Jakob Hermann pisze do Johanna Bernoulliego na temat ruchu planet, 12 lipca 1710 r.

Ulmenses sunt mathematici – mieszkańcy Ulm to matematycy – głosiło stare porzekadło. Znamy jednego matematyka z Ulm Johannesa Faulhabera, który miał kontakty z Keplerem i być może z Kartezjuszem. Słynna ogrzewana komora, w której rozmyślał francuski filozof pewnej jesieni, mieściła się w Neuburgu niezbyt oddalonym od Ulm. No i w Ulm urodził się Albert Einstein, lecz rodzina rok później się przeprowadziła i uczony jako człowiek dorosły nigdy potem nie odwiedził już swego miasta rodzinnego.

Prawdziwą kolebką matematyków była natomiast leżąca niezbyt daleko od Ulm Bazylea. Stąd pochodziła rozgałęziona rodzina Bernoullich, a także Leonhard Euler i Jakob Hermann. Protoplastą naukowego rodu był Jakob Bernoulli, to od niego uczyli się matematyki jego brat Johann oraz Jakob Hermann. Johann z kolei był ojcem wybitnego Daniela i nauczycielem genialnego Eulera. Ponieważ posad dla matematyków nie było w Europie wiele, więc wszyscy ci matematycy sporo podróżowali. Dzięki bazylejskim matematykom rachunek różniczkowy i całkowy Leibniza stał się podstawą nowożytnej matematyki.

Drugim wielkim zadaniem uczonych od końca XVII wieku stało się przyswojenie osiągnięć Isaaca Newtona. Matematyczne zasady filozofii przyrody zawierały rewolucyjną fizykę przedstawioną za pomocą indywidualnego języka matematycznego, stworzonego przez autora. Nie było w historii nauki traktatu tak oryginalnego zarówno pod względem treści fizycznej, jak i matematycznej. Toteż jego zrozumienie i opanowanie zajmowało całe lata nawet wybitnym uczonym. Na kontynencie panował matematyczny idiom Leibniza i twierdzenia Newtona tłumaczono niejako na tę zrozumiałą wśród uczonych symbolikę.

Jakob Hermann pierwszy podał różniczkowe sformułowanie II zasady dynamiki. Miało ono u niego postać

G=M dV: dT,

gdzie G,M oznaczały siłę i masę, a dV, dT – różniczki prędkości i czasu. Zapis ten pojawił się dopiero na 57 stronie jego traktatu Phoronomia (1716) i odnosił się do siły ciężkości zależnej od położenia. Oczywiście, Newton już w 1687 r. rozważał takie siły, ale wyłącznie w postaci geometrycznej. Jego II prawo brzmiało: „Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.” Newton miał na myśli zmiany pędu ciała w pewnym krótkim czasie. Jednym problemem tego sformułowania była kwestia opisywania zmian w czasie, drugim problemem był wektorowy charakter siły: ilość ruchu, pęd, zmienia się w kierunku przyłożonej siły.

Pokażemy, jak Hermann rozwiązał problem ruchu ciała przyciąganego siłą odwrotnie proporcjonalną do kwadratu odległości od nieruchomego centrum. Zwolennicy Leibniza mieli zastrzeżenia do Newtonowskiego dowodu tego faktu, zbyt szkicowego. Pragnęli wyraźnego wykazania, że tylko stożkowe (albo część linii prostej) mogą być torem ciała.

Wyobrażamy sobie przyciągane przez centrum S ciało zakreślające krzywą CD. Jego ruch w nieskończenie krótkim czasie dt można przedstawić jako sumę wektorową ruchu bezwładnego od C do E oraz spadania od E do D wzdłuż kierunku siły w punkcie C, tzn. odcinki SC i DE są równoległe. Zmiana współrzędnej x w ruchu bezwładnym byłaby równa dx. Efekt działania siły przyciągającej to różniczka drugiego rzędu ddx (co później zapisywano d^{2}x). Oczywiście do ddx wchodzi tylko x-owa składowa siły.

Dziś narysowalibyśmy to tak, Hermann odnajduje trójkąty podobne na swoim rysunku i dochodzi do wniosku, że

ddx \propto F\dfrac{x}{r} dt^2.

Pole SCD zakreślane w czasie dt można przedstawić jako pole trójkąta o bokach [x,y] oraz [dx,dy], a więc jest ono równe połowie pola równoległoboku dt\propto y dx-x dy.
Ostatecznie różniczkę ddx możemy zapisać następująco (siła jest odwrotnie proporcjonalna do kwadratu odległości):

-a ddx=\dfrac{x}{r^3}(y dx-x dy)^2,

gdzie a jest stałą proporcjonalności. Naszym zadaniem jest znalezienie równania krzywej.
Całką tego równania jest

a dx=\dfrac{y}{r}(ydx-xdy).

Dzieląc obustronnie przez x^2 i całkując ponownie, otrzymujemy

-\dfrac{a}{x}+c=\dfrac{r}{x}\;\Rightarrow\; -a+cx=r,

gdzie c jest stałą całkowania. Jest to równanie stożkowej (po obustronnym podniesieniu do kwadratu otrzymamy wielomian kwadratowy w zmiennych x,y).

Postępowanie Hermanna jest pomysłowe, choć całkowania są nieintuicyjne. Można jednak, jak zawsze, sprawdzić je, idąc od końca do początku, tzn. wykonując dwa kolejne różniczkowania. Tak naprawdę sztuka rozwiązywania równań różniczkowych jest często zamaskowanym odgadywaniem całek. Różniczkowania wynikają z reguły Leibniza dla iloczynu d(uv)=v du+u dv.
W naszym przypadku mamy np. dla drugiego równania

d\left(\dfrac{y}{r}\right)=\dfrac{rdy-ydr}{r^2}=\dfrac{r^2 dy-y rdr}{r^3}.

Pamiętając, że r^2=x^2+y^2, mamy rdr=xdx+ydy. Itd. itp. rachunki „od końca” są łatwe. W pierwszym całkowaniu przyjęliśmy stałą całkowania równą zeru, co nie zmniejsza ogólności wyniku, bo Hermann zakłada, iż oś Sx jest osią toru planety, tzn. przecięcie z osią x z lewej strony punktu S następuje w peryhelium albo aphelium, czyli przy y=0 powinno być dx=0.
Johann Bernoulli, który miał dość nieznośny charakter (nigdy nie dość wypominania mu, jak to konkurował ze swym synem Danielem) odpowiedział wybrzydzaniem na procedurę Hermanna i przedstawił swoją ogólniejszą, opartą na innym podejściu.

Z dzisiejszego punktu widzenia Hermann odkrył pewną całkę pierwszą problemu Keplera (tak się dziś nazywa problem ruchu wokół centrum przyciągającego jak 1/r^2). Całka pierwsza to wyrażenie, którego wartość nie zmienia się podczas ruchu. U Hermanna jest to

-\dfrac{dx}{dt}L_{z}-\dfrac{y}{r}=A_{y}=const.

W wyrażeniu tym L_z=xp_{y}-yp_{x}. Gdyby zająć się przyspieszeniem wzdłuż osi Sy, otrzymalibyśmy drugą całkę. Razem składają się one na wektor

\vec{A}=\vec{p}\times \vec{L}-\dfrac{\vec{r}}{r}.

Nazywa się go wektorem Rungego-Lenza, choć odkrył go właściwie Jakob Hermann. W pełni zdał sobie sprawę z faktu, że mamy trzy takie całki pierwsze, czyli w istocie wektor, Joseph Lagrange, a po nim Pierre Simon Laplace. Laplace przedyskutował też systematycznie wszystkie całki pierwsze problemu Keplera (trzy to moment pędu, trzy to nasz wektor, jedna to energia całkowita planety). Carl David Runge (ur. 1856) oraz Wilhelm Lenz (ur. 1888) pojawiają się w tej historii późno i w rolach dość przypadkowych. Pierwszy (znany z algorytmu Rungego-Kutty) użył tego wektora w swoim podręczniku analizy wektorowej, drugi zastosował go do pewnego problemu w starej teorii kwantów, przepisując go z podręcznika Rungego. Zupełnie niekosztowny sposób wejścia do historii. Wilhelm Lenz jest natomiast autorem tzw. modelu Isinga (Ernst Ising był jego doktorantem). Wektor odegrał pewną rolę w powstaniu mechaniki kwantowej. Stosując go, Wolfgang Pauli otrzymał wartości energii w atomie wodoru na podstawie formalizmu macierzowego Heisenberga. Chwilę później Erwin Schrödinger zrobił to samo w swoim formalizmie i wielu fizyków nie wiedziało, co o tym myśleć, bo na pierwszy rzut oka oba podejścia różniły się kompletnie.

