje. Tenże autor wystąpił też niefortunnie w sprawie odległości gwiazdy nowej obserwowanej przez Tychona, dowodząc, że z pewnością leży ona poniżej Księżyca.

Rozważania te należały już do dnia trzeciego Dialogu. Był on poświęcony ruchowi rocznemu Ziemi. Arystoteles dowodził, że gwiazdy zajmują obszar sferyczny i obracają się raz na dobę wokół Ziemi – z tego powodu uważał wszechświat za skończony. Jeśli jednak odrzucić jego założenie, przyjąć ruch dobowy Ziemi i zgodzić się na nieruchome gwiazdy, to znika powód, by uważać świat za skończony. Równie dobrze może on być nieskończony i nie mieć żadnego kształtu.

Obserwacje wskazują, że planety mają swój środek ruchu w Słońcu – w tym punkcie zgodni byli Tycho Brahe i Kopernik. Pozostaje więc do rozstrzygnięcia, czy Słońce, czy raczej Ziemia poruszają się ruchem rocznym. Zdaniem Salviatiego-Galileusza więcej przemawia za nieruchomym Słońcem. Oprócz dawniej już znanych argumentów przedstawił on nowy, wywodzący się z obserwacji plam słonecznych. Ich przesuwanie pokazuje, że Słońce wiruje wokół osi. Okazuje się jednak, że w różnych porach roku tory plam na tle tarczy słonecznej mają różny kształt. W czerwcu i grudniu są prostoliniowe i tworzą ustalony kąt z ekliptyką, w marcu i wrześniu natomiast mają kształt łuków. Najprostsze wyjaśnienie zjawiska daje teoria Kopernika: oś Słońca ma stałe nachylenie do płaszczyzny orbity Ziemi i w ciągu roku oglądamy raz nieco więcej południowej półkuli Słońca, raz nieco więcej jego półkuli północnej. Nie potrzeba już żadnych innych ruchów, aby objaśnić to, co się obserwuje. Dla Galileusza takie wirowanie wokół osi nie wymagało podtrzymywania. Podobnie rzecz się ma z Ziemią: jej oś obrotu nachylona jest do płaszczyzny orbity – czego skutkiem są zmiany pór roku. Kopernik, aby zachować stałość kierunku osi ziemskiej, przyjmował jeszcze dodatkowy trzeci ruch Ziemi, Galileusz go nie potrzebował.

W Dialogu Galileusz twierdzi, że odkrył nachylenie osi Słońca do ekliptyki prowadząc obserwacje z willi Le Selve, a więc przed rokiem 1614. Wydaje się to mało prawdopodobne; dokładne obserwacje plam i ich ruchu pojawiły się w monumentalnej książce Christopha Scheinera Rosa Ursina, która ujrzała światło dzienne w czasie, gdy Galileusz pisał Dialog. Dopiero w 1629 roku dostrzegł kopernikańskie wyjaśnienie zjawiska i zamieścił w książce. Znowu okazało się, że herkulesowe trudy Scheinera zaowocowały zgrabnym argumentem przeciwko Ptolemeuszowemu układowi świata. Oczywiście można wyjaśnić każde zjawisko równie dobrze w ziemskim układzie odniesienia, trzeba jednak przypisać wtedy Słońcu wiele ruchów zamiast jednego ruchu obrotowego. Z kopernikańskiego punktu widzenia wszystko układało się w konsystentną całość: wszystkie ruchy obrotowe i obiegowe zachodzą bowiem w jednym kierunku i nie potrzeba z każdym nowo odkrytym zjawiskiem dopisywać wciąż jakichś nowych ruchów.

Co do osobistej uczciwości Galileusza, nie ma twardych dowodów, że korzystał on z obserwacji Scheinera, pewne jest natomiast, iż ponownie dostrzegł on więcej niż jezuicki astronom, który poświęcił znaczną część swego dzieła na jałowy z natury (choć pasjonujący dla uczestników) spór o pierwszeństwo odkrycia plam na Słońcu. Trudno oprzeć się wrażeniu, że mnogość i dokładność obserwacji, jakkolwiek potrzebne, ważne są tylko wtedy, gdy pozwalają nam coś więcej zrozumieć ze sposobu funkcjonowania świata. Jeden koń arabski pobiegnie szybciej niż sto koni fryzyjskich.

W dniu trzecim Dialogu Galileusz wraca też do książeczki Lochera i przytacza inne jeszcze wnioski, do których – wedle jezuity – prowadzić miał kopernikanizm: „W tak fantastycznym układzie świata trzeba głosić różne kapitalne bzdury, na przykład takie, że Słońce, Wenus i Merkury znajdują się pod Ziemią, że materie ciężkie ruchem naturalnym poruszają się ku górze, a lekkie w dół; że Chrystus, nasz Pan i Zbawiciel, wstąpił do piekieł i zstąpił na niebiosa, gdy zbliżał się ku Słońcu; że gdy Jozue rozkazał Słońcu, by się zatrzymało, to Ziemia się zatrzymała, bądź też Słoń-

ce poruszać się zaczęło w kierunku przeciwnym do Ziemi; że gdy Słońce jest w znaku Raka, to Ziemia biegnie przez Koziorożca, że zimowe znaki zodiaku wywołują lato, a letnie zimę; że nie gwiazdy wschodzą i zachodzą dla Ziemi, lecz Ziemia wschodzi i zachodzi dla gwiazd; że wschód zaczyna się na zachodzie, a zachód na wschodzie i że jednym słowem, wywraca się cały porządek świata”.

Najsłabszą częścią Dialogu jest dzień czwarty, mający w zamyśle autora dostarczyć najsilniejszego argumentu za ruchem Ziemi. Tym argumentem jest istnienie pływów na morzach. Simplicio odnosi się do pomysłu sceptycznie:

„SIMPLICIO: Powiem jednakże z tą swobodą, która wśród nas jest dozwolona, że wprowadzanie tu ruchu Ziemi i robienie go przyczyną przypływu i odpływu w nie mniejszej mierze wydaje mi się pomysłem z bajki niż wszystkie inne, o których dotąd słyszałem; a gdyby mi nie podano innych wyjaśnień, bardziej odpowiadających prawom przyrody, to bez obawy powziąłbym przeświadczenie, że ma się tu do czynienia ze zjawiskiem nadprzyrodzonym, a więc cudownym i niedostępnym dla umysłów ludzkich, jak zresztą i nieskończona liczba innych zjawisk, zależnych bezpośrednio od wszechmogącej ręki Boga.

SALVIATI: (…) wśród wszystkich przyczyn, które przytoczone były dotychczas jako prawdziwe, żadna, jakiekolwiek byśmy stosowali zabiegi, nie byłaby w stanie wyjaśnić podobnych zjawisk. Albowiem ani przy pomocy światła Księżyca czy Słońca, ani umiarkowanej ciepłoty, ani różnic głębiny nie zdoła się w sztuczny sposób spowodować, aby woda zawarta w nieruchomym naczyniu poruszała się tam i z powrotem, aby wznosiła się i opadała, i to w jednym miejscu tak, a w drugim inaczej. Jeśli jednak bez żadnych sztuczek i w najnaturalniejszy sposób, wprowadzając naczynie w ruch, potrafię dokładnie odtworzyć wszystkie te zmiany, które widzi się na wodach mórz, to dlaczego mielibyście odrzucić takie wyjaśnienie i uciekać się do cudu.

Cały ten fragment i jego dalszy ciąg wkraczają na ryzykowny temat cudów, przynajmniej werbalnie. Galileusz tłumaczy, że gdyby w sposób cudowny nadać Ziemi niejednostajny ruch, to w jego następstwie wody zaczną – w sposób najzupełniej naturalny – poruszać się tak, jak to widzimyw zjawisku pływów. Dalej zaś wyjaśnia, że zamiast cudownego poruszania Ziemią wystarczy jej ruch naturalny, taki jak u Kopernika. Rozumowanie uczonego nie tylko odzierało zjawisko pływów z wszelkiej cudowności, ale też sprawiało wrażenie, iż inne wyjaśnienie jest niemożliwe. W ten sposób istnienie pływów byłoby dowodem, że ruch Ziemi jest „prawdą absolutną” – wbrew najgłębszemu przekonaniu Maffeo Barberiniego. Swoistym dowodem uznania ze strony Kościoła był fakt, że nikt nie próbował argumentacji Galileusza kwestionować na gruncie naukowym, jakby zgadzano się z nim, że inne wyjaśnienie naukowe i naturalne jest niemożliwe.

Tymczasem teoria Galileusza była pod wieloma względami nieudana: nie tłumaczyła okresów powtarzania się przypływów i nie wyjaśniała, czemu występują one dwa razy na dobę. Uczony niewiele wiedział na temat samego zjawiska i niezbyt przejmował się tym, co wiedział. Znane są w nauce, i nie tylko w nauce, takie przypadki ślepego przywiązania do własnych idei. Galileusz, który niezmiernie łatwo popadał w mentorski ton wobec innych, tutaj sam nie potrafił sprostać wymaganiom, jakie należy postawić porządnej teorii.

