Mikołaj Kopernik, Commentariolus (przed 1514 r.)

Mikołaj Kopernik jest jednym z najbardziej przecenianych astronomów w historii. Dzieje jego pośmiertnej sławy mogłyby stać się pasjonującym przedmiotem badań (interesujący podtemat stanowi tu walka polskich i niemieckich uczonych o zaprzęgniecie postaci Nicolausa Coppernicusa czy Koppernigka w służbę szowinizmu narodowego). Im dalej od astronomii leżały kompetencje historyka i im więcej mijało czasu, tym głośniej wychwalano rewolucję kopernikańską. Dziś wiemy, iż prawdziwa rewolucja zaczęła się w nauce niemal sto lat później, już w wieku XVII, a Kopernik był tylko jednym z uczonych w długim szeregu od Greków i Ptolemeusza, przez astronomów islamskich, jak Pers Nasir At-Tūsi i Syryjczyk Ibn aš-Šātir, po pochodzących z krajów niemieckich Georga Peurbacha i Johannesa Müllera, znanego jako Regiomontanus. Kopernik wysunał rzeczywiście zadziwiający pomysł ruchu Ziemi i bezruchu Słońca, ale był on sprzeczny z całą nauką o ruchu – ówczesną fizyką i filozofią przyrody, natomiast w samej astronomii Kopernik był skrajnym konserwatystą, raczej ostatnim uczonym średniowiecznym niż pierwszym nowożytnym. Z pewnością nie zamierzał „ruszyć z posad bryły świata”, jak to zapowiadał Eugène Pottier, dziewiętnastowieczny autor słów Miedzynarodówki. Pomysł Kopernika okazał się płodny znacznie później, natomiast jego astronomia była porażką, jałowym dodawaniem epicykli do znanego modelu. W wyniku powstał model matematyczny, który raczej psuł, niż poprawiał astronomię Ptolemeusza. Astronomię przebudowali dopiero Tycho Brahe i Johannes Kepler: dlatego uczymy się o prawach Keplera, a nie o prawach Kopernika.

Wszystko to nie znaczy, rzecz jasna, że Niklas Koppernig niczego nie dokonał. Był najwybitniejszym astronomem swego pokolenia, tyle że nie każdemu pokoleniu dane jest dokonać w nauce czegoś przełomowego. Pomysł astronomii heliocentrycznej był krokiem w dobrym kierunku. Używając języka dzisiejszej fizyki, można powiedzieć, że Kopernik odkrył czy może zwrócił mocno uwagę na ukrytą symetrię ruchów planetarnych. Planety przed Kopernikiem poruszały się na niebie tak samo jak i przed nim, model Kopernikański nie był ani trochę dokładniejszy niż Ptolemeuszowy, ale od tej pory zaczęliśmy dostrzegać nowy punkt widzenia: widziane ze Słońca ruchy planet są znacznie prostsze niż z Ziemi. Nie zamieszkaliśmy na Słońcu, ale mogliśmy wykorzystać tę symetrię, ułatwiła ona późniejsze, znacznie późniejsze zrozumienie, jaki jest rzeczywisty mechanizm ruchu planet (u Kopernika Słońce było tylko lampą oświetlającą kosmos, nie wpływało fizycznie na ruchy planet).

Nie jest jasne, kiedy Mikołaj Kopernik powziął myśl o zbudowaniu całkiem nowego systemu świata. Być może podczas pobytu we Włoszech, ale najprawdopodobniej już po powrocie na Warmię. Możliwe, że idea nowego systemu dojrzewała w jego głowie całymi latami. Kopernik nigdy nie mógł się zajmować wyłącznie astronomią, wciąż musiał pamiętać przede wszystkim o tym, co może być przydatne dla kapituły fromborskiej, astronomia była jego zajęciem ubocznym. Po powrocie na Warmię był praktycznie odizolowany od kręgów naukowych i pozostał amatorem – w najlepszym znaczeniu tego słowa – z czasem stał się bowiem najbardziej kompetentnym astronomem swojej epoki.

Przez kilka lat Kopernik pełnił funkcję sekretarza swego wuja biskupa Lucasa Watzenrode, będąc po trosze lekarzem, po trosze humanistą. Początkowo mógł jeszcze wahać się co do wyboru dalszej drogi życiowej: humanista, lekarz, sekretarz dostojnika i kandydat na przyszłego biskupa, czy badacz gwiazd? W roku 1509 wydał zadedykowany wujowi przekład Listów Teofilakta. Było to ćwiczenie ze znajomości greki, literacko bezwartościowe, lecz przydatne dla astronoma, pragnącego rozumieć niektóre teksty źródłowe. W wierszu poprzedzającym tekst Teofilakta Wawrzyniec Korwin, pisarz królewskiego miasta Wrocławia, maluje taki obraz swego przyjaciela przy wuju biskupie: „Przy nim uczony mąż, jak wierny Achates przy Eneaszu, tłumacz dzieła niniejszego z greki na łacinę, który szybki ruch Księżyca i zmienne biegi bratniego Słońca, jako też gwiazd i planet – zdumiewające dzieło Wszechmocnego – wraz z ukrytymi przyczynami zjawisk umie objaśniać na godnych podziwu zasadach.” Może w tym czasie pojawił się już pomysł nowej astronomii. Niewykluczone, że pomysł ten miał wpływ na dalsze losy jego autora: chcąc opracować swą teorię, zrezygnował z kariery kościelnej (do której zapewne nakłaniał go wuj, nie mający żadnych innych bliskich krewnych, kandydatów na swych następców) i wrócił do sprawowania funkcji kanonika, która jednak umożliwiała pracę naukową. W każdym razie od roku 1510, jeszcze za życia wuja, zamieszkał Kopernik na stałe w siedzibie kapituły we Fromborku, gdzie z przerwami mieszkać miał już do końca życia. O mitrę biskupią wyraźnie się nie ubiegał (choć raz umieszczono go honorowo na liście kandydatów, bez realnej szansy na wybór), nie przyjął też wyższych święceń – kanonicy przyjmowali je często dopiero wtedy, gdy mieli zostać biskupami. Wśród szesnastu kanoników kapituły, gdzie wszystko – począwszy od miejsc w katedrze aż po kolejność zabierania głosu na posiedzeniach – regulowane było wedle zasady precedencji, czyli kolejności objęcia stanowiska kanonika, doszedł z czasem do miejsca piątego.

Pobyt we Fromborku nie oznaczał bynajmniej wygodnego i beztroskiego życia. Kopernik pracował jako administrator, ceniony lekarz, był jednym z najlepiej wykształconych ludzi na tym skrawku ziemi. Kanonicy byli wprawdzie ludźmi dość majętnymi, ale mieli liczne obowiązki, oprócz spraw czysto kościelnych administrować musieli należącymi do kapituły ogromnymi dobrami. Cała Warmia była oddzielnym księstwem rządzonym przez biskupa. W dodatku była terenem pogranicznym, z trzech stron otoczonym przez ziemie Zakonu Krzyżackiego, który stanowił ciągłe zagrożenie i z którym niezmordowanie walczył biskup Watzenrode, zabiegając jednocześnie w Rzymie o przeniesienie Zakonu z Prus na Podole. Kopernik zmuszony był więc zarówno do prowadzenia ksiąg, jak objeżdżania konno różnych majątków, a nawet gromadzenia broni na wypadek krzyżackiego oblężenia. Zajmował się też kwestiami reform gospodarczych, popierał unię monetarną Prus Królewskich z Koroną. Wcześniej w różnych miastach Prus Toruniu, Gdańsku i Elblągu bito własne monety, z herbem króla z jednej strony, a herbem miasta z drugiej. Nasilała się też tendencja do psucia monety, co było w interesie rządzących oraz oszustów. Kopernik chciał temu zaradzić przez ujednolicenie monety i ustalenie w niej stałej zawartości kruszcu.

W istocie jednak prowadził podwójne życie i wolne chwile poświęcał astronomii. Pierwszy zarys nowego systemu opisany został w krótkim anonimowym streszczeniu znanym jako Komentarzyk. Ów kilkustronicowy Komentarzyk znajdował się w roku 1514 w księgozbiorze krakowskiego uczonego Macieja z Miechowa, musiał więc zostać napisany wcześniej.

Pisze tam Kopernik:

Wielką ilość sfer niebieskich przodkowie nasi przyjęli, jak sądzę, dla zachowania zasady regularności w pozornym ruchu planet. Całkowicie niedorzeczne wydawało się bowiem przypuszczenie, by ciała niebieskie nie poruszały się zawsze jednostajnie po doskonałych kołach. Zauważyli zaś, że wskutek złożenia i połączenia ruchów jednostajnych na różne sposoby osiągnąć można dowolny ruch pozorny każdego z tych ciał do dowolnego położenia.

Następnie omawia krótko sytuację w astronomii od starożytności: najpierw Kallippos i Eudoksos starali się wyjaśnić ruchy nieba za pomocą sfer współśrodkowych, następnie przyjęto teorię Ptolemeusza, posługującą się kołami. Przeciwko pierwszej teorii w Komentarzyku, a także wielokrotnie później, przytaczał argument znany już od starożytności: przy stałych odległościach od Ziemi jasności planet nie powinny się zmieniać, podczas gdy w rzeczywistości zmieniają się bardzo wyraźnie.

Jednakże to, co głosili Ptolemeusz i wielu innych, pozostawało wprawdzie w zgodzie z danymi liczbowymi, ale budziło również niemałe wątpliwości. Tłumaczenia te nie były bowiem wystarczające bez dodatkowego wprowadzenia pewnych fikcyjnych kół wyrównujących, z których wynikało, że planeta ani na swojej sferze unoszącej, ani w odniesieniu do środka swego epicykla nie porusza się z zawsze jednakową prędkością. Toteż tego rodzaju system nie wydawał się ani ostatecznie doskonały, ani wystarczająco zgodny z rozumem.

Owe fikcyjne koła wyrównujące, to koła o środku w ekwancie E – którego nazwa łacińska brzmiała punctum equans – a więc punkt wyrównujący. Konstrukcja ta, wprowadzona przez Ptolemeusza, znakomicie poprawiała zgodność teorii z obserwacjami. Ruch punktu C był jednostajny, gdy patrzeć z punktu E, Ziemia jednak była w punkcie Z i mechanizm ten był nielogiczny z zegarmistrzowskiego punktu widzenia: obroty kół powinny być jednostajne, bo chodzi o idealny zegar stworzony przez Boga, który nie mógł być przecież partaczem; powinny one także być jednostajne względem swoich środków, a nie jakichś innych punktów.

Zważywszy te braki często się zastanawiałem, czy by się nie dało wynaleźć racjonalniejszego układu kół, od których zależałyby wszelkie pozorne nierówności ruchów i które obracałyby się ruchem jednostajnym względem własnych środków tak, jak tego wymaga zasada ruchu doskonałego. Przystąpiwszy do tego trudnego i niemal nierozwiązywalnego problemu znalazłem wreszcie sposób, w jaki można tego dokonać za pomocą kół o wiele mniej licznych i o wiele bardziej ze sobą zgodnych, niż przyjmowano dawniej, jeśli tylko wolno nam będzie przyjąć następujące założenia, zwane aksjomatami.

Założenie pierwsze

Nie istnieje jeden środek wszystkich sfer niebieskich.

Założenie drugie

Środek Ziemi nie jest środkiem świata, lecz tylko środkiem ciężkości i sfery Księżyca.

Założenie trzecie

Wszystkie sfery krążą wokół Słońca jako środka i dlatego w pobliżu Słońca znajduje się środek świata.

Założenie czwarte

Stosunek odległości Słońca od Ziemi do wysokości firmamentu jest o tyle mniejszy od stosunku promienia ziemskiego do odległości Słońca, że odległość ta jest niezauważalna w porównaniu z wielkością firmamentu.

Założenie piąte

Każdy ruch widoczny na firmamencie jest wywołany nie jego własnym ruchem, lecz ruchem Ziemi. Ziemia więc, wraz z otaczającymi ją żywiołami, w ciągu doby obraca się cała w swoich niezmiennych biegunach, podczas gdy firmament i najwyższe niebo pozostają nieruchome.

Założenie szóste

Cokolwiek spostrzegamy jako ruch Słońca, nie jest jego własnym ruchem, lecz skutkiem ruchu Ziemi i naszej sfery, z którą się obracamy wokół Słońca podobnie jak każda inna planeta; Ziemia wykonuje zatem kilka ruchów.

Założenie siódme

To, co u planet wydaje się ruchem wstecznym lub posuwaniem się naprzód, nie pochodzi od nich, lecz od Ziemi. Jej więc ruch sam wystarczy dla wyjaśnienia tak wielu nierówności dostrzeganych na niebie.

U Kopernika Ziemia przestaje pokrywać się ze środkiem świata – wbrew temu, co dowodził Arystoteles – stając się centrum już tylko lokalnym: ciążą ku niej ciała, ale tylko te, które znajdują się blisko, w granicach sfery Księżyca. Ciała ciężkie spadają więc w kierunku centrum Ziemi, a nie centrum świata.

Oprócz Słońca także gwiazdy są w rzeczywistości nieruchome, nie obracają się wokół Ziemi. Wraz z wprowadzeniem ruchu dobowego Ziemi odwraca się tradycyjny porządek: do tej pory to niebo, obejmująca wszystko najwyższa sfera gwiazd, miała się najszybciej, raz na dobę, obracać. U Arystotelesa niebo obracane miało być przez Nieruchomego Poruszyciela i miało przekazywać ruch do dołu. U chrześcijan takim poruszycielem stał się Bóg. Teraz ta największa sfera zastygnąć miała w absolutnym bezruchu.

Giovanni di Paolo, Stworzenie świata i wygnanie z Raju (1445)

Oczywiście obserwowane na niebie zjawiska będą takie same bez względu na to, czy to Ziemia się obraca raz na dobę, czy niebo krąży wokół niej raz na dobę. Wiedziano o tym już od starożytności, zawsze jednak wybierano tę drugą możliwość. Skoro Słońce jest w środku świata, to oczywiście jest ono nieruchome. Mamy więc obok sfery gwiazd drugie nieruchome ciało w kosmosie.

Roczny ruch Słońca na niebie, jego przesuwanie się wzdłuż Zodiaku [ekliptyki] także jest złudzeniem optycznym wywołanym ruchem Ziemi. Znów: z punktu widzenia obserwowanych zjawisk astronomicznych wszystko przebiegać będzie tak samo. Motywem Kopernika nie jest uzyskanie precyzyjniejszego opisu zjawisk, lecz zbliżenie się do prawdy. System Ptolemeusza jest wprawdzie „w zgodzie z danymi liczbowymi”, ale to za mało.

Założenia piąte i szóste zawierają, w sensie dosłownym, nowe spojrzenie na zjawiska niebieskie. Można sobie z tych słów wyobrazić, jak od czasu swego pomysłu Kopernik zaczął patrzeć na niebo zupełnie innym wzrokiem. Co innego widzi się wiedząc, że niebo obraca się wokół nas, co innego zaś, gdy uważamy, że to my obserwujemy niebo z wirującej karuzeli. Patrzenie nie jest czynnością prostą i niezależną od refleksji: co innego widzi zwolennik Ptolemeusza, dla którego cały świat wiruje, co innego zaś Kopernik, czy jego późniejsi zwolennicy, widząc absolutnie nieruchome gwiazdy. Jest to dwoistość poznawcza przypominająca pewne grafiki M.C. Eschera.

Psychologiczne doświadczenie nowego spojrzenia na wszechświat musiało być dla Kopernika niezwykle ważnym przeżyciem. Nigdy nie wrócił już do tradycyjnego obrazu. Nie usiłował ich też w żaden sposób pogodzić. Dla współczesnego człowieka przyzwyczajonego do zmian układów odniesienia oraz do względności prawd i punktów widzenia kopernikanizm może wydać się dość banalnym ćwiczeniem z tego zakresu. Trudno jest wyobrazić sobie sytuację kogoś, kto wykonuje je po raz pierwszy. Bez wątpienia Kopernik przekonany był o prawdziwości swojego pomysłu i wierzył w niego, choć nie miał na to żadnych dowodów.

Założenie siódme sprawia, że niepotrzebne stają się Ptolemeuszowe epicykle dla pięciu planet, wprowadzone właśnie po to, aby opisać zmiany kierunku ich ruchu na tle gwiazd. Jeśli przyjmiemy ruch Ziemi, to wszystkie planety poruszają się stale w jednym kierunku, bez żadnych ruchów wstecznych. Tu właśnie kopernikańskie spojrzenie przynosi najwieksze korzyści: układ planet wygląda teraz prościej.

Komentarzyk był przedstawieniem niezwykłego pomysłu. Przekonywał, że układ heliocentryczny może być astronomicznie nie gorszy, a nawet lepszy od tradycyjnego Ptolemeuszowego. Pokazywał, że możemy w nowy, niezwykły sposób spojrzeć na zjawiska niebieskie i że wtedy system świata przedstawia się prościej. Planety obiegają Słońce w czasie tym dłuższym, im dalej znajdują się od niego. Co więcej, w Komentarzyku Kopernik sądzi, że tor zakreślany przez daną planetę jest niezmienny, że powraca ona regularnie do tych samych miejsc kosmosu (w teorii Ptolemeusza tak nie było, ponieważ okresy obrotu epicyklu i deferentu były niewspółmierne). Później, pracując nad swoim traktatem Kopernik odkrył, że od czasów Ptolemeusza orbity planet zmieniły wyraźnie swą orientację względem gwiazd.

Ruch Słońca i ruch gwiazd są więc jedynie złudzeniem wywołanym ruchem Ziemi. Należało zatem Ziemi przypisać kilka ruchów, a dokładnie trzy:

Ziemia podlega trzem ruchom. Pierwszy jest ruch na wielkiej sferze [wielkim kręgu Orbis Magnus], z której okrążając Słońce według kolejności znaków Zodiaku, dokonuje obrotu w ciągu roku […] wydaje się, że Słońe porusza się po kole takim ruchem, jakby Ziemia leżała w środku świata. Tymczasem dzieje się to nie wskutek ruchu Słońca, lecz Ziemi. Kiedy na przykład znajduje się ona w znaku Koziorożca, Słońce widoczne jest na wprost, w kierunku średnicy, w znaku Raka i tak dalej […]

Potrzebny był Kopernikowi jeszcze jeden, trzeci ruch Ziemi, który wyjaśnić mógłby, dlaczego oś Ziemi zamiast obracać się w okresie roku, zachowuje mniej więcej stały kierunek względem gwiazd. Kopernik, zgodnie z tradycją, wyobrażał sobie ruch Ziemi wokół Słońca tak, jakby była ona unoszona na jakimś sztywnym ramieniu – było to myślenie kategoriami machina mundi, machiny świata złożonej ze sfer. Oś Ziemi unoszonej w taki sposób musiałaby się także obracać razem z nią samą, dlatego potrzebne było wprowadzenie trzeciego ruchu kompensującego. Nie istniało jeszcze takie pojęcie przestrzeni, do jakiego później przyzwyczaił nas Newton (obecnie stałość kierunku ziemskiej osi w przestrzeni objaśniana jest zasadą zachowania momentu pędu: Ziemia jak wirujący żyroskop zachowuje stałą orientację osi). Jednocześnie zastanawiał się Kopernik nad możliwością jakiegoś fizycznego mechanizmu zapewniającego stałą orientację osi ziemskiej względem gwiazd: „Wiem – by sięgnąć do pomniejszych spraw – że namagnesowana igła przyjmuje zawsze ten sam kierunek” (W późniejszych tekstach Kopernik już nie wraca do tego pomysłu, astronomia w jego pojęciu wymaga zresztą opisu zjawisk, a nie podawania ich fizycznych przyczyn).

