P.A.M. Dirac i jego równanie (1927-1928)

Paul Dirac znany był z powściągliwej małomówności i z tego, że nie wdaje się w grzecznościowe pogaduszki. Richard Feynman opowiadał, że kiedy spotkał po raz pierwszy Paula Diraca na jakiejś konferencji, to po długiej chwili milczenia starszy uczony rzekł: „Mam równanie. Czy pan także?”

Rozmaite wypowiedzi Diraca cytowane są często jako żarty, gdyż brzmią z pozoru absurdalnie. Paul Adrien Maurice Dirac sprawiał wrażenie postaci beckettowskiej: chudy, z długimi kończynami i wielkimi stopami, nie okazujący emocji, porozumiewający się pełnymi zdaniami (ponieważ nie wolno zacząć zdania, jeśli się nie wie, jak je zakończyć), myślący w kategoriach logicznych i matematycznych, a nie emocjonalnych czy etycznych. Jego przyjaciel Charles Galton Darwin, fizyk, wnuk twórcy teorii ewolucji, dopiero po kilku latach znajomości z Dirakiem odważył się zapytać, co właściwie znaczą inicjały P.A.M. przed jego nazwiskiem. Po przeczytaniu Zbrodni i kary Dostojewskiego Dirac miał tylko jedną uwagę, i to raczej techniczną niż etyczną czy psychologiczną: otóż w książce słońce wschodzi dwukrotnie tego samego dnia.

Anegdota z równaniem mówi sporo o obu rozmówcach. Dirac cenił konkrety, lubił np. słuchać wielogodzinnych monologów Nielsa Bohra, ale wątpił, czy coś z nich wyniósł, ponieważ prawie wcale nie było w nich równań. Toteż cenił sobie niewątpliwie fakt, iż odkrył jedno z fundamentalnych równań przyrody, które stosuje się do wszystkich cząstek o spinie ½: a więc elektronów, protonów, nieodkrytych jeszcze wtedy neutronów oraz kwarków, z których nukleony się składają. Feynman pozostawił po sobie wprawdzie całki Feynmana, diagramy Feynmana i wiele innych osiągnięć, nie odkrył jednak nigdy żadnego fundamentalnego prawa przyrody i jak się zdaje jego ambicja cierpiała z tego powodu.

Jesienią 1927 roku Paul Dirac, młodzieniec zaledwie dwudziestopięcioletni, zaproszony został na Kongres Solvaya do Brukseli. Była to konferencja bardzo elitarna, gromadząca obecne i przyszłe znakomitości naukowe. Na pamiątkowym zdjęciu siedzi w samym środku za Einsteinem, wiemy, że bardzo był dumny z tej fotografii i posłał ją na swój macierzysty uniwersytet w Bristolu. Niewykluczone, że specjalnie usiadł za Einsteinem, jego teorię względności podziwiał bowiem od lat i poznał, zanim jeszcze zajął się fizyką atomową – jak to wtedy mówiono, czyli fizyką mikroświata. Najważniejsze postacie na tym zdjęciu to Niels Bohr i Max Born, przywódcy i patroni całego ruchu kwantowej odnowy w fizyce. W Kopenhadze i Getyndze tworzyły się zasady nowej mechaniki. Zaczęła ją praca Wernera Heisenberga z 1925 roku. Niedługo później dołączyli Born i Pascual Jordan.