Nie zmienia to jednak faktu, że Dialog jest książką wyjątkową, pierwszą tak dobrze pomyślaną i przeprowadzoną argumentacją na rzecz ruchu Ziemi. Choć z naukowego punktu widzenia nie zawiera żadnego absolutnego dowodu słuszności kopernikanizmu, pokazuje, że jest to pogląd naukowo spójny, nie prowadzący do sprzeczności i zupełnie prawdopodobny. Dowody na rzecz kopernikanizmu jeszcze długo później były jedynie pośrednie, ale świat stawał się zrozumiały, gdy patrzeć na niego z tej właśnie perspektywy. Dyskusja Galileusza, mimo polemicznej werwy, jest na ogół rzetelna; mało kto tak dogłębnie jak on przemyślał argumenty zwolenników Arystotelesa i nikt wcześniej nie poddał ich tak druzgocącej krytyce. Wielką zasługą historyczną kopernikanizmu była właśnie zmiana spojrzenia na usytuowanie Ziemi i człowieka w kosmosie, Galileusz bardziej niż ktokolwiek inny przyczynił się do przeprowadzenia tej przemiany obrazu świata.

(*) Chodzi o słynną kopułę na katedrze florenckiej autorstwa Filippa Brunelleschiego

Reklamy

Powstawanie kontynentów i oceanów (1922) – Alfred Wegener

Książka została napisana w okresie rekonwalescencji autora, dwukrotnie rannego na froncie zachodnim zaraz na początku wojny światowej (wrócił później do służby jako meteorolog). Ukazała się po raz pierwszy w roku 1915 nakładem wydawnictwa Vieweg & Sohn. Kolejne trzy wydania ukazały się już po wojnie. Z początkowych niecałych stu stron książka rozrosła się do ponad dwustu w czwartym wydaniu. Najważniesze historycznie okazało się wydanie trzecie z roku 1922, które stało się podstawą przekładów m.in. na angielski, francuski, hiszpański i rosyjski, wywołując ożywioną dyskusję nie tylko w kręgach naukowych.

Wysunięta przez Wegenera teoria dryfu kontynentów, przyjęta zrazu ze sceptycyzmem, niedowierzaniem, a nawet szyderstwem, w okresie międzywojennym zyskała niewielu zwolenników. Idee przesuwania się kontynentów wróciły triumfalnie dopiero w latach sześćdziesiątych ubiegłego wieku jako teoria płyt tektonicznych, która zrewolucjonizowała nauki o Ziemi.

Alfred Lothar Wegener z wykształcenia był astronomem, lecz po doktoracie dotyczącym Tablic Alfonsyńskich w roku 1905 postanowił zająć się meteorologią. Zapalony wędrowiec, alpinista i narciarz szukał dziedziny mniej obciążonej tradycją, dającej ponadto możliwość pracy w terenie, a nawet przygody. Wraz ze starszym bratem Kurtem ustanowił w roku 1906 światowy rekord czasu lotu balonem (52,5 godziny). W tym samym roku wyruszył na Grenlandię jako meteorolog duńskiej wyprawy. Spędził tam dwie zimy, tworząc pierwszą stację meteorologiczną i dokonując pomiarów atmosfery przy użyciu latawców oraz balonów. Po powrocie pracował na uniwersytecie w Marburgu, opracowywał wyniki obserwacji polarnych, napisał także podręcznik Termodynamika atmosfery (1911). Przygotowując go, Wegener zwrócił się o opinię do uznanego specjalisty profesora Wladimira Köppena z Hamburga, który przychylnie przyjął rękopis młodszego kolegi. Wegener poznał też córkę profesora Else i niebawem się z nią zaręczył. Na następną wyprawę na Grenlandię wyruszył w 1912 roku, Else spędziła ten czas w domu norweskiego meteorologa Vihelma Bjerknesa, ucząc jego dzieci niemieckiego, a sama ucząc się norweskiego oraz duńskiego (przełożyła potem na niemiecki dwie prace Bjerknesa). Latem 1913 roku wyprawa z udziałem Wegenera przebyła drogę w poprzek Grenlandii mniej na szerokości geograficznej 75°. Tego samego roku młody polarnik i Else wzięli ślub. Po wojnie światowej Wegener objął po przejściu teścia na emeryturę jego stanowisko w Morskim Obserwatorium Meteorologicznym w Hamburgu, przeniósł także swoje prawo nauczania na tamtejszy nowopowstały uniwersytet. We współpracy z Köppenem napisał książkę na temat paleoklimatologii, w której rozwinięte zostały pewne argumenty na rzecz dryftu kontynentalnego. Napisał też książkę na temat kraterów księżycowych, uznając je – zgodnie z prawdą, a wbrew ówczesnym poglądom – za skutek impaktów meteorytów. Mimo ożywionej aktywności Wegenerowi nie udawało się uzyskać katedry uniwersyteckiej, można przypuszczać, że pewną rolę odgrywała tu niechęć wobec jego śmiałych teorii. W 1924 roku został profesorem na katedrze meteorologii i geofizyki w prowincjonalnym Grazu w Austrii (stanowisko stworzono specjalnie dla niego, łącząc obie dziedziny, którymi się zajmował). Wegenerowie przeprowadzili się tam wraz ze swymi trzema córkami i teściem. Jak wspominała Else: „W pięknym Grazu niemal całkiem zatopiliśmy się w mieszczańskiej stabilizacji”. Wegener pracował naukowo, wszyscy troje odbywali liczne wycieczki, regularnie jeździli na narty w Alpy, wojna i ciężkie przejścia w Grenlandii wydawały się daleko poza nimi. Jednak w roku 1929 Alfred Wegener nie umiał się oprzeć okazji ponownej wyprawy na Grenlandię. Zmarł tam niespodziewanie w listopadzie 1930 roku, prawdopodobnie na atak serca z nadmiernego wysiłku, niedługo po swoich pięćdziesiątych urodzinach.

Alfred Wegener i jego towarzysz Rasmus Villumsen na kilka dni przed śmiercią (obaj zginęli w drodze między obozem w głębi Grenlandii a wybrzeżem)

Idea ruchu kontynentów przyszła Wegenerowi po raz pierwszy do głowy w roku 1910, gdy zwrócił uwagę na przystawanie linii brzegowych Ameryki Południowej i Afryki na mapie. Nie był pierwszym, który zauważył owo dopasowanie – jednak nauka instytucjonalna nauczyła się ten fakt ignorować. W roku 1911 Wegener zetknął się po raz pierwszy z danymi geologicznymi i paleontologicznymi, które wskazywały na podobieństwo obu kontynentów. Fakty te znane były specjalistom, interpretowano je jako świadectwo istnienia niegdyś pomostów lądowych między Afryką i Ameryką, uznając za pewnik, że kontynenty te zawsze były położone tak jak dziś (nieco słabsza wersja tego poglądu zakładała istnienie łańcucha wysp łączących oba kontynenty). Wegener postanowił zakwestionować ten pewnik i sprawdzić, czy koncepcja przesuwania się kontynentów może się obronić. W styczniu 1912 roku po raz pierwszy przedstawił swe pomysły publicznie na zjeździe Towarzystwa Geologicznego we Frankfurcie, a trzy lata później rozwinął je w książce. Jak się zdaje, koncepcja pomostów lądowych od początku nie trafiała mu do przekonania. Podstawowym jego argumentem była tu izostazja, obserwowane przez geologów dążenie do równowagi hydrostatycznej. Wiadomo było np., że lądy podnosiły się po ustąpieniu zlodowacenia. Góry mają niższy ciężar właściwy niż dno oceanów. Jeśli tak, to zbudowane z lżejszego materiału pomosty lądowe nie mogły zatonąć w gęstszym podłożu, gdyż przeczyłoby to prawu Archimedesa. Wegener zaczął na kontynenty patrzeć jak na dobrze mu znaną z Arktyki pokrywę lodową: tworzy ona względnie trwałe pływające struktury, które mogą łączyć się albo pękać na mniejsze części, przy czym większa część ich objętości zanurzona jest w wodzie. Podobne zjawiska – oczywiście w nieporównanie większej skali czasowej – mogły zachodzić w przypadku kontynentów na Ziemi.