Przy okazji ów trzeci ruch Ziemi, ruch jej osi obrotu, można było wykorzystać do tego, aby zdać także sprawę ze zjawiska precesji, „obrotu ósmej sfery”. Wystarczyło założyć, że okres trzeciego ruchu nie pokrywa się dokładnie z okresem obiegu Ziemi po orbicie, dzięki temu po wykonaniu pełnego okrążenia oś ziemska nie wraca dokładnie do tej samej orientacji, lecz nieznacznie obraca się względem gwiazd. Jak pisze Kopernik, „Powszechnie przyjmuje sie więc, że firmament obarczony jest kilkoma ruchami, którymi rządzą prawa, niedostatecznie dotąd zrozumiane. Ale ruch Ziemi może te zmienności wyjaśnić w bardziej naturalny sposób.”

Zamiast więc przypisywać niebu gwiaździstemu kilka ruchów, można te wszystkie ruchy przypisać Ziemi, gwiazdy uznając za nieruchome. To nie oś nieba wykonuje ruchy w kosmosie, ale oś Ziemi wykonuje te ruchy. Z technicznego punktu widzenia nic się nie zmieniało. Oczywiście rozwiązanie takie było bardziej zadowalające kosmologicznie: łatwiej przypisać pewne, nawet dość zawiłe ruchy Ziemi niż doskonałemu niebu.

Komentarzyk jest tekstem o tyle osobliwym, że zaczyna od tradycyjnej filozoficznej krytyki ekwantów – niejednostajności ruchów kołowych w tradycyjnej astronomii – a następnie formułuje ideę uproszczenia układu świata przez wprowadzenie ruchu Ziemi. Obie te kwestie nie są logicznie powiązane. Można wyeliminować ekwanty i pozostać przy układzie geocentrycznym, jak zrobili to dużo wcześniej uczeni islamscy ze szkoły w Maragha tacy, jak Nasir At-Tūsi i Ibn aš-Šātir. Można też przyjąć układ heliocentryczny oraz ekwanty, jak na pewnym etapie swej pracy zrobił Johannes Kepler. Kopernik miał trzymać się obu tych założeń jednocześnie.

Rozwiązania geometryczne astronomów islamskich są w zasadzie identyczne z przyjętymi przez Kopernika. Dzieła islamskie nie były powszechnie znane za czasów Kopernika, do niedawna nie były też znane historykom współczesnym. Zbyt wiele jednak szczegółów u Kopernika pokrywa się z rozwiązaniami stosowanymi w szkole z Maragha, aby mogło to być jedynie zbiegiem okoliczności. Najprawdopodobniej podczas pobytu w Italii Kopernik zetknął się z jakimiś manuskryptami ze Wschodu. Uczeni islamscy nie proponowali jednak ruchu Ziemi. Astronomiczna teoria heliocentryczna – zawierająca wszelkie niezbędne szczegóły – jest niewątpliwie własnością intelektualną Kopernika. Wielu historyków czuje się pewniej, gdy mogą sprowadzić odkrycie do zapożyczenia pewnych elementów z przeszłości, jakby nie wierząc, by jakikolwiek pomysł na świecie mógł powstać jedynie dzięki myśleniu. Wyznają oni swego rodzaju atomizm w świecie idei: idee krążą wiecznie niby niezmienne atomy, łącząc się co najwyżej od czasu do czasu w nowe wzory i kombinacje. Poszukiwano z zapałem także i prekursorów teorii Kopernika, jednak bez zadowalających rezultatów. Pomysły jakiegoś ruchu Ziemi pojawiały się niejednokrotnie, zwykle były to jednak tylko pomysły, nie traktowane zbyt serio przez tych, którzy je głosili. Sama możliwość ruchu Ziemi znajdowała się od starożytności właściwie ciągle w polu widzenia uczonych, odkąd Arystoteles i Ptolemeusz uznali za stosowne podać argumenty przeciwko ruchowi Ziemi. Kopernik chcąc zrewidować punkt widzenia astronomii zwracał oczywiście uwagę na wzmianki o ruchu Ziemi. Bardziej oczywistą ideą był tu ruch dobowy Ziemi wokół osi. Chyba jednak nikt prócz Arystarcha (o którym Kopernik nie wiedział) nie rozpatrywał ruchu rocznego, znacznie bardziej brzemiennego w skutki i ważniejszego, zarówno dla Kopernika, jak i dla dalszego rozwoju nauki. Ponadto gdybyśmy nawet znaleźli jakieś źródła, które mogły zasugerować Kopernikowi jego punkt wyjścia, to i tak pozostaje faktem, że nikt nie przekształcił idei tego rodzaju w funkcjonującą teorię astronomiczną, a tylko to się ostatecznie liczy w nauce. Z dwóch podstawowych innowacji kopernikańskich: heliocentryzmu i ruchów jednostajnych, to ta pierwsza – bardziej zaskakująca i ważniejsza historycznie – okazuje się własnością intelektualną Kopernika, druga zaś – która zdawała się ważniejsza współczesnym Kopernika – okazała się zbieżna z wcześniejszymi rozwiązaniami astronomów islamskich i być może nie jest nawet niezależnym wkładem Kopernika do nauki.

Ostatecznie Kopernik formułuje swój układ heliocentrycznego kosmosu, w którym planety poruszają się dzięki złożeniu ściśle jednostajnych ruchów kołowych. Potrzebował do tego, jak sam obwieszcza w Komentarzyku 34 kół. W stosunku do 55 sfer Arystotelesa stanowi to niewątpliwe uproszczenie. Rzecz jednak w tym, że należałoby tę teorię zestawiać nie z filozoficznym modelem Arystotelesa, który nigdy nie objaśniał ilościowo żadnych zjawisk i stanowił raczej rodzaj muzealnego zegara, od którego nie wymaga się by chodził, lecz z działającą teorią matematyczną Ptolemeusza. Na razie jednak Kopernik nie zbudował porównywalnej teorii, miał jedynie jej zarys, wstępną wersję. W trakcie pracy nad Obrotami miał się przekonać, że szczegółowe porównanie nie wypada już tak jednoznacznie na korzyść jego systemu.

Ruch planet wg Komentarzyka. Słońce (w istocie tzw. Słońce średnie, a nie to fizyczne, świecące na niebie) znajduje się w centrum dużego koła o promieniu R. Znikły epicykle Ptolemeusza, ale wprowadza Kopernik dwa dodatkowe epicykle: jeden o promieniu e_1 obracał się tak, aby linia C_1C_2 pozostawała stale równoległa do linii SO. Z dzisiejszego punktu widzenia powiedzielibyśmy, że wektor C_1C_2 pozostaje stały (względem gwiazd), dla Kopernika obracał się on, ponieważ położenia C_2 mierzono od prostej SC_1, czyli tak jakby mniejsze koło obracało się na jakimś mechanicznym ramieniu. To pierwsze koło łatwo było zastąpić kołem mimośrodowym – ekscentrykiem – w terminologii ówczesnych astronomów. Było jeszcze drugie koło o promieniu e_2 i ono obracało się tak, aby trapez C_2PEO pozostawał wciąż równoramienny. Ta konstrukcja zastępowała ekwant i wymyślona była przez Ibn aš-Šātira. Planeta zakreślała zamkniętą, nieco owalną linię (owal wybrzuszony był w złą stronę w porównaniu do keplerowskiej elipsy). François Viète zauważył pod koniec wieku XVI, że ruch po dwóch mniejszych kółkach można zastąpić jednym ruchem po elipsie, ale oczywiście Kopernikowi nie o to chodziło.

Wielu historyków nauki zastanawiało się nad genezą reformy Kopernika. Komentarzyk ukazuje nam gotowe rozwiązanie, w którym zmienić się miały już tylko szczegóły techniczne, nie mówi natomiast nic o tym, jak przyszła mu do głowy tak niezwykła myśl i dlaczego Kopernik zdecydował się prześledzić jej konsekwencje. Wiedział też Kopernik zastanawiając się nad swoim pomysłem, że z jednej strony ma tu pewne wsparcie w starożytnych tekstach – ruch Ziemi nie jest więc pomysłem aż tak absurdalnym, jakby się to mogło na pozór wydawać. Z drugiej zaś strony zauważył, niewątpliwie po skrupulatnym zbadaniu sprawy, że „argumenty, którymi filozofowie przyrody starają się udowodnić nieruchomość Ziemi, po większej części oparte są na zjawiskach i wszystkie zostaną tu obalone, gdy tylko wyjdziemy poza pozory” [O obrotach, ks. I] – argumenty te tracą swą moc dowodową, jeśli prawdą jest, że Ziemia się porusza; nie dowodzą więc one w istocie niczego, są przekonywaniem przekonanych, nie mogą więc przeszkodzić w rozważeniu hipotezy ruchu Ziemi. Stosuje się to np. do arystotelesowskiego utożsamienia środka ku któremu spadają ciała ze środkiem świata. Jeśli uznamy, jak Kopernik, że ciała spadają ku środkowi Ziemi, to tym samym stanie się możliwe, że Ziemia nie jest środkiem świata.

Istotą kopernikanizmu z punktu widzenia ruchów w świecie są dwa założenia (piąte i szóste w Komentarzyku): o nieruchomości gwiazd oraz nieruchomości Słońca. Pierwsze przerzuca na Ziemię ruch dobowy oraz długookresowy ruch precesyjny: Ziemia wiruje, oś jej obrotu zmienia położenie w przestrzeni. Drugie zastępuje widoczny roczny ruch Słońca rocznym ruchem orbitalnym Ziemi. Trudno też ustalić, który z dwóch pomysłów – nieruchomość gwiazd czy nieruchomość Słońca pojawił się jako pierwszy. Jasne jest bowiem, że jeśli uda nam się wyjaśnić jakiś ruch obserwowany na niebie odpowiednim ruchem Ziemi, to aż się prosi, aby podobną metodę rozciągnąć i na inne ruchy.

Być może punktem wyjścia był nawet nie obrót dobowy, choć ten akurat obrót najczęściej bywał wcześniej rozpatrywany. W którymś momencie Kopernik mógł zdać sobie sprawę, że zawiłe ruchy precesyjne gwiazd – ruchy ósmej sfery, wymagające wprowadzania kolejnych sfer dziewiątej i dziesiątej – prościej jest opisać zmianami położenia osi Ziemi, nie każąc gwiazdom wykonywać skomplikowanych obrotów i kołysań, które im niezbyt przystoją. Z chwilą gdy gwiazdy uznamy za nieruchome, przyjąć trzeba, że Ziemia wiruje. Za takim punktem wyjścia pracy Kopernika opowiadał się Jerome R. Ravetz.

Inną możliwością było zwrócenie uwagi na to, że Ptolemeuszowe epicykle planet górnych obracają się względem gwiazd w okresie rocznym: ich obrót jest ściśle ze sobą zsynchronizowany. Linie ZS i XM pozostają równoległe do siebie w każdej chwili. Jednocześnie koła w konstrukcji ptolemeuszowej można przestawiać, ponieważ dodawanie wektorów jest przemienne. Model Ptolemeuszowy można dowolnie przeskalowywać, ważne są w nim jedynie kąty. Dlatego wszystkie koła obracające się w okresie roku możemy zastąpić jednym wspólnym kołem i uznać je za orbitę Słońca wokół Ziemi. Powstaje wówczas konstrukcja, w której środki kół planet leżą w Słońcu. Schemat taki pozwalał zaoszczędzić po jednym kole dla każdej z pięciu planet, których dotyczył. W dodatku pewne regularności, które w teorii Ptolemeusza były dodatkowymi i niekoniecznymi założeniami (jak synchronizacja epicyklów), u Kopernika znajdowały naturalne wyjaśnienie. Struktura teorii astronomicznej wyraźnie zyskiwała na przejrzystości, można było zrozumieć fakty przedtem niepowiązane ze sobą. Otrzymywało się także znacznie lepiej wyglądający układ planet, bez dużych epicyklów.

Ostatecznie Komentarzyk nie jest przekonujący dla sceptyka, nie przedstawia bowiem żadnych rozstrzygających argumentów za rozwiązaniem Kopernikańskim. Argumentów takich nie było zresztą również długo po śmierci Kopernika. Można się było zgodzić, że na gruncie astronomii pomysł Kopernika miał pewne zalety i nie prowadził do natychmiastowej sprzeczności z faktami, nie był więc tak absurdalny, jakby mogło się na początku wydawać. Aby jednak serio potraktować propozycję Kopernika, należało najpierw przejść do porządku nad argumentami arystotelików przeciwko ruchowi Ziemi. Wprawdzie argumenty te istotnie były słabsze, niż się mogło wydawać – Kopernik miał tu trafne przeczucie, tym niemniej nie można było ich zbyć kilkoma zdaniami. Na szczęście dla rodzącej się teorii Kopernik nie poświęcał im wielkiej uwagi. Być może sprzyjającą okolicznością była tu naukowa izolacja Kopernika, obracając się na codzień wśród akademickich kolegów musiałby odpierać ich ataki, do czego nie był wtedy przygotowany merytorycznie, ani jak się zdaje psychicznie. Środowiska naukowe urabiają poglądy swoich członków, a w tym przypadku trudno byłoby oczekiwać przychylnych reakcji na nową ideę. Niejednokrotnie w historii nauki pewna izolacja badacza, przynajmniej w jakimś okresie, sprzyjała rozwijaniu oryginalnego punktu widzenia.

Nie wiadomo, jakie były reakcje na Komentarzyk, nie ma wszakże powodu przypuszczać, aby były zachęcające. Alexandre Koyré uważa, że Komentarzyk znała bardzo ograniczona liczba osób, w szczególności nie był zapewne pokazywany profesorom w Krakowie, ponieważ w przeciwnym razie mielibyśmy jakieś wiadomości o ich reakcjach. Według świadectwa jednego z późniejszych astronomów Caspara Peucera nazwisko Kopernika jako uczonego stało się głośne już około 1525 r.

Szczegółowe dowody matematyczne zostały „przeznaczone do większego dzieła.” Dopiero później nastąpić miało wieloletnie opracowywanie matematycznych szczegółów – szczegółów, które w astronomii są wszystkim. Najbardziej zadziwiające jest to, że owo większe dzieło istotnie powstało. Mieszkając z dala od ośrodków życia umysłowego, pochłonięty uciążliwymi codziennymi obowiązkami, Kopernik potrafił nie tylko zaproponować, lecz także i opracować we wszystkich matematycznych szczegółach nową teorię niebios, znaleźć czas i siły na niezbędne obserwacje i, przede wszystkim, obliczenia. Teorii takiej nie zaproponował ani żaden z astronomów islamskich, którzy przez wieki zastanawiali się nad dorobkiem Ptolemeusza, ani żaden z astronomów europejskich, sławnych poprzedników Kopernika, jak Georg Peurbach czy Regiomontanus. Dwaj ostatni żyli wprawdzie dość krótko, nic jednak nie wskazuje, aby mieli ideę równie wielkiego dzieła. Jeśli podziwiamy śmiałość Kolumba czy Vasco da Gamy, którzy potrafili zdobyć się na odszukanie nowych dróg i nie wahali się podejmować ryzyka, to należy także mieć podziw dla intelektualnej odwagi Kopernika, ktory podjął się opracowania nowego systemu astronomii, sprawdzenia do końca swojego odważnego pomysłu, mimo że wydawać on się mógł szalony. Oczywiście innego rodzaju odwagi wymaga morska podróż i astronomiczne obliczenia – w obu jednak wypadkach trzeba wierzyć w swoją szczęśliwą gwiazdę. Być może właśnie w odwadze zapuszczenia się w gąszcz rachunków i obserwacji niezbędnych do zbudowania nowej astronomii należy upatrywać wpływu epoki Odrodzenia, Kopernik jest człowiekem renesansu, człowiekem odważniejszym i podejmującym ryzyko.

Impulsem do opracowania traktatu stało się może zetknięcie z drukowanym wydaniem Almagestu (1515) Ptolemeusza, który ukazywał wyraźnie, czego potrzeba, aby zbudować kompletną teorię ruchu planet. Kopernik jako pierwszy nowożytny astronom podjął się tego zadania. Z tą myślą zaczął prowadzić obserwacje niezbędne, by wyznaczyć parametry ruchów planet. Jak się wydaje, to właśnie na potrzeby dzieła Kopernik zajął się poważniej obserwacjami astronomicznymi. Choć dokonywał ich także i wcześniej, i do książki weszła nawet jedna z obserwacji wykonanych jeszcze we Włoszech, to Kopernik nie był nigdy wielkim obserwatorem. Nie był też obserwatorem najdokładniejszym. Jego przyrządy były stosunkowo proste, by nie powiedzieć prymitywne i służyć miały jedynie uzyskaniu niezbędnych danych liczbowych. Ostateczna teoria nie była ani dokładniejsza, ani prostsza od Ptolemeuszowej. Istotny okazał się właściwie tylko heliocentryczny punkt wyjścia, cała reszta zestarzała się szybko. W 1609 r. Johannes Kepler wydał dzieło Astronomia nova i to ono stanowi początek nowożytnej astronomii.

Reklamy

Czemu Ptolemeusz był wielkim astronomem?