Od jesieni 1925 roku mechanikę kwantową współtworzył też Paul Dirac. Był studentem Ralpha Fowlera w Cambridge. Fowler rozpoznał jego niebywały talent: młody inżynier elektryk i absolwent studiów drugiego stopnia z matematyki na uniwersytecie w Bristolu dostał stypendium do Cambridge i błyskawicznie uzupełnił braki z fizyki, nie tylko najnowszej, nie znał np. dotąd równań Maxwella. Fowler miał znakomite kontakty i chyba one przydały się Diracowi najbardziej. Młody uczony otrzymał od niego jeszcze przed drukiem korekty artykułu Heisenberga i zrozumiał ich znaczenie. Kiedy niedługo później opublikował swoją pierwszą pracę na temat mechaniki kwantowej, Max Born zdumiony był, że pojawił się ktoś spoza wąskiej grupy znanych mu ludzi pracujących w tej dziedzinie i w dodatku jego osiągnięcia są porównywalne do tego, co udało się stworzyć w Getyndze i Kopenhadze. Dirac, równieśnik Jordana, miał dwadzieścia trzy lata, pół roku mniej niż Heisenberg i dwa lata mniej niż Wolfgang Pauli. Pracował nad doktoratem. Dzięki Fowlerowi jego prace szybko się ukazywały w „Proceedings of the Royal Society”, a czas bardzo się wtedy liczył. Dirac zaczął korespondować z Hiesenbergiem, który od razu poczuł ogromny respekt do brytyjskiego kolegi. Po doktoracie wyjechał do Kopenhagi i Getyngi. Poznał wielu fizyków, ale nie zmienił swej metody pracy: przez sześć dni w tygodniu intensywne myślenie od rana do obiadu, w niedziele piesze wycieczki. Nie współpracował też z nikim, przez całe życie pracował sam, uważając, że tak jest najlepiej, bo ważne idee są zawsze dziełem konkretnego człowieka, nie zespołu.

Tak więc po dwóch latach swej naukowej kariery Dirac znalazł się w elitarnym gronie na Konferencji Solvaya. Przeszła ona do historii za sprawą dyskusji Bohra z Einsteinem, który nie potrafił się pogodzić z probabilistycznym charakterem nowej mechaniki – można w niej obliczać i przewidywać jedynie prawdopodobieństwa zdarzeń. To w trakcie jednej z takich dyskusji padły słynne słowa: „Bóg nie gra w kości”. W mechanice kwantowej zrezygnować trzeba także z pełnej wiedzy o zjawiskach w mikroświecie: im dokładniej zmierzymy położenie elektronu, tym mniej będziemy wiedzieli na temat jego pędu. Dirac zupełnie nie interesował się sporami filozoficznymi na temat podstaw mechaniki kwantowej. Dla niego była to piękna teoria, do której zbudowania się przyczynił, fascynowała go matematyczna elegancja całego obrazu, napisał zresztą niedługo później słynną książkę The Principles of Quantum Mechanics, przedstawiającą całą tę konstrukcję w niezrównany klarowny, choć też niezwykle zwięzły sposób.

Jesienią 1927 roku Paul Dirac pragnął odkryć swoje równanie. Chodziło o rozwiązanie zagadnienia elektronu w sposób zgodny z teorią względności Einsteina. Z problemem tym pierwszy zetknął się w roku 1925 Erwin Schrödinger, drugi outsider fizyki kwantowej, pracujący w Zurychu. Wiadomo było, że cząstki takie jak elektron związane są z pewnymi wielkościami falowymi. Schrödinger przyjął, że stan elektronu opisywany jest pewną funkcją położenia i czasu \psi(\vec{r},t). Funkcja ta spełniać musi równanie o postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi \mbox{ (*)},

gdzie H jest pewnym operatorem działającym na funkcję. Najłatwiej wyjaśnić to na przykładach. Operatorem takim jest np. mnożenie \psi przez którąś ze współrzędnych, np. x. Wynikiem działania tego operatora jest nowa funkcja równa x\psi. Innym operatorem jest różniczkowanie, np. po zmiennej x. Wynikiem działania tego operatora jest wówczas \frac{\partial \psi}{\partial x}. Innym przykładem operatora jest pochodna po czasie z lewej strony równania Schrödingera. Za każdym razem tworzymy z wyjściowej funkcji \psi jakąś nową funkcję. Operator H zwany hamiltonianem (albo operatorem Hamiltona) jest kwantową wersją wyrażenia na energię cząstki. Jeśli np. energia cząstki o masie m składa się z energii kinetycznej i potencjalnej V(\vec{x}), to możemy ją zapisać w postaci

E=\dfrac{{\vec{p}\,}^2}{2m}+V(\vec{x}).