Przyrodnik zwracał uwagę, że większą część powierzchni Ziemi stanowią albo głębie oceaniczne, albo niezby wysokie lądy.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 27)

Rozkład wysokości dla całej powierzchni Ziemi ma dwa wyraźne maksima, odpowiadające lądom oraz dnu oceanów. Przeczy to zdaniem Wegenera panującej w tym okresie teorii Eduarda Suessa kurczenia się (kontrakcji) Ziemi. Wyobrażano sobie, iż Ziemia stygnie z fazy ciekłej i stale się w związku z tym kurczy. Wywoływałoby to na jej powierzchni efekt podobny do marszczenia się skórki na wysychającym jabłku. Owo „marszczenie się” zewnętrznych warstw skorupy ziemskiej objawiać się miało m.in. fałdowaniem i wypiętrzaniem gór. Ponieważ kurczenie zachodzi stopniowo, więc w różnych jego fazach ta sama część powierzchni mogła znajdować się nad albo pod powierzchnią morza. Odkrycie pierwiastków promieniotwórczych, które stale wydzielają ciepło, stawiało teorię kontrakcji pod znakiem zapytania. W dodatku skały osadowe znajdowane na kontynentach wskazują na to, że tereny te mogły się znajdować jedynie płytko pod powierzchnią morza, nie stanowiły więc nigdy dna oceanicznego. Wegener sądził także, że gdyby to kurczenie się Ziemi odpowiadało za rzeźbę jej powierzchni, rozkład wysokości powinien mieć jedno tylko maksimum, takie jak przerywana linia na rycinie powyżej.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 35; dziś wiemy, że dno oceanów także należy do litosfery, która jednak jest tam znacznie cieńsza niż pod kontynentami)

Jego zdaniem lżejsza masa kontynentu, sial (od zawartości krzemu i aluminium: Si-Al) pływa w cięższej simie (od zawartości krzemu i magnezu: Si-Ma), która ma pewne cechy cieczy, przynajmniej w długiej skali czasowej. Toteż poziome przemieszczanie się kontynentów przypominałoby pływanie kier lodowych w morzu. Według oszacowania Wegenera grubość kontynentów (oznaczona M na rycinie) była rzędu 100 km (rycina jest schematyczna i nie oddaje prawidłowo skali).

Mapy Wegenera (Entstehung der Kontinente und Ozeane, 1929, s. 19, 20)

Teoria dryftu kontynentów nie tylko tłumaczyła dopasowanie kształtów różnych lądów, ale także w naturalny sposób objaśniała podobieństwa geologiczne: góry po jednej stronie Atlantyku znajdowały swe naturalne przedłużenie po drugiej jego stronie. Podobieństwa zachodziły także między kopalnymi gatunkami roślin i zwierząt z części świata oddzielonych barierą oceanu. Bez pomostów lądowych trudno było zrozumieć, w jaki sposób te same gatunki mogły wyewoluować w sposób niezależny od siebie.

(J.S. Monroe, S. Wicander, The Changing Earth, 4th edition, s. 33)

Wegener przyjął, że w erze paleozoicznej wszystkie kontynenty stanowiły jeden ląd, nazwany Pangea, który następnie popękał na oddzielne fragmenty, odsuwające się stopniowo od siebie. Jedna z krawędzi Pangei znajdowała się blisko bieguna południowego – gdyż kontynenty przesuwały się nie tylko względem siebie, ale także w stosunku do osi obrotu Ziemi. Dzięki temu można było wyjaśnić geologiczne ślady zlodowaceń paleozoicznych w miejscach położonych obecnie tak daleko od siebie, jak Argentyna, Afryka Południowa, Indie i Australia – wszystkie te lądy znajdowały się kiedyś blisko siebie, a także blisko bieguna ziemskiego.

Dane Wegenera wg współczesnego podręcznika (W. Frisch et al., Plate Tectonics, Springer 2011, s. 3)

Ciągłość pasm górskich oraz zlodowacenia i lasy karbońskie (E.J. Tarbuk, F.K. Lutgens, D. Tasa, Earth: An Introduction to Physical Geology, 11th edition, s. 46,47)

W oczach większości geologów hipoteza Wegenera zakrawała na szaleństwo. Jak zauważył jeden z geologów, przeciwnik dryftu: gdyby to była prawda, to należałoby napisać na nowo podręczniki z ostatnich trzydziestu lat – rzeczywiście, trzeba było to w końcu zrobić. Podobnie reagowali wykształceni ludzie XVI wieku, słysząc o koncepcji Kopernika. Obie teorie usuwały niejako metafizyczny grunt pod nogami, głosząc zmienność i ruch tam, gdzie pragnęlibyśmy stabilności i niezmienności. Obie brały początek ze stosunkowo prostego i nienowego pomysłu, który był po wielokroć odrzucany jako absurdalny. Sformułowane zostały dzięki innemu spojrzeniu na znane fakty, a nie dzięki jakimś nowym, nieznanym dotąd obserwacjom. Obie teorie przekraczały także granice między różnymi naukami. Kopernik „niedopuszczalnie” mieszał astronomię i fizykę. W sprofesjonalizowanym i wyspecjalizowanym dwudziestym wieku czyniono zarzut z tego, że teorię wysunął nie geolog, który strawił lata na badaniach terenowych, lecz autsajder: astronom zajmujący się głównie meteorologią. Warmia Kopernika i Marburg oraz Graz Wegenera, leżąc na uboczu, ułatwiały niezależne myślenie, wolne od presji poglądów środowiska. Obaj autorzy zdawali sobie do pewnego stopnia sprawę z kontrowersyjnosci swoich hipotez, choć żaden z nich nie spodziewał się chyba aż tak zażartego oporu. Oczywiście, każdy rewolucyjny pogląd rodzi nowe trudności i niełatwo z góry przesądzić, czy ostanie się wobec zarzutów. Obie teorie wykazywały też dość podobny brak: nie zawierały bowiem konkretnego mechanizmu, który tłumaczyłby zakładane ruchy. Mechanika arystotelesowska z trudem dawała się pogodzić z heliocentryzmem, w przypadku Wegenera trudność była może jeszcze większa, gdyż potrzebne prawa fizyki były wprawdzie znane, lecz nie było jasne, w jaki sposób miałyby z nich wynikać przemieszczenia kontynentów. Świadom tej trudności, uczony zaproponował dwa mechanizmy, choć podkreślał także, że jest zbyt wcześnie na tego rodzaju szczegóły. Mówił o sile odśrodkowej, która wywołać miała ucieczkę od biegunów – Polflucht, a także o siłach przypływowych Księżyca i Słońca, które wywołać miały przesuwanie kontynentów ku zachodowi. Wyjaśnienia te zostały bardzo ostro skrytykowane przez ekspertów.
Niektóre argumenty Wegenera były błędne, co nie powinno nas szczególnie dziwić w przypadku pracy tak pionierskiej (podobnie było z większoscią szczegółowych poglądów Kopernika oprócz samego heliocentryzmu). Stosunkowo największym błędem było bardzo późne oddzielenie się Grenlandii, która zdaniem Wegenera przesuwać się miała z szybkością rzędu 30 m rocznie. Wegener nadmiernie zawierzył pomiarom astronomicznym długości geograficznej, które nie miały dostatecznej dokładności. Dziś szybkości przesuwania się płyt tektonicznych można mierzyć bezpośrednio za pomocą systemu GPS i wiadomo, że są one rzędu kilku cm rocznie.

W latach dwudziestych ubiegłego wieku krytykowano jednak nie tylko słabe punkty teorii Wegenera, ale także i jej mocne strony. Wysuwano np. twierdzenie (H.S. Washington, 1923), że skały po obu stronach Atlantyku nie wykazują podobieństw. Nie zgadzał się z tym poglądem A.L. Du Toit, wybitny południowoafrykański geolog, który specjalnie w tym celu udał się do Ameryki Południowej i stwierdził, że podobieństwa geologiczne „są wręcz zdumiewające”. Du Toit stał się zwolennikiem teorii Wegenera. Szczególnie niechętne przyjęcie spotkało teorię Wegenera w Stanach Zjednoczonych i Wielkiej Brytanii, a więc w krajach w geologii przodujących. Przewodniczący Londyńskiego Towarzystwa Geologicznego J.W. Gregory stwierdził, że jeśli izostazja sprzeczna jest z zanurzaniem się dna oceanów, to tym gorzej dla izostazji. Zgadzał się z tym zdaniem także Harold Jeffreys, wybitny geofizyk, który na podstawie danych sejsmicznych wierzył w częściowo płynne jądro Ziemi, sądził jednak, że zewnętrzne jej warstwy są sztywne. Naomi Oreskes upatruje źródeł reakcji amerykańskich geologów na teorię Wegenera w ich niechęci do ogólnych, zbyt spekulatywnych teorii. Niewątpliwie pewna dyscyplina myślowa jest w naukach empirycznych niezbędna, nie należy budować pochopnych uogólnień i uczeni zdobywają pozycję w swoim cechu na podstawie rzeczowych i beznamiętnych obserwacji. Jednak żaden podręcznik metodologii nie nauczy nas, które uogólnienia są „pochopne”, a które – „śmiałe i nowatorskie”. Niemal zawsze prace rewolucyjne przekraczają granice uznanych dziedzin i dopuszczalnych metod. Idee Wegenera podjął Arthur Holmes, twórca datowania radiometrycznego, był w tym jednak niemal całkowicie odosobniony. Przypuszczał on, że ciepło wydzielane przez pierwiastki promieniotwórcze może przenosić się za pomocą prądów konwekcyjnych w płaszczu Ziemi. Prądy takie odpowiedzialne byłyby za przesuwanie kontynentów.