Klaudiusz Ptolemeusz – jak wskazuje rzymskie Klaudiusz i greckie Ptolemeusz – był Grekiem żyjącym w czasach imperium rzymskiego. Pracował w kosmopolitycznej, handlowej i uczonej Aleksandrii, jednym z wielu miast założonych przez Aleksandra Macedońskiego. Zdobywca światów umarł młodo, lecz poszerzył zasięg greckiej kultury. Egipska Aleksandria stała się głównym ośrodkiem nauki tworzonej w języku greckim: Muzeum albo Musejon, przybytek muz, był czymś w rodzaju instytutu naukowego ze słynną biblioteką, obserwatorium astronomicznym, ogrodami botanicznymi i zoologicznymi. Od Euklidesa przez Apoloniusza, Hipparcha do Ptolemeusza rozwijały się tam nauki matematyczne. Sam Ptolemeusz jest autorem Geografii, traktatów o muzyce, optyce i astrologii oraz podstawowego dzieła astronomicznego Mathēmatikē Syntaxis („Zbiór matematyczny”– bezbarwne tytuły nie są wynalazkiem współczesnych uczonych), znanego też jako Megiste („Największy”), co przeszło w arabskie al-majisṭī, z czego wzięła się używana od średniowiecza do dziś nazwa Almagest. Już sama historia tego tytułu pokazuje skomplikowane dzieje przekazywania wiedzy greckiej do nowożytnej Europy.

Mapa świata wg Geografii Ptolemeusza narysowana w XV wieku (Wikimedia Commons)

Mapka rozpowszechnienia Almagestu do czasów Kopernika (В.А. Бронштэн, Клавдий Птолемей, 1988)

Z czasem dzieło Ptolemeusza zawędrowało nawet dalej niż sięgały zdobycze Aleksandra Macedońskiego, bo aż do Indii i do Chin. Co było w nim tak niezwykłego, że tłumaczono je na różne języki, pracowicie kopiowano, a potem drukowano? Almagest i Elementy to najważniejsze dzieła greckie dotyczące nauk ścisłych. Elementy były popularne aż do końca XIX wieku, ponieważ zawierały podstawy geometrii i nadawały się do nauczania w szkołach. Jednak późniejsi uczeni greccy, jak Archimedes, Apoloniusz czy Pappus znacznie powiększyli wiedzę matematyczną. Inaczej w przypadku Almagestu: stanowił on szczyt osiągnięć greckich i można odpowiedzialnie powiedzieć, że dopiero Johannes Kepler posunął dalej sztukę rozumienia ruchów planet, przekraczając poziom osiągnięty przez Ptolemeusza. A więc od II w.n.e. aż do początku wieku XVII ludzkość nie miała lepszej astronomii niż Ptolemeuszowa. Zmieniały się mapy polityczne, wierzenia, religie, języki, kultury, a dzieło Ptolemeusza wciąż stanowiło punkt odniesienia, szczyt kiedyś już zdobyty, ale wciąż trudny do ponownego zdobycia.

Teorie wykładane w Almageście nie są autorstwa Ptolemeusza. Konstrukcje geometryczne zawierające złożenia ruchów po okręgach zastosował już Apoloniusz. Wiele ważnych obserwacji dokonał Hipparch. Do Ptolemeusza jednak należy synteza całej tradycji i sformułowanie jej w postaci pewnego systemu wiedzy. Korzystał z nagromadzonych obserwacji, sam był aktywnym obserwatorem, poprawił też zastane rozwiązania. Almagest pozwala dla danej daty i godziny znaleźć położenie na niebie Słońca, Księżyca, a także pięciu znanych wówczas planet. Sądzono, że położenia te mają wpływ na los człowieka – astrologia była głównym motywem badań astronomicznych. Można wszakże sądzić, że matematyczne umysły w rodzaju Apoloniusza czy Ptolemeusza tak czy owak zgłębiałyby ruchy planet. Są one bowiem powtarzalne, ale niezupełnie, ich usytuowanie nigdy się naprawdę nie powtarza, choć w oczywisty sposób zawiera pewne cykle. Sądzę, że i bez astrologii ruch planet byłby wyzwaniem. Astrologia była raczej koniecznym dopowiedzeniem: skoro świat jest tak urządzony, że owe boskie ciała krążą w zawiły sposób po niebie, to musi to w jakiś sposób dotyczyć także naszego losu. Oczywiście, przeskok od matematyki do cech charakteru czy obliczenia daty odpowiedniej  np. na ślub był logicznie i empirycznie wadliwy, ale i zrozumiały: ludzie zawsze starają się znaleźć w świecie przede wszystkim to, co może ich dotyczyć. Egocentryzm jest postawą jeszcze bardziej naturalną niż geocentryzm.

Podstawowa idea modeli planetarnych była prosta. Mamy dwa okręgi: większy o środku O (deferent) i mniejszy o środku C (epicykl). Wektor \overrightarrow{OC} obraca się, unosząc epicykl, planeta P znajduje się na jego obwodzie, na końcu wektora \overrightarrow{CP}. Ziemia spoczywa w punkcie Z. Ruch zachodzi tu w jednej płaszczyźnie. Planety znajdują się na niebie zawsze w pobliżu ekliptyki, czyli rzutu płaszczyzny orbity Ziemi na sferą niebieską. A więc w pierwszym przybliżeniu możemy ich ruchy rzutować na tę jedną płaszczyznę – dla nas jest to płaszczyzna orbity Ziemi, dla starożytnych była to płaszczyzna orbity Słońca. Dzięki temu model płaski może opisywać najważniejszą część ruchu planet. Odchyleniami od ekliptyki zajmowano się również, ale było to niejako drugie przybliżenie, którego szczegóły tutaj sobie darujemy. Warto pamietać, że dopiero Johannes Kepler wpadł na pomysł, iż orbity planet leżą w płaszczyznach, które przecinają się w Słońcu. Nie wiedzieli o tym starożytni ani Mikołaj Kopernik.

Zazwyczaj dominuje ruch po deferencie w lewo i planeta porusza się względem gwiazd z zachodu na wschód. Czasem jednak zatrzymuje się i zaczyna poruszać się ruchem wstecznym, ze wschodu na zachód. Potem znów wraca do ruchu prostego, tzn. z zachodu na wschód. Pętla w naszym przybliżeniu powinna być spłaszczona: zostaje tylko zmieniający się ruch w płaszczyźnie ekliptyki. Epicykl potrzebny był właśnie do tego, by odtwarzać ruch wsteczny planety.

 

Ptolemeusz ani jego koledzy nie wiedzieli prawie nic o odległościach planet. Wiadomo wprawdzie, że np. Mars jest najjaśniejszy w środku swego ruchu wstecznego, kiedy jest na niebie po przeciwnej stronie niż Słońce (jest w opozycji do Słońca, mówią astronomowie). Sugeruje to, że powinien wtedy być bliżej, ale epicykl ma taki, a nie inny kształt z przyczyn estetyczno-filozoficznych: co się porusza w cyklu, powinno się poruszać koliście. Kierunki przewidywane przez ten model są  opisane prawidłowo – tyle wiedział Ptolemeusz. Fakt, że również i odległości są opisane prawidłowo, jest dodatkową cechą modelu, z czego pierwszy zdał sobie sprawę Kopernik. Jeśli znamy kierunki obu wektorów \overrightarrow{OC}, \overrightarrow{CP}, to znamy i wektor położenia planety

\overrightarrow{ZP}=\overrightarrow{ZO}+\overrightarrow{OC}+\overrightarrow{CP}.

Pierwszy z wektorów po prawej stronie jest stały. Zauważył bowiem Hipparch, że Ziemię lepiej jest odsunąć nieco od środka deferentu O (dla każdej planety inaczej i w innym kierunku). Dwa ruchome wektory obracają się jednostajnie i ich kierunek dla danej chwili można zawsze obliczyć.

I w tym miejscu pojawia się z pozoru drobne ulepszenie autorstwa Ptolemeusza: ekwant. Miał on do dyspozycji więcej obserwacji niż Hipparch, minęły między nimi stulecia – postęp naukowy był wówczas niesłychanie powolny. Zresztą po Ptolemeuszu w zasadzie postępu nie było przez następne tysiąc pięćset lat. Piszę w zasadzie, ponieważ astronomowie islamscy i potem chrześcijańscy aż do Kopernika i do końca XVI wieku wprowadzali rozmaite udoskonalenia, które jednak niczego nie poprawiały. Na początku XVII wieku nadal najlepszą teorią była ta Ptolemeuszowa. Jej błędy dla Marsa zwykle nie przekraczały 1°.

Błędy w położeniach Marsa według efemeryd Origanusa (Ptolemeusz) i Keplera (źródło: O. Gingerich, Johannes Kepler and the Rudolphine Tables, „Sky and Telescope”, December, 1971, s. 328). Warto może dodać, że oprócz uczonych islamskich i Kopernika nikt nie dodawał epicykli do epicykli. Spotyka się czasem powiedzenie, że dalsze poprawianie jakiejś niezbyt udanej teorii to dodawanie kolejnych epicykli. Otóż takiego dodawania kolejnych epicykli w historii nie było. Teoria Ptolemeusza zestarzała się, by tak rzec moralnie (heliocentryzm itd.), ale matematycznie i pod względem zgodności z obserwacjami – wcale. Dalsze epicykle nie były potrzebne.

Gdy obserwuje się ruchy Marsa (w tym przypadku widać to najwyraźniej), okazuje się, że pętle ruchu wstecznego mają różne wielkości w różnych częściach nieba. Planeta w opozycji porusza się też raz szybciej, raz wolniej. Odsunięcie Ziemi od środka deferentu nie wystarczy. Dlatego Ptolemeusz wprowadził kontrowersyjne, ale znakomite rozwiązanie. Przyjął mianowicie, że punkt C  porusza się jednostajnie nie względem środka okręgu O, lecz względem pewnego innego punktu E (zwanego ekwantem) i położonego po drugiej stronie środka deferentu tak, że ZO=OE.

Teraz kąt M jest proporcjonalny do czasu, planeta nadal krąży jednostajnie po epicyklu (kąt \gamma=\angle{HCP} jest proporcjonalny do czasu). Teoria przewiduje następujące ruchy Marsa:

Z punktu widzenia obserwatora ziemskiego Mars zatacza skomplikowane spirale: ich pętle odpowiadają ruchowi wstecznemu. Widzimy, że ich wielkość zależy od miejsca, w którym planeta znajdzie się najbliżej Ziemi: opozycje bliskie ujemnemu kierunkowi osi x odpowiadają mniejszej odległości planety od Ziemi niż opozycje po przeciwnej stronie ekliptyki. Dobrą zgodność ilościową otrzymujemy, uwzględniając ekwant – kontrowersyjne, jako się rzekło, rozwiązanie Ptolemeusza. Popatrzmy jeszcze na pętle Wenus:

Na drugim wykresie widać, że tor planety podwaja się po ośmiu latach. Zjawisko to wynika ze szczególnej wartości stosunku okresów obiegu Ziemi i Wenus wokół Słońca i nie ma dotąd przekonującego wyjaśnienia.

Jak dobrym przybliżeniem rzeczywistości jest ekwant? W przypadku Marsa deferent odpowiada orbicie planety, epicykl – orbicie Ziemi. Ograniczmy się do deferentu.

Położenie punktu C, czyli heliocentrycznie rzecz biorąc, planety, dane jest odległością r i kątem v. Kąt M jest proporcjonalny do czasu. Można łatwo obliczyć, że w modelu Ptolemeusza dla R=1, otrzymujemy (pomijając wyrazy z potęgami e wyższymi niż druga):

\left\{\begin{array}{l}M-v=2e\sin M-e^2 \sin 2M\\[5pt] r=1+\frac{3}{4}e^2+e\cos M-\frac{3}{4}e^2\cos 2M.\end{array}\right.

Porównajmy to z wynikami dla ruchu keplerowskiego po elipsie z tą samą dokładnością:

\left\{ \begin{array}{l} M-v=2e\sin M-\frac{5}{4}e^2 \sin 2M \\[5pt] r=1+\frac{1}{2}e^2+e\cos M-\frac{1}{2}e^2 \cos 2M.\end{array}\right.

Zatem błędy równe są

\left\{\begin{array}{l}\Delta v=-\frac{1}{4}e^2 \sin 2M \\[5pt] \Delta r=-\frac{1}{4}e^2(1-\cos 2M).\end{array}\right.

Nawet dla Marsa, gdy e\approx 0,1, błędy są mniejsze niż \Delta v=0,0025 \mbox{ rd}=8,5', a \Delta r=0,0025. Teoria Ptolemeusza jest więc rewelacyjnie dokładna, biorąc pod uwagę ówczesny stan wiedzy i dokładność pomiarów. O takiej dokładności marzył Mikołaj Kopernik, ale jej nie osiągnął. Problemem była tu nie teoria, lecz dobór parametrów modelu na podstawie obserwacji.

Jeszcze na koniec powiedzmy, dlaczego pomysł z ekwantami był kontrowersyjny przez 1500 lat, zanim Kepler nie zrozumiał, jak świetne jest to przybliżenie rzeczywistych ruchów i nie poszedł dalej. Teoria geometryczna była znakomita, ale nie bardzo sobie wyobrażano, jak niebiosa realizują taki ruch. Planety były, jak wierzono, unoszone przez pewne sfery, rodzaj mechanizmu zegarowego. Można wyobrazić sobie, że ów mechanizm zawiera mniejsze i większe kółka. Można było nawet umieścić Ziemię ekscentrycznie. Jednak obrót, który nie jest jednostajny względem swego środka C, ale względem innego punktu E, wydawał się mechanicznie niewykonalny. Ludzie rozumieją zawsze tyle, ile potrafią wykonać albo przynajmniej wyobrazić sobie jako pewną idealną wersję tego, co działa tu na Ziemi. Ptolemeusz wykazał się niezwykłą odwagą, przedkładając zgodność z obserwacjami nad fizyczną realizację. Jego ekwant był ogniskiem elipsy w zarodku: w jednym ognisku mamy Słońce, wokół drugiego ogniska, które jest puste, prędkość kątowa jest niemal stała.

Pokażemy jeszcze, jak w dzisiejszym języku opisać można Ptolemeuszowe tory planet i jak wyznaczyć M-v,r w funkcji M, czyli czasu.

Z trójkąta COE i twierdzenia sinusów dostajemy

\dfrac{\sin (\beta-M)}{e}=\dfrac{\sin M}{R} \Rightarrow \beta=M+\arcsin (\frac{e}{R}\sin M).

Wektor położenia planety jest zatem równy:

\overrightarrow{ZP}=[e+R\cos\beta+\varrho \cos\alpha,R\sin\beta+\varrho\cos\alpha],

gdzie \alpha jest kątem CP z osią x. Oba kąty M, \alpha zmieniają się liniowo z czasem:

 M=\dfrac{2\pi}{T_1}+M_0,\; \alpha=\dfrac{2\pi}{T_2}+\alpha_0,

gdzie T_1,T_2 są okresami obiegu deferentu i epicyklu. Linie zakreślane przez P narysowane zostały wyżej dla przypadku Marsa i Wenus.

Z rysunku tego łatwo wyznaczyć M-v,r w funkcji M, czyli czasu.

Mamy bowiem kolejno:

\mbox{tg}\,(M-v)=\dfrac{ZE''}{CE''}=\dfrac{2e\sin M}{CE'+E'E''},

CE'=1^2-e^2\sin^2 M,\, E'E''=e\cos M.

Ostatecznie więc

\mbox{tg}\, (M-v)=\dfrac{2e\sin M}{\sqrt{1-e^2\sin^2 M}+e\cos M}.

Odległość r znajdujemy z tw. Pitagorasa. Wynik dla ruchu keplerowskiego znaleźć można w podręcznikach mechaniki niebios, np. klasycznej książce F.R. Moultona. Nasza konwencja jest zgodna z tradycją dawnej astronomii: mierzymy kąty od apogeum. Obecnie panuje zwyczaj mierzenia ich od perigeum/perihelium, różnią się więc o 180º, co daje nieco inne znaki.

Wieczny powrót od Retyka i Kopernika do Poincarégo

Niebo Greków składało się z wirujących z różną prędkością sfer. Jak pisał Platon w Timajosie:

…aby dać jasną miarę relatywnej powolności i szybkości, z którymi gwiazdy wykonują swoich osiem ruchów, Bóg umieścił na drugiej po Ziemi orbicie światło, które nazywamy teraz Słońcem, aby całe niebo było oświetlone, a jestestwa żyjące, wszelkie, jakie natura zamierzyła, mogły uczestniczyć w Liczbie, ucząc się arytmetyki przez obroty Tego Samego i podobnego. (…)  A na obieg innych gwiazd ludzie, z bardzo małymi wyjątkami, nie zwracają uwagi, nie nadają im nazw, nie porównują ich obiegów ilościowo, tak, że powiedzieć można, nie wiedzą, że czas to błędne wędrówki tych gwiazd nieprzeliczone i przedziwnie różnorodne. Mimo to można pojąć, że doskonała liczba czasu wypełnia rok doskonały wtedy, gdy wszystkie osiem obrotów, mających swoje względne stopnie szybkości, dokona się wspólnie i zakończy w tym samym czasie, mierzonym obrotem Tego Samego, które się porusza w sposób jednostajny. (39 c-39d)

Według Platona po 36 000 lat cykl kosmiczny się powtarza. W XVI w. Georg Joachim Retyk, jedyny uczeń Kopernika, powiązał epoki historyczne ze zmianami mimośrodu orbity Ziemi. Środek orbity Ziemi poruszał się bowiem u Kopernika po niewielkim kółku , a okres tego ruchu wynosił 3434 lat egipskich. Kiedy mimośród orbity Ziemi był największy Rzym stał się z republiki cesarstwem. Po ćwierci obiegu owego małego kółka powstał islam, a po następnej ćwierci ok. 1652 r. – upadnie, jak prorokował. Drugie przyjście Chrystusa miało nastąpić w roku 2510, gdy mimosród wróci po raz drugi do swej wartości w chwili stworzenia. W książce Kopernika nie znajdziemy rozważań tego typu. Nie ma jednak podstaw by sądzić, że ich nie aprobował. Astrologia była dziedziną respektowaną, głównym powodem badania położeń planet na niebie. Więc choć Kopernik nie był z pewnością entuzjastycznym astrologiem – nie zachowały się tworzone jego ręką horoskopy, to mógł wierzyć, że los Ziemi i jej mieszkańców jest powiązany ze zjawiskami niebieskimi. O obrotach było dziełem czysto astronomicznym i matematycznym, zatem umieszczanie w nim astrologicznych konkretów byłoby nie na miejscu.

Środek orbity Ziemi \bar{S} porusza się po małym kółku, rzeczywiste Słońce spoczywa sobie spokojnie obok, nie biorąc udziału w tych „rewolucjach”. Słowo użyte przez Kopernika w tytule De revolutionibus oznaczało obroty, a więc coś cyklicznego, z czasem zaczęło oznaczać wszelkie dramatyczne przemiany, na ogół już jednokierunkowe. Proporcje na rysunku są oczywiście przesadzone, inaczej niewiele byłoby widać.