Leibniz, Newton i liczba pi (1676)

W roku 1676 dobiegł końca czteroletni pobyt Gottfrieda Wilhelma Leibniza w Paryżu. Teologiczno-dyplomatyczne cele jego misji nie zostały osiągnięte, Leibniz zetknął się jednak w Paryżu z najnowszymi naukami ścisłymi, w szczególności zajął się bliżej matematyką. Były to najświetniejsze lata paryskiej działalności Christiaana Huygensa, którego traktat o zegarze wahadłowym wtedy właśnie ujrzał światło dzienne. Leibniz chłonął nowości i robił szybkie postępy. Już w roku 1673 udało mu się znaleźć słynne przedstawienie liczby pi za pomocą szeregu. Odkrycie to zrobiło spore wrażenie zarówno na paryskich uczonych, jak i na samym odkrywcy, zachęcając go do dalszej pracy w dziedzinie matematyki (w przypadku uczonego tak wszechstronnie uzdolnionego, jak Leibniz, wybór dziedziny nie był bynajmniej czymś oczywistym). Dwa lata później odkrył Leibniz rachunek różniczkowy i całkowy. Ale szereg stanowił wciąż jego powód do dumy. Toteż pochwalił się nim, pisząc w roku 1676 do Henry’ego Oldenburga, sekretarza londyńskiego Royal Society. Z pewnym niedowierzaniem dowiedział się, że „jego” szereg znany jest na Wyspach. Było to trochę tak, jakby ktoś wracając z Princeton z wynikiem, który wszystkich zachwycił, usłyszał, że w Rosji na prowincji dawno już o tym wiedzą.

Szereg to uogólnienie sumy na przypadek nieskończonej liczby wyrazów. Znanym przykładem jest szereg geometryczny. Np.

\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\ldots =1.

Co można zilustrować dzieleniem pola kwadratu jednostkowego na kolejne połowy.

Oczywiście, nie zawsze suma taka jest dobrze określona. Jednym z najprostszych nieoczywistych szeregów jest szereg harmoniczny, odwrotności kolejnych liczb naturalnych:

1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\ldots

Można łatwo pokazać, że szereg ten jest rozbieżny, tzn. jego sumy częściowe przekraczają dowolną z góry zadaną liczbę – należy tylko zsumować odpowiednio wiele składników. Podobnie rozbieżny jest szereg odwrotności liczb nieparzystych (mimo że z poprzedniego szeregu wybraliśmy jedynie co drugi wyraz):

1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\ldots

Nawet gdy ograniczymy się jedynie do odwrotności liczb pierwszych, szereg pozostanie rozbieżny, ten ostatni fakt udowodnił Leonhard Euler.

Szereg Leibniza ma następującą postać:

\dfrac{\pi}{4}=1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\ldots

Jest on naprzemienny, tzn. znaki kolejnych wyrazów się przeplatają. Szereg taki na pewno jest zbieżny, jeśli tylko jego wyraz ogólny dąży do zera. Nie zawsze jednak łatwo jest znaleźć wartość takiej sumy. Leibnizowi udało się odkryć powiązanie z liczbą \pi, znaną z geometrii. Na pierwszy rzut oka nie ma żadnych powodów, aby taki szereg, zbudowany za pomocą prostej arytmetyki, doprowadzić miał do liczby \pi. Stąd wrażenie, jakie to odkrycie wywarło. Jak ujął to dwudziestowieczny matematyk K.H.D. Knopp: „Dzięki temu rozwinięciu opadła jakby zasłona spowijająca tę dziwną liczbę [\pi]”.

Za pośrednictwem Oldenburga Isaac Newton reprezentował wyspiarzy. Profesor z Cambridge (które było wtedy matematyczną pustynią) przesłał mu dwa obszerne listy z przeznaczeniem dla Leibniza. Newton znany był wtedy w Europie jedynie z prac optycznych. Był jednak, i może przede wszystkim, matematykiem, najwybitniejszym w tamtej epoce. Derek T. Whiteside poświęcił najlepsze lata życia na wydanie jego rękopisów matematycznych w ośmiu ogromnych tomach. Większość tego materiału z różnych powodów nie ukazała się drukiem za życia Newtona. W chwili gdy napisał Leibniz, Newton był – by tak rzec – w trakcie czwartego tomu swoich dzieł, dawno po odkryciu rachunku fluksji i fluent, czyli swojej wersji rachunku różniczkowego i całkowego (a jak zwykle u matematyków pierwsze tomy dzieł zebranych są najciekawsze). Obaj uczeni chwalili się wynikami, nie przedstawiając dowodów i tylko mgliście napomykając o rachunku. Tak się składa, że rozwinięcia w szereg stanowiły inny ulubiony temat Newtona. Odkrył np., że naprzemienny szereg harmoniczny związany jest z wartościami funkcji logarytmicznej:

\ln{2}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\ldots .

Przemawiała do niego elegancja samych rozwinięć, a także ich aspekt praktyczny: pozwalały one obliczać wartości różnych funkcji albo stałych matematycznych, takich jak \pi. Posługując się odkrytym przez siebie rozwinięciem w szereg funkcji logarytmicznej, młody Isaac Newton obliczył kiedyś dla zabawy wartość

\ln{1,1}=0,09531 01798 04324 86004 39521 23280 76509 22206 05365  30864 4199183.

Prócz ludycznego miało to też aspekt praktyczny. Tablice logarytmów stosowane były w geodezji, nawigacji, astronomii. Znając z dużą dokładnością jedną lub kilka wartości logarytmu, można zbudować tablice, już z mniejszą liczbą cyfr znaczących (ze względu na błędy zaokragleń). Newton znał oczywiście szereg Leibniza. Zrewanżował mu się innym szeregiem, łudząco podobnym:

\dfrac{\pi}{2\sqrt{2}}=1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}+\ldots.

Dokumenty Leibniza pokazują, że mimo wskazówki, jak można ten szereg otrzymać, sztuka ta nie udała się Leibnizowi.

Henry Oldenburg niedługo później zmarł i Newton stracił na długo kontakt z Royal Society i z szerszym światem. Zresztą w tamtych latach pochłaniała go raczej teologia niż matematyka. Żaden z nich nie opisał drugiemu rachunku różniczkowego i całkowego. Po latach obaj zaczęli podejrzewać tego drugiego o kradzież intelektualną. Był to objaw paranoi, o którą nietrudno było w sytuacji, gdy matematycy chętniej publikowali wyniki niż metody zastosowane do ich uzyskania.

Spójrzmy na koniec na szczegóły. Otóż Leibniz, czytając pewien artykuł Pascala, wpadł na pomysł, aby szukanie pola pod jedną krzywą przekształcić w szukanie pola pod inną krzywą. Nazwał to metodą transmutacji. Opierała się ona na następującej obserwacji.

Rysujemy styczną do krzywej w pewnym punkcie, przecina ona oś y w pewnym punkcie. Rozpatrujemy następnie krzywoliniowy „trójkąt” złożony z małego odcinka krzywej i dwóch boków równoległych do osi. Gdy ów „trójkąt” staje się coraz mniejszy, zbliża się do prawdziwego trójkąta. Możemy napisać proporcję

\dfrac{dx}{ds}=\dfrac{h}{y} \, \Rightarrow y dx=h ds.

Pola infinitezymalnego (=„nieskończenie małego”) trójkąta utworzonego z dwóch promieni wodzących (linie przerywane) i odcinka krzywej równe jest \frac{1}{2} h ds. Sumując takie pola, czyli całkując, możemy obliczyć pole skończonego wycinka krzywej. Korzystając zaś z powyższej proporcji pole to można zamienić polem pewnej innej krzywej y(x): \frac{1}{2}\int{h ds}=\frac{1}{2}\int{ y dx}. Wynik ten może się przydać, jeśli zamiana jednej krzywej drugą prowadzi do uproszczenia problemu. Leibniz zastosował swoją metodę do okręgu.

Leibniz chciał obliczyć pole ćwiartki koła (\frac{\pi}{4}, składającej się z wycinka kołowego i trójkąta. Pole wycinka znaleźć można obliczając pole pod krzywą y(x), która ma równanie zapisane na rysunku. Łatwiej jest obliczyć pole między osią y a krzywą:

Szczegóły rachunku znaleźć można tutaj. Ostatecznie otrzymujemy

\dfrac{\pi}{4}={\displaystyle \int_{0}^{1}\dfrac{dx}{1+x^2}}.

Ułamek po prawej stronie zastępujemy szeregiem geometrycznym:

\dfrac{1}{1+x^2}=1-x^2+x^4-x^6+\ldots

i całkujemy wyraz po wyrazie. Wynik Newtona uzyskuje się z całki

{\displaystyle \int_{-1}^{1}\dfrac{dx}{1+\sqrt{2} x+x^2}=\dfrac{\pi}{\sqrt{2}}=2\int_{0}^{1}\dfrac{1+x^2}{1+x^4}dx}.