Przesuwanie się kontynentów wróciło do łask w latach sześćdziesiątych ubiegłego wieku dzięki wielu nowym obserwacjom i metodom. Postęp osiągnięty został przede wszystkim dzięki badaniom dna oceanów. Dopiero po drugiej wojnie światowej można było zastosować echosondy do precyzyjnego zbadania topografii dna morskiego. Dzięki badaniom magnetyzmu występujących tam skał można było stwierdzić, że podmorski Grzbiet Śródatlantycki jest strefą spredingu – miejscem, gdzie na powierzchnię wydobywa się nowy materiał z wnętrza Ziemi i tworzą płyty tektoniczne. Kontynenty są częścią płyt tektonicznych, nie torują sobie drogi w płynnym podłożu, lecz raczej są przesuwane wraz z całością płyty, do której należą (symetryczne zjawisko niszczenia płyt następuje w obszarach subdukcji, gdzie jedna płyta wsuwa się pod drugą). W marcu 1964 roku Towarzystwo Królewskie w Londynie zorganizowało konferencję poświęconą przesuwaniu się kontynentów. Zaprezentowano na niej pracę przedstawiającą komputerowe dopasowanie kształtu kontynentów po obu stronach Atlantyku (E. Bullard, J.E. Everett, A.G. Smith, The fit of the continents around the Atlantic, Phil. Trans. Roy. Soc. London A, 258: 41-51).

Okazało się ostatecznie, że Wegener miał rację: średni kwadratowy błąd dopasowania jest rzędu 50 km (co ciekawe, w latach dwudziestych jeden z geologów sporządził model, z którego wynikało, że takiego dopasowania wcale nie ma i luki między kontynentami sięgają 1200 km!). Płyty kontynentalne zachowują się jak sztywne dwuwymiarowe obiekty przesuwające się po powierzchni Ziemi. Oznacza to, że mają one krzywiznę Ziemi i ich ruchy są obrotami – zgodnie z twierdzeniem Eulera, mówiącym, iż dowolne złożenie obrotów przedstawić można jako obrót wokół pewnej ustalonej osi o pewien kąt. Swoistą ironią losu jest fakt, że trwają wciąż dyskusje na temat sił wywołujących przesuwanie się płyt tektonicznych, prądy konwekcyjne rozpatrywane przez Holmesa są raczej skutkiem niż przyczyną tych ruchów. Najczęściej uważa się, że dominuje jakiś mechanizm grawitacyjny.

Jedna ze współczesnych rekonstrukcji Pangei (za: A. Schettino, Quantitative Plate Tectonics, Springer 2015, s. 60)

 

Johannes Kepler: III prawo ruchu planet (15 V 1618)

Niemal wszystkie wielkie odkrycia naukowe dla swych odkrywców znaczyły co innego niż dla potomnych. Z tego powodu dzisiejsza wiedza jest często mało przydatna, gdy chcemy dowiedzieć się, w jaki sposób zostały dokonane jakieś odkrycia. Przykład praw Keplera jest tu wielce pouczający: to, co dziś uważamy za trzy prawa Keplera, on sam uważał za istotne wprawdzie, ale trzy pojedyncze fakty w całym gmachu astronomii, który zbudował.

Johannes Kepler zdecydował się zająć astronomią, kiedy odkrył – jak mu się zdawało – ukryty sens geometryczny proporcji orbit planetarnych. Stwórca zrealizował bowiem w niebiosach wielce barokową konstrukcję geometryczną. Nastąpiły długie lata studiowania ruchów planet, szczęśliwym zbiegiem okoliczności mógł wykorzystać zbiór obserwacji Tychona Brahego, najdokładniejszych w dziejach i obejmujących najdłuższy przedział czasu. Ktoś porównał sytuację przed Tychonem i obserwacje Tychona do oddzielnych fotografii i długiego filmu: ruchy planet monitorowane były przez duńskiego astronoma nieomal z dnia na dzień. Kepler pierwszy zbudował w pełni heliocentryczną astronomię, w której Słońce było nie tylko wielką lampą oświetlającą wszechświat i umieszczoną centralnie, ale także źródłem ruchu sześciu znanych planet. Uzyskane przez niego wyniki podsumowuje się dziś w formie trzech praw ruchu. Pamiętać jednak należy, że zawarte one były w książkach Keplera wśród długich rozważań i nigdzie nie zostały sformułowane w taki właśnie sposób.

Dwa pierwsze prawa znalazły się w Astronomia nova z 1609 roku. Eliptyczny kształt orbit był najbardziej oczywistym wynikiem tej pracy, choć wielu nie dało się przekonać: astronomowie przyzwyczajeni byli do kół poruszających się po kołach i podejście Keplera wydawało się dziwaczne. Tym bardziej, że nawet obserwacje Brahego nie były na tyle dokładne, by jakoś zdecydowanie rozstrzygać, jaki jest właściwie kształt orbity – mogły to być rozmaite owale, a poza tym krzywe takie można skonstruować na różne sposoby, więc elipsy wydawały się wnioskiem zbyt silnym. Tak rozumiał to np. Isaac Newton, kiedy pisał: „Kepler wiedział, iż orbity planet nie są kołowe, lecz owalne, i odgadł, że są eliptyczne”. Kepler nie tyle zresztą zgadywał, ile kierował się tu (obok obserwacji) własną teorią ruchu planet – pierwszą mechaniką niebios – lecz z pozycji newtonowskich próba ta była chybiona, więc Newton mógł potraktować to jako zgadywanie. Elipsy z czasem znalazły sobie miejsce wśród uznanych faktów astronomicznych. Aż do czasów Newtona nie wiedziano jednak, co zrobić z Keplerowskim prawem pól – dzisiejszym II prawem Keplera. Teoretyczne wyjaśnienia samego Keplera nie przekonały jego następców, w dodatku prawo to jest niełatwe do praktycznego stosowania, gdyż prowadzi do równania przestępnego: t=E-e\sin E, gdzie t jest czasem, e mimośrodem orbity, a E tzw. anomalią mimośrodową, wielkością potrzebną do obliczenia położenia planety na elipsie. Równanie Keplera należało rozwiązywać metodami przybliżonymi, co w XVII wieku było trudne zarówno praktycznie, jak i pojęciowo. II prawo Keplera odrodziło się dopiero dzięki Newtonowi, który spostrzegł, że musi ono obowiązywać zawsze, gdy siły działają wzdłuż linii łączącej planetę i Słońce, bez względu na konkretną zależność sił od odległości. Dziś mówimy, że w ruchu pod wpływem sił centralnych zachowany jest moment pędu.

Kepler traktował własną pracę nad geometrycznym i mechanicznym opisem ruchu planet jako bardzo długi wstęp, rodzaj dygresji, właściwym celem było odkrycie, czemu Stwórca zbudował układ planet tak, a nie jakoś inaczej. Z jego perspektywy najciekawsze więc wydawało się wyjaśnienie odległości, okresów i ekscentryczności orbit, a więc nie tyle mechanika, co warunki początkowe – one bowiem mówiły nam coś o Bogu. Uczony, kiedy tylko mógł, wracał do rozważań na temat harmonii świata, one właśnie wydawały mu się najcenniejsze. Niosły mu też pociechę – to w czasie żałoby po śmierci córeczki zajął się pisaniem Harmonice mundi („Harmonii świata”). Do brył platońskich z młodzieńczej konstrukcji doszły teraz harmonie muzyczne – idea pitagorejska. Johannes Kepler stworzył najbardziej rozbudowaną i szczegółowo opracowaną wersję tej starej idei. Wszechświat był dla niego kosmosem, uładzoną i piękną całością. Sądził, że potrafi wyjaśnić ekscentryczności orbit planetarnych. Tym, co miało budować harmonie muzyczne kosmosu były prędkości kątowe planet widziane ze Słońca. Ich zakres odpowiadał pewnej skali muzycznej. Była to więc muzyka czysto matematyczna, którą obserwować mogły mieszkające na Słońcu anioły.

To, co przepowiedziałem dwadzieścia dwa lata temu, kiedy odkryłem pięć brył foremnych między sferami niebieskimi; to, o czym mocno byłem przekonany wewnętrznie, zanim jeszcze ujrzałem Harmonie Ptolemeusza; to, co obiecałem przyjaciołom w tytule tej piątej Księgi, nim jeszcze nabrałem całkowitej pewności; to, o czym szesnaście lat temu pisałem publicznie, nalegając, iż musi być zbadane; to, co skłoniło mnie, by spędzić najlepszą część życia na spekulacjach astronomicznych, wybrać się do Tychona Brahego do Pragi i samemu zamieszkać w Pradze; to, do czego Bóg Najlepszy i Największy nakłaniał mój umysł i rozbudzał pragnienie poznania, przedłużając me życie i siły umysłu, a także dostarczając innych środków dzięki hojności dwóch cesarzy oraz szlachty stanów Górnej Austrii; to w końcu, gdy wypełniłem swoje obowiązki astronomiczne w wystarczającym stopniu, mogłem wreszcie wydobyć na światło i stwierdziłem, że jest prawdą bardziej nawet, niż miałem nadzieję: odkryłem pośród ruchów niebieskich pełną naturę harmonii, w stopniu, w jakim ona występuje, wraz ze wszystkimi swymi częściami, objaśnionymi w Księdze III – wprawdzie nie w taki sposób, w jaki ją sobie wyobrażałem (co stanowi nie najmniejszą część mojej radości), ale w zupełnie inny sposób, najpiękniejszy i zarazem najdoskonalszy. (KGW t. VI, s. 289; )

Samo III prawo Keplera jest prostą zależnością ilościową: jeśli wyrazimy okres obiegu planety T w latach, a półoś orbity a (czyli średnią odległość od Słońca) w jednostkach orbity Ziemi, to przyjmuje ono postać: T^2=a^3. Prawo to znajduje się w Księdze piątej Harmonice mundi jako ósme twierdzenie rozdziału trzeciego, a więc wplecione w pitagorejskie rozważania.