Wraz z upadkiem idei sfer niebieskich znaczenie cyklów planetarnych zmalało, a czas zaczął wydawać się nieskończony niczym prosta euklidesowa: od minus do plus nieskończoności. Oczywiście, chrześcijanie obowiązani byli wierzyć w stworzenie świata i jego koniec, ale z braku dopływu nowych bodźców wiara ta wyraźnie słabła. Już w XVIII wieku niezbyt się buntowano, gdy Buffon obliczył wiek Ziemi na mniej więcej dziesięć razy dłuższy, niż wynikałby z Biblii. Potem Fourier, zajmując się stygnięciem Ziemi, jeszcze powiększył tę wartość. Mechanistyczny wszechświat najłatwiej było sobie wyobrażać jako trwający od zawsze i mający istnieć zawsze. Od połowy XIX w. do obrazu tego doszły dwie zasady termodynamiki. Według pierwszej – zasady zachowania energii – istnieje wielkość, która we wszystkich przemianach się nie zmienia, co przemawia za tym, że wszechświat nie ma końca. Według drugiej zasady energia rozkłada się z czasem coraz bardziej równomiernie, świat powinien stawać się jednolitym ośrodkiem o stałej gęstości i temperaturze. Tak więc choć istniałby zawsze, po pewnym czasie przechodziłby w postać mało interesującą i praktycznie martwą. Mówiło się o „śmierci cieplnej” wszechświata.

Pomysł wiecznego powrotu pojawił się w latach osiemdziesiątych XIX stulecia nie u uczonego, lecz u filozofa, Friedricha Nietzschego. Pisał on:

Jeśli wszechświat należy uważać za pewną ilość energii, za pewną liczbę ośrodków energii, a każda inna koncepcja pozostaje nieokreślona i przez to bezużyteczna, to wynika stąd, że wszechświat przejść musi przez obliczalną liczbę kombinacji w wielkiej grze losowej, którą jest jego istnienie. W nieskończoności, w takim albo innym momencie, zrealizowana musi zostać każda możliwa kombinacja; a nawet więcej: musi ona zostać zrealizowana nieskończenie wiele razy. (…) wszechświat ukazuje się więc jako ruch kolisty, który zdążył się już powtórzyć nieskończenie wiele razy i który toczy swą grę przez całą wieczność.

Nietzsche, pogrążający się już w szaleństwie, przekonany był, że rozumowanie takie przeczy mechanistycznej nauce, którą traktował pogardliwie. Jednak w roku 1889 Henri Poincaré udowodnił, że w newtonowskiej mechanice także mamy do czynienia z wiecznym powrotem. Jego rozprawa zatytułowana O problemie trzech ciał i równaniach dynamiki zawierała nowatorskie podejście do klasycznego tematu za pomocą metod topologii, czyli rozważań operujących ogólnymi pojęciami takimi jak ciągłość, które okazały się bardzo owocne. Poincaré stał się prekursorem teorii chaosu. A metody topologiczne wykazywały jeszcze nieraz swą przydatność: np. w badaniu osobliwości w ogólnej teorii względności (czarne dziury, początek wszechświata) czy w badaniach osobliwych stanów materii (Nobel 2016).

Poincaré udowodnił następujące twierdzenie: Jeśli dopuszczalne stany układu mechanicznego zawarte są w pewnym ograniczonym obszarze D, to w dowolnym otoczeniu U każdego punktu obszaru D znajdzie się punkt s, który powraca do otoczenia U.

Można to narysować. Przestrzeń stanów to zbiór punktów, których współrzędnymi są położenia i pędy x,p (same położenia nie wystarczą, bo nie precyzują, jak zachodzi ruch; jest to tzw. przestrzeń fazowa układu). Naszym obszarem D jest niebieska elipsa (obszar ograniczony odpowiada temu, że np. energia układu jest stała). Rozpatrujemy dowolnie mały obszar U (u nas ma postać czerwonego kółka). Stany z obszaru U po jakimś kroku czasowym przechodzą w stany g(U), niemające wspólnego punktu z U (gdyby tak nie było, to już mamy tezę twierdzenia). Po kolejnych krokach czasowych otrzymujemy g^2(U),\ldots g^n(U). Wiadomo z mechaniki, że objętości tych wszystkich obszarów U, g(U),\ldots g^n(U) są jednakowe (twierdzenie Liouville’a). Skoro tak, to któryś z obszarów ciągu g^n(U) musi przeciąć się z U, a tym samym istnieć będzie punkt s należący zarówno do U, jak i g^n(U) (*)

Oznacza to, że wybierając dowolny stan początkowy i czekając dostatecznie długo, doczekamy się powrotu naszego układu jeśli nie do punktu początkowego to dowolnie blisko tego punktu. Wynik jest zupełnie ogólny, nie musimy nic wiedzieć na temat działających sił, a nasz układ może być dowolnie duży. Twierdzenie Poincarégo pokazuje więc, że na gruncie mechaniki mamy do czynienia z wiecznym powrotem. Można pokazać, że powroty takie będą się powtarzać nieskończenie wiele razy. Idea powrotu nie przeczy więc mechanicznemu światu, choć niezgodna jest ze śmiercią cieplną wszechświata. Poincaré zauważył filozoficzne konsekwencje swego twierdzenia. Zauważył je także młody matematyk Ernst Zermelo, asystent Plancka, który wystąpił z polemiką przeciwko koncepcji entropii Boltzmanna. Zermelo dał się potem poznać jako wybitny specjalista od podstaw matematyki, jego aksjomaty teorii mnogości stosowane są dziś powszechnie.

(*) Idea dowodu twierdzenia Poincarégo opiera się na zachowaniu objętości w przestrzeni fazowej. Kolejne zbiory g^k(U) mają takie same objętości, nie mogą więc być parami rozłączne, gdyż wtedy suma ich objętości przekroczyłaby każdą zadaną liczbę, a wszystko musi się zmieścić w większym obszarze D. Jeśli zaś jakaś para tych obszarów nie jest rozłączna, np. g^k(U) \cap g^l(U)\neq \O przy pewnych k>l\geq 0, to g^{k-l}(U)\cap U \neq\O , co oznacza, że dla jakiegoś punktu s\in U mamy s=g^{k-l}y, gdzie y\in S.

Zachowanie objętości kolejnych obszarów wynika stąd, że gdybyśmy wyobrazili sobie punkty przestrzeni fazowej jako punkty w poruszającej się cieczy, to dywergencja pola prędkości owej cieczy równa się zeru, a to jest warunek dla cieczy nieściśliwej, czyli zachowującej objętość. Oznaczając wektor prędkości \vec{q}=(\dot{x}_i,\dot{p}_i) dla i=1,\ldots, 3N (gdzie N jest liczbą cząstek składających się na układ), mamy

\mbox{div } \vec{q}=\dfrac{\partial\dot{x}_i}{\partial x_i}+\dfrac{\partial\dot{p}_i}{\partial p_i}=\dfrac{\partial^2 H}{\partial x_i \partial p_i}-\dfrac{\partial^2 H}{\partial p_i \partial x_i}=0,

gdzie H=H(x,p) jest hamiltonianem układu, po wskaźniku i sumujemy.

Dodatek matematyczny, twierdzenie Poincarégo w nowoczesnym sformułowaniu. Ujęcie to zawdzięczamy Constantinowi Carathéodory’emu, matematykowi z Getyngi, był już rok 1919. Pojawiło się pojęcie miary, będące uogólnieniem zwykłej objętości. Twierdzenie Poincarégo można uściślić w ten sposób, że zbiór punktów przestrzeni fazowej, które nigdy nie powracają do wybranego otoczenia jest miary zero. Zbiory miary zero, czyli zerowej objętości, mogą mieć skomplikowaną strukturę, ale są rzadkie w tym sensie, że nie można im przypisać żadnej dodatniej objętości. Nowoczesne pojęcie miary zbioru rozszerza dodawanie miar na zbiory przeliczalne (dające się ponumerować liczbami naturalnymi, ciągi zbiorów). Miara spełnia więc warunek:

\mu(\bigcup\limits_{i=1}^{\infty} A_i)=\sum\limits_{i=1}^{\infty} \mu(A_i),

gdy zbiory są parami rozłączne: A_i\cap A_j=\O, dla różnych wskaźników i,j. Pokażemy, że jeśli odwzorowanie g zachowuje miarę, a miara obszaru D jest skończona, to miara zbioru tych punktów D, które nie mają własności powracania, jest równa zeru. W tym sensie prawie każdy stan ma własność powracania.

Dla dowodu pokrywamy obszar D przeliczalną liczbą kul U_1, U_2, \ldots, . Dla każdej kuli U_n definiujemy jej podzbiór B_n jako zbiór tych s\in U_n, dla których g^k(s)\in U_n tylko dla skończenie wielu wartości wskaźnika k. Zbiór B=\bigcup\limits_{i=1}^{\infty} B_i jest zbiorem punktów niepowracających. Ponieważ \mu(B)\leq \sum\limits_{i=1}^{\infty} \mu(B_i), wystarczy udowodnić, że każdy ze zbiorów B_n jest miary zero.

W tym celu wybierzmy dowolny wskaźnik i. Będziemy teraz pisać oznaczenia U_i bez indeksu dla  uproszczenia zapisu.

Rozpatrzmy zbiór C=U\setminus \bigcup\limits_{p=1}^{\infty}g^{-p}(U). Punkt s\in g^{-k}(U) wtedy i tylko wtedy, gdy g^k(s)\in U oraz g^m(s)\notin U przy m>k. Zbiory g^{-i}(C), g^{-j}(C) są parami rozłączne, gdy wskaźniki i, j są różne, przy czym dopuszczamy, aby któryś z nich równał się zeru (g^{-0}(C)=C). Zbiór B_i=\bigcup\limits_{p=0}^{\infty}g^{-p}(C). Zatem mamy

\mu(B_i)=\sum\limits_{p=0}^{\infty}\mu(g^{-p}(C)).

Miary wszystkich zbiorów po prawej stronie są takie same, bo nasze odwzorowanie zachowuje miarę. Gdyby miary te były dodatnie, suma byłaby nieskończona, co jest niemożliwe, gdyż B_i\subset U_i, więc jego miara musi być skończona. Zatem wszystkie miary po prawej stronie są zerowe i \mu(B_i)=0. Zbiór B jest przeliczalną sumą B_i, zatem i on musi być miary zero. Dowód ten pochodzi z artykułu R. Daniela Mouldina, Probability and Nonlinear Systems, „Los Alamos Science” nr poświęcony Stanisławowi Ulamowi.

Twierdzenie Poincarégo o powracaniu ilustruje tzw. kot Arnolda (chodzi o Vladimira Arnolda, wybitnego matematyka rosyjskiego). Mamy tu ograniczoną przestrzeń stanów i pewną grupę stanów początkowych, które ułożone są w kształt kociego pyszczka. Gdy puścimy w ruch tę animację, zobaczymy, że w pewnych chwilach kot powraca.

 

Galileo Galilei, Dialog o dwu najważniejszych układach świata, 1632 (2/2)

Galileuszowy Dialog rozgrywa się w pałacu Sagreda w Wenecji, dokąd przybywają na dyskusję Filippo Salviati i Simplicio (pedanterią byłoby w tym miejscu wytykanie autorowi, że Sagredo i Salviati nigdy się nie spotkali). Ich wymiana myśli odbywa się więc nie później niż w roku 1614, kiedy obaj przyjaciele uczonego jeszcze żyli, a więc przed ogłoszeniem dekretu Kongregacji Indeksu w sprawie Kopernika, w czasie gdy swobodna dyskusja była jeszcze możliwa. Rozmowy podzielone są na cztery kolejne dni i nie zawsze trzymają się ściśle wyznaczonego tematu. Przydaje to Dialogowi naturalności, a autorowi stwarza okazję, aby zatrącić o pewne kwestie, nie trzymając się zawsze ustalonego porządku. Ten pozorny chaos Galileuszowych dyskusji był zamierzony, choć niektórzy czytelnicy czuli się z tego powodu zagubieni. Osobisty ton rozważań miał do odegrania niezwykle ważną rolę: czytelnik uświadamia sobie, że zwolennicy nowej kosmologii nie są jakimiś ignorantami czy szaleńcami, wręcz przeciwnie: znają większość tradycyjnej nauki i argumentów geocentrycznych, lecz odrzucają je po dojrzałym namyśle. Salviati jest Simpliciem, który nauczył się matematyki, przemyślał swoje poglądy i opanował wiele nowych idei. Sagredo, mając do wyboru argumenty tradycjonalistów i nowe idee, przychyla się z reguły do tych nowych, nie dlatego wszakże, że są nowe, lecz dlatego, że lepiej objaśniają świat, kiedy im się przyjrzeć bez uprzedzeń. Największą wartością Dialogu był właśnie pewien eksperyment poznawczy: wyobrażenie sobie świata na wzór kopernikański i rozważenie różnych tego konsekwencji. Okazuje się, że nie tylko można być zwolennikiem Kopernika, nie tracąc zdrowego rozsądku, ale że nie sposób już być konsekwentnym zwolennikiem Ptolemeusza. Galileusz sprowadził rozważania do ostrej dychotomii: albo Ptolemeusz, albo Kopernik. Pominął całkiem układ Tychona, choć można twierdzić, że z jego punktu widzenia rozwiązanie Tychona nic nie wnosiło, zajmował się bowiem głównie pytaniem, czy Ziemia jest planetą i się porusza, a w tej kwestii duński astronom był równie konserwatywny jak starożytni Grecy.

Giovanni Francesco Sagredo (Ashmolean Museum)

Pierwszy dzień rozmów poświęcony jest tematowi jedności materii we wszechświecie. Wedle Arystotelesa niebiosa zbudowane są z eteru, takie też stanowisko obowiązywało w zasadzie jezuitów, choć, jak pamiętamy, ich największy teolog, Bellarmin, prywatnie uważał, że niebiosa mogą być z ognia. Tak czy inaczej, zwolennicy tradycji nie chcieli żadną miarą uznać, aby Ziemia miała w czymś przypominać ciała niebieskie. Galileusz przede wszystkim pokazuje, że powszechnie znane i nauczane na uniwersytetach argumenty Arystotelesa są nic niewarte. Poprawia zresztą greckiego filozofa z upodobaniem niemal w każdej sprawie. Gdy Simplicio, który jest skarbnicą książkowych mądrości, przytacza opinię Arystotelesa, że ciała mają trzy wymiary: długość, szerokość i głębokość, gdyż liczba trzy jest doskonała, Salviati zauważa natychmiast, że nie ma czegoś takiego jak doskonałość sama przez się, gdyż doskonałość służy zawsze jakiemuś celowi: zwierzęta np. mają parę nóg albo cztery nogi, a nigdy trzy. Co do geometrii, proponuje inny sposób podejścia. Można bowiem z dowolnego punktu wytyczyć trzy wzajemnie prostopadłe proste. Simplicio nie całkiem rozumie, czemu akurat trzy – winę ponosi tu jego brak edukacji matematycznej. Galileusz nie wiedział, że mogą istnieć geometrie wielowymiarowe, ale jego podejście zadowoliłoby współczesnego fizyka: wymiar przestrzeni należy do faktów empirycznych i określamy go sprawdzając, jaki rodzaj geometrii stosuje się do przestrzeni. I oczywiście doskonałość liczby trzy nie ma tu nic do rzeczy.

U Arystotelesa kierunki do góry i w dół miały sens absolutny i związane były z elementami ognia i powietrza – naturalnie wznoszącymi się w górę, oraz wody i ziemi – naturalnie spadającymi w dół. Z eterem związany był ruch kolisty – co objaśniać miało wieczność i niezmienność świata nadksiężycowego. Galileusz kwestionuje te rozumowania, zawierające jako założenie to, czego się dopiero chce dowieść. „Wszystko to wygląda tak, jakby celem Arystotelesa było przemieszanie nam kart w ręku i dostosowanie planu architektonicznego do świata już zbudowanego, a nie budowanie świata wedle wskazań architektury. Jeżeli bowiem oświadczę, że we wszechświecie istnieć mogą tysiące ruchów kołowych, a co za tym idzie, tysiące ośrodków, to otrzymamy też wówczas tysiące ruchów w górę i w dół” – stwierdza Sagredo. Uczony rozmontowuje i unieszkodliwia krok po kroku całą arystotelesowską machinę argumentów, stanowiącą wówczas podstawową wiedzę, jaką wynosiło się z uniwersytetów. Trudno sobie wyobrazić, aby zadania tego podjął się ktoś przepełniony respektem dla instytucji akademickich. Galileusz nie mógł zniszczyć tradycyjnej kosmologii w sposób łagodny, operacja ta musiała też wywoływać reakcje obronne u tych, którzy wychowali się w arystotelesowskiej wierze. Nie doceniamy dziś siły tamtej tradycji i Dialog nie wywołuje już u nas wstrząsu intelektualnego, wtedy jednak chodziło o zakwestionowanie całego systemu wyjaśniania i wyobrażania sobie świata.

W niektórych założeniach Galileusz nie odbiega jednak od Arystotelesa: obaj uważali świat za doskonale uporządkowaną całość – po grecku „kosmos”. W kosmosie Arystotelesa ruchy prostoliniowe ograniczone były do bezpośredniego sąsiedztwa Ziemi, dlatego ruch prostoliniowy i naturalny musiał mieć początek i koniec. Także Galileusz wzdraga się przed ruchem prostoliniowym: „W dodatku zważmy, że ruch po linii prostej z natury swojej jest nieskończony, gdyż sama linia prosta jest nieskończona i nieokreślona. Jest więc niepodobieństwem, by coś ruchomego miało z przyrodzenia swego właściwość poruszania się po linii prostej, to jest do celu, którego nie sposób osiągnąć, ponieważ nie posiada on kresu. Jak zresztą sam Arystoteles bardzo słusznie zaznacza, przyroda nie nakreśla sobie zadań, które nie mogą być osiągnięte, i nie zwykła jest zmierzać tam, dokąd dojść nie można”. Widzimy, że droga do sformułowania I zasady dynamiki była jeszcze długa – Isaac Newton urodził się w roku śmierci Galileusza.