Całkę po prawej stronie rozwijamy w szereg jw. Leibniz nie znał, jak się wydaje, rozkładu na czynniki

1+x^4=(1+\sqrt{2}x+x^2)(1-\sqrt{2}x+x^2).

Johann Bernoulli i krzywa łańcuchowa (1690)

Matematycy XVII wieku lubili badać rozmaite osobliwe krzywe i uwielbiali chełpić się swoimi umiejętnościami. Krzywe stożkowe: elipsa, parabola i hiperbola, czyli krzywe opisywane równaniami drugiego stopnia, już im nie wystarczały. Isaac Newton przeprowadził klasyfikację wszystkich krzywych trzeciego stopnia, co jest znacznie trudniejsze niż dla drugiego stopnia. Chętnie też zajmowali się krzywymi powstającymi wskutek ruchu (jak cykloida) albo jako rozwiązanie pewnego problemu z mechaniki. Jedną z takich krzywych była linia łańcuchowa, czyli kształt, jak przyjmuje giętki i ciężki łańcuch zawieszony na dwóch końcach.
Jeszcze w XVI wieku młody Galileusz starał się poznać kształt krzywej łańcuchowej, sądząc, że jest to ta sama krzywa, jaką zakreśla rzucone ciało. Prowadził wraz z Guidobaldem del Monte eksperymenty, aby porównać obie krzywe. Krzywą balistyczną rysowali puszczając kulkę zamoczoną w atramencie po równi pochyłej, jak na obrazku.

Okazało się, że krzywa balistyczna przypomina parabolę, lecz krzywa łańcuchowa różni się od niej znacząco. Jak wiemy, Galileuszowi udało się znaleźć mechaniczne wyjaśnienie dla krzywej balistycznej. Jednak kształtu krzywej łańcuchowej nie potrafił opisać matematycznie.
W 1690 roku Jacob Bernoulli, matematyk z Lozanny, rzucił na łamach „Acta Eruditorum” – pierwszego niemieckiego czasopisma naukowego, założonego z inicjatywy Leibniza – wyzwanie do innych matematyków, by opisali kształt krzywej łańcuchowej. Jeszcze w tym samym roku zagadnienie to rozwiązali Gottfried Wilhelm Leibniz, a także młodszy brat Jacoba, dwudziestoczteroletni Johann, kształcący się na medyka. Kilka lat wcześniej Leibniz w tym samym czasopiśmie ogłosił zarysy rachunku różniczkowego i całkowego. Bracia Bernoulli pilnie przestudiowali tę technikę formułowania i rozwiązywania problemów, obaj też wkrótce przewyższyli Leibniza, zwłaszcza Johann, który stał się szybko jednym z mistrzów rachunku różniczkowego i całkowego. Ambitny Johann nie został medykiem (podobnie jak niegdyś Galileusz). Niedługo później zrobił furorę w matematycznych kręgach Paryża. Jego wykłady częściowo opublikował pod swoim nazwiskiem markiz de L’Hôpital (któremu Johann sprzedał wyniki), druga ich część opublikowana została dopiero pół wieku później w t.3 Opera omnia Johanna.
Po roku „Acta Eruditorum” opublikowały wyniki Leibniza, Huygensa i Johanna Bernoulliego, lecz bez dowodów. Ówcześni matematycy niechętnie ujawniali metody, woleli raczej drażnić konkurentów swymi umiejętnościami.
Praca Christiaana Huygensa była niezadowalająca, stary mistrz nie znał nowych technik. Rozpatrywał łańcuch zbudowany z odcinków i próbował wykonać przejście graniczne do krzywej ciągłej, gdy długość każdego odcinka dąży do zera. Leibniz podał rozwiązanie w najprostszy sposób jako konstrukcję średniej arytmetycznej z dwóch krzywych wykładniczych („curva logarithmica”). Kilka lat później Leibniz opisał szczegółowo swoje rozwiązanie w liście do Huygensa. Nie było ono zbyt eleganckie, lecz ukazywało siłę metody postępowania, dzięki której nawet mało inteligentne podejście do problemu dawało się skutecznie przeforsować. Sam Jacob nie zdołał rozwiązać problemu i niezbyt mu się podobało, że dokonał tego jego młodszy brat.

Johann Bernoulli wyraził swoje rozwiązanie w postaci pola pod pewną krzywą, czyli całki. Przeanalizował też szczegółowo cały problem i rozwiązał go w sposób zdecydowanie elegantszy. Podał szereg twierdzeń, które przedstawione są na kolejnych rysunkach.

Punktem wyjścia jest zasada następująca: (Fig. 131) siły działające w dwóch dowolnych punktach A i C po różnych stronach minimum mają kierunek styczny do krzywej (łańcuch jest giętki) i muszą dodane wektorowo zrównoważyć ciężar łańcucha pomiędzy A i C. Środek ciężkości odcinka AC łańcucha znajdzie się dokładnie nad punktem D. Jeśli (Fig. 133) utniemy jakiś kawałek łańcucha, np. powyżej F, pozostała część nie zmieni kształtu. W szczególności (Fig. 132 i 135) możemy wybrać jako jedną z sił styczną w minimum, pozwala to szczególnie prosto sformułować warunek, jaki musi spełniać nasza krzywa. Fig. 136 daje konstrukcję Leibniza, równoważną Fig. 137 konstrukcję Johanna.
Podstawowa własność krzywej łańcuchowej daje się odczytać ze współczesnej wersji Fig. 132.

Aby utrzymać w równowadze odcinek łańcucha o długości s i ciężarze \varrho s potrzebna jest równa temu ciężarowi składowa pionowa siły (fioletowa). Składowe poziome (czerwone) równoważą się nawzajem, co oznacza, że składowa pozioma jest niezależna od wysokości. Możemy więc zapisać dla naszej krzywej

\dfrac{dy}{dx}=\mbox{tg }\alpha = s.

Nachylenie stycznej proporcjonalne jest do odległości od minimum. Bez zmniejszenia ogólności możemy przyjąć, że stała proporcjonalności równa jest 1 – możemy to zawsze osiągnąć wybierając odpowiednio jednostkę długości. Reszta jest zastosowaniem cudownej metody Leibniza (*), która szybko prowadzi do wyniku:

y(x)=\cosh x\equiv \dfrac{e^x+e^{-x}}{2}.

Obecnie sumę taką jak w kształcie krzywej łańcuchowej zapisujemy jako cosinus hiperboliczny: algebra funkcji hiperbolicznych jest podobna do trygonometrycznych, z tą istotną różnicą, że jedynka trygonometryczna zastąpiona jest wyrażeniem \cosh^2 x-\sinh^2 x=1 i pochodna cosinusa hiperbolicznego jest równa sinusowi hiperbolicznemu (bez minusa).
Krzywa łańcuchowa różni się od paraboli tym bardziej, im dalej od minimum się znajdziemy.

(*) Oznaczmy pochodną szukanej funkcji przez u. Różniczkując obie strony równania krzywej łańcuchowej, otrzymujemy

\dfrac{du}{dx}=\dfrac{ds}{dx}=\dfrac{\sqrt{dy^2+dx^2}}{dx}=\sqrt{u^2+1}.

Stąd

{\displaystyle \int {\dfrac{du}{\sqrt{u^2+1}}}=\int dx=x+A,}

Całkę możemy obliczyć korzystając z jedynki hiperbolicznej: \cosh^2 z=\sinh^2 z+1. Podstawiając u=\sinh z, mamy du=\cosh z dz i po lewej stronie zostaje całka z 1:

z=x+A.

Możemy wziąć sinh z obu stron, otrzymamy wówczas

\sinh z=u=\dfrac{dy}{dx}=\sinh (x+A).

Całkując ostatnią równość, otrzymujemy y=\cosh x. Stałe całkowania powinny być równe 0, jeśli chcemy mieć wykres taki, jak na obrazkach powyżej.

Pierre Bayle, Myśli różne o komecie (1683)

Chrześcijaństwo należy do tradycji Europy – to prawda, lecz pamiętać musimy, że jego kształt zmieniał się bardzo z czasem. Czym innym był np. arystotelizm św. Tomasza, a czym innym reformy Lutra i Kalwina. Protestantyzm starał się chrześcijaństwo oczyścić przez powrót do źródeł oraz odrzucenie magicznej obrzędowości, był surowy, wymagał dużo od wiernych, którzy ściślej musieli się pilnować w życiu codziennym, by dostąpić łaski. Takimi właśnie surowymi protestantami, przez lata rozmyślającymi nad podstawami swej wiary, byli zarówno Isaac Newton, jak i Pierre Bayle. Protestantyzm towarzyszył przemianom mentalności europejskiej w XVI i XVII wieku, kształtował także założycieli Stanów Zjednoczonych. Nie przypadkiem nowożytna nauka i nowoczesna gospodarka rozwinęły się najbardziej w krajach protestanckich.