Tak więc część mojej Tajemnicy kosmosu, która została zawieszona dwadzieścia dwa lata temu, ponieważ nie była jeszcze jasna, zostaje dokończona i tutaj umieszczona. Bo kiedy znalezione zostały prawdziwe odległości sfer, poprzez obserwacje Brahego i ustawiczny długotrwały trud, to w końcu – w końcu – prawda co do stosunku okresów i wielkości sfer
choć późno, wejrzała na opieszalca,
Wejrzała jednak i w końcu, po długim czasie, nastała.(*)
a jeśli trzeba wam dokładnego czasu, zrodzona została w umyśle 8 marca tego roku 1618, lecz poddana rachunkowi w pechowy sposób i odrzucona jako fałsz, aż wreszcie powróciła 15 maja i przyjmując inną linię ataku, pokonała ciemności mego umysłu. Tak silne było wsparcie siedemnastu lat mojej pracy nad obserwacjami Brahego oraz obecnych badań, które połączyły swe siły, iż z początku myślałem, że śnię i gdzieś w założeniach wprowadzam moją konkluzję. Ale jest absolutnie pewne i ścisłe, że stosunek okresów dowolnych dwóch planet równa się dokładnie stosunkowi ich średnich odległości do potęgi 3/2 (Harmonice mundi, 1619, s. 189; KGW t. VI, s. 302)

Spośród praw Keplera to było najmniej kontrowersyjne, bo łatwe do sprawdzenia. Co więcej, pozwalało poprawić wielkości orbit, ponieważ okresy obiegu znane były znacznie dokładniej niż odległości, co pierwszy zauważył Jeremiah Horrocks, który, gdyby nie zabrała go śmierć w wieku dwudziestu dwóch lat, z pewnością zostałby jednym z najważniejszych astronomów XVII stulecia.

(*) Wykształconemu klasycznie Keplerowi przyszła tu na myśl pierwsza ekloga Wergiliusza:

Wolność, która, choć późno, wejrzała na opieszalca,
Kiedy już siwiejące spod brzytwy sypały się włosy,
Wejrzała jednak i w końcu, po długim czasie, nastała.
(przeł. Z. Kubiak, Literatura Greków i Rzymian, s. 430)

Jak Johannes Kepler odkrył eliptyczny kształt orbity Marsa? (1605)

Kepler był pierwszym liczącym się naukowo zwolennikiem teorii heliocentrycznej. Otaczał wielką czcią postać Mikołaja Kopernika, ale astronomię zbudował właściwie na nowo. Zawiłą drogę do odkrycia tego, co dziś nazywamy dwoma pierwszymi prawami Keplera, opisał w legendarnie trudnej książce Astronomia nova. Dotyczyła ona głównie ruchu Marsa, częściowo także Ziemi. Uczony miał do dyspozycji wieloletnie precyzyjne obserwacje Tychona Brahego. Na ich podstawie zbudował teorię, która dorównywała im dokładnością, był to największy krok od czasów starożytnych Greków. Bez tak precyzyjnej teorii trudno sobie wyobrazić odkrycie prawa ciążenia przez Isaaca Newtona. Sam Newton sądził, iż Kepler wiedział, że orbity planet są owalne, a odgadł, że są one eliptyczne. W jakimś stopniu miał rację: nawet obserwacje Tychona, najlepsze, jakie kiedykolwiek zgromadzono, były zbyt mało dokładne, aby precyzyjnie wyznaczyć kształt orbity szukając jej punkt po punkcie. Odkrycie było więc wynikiem konfrontowania rozważań teoretycznych i obserwacji.
W praktyce dzięki pomysłowym metodom postępowania Kepler potrafił z dużą dokładnością wyznaczyć kierunek Słońce-Mars w zależności od czasu oraz z mniejszą dokładnością odległości planety od Słońca w różnych chwilach. Jego zdaniem Mars poruszany jest przez jakąś siłę emanującą ze Słońca. A właściwie wyobrażał sobie nawet dwie takie siły, pamiętajmy, że mechanika była wciąż na etapie arystotelesowskim: siła ciągnie albo popycha – ciało się porusza, siła przestaje działać – ciało staje. Była to dynamika przesuwanej szafy. Mimo to lepsza była taka dynamika niż żadna. Przed Keplerem, a i po nim, wyobrażano sobie ruchy planet jako coś całkowicie odmiennego od mechaniki ziemskich przedmiotów. Dla Kopernika Słońce było centralną latarnią w świecie, a nie źródłem siły.
Kepler przyjął, że ruch Marsa wokół Słońca zachodzi po krzywej zamkniętej. Najprościej było przyjąć, że jest nią okrąg o umownym promieniu równym 1. Musimy jednak wtedy Słońce odsunąć od środka okręgu o pewną wielkość znaną z obserwacji, tzw. mimośród orbity. W przypadku Marsa \mbox{AS}=e \approx 1/11.

mars 1 area law

Wiadomo też z obserwacji, że planeta porusza się szybciej, gdy jest bliżej Słońca. Z takim ruchem niejednostajnym Kepler zmierzył się jako pierwszy. Intuicyjnie wydawało mu się to zrozumiałe, że z mniejszej odległości Słońce oddziałuje silniej, a więc porusza szybciej naszą planetą (Wyobrażał sobie, że Słońce wiruje wokół osi i niejako zagarnia planety swoim polem siłowym, toteż ucieszył się, kiedy odkryto wirowanie Słońca wokół osi). Uprościmy rozważania na ten temat, zakładając tzw. prawo pól, czyli dziś II prawo Keplera. W trakcie swej wojny z Marsem (jak sam ją określał w alegorycznym duchu epoki) astronom stosował także różne inne przybliżenia, które dla uproszczenia pominiemy. Prawo pól mówi, że pole powierzchni zakreślonej przez promień wodzący Marsa, czyli np. powierzchni SCM jest proporcjonalne do czasu. Np. pole wycinka SM’C jest mniej więcej równe polu BAC, czyli ćwiartce koła. Znaczy to, że Mars znajdzie się w tym położeniu po jednej czwartej obiegu. Po połowie obiegu znajdzie się oczywiście w punkcie najbliższym Słońca (peryhelium).
Na przebycie łuku orbity CM planeta potrzebuje czasu t, który spełnia następującą proporcję

\dfrac{t}{T}=\dfrac{\mbox{pole MAC}+\mbox{pole SAM}}{\pi}\Rightarrow t=\beta+e\sin\beta.

Przyjęliśmy umownie, że okres obiegu Marsa T=2\pi. Jest to tzw. równanie Keplera. Kąt \beta nazywa się anomalią mimośrodową. Nie jest to wprawdzie ten kąt, który może wprost zainteresować astronoma i który można wyznaczyć z obserwacji (choć nie wprost – trudno umieścić się na Słońcu!). Istotnym obserwacyjnie kątem jest MSC, tzw. anomalia prawdziwa. Z rysunku widać, że anomalię tę można wyznaczyć w sposób trygonometryczny. Mając \beta, możemy więc znaleźć czas i położenie planety. Równanie Keplera jest przestępne, nie można podać prostego wyrażenia na funkcję \beta(t), był to jeden z kłopotów Keplera, a potem wszystkich następnych astronomów, gdyż równanie Keplera obowiązuje także dla orbity eliptycznej. Od teraz będziemy zakładać prawo pól dla każdego kształtu orbity. Kiedy zastosuje się je do Marsa, anomalie prawdziwe (czyli kąty widziane ze Słońca) różnią się od obserwowanych mniej więcej tak:

mars circular errors

(rysunek wg pracy H. Martynki)