Kwantowy operator Hamiltona będzie wówczas równy

H=-\dfrac{\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}\right)+V(\vec{r})\equiv -\dfrac{\hbar^2}{2m}\Delta+V(\vec{r}).

Operator V(\vec{r}) jest po prostu operatorem mnożenia, energię kinetyczną konstruujemy z pędu za pomocą podstawienia

p_x\rightarrow -i\hbar\dfrac{\partial}{\partial x}

i analogicznie dla pozostałych współrzędnych. Równanie Schrödingera (*) jest podstawowym prawem mechaniki kwantowej. Rozwiązując je, dowiadujemy się, w jaki spośob zmienia się funkcja falowa, a więc stan naszego elektronu. Najprostszym możliwym rozwiązaniem tego równania w przypadku cząstki swobodnej (tzn. gdy V=0) jest funkcja opisującą falę:

\psi=A \exp{\frac{i}{\hbar}(\vec{p}\,\vec{r}-Et)}, \mbox{ (**)}

gdzie p_x, p_y, p_x oraz E są parametrami liczbowymi. Łatwo sprawdzić, że różniczkowanie tej funkcji sprowadza się do mnożenia przez odpowiedni czynnik i ostatecznie równanie Schrödingera da nam warunek:

E=\dfrac{\vec{p}\,^2}{2m},

jak powinno być dla cząstki swobodnej i parametry są składowymi pędu oraz energią cząstki. Zbudowaliśmy stan o określonej energii i jednocześnie określonym pędzie. Jasne jest, że przyjmujemy tu energię kinetyczną w postaci newtonowskiej, a więc nierelatywistycznej.

Erwin Schrödinger początkowo poszukiwał równania relatywistycznego dla swojej funkcji \psi i nawet takie równanie znalazł. Ma ono następującą postać w przypadku swobodnym:

\dfrac{1}{c^2}\dfrac{\partial^2 \psi}{\partial {t}^2}-\Delta \psi+\left(\dfrac{mc}{\hbar}\right)^2 \psi=0.

Podstawiając do niego funkcję (**), otrzymamy równanie

E^2-p^2c^2=m^2c^4,

a więc prawidłowy związek energii i pędu dla cząstki o masie m w teorii względności. Oczywiście równanie dla cząstki swobodnej niewiele znaczy, interesujące są przypadki, gdy mamy pewien potencjał V(\vec{r}), np. gdy elektron porusza się w polu elektrostatycznym nieruchomego protonu. Jest to prawie atom wodoru (prawie – ponieważ w prawdziwym atomie wodoru proton, choć znacznie masywniejszy, może też się poruszać). Nietrudno równanie Kleina-Gordona rozszerzyć tak, aby zawierało zewnętrzne pole elektromagnetyczne. Wiadomo było jednak, że elektron ma spin, co sprawia, że jego stany są podwojone i np. w polu magnetycznym ta różnica się ujawnia jako rozszczepienie linii widmowych (efekt Zeemana). Czemu więc Schrödinger nie opublikował tego równania, które dziś nazywa się równaniem Kleina-Gordona? Schrödinger uznał, że trzeba ograniczyć się na początek do równania nierelatywistycznego i opublikował równanie (*) zastosowane m.in. do atomu wodoru. Nie jest jasne, czy chodziło mu o brak spinu, czy może dostrzegł inne trudności z rozwiązaniami równania Kleina-Gordona.