Chcąc, aby kosmos był uporządkowany, Galileusz zakłada w nim istnienie ruchów kołowych. W odróżnieniu od Arystotelesa uważa, że nie potrzebują one jednak żadnego poruszyciela, mogą trwać niezakłócone w nieskończoność. By wyjaśnić początek układu planetarnego, odwołuje się do swej hipotezy, w myśl której Stwórca wypuścił na początku planety z jednego punktu i spadały one ku Słońcu ruchem przyspieszonym aż do chwili, gdy każda osiągnęła przepisaną odległość od Słońca. Wówczas ich ruch zmienił kierunek na obiegowy, ale wartości ich prędkości się nie zmieniła. Kosmogonia w wydaniu Galileusza przypomina nieco jego własne eksperymenty, w których zmieniał on kierunek prędkości – np. po stoczeniu się kulki z równi pochyłej na płaski stół – i obserwował, że jej wartość pozostaje taka sama. Uczony traktował te spekulacje jako pewne uzupełnienie Platońskiego Timajosa, gdzie opowiedziana jest historia o zbudowaniu świata przez demiurga. Wyniki jego obliczeń zdawały się zgodne z danymi na temat planet. Matematyk Wielkiego Księcia nie mówił o siłach i ciężkości, tym bardziej ciężkości powszechnej, jego mechanika była kinematyką. Hipoteza kosmogoniczna Galileusza była później rozważana z całą powagą przez Isaaca Newtona, który zauważył, że grawitacja Słońca musiałaby zostać podwojona w chwili zmiany kierunku prędkości.

Sagredo pyta, czy prędkość nie mogłaby zostać nadana planecie w sposób skokowy, po co to spadanie i przechodzenie kolejnych prędkości? „Ja nie powiedziałem i nie śmiałbym twierdzić, że dla natury i Boga byłoby niemożliwe nadanie takiej, jak mówicie, prędkości, i to natychmiast. Twierdzę jedynie, że de facto natura tego nie czyni. Takie rozwiązanie stałoby poza naturalnym biegiem rzeczy, a więc należałoby do dziedziny cudów” – odpowiada Salviati. Galileusz podkreśla, że nie ogranicza w ten sposób boskiej wszechmocy, bada jedynie świat taki, jaki dany jest nam w doświadczeniu, tak a nie inaczej stworzony. Koronny zarzut wobec niego będzie oparty na niezrozumieniu natury działalności naukowej. Florentyńczyk czuł się badaczem kosmosu już stworzonego, zupełnie nie interesowały go pytania o atrybuty samego Stwórcy. Rozważając choćby niezobowiązująco, jak mógł powstać układ planetarny, ryzykował oskarżenie, że wkracza na teren zastrzeżony dla Księgi Rodzaju. Spekulacje na temat puszczenia w ruch machiny kosmicznej prowadził zresztą także Kartezjusz, katolik z pewnością nie mniej liczący się z głosem Kościoła niż Galileusz. W miarę poznawania praw ruchu nieuniknione były tego rodzaju spekulacje, zaglądające niejako Stwórcy przez ramię.

Rozumowania Arystotelesa nie miały wartości: „Ani Arystoteles, ani wy sami nigdy nie będziecie w stanie dowieść, że Ziemia de facto znajduje się w środku wszechświata. A jeżeli może być mowa o określeniu jakiegoś środka wszechświata, to okaże się, że raczej Słońce może być w nim umieszczone”. W trakcie dalszych rozważań Galileusz podkreśla, że nie sposób ustalić, czy wszechświat w ogóle ma jakiś środek. Słońce jest środkiem ruchu planet, nie znaczy to jednak wcale, że musi być zarazem środkiem całego wszechświata. Urzędowi czytelnicy ze Świętego Oficjum nie zwrócili bądź woleli nie zwracać uwagi na te stwierdzenia Dialogu i przypisano Galileuszowi pogląd, że Słońce jest w środku świata. Jeśli ani Ziemia, ani Słońce nie były środkiem, to pozostawała wizja Bruna i Kartezjusza: nieskończonego wszechświata z nieskończoną mnogością „środków” w postaci gwiazd okrążanych przez planety.

Kosmos Galileusza nie musi być niezmienny. Podobnie jak Ziemia nie byłaby doskonalsza, gdyby „była cała jednym rozległym piaszczystym pustkowiem czy kulą z jaspisu, czy też gdyby w czasie potopu zamarzły pokrywające ją wody, a ona stała się olbrzymim globem zlodowaciałym; gdyby na niej nic się nie rodziło, nic nie przeobrażało i nie zmieniało (…) Im bardziej zagłębiam się w niedorzeczność rozpowszechnionych pojęć, tym bardziej stają się one dla mnie lekkomyślne i bezsensowne. Czyż można sobie wyobrazić większą głupotę aniżeli nazywanie rzadkich kamieni, srebra i złota kosztownościami – a ziemi i błota marnościami? I jakże tym ludziom nie przychodzi tu na myśl, że jeśliby ziemia należała do takich rzadkości jak klejnoty i najcenniejsze metale, to nie znalazłby się książę, który by nie poświęcił worka diamentów i rubinów oraz czterech wozów złota, by mieć przynajmniej garść ziemi, wystarczającą do posadzenia w małym wazoniku jaśminu czy zasiania pomarańczy chińskiej, aby przyglądać się, jak wschodzi, rośnie, okrywa się pięknymi liśćmi, pachnącymi kwiatami, wdzięcznymi owocami. (…) Ci, którzy egzaltują się niezniszczalnością, niezmiennością itd., dochodzą, jak sądzę, do wypowiadania podobnych stwierdzeń jedynie dlatego, że w obawie przed śmiercią pragną przetrwać jak najdłużej”. Dla Galileusza Ziemia – taka, jaka jest – nie jest niedoskonała. Wcale nie przeszkadza mu myśl, że podobne do niej mogą być inne ciała niebieskie. Przekonanie, że cały kosmos ma służyć jedynie Ziemi i jej mieszkańcom, wkłada w usta Simplicia: „Dla wygody człowieka rodzą się konie, dla żywienia koni ziemia wydaje trawę, a obłoki dostarczają jej wody. Dla wygody i wyżywienia ludzi rodzą się trawy, zboża, owoce, zwierzęta, ptaki, ryby, i w ogóle, jeśli starannie zbadamy i zgłębimy wszystkie te rzeczy, dojdziemy do wniosku, że cel, ku któremu wszystko to zmierza, to potrzeba, pożytek, wygoda i przyjemność człowieka. A jaki pożytek mogłyby mieć dla rodzaju ludzkiego płody powstające na Księżycu czy na innej planecie? Bo chyba nie chcielibyście mnie przekonywać, że na Księżycu są również ludzie, korzystający z rodzących się na nim owoców; myśl taka bądź trąci bajką, bądź jest bezbożna”. Z argumentami tego rodzaju spotykał się Galileusz nie raz. Odpowiada, że nie wydaje mu się prawdopodobne, by na Księżycu byli ludzie, ale to jeszcze wcale nie oznacza, że nie może tam być żadnych zmian. Naszą wyobraźnię kształtują doświadczenia; ktoś, kto mieszkałby w lesie i nie znał żadnych zbiorników wodnych, nie potrafiłby sobie wyobrazić ryb ani statków przepływających oceany. Wrażliwość Galileusza jest raczej panteistyczna niż antropocentryczna: różnorodność i porządek w naturze są dla niego źródłem zachwytu, Stwórca w jego pojęciu nie ograniczył się tylko do zapewnienia bytu ludziom, lecz stworzył naturę godną podziwu i badania dla niej samej.

Simplicio opisuje swym rozmówcom Księżyc i wychodzi mu z rozumowań, że musi on być zrobiony ze szczególnie twardej i nieprzenikliwej materii. „Jakżeż piękny byłby ten materiał niebieski do budowania pałaców, jeśliby można było nabyć coś równie twardego i przezroczystego” – wzdycha Sagredo, po czym obaj z Salviatim zastanawiają się, czy mieszkańcy obijaliby się o te niewidzialne ściany, czy też nie – biorąc pod uwagę, że materia niebios jest także niedotykalna. Galileusz przedstawia argumenty za tym, że także Ziemia widziana z daleka byłaby podobna do Księżyca. Charakterystyczna jest jednak ostrożność, z jaką uczony przedstawia wnioski dotyczące tak odległych światów, jak dalekie planety – ostrożność ta bardzo kontrastuje z beztroską pewnością siebie wszystkich Simpliciów, z którymi przychodziło mu się stykać. Galileusz cały czas podkreśla, że rozumiemy bardzo niewiele. Wprowadza tu rozróżnienie poznania ekstensywnego i intensywnego. W sensie ekstensywnym zawsze skazani jesteśmy na znajomość drobnego ułamka tego, co jest we wszechświecie. „Ale biorąc pod uwagę drogę intensywną – o ile pojęcie intensywności oznacza intensywne, a więc doskonałe zrozumienie – umysł ludzki poznaje, zdaniem moim, niektóre zagadnienia tak doskonale i z taką absolutną pewnością, jaką posiada tylko przyroda. Takimi są właśnie czyste nauki matematyczne, a więc geometria i arytmetyka – w których rozum boży zna nieskończenie większą liczbę prawd – gdyż zna je wszystkie – jednak z tych niewielu znanych rozumowi ludzkiemu mieści się, według mnie, poznanie równe bożemu w obiektywnej pewności, gdyż dochodzi do zrozumienia zawartej w nich konieczności – a nie może chyba istnieć większa pewność aniżeli właśnie ta”. Ta piękna intuicja platońska stała się jednym więcej kamieniem obrazy dla sędziów uczonego. Warto zwrócić uwagę, że podobne przekonania nie były wyłączną własnością Galileusza: tak samo myśleli Kepler i Kartezjusz, i większość tych, którzy w XVII wieku stworzyli nowożytną naukę.

Dzień drugi Dialogu poświęcony jest kwestii ruchu obrotowego Ziemi wokół osi. Galileusz przytacza (ustami Sagreda) charakterystyczną anegdotę: „Byłem pewnego dnia w domu bardzo szanowanego w Wenecji lekarza. Jedni odwiedzali go ze względu na swoje studia, a inni przez ciekawość, by zobaczyć sekcję, przeprowadzaną ręką tego równie uczonego, jak sumiennego i zręcznego anatoma. Tego dnia właśnie zdarzyło się, że poszukiwał on miejsca, skąd biorą początek nerwy, na temat których toczy się sławny spór między lekarzami-galenistami i perypatetykami. Anatom pokazał, jak wielki pęk nerwów, wychodząc z mózgu i idąc przez potylicę, schodzi wzdłuż stosu pacierzowego, rozgałęziając się na całe ciało, tak że jedno tylko włókno, cieniutkie jak nić, dochodzi do serca. Zwracając się następnie do pewnego szlachcica, którego znał jako filozofa-perypatetyka i gwoli którego ze szczególną dokładnością odsłonił i zademonstrował to wszystko, zapytał go, czy mu to wystarcza i czy nabrał pewności, że nerwy biorą początek w mózgu, a nie w sercu, na co ów filozof po krótkim namyśle odpowiedział: «Pokazaliście mi to wszystko w sposób tak jasny i dotykalny, że gdyby tekst Arystotelesa, według którego nerwy powstają w sercu, nie był z tym sprzeczny, to musiałbym siłą rzeczy uznać wasze twierdzenie za prawdę»”. Galileusz uwielbiał dworować z niesamodzielności intelektualnej zwolenników Arystotelesa, którzy uznawali greckiego filozofa za wyrocznię we wszystkich sprawach, choć po części rozumiał, skąd się to bierze. Simplicio tłumaczy, że pisma Arystotelesa tworzą wspaniały, skomplikowany gmach i trzeba znać je wszystkie, by rozumieć właściwie ich treść. Rzeczywiście gmach wiedzy zbudowany, czy raczej nadbudowany, przez średniowiecze nad naukami Greka mógł imponować i stwarzać wrażenie ostatecznej prawdy. W czasach Galileusza tacy filozofowie, jak Borro czy Cremonini, przez całe życie nie zajmowali się niczym innym jak komentowaniem tego korpusu wiedzy i dociekaniem, co Filozof naprawdę miał na myśli. Ludzie o takim nastawieniu, nawet słysząc o wynalazku teleskopu, potrafili znaleźć ustęp u Arystotelesa, gdzie się o nim wspomina. Oczywiście Sagredo i Salviati bawią się, przywołując anegdoty tego rodzaju. Także astrologia i alchemia traktowane są niezbyt serio: „W podobny sposób alchemicy, pod wpływem uporczywego maniactwa, utrzymują, że wszystkie najwznioślejsze umysły świata zajęte były jedynie opisywaniem sposobów wytwarzania złota (…) Jest rzeczą nadzwyczaj zabawną rozczytywanie się w ich komentarzach do poetów antycznych, u których dopatrują się największych tajemnic ukrytych pod osłoną baśni: co oznaczały miłostki bogini Księżyca i jej zejście na ziemię w pogoni za Endymionem, jej gniew na Akteona, przemiana Jowisza raz w złoty deszcz – to znów w palące się płomienie”. Czytając takie fragmenty, zaczynamy się zastanawiać, jak bardzo wiarygodne były dla Galileusza opisy cudów chrześcijańskich, czy jeśli w ogóle traktował je serio, to nie sądził, że należałoby je odrzeć z otoczki zbyt naiwnych stwierdzeń. Jak się zdaje, niedługo przed Dialogiem uczony napisał jakiś traktat poświęcony naturalistycznym wyjaśnieniom cudów, który się jednak nie zachował.

Wśród argumentów przemawiających za wirowaniem Ziemi był i ten, że łatwiej wyobrazić sobie nieruchomy wszechświat z niewielką wirującą Ziemią niż odwrotnie. Sagredo mówi: „Uważałbym tego, kto mniema, że słuszniej jest kazać poruszać się całemu światu, byle tylko utrzymać w bezruchu Ziemię, za mniej rozsądnego od kogoś, kto wzniósłby się na szczyt waszej kopuły (*) tylko po to, by spojrzeć na miasto wraz z otaczającymi je osiedlami, i domagał się, by cała okolica obracała się dokoła niego, byleby on nie ponosił trudu obracania głowy”. Simplicio widzi jednak sytuację inaczej: „O ile jednak chodzi o potęgę Tego, który wszystko wprawia w ruch – a przecież jest ona nieskończona – to nie mniej Mu łatwo poruszyć wszechświat aniżeli Ziemię czy słomkę. A skoro ta potęga jest nieskończona, to dlaczego nie miałaby raczej objawiać się większa jej część aniżeli mniejsza?”

Standardowy argument przemawiający za nieruchomością Ziemi był taki, że gdyby ona wirowała ciało swobodnie upuszczone ze szczytu wieży musiałoby spaść daleko na zachód od jej podnóża. Odmianami tego argumentu były doświadczenia z armatami: strzelając pionowo w górę, powinniśmy zaobserwować podobny efekt przesuwania się Ziemi pod pociskiem, który musiałby spaść daleko od miejsca wystrzału. Długości strzałów na wschód i na zachód powinny się różnić od siebie. „Jaka szkoda, że artyleria nie istniała za czasów Arystotelesa. Przy jej pomocy pokonałby on niewiedzę i mówił bez żadnego wahania o sprawach wszechświata” – stwierdza sarkastycznie Sagredo. Galileusz szczegółowo analizuje takie sytuacje, wykazując, że ruch Ziemi nie wpływa na obserwowany przebieg zjawisk.

Od czasu do czasu broniący wciąż stanowiska kopernikańskiego Salviati czuje się w obowiązku przypomnieć, że jest to jedynie jego rola w Dialogu, a nie wewnętrzne przekonanie. Ale zarówno zwolennicy, jak przeciwnicy Kopernika (i Galileusza) uznali, że gra toczy się bardziej serio, niż twierdziły persony Dialogu.

Badanie konsekwencji względności ruchu zajęło dużą część rozważań tego dnia. Pojawia się tam także dość osobliwy fragment, w którym Galileusz stara się spojrzeć na spadek swobodny na obracającej się Ziemi z punktu widzenia kogoś, kto się nie obraca razem z nią. Prędkość wirowania Ziemi udzieli się wówczas spadającemu ciału i jego tor będzie jakąś linią krzywą. Jaką konkretnie krzywą? Łukiem okręgu kończącym się w środku Ziemi – odpowiada Salviati. Sam Galileusz mówił o tym fragmencie bizzarrìa – czyli fantazja, i rzeczywiście koncepcja jest osobliwa (i nieprawdziwa). Dyskusje na takie wydumane tematy, jak tor spadku do środka Ziemi, miały już swoją tradycję i posunęły naprzód rozumienie fizyki ruchu; słynna wymiana listów na ten temat miała odbyć się w przyszłości między Robertem Hookiem a Isaakiem Newtonem i stała się ważnym bodźcem dla profesora z Cambridge.

Innym argumentem przeciwko ruchowi obrotowemu Ziemi był brak obserwowanej siły odśrodkowej. Galileusz stara się wykazać, że taka siła w ogóle w przypadku Ziemi nie występuje. Idzie tu zbyt daleko. Trzydzieści lat później Isaac Newton, nieznany wtedy jeszcze nikomu, czytając Dialog, obliczy wartość tej siły i udowodni, że jest ona wprawdzie znacznie mniejsza od siły ciążenia, ale różna od zera.

Dzieło Galileusza stanowiło raczej początek, wstęp do dalszych badań. Autor, wykazując cierpliwie, skutecznie i konsekwentnie, że Arystoteles nic nie wiedział o ruchu, działał na współczesnych mu konserwatystów zaiste jak artyleria.

Na celowniku uczonego znalazła się antykopernikańska książeczka Lochera, ucznia Christopha Scheinera, prawdopodobnie ich wspólne dzieło.

Spiralne spadanie ciał na obracającą się Ziemię ze sfery Księżyca. Trwa sześć dni (Johann Georg Locher, Disquisitiones mathematicae, de controversiis et novitatibus astronomicis, Ingolstadt 1614). Oś obrotu Ziemi νλ jest na rysunku pozioma; spadek kuli z punktu A nad równikiem odbywa się po spirali, która prostopadle przecina rysunek aż do punktu B. Linia przerywana zaczynająca się w γ jest torem kuli spadającej znad miejsca na Ziemi położonego w umiarkowanej szerokości geograficznej (tak jak Ingolstadt). Jezuici wyobrażali sobie, że cała sfera Księżyca musiałaby u Kopernika wirować w ciągu doby.

SAGREDO: Ach, jakież piękne rysunki, co za ptaki, co za kule – a co to za inne piękne rzeczy?

SIMPLICIO: To kule, które przybywają ze sfery księżycowej.

SAGREDO: A to, cóż to takiego?

SIMPLICIO: To małża, z gatunku tych, które u nas w Wenecji nazywają buovoli. I ona też przybywa ze sfery księżycowej.

SAGREDO: Tak jest istotnie. Oto dlaczego Księżyc wywiera tak wielki wpływ na pewne stwory morskie z gatunku ostrygowatych.

Otóż autorzy ci, chcąc zdyskredytować ideę ruchu Ziemi, postarali się wykonać pewne obliczenia: ile mil na godzinę przebywa punkt na równiku, a ile na innych równoleżnikach, a także jaką drogę przebędzie w ciągu minuty, a nawet sekundy. Cel propagandowy tych obliczeń był oczywisty: prędkość wirowania Ziemi jest porównywalna z prędkością dźwięku, a więc wydaje się ogromna nawet i dziś. Chodziło o to, by idea ruchu Ziemi wydała się absurdalna. Autorzy następnie wyobrażają sobie spadek kuli armatniej ze sfery Księżyca, co miałoby, ich zdaniem, trwać sześć dni.