Kometa z lat 1680/1681 została przez Isaaca Newtona uwieczniona pierwszym obliczeniem orbity na podstawie prawa powszechnego ciążenia. Przyczyniło się to do rozwiania astrologicznych fantazji na temat związku komet z wydarzeniami na Ziemi. Był to proces powolny zapoczątkowany sto lat wcześniej odkryciem Tychona Brahego, że komety są prawdziwymi ciałami niebieskimi, tzn. nie są jakimś wyziewem górnych warstw atmosfery ziemskiej, jak sądzono od czasów Arystotelesa. Astrologia w drugiej połowie XVII wieku nie była już traktowana poważnie przez uczonych, podciął jej korzenie kopernikanizm: no bo skoro Ziemia jest tylko jedną z planet i komety też są rodzajem planet, to nie ma powodu uważać, aby zdarzenia historyczne czy meteorologiczne na planecie Ziemia dyktowane były akurat zjawieniem się jakiejś komety. Młody Isaac Newton kupił sobie książkę o astrologii na jarmarku na błoniach Stourbridge, szybko wszakże doszedł do wniosku, że zawiera bzdury. Nie potrafiąc narysować jakiejś figury omawianej w książce, sięgnął do Euklidesa. Niebawem już czytał Geometrię Kartezjusza, dzieło trudne, które jednak przestudiował. W ciągu roku opanował samodzielnie znaną wówczas matematykę i zaczął twórczość oryginalną. Niemal wszystkiego nauczył się sam i osiem imponujących tomów jego Mathematical Papers pokazuje, że matematyka towarzyszyła potem stale jego innym zainteresowaniom. Jest to zapewne jedyny przykład, gdy astrologia do czegoś realnego się przydała.


Niezbyt wierzono, przynajmniej w kręgach ludzi wykształconych, by komety zwiastowały nieszczęścia lub zostały zesłane z nieba w celu naszej moralnej poprawy, ale spotykało się wciąż rozmaite opinie. Możliwy do pomyślenia był oczywiście jakiś ich wpływ naturalny, np. katastrofa kosmiczna albo oddziaływanie z ziemską atmosferą. Tak czy owak zjawiska kometarne przesuwały się ze sfery cudownej i nadprzyrodzonej w domenę ciekawostek natury.
Madame de Sévigné, której listy stanowią jedno z arcydzieł języka francuskiego, pisała w na początku stycznia 1681 r. do swego kuzyna hrabiego de Bussy-Rabutina:

Mamy tutaj wielce okazałą kometę, która ma najpiękniejszy warkocz, jaki można oglądać. Wszystkie ważne osobistości wpadły w popłoch, gdyż wierzą mocno, iż niebiosa tak przejęły się ich stratą, że powiadamiają o niej poprzez ową kometę. Mówi się, że kardynała Mazarin, któremu medycy nic już nie potrafią pomóc, dworzanie poinformowali o pojawieniu się wielkiej komety, budzącej w nich lęk, ponieważ byłaby ich zdaniem cudem stosownym dla uczczenia śmierci kogoś tak wybitnego. Kardynał znalazł siłę, aby to wyśmiać i stwierdził żartobliwie, że kometa wyświadczyłaby mu zbyt wielki honor.

De Bussy-Rabutin odpisał z Burgundii, że i tam różne lokalne znakomitości obawiają się w związku z kometą o siebie. „Mercure galant” pokpiwał, że kometa najwyraźniej zapowiadała śmierć jakiejś wielkiej istoty, ponieważ umarł słoń trzymany w Wersalu.

Wykładowca hugonockiego kolegium w Sedanie, Pierre Bayle, zainteresował się nie tyle samą kometą z 1680/1681 r., ile mechanizmem społecznej wiary i niewiary, a także sensem religijnym tego zjawiska. Rozważaniom tym poświęcił książkę, wydaną anonimowo w roku 1683. Można by gorzko stwierdzić, iż w jego przypadku kometa była zapowiedzią znacznych zmian: w lipcu 1681 roku kolegium zamknięto. Było to jedno z posunięć króla Ludwika XIV w zbożnym dziele oczyszczania Francji z heretyków, tzn. z protestantów. Bayle spędził resztę życia w Rotterdamie, pisząc i stając się jednym z prekursorów Oświecenia. Obawiał się o swoją rodzinę we Francji, młodszy jego brat nie wytrzymał pobytu w lochach arcykatolickiego władcy, gdzie znalazł się wyłącznie z powodu swej wiary. Bayle pisał:

Gdyby wiedziano, jak ostrego sensu nabrało obecnie to słowo, nie zazdroszczono by Francji, że jest całkowicie katolicka pod panowaniem Ludwika XIV. Już od dawna bowiem ci, którzy mają się za wcielenie katolicyzmu, postępują w sposób budzący zgrozę, że uczciwy człowiek powinien miano katolika uważać za obelgę; a po tym, co zrobiliście ostatnio w owym arcykatolickim królestwie, powinno być teraz wszystko jedno, czy mówi się: religia katolicka, czy też: religia ludzi niegodziwych (przeł. J. Lalewicz).

Okoliczności zewnętrzne, a także daleko posunięta uczciwość intelektualna, skłaniały Bayle’a do sceptycyzmu wobec utartych mniemań. Podważał rolę tradycji, która ostatecznie zasadza się na tym, że powtarzamy czyjąś opinię, nie zadawszy sobie trudu jej przemyślenia. Gdyby więc trochę dokładniej przyjrzeć się temu, skąd biorą się różne tradycje, mogłoby się okazać, że w gruncie rzeczy powtarza się bezkrytycznie pogląd jednego czy dwóch autorów. Ta prosta myśl mogła podważyć nie tylko wierzenia dotyczące komet, ale i jeden z filarów Kościoła katolickiego, który z poszanowania tradycji robił swój wyróżnik, swoją differentia specifica, pośród doktryn chrześcijańskich.
Nie należy więc specjalnie wierzyć w argumenty z tradycji:

Tak więc świadectwa historyków dowodzą tego jedynie, że komety się pojawiały i że po nich występowały rozmaite niepokoje w świecie – niezmiernie stąd daleko do udowodnienia, iż jedna z tych rzeczy stanowi przyczynę bądź prognostyk drugiej, jeśli nie chcemy być jak owa kobieta z ulicy Saint Honoré [w Paryżu], która widzi przejeżdżające karety, ilekroć wyjrzy z okna i wyobraża sobie, że to ona jest przyczyną ich pojawiania się lub przynajmniej jej ukazanie się w oknie stanowi dla całej dzielnicy prognostyk, iż wkrótce przejedzie kareta (§5).

Bayle tak daleko zaszedł w intelektualnym sceptycyzmie, że wyrażano często wątpliwości, czy nie stał się ateistą. Głosił w każdym razie radykalne oddzielenie religii – domeny wiary, od filozofii – domeny rozumu. „Jeśli sprawiedliwy żyje swą wiarą, to filozof także powinien żyć swoją; znaczy to, że w swym osądzie rzeczy powinien być niezależny od tego, co sądzą inni. Powinien badać głęboko swoje przedmioty [roztrząsań]”.

Bóg zdaniem Bayle’a nie mógł być kapryśnym władcą, swego rodzaju Królem-Słońce na niebiesiech, kierującym się przesądami i gniewem. Filozof żadną miarą nie potrafił wierzyć w Boga, który posługuje się teatralną maszynerią przyrody: kometami, by siać lęk i przerażenie, wykorzystując do swoich celów ludzką łatwowierność i skłonność do doszukiwania się magicznych powiązań w świecie. Nie chciał być jak jezuici z upodobaniem sięgający po światło, dźwięk i dekoracje dla wzmocnienia wymowy religijnego przesłania. Ludzkość zbyt łatwo ulega rozmaitym złudzeniom, zbyt łatwo daje się oszukiwać i dobry nauczyciel nie powinien się uciekać do tego rodzaju tanich sztuczek nawet w dobrej intencji. Jego Bóg był wyższy ponad moralne kuglarstwo. Nie powinien też rozbudzać pychy, która i tak jest właściwa ludziom:

Im dłużej zgłębia się człowieka, tym lepiej się poznaje, iż pycha jest jego dominującą namiętnością i że sili się on na wielkość w najbardziej nawet żałosnej nędzy. Będąc stworzeniem tak lichym i znikomym, zdołał przecież sobie wmówić, że jego śmierć nie może nie wstrząsnąć całą przyrodą i nie zmusić Niebios do specjalnych zachodów dla uświetnienia jego pogrzebu. Głupia i śmieszna to próżność. Gdybyśmy mieli właściwe pojęcie o wszechświecie, rychło zrozumielibyśmy, że śmierć lub narodzenie jakiegoś władcy to rzecz tak znikoma w odniesieniu do całej natury, iż nie ma powodu, by się nią w niebie wzruszano (przeł. J. Lalewicz, §83).