Z punktu widzenia Diraca równanie Kleina-Gordona nie było rozwiązaniem problemu elektronu. Owszem, relatywistyczny związek między energią i pędem cząstki był spełniony, ale równanie zawierało drugą pochodną czasową, a nie pierwszą jak równanie Schrödingera. Zdaniem Diraca równanie podstawowe powinno być pierwszego rzędu w czasie, tak aby wartości funkcji falowej w danej chwili determinowały jej wartości w przyszłości (w przypadku równania drugiego rzędu należy znać jeszcze wartości pochodnych czasowych). Jak pogodzić to z relatywistyczną postacią energii? Hamiltonian powinien mieć postać:

H=\sqrt{-c^2\hbar^2 \Delta+m^2c^4},

Oczywiście, wyciąganie pierwiastka kwadratowego z laplasjanu nie jest operacją standardową. Inżyniersko nastawiony do matematyki Paul Dirac, nieodrodny spadkobierca Olivera Heaviside’a, nie zamierzał się poddawać z tak trywialnego powodu. Równanie dla cząstki swobodnej powinno być pierwszego rzędu w czasie, w teorii względności znaczy to, że powinno być także pierwszego rzędu w pochodnych przestrzennych – poniważ przestrzeń i czas są symetryczne u Einsteina. Należy więc szukać równania postaci

i\hbar \gamma^{\mu}\dfrac{\partial \psi}{\partial x^{\mu}}=mc\psi, \mbox{ (***)}

gdzie sumujemy po wskaźnikach czasoprzestrzennych \mu=0,1,2,3 oraz x^0=ct. Żądamy, aby \gamma^{\mu} nie zależały od czasu ani współrzędnych przestrzennych, a także aby dwukrotne zastosowanie operatora po lewej stronie dało nam m^2, jak w równaniu Kleina-Gordona – wtedy relatywistyczny związek energii i pędu będzie spełniony. Łatwo zauważyć, że stanie się tak, jeśli

\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}=2\cdot diag(1,-1-1-1),

gdzie g^{\mu\nu} jest metryką czasoprzestrzeni Minkowskiego. Jakimi obiektami muszą być owe cztery \gamma^{\mu}? Mają one antykomutować ze sobą, czyli ich iloczyn zmienia znak przy przestawieniu, a kwadraty mają być równe \pm 1. Dirac odkrył, że \gamma^{\mu} muszą być macierzami 4×4, a więc funkcja \psi musi zawierać cztery składowe:

\psi=\begin{pmatrix} \psi_1\\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.

Inaczej mówiąc, równanie (***) jest układem czterech równań liniowych o stałych współczynnikach. Zaraz po Nowym Roku 1928 Ralph Fowler przekazał pracę do druku i miesiąc później się ukazała. Po miesiącu Dirac uzupełnił ją o drugą część. Mógł być teraz pewien: miał swoje równanie.

Dirac zaczął sprawdzać konsekwencje odkrytego równania. Okazało się, że zawiera ono informację o stanach spinowych elektronu. Co więcej, spinowy moment pędu okazywał się równy \hbar/2, a moment magnetyczny równy dokładnie magnetonowi Bohra. Znaczyło to, że w tym przypadku stosunek momentu magnetycznego do momentu pędu jest dwukrotnie większy niż dla orbitalnego momentu pędu, co potwierdzały eksperymenty (Nb. w roku 1915 Albert Einstein i Wander de Haas, zięć Hendrika Lorentza, przegapili okazję do pierwszorzędnego odkrycia doświadczalnego, zmierzyli bowiem ten stosunek i wyszedł im taki, jak oczekiwali, ale dwa razy mniejszy niż w rzeczywistości). Równanie elektronu Diraca w polu kulombowskim odtwarzało znane wyniki dla energii uzyskane wcześniej przez Arnolda Sommerfelda za pomocą relatywistycznej wersji modelu Bohra (model Bohra-Sommerfelda).