„Otóż, jeśliby wszechmocą boską czy też za sprawą jakiegoś anioła cudownie została przeniesiona tam, wysoko, wielka kula armatnia, umieszczona w naszym zenicie i puszczona stamtąd swobodnie, to wówczas, zdaniem autora i moim – mówi Simplicio – byłoby rzeczą najbardziej niewiarygodną, by spadając w dół, utrzymywała się zawsze na linii naszego pionu, w ciągu tylu dni zachowując wciąż wraz z Ziemią ruch obrotowy naokoło jej środka, zakreślając na równiku linię spiralną w płaszczyźnie tego największego koła, podczas gdy na równoleżnikach zakreślałaby linie spiralne naokoło stożków, a na biegunach spadałaby po zwykłej linii prostej”. Salviati pyta o założenia dotyczące spadku ze sfery Księżyca na Ziemię. Jezuici wyobrażali sobie, że spadanie takie byłoby jednostajne, w dodatku popełnili prosty błąd obliczeniowy: skoro cała sfera Księżyca obraca się raz na dobę, to spadanie z taką prędkością do centrum powinno zająć 2π razy krócej, czyli mniej niż 4 godziny, a nie sześć dni. Już lepiej z geometrią radzą sobie bednarze – zauważa Salviati. Przy okazji przedstawia prawo spadku przyspieszonego: „Studiowałem wszystkie te sprawy z największą radością i zachwytem, widząc, że powstaje cała nowa dziedzina wiedzy. Dotyczy ona spraw, o których napisano już setki tomów, a żadne z nieskończenie wielu cudownych odkryć, które obejmuje, nie zostało zauważone i zrozumiane przez nikogo wcześniej, aż dopiero przez naszego przyjaciela [tj. Galileusza – J.K.]”. Galileusz oblicza, jak długo spadałaby kula z wysokości Księżyca, jeśli wiadomo, że z wysokości stu łokci spada w ciągu pięciu sekund. Oczywiście z punktu widzenia uczonego nie ma powodu, aby spadek następował po jakiejś linii spiralnej. Prawo spadku swobodnego i własności ruchu przyspieszonego po raz pierwszy pojawiają się tu w druku. Było to odkrycie rzeczywiście ogromnej wagi – jeszcze jedno z odkryć prowadzących w stronę mechaniki Newtona.

Prawo odkryte przez Galileusza stosować się miało do wszystkich ciał, bez rozróżnienia lekkich i ciężkich, inaczej niż u Arystotelesa, który ruch wiązał z naturą danego ciała. „Jeżeli wymienione tu rzeczy są z natury swej różne, a rzeczy z natury różne nie mogą mieć wspólnego ruchu, to należałoby (…) pomyśleć o czymś innym, aniżeli tylko o dwóch ruchach, w górę i w dół. Jeśli trzeba wynaleźć jeden ruch dla strzał, inny dla ślimaków, jeszcze inny dla kamieni – jakiś inny jeszcze dla ryb, to trzeba by pomyśleć również o dżdżownicach, topazach i grzybkach, które z przyrodzenia swego nie różnią się mniej jedne od drugich aniżeli grad i śnieg”. Książeczka Lochera i Scheinera zostaje wykpiona na wielu stronach, Galileusz zasłużenie traktuje ją jak stek głupstw. Bo też jezuiccy autorzy, gromadząc swe argumenty, nie próbowali w ogóle zrozumieć stanowiska strony kopernikańskiej. Straszyli katastrofami, jakie miałyby wynikać z ruchu Ziemi, nie zastanawiając się nad tym, że gdyby naprawdę teoria kopernikańska była taka łatwa do obalenia, to jej zwolennikami nie byliby najwybitniejsi uczeni epoki, Kepler i Galileusz. Istniała realna trudność przestawienia wyobraźni na kopernikanizm, nawet Galileusz miał z tym czasami kłopoty, było to dla ludzi tej epoki zadaniem trudnym. Ale istniał też opór przed kopernikanizmem wynikający ze złej nauki i złej naukowej wiary.

Następnym omawianym autorem jest Scipione Chiaramonti. „Gdybym nie miał nadziei, że od tego drugiego autora usłyszę coś mądrzejszego, to niewiem, czy nie zdecydowałbym się raczej na przejażdżkę gondolą w poszukiwaniu świeżości” – stwierdza bez ogródek Sagredo. Galileusz udowadnia, że Chiaramonti nie zna teorii, którą zawzięcie krytykuje. Tenże autor wystąpił też niefortunnie w sprawie odległości gwiazdy nowej obserwowanej przez Tychona, dowodząc, że z pewnością leży ona poniżej Księżyca.

Rozważania te należały już do dnia trzeciego Dialogu. Był on poświęcony ruchowi rocznemu Ziemi. Arystoteles dowodził, że gwiazdy zajmują obszar sferyczny i obracają się raz na dobę wokół Ziemi – z tego powodu uważał wszechświat za skończony. Jeśli jednak odrzucić jego założenie, przyjąć ruch dobowy Ziemi i zgodzić się na nieruchome gwiazdy, to znika powód, by uważać świat za skończony. Równie dobrze może on być nieskończony i nie mieć żadnego kształtu.

Obserwacje wskazują, że planety mają swój środek ruchu w Słońcu – w tym punkcie zgodni byli Tycho Brahe i Kopernik. Pozostaje więc do rozstrzygnięcia, czy Słońce, czy raczej Ziemia poruszają się ruchem rocznym. Zdaniem Salviatiego-Galileusza więcej przemawia za nieruchomym Słońcem. Oprócz dawniej już znanych argumentów przedstawił on nowy, wywodzący się z obserwacji plam słonecznych. Ich przesuwanie pokazuje, że Słońce wiruje wokół osi. Okazuje się jednak, że w różnych porach roku tory plam na tle tarczy słonecznej mają różny kształt. W czerwcu i grudniu są prostoliniowe i tworzą ustalony kąt z ekliptyką, w marcu i wrześniu natomiast mają kształt łuków. Najprostsze wyjaśnienie zjawiska daje teoria Kopernika: oś Słońca ma stałe nachylenie do płaszczyzny orbity Ziemi i w ciągu roku oglądamy raz nieco więcej południowej półkuli Słońca, raz nieco więcej jego półkuli północnej. Nie potrzeba już żadnych innych ruchów, aby objaśnić to, co się obserwuje. Dla Galileusza takie wirowanie wokół osi nie wymagało podtrzymywania. Podobnie rzecz się ma z Ziemią: jej oś obrotu nachylona jest do płaszczyzny orbity – czego skutkiem są zmiany pór roku. Kopernik, aby zachować stałość kierunku osi ziemskiej, przyjmował jeszcze dodatkowy trzeci ruch Ziemi, Galileusz go nie potrzebował.

W Dialogu Galileusz twierdzi, że odkrył nachylenie osi Słońca do ekliptyki prowadząc obserwacje z willi Le Selve, a więc przed rokiem 1614. Wydaje się to mało prawdopodobne; dokładne obserwacje plam i ich ruchu pojawiły się w monumentalnej książce Christopha Scheinera Rosa Ursina, która ujrzała światło dzienne w czasie, gdy Galileusz pisał Dialog. Dopiero w 1629 roku dostrzegł kopernikańskie wyjaśnienie zjawiska i zamieścił w książce. Znowu okazało się, że herkulesowe trudy Scheinera zaowocowały zgrabnym argumentem przeciwko Ptolemeuszowemu układowi świata. Oczywiście można wyjaśnić każde zjawisko równie dobrze w ziemskim układzie odniesienia, trzeba jednak przypisać wtedy Słońcu wiele ruchów zamiast jednego ruchu obrotowego. Z kopernikańskiego punktu widzenia wszystko układało się w konsystentną całość: wszystkie ruchy obrotowe i obiegowe zachodzą bowiem w jednym kierunku i nie potrzeba z każdym nowo odkrytym zjawiskiem dopisywać wciąż jakichś nowych ruchów.

Co do osobistej uczciwości Galileusza, nie ma twardych dowodów, że korzystał on z obserwacji Scheinera, pewne jest natomiast, iż ponownie dostrzegł on więcej niż jezuicki astronom, który poświęcił znaczną część swego dzieła na jałowy z natury (choć pasjonujący dla uczestników) spór o pierwszeństwo odkrycia plam na Słońcu. Trudno oprzeć się wrażeniu, że mnogość i dokładność obserwacji, jakkolwiek potrzebne, ważne są tylko wtedy, gdy pozwalają nam coś więcej zrozumieć ze sposobu funkcjonowania świata. Jeden koń arabski pobiegnie szybciej niż sto koni fryzyjskich.

W dniu trzecim Dialogu Galileusz wraca też do książeczki Lochera i przytacza inne jeszcze wnioski, do których – wedle jezuity – prowadzić miał kopernikanizm: „W tak fantastycznym układzie świata trzeba głosić różne kapitalne bzdury, na przykład takie, że Słońce, Wenus i Merkury znajdują się pod Ziemią, że materie ciężkie ruchem naturalnym poruszają się ku górze, a lekkie w dół; że Chrystus, nasz Pan i Zbawiciel, wstąpił do piekieł i zstąpił na niebiosa, gdy zbliżał się ku Słońcu; że gdy Jozue rozkazał Słońcu, by się zatrzymało, to Ziemia się zatrzymała, bądź też Słoń-

ce poruszać się zaczęło w kierunku przeciwnym do Ziemi; że gdy Słońce jest w znaku Raka, to Ziemia biegnie przez Koziorożca, że zimowe znaki zodiaku wywołują lato, a letnie zimę; że nie gwiazdy wschodzą i zachodzą dla Ziemi, lecz Ziemia wschodzi i zachodzi dla gwiazd; że wschód zaczyna się na zachodzie, a zachód na wschodzie i że jednym słowem, wywraca się cały porządek świata”.

Najsłabszą częścią Dialogu jest dzień czwarty, mający w zamyśle autora dostarczyć najsilniejszego argumentu za ruchem Ziemi. Tym argumentem jest istnienie pływów na morzach. Simplicio odnosi się do pomysłu sceptycznie:

„SIMPLICIO: Powiem jednakże z tą swobodą, która wśród nas jest dozwolona, że wprowadzanie tu ruchu Ziemi i robienie go przyczyną przypływu i odpływu w nie mniejszej mierze wydaje mi się pomysłem z bajki niż wszystkie inne, o których dotąd słyszałem; a gdyby mi nie podano innych wyjaśnień, bardziej odpowiadających prawom przyrody, to bez obawy powziąłbym przeświadczenie, że ma się tu do czynienia ze zjawiskiem nadprzyrodzonym, a więc cudownym i niedostępnym dla umysłów ludzkich, jak zresztą i nieskończona liczba innych zjawisk, zależnych bezpośrednio od wszechmogącej ręki Boga.

SALVIATI: (…) wśród wszystkich przyczyn, które przytoczone były dotychczas jako prawdziwe, żadna, jakiekolwiek byśmy stosowali zabiegi, nie byłaby w stanie wyjaśnić podobnych zjawisk. Albowiem ani przy pomocy światła Księżyca czy Słońca, ani umiarkowanej ciepłoty, ani różnic głębiny nie zdoła się w sztuczny sposób spowodować, aby woda zawarta w nieruchomym naczyniu poruszała się tam i z powrotem, aby wznosiła się i opadała, i to w jednym miejscu tak, a w drugim inaczej. Jeśli jednak bez żadnych sztuczek i w najnaturalniejszy sposób, wprowadzając naczynie w ruch, potrafię dokładnie odtworzyć wszystkie te zmiany, które widzi się na wodach mórz, to dlaczego mielibyście odrzucić takie wyjaśnienie i uciekać się do cudu.

Cały ten fragment i jego dalszy ciąg wkraczają na ryzykowny temat cudów, przynajmniej werbalnie. Galileusz tłumaczy, że gdyby w sposób cudowny nadać Ziemi niejednostajny ruch, to w jego następstwie wody zaczną – w sposób najzupełniej naturalny – poruszać się tak, jak to widzimyw zjawisku pływów. Dalej zaś wyjaśnia, że zamiast cudownego poruszania Ziemią wystarczy jej ruch naturalny, taki jak u Kopernika. Rozumowanie uczonego nie tylko odzierało zjawisko pływów z wszelkiej cudowności, ale też sprawiało wrażenie, iż inne wyjaśnienie jest niemożliwe. W ten sposób istnienie pływów byłoby dowodem, że ruch Ziemi jest „prawdą absolutną” – wbrew najgłębszemu przekonaniu Maffeo Barberiniego. Swoistym dowodem uznania ze strony Kościoła był fakt, że nikt nie próbował argumentacji Galileusza kwestionować na gruncie naukowym, jakby zgadzano się z nim, że inne wyjaśnienie naukowe i naturalne jest niemożliwe.

Tymczasem teoria Galileusza była pod wieloma względami nieudana: nie tłumaczyła okresów powtarzania się przypływów i nie wyjaśniała, czemu występują one dwa razy na dobę. Uczony niewiele wiedział na temat samego zjawiska i niezbyt przejmował się tym, co wiedział. Znane są w nauce, i nie tylko w nauce, takie przypadki ślepego przywiązania do własnych idei. Galileusz, który niezmiernie łatwo popadał w mentorski ton wobec innych, tutaj sam nie potrafił sprostać wymaganiom, jakie należy postawić porządnej teorii.

Nie zmienia to jednak faktu, że Dialog jest książką wyjątkową, pierwszą tak dobrze pomyślaną i przeprowadzoną argumentacją na rzecz ruchu Ziemi. Choć z naukowego punktu widzenia nie zawiera żadnego absolutnego dowodu słuszności kopernikanizmu, pokazuje, że jest to pogląd naukowo spójny, nie prowadzący do sprzeczności i zupełnie prawdopodobny. Dowody na rzecz kopernikanizmu jeszcze długo później były jedynie pośrednie, ale świat stawał się zrozumiały, gdy patrzeć na niego z tej właśnie perspektywy. Dyskusja Galileusza, mimo polemicznej werwy, jest na ogół rzetelna; mało kto tak dogłębnie jak on przemyślał argumenty zwolenników Arystotelesa i nikt wcześniej nie poddał ich tak druzgocącej krytyce. Wielką zasługą historyczną kopernikanizmu była właśnie zmiana spojrzenia na usytuowanie Ziemi i człowieka w kosmosie, Galileusz bardziej niż ktokolwiek inny przyczynił się do przeprowadzenia tej przemiany obrazu świata.

(*) Chodzi o słynną kopułę na katedrze florenckiej autorstwa Filippa Brunelleschiego

Powstawanie kontynentów i oceanów (1922) – Alfred Wegener

Książka została napisana w okresie rekonwalescencji autora, dwukrotnie rannego na froncie zachodnim zaraz na początku wojny światowej (wrócił później do służby jako meteorolog). Ukazała się po raz pierwszy w roku 1915 nakładem wydawnictwa Vieweg & Sohn. Kolejne trzy wydania ukazały się już po wojnie. Z początkowych niecałych stu stron książka rozrosła się do ponad dwustu w czwartym wydaniu. Najważniesze historycznie okazało się wydanie trzecie z roku 1922, które stało się podstawą przekładów m.in. na angielski, francuski, hiszpański i rosyjski, wywołując ożywioną dyskusję nie tylko w kręgach naukowych.

Wysunięta przez Wegenera teoria dryfu kontynentów, przyjęta zrazu ze sceptycyzmem, niedowierzaniem, a nawet szyderstwem, w okresie międzywojennym zyskała niewielu zwolenników. Idee przesuwania się kontynentów wróciły triumfalnie dopiero w latach sześćdziesiątych ubiegłego wieku jako teoria płyt tektonicznych, która zrewolucjonizowała nauki o Ziemi.

Alfred Lothar Wegener z wykształcenia był astronomem, lecz po doktoracie dotyczącym Tablic Alfonsyńskich w roku 1905 postanowił zająć się meteorologią. Zapalony wędrowiec, alpinista i narciarz szukał dziedziny mniej obciążonej tradycją, dającej ponadto możliwość pracy w terenie, a nawet przygody. Wraz ze starszym bratem Kurtem ustanowił w roku 1906 światowy rekord czasu lotu balonem (52,5 godziny). W tym samym roku wyruszył na Grenlandię jako meteorolog duńskiej wyprawy. Spędził tam dwie zimy, tworząc pierwszą stację meteorologiczną i dokonując pomiarów atmosfery przy użyciu latawców oraz balonów. Po powrocie pracował na uniwersytecie w Marburgu, opracowywał wyniki obserwacji polarnych, napisał także podręcznik Termodynamika atmosfery (1911). Przygotowując go, Wegener zwrócił się o opinię do uznanego specjalisty profesora Wladimira Köppena z Hamburga, który przychylnie przyjął rękopis młodszego kolegi. Wegener poznał też córkę profesora Else i niebawem się z nią zaręczył. Na następną wyprawę na Grenlandię wyruszył w 1912 roku, Else spędziła ten czas w domu norweskiego meteorologa Vihelma Bjerknesa, ucząc jego dzieci niemieckiego, a sama ucząc się norweskiego oraz duńskiego (przełożyła potem na niemiecki dwie prace Bjerknesa). Latem 1913 roku wyprawa z udziałem Wegenera przebyła drogę w poprzek Grenlandii mniej na szerokości geograficznej 75°. Tego samego roku młody polarnik i Else wzięli ślub. Po wojnie światowej Wegener objął po przejściu teścia na emeryturę jego stanowisko w Morskim Obserwatorium Meteorologicznym w Hamburgu, przeniósł także swoje prawo nauczania na tamtejszy nowopowstały uniwersytet. We współpracy z Köppenem napisał książkę na temat paleoklimatologii, w której rozwinięte zostały pewne argumenty na rzecz dryftu kontynentalnego. Napisał też książkę na temat kraterów księżycowych, uznając je – zgodnie z prawdą, a wbrew ówczesnym poglądom – za skutek impaktów meteorytów. Mimo ożywionej aktywności Wegenerowi nie udawało się uzyskać katedry uniwersyteckiej, można przypuszczać, że pewną rolę odgrywała tu niechęć wobec jego śmiałych teorii. W 1924 roku został profesorem na katedrze meteorologii i geofizyki w prowincjonalnym Grazu w Austrii (stanowisko stworzono specjalnie dla niego, łącząc obie dziedziny, którymi się zajmował). Wegenerowie przeprowadzili się tam wraz ze swymi trzema córkami i teściem. Jak wspominała Else: „W pięknym Grazu niemal całkiem zatopiliśmy się w mieszczańskiej stabilizacji”. Wegener pracował naukowo, wszyscy troje odbywali liczne wycieczki, regularnie jeździli na narty w Alpy, wojna i ciężkie przejścia w Grenlandii wydawały się daleko poza nimi. Jednak w roku 1929 Alfred Wegener nie umiał się oprzeć okazji ponownej wyprawy na Grenlandię. Zmarł tam niespodziewanie w listopadzie 1930 roku, prawdopodobnie na atak serca z nadmiernego wysiłku, niedługo po swoich pięćdziesiątych urodzinach.