Różnice nie są wielkie, lecz w miarę wyraźne. Kepler znał tylko kilka punktów tej krzywej, nie miał do dyspozycji żadnych narzędzi obliczeniowych, nawet logarytmy były nieznane, każde mnożenie, dzielenie itd. trzeba było mozolnie wykonywać krok po kroku. Obserwacje Tychona pozwalały na błędy rzędu jednej albo dwóch minut kątowych (bez użycia teleskopu nie da się zresztą rozróżnić mniejszych kątów, patrz George Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop? Nasze oko ograniczone jest średnicą źrenicy, a także gęstością komórek światłoczułych na siatkówce). Kepler sprawdził także, że orbita Marsa powinna być odrobinę spłaszczona. Rzecz jednak w tym, że nie szukał jedynie odpowiedniej krzywej, ale chciał także, żeby jej kształt wynikał jakoś z mechaniki. Wpadł na pomysł dość dziwaczny dla nas, ale uzasadniony tradycją astronomii: na dużym kole (deferencie) obraca się małe koło (epicykl). Można taką konstrukcją zastąpić okrąg rozważany wyżej.

mars2 ekscent

Odcinek CM jest stale równoległy do SA. Można albo sobie wyobrażać ruch po czerwonym okręgu albo po dwóch czarnych, wynik będzie ten sam. Nowy pomysł Keplera polegał na tym, aby epicykl nadal obracał się jednostajnie, ale ruch planety miał być niejednostajny: w rezultacie kąt NXM będzie większy niż kąt NSC i wypadkowa krzywa stanie się spłaszczonym nieco owalem. Jednostajny obrót epicykla uważał Kepler za możliwy fizycznie (wymagało to jakiejś dodatkowej siły wywołującej ten obrót, ale tak czy owak potrzebował dwóch różnych sił: jednej wywołującej krążenie wokół Słońca oraz drugiej na przemian zbliżającej i oddalającej planetę od Słońca).

mars oval

Owal też nie spełnił zadania. Kepler miał kłopoty z obliczeniem jego kształtu, choć zadanie nie jest szczególnie trudne, gdy zastosować trygonometrię w zapisie algebraicznym albo prosty rachunek całkowy – narzędzia te nie były mu dostępne, bo ich jeszcze nie było. Błędy w anomaliach prawdziwych okazały się teraz równie duże co poprzednio, miały jednak inne znaki.

mars errors oval

(rysunek wg pracy H. Martynki)

Wskazywało to na zbytnie spłaszczenie owalu w stosunku do rzeczywistości. Owal miał rzeczywiście kształt jajka (ovum), choć w praktyce jajo to nie różniło się wiele od elipsy i w jakimś momencie Kepler zaczął je przybliżać elipsą. Nie zauważył, że prawo pól zastosowane do różnych elips oznacza, że planety tak się poruszające znajdują się w każdej chwili na jednej linii prostopadłej do osi NMM’. Zatem jeśli błękitna elipsa daje położenie M’, a okrąg położenie N i oba są z przeciwnym błędem, to rozwiązaniem powinna być elipsa pośrednia między tymi dwiema (okrąg to też elipsa).

mars 3 ellipses

W każdym z tych przypadków słuszne jest równanie Keplera, które wypisaliśmy wyżej. Kepler szukał jednak wyjaśnienia fizycznego: owal miał jakieś uzasadnienie, inna elipsa nie bardzo. Bez epicykla i bez okręgu znalazł się w kropce. Wrócił do odległości. Owal był nieco węższy w kierunku prostopadłym do osi (linia łącząca położenie najbliższe i najdalsze od Słońca, u nas pozioma). Między okręgiem a owalem zostawał cienki sierp, lunula – jak go określił.

mars lunulae1

Astronom wiedział, że prawdziwy tor planety mieści się gdzieś pośrodku. Obserwowane odległości nie przesądzały jednak gdzie dokładnie. Wczesną wiosną 1605 roku zauważył dość szczególne prawo, które pasowało do obserwacji i tego, co wiedział.

mars click

Najpierw przyjrzyjmy się niebieskiemu trójkątowi SKA. Kepler wiedział, że kąt na rysunku równy jest dla Marsa \varphi=5^{\circ} 18'. Przy takim kącie SK=1,00429, a więc do jedynki dodana jest mniej więcej połowa szerokości lunuli. Tymczasem odległość SM powinna być równa wówczas 1. Czyli tam, gdzie orbita jest najwęższa, od okręgu należałoby ująć mniej więcej 0,00429. Prawo, które zaproponował, przedstawione jest na rysunku. Zamiast odległości SN należało w każdym punkcie wziąć odległość ND – była to więc reguła, o ile należy skrócić promień w stosunku do promienia wodzącego SN (N leży na okręgu). Zapisane trygonometrycznie prawo to ma rzeczywiście prostą postać

r=1+e\sin\beta.

Można było mieć nadzieję, że tak proste prawo wynika jakoś z mechaniki. Miało ono zastąpić ów nieszczęsny epicykl, który sprawił mu mnóstwo zachodu. Brakowało jeszcze ustalenia, w którym kierunku należy odłożyć ową odległość r. W końcu zauważył, że prawidłowy rysunek wygląda następująco.

mars kepler ellipse

Można wykazać, że odkładając odległość DN jako SM (obie zaznaczone są na niebiesko), otrzymujemy punkt M leżący na elipsie. Spośród wszystkich elips, które mają taką samą długość dużej półosi, wybieramy dzięki tej konstrukcji taką, że Słońce znajduje się w jej ognisku (sam astronom nie zauważył tego w pierwszej chwili). Nie jest to oczywisty sposób na skonstruowanie elipsy, ale jest on prawidłowy. Zapisane przez nas równania oraz łatwy do wyznaczenia z rysunku kąt anomalii prawdziwej dają nam równania ruchu planety w postaci parametrycznej, gdzie \beta jest parametrem. Zauważmy, że linia AN nie celuje ku planecie, lecz ku pewnemu punktowi na pomocniczym okręgu. Konstrukcja jest dość zawiła, ale nie da się tego zrobić dużo prościej, to ruchy planet są skomplikowane.
W rzeczywistości orbity Marsa rozpatrywane przez Keplera bardzo mało się od siebie różnią. Na rysunku przedstawiłem przypadek e=0,4, mimośrody planet nie są tak duże. Widzimy, dlaczego starożytne teorie oparte na okręgach działały tak dobrze.

mars e equal04

(rysunek wg pracy H. Martynki)

A tak poprawiła się dokładność przewidywań w teorii Keplera w porównaniu z efemerydami przed nim.

marspos

Dane O. Gingericha

Dla porządku zapiszę jeszcze wzory dla anomalii prawdziwej v, czyli kąta MSC na rysunku wyżej. Rzutując SM na prostą SC, otrzymujemy:

r\cos v=e+\cos\beta.

Rzutując SM na prostą NM, otrzymujemy:

r\sin v=\sqrt{1-e^2}\sin\beta,

gdzie \sqrt{1-e^2} jest stosunkiem długości małej osi elipsy do dużej. Łatwo stąd otrzymać także biegunowe równanie elipsy, lepiej znane niż wzór Keplera na r. Mnożąc obie strony wzoru z \cos v przez e oraz dodając do obu stron 1, mamy:

1+er\cos v=e^2+(1+e\cos\beta)=e^2+r.

Wyznaczając r, dostajemy równanie elipsy

r=\dfrac{1-e^2}{1-e\cos v}.

W podręcznikach cosinusy mają inne znaki, ponieważ my trzymamy się historycznego sposobu liczenia kątów od aphelium, a obecnie liczy się od perihelium: \cos(\pi-\alpha)=-\cos\alpha. Owal Keplera ma równanie

r=\dfrac{1-e^2}{\sqrt{1-2e\cos v+e^2}}.

Arystarch z Samos (przed 230 r. p.n.e.)

Archimedes wspomina o jego osobliwym poglądzie na wszechświat:

Wedle jego hipotez gwiazdy stałe oraz Słońce są nieruchome, Ziemia unoszona jest po kole wokół centralnie położonego Słońca, a sfera gwiazd stałych (mająca ten sam środek co Słońce) jest tak ogromna, iż koło, po którym według niego unoszona jest Ziemia, ma się do odległości gwiazd stałych jak środek sfery do jej powierzchni.

Następnie Archimedes udaje, że nie rozumie, o co chodzi: środek sfery to punkt, a więc nie jest w żadnej proporcji do promienia sfery. Arystarch najwyraźniej miał na myśli tylko tyle, że sfera gwiazd stałych musi być ogromna w porównaniu do orbity Ziemi, inaczej dostrzeglibyśmy, że gwiazdy przesuwają się w cyklu rocznym. Wymaganie takie było konieczne w każdej teorii heliocentrycznej, paralaksę roczną odkryto bowiem dopiero w 1838 roku, wcześniej było to technicznie niemożliwe. Pogląd Arystarcha nie przyjął się wśród greckich astronomów, można tylko spekulować, dlaczego tak się stało. Ścisła astronomia matematyczna Greków miała dopiero powstać. Najprawdopodobniej system geocentryczny pozwalał zdać sprawę z obserwowanych zjawisk, nie prowadząc do żadnych paradoksów i nie zmuszając naszej wyobraźni do gwałtownego przeskoku. Toteż poczekaliśmy na ów przeskok jeszcze trochę, bo aż do Kopernika, a właściwie Keplera i Galileusza.