Co z czterema składowymi funkcji falowej? Potrzebne były dwie składowe do opisania spinu, ale cztery? Równanie Diraca zawiera rozwiązania zarówno dla energii dodatniej +\sqrt{p^2c^2+m^2c^4}, jak i -\sqrt{p^2c^2+m^2c^4}. Paul Dirac zauważył też, że rozwiązania te stwarzają realny problem: energia elektronu nie jest bowiem ograniczona z dołu, a to w przypadku układu kwantowego znaczy, że prędzej czy później powinien on przejść do stanu o niższej energii. W mechanice kwantowej panuje skrajny liberalizm: wszystko, co nie jest zabronione, jest dozwolone i się kiedyś zdarzy. Jedynym wyjściem wydawało się znaleźć jakiś zakaz, który musiałby być naruszany podczas takiego przejścia. Dwa lata później Dirac zaproponował, że stany o ujemnej energii są zajęte, więc ponieważ elektrony podlegają zakazowi Pauliego, zwykle nie ma takich przejść. Możliwe jest wzbudzenie elektronu z ujemną energią do stanu z energią dodatnią, pozostawi on dziurę, która będzie się zachowywać jak cząstka o takiej samej masie, lecz dodatnia. Otrzymujemy w ten sposób parę elektron i antyelektron. W 1932 roku cząstka taka została odkryta i nazwana pozytonem. Nic więc dziwnego, że już w roku następnym P.A.M. Dirac otrzymał Nagrodę Nobla (po połowie ze Schrödingerem). Inne wyjaśnienie dla rozwiązań o energii ujemnej podał później Richard Feynman: u niego pozytony są elektronami, które poruszają się wstecz w czasie, zamiast energii zmienia się znak czasu. Współczesna kwantowa teoria pola nie potrzebuje takich obrazów, wprowadza się w niej przestrzeń stanów bogatszą niż w mechanice kwantowej, gdyż pojawia się możliwość procesów kreacji oraz anihliacji par. Równanie Diraca obowiązuje nadal, lecz zamiast funkcji falowej mamy operator pola, obiekt jeszcze nieco bardziej abstrakcyjny.

Znakomitą biografię Diraca napisał Graham Farmelo, została ona jednak całkiem popsuta w polskim przekładzie, który językowo jest poniżej wszelkiej krytyki. Szkoda, bo pewnie nieprędko pojawi się drugie wydanie.

Reklamy

Co to znaczy być wielkim człowiekiem? Przypadek Alberta Einsteina

John G. Kemeny, matematyk, późniejszy współtwórca języka BASIC, był przez rok asystentem Einsteina. Miał 22 lata, kończył właśnie doktorat z podstaw matematyki u Alonzo Churcha w Princeton, i zgłosił się do Einsteina, zapewne wcześniej ktoś go polecił jako zdolnego młodego człowieka. Einstein kazał sobie ze szczegółami opowiedzieć, czego dotyczyła praca Kemeny’ego. Młody człowiek protestował, że nie chce zawracać mu głowy, ale Einstein nalegał. Przez pół godziny rozmawiali o pracy Kemeny’ego, po czym Einstein rzekł: „To teraz ja panu opowiem o mojej pracy”. I tak się zaczęła ich współpraca. Scena ta jest wielce charakterystyczna dla Einsteina, który zawsze wszystkich traktował jednakowo, lekce sobie ważąc atrybuty społecznego prestiżu: stanowiska, urzędy, bogactwo, specjalne stroje, uroczyste ceremonie. Kiedy dziennikarze nie dawali mu spokoju z okazji którychś urodzin, stwierdził, że takie uroczystości są dla dzieci.