Zabobonność, idolatria: w oczach Bayle’a były to najgorsze cechy nierozumu. Protestantyzm pragnął chrześcijaństwo oczyścić z magii, z kultu obrazów, posągów i relikwii. Sama religia może bowiem rozbudzać w ludziach absurdalne wierzenia i uprzedzenia:

By powrócić do zabobonnego usposobienia, które Szatan znalazł w ludzkim umyśle – twierdzę, że ten wróg Boga i naszego zbawienia tak się przyłożył i tak dobrze wykorzystał okazję, że to, co jest na świecie najlepsze, a mianowicie religię, uczynił zbiorem niewiarygodnych dziwactw, niedorzeczności i niesłychanych zbrodni; a co gorsze, za pośrednictwem takich skłonności wciągnął ludzi w najśmieszniejsze i najbardziej odrażające bałwochwalstwo, jakie sobie można wyobrazić” (przeł. J. Lalewicz, §67)

Bayle mówił tu o religii pogańskiej, ale oczywiście chodziło mu o to, by nie sprowadzać wiary do uczestnictwa w obrządkach i nie urządzać procesji i modłów z okazji komety, praktykując jednocześnie najróżniejsze występki. „Wiara, iż religia, w której zostało się wychowanym, jest jak najlepsza, nader często idzie w parze z praktykowaniem wszelkich  zakazanych przez nią występków, i to zarówno wśród wielkiego świata, jak wśród ludu”.
Powiedział wreszcie Bayle, że można sobie wyobrazić społeczeństwo ateistów, które bynajmniej nie składałoby się z samych potworów, a nawet może byłoby lepsze od społeczeństwa chrześcijan. Ateizm w oczach Boga wcale nie jest gorszy od zabobonu. Wręcz przeciwnie, ateiści, którzy potrafili porzucić zabobony i idolatrię, mogą być ludźmi lepszymi niż pełen uprzedzeń tłum, dostrzegający w religii jedynie magię.

Poglądy Bayle’a raziły wielu, nie tylko katolików, ale także i protestantów. Gwałtownie polemizował z nim Pierre Jurieu, niecierpliwie wyglądający znaków upadku Antychrysta, tzn. papieża. Swoistą polemiką z Bayle’em była także Teodycea Gottfrieda Wilhelma Leibniza. Bayle twierdził bowiem, iż zło i grzech są dla nas niezrozumiałe, są tajemnicą, jeśli wierzymy we wszechmocnego i najlepszego Boga. Nie może bowiem być wyjaśnieniem zdanie, że Bóg dopuszcza grzech, aby z móc z niego potem z Jego pomocą wyjść.

Bóg byłby wówczas jak ojciec rodziny, który pozwala swym dzieciom połamać nogi tylko po to, aby przed całym miastem ukazać swą zręczność w nastawianiu kości; albo jak monarcha, który pozwalałby rozkwitać buntom i zamieszkom w swoim państwie, by zyskać chwałę tego, który je stłumił” (Dictionnaire, 1725, t. 3: N-Z, Pauliciens, przyp. g, s. 160).

Leibniz podjął się uzasadnienia, iż świat, jaki znamy, jest zarazem najlepszym z możliwych: gdyby zmienić w nim cokolwiek, byłby jeszcze gorszy – Bóg stosuje swego rodzaju zasadę najlepszych skutków, optymalizując bieg zdarzeń. Jeśli zdaje się nam, że nie żyjemy na najlepszym ze światów, to tylko z powodu ograniczonej perspektywy, gdybyśmy mogli widzieć całość, zrozumielibyśmy wielki boży zamysł.

Ciąg dalszy napisał Voltaire, zresztą wielki czytelnik Bayle’a:

Po trzęsieniu ziemi, które zniszczyło trzy czwarte Lizbony, mędrcy owej krainy nie znaleźli skuteczniejszego środka przeciw całkowitej ruinie, jak dać ludowi piękne autodafé. Uniwersytet w Coimbre orzekł, iż widowisko kilku osób spalonych uroczyście na wolnym ogniu jest niezawodnym sekretem przeciwko trzęsieniu ziemi.
W myśl tego zapatrywania pochwycono jakiegoś Biskajczyka, któremu dowiedziono, iż zaślubił swą kumę, oraz dwóch Portugalczyków, którzy, jedząc kuraka, oddzielili tłustość (…)
Kandyd, przerażony, oszołomiony, odurzony, cały zakrwawiony i drżący, powiadał sam do siebie: „Jeżeli to jest najlepszy z możliwych światów, jakież są inne? mniejsza jeszcze, gdyby mnie tylko oćwiczono, toż samo zdarzyło mi się u Bułgarów; ale, o drogi Panglossie! największy z filozofów, trzebaż, bym patrzał, jak dyndasz, nie wiadomo za co! o, drogi anabaptysto, najlepszy z ludzi, trzebaż było ci utonąć w porcie! o, panno Kunegundo! perło dziewic, trzebaż, aby ci rozpruto żołądek! (przeł. T. Boy-Żeleński)

 

Rachunek różniczkowy i całkowy w kwadrans

  • Pochodna

Chcąc ustalić, jak szybko zmienia się jakaś wielkość, wygodnie jest rozważać bardzo niewielkie jej przyrosty. Można je uważać za wielkości nieskończenie małe, np. dodatnia nieskończenie mała jest różna od zera, ale mniejsza od każdej dodatniej liczby rzeczywistej. Zazwyczaj interesują nas pewne ilorazy owych nieskończenie małych, które mogą być nie tylko określone, ale i równe jakiejś zwykłej liczbie rzeczywistej. Rozpatrzmy przykład funkcji y=x^3. Biorąc dwie wartości argumentu x, x+\Delta x, możemy obliczyć przyrost tej funkcji:

\Delta y=(x+\Delta x)^3-x^3=3x^2\Delta x+3x\Delta x^2+\Delta x^3.

Wyobraźmy sobie teraz, że wartość \Delta x jest nieskończenie małą: przyrost funkcji też stanie się nieskończenie małą, jak widać jest sumą trzech wyrazów z różnymi potęgami \Delta x – każdy z nich też jest nieskończenie małą. Żeby ustalić, jak szybko rośnie nasza funkcja, dzielimy przyrost wartości przez przyrost argumentu:

\dfrac{\Delta y}{\Delta x}=3x^2+3x\Delta x+\Delta x^2.

Pierwszy wyraz po prawej stronie nie zawiera żadnych nieskończenie małych, jest zwykłą liczbą rzeczywistą, pozostałe dwa są nieskończenie małe. Definiujemy pochodną funkcji jako wartość rzeczywistą, która zostaje z prawej strony po odrzuceniu nieskończenie małych. Nazywamy ją wartością standardową liczby, mamy więc

\dfrac{dy}{dx}\equiv f'(x)\equiv y'=\mbox{st}\left(\dfrac{\Delta y}{\Delta x}\right)=3x^2.

W bardziej konwencjonalnym podejściu obliczamy granicę prawej strony, gdy \Delta x\rightarrow 0.

Uwaga: W XVII i XVIII wieku używano pojęcia nieskończenie małych, później wprowadzono ścisłe pojecie granicy, a jeszcze później, bo w drugiej połowie XX wieku, wykazano, że można rozszerzyć pojęcie liczb rzeczywistych tak, aby zawierało także liczby nieskończenie małe oraz nieskończenie wielkie. Każda standardowa liczba rzeczywista x otoczona jest nieskończenie bliskimi liczbami postaci x+dx, gdzie dx jest nieskończenie małe. Można jednak zrzutować taką liczbę hiperrzeczywistą na zwykłą prostą rzeczywistą i otrzymamy wówczas wartość standardową st(x+dx)=x. Podejście takie, zwane analizą niestandardową albo infinitezymalną, jest równie ścisłe jak dziewiętnastowieczne armaty z \epsilon ,\delta.

Pochodna mierzy nachylenie funkcji w danym punkcie, co jest znacznie wygodniejsze niż używanie średnich nachyleń w skończonym przedziale.

nachylenie stycznej

Można sobie wyobrażać, że każda porządna linia krzywa jest łamaną złożoną z nieskończenie wielu nieskończenie krótkich odcinków. Obliczanie pochodnych jest bardzo proste, mamy pewien zbiór reguł, które pozwalają to robić. Np. pochodna sumy funkcji jest sumą pochodnych itd. Jeśli nie chce się nam liczyć, wchodzimy na WolframAlpha i wpisujemy, w naszym przykładzie: derivative of x^3 (co po angielsku znaczy pochodna z).