Arystarch pochodził z Samos, tak jak Pitagoras, Azja Mniejsza i pobliskie wyspy (obecnie wybrzeże Turcji i wyspy greckie – okolice pojawiające się w newsach z powodu imigrantów) to kolebka naszej cywilizacji naukowej. W czasach Arystarcha, w pierwszej połowie III w.p.n.e., upłynęły już trzy wieki od Talesa z Miletu, nauka przeniosła się do Aleksandrii. Dwa pokolenia przed Arystarchem Euklides zebrał większość znanej wiedzy geometrycznej w Elementy, jedną z najważniejszych książek w dziejach ludzkości. Arystarch także przebywał w Aleksandrii, ale nie znamy szczegółów. To, co wiemy o tych greckich uczonych: ich najważniejsze dzieła, nie zawsze w całości, i prawie żadnych szczegółów biograficznych, bliskie jest ideałowi Alberta Einsteina. Sądził on, że liczą się tylko osiągnięcia, a błędy i biografia to rzeczy nieistotne.

Znany był jako Arystarch Matematyk, zapewne dla odróżnienia od imienników o odmiennych zainteresowaniach. Zachowała się jedna tylko jego praca: O rozmiarach i odległościach Słońca i Księżyca. Jak na matematyka przystało, szacuje on owe odległości z góry i z dołu. Największe znaczenie miało jego oszacowanie odległości Ziemia-Słońce w porównaniu do odległości Ziemia-Księżyc. Wyszło mu, że Słońce jest od nas 18 do 20 razy dalej niż Księżyc, a tym samym, że musi ono być mniej więcej tyle samo razy większe od naszego satelity, gdyż średnice kątowe obu ciał są jednakowe – wiemy to z przebiegu zaćmień Słońca. Liczby podane przez Arystarcha są mniej więcej 20 razy zaniżone, ale wynik ten przyjmowali wszyscy astronomowie aż do Kopernika. Kepler nieco je poprawił, ale też właściwie nic pewnego nie wiedział. Odległość Ziemia-Słońce wyznaczono poprawnie dopiero w drugiej połowie XVII wieku.

arystarch0

Istotę rozumowania Arystarcha przedstawia rysunek. Przyjął on założenie, że kiedy widzimy dokładnie połowę Księżyca, kąt między nim a Słońcem równy jest 87º. Dokładnie biorąc, nie używano wtedy stopni, Arystarch mówi, że kąt jest mniejszy od kąta prostego o 1/30 kąta prostego. Według naszej wiedzy trygonometrycznej, stosunek obu odległości równy jest

\dfrac{d}{r}=\dfrac{1}{\sin 3^{\circ}}

Co trzeba zrobić? Wystarczy wpisać w Google’a: sin(3 deg), a otrzymamy wynik: 0.0523359562. Wartość 1/sin(3 deg) jest równa mniej więcej 19. Oczywiście, w czasach Arystarcha nie było Google’a, nie było też pojęcia funkcji sinus, które z Indii przeszło do Arabów i następnie do Europy, ale dużo później. Używali go dopiero Regiomontanus i Kopernik, który pierwszy ogłosił tablice sinusów. Grecka trygonometria powstała dużo później niż działał Arystarch. A więc jak oszacować wielkość sinusa (my dla wygody będziemy używać funkcji trygonometrycznych i kątów wyrażonych w stopniach), kiedy nie mamy nic? Arystarch wiedział, jak szybko rosną sinusy i tangensy wraz z kątem. Można to przedstawić rysunkiem.

arystarch

Widzimy z niego, że dodając takie same kąty, dodajemy coraz mniejsze wartości do sinusa (z lewej strony) i coraz większe odcinki do tangensa (z prawej strony). Nie wiemy, czy umiał tego dowieść, zachowane dowody tych faktów są dużo późniejsze. Intuicyjnie rzecz jest jednak jasna. Mamy nierówności:

\dfrac{\sin n\alpha}{\sin\alpha} < n<\dfrac{\mbox{tg}\: n\alpha}{\mbox{tg}\: \alpha}.

 

Jedno oszacowanie jest proste:

\dfrac{\sin 30^{\circ}}{\sin 3^{\circ}}<10\Rightarrow \dfrac{1}{\sin 3^{\circ}}<20.

Skorzystaliśmy z wartości sinusa 30º – a tę ostatnią można znaleźć, przepoławiając trójkąt równoboczny.

Do drugiego oszacowania można użyć funkcji tangens (oczywiście Arystarch mówił o pewnych proporcjach). Np.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{\cos 3^{\circ}}{\sin 3^{\circ}}=\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{15}{\mbox{tg}\: 45^{\circ}}=15.

Arystarch nie poszedł jednak na łatwiznę i znalazł oszacowanie dla \mbox{tg}\: 22,5^{\circ}, co pozwala ulepszyć wynik. Oto, jak rozumował, szukając tej wartości.

arystarch2

Mamy tu łuk okręgu o promieniu równym 1. Rysujemy dwusieczną kąta prostego, a potem jeszcze raz dwusieczną (linia kropkowana), szukaną wartość x możemy odnaleźć w trójkącie prostokątnym ABC, który jest także równoramienny. Stosując twierdzenie Pitagorasa (rodaka z Samos), otrzymamy równanie kwadratowe, które pozwala wyrazić x przez \sqrt{2}. Arystarch szukał czegoś prostszego, napisał więc następujące szacowanie:

(1-x)^2=2x^2>\dfrac{49}{25}x^2=\left(\dfrac{7}{5}x\right)^2,

opuszczając kwadraty po obu stronach i wyznaczając x, dostajemy

x=\mbox{tg}\: 22,5^{\circ}<\dfrac{5}{12}\Rightarrow \dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>\dfrac{12}{5}.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{22,5}{3}\dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>18.

Mamy więc wynik Arystarcha. Znaczył on, że Słońce jest wielkie w porównaniu z Księżycem, a także z Ziemią (oszacował on też odległość Księżyca od Ziemi). Być może z powodu wielkości Słońca, Arystarch zaczął rozważać hipotezę heliocentryczną: naturalniej wygląda, gdy mniejsze ciało krąży wokół większego niż odwrotnie. Wartość kąta 87º przyjęta była najprawdopodobniej tylko po to, żeby pokazać, że nawet jak się weźmie jakiś mały kąt, to można oszacować stosunki boków w trójkącie. Jak na matematyka przystało, nie przejmował się bardzo rzeczywistymi wartościami liczbowymi, jeśli nie są całkowite albo nie mają jakichś szczególnych własności. Ironią historii niedbałe szacowanie Arystarcha przetrwało aż po XVII wiek. Już po Arystarchu wyznaczono odległość Księżyca od Ziemi na 60 promieni ziemskich. Słońce byłoby więc w odległości 1200 promieni ziemskich. Przyjmując jeszcze, ze sfery planet powinny do siebie przylegać, wyznaczano wielkość wszystkich sfer aż do gwiazd stałych. Oczywiście, nic to nie miało wspólnego z rzeczywistością.

Nawiasem mówiąc wartość \sin 3^{\circ} daje się wyrazić przez ułamki i pierwiastki z liczb całkowitych, co oznacza, że można ją uzyskać za pomocą jakiejś konstrukcji geometrycznej. Dokładne wyrażenie wygląda następująco:

\sin(3^{\circ})=-\frac{\sqrt{\frac{3}{2}}}{8}-\frac{1}{8 \sqrt{2}}+\frac{\sqrt{\frac{5}{2}}}{8}+\frac{\sqrt{\frac{15}{2}}}{8}+\frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}-\frac{1}{2} \sqrt{\frac{3}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}ˆ

Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Zanim zaśniesz, pomyśl, jak wiele zawdzięczasz Ptolemeuszowi

Każdy z nas, żyjących, jest dzieckiem szczęścia: nasze drzewo genealogiczne nie miało żadnych luk – inaczej nie przyszlibyśmy na świat. Odziedziczyliśmy jednak znacznie więcej niż geny: stoi za nami cała cywilizacja, korzystamy z dorobku pokoleń ludzi przemyślnych, inteligentnych, czasami genialnych. Od teorii promieniowania Einsteina przez pierwsze lasery w latach sześćdziesiątych dwudziestego wieku aż do odtwarzaczy Blue-ray i skanerów kodów paskowych w sklepie czy w bibliotece prowadzi droga długa, lecz możliwa do prześledzenia. Na szczęście nie musimy sami tej drogi powtarzać, korzystamy z gotowych wytworów, sprawdzonych technologii, podręczników udostępniających wiedzę kolejnym pokoleniom. Podobnie jest z tysiącem innych przedmiotów, wynalazków, odkryć. Cóż bardziej naturalnego?