Był niezwykle sławny, żaden uczony przed nim nie był postacią tak bardzo rozpoznawalną. Oczywiście, duży udział miały w tym media, które w tym okresie zaczęły posługiwać się obrazem. Dziennikarze robili sensację z tego, że ukończył nową pracę, jak i z tego, że nie nosi skarpetek. Skąd jednak brała się niezmienna i autentyczna fascynacja szerokiej publiczności jego osobą? Większość czytelników prasy niewiele przecież rozumiała z naukowych osiągnięć Einsteina. Wiadomo było tylko, że dotyczą spraw fundamentalnych: pojmowania przestrzeni, czasu, rozchodzenia się światła, wszechświata jako całości. Jego odkrycia sięgały naszych elementarnych pojęć, wydawały się paradoksalne: czas może inaczej płynąć dla różnych obserwatorów, przestrzeń może być nieograniczona, lecz skończona, a każde dwie linie proste gdzieś się przecinają, światło jest przyciągane przez Słońce. Niewątpliwie pobudzało to wyobraźnię, zmieniało sposób widzenia świata, nawet jeśli się nie było naukowcem.

Jednak publiczny wizerunek Einsteina nie ograniczał się do nauki. Był jeszcze Einstein – persona publiczna, człowiek prosty w obejściu, bezpośredni, obdarzony poczuciem humoru, ciepły. Zabierał głos w sprawach, które wydawały mu się ważne: sprzeciwiał się bezmyślnemu hurrapatriotyzmowi niemieckiemu podczas I wojny światowej, po wojnie zabiegał o to, by jego rodaków nie traktować z niewspółmierną surowością. Gdy z Europy wschodniej, w tym z Polski, napływać zaczęli żydowscy uchodźcy, Einstein domagał się dobrego ich traktowania. Prowadził nawet osobny wykład, na który owi Ostjuden mogli uczęszczać, uniwersytet bowiem stawiał przeszkody formalne. Ze wschodniej Europy wywodziło się zresztą świetne grono żydowskich matematyków i fizyków, którzy w większości trafili później do Stanów Zjednoczonych. Einstein dopiero w okresie po I wojnie zaczął się zastanawiać nad swoją żydowską tożsamością, zaczął popierać syjonistów, raczej przez rozum, nigdy nie podzielał bowiem ich religijnego entuzjazmu. Był pacyfistą, dopóki Hitler nie doszedł do władzy i nie zmusił go do rewizji poglądów. Był socjalistą, niepraktykującym w żadnej partii, lecz wierzącym, że społeczeństwa powinny być zorganizowane na zasadach równości i bardziej sprawiedliwego podziału dóbr. W czasach nazizmu jako jeden z pierwszych nie miał złudzeń co do charakteru tego, co nastąpi. Wywoływał u hitlerowców furię, ponieważ jego głos był słyszalny na całym świecie. Pomagał uchodźcom z Niemiec i z Włoch, wystawiał niezliczone opinie i zaświadczenia o pomocy materialnej – niezbędne, aby dostać się do Stanów Zjednoczonych. Także w Stanach Zjednoczonych został zaangażowanym obywatelem, wypowiadającym się na ważne tematy. Charakterystyczny dla jego postawy publicznej był brak interesowności: nie kandydował do niczego ani nie kierowały nim inne motywy niż głębokie wewnętrzne przekonanie. Sądził, że sława naukowa zobowiązuje go do służenia swoim czasem i nazwiskiem (a często także pieniędzmi) wtedy, gdy można komuś pomóc albo gdy jego głos może wpłynąć na postawę innych. Odpisywał na wszystkie listy, które wydawały mu się istotne, zachowywał się tak samo wobec dzieci, jak i prezydentów. Przyjaźnił się z belgijską królową, małego sąsiada w Princeton nauczył jeździć na rowerze. Kolega uczonego z Instytutu Badań Zaawansowanych, Erich Kahler, pisarz i historyk idei, opowiadał, że kiedyś taksówkarz w Nowym Jorku powiedział mu, że sama świadomość, iż na świecie żyje Albert Einstein, sprawia, że czuje się mniej samotny.