  • Całka nieoznaczona

Obliczając pochodną funkcji w danym punkcie otrzymujemy jakąś wartość rzeczywistą. Jeśli potraktować x jako zmienną, otrzymujemy nową funkcję x\mapsto f'(x). Można więc traktować obliczanie pochodnej (zwane ze względów historycznych różniczkowaniem) jako pewne odwzorowanie przypisujące funkcji f pewną inną funkcję f'. Można też spojrzeć na sprawę odwrotnie i dla pochodnej równej g(x) szukać funkcji pierwotnej G(x), tzn. takiej, że G'(x)=g(x). Każda tablica pochodnych czytana od prawej do lewej strony jest tablicą funkcji pierwotnych, inaczej całek nieoznaczonych:

\int{ g(x)dx}\equiv G(x)\Leftrightarrow G'(x)=g(x).

Symbol dx pod całką wskazuje tylko nazwę zmiennej. Przykład z poprzedniego punktu dowodzi, że

\int{3x^2 dx}=x^3.

W WolframAlpha: integral of 3x^2. Do funkcji pierwotnej zawsze można dodać jakąś stałą, ponieważ nie zmienia to pochodnej (nachylenie funkcji stałej jest zawsze równe 0). W odróżnieniu od obliczania pochodnych znajdowanie całek nieoznaczonych bywa trudne, a niektóre funkcje elementarne nie mają elementarnych całek oznaczonych. Zawsze można natomiast bez trudności sprawdzić, czy całka znaleziona jest prawidłowo: wystarczy wynik zróżniczkować.

  • Całka oznaczona czyli pole pod wykresem

Mając pewną funkcję f(x), zdefiniujmy nową funkcję S(x), która jest polem zawartym między wykresem funkcji a osią Ox oraz między dwiema wartościami argumentu: stałym a oraz zmiennym x.

newton_leibniz

Pole takie to z definicji całka oznaczona z funkcji f:

S(x)\equiv\int_{a}^{x}f(x) dx.

Obowiązuje następujące twierdzenie Newtona-Leibniza (choć znali je wcześniej James Gregory oraz Isaac Barrow): Jeśli F(x) jest dowolną funkcją pierwotną (ciągłej) funkcji f(x), to zachodzi równość:

\int_{a}^{b}f(x)dx=F(b)-F(a).

Twierdzenie to wskazuje główną motywację obliczania całek nieoznaczonych: możemy za ich pomocą wyznaczyć całkę oznaczoną czyli pole, a to się często przydaje.

Dlaczego słuszne jest tw. Newtona-Leibniza? Jeśli rozpatrzyć dwie bliskie wartości argumentu x, x+\Delta x, to przyrost funkcji S(x) jest równy

\Delta S=S(x+\Delta x)-S(x)\approx f(x)\Delta x \Rightarrow \dfrac{\Delta S}{\Delta x}\approx f(x),

gdzie równość przybliżona bierze się stąd, że krzywoliniowy cienki pasek można w przybliżeniu zastąpić polem prostokąta. Równość staje się dokładna, gdy \Delta x dąży do zera. Zatem S'(x)=f(x). Łatwo zauważyć, że trzeba wybrać funkcję pierwotną F(x)-F(a), bo zapewnia ona, że dla x=a otrzymamy pole równe 0. .

Możemy zilustrować tw. Newtona-Leibniza na naszym przykładzie funkcji pierwotnej do 3x^2:

\int_{0}^{x}3t^2 dt=x^3-0^3=x^3\Leftrightarrow \int_{0}^{x}t^2 dt=\dfrac{x^3}{3}

Wynik ten znał już Archimedes: pole pod parabolą jest równe 1/3 pola prostokąta na rysunku.

pole_paraboli

Jeśli nasza funkcja nie jest stale dodatnia, to całka oznaczona jest polem zsumowanym ze znakiem + albo -, jak na rysunku. Oblicza się ją nadal za pomocą tw. Newtona-Leibniza.

pole_calka

Gottfried Wilhelm Leibniz: Dusze jako hologramy świata (list do księżnej elektorowej Zofii, 4 listopada 1696)

Wiek XVII to epoka, gdy zaczęła się współczesność. Nasze nauki, idee, koncepcje, metody i złudzenia mają swe źródła właśnie wtedy. Oczywiście, przedtem było średniowiecze, które nie zawsze było ciemne, a jeszcze przedtem Grecy z geometrią i z tragediami ilustrującymi, jak działa nieubłagane przeznaczenie. Dopiero jednak w XVII wieku różne nikłe strumyczki złączyły się w rzekę, która na złe i dobre niesie nas w nieznane.
Ojcowie założyciele nowożytnej nauki nie zawsze już są dla nas zrozumiali. Gottfried Wilhelm Leibniz jest jednym z najoryginalniejszych myślicieli tamtego wieku. Trwałym jego osiągnięciem okazał się rachunek różniczkowy i całkowy. Zajmował się Leibniz niemal wszystkim: od religii, historii i prawa, przez teologię, fizykę, logikę, matematykę aż po filozofię. Jeden z najmądrzejszych ludzi w Europie spędzał życie w służbie niezbyt rozgarniętych książąt. Nadrabiał to korespondencją, wiek XVII to pierwszy wiek dobrze działającej poczty w Europie. Rozpuszczeni internetem nie rozumiemy już, jak wielkie to było osiągnięcie, jak bardzo przyczyniło się do wymiany myśli. Pisanie listów zmuszało do przemyślenia poglądów, wyrażenia ich w formie kilkustronicowego skrótu, wciąż daleko było do czasów, gdy każdą ideę można zawrzeć w 140 znakach.

correspondance_leibniz

Świat Leibniza nie składa się z materialnych atomów, wypełniony jest bytami po brzegi, na wszystkich poziomach. Każdy jego fragment zawiera nieskończenie wiele mniejszych bytów, przypomina samopodobny zbiór Mandelbrota, który w powiększeniu przypomina do złudzenia sam siebie. Podstawowymi jednostkami są dusze – słynne monady, z których każda odzwierciedla cały wszechświat. Istnieją one, odkąd zostały stworzone, i będą istnieć, dopóki Stwórca ich nie unicestwi. Każda z owych dusz rozwija się niejako realizując wbudowany w nią od początku program. Nie ma śmierci, jest tylko przeobrażenie. Nic nigdy nie ginie ani nie powstaje, rozwija się tylko, ewoluuje ku większej doskonałości. Jest to piękny sen o racjonalnym świecie urządzonym przez dobrego Boga. W oczach Leibniza rzeczywistość była rodzajem uporządkowanego snu czy filmu, czymś w rodzaju rzeczywistości wirtualnej zaprogramowanej przez Stwórcę. Była ona przy tym zaprogramowana tak zmyślnie, że owe programy uwzględniały wszystkie pozostałe programy: dzięki temu możemy mieć wrażenie, iż uczestniczymy interaktywnie w rzeczywistym świecie, ale naprawdę mamy tylko nałożone okulary VR. Wszechświat jest holograficzny: ekstrahując informację z jego maleńkiego wycinka, z pojedynczej duszy, moglibyśmy poznać całą resztę dusz, a więc wszystko, co jest do poznania.

Samopodobieństwo zbioru Mandelbrota zobaczyć można np. tu i jeszcze w większym pliku tu.

Księżna elektorowa Zofia była żoną Ernesta Augusta, księcia Brunszwiku-Lüneburga. Leibniz był ich nadwornym bibliotekarzem i historykiem, ta ostatnia dziedzina okazała się niezwykle istotna dla księcia – dzięki dokumentom odnalezionym przez uczonego został on podniesiony przez cesarza do godności elektora. Zofia pod koniec życia uzyskała prawo do tronu angielskiego, z którego skorzystał dopiero jej syn Jerzy I. Dynastia hanowerska rządzi w Anglii do dziś. List jest jednym z wielu, które uczony pisał do księżnej Zofii, osoby wykształconej i inteligentnej. Kobiety na tych dworach często miały zainteresowania intelektualne czy artystyczne, ich mężowie zwykle nie sięgali wyobraźnią poza bieżące machinacje polityczne oraz polowania.