Alfred Wegener i jego towarzysz Rasmus Villumsen na kilka dni przed śmiercią (obaj zginęli w drodze między obozem w głębi Grenlandii a wybrzeżem)

Idea ruchu kontynentów przyszła Wegenerowi po raz pierwszy do głowy w roku 1910, gdy zwrócił uwagę na przystawanie linii brzegowych Ameryki Południowej i Afryki na mapie. Nie był pierwszym, który zauważył owo dopasowanie – jednak nauka instytucjonalna nauczyła się ten fakt ignorować. W roku 1911 Wegener zetknął się po raz pierwszy z danymi geologicznymi i paleontologicznymi, które wskazywały na podobieństwo obu kontynentów. Fakty te znane były specjalistom, interpretowano je jako świadectwo istnienia niegdyś pomostów lądowych między Afryką i Ameryką, uznając za pewnik, że kontynenty te zawsze były położone tak jak dziś (nieco słabsza wersja tego poglądu zakładała istnienie łańcucha wysp łączących oba kontynenty). Wegener postanowił zakwestionować ten pewnik i sprawdzić, czy koncepcja przesuwania się kontynentów może się obronić. W styczniu 1912 roku po raz pierwszy przedstawił swe pomysły publicznie na zjeździe Towarzystwa Geologicznego we Frankfurcie, a trzy lata później rozwinął je w książce. Jak się zdaje, koncepcja pomostów lądowych od początku nie trafiała mu do przekonania. Podstawowym jego argumentem była tu izostazja, obserwowane przez geologów dążenie do równowagi hydrostatycznej. Wiadomo było np., że lądy podnosiły się po ustąpieniu zlodowacenia. Góry mają niższy ciężar właściwy niż dno oceanów. Jeśli tak, to zbudowane z lżejszego materiału pomosty lądowe nie mogły zatonąć w gęstszym podłożu, gdyż przeczyłoby to prawu Archimedesa. Wegener zaczął na kontynenty patrzeć jak na dobrze mu znaną z Arktyki pokrywę lodową: tworzy ona względnie trwałe pływające struktury, które mogą łączyć się albo pękać na mniejsze części, przy czym większa część ich objętości zanurzona jest w wodzie. Podobne zjawiska – oczywiście w nieporównanie większej skali czasowej – mogły zachodzić w przypadku kontynentów na Ziemi.

Przyrodnik zwracał uwagę, że większą część powierzchni Ziemi stanowią albo głębie oceaniczne, albo niezby wysokie lądy.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 27)

Rozkład wysokości dla całej powierzchni Ziemi ma dwa wyraźne maksima, odpowiadające lądom oraz dnu oceanów. Przeczy to zdaniem Wegenera panującej w tym okresie teorii Eduarda Suessa kurczenia się (kontrakcji) Ziemi. Wyobrażano sobie, iż Ziemia stygnie z fazy ciekłej i stale się w związku z tym kurczy. Wywoływałoby to na jej powierzchni efekt podobny do marszczenia się skórki na wysychającym jabłku. Owo „marszczenie się” zewnętrznych warstw skorupy ziemskiej objawiać się miało m.in. fałdowaniem i wypiętrzaniem gór. Ponieważ kurczenie zachodzi stopniowo, więc w różnych jego fazach ta sama część powierzchni mogła znajdować się nad albo pod powierzchnią morza. Odkrycie pierwiastków promieniotwórczych, które stale wydzielają ciepło, stawiało teorię kontrakcji pod znakiem zapytania. W dodatku skały osadowe znajdowane na kontynentach wskazują na to, że tereny te mogły się znajdować jedynie płytko pod powierzchnią morza, nie stanowiły więc nigdy dna oceanicznego. Wegener sądził także, że gdyby to kurczenie się Ziemi odpowiadało za rzeźbę jej powierzchni, rozkład wysokości powinien mieć jedno tylko maksimum, takie jak przerywana linia na rycinie powyżej.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 35; dziś wiemy, że dno oceanów także należy do litosfery, która jednak jest tam znacznie cieńsza niż pod kontynentami)

Jego zdaniem lżejsza masa kontynentu, sial (od zawartości krzemu i aluminium: Si-Al) pływa w cięższej simie (od zawartości krzemu i magnezu: Si-Ma), która ma pewne cechy cieczy, przynajmniej w długiej skali czasowej. Toteż poziome przemieszczanie się kontynentów przypominałoby pływanie kier lodowych w morzu. Według oszacowania Wegenera grubość kontynentów (oznaczona M na rycinie) była rzędu 100 km (rycina jest schematyczna i nie oddaje prawidłowo skali).

Mapy Wegenera (Entstehung der Kontinente und Ozeane, 1929, s. 19, 20)

Teoria dryftu kontynentów nie tylko tłumaczyła dopasowanie kształtów różnych lądów, ale także w naturalny sposób objaśniała podobieństwa geologiczne: góry po jednej stronie Atlantyku znajdowały swe naturalne przedłużenie po drugiej jego stronie. Podobieństwa zachodziły także między kopalnymi gatunkami roślin i zwierząt z części świata oddzielonych barierą oceanu. Bez pomostów lądowych trudno było zrozumieć, w jaki sposób te same gatunki mogły wyewoluować w sposób niezależny od siebie.

(J.S. Monroe, S. Wicander, The Changing Earth, 4th edition, s. 33)

Wegener przyjął, że w erze paleozoicznej wszystkie kontynenty stanowiły jeden ląd, nazwany Pangea, który następnie popękał na oddzielne fragmenty, odsuwające się stopniowo od siebie. Jedna z krawędzi Pangei znajdowała się blisko bieguna południowego – gdyż kontynenty przesuwały się nie tylko względem siebie, ale także w stosunku do osi obrotu Ziemi. Dzięki temu można było wyjaśnić geologiczne ślady zlodowaceń paleozoicznych w miejscach położonych obecnie tak daleko od siebie, jak Argentyna, Afryka Południowa, Indie i Australia – wszystkie te lądy znajdowały się kiedyś blisko siebie, a także blisko bieguna ziemskiego.

Dane Wegenera wg współczesnego podręcznika (W. Frisch et al., Plate Tectonics, Springer 2011, s. 3)

Ciągłość pasm górskich oraz zlodowacenia i lasy karbońskie (E.J. Tarbuk, F.K. Lutgens, D. Tasa, Earth: An Introduction to Physical Geology, 11th edition, s. 46,47)

W oczach większości geologów hipoteza Wegenera zakrawała na szaleństwo. Jak zauważył jeden z geologów, przeciwnik dryftu: gdyby to była prawda, to należałoby napisać na nowo podręczniki z ostatnich trzydziestu lat – rzeczywiście, trzeba było to w końcu zrobić. Podobnie reagowali wykształceni ludzie XVI wieku, słysząc o koncepcji Kopernika. Obie teorie usuwały niejako metafizyczny grunt pod nogami, głosząc zmienność i ruch tam, gdzie pragnęlibyśmy stabilności i niezmienności. Obie brały początek ze stosunkowo prostego i nienowego pomysłu, który był po wielokroć odrzucany jako absurdalny. Sformułowane zostały dzięki innemu spojrzeniu na znane fakty, a nie dzięki jakimś nowym, nieznanym dotąd obserwacjom. Obie teorie przekraczały także granice między różnymi naukami. Kopernik „niedopuszczalnie” mieszał astronomię i fizykę. W sprofesjonalizowanym i wyspecjalizowanym dwudziestym wieku czyniono zarzut z tego, że teorię wysunął nie geolog, który strawił lata na badaniach terenowych, lecz autsajder: astronom zajmujący się głównie meteorologią. Warmia Kopernika i Marburg oraz Graz Wegenera, leżąc na uboczu, ułatwiały niezależne myślenie, wolne od presji poglądów środowiska. Obaj autorzy zdawali sobie do pewnego stopnia sprawę z kontrowersyjnosci swoich hipotez, choć żaden z nich nie spodziewał się chyba aż tak zażartego oporu. Oczywiście, każdy rewolucyjny pogląd rodzi nowe trudności i niełatwo z góry przesądzić, czy ostanie się wobec zarzutów. Obie teorie wykazywały też dość podobny brak: nie zawierały bowiem konkretnego mechanizmu, który tłumaczyłby zakładane ruchy. Mechanika arystotelesowska z trudem dawała się pogodzić z heliocentryzmem, w przypadku Wegenera trudność była może jeszcze większa, gdyż potrzebne prawa fizyki były wprawdzie znane, lecz nie było jasne, w jaki sposób miałyby z nich wynikać przemieszczenia kontynentów. Świadom tej trudności, uczony zaproponował dwa mechanizmy, choć podkreślał także, że jest zbyt wcześnie na tego rodzaju szczegóły. Mówił o sile odśrodkowej, która wywołać miała ucieczkę od biegunów – Polflucht, a także o siłach przypływowych Księżyca i Słońca, które wywołać miały przesuwanie kontynentów ku zachodowi. Wyjaśnienia te zostały bardzo ostro skrytykowane przez ekspertów.
Niektóre argumenty Wegenera były błędne, co nie powinno nas szczególnie dziwić w przypadku pracy tak pionierskiej (podobnie było z większoscią szczegółowych poglądów Kopernika oprócz samego heliocentryzmu). Stosunkowo największym błędem było bardzo późne oddzielenie się Grenlandii, która zdaniem Wegenera przesuwać się miała z szybkością rzędu 30 m rocznie. Wegener nadmiernie zawierzył pomiarom astronomicznym długości geograficznej, które nie miały dostatecznej dokładności. Dziś szybkości przesuwania się płyt tektonicznych można mierzyć bezpośrednio za pomocą systemu GPS i wiadomo, że są one rzędu kilku cm rocznie.

W latach dwudziestych ubiegłego wieku krytykowano jednak nie tylko słabe punkty teorii Wegenera, ale także i jej mocne strony. Wysuwano np. twierdzenie (H.S. Washington, 1923), że skały po obu stronach Atlantyku nie wykazują podobieństw. Nie zgadzał się z tym poglądem A.L. Du Toit, wybitny południowoafrykański geolog, który specjalnie w tym celu udał się do Ameryki Południowej i stwierdził, że podobieństwa geologiczne „są wręcz zdumiewające”. Du Toit stał się zwolennikiem teorii Wegenera. Szczególnie niechętne przyjęcie spotkało teorię Wegenera w Stanach Zjednoczonych i Wielkiej Brytanii, a więc w krajach w geologii przodujących. Przewodniczący Londyńskiego Towarzystwa Geologicznego J.W. Gregory stwierdził, że jeśli izostazja sprzeczna jest z zanurzaniem się dna oceanów, to tym gorzej dla izostazji. Zgadzał się z tym zdaniem także Harold Jeffreys, wybitny geofizyk, który na podstawie danych sejsmicznych wierzył w częściowo płynne jądro Ziemi, sądził jednak, że zewnętrzne jej warstwy są sztywne. Naomi Oreskes upatruje źródeł reakcji amerykańskich geologów na teorię Wegenera w ich niechęci do ogólnych, zbyt spekulatywnych teorii. Niewątpliwie pewna dyscyplina myślowa jest w naukach empirycznych niezbędna, nie należy budować pochopnych uogólnień i uczeni zdobywają pozycję w swoim cechu na podstawie rzeczowych i beznamiętnych obserwacji. Jednak żaden podręcznik metodologii nie nauczy nas, które uogólnienia są „pochopne”, a które – „śmiałe i nowatorskie”. Niemal zawsze prace rewolucyjne przekraczają granice uznanych dziedzin i dopuszczalnych metod. Idee Wegenera podjął Arthur Holmes, twórca datowania radiometrycznego, był w tym jednak niemal całkowicie odosobniony. Przypuszczał on, że ciepło wydzielane przez pierwiastki promieniotwórcze może przenosić się za pomocą prądów konwekcyjnych w płaszczu Ziemi. Prądy takie odpowiedzialne byłyby za przesuwanie kontynentów.

Przesuwanie się kontynentów wróciło do łask w latach sześćdziesiątych ubiegłego wieku dzięki wielu nowym obserwacjom i metodom. Postęp osiągnięty został przede wszystkim dzięki badaniom dna oceanów. Dopiero po drugiej wojnie światowej można było zastosować echosondy do precyzyjnego zbadania topografii dna morskiego. Dzięki badaniom magnetyzmu występujących tam skał można było stwierdzić, że podmorski Grzbiet Śródatlantycki jest strefą spredingu – miejscem, gdzie na powierzchnię wydobywa się nowy materiał z wnętrza Ziemi i tworzą płyty tektoniczne. Kontynenty są częścią płyt tektonicznych, nie torują sobie drogi w płynnym podłożu, lecz raczej są przesuwane wraz z całością płyty, do której należą (symetryczne zjawisko niszczenia płyt następuje w obszarach subdukcji, gdzie jedna płyta wsuwa się pod drugą). W marcu 1964 roku Towarzystwo Królewskie w Londynie zorganizowało konferencję poświęconą przesuwaniu się kontynentów. Zaprezentowano na niej pracę przedstawiającą komputerowe dopasowanie kształtu kontynentów po obu stronach Atlantyku (E. Bullard, J.E. Everett, A.G. Smith, The fit of the continents around the Atlantic, Phil. Trans. Roy. Soc. London A, 258: 41-51).

Okazało się ostatecznie, że Wegener miał rację: średni kwadratowy błąd dopasowania jest rzędu 50 km (co ciekawe, w latach dwudziestych jeden z geologów sporządził model, z którego wynikało, że takiego dopasowania wcale nie ma i luki między kontynentami sięgają 1200 km!). Płyty kontynentalne zachowują się jak sztywne dwuwymiarowe obiekty przesuwające się po powierzchni Ziemi. Oznacza to, że mają one krzywiznę Ziemi i ich ruchy są obrotami – zgodnie z twierdzeniem Eulera, mówiącym, iż dowolne złożenie obrotów przedstawić można jako obrót wokół pewnej ustalonej osi o pewien kąt. Swoistą ironią losu jest fakt, że trwają wciąż dyskusje na temat sił wywołujących przesuwanie się płyt tektonicznych, prądy konwekcyjne rozpatrywane przez Holmesa są raczej skutkiem niż przyczyną tych ruchów. Najczęściej uważa się, że dominuje jakiś mechanizm grawitacyjny.

Jedna ze współczesnych rekonstrukcji Pangei (za: A. Schettino, Quantitative Plate Tectonics, Springer 2015, s. 60)

 

Johannes Kepler: III prawo ruchu planet (15 V 1618)

Niemal wszystkie wielkie odkrycia naukowe dla swych odkrywców znaczyły co innego niż dla potomnych. Z tego powodu dzisiejsza wiedza jest często mało przydatna, gdy chcemy dowiedzieć się, w jaki sposób zostały dokonane jakieś odkrycia. Przykład praw Keplera jest tu wielce pouczający: to, co dziś uważamy za trzy prawa Keplera, on sam uważał za istotne wprawdzie, ale trzy pojedyncze fakty w całym gmachu astronomii, który zbudował.

Johannes Kepler zdecydował się zająć astronomią, kiedy odkrył – jak mu się zdawało – ukryty sens geometryczny proporcji orbit planetarnych. Stwórca zrealizował bowiem w niebiosach wielce barokową konstrukcję geometryczną. Nastąpiły długie lata studiowania ruchów planet, szczęśliwym zbiegiem okoliczności mógł wykorzystać zbiór obserwacji Tychona Brahego, najdokładniejszych w dziejach i obejmujących najdłuższy przedział czasu. Ktoś porównał sytuację przed Tychonem i obserwacje Tychona do oddzielnych fotografii i długiego filmu: ruchy planet monitorowane były przez duńskiego astronoma nieomal z dnia na dzień. Kepler pierwszy zbudował w pełni heliocentryczną astronomię, w której Słońce było nie tylko wielką lampą oświetlającą wszechświat i umieszczoną centralnie, ale także źródłem ruchu sześciu znanych planet. Uzyskane przez niego wyniki podsumowuje się dziś w formie trzech praw ruchu. Pamiętać jednak należy, że zawarte one były w książkach Keplera wśród długich rozważań i nigdzie nie zostały sformułowane w taki właśnie sposób.

Dwa pierwsze prawa znalazły się w Astronomia nova z 1609 roku. Eliptyczny kształt orbit był najbardziej oczywistym wynikiem tej pracy, choć wielu nie dało się przekonać: astronomowie przyzwyczajeni byli do kół poruszających się po kołach i podejście Keplera wydawało się dziwaczne. Tym bardziej, że nawet obserwacje Brahego nie były na tyle dokładne, by jakoś zdecydowanie rozstrzygać, jaki jest właściwie kształt orbity – mogły to być rozmaite owale, a poza tym krzywe takie można skonstruować na różne sposoby, więc elipsy wydawały się wnioskiem zbyt silnym. Tak rozumiał to np. Isaac Newton, kiedy pisał: „Kepler wiedział, iż orbity planet nie są kołowe, lecz owalne, i odgadł, że są eliptyczne”. Kepler nie tyle zresztą zgadywał, ile kierował się tu (obok obserwacji) własną teorią ruchu planet – pierwszą mechaniką niebios – lecz z pozycji newtonowskich próba ta była chybiona, więc Newton mógł potraktować to jako zgadywanie. Elipsy z czasem znalazły sobie miejsce wśród uznanych faktów astronomicznych. Aż do czasów Newtona nie wiedziano jednak, co zrobić z Keplerowskim prawem pól – dzisiejszym II prawem Keplera. Teoretyczne wyjaśnienia samego Keplera nie przekonały jego następców, w dodatku prawo to jest niełatwe do praktycznego stosowania, gdyż prowadzi do równania przestępnego: t=E-e\sin E, gdzie t jest czasem, e mimośrodem orbity, a E tzw. anomalią mimośrodową, wielkością potrzebną do obliczenia położenia planety na elipsie. Równanie Keplera należało rozwiązywać metodami przybliżonymi, co w XVII wieku było trudne zarówno praktycznie, jak i pojęciowo. II prawo Keplera odrodziło się dopiero dzięki Newtonowi, który spostrzegł, że musi ono obowiązywać zawsze, gdy siły działają wzdłuż linii łączącej planetę i Słońce, bez względu na konkretną zależność sił od odległości. Dziś mówimy, że w ruchu pod wpływem sił centralnych zachowany jest moment pędu.