Związek między działalnością publiczną a naukową nie był u Einsteina przypadkowy. W jego pojęciu wybitny uczony powinien być zarazem dobrym człowiekiem. Zachwycał się młodym Nielsem Bohrem, kiedy go poznał osobiście: że taki wybitny naukowo i że jest szlachetnym człowiekiem. Bolało go, gdy działo się inaczej, nieważne czy teraz, czy kiedyś. Niedługo przed śmiercią zwierzał się, że bolała go małostkowość Galileusza, który ignorował i lekceważył osiągnięcia Keplera.

Max_Liebermann_Portrait_Albert_Einstein_1925

Rysunek Maksa Liebermanna. „Obraz bardziej przypominał jego niż mnie, co mu zresztą wyszło na dobre”.

Był uczonym, który zawsze czuł pewne wyrzuty sumienia na myśl, że zajmuje się sprawami tak abstrakcyjnymi i odległymi od codzienności. Często mawiał, że nauką najlepiej zajmować się po godzinach pracy – człowiek zachowuje wówczas całe prawo do błędów i nie czuje presji uzyskiwania ciągle oryginalnych wyników. Dla niego praca naukowa była mierzeniem się z problemami zasadniczymi, przedsięwzięciem obarczonym ogromnym ryzykiem niepowodzenia. Inna działalność go po prostu nie interesowała.

Nadużywa się słowa geniusz w odniesieniu do Einsteina. Nie był on jakimś nadczłowiekiem, supermózgiem przerastającym nawet najwybitniejszych swoich kolegów o klasę. Z pewnością Wolfgang Pauli albo Paul M. Dirac nie byli gorzej wyposażeni umysłowo. Jednak pod względem osiągnięć Einstein ustępuje może tylko Isaakowi Newtonowi. Lew Landau miał ranking fizyków w skali logarytmicznej (każde przesunięcie o jednostkę oznaczało wielokrotny spadek możliwości intelektualnych). Newton miał 0; Einstein 0,5; Dirac, Heisenberg i Bohr: 1 (sobie Landau przyznawał 2 – a był wybitny nawet jak na noblistę). Oczywiście, to tylko rodzaj zabawy. Liczą się najróżniejsze cechy jakościowe umysłu, a nie jakaś abstrakcyjna sprawność.

Siłą Einsteina i jego obsesją była jedność fizyki, poszukiwanie coraz ogólniejszych zasad, wyszukiwanie sprzeczności między różnymi teoriami. To on pierwszy postawił na porządku dziennym kwestię istnienia jednej wszechobejmującej teorii fizycznej, teorii wszystkiego, jak się to później utarło nazywać. Sam Einstein pisał o tym kiedyś do swego przyjaciela Paula Ehrenfesta, starając się go pocieszyć, gdyż Ehrenfest był nadmiernie krytyczny wobec swoich możliwości naukowych (co zapewne było jedną z przyczyn jego samobójstwa). „Istnieją tacy, którzy mają dobrego nosa do zasad podstawowych [Prinzipienfuchser] i wirtuozi (…) – pisał – wszyscy trzej [razem z Bohrem – J.K.] należymy do tego pierwszego rodzaju i nie mamy (a na pewno my dwaj) talentu wirtuoza. (…) Efekt spotkania z wybitnym wirtuozem (Born albo Debye): zniechęcenie. Działa to zresztą podobnie w drugą stronę”. Rzeczywiście Einstein i Ehrenfest (a także Bohr) rzadko prowadzili długie obliczenia, a jeśli już to robili, to często się mylili. Ich przewaga była w tym, że z góry potrafili sobie wyobrazić, jaki powinien być wynik, byli intuicjonistami. O pracy Bohra na temat linii widmowych Einstein wypowiedział się, że to „najwyższy stopień muzykalności w dziedzinie myśli” [przeł. J. Bieroń]. Einstein całkiem świadomie nie interesował się szczegółowym opracowaniem pewnych idei, nawet gdy pochodziły od niego. Stwierdził np., że ciepło właściwe w bardzo uproszczonym modelu kryształu powinno spadać wraz z temperaturą. I to mu wystarczyło. Zbadanie bardziej rozbudowanych modeli, lepiej odpowiadających obserwacjom, zostawił kolegom Peterowi Debye’owi i Maksowi Bornowi. Einsteina interesowało kwantowanie, a nie szczegółowe zachowanie różnych kryształów. Jego praca od lat dwudziestych wyglądała najczęściej tak, że miał jakiegoś kompetentnego matematyka do pomocy. Byli to zwykle ludzie po doktoratach, czasem niedługo przed profesurą. Oni wykonywali większość obliczeń, Einstein decydował, co robić dalej. Mówi się czasem, że byli to asystenci Einsteina – bardzo buntował się przeciw takiemu określeniu Leopold Infeld. Z pewnością w wielu przypadkach ich wkład był poważny, ale niemal zawsze były to prace Einstein+X, gdzie X nie był uczonym klasy powiedzmy Landaua (jedynym wyjątkiem była krótka praca z Paulim). Nastawienie na podstawowe zasady towarzyszyło Einsteinowi od samego początku, rzadko też korzystał z wyników eksperymentalnych: albo były one stare i znane (jak ciepło właściwe diamentu albo obrót peryhelium Merkurego), albo ich jeszcze wcale nie było.