Jeśli cofniemy się w czasie dostatecznie daleko, postęp wiedzy przestaje być w jakimś momencie oczywisty. Nasza cywilizacja naukowo-techniczna zaczęła się w XVII wieku na zachodzie Europy i stopniowo rozprzestrzeniła (w różnym stopniu) na resztę świata. Poprzednie wieki przynosiły bardzo powolny postęp, jeśli w ogóle go przynosiły. Kiedy upadło imperium rzymskie, przez całe wieki działo się w chrześcijańskiej części Europy bardzo niewiele dobrego. Cesarz Karol I nie potrafił nawet pisać i choć na starość mozolnie ćwiczył na woskowych tabliczkach, nie udało mu się jednak tej sztuki opanować. Przez wieki odsetek ludzi potrafiących pisać był znikomy, a przecież od czytania i pisania do twórczego uprawiania nauki jest jeszcze parę szczebli do pokonania. Dopiero po długiej, mniej więcej tysiącletniej przerwie Europa przyswoiła sobie dorobek nauki greckiej. Kopernik przy całej swej oryginalności był zaledwie uczniem Ptolemeusza i jego islamskich kontynuatorów.

Jednym z najważniejszych wątków w historii nauki była teoria ruchów planet, dziedzina na pozór mało praktyczna i odległa od zastosowań. Kto wie jednak, czy to nie teoria astronomiczna Ptolemeusza przesądziła o sukcesie zachodnioeuropejskiej nauki. Bez Ptolemeusza nie byłoby Kopernika, bez Kopernika trudno wyobrazić sobie Newtona, a bez Newtona całej reszty. To oczywiście tylko skrót rozumowania, ale można by je rozbudować. Zagadnienie ruchów planet wymagało dokładnych obserwacji i najlepszych dostępnych technik matematycznych od trygonometrii aż do analizy matematycznej i teorii równań różniczkowych.

Derek J. de Solla Price, amerykański historyk nauki, uważał, iż to właśnie astronomia Klaudiusza Ptolemeusza sprawiła, że nauka rozwinęła się w Europie, a nie np. w Chinach czy wśród Majów:

Można więc zaryzykować twierdzenie, że ta zwarta teoria stanowi intelektualne plateau naszej kultury – wysokie plateau, występujące wyłącznie u nas. We wszystkich dziedzinach nauki wszystkich innych kultur nie ma niczego, co mogłoby zaćmić tę wczesną, a tak wyrafinowaną i zaawansowaną próbę czysto matematycznego wyjaśnienia przyrody. Gdybyśmy mieli wskazać na jakiś cud w naszej historii intelektualnej, to nie wiadomo, czy nie tu właśnie należałoby szukać źródła naszej nowożytnej nauki. [Węzłowe problemy historii nauki, przeł. H. Krahelska, s. 15]

Dzieło Ptolemeusza, znane jako Almagest, było w istocie podsumowaniem długiej tradycji. Tak samo zresztą jak Elementy Euklidesa – druga najważniejsza książka naukowa Greków. Teksty się wówczas przepisywało, siłą rzeczy zostawały więc te najlepsze, przekazujące najbardziej uporządkowaną wiedzę, nikomu by się nie chciało opłacać kopisty dla powielenia rzeczy miernych. Almagest zawiera opis ruchu planet: możemy obliczyć za jego pomocą, gdzie danego dnia o danej godzinie będą się znajdować która planeta. I wynik będzie całkiem dokładny, jak na obserwacje przeprowadzane gołym okiem. Jest to więc kompletna szczegółowa teoria ruchów ciał niebieskich. Dzisiejsi inżynierowie, którzy modelują matematycznie np. przepływy powietrza wokół skrzydeł samolotu, kontynuują tę tradycję. Wiemy teraz, że za pomocą modeli matematycznych opisać można mnóstwo różnych zjawisk. Przyroda jest matematyczna, ale także i ekonomia czy nauki społeczne korzystają z matematyki.

Były dwie tradycje astronomiczne w tej części świata: babilońska i grecka. Klaudiusz Ptolemeusz opisał, ale także i rozwinął tradycję grecką. Babilończycy posługiwali się ciągami liczb, byli rachmistrzami. Ich astronomia była całkiem precyzyjna, ale przypominała długi wydruk wyników jakiegoś programu komputerowego bez użycia grafiki. Babilończycy obliczyli np. bardzo dokładnie wartość \sqrt{2}, ale to Grecy udowodnili, iż jest to liczba niewymierna. Dla nich był to stosunek długości przekątnej kwadratu do jego boku. Także ruch planet Grecy opisali w sposób geometryczny. Podstawą był ruch po okręgu. Wyobrażano sobie np., że roczny ruch Słońca zachodzi po okręgu. Hipparch zmierzył jednak długości astronomicznych pór roku: żadna z nich nie trwała równe ćwierć roku. Poradził sobie z tym w taki sposób, że uznał, iż Słońce porusza się wprawdzie po okręgu ruchem jednostajnym, ale Ziemia położona jest w pewnej odległości od środka okręgu. Znalazł odpowiednie parametry, żeby wszystko się zgadzało. Jego model zastosował potem niemal bez zmian Mikołaj Kopernik: zamienił tylko miejscami Ziemię i Słońce.

hipparch

Zobaczmy np., jak Ptolemeusz opisywał ruch planety takiej, jak Mars (analogiczne modele działają dla pozostałych dwóch planet górnych: Saturna i Jowisza). Mars zazwyczaj porusza się względem gwiazd z zachodu na wschód, ale od czasu do czasu, wtedy, gdy jest najjaśniejszy zmienia kierunek ruchu. Wygląda to tak.

marsretro

Jasne jest, że tutaj nie wystarczy taki prosty model jak w przypadku Słońca. Spójrzmy na to najpierw z perspektywy heliocentrycznej, do której jesteśmy przyzwyczajeni. (Pomijamy dalej fakt, że płaszczyzny orbit Ziemi i Marsa są lekko nachylone, nie popełniamy dużego błędu, płaszczyzny te przecinają się pod kątem mniejszym niż 2^{\circ}, Ptolemeusz miał osobną teorię dla opisania tego tzw. ruchu w szerokości.) Mamy dwa wektory opisujące ruch Marsa \vec{r}_M i Ziemi \vec{r}_Z. Końce obu tych wektorów zakreślają elipsy, ale są one w praktyce bardzo bliskie okręgom. To, co obserwujemy, to kierunek od Ziemi do Marsa (starożytni astronomowie niewiele wiedzieli o odległościach). Możemy zapisać wektor od Ziemi do Marsa jako różnicę:

\vec{R}=\vec{r}_M-\vec{r}_Z=\vec{r}_M+(-\vec{r}_Z)

ptolemeusz

Druga równość zilustrowana jest na rysunku z prawej strony. To jest właśnie model Ptolemeusza. Widać, że jeśli okręgi stanowią dobre przybliżenie orbit, model taki będzie działać. Duży okrąg nazwano później deferentem, mały – epicyklem. Z historycznego punktu widzenia największą zaletą modelu Ptolemeusza okazała się możliwość przejścia do heliocentryzmu, czyli od obrazka z prawej strony do obrazka z lewej. Gdybyśmy nie mieli geometrycznych przedstawień, byłoby to znacznie trudniejsze. Dokładnie biorąc, model Ptolemeusza zawierał jeszcze dwa szczegóły, które znacznie poprawiały zgodność z obserwacjami. Ziemia była nieco odsunięta od środka deferentu – inaczej mówiąc, Słońce było odsunięte od środka okręgu (orbity Marsa na lewym rysunku). Drugim szczegółem – i to jest wkład samego Ptolemeusza – jest ruch niejednostajny po deferencie. W obrazie kopernikańskim odpowiadałoby to niejednostajnemu ruchowi po orbicie, rzeczywiście planeta bliżej Słońca porusza się szybciej, to skutek zasady zachowania momentu pędu, jak podczas piruetów na lodzie: ręce wzdłuż ciała skutkują szybszym wirowaniem. Jak jednak Grek z II w.n.e., dysponując tylko prostą trygonometrią, mógł opisać taki ruch niejednostajny? Ptolemeusz przyjął, że istnieje wewnątrz deferentu pewien punkt E taki, że obserwowany z niego ruch środka epicykla jest jednostajny. Założenie to krytykowały później niezliczone pokolenia astronomów, z Kopernikiem włącznie, ale sprawdza się ono znakomicie w praktyce.

Tutaj można zobaczyć model Ptolemeuszowy dla Marsa w ruchu (warto włączyć ślad planety: Trail on, żeby zobaczyć, jak skomplikowany jest ten ruch z ziemskiego układu odniesienia, skomplikowane spirale zakreślane przez planetę nigdy się nie powtarzają)

Klaudiusz Ptolemeusz mógłby świetnie się nadawać na portret na T-shircie, nie wiemy jednak, jak wyglądał. Nie znamy nawet jego imienia: Klaudiusz Ptolemeusz to jego nomen i cognomen, czyli dwa człony nazwiska. Żył w II w. w Aleksandrii, która nieco przypominała dzisiejszy Hong Kong albo Nowy Jork: wielkie, kosmopolityczne, bogate miasto, nieszczędzące pieniędzy na naukę. Prawdopodobnie był Grekiem, obywatelem Rzymu. Swoje wcześniejsze dzieła dedykował Syrusowi, o którym wiadomo jeszcze mniej: może był to jego nauczyciel, a może kochanek.