Główne me rozważania obracają się wokół dwóch przedmiotów: jedności i nieskończoności. Dusze są jednościami, a ciała wielościami – lecz nieskończonymi, tak że najmniejszy pyłek zawiera jakiś świat z nieskończonością stworzeń. Mikroskopy ukazały naocznie, że w kropli wody znajdować się może więcej niż milion żyjątek. Jedności wszakże – choć są niepodzielne i nie mają części – nie przestają przedstawiać wielości, mniej więcej tak, jak wszystkie promienie okręgu łączą się w jego środku. Na takim właśnie złączeniu polega podziwu godna natura postrzeżenia; ono także sprawia, iż każda dusza jest osobnym światem, przedstawiającym wielki świat na swój sposób i wedle swego punktu widzenia, toteż każda dusza, skoro raz już zaczęła istnieć, musi być tak samo trwała jak ów świat, którego jest wiecznym zwierciadłem. Zwierciadła te są uniwersalne i każda dusza przedstawia dokładnie cały wszechświat. Gdyż nie ma w świecie niczego, co nie miałoby udziału w całej reszcie, choć wpływ staje się mniej dostrzegalny wraz odległością. Wśród wszystkich dusz nie ma bardziej wzniosłych niż te, które zdolne są rozumieć prawdy wieczne, zdolne nie tylko przedstawiać świat w niewyraźny sposób, ale także rozumieć i posiadać wyraźne idee piękna oraz wielkości substancji suwerennej. Znaczy to być nie tylko zwierciadłem wszechświata (jakim są wszystkie dusze), lecz również tego, co we wszechświecie najlepsze. To znaczy samego Boga; to właśnie zastrzeżone jest dla umysłów albo inteligencji, które dzięki temu zdolne są kierować innymi stworzeniami w naśladowaniu Stwórcy.
Skoro więc każda dusza przedstawia wiernie cały wszechświat, a każdy umysł przedstawia jeszcze dodatkowo samego Boga we wszechświecie, łatwo dojść do wniosku, iż umysły są czymś większym, niż się sądzi. Jest bowiem prawdą pewną, że każda substancja dojść musi do takiej doskonałości, do której jest zdolna i która zawiera się w niej niejako zwinięta. Dobrze jest też rozważyć, iż w tym życiu zmysłowym starzejemy się po osiągnięciu dojrzałości, ponieważ zbliżamy się ku śmierci, która jest jedynie zmianą sceny; ale życie wieczne dusz nie podlega śmierci i tak samo nie podlega starości. Dlatego doskonalą się one i dojrzewają ustawicznie, tak samo jak świat, którego są obrazem; nic bowiem nie ma na zewnątrz wszechświata, co mogłoby mu stanąć na przeszkodzie, toteż wszechświat musi stale doskonalić się i rozwijać.
Można by wysunąć zarzut, że to doskonalenie nie jest widoczne, a nawet, że niejako cofa się skutkiem panującego nieładu. Jest tak jednak tylko na pozór, co można stwierdzić na przykładzie astronomii: nam, znajdującym się na ziemskim globie, ruch planet wydaje się czymś nieuporządkowanym. Gwiazdy zdają się błądzić i poruszać bezładnie raz w przód, a raz wstecz, a nawet zatrzymywać się od czasu do czasu. Kiedy jednak dzięki Kopernikowi umieściliśmy się na Słońcu – przynajmniej przy pomocy oczu naszego umysłu – odkryliśmy ład godny podziwu. W ten sposób nie tylko że wszystko dokonuje się zgodnie z zasadami tego ładu, ale nawet i ludzkie umysły zdolne są zdać sobie z tego sprawę w miarę, jak czynią postępy.
(…) Mam nadzieję, że [umysły] we Francji odwrócą się stopniowo od tej mechanicznej sekty [kartezjan] i od tego małostkowego przekonania o ograniczonej szczodrobliwości natury, która tylko nam jednym miałaby przyznać przywilej posiadania duszy. Kto wniknie głębiej w przedstawione przeze mnie myśli na temat nieskończoności, ten wyrobi sobie zgoła inne pojęcie o majestacie wszechświata zamiast uważać go za warsztat rzemieślnika, jak czyni to autor wielości światów [Fontenelle] w rozmowach ze swoją markizą. Każda bowiem machina naturalna ma nieskończenie wiele narządów i co jest jeszcze bardziej godne podziwu, to właśnie dzięki temu każde zwierzę odporne jest na wszelkie przypadłości i nie zostaje nigdy zniszczone, lecz jedynie zmienione i oddzielone przez śmierć, tak jak wąż zrzuca starą skórę; narodziny i śmierć są bowiem tylko rozwijaniem i zwijaniem, aby przyswoić nowy pokarm i aby go potem porzucić, gdy posiądzie się jego istotę, a zwłaszcza gdy zatrzyma się w sobie ślady postrzeżeń, które się posiadło i które zostają na zawsze i nigdy nie ulegają całkowicie zapomnieniu i choć nie zawsze ma się okazję je przypomnieć, idee takie nie omieszkają się przypomnieć i stać użyteczne z biegiem czasu. Toteż można dowieść matematycznie, iż wszelkie działanie, jakkolwiek małe by ono było, rozciąga się do nieskończoności, zarówno pod względem miejsc, jak i w czasie, promieniując – by tak rzec – na cały wszechświat i przechowując się przez całą wieczność. Tak więc nie tylko dusze, ale i ich działania przechowują się wiecznie, a nawet działanie każdej z nich przechowuje się we wszystkich duszach wszechświata za sprawą współdziałania i zgodności wszystkich rzeczy; świat cały zawarty jest w każdej swej części, ale w jednych bardziej wyraźnie niż w drugich i na tym właśnie polega przewaga tych umysłów, dla których suwerenna inteligencja stworzyła wszystko inne, aby dać się poznać oraz kochać, niejako mnożąc się w ten sposób we wszystkich żyjących zwierciadłach, które ją przedstawiają.

Johann Bernoulli i brachistochrona – krzywa najszybszego spadku (1697)

W roku 1691 Johann Bernoulli, młody matematyk bez stałych dochodów, w jednym z paryskich salonów spotkał nieco starszego markiza de L’Hôpital, wielkiego amatora matematyki. Bernoulli zrobił piorunujące wrażenie pokazując swój niepublikowany wynik dotyczący promienia krzywizny dowolnej krzywej. Szwajcar był w tym okresie najwybitniejszym w Europie, a więc i na świecie, ekspertem, znającym nowe metody rachunku różniczkowego i całkowego Leibniza. Tylko Newton w Anglii umiał więcej, ale w tym czasie Anglik coraz mniej zajmował się nauką, wkrótce zamieszkał w Londynie i zajął się nadzorowaniem królewskiej mennicy. Markiz de L’Hôpital zaczął brać u Bernoulliego lekcje, a po trzech latach zaproponował następujący układ: będzie Szwajcarowi wypłacał pensję roczną wysokości co najmniej 300 liwrów w zamian za możliwość dyskretnego otrzymywania części jego wyników naukowych wraz z możliwością publikowania ich przez markiza jako własne. Kiedy w 1696 roku markiz ogłosił anonimowo książkę Analyse des infiniment petits pour l’intelligence des lignes courbes („Analiza nieskończenie małych w celu badania linii krzywych”) – pierwszy podręcznik rachunku różniczkowego i całkowego, umowa się załamała, i to pomimo faktu, że w przedmowie de L’Hôpital zadeklarował ogólnikowo, iż wiele zawdzięcza Johannowi Bernoulliemu. Szwajcar zrozumiał, że sprzedał w ten sposób najlepszą cząstkę siebie i potem pilnował się, by tego błędu więcej nie powtórzyć. Kto uczył się o granicach funkcji, spotkał zapewne regułę de L’Hôpitala – to skutek owej umowy, regułę wymyślił Johann Bernoulli, ale po dziś dzień wszyscy nazywają ją regułą de L’Hôpitala.

Johann_Bernoulli

To, niestety, portret z ok. 1740 roku. W młodości chyba nie było go stać na portrecistów.

 Rachunek różniczkowy i całkowy stał się podstawą fizyki, a także różnych dziedzin inżynierskich. W szczególności można było teraz rozwiązywać w sposób systematyczny różne problemy związane z osiąganiem maksimum albo minimum danej funkcji. Pojawiły się także problemy bardziej ogólne, w których szukamy nie jakiegoś punktu na krzywej, ale samej krzywej. Np. mamy zadane dwa punkty i interesuje nas, jaką krzywą należy te dwa punkty połączyć, aby koralik nanizany na krzywą i ślizgający się bez tarcia dotarł do punktu położonego niżej w najkrótszym czasie. Możemy sobie wyobrażać (albo budować z drutu) różne krzywe i dla każdej sprawdzać, ile czasu zajmie koralikowi przebycie całej drogi. To jest właśnie problem brachistochrony – czyli krzywej najkrótszego spadku.
Johann Bernoulli w roku 1696 znalazł rozwiązanie i nie opublikował go, lecz rzucił wyzwanie innym matematykom, by także znaleźli rozwiązanie, jeśli potrafią.
Prędkość naszego koralika zależy tylko od wysokości, dla ślizgania bez tarcia słuszna jest zasada zachowania energii mechanicznej: ile koralik straci energii potencjalnej, tyle zyska kinetycznej.

brachistochrone

Obrazek ze strony http://www.mathcurve.com/courbes2d/brachistochrone/brachistochrone.shtml

Moglibyśmy połączyć punkty linią prostą, ale widzimy, że nie jest to najlepszy pomysł, chociaż droga przebywana przez koralik jest wtedy najkrótsza. Nabiera on jednak zbyt wolno prędkości. Nasz koralik ma największe przyspieszenie, spadając pionowo. Ale wówczas musi przebyć jeszcze odcinek poziomy i łączna droga jest za duża (załamanie krzywej nie ma znaczenia, można sobie wyobrażać, że jest to ciasny zakręt, a nie ostre załamanie), czas jest krótszy niż poprzednio, ale nie najkrótszy. Rozwiązaniem jest łuk cykloidy. To krzywa zataczana przez punkt na obwodzie toczącego się koła. Punkt wykonuje okresowe podskoki na wysokość równą średnicy koła. Odwrócona cykloida stanowi rozwiązanie problemu Bernoulliego.

Cycloid_f

Problem nie był aż tak trudny, jak Bernoulli sądził. Leibniz przysłał mu rozwiązanie natychmiast, gdy z listu dowiedział się o problemie. Bernoulli miał jednak nadzieję, że problem ten okaże się za trudny dla Newtona.
Właśnie zaczynał się spór o autorstwo nowej matematyki między Leibnizem i Newtonem. Niemal nikt na kontynencie nie chciał uwierzyć, że Newton kilkanaście lat przed Leibnizem posunął się bardzo daleko w rachunku różniczkowym i całkowym (u niego nazywało to się fluksje i kwadratury). Takie wyrażenia jak ów wzór na promień krzywizny, które tak zadziwił markiza de L’Hôpital, Newton uzyskał jeszcze w latach sześćdziesiątych. Nic z tego nie opublikował, niektóre fragmenty w rękopisie znali wybrani uczeni angielscy. Ponieważ nie publikował, trudno było teraz udowodnić, że tak wcześnie uzyskał istotne wyniki. Działało to także w drugą stronę: Newton, zawsze podejrzliwy, uznał, że to Leibniz musiał coś zaczerpnąć z jego rękopisów, kiedy odwiedził Anglię (nie spotkali się osobiście, ale Leibniz konferował z ludźmi posiadającymi pewne prace Newtona). W niezależne odkrycie tych samych technik nie bardzo wierzył – nie grzeszył skromnością, ale też nie znał nikogo, kto by mu dorównywał, więc właściwie było to proste uogólnienie obserwacji. Teraz, podrażniony wyzwaniem, zostawił na parę godzin sprawy mennicy i rozwiązał zagadnienie brachistochrony, burcząc, że nie lubi, kiedy go zaczepiają cudzoziemcy i odrywają od pilnowania interesów Korony.
Problem nie był aż tak trudny, rozwiązał go także markiz de L’Hôpital i starszy brat Johanna, Jakob, także wybitny matematyk. Rozwiązania zostały opublikowane w „Acta Eruditorum” w 1697 roku. Było to jednak zadanie, z którym wtedy potrafiło sobie poradzić zaledwie kilka osób. Później powstała specjalna gałąź matematyki, rachunek wariacyjny, badająca w sposób systematyczny różne zagadnienia tego typu.

Jakie warunki musi spełniać brachistochrona? Istnieje w przyrodzie coś, co porusza się tak, aby czas ruchu był najkrótszy. Tym obiektem jest światło. Wybiera ono drogę odpowiadającą najkrótszemu czasowi. (Zauważył to niegdyś Pierre Fermat, autor słynnego twierdzenia). Dla światła zachodzi też prawo załamania Snella. Zwykle zapisuje się je za pomocą współczynnika załamania, co zaciemnia związek z prędkością. Tymczasem prawo załamania mówi po prostu tyle, że sinus kąta (do normalnej rozdzielającej ośrodki) jest proporcjonalny do prędkości w danym ośrodku:

\sin\alpha=kv,

gdzie k jest stałe dla danego promienia. (Dlatego kąt w powietrzu jest większy niż w wodzie: bo prędkość światła w powietrzu jest większa niż w wodzie.) W przypadku ruchu koralika kwadrat jego prędkości w punkcie P jest proporcjonalny do wysokości, z której spadł od początku swego ruchu:

v^2=2gh,

gdzie g jest przyspieszeniem ziemskim. Prędkość zależy więc jedynie od wysokości. Możemy wyobrażać sobie zamiast ruchu koralika rozchodzenie się światła w ośrodku, w którym prędkość zależy od wysokości.

cyclo_brachisto_s

 

Przypomina to nieco drogę światła w atmosferze ziemskiej, która ma różną gęstość na różnych wysokościach. Promień światła biegnie po linii krzywej – oczywiście w przypadku atmosfery efekt ten jest niewielki, choć ważny dla astronomów i znany od wieków (nazywa się refrakcją astronomiczną). Łącząc nasze dwa równania, możemy napisać:

\sin^2\alpha=k^2v^2=2gk^2 h\equiv \dfrac{h}{2r} \mbox{ (*).}

Oznaczyliśmy przez 2r największą głębokość, na jaką zsunie się nasz koralik, wówczas kąt \alpha=90^\circ i koralik-światło będzie poruszać się poziomo. Odpowiada to dnu cykloidy.
Możemy teraz sprawdzić, że cykloida spełnia warunek (*). Wyobraźmy sobie cykloidę zataczaną przez punkt P leżący na obwodzie koła o promieniu r. W chwili początkowej punkt P pokrywał się z początkiem układu, teraz odtoczył się do pewnego położenia P, tak jak na rysunku.

cycloid-1

Wektor prędkości punktu P jest prostopadły do odcinka SP. Łatwo to zrozumieć, zauważając, że toczące się koło ma w każdym momencie jeden nieruchomy punkt – jest nim punkt styku z podłożem S. Koło obraca się chwilowo wokół punktu S. Zatem chwilowa prędkość punktu P musi być prostopadła do odcinka SP i trójkąt SPQ jest prostokątny (SQ musi być średnicą koła – kąt wpisany oparty na średnicy jest kątem prostym). Gdy przyjrzymy się trójkątom prostokątnym na rysunku, stwierdzimy, że zachodzą równości:

\sin\alpha=\dfrac{SP'}{SP}=\dfrac{h}{SP}\mbox{ oraz }\sin\alpha=\dfrac{SP}{2r}.

Mnożąc je stronami, otrzymamy wzór (*). Zatem cykloida jest brachistochroną. Oczywiście, trochę oszukujemy (za Bernoullim!), korzystając z własności światła: w gruncie rzeczy nie chodzi jednak o światło, a o fakt, iż najkrótszy czas ruchu wiąże się z prawem załamania. Postaram się kiedyś napisać, jak Fermat doszedł do swej zasady najkrótszego czasu i co to ma wspólnego z prawem załamania.

DODATEK DLA ZNAJĄCYCH POJĘCIE POCHODNEJ

Wzór (*) możemy zapisać przez współrzędną y punktu P, wyznaczając z niego y, otrzymujemy

-y=2r\sin^2\alpha=r(1-\cos2\alpha).

Potraktujemy to jako jedno z równań parametrycznych naszej krzywej, parametrem jest kąt \alpha z osią y. Jeśli nasza krzywa biegnie pod kątem \alpha do osi y, to dla niewielkich przyrostów przyrostów funkcji wzdłuż krzywej mamy

\Delta x=-\Delta y\tan\alpha .

(tan oznacza tangens). Dzieląc to przez \Delta\alpha i przechodząc do granicy, dostaniemy pierwszą równość w

\dfrac{dx}{d\alpha}=-\tan\alpha\dfrac{dy}{d\alpha}=2r\tan\alpha\sin2\alpha=4r\sin^2\alpha=2r(1-\cos2\alpha).

Ostatnie wyrażenie możemy scałkować i otrzymamy wówczas:

x=r(2\alpha-\sin 2\alpha).

Otrzymaliśmy parametryczne równania cykloidy, zwykle kąt 2\alpha zapisuje się jako \varphi – ma on sens kąta obrotu naszego koła generującego cykloidę od chwili początkowej.
Warto też zwrócić uwagę, że dwa zadane punkty łączy tylko jedna cykloida. Załóżmy, że mamy dane punkty O i A.

cycloid_single

Rysujemy cykloidę zakreślaną przez koło o promieniu 1. Cykloida ta przetnie prostą OA w jakimś punkcie P. Należy teraz zatoczyć cykloidę za pomocą koła o promieniu r równym

r=\dfrac{OA}{OP},

przejdzie ona przez punkt A. Wynika to stąd, że każda cykloida ma tylko jeden parametr określający jej kształt, a mianowicie promień koła, które się toczy. Jeśli znajdziemy właściwy promień, to nie ma już żadnej swobody wyboru naszej cykloidy.