Einstein nie był też rasowym matematykiem (w odróżnieniu od Isaaka Newtona czy Edwarda Wittena). Teorie matematyczne interesowały go tylko o tyle, o ile mogły mu się przydać. Ponieważ jednak nie miał czysto matematycznej wyobraźni, więc jego prace w drugiej połowie życia w pewnym sensie nie mogły się udać. Stracił bowiem intuicyjne oparcie w fizyce, a zajął się teoriami, których zasada konstrukcyjna była czysto matematyczna, formalna. Wyszła z tego fizyka matematyczna – czyli coś w rodzaju świnki morskiej (ani świnka, ani morska). Oczywiście, wyostrzam sytuację, te nieudane prace Einsteina wystarczyłyby komu innemu na całkiem przyzwoitą karierę. Są one nieudane jedynie w tym sensie, że nie będziemy się o nich uczyć w podręcznikach.

Erwin Schrödinger, kwanty i amory, 1926

Stworzenie mechaniki kwantowej było zapewne największym osiągnięciem wieku XX w fizyce, pozwalając – jeśli nie rozumieć – to w każdym razie obliczać, jak zachowują się cząstki mikroświata. Dzisiejszy postęp technologii, genetyki molekularnej, nanotechnologii byłby bez tej teorii zupełnie niemożliwy. Żałować wypada, iż zasad mechaniki kwantowej nie uczy się w szkole – to wcale nie musi być trudne, a z pewnością jest ciekawsze niż równie pochyłe i bloczki zaśmiecające egzaminy maturalne z fizyki i w konsekwencji programy szkolne.

W roku 1925 Werner Heisenberg (23 lata) i niezależnie od niego Paul Dirac (22 lata) sformułowali abstrakcyjne zasady mechaniki kwantowej. Mówiło się o Knabenphysik – fizyce tworzonej przez chłopców. Z początku nie było jasne, jak stosować i jak rozumieć owe dziwne zasady. Formalizm był mądrzejszy od jego autorów. Sytuacja zmieniała się jednak z miesiąca na miesiąc. Już w styczniu 1926 roku było jasne, że mechanika kwantowa ma sens: udało się zastosować formalizm Heisenberga do atomu wodoru i obliczyć skwantowane energie elektronu (Wolfgang Pauli, 25 lat). To samo uzyskał Bohr w 1913 roku, ale jego model był niekonsekwentny: trochę klasyczny, trochę ad hoc. Teraz teoria była na tyle zwariowana, że mogła być prawdziwa.

W zestawieniu z innymi twórcami mechaniki kwantowej trzydziestosiedmioletni Erwin Schrödinger może wydawać się człowiekiem bardzo