Kepler traktował własną pracę nad geometrycznym i mechanicznym opisem ruchu planet jako bardzo długi wstęp, rodzaj dygresji, właściwym celem było odkrycie, czemu Stwórca zbudował układ planet tak, a nie jakoś inaczej. Z jego perspektywy najciekawsze więc wydawało się wyjaśnienie odległości, okresów i ekscentryczności orbit, a więc nie tyle mechanika, co warunki początkowe – one bowiem mówiły nam coś o Bogu. Uczony, kiedy tylko mógł, wracał do rozważań na temat harmonii świata, one właśnie wydawały mu się najcenniejsze. Niosły mu też pociechę – to w czasie żałoby po śmierci córeczki zajął się pisaniem Harmonice mundi („Harmonii świata”). Do brył platońskich z młodzieńczej konstrukcji doszły teraz harmonie muzyczne – idea pitagorejska. Johannes Kepler stworzył najbardziej rozbudowaną i szczegółowo opracowaną wersję tej starej idei. Wszechświat był dla niego kosmosem, uładzoną i piękną całością. Sądził, że potrafi wyjaśnić ekscentryczności orbit planetarnych. Tym, co miało budować harmonie muzyczne kosmosu były prędkości kątowe planet widziane ze Słońca. Ich zakres odpowiadał pewnej skali muzycznej. Była to więc muzyka czysto matematyczna, którą obserwować mogły mieszkające na Słońcu anioły.

To, co przepowiedziałem dwadzieścia dwa lata temu, kiedy odkryłem pięć brył foremnych między sferami niebieskimi; to, o czym mocno byłem przekonany wewnętrznie, zanim jeszcze ujrzałem Harmonie Ptolemeusza; to, co obiecałem przyjaciołom w tytule tej piątej Księgi, nim jeszcze nabrałem całkowitej pewności; to, o czym szesnaście lat temu pisałem publicznie, nalegając, iż musi być zbadane; to, co skłoniło mnie, by spędzić najlepszą część życia na spekulacjach astronomicznych, wybrać się do Tychona Brahego do Pragi i samemu zamieszkać w Pradze; to, do czego Bóg Najlepszy i Największy nakłaniał mój umysł i rozbudzał pragnienie poznania, przedłużając me życie i siły umysłu, a także dostarczając innych środków dzięki hojności dwóch cesarzy oraz szlachty stanów Górnej Austrii; to w końcu, gdy wypełniłem swoje obowiązki astronomiczne w wystarczającym stopniu, mogłem wreszcie wydobyć na światło i stwierdziłem, że jest prawdą bardziej nawet, niż miałem nadzieję: odkryłem pośród ruchów niebieskich pełną naturę harmonii, w stopniu, w jakim ona występuje, wraz ze wszystkimi swymi częściami, objaśnionymi w Księdze III – wprawdzie nie w taki sposób, w jaki ją sobie wyobrażałem (co stanowi nie najmniejszą część mojej radości), ale w zupełnie inny sposób, najpiękniejszy i zarazem najdoskonalszy. (KGW t. VI, s. 289; )

Samo III prawo Keplera jest prostą zależnością ilościową: jeśli wyrazimy okres obiegu planety T w latach, a półoś orbity a (czyli średnią odległość od Słońca) w jednostkach orbity Ziemi, to przyjmuje ono postać: T^2=a^3. Prawo to znajduje się w Księdze piątej Harmonice mundi jako ósme twierdzenie rozdziału trzeciego, a więc wplecione w pitagorejskie rozważania.

Tak więc część mojej Tajemnicy kosmosu, która została zawieszona dwadzieścia dwa lata temu, ponieważ nie była jeszcze jasna, zostaje dokończona i tutaj umieszczona. Bo kiedy znalezione zostały prawdziwe odległości sfer, poprzez obserwacje Brahego i ustawiczny długotrwały trud, to w końcu – w końcu – prawda co do stosunku okresów i wielkości sfer
choć późno, wejrzała na opieszalca,
Wejrzała jednak i w końcu, po długim czasie, nastała.(*)
a jeśli trzeba wam dokładnego czasu, zrodzona została w umyśle 8 marca tego roku 1618, lecz poddana rachunkowi w pechowy sposób i odrzucona jako fałsz, aż wreszcie powróciła 15 maja i przyjmując inną linię ataku, pokonała ciemności mego umysłu. Tak silne było wsparcie siedemnastu lat mojej pracy nad obserwacjami Brahego oraz obecnych badań, które połączyły swe siły, iż z początku myślałem, że śnię i gdzieś w założeniach wprowadzam moją konkluzję. Ale jest absolutnie pewne i ścisłe, że stosunek okresów dowolnych dwóch planet równa się dokładnie stosunkowi ich średnich odległości do potęgi 3/2 (Harmonice mundi, 1619, s. 189; KGW t. VI, s. 302)

Spośród praw Keplera to było najmniej kontrowersyjne, bo łatwe do sprawdzenia. Co więcej, pozwalało poprawić wielkości orbit, ponieważ okresy obiegu znane były znacznie dokładniej niż odległości, co pierwszy zauważył Jeremiah Horrocks, który, gdyby nie zabrała go śmierć w wieku dwudziestu dwóch lat, z pewnością zostałby jednym z najważniejszych astronomów XVII stulecia.

(*) Wykształconemu klasycznie Keplerowi przyszła tu na myśl pierwsza ekloga Wergiliusza:

Wolność, która, choć późno, wejrzała na opieszalca,
Kiedy już siwiejące spod brzytwy sypały się włosy,
Wejrzała jednak i w końcu, po długim czasie, nastała.
(przeł. Z. Kubiak, Literatura Greków i Rzymian, s. 430)

Jak Johannes Kepler odkrył eliptyczny kształt orbity Marsa? (1605)

Kepler był pierwszym liczącym się naukowo zwolennikiem teorii heliocentrycznej. Otaczał wielką czcią postać Mikołaja Kopernika, ale astronomię zbudował właściwie na nowo. Zawiłą drogę do odkrycia tego, co dziś nazywamy dwoma pierwszymi prawami Keplera, opisał w legendarnie trudnej książce Astronomia nova. Dotyczyła ona głównie ruchu Marsa, częściowo także Ziemi. Uczony miał do dyspozycji wieloletnie precyzyjne obserwacje Tychona Brahego. Na ich podstawie zbudował teorię, która dorównywała im dokładnością, był to największy krok od czasów starożytnych Greków. Bez tak precyzyjnej teorii trudno sobie wyobrazić odkrycie prawa ciążenia przez Isaaca Newtona. Sam Newton sądził, iż Kepler wiedział, że orbity planet są owalne, a odgadł, że są one eliptyczne. W jakimś stopniu miał rację: nawet obserwacje Tychona, najlepsze, jakie kiedykolwiek zgromadzono, były zbyt mało dokładne, aby precyzyjnie wyznaczyć kształt orbity szukając jej punkt po punkcie. Odkrycie było więc wynikiem konfrontowania rozważań teoretycznych i obserwacji.
W praktyce dzięki pomysłowym metodom postępowania Kepler potrafił z dużą dokładnością wyznaczyć kierunek Słońce-Mars w zależności od czasu oraz z mniejszą dokładnością odległości planety od Słońca w różnych chwilach. Jego zdaniem Mars poruszany jest przez jakąś siłę emanującą ze Słońca. A właściwie wyobrażał sobie nawet dwie takie siły, pamiętajmy, że mechanika była wciąż na etapie arystotelesowskim: siła ciągnie albo popycha – ciało się porusza, siła przestaje działać – ciało staje. Była to dynamika przesuwanej szafy. Mimo to lepsza była taka dynamika niż żadna. Przed Keplerem, a i po nim, wyobrażano sobie ruchy planet jako coś całkowicie odmiennego od mechaniki ziemskich przedmiotów. Dla Kopernika Słońce było centralną latarnią w świecie, a nie źródłem siły.
Kepler przyjął, że ruch Marsa wokół Słońca zachodzi po krzywej zamkniętej. Najprościej było przyjąć, że jest nią okrąg o umownym promieniu równym 1. Musimy jednak wtedy Słońce odsunąć od środka okręgu o pewną wielkość znaną z obserwacji, tzw. mimośród orbity. W przypadku Marsa \mbox{AS}=e \approx 1/11.

mars 1 area law

Wiadomo też z obserwacji, że planeta porusza się szybciej, gdy jest bliżej Słońca. Z takim ruchem niejednostajnym Kepler zmierzył się jako pierwszy. Intuicyjnie wydawało mu się to zrozumiałe, że z mniejszej odległości Słońce oddziałuje silniej, a więc porusza szybciej naszą planetą (Wyobrażał sobie, że Słońce wiruje wokół osi i niejako zagarnia planety swoim polem siłowym, toteż ucieszył się, kiedy odkryto wirowanie Słońca wokół osi). Uprościmy rozważania na ten temat, zakładając tzw. prawo pól, czyli dziś II prawo Keplera. W trakcie swej wojny z Marsem (jak sam ją określał w alegorycznym duchu epoki) astronom stosował także różne inne przybliżenia, które dla uproszczenia pominiemy. Prawo pól mówi, że pole powierzchni zakreślonej przez promień wodzący Marsa, czyli np. powierzchni SCM jest proporcjonalne do czasu. Np. pole wycinka SM’C jest mniej więcej równe polu BAC, czyli ćwiartce koła. Znaczy to, że Mars znajdzie się w tym położeniu po jednej czwartej obiegu. Po połowie obiegu znajdzie się oczywiście w punkcie najbliższym Słońca (peryhelium).
Na przebycie łuku orbity CM planeta potrzebuje czasu t, który spełnia następującą proporcję

\dfrac{t}{T}=\dfrac{\mbox{pole MAC}+\mbox{pole SAM}}{\pi}\Rightarrow t=\beta+e\sin\beta.

Przyjęliśmy umownie, że okres obiegu Marsa T=2\pi. Jest to tzw. równanie Keplera. Kąt \beta nazywa się anomalią mimośrodową. Nie jest to wprawdzie ten kąt, który może wprost zainteresować astronoma i który można wyznaczyć z obserwacji (choć nie wprost – trudno umieścić się na Słońcu!). Istotnym obserwacyjnie kątem jest MSC, tzw. anomalia prawdziwa. Z rysunku widać, że anomalię tę można wyznaczyć w sposób trygonometryczny. Mając \beta, możemy więc znaleźć czas i położenie planety. Równanie Keplera jest przestępne, nie można podać prostego wyrażenia na funkcję \beta(t), był to jeden z kłopotów Keplera, a potem wszystkich następnych astronomów, gdyż równanie Keplera obowiązuje także dla orbity eliptycznej. Od teraz będziemy zakładać prawo pól dla każdego kształtu orbity. Kiedy zastosuje się je do Marsa, anomalie prawdziwe (czyli kąty widziane ze Słońca) różnią się od obserwowanych mniej więcej tak:

mars circular errors

(rysunek wg pracy H. Martynki)

Różnice nie są wielkie, lecz w miarę wyraźne. Kepler znał tylko kilka punktów tej krzywej, nie miał do dyspozycji żadnych narzędzi obliczeniowych, nawet logarytmy były nieznane, każde mnożenie, dzielenie itd. trzeba było mozolnie wykonywać krok po kroku. Obserwacje Tychona pozwalały na błędy rzędu jednej albo dwóch minut kątowych (bez użycia teleskopu nie da się zresztą rozróżnić mniejszych kątów, patrz George Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop? Nasze oko ograniczone jest średnicą źrenicy, a także gęstością komórek światłoczułych na siatkówce). Kepler sprawdził także, że orbita Marsa powinna być odrobinę spłaszczona. Rzecz jednak w tym, że nie szukał jedynie odpowiedniej krzywej, ale chciał także, żeby jej kształt wynikał jakoś z mechaniki. Wpadł na pomysł dość dziwaczny dla nas, ale uzasadniony tradycją astronomii: na dużym kole (deferencie) obraca się małe koło (epicykl). Można taką konstrukcją zastąpić okrąg rozważany wyżej.

mars2 ekscent

Odcinek CM jest stale równoległy do SA. Można albo sobie wyobrażać ruch po czerwonym okręgu albo po dwóch czarnych, wynik będzie ten sam. Nowy pomysł Keplera polegał na tym, aby epicykl nadal obracał się jednostajnie, ale ruch planety miał być niejednostajny: w rezultacie kąt NXM będzie większy niż kąt NSC i wypadkowa krzywa stanie się spłaszczonym nieco owalem. Jednostajny obrót epicykla uważał Kepler za możliwy fizycznie (wymagało to jakiejś dodatkowej siły wywołującej ten obrót, ale tak czy owak potrzebował dwóch różnych sił: jednej wywołującej krążenie wokół Słońca oraz drugiej na przemian zbliżającej i oddalającej planetę od Słońca).

mars oval

Owal też nie spełnił zadania. Kepler miał kłopoty z obliczeniem jego kształtu, choć zadanie nie jest szczególnie trudne, gdy zastosować trygonometrię w zapisie algebraicznym albo prosty rachunek całkowy – narzędzia te nie były mu dostępne, bo ich jeszcze nie było. Błędy w anomaliach prawdziwych okazały się teraz równie duże co poprzednio, miały jednak inne znaki.

mars errors oval

(rysunek wg pracy H. Martynki)

Wskazywało to na zbytnie spłaszczenie owalu w stosunku do rzeczywistości. Owal miał rzeczywiście kształt jajka (ovum), choć w praktyce jajo to nie różniło się wiele od elipsy i w jakimś momencie Kepler zaczął je przybliżać elipsą. Nie zauważył, że prawo pól zastosowane do różnych elips oznacza, że planety tak się poruszające znajdują się w każdej chwili na jednej linii prostopadłej do osi NMM’. Zatem jeśli błękitna elipsa daje położenie M’, a okrąg położenie N i oba są z przeciwnym błędem, to rozwiązaniem powinna być elipsa pośrednia między tymi dwiema (okrąg to też elipsa).

mars 3 ellipses

W każdym z tych przypadków słuszne jest równanie Keplera, które wypisaliśmy wyżej. Kepler szukał jednak wyjaśnienia fizycznego: owal miał jakieś uzasadnienie, inna elipsa nie bardzo. Bez epicykla i bez okręgu znalazł się w kropce. Wrócił do odległości. Owal był nieco węższy w kierunku prostopadłym do osi (linia łącząca położenie najbliższe i najdalsze od Słońca, u nas pozioma). Między okręgiem a owalem zostawał cienki sierp, lunula – jak go określił.

mars lunulae1

Astronom wiedział, że prawdziwy tor planety mieści się gdzieś pośrodku. Obserwowane odległości nie przesądzały jednak gdzie dokładnie. Wczesną wiosną 1605 roku zauważył dość szczególne prawo, które pasowało do obserwacji i tego, co wiedział.

mars click

Najpierw przyjrzyjmy się niebieskiemu trójkątowi SKA. Kepler wiedział, że kąt na rysunku równy jest dla Marsa \varphi=5^{\circ} 18'. Przy takim kącie SK=1,00429, a więc do jedynki dodana jest mniej więcej połowa szerokości lunuli. Tymczasem odległość SM powinna być równa wówczas 1. Czyli tam, gdzie orbita jest najwęższa, od okręgu należałoby ująć mniej więcej 0,00429. Prawo, które zaproponował, przedstawione jest na rysunku. Zamiast odległości SN należało w każdym punkcie wziąć odległość ND – była to więc reguła, o ile należy skrócić promień w stosunku do promienia wodzącego SN (N leży na okręgu). Zapisane trygonometrycznie prawo to ma rzeczywiście prostą postać

r=1+e\sin\beta.

Można było mieć nadzieję, że tak proste prawo wynika jakoś z mechaniki. Miało ono zastąpić ów nieszczęsny epicykl, który sprawił mu mnóstwo zachodu. Brakowało jeszcze ustalenia, w którym kierunku należy odłożyć ową odległość r. W końcu zauważył, że prawidłowy rysunek wygląda następująco.

mars kepler ellipse

Można wykazać, że odkładając odległość DN jako SM (obie zaznaczone są na niebiesko), otrzymujemy punkt M leżący na elipsie. Spośród wszystkich elips, które mają taką samą długość dużej półosi, wybieramy dzięki tej konstrukcji taką, że Słońce znajduje się w jej ognisku (sam astronom nie zauważył tego w pierwszej chwili). Nie jest to oczywisty sposób na skonstruowanie elipsy, ale jest on prawidłowy. Zapisane przez nas równania oraz łatwy do wyznaczenia z rysunku kąt anomalii prawdziwej dają nam równania ruchu planety w postaci parametrycznej, gdzie \beta jest parametrem. Zauważmy, że linia AN nie celuje ku planecie, lecz ku pewnemu punktowi na pomocniczym okręgu. Konstrukcja jest dość zawiła, ale nie da się tego zrobić dużo prościej, to ruchy planet są skomplikowane.
W rzeczywistości orbity Marsa rozpatrywane przez Keplera bardzo mało się od siebie różnią. Na rysunku przedstawiłem przypadek e=0,4, mimośrody planet nie są tak duże. Widzimy, dlaczego starożytne teorie oparte na okręgach działały tak dobrze.

mars e equal04

(rysunek wg pracy H. Martynki)

A tak poprawiła się dokładność przewidywań w teorii Keplera w porównaniu z efemerydami przed nim.

marspos

Dane O. Gingericha

Dla porządku zapiszę jeszcze wzory dla anomalii prawdziwej v, czyli kąta MSC na rysunku wyżej. Rzutując SM na prostą SC, otrzymujemy:

r\cos v=e+\cos\beta.

Rzutując SM na prostą NM, otrzymujemy:

r\sin v=\sqrt{1-e^2}\sin\beta,

gdzie \sqrt{1-e^2} jest stosunkiem długości małej osi elipsy do dużej. Łatwo stąd otrzymać także biegunowe równanie elipsy, lepiej znane niż wzór Keplera na r. Mnożąc obie strony wzoru z \cos v przez e oraz dodając do obu stron 1, mamy:

1+er\cos v=e^2+(1+e\cos\beta)=e^2+r.

Wyznaczając r, dostajemy równanie elipsy

r=\dfrac{1-e^2}{1-e\cos v}.

W podręcznikach cosinusy mają inne znaki, ponieważ my trzymamy się historycznego sposobu liczenia kątów od aphelium, a obecnie liczy się od perihelium: \cos(\pi-\alpha)=-\cos\alpha. Owal Keplera ma równanie

r=\dfrac{1-e^2}{\sqrt{1-2e\cos v+e^2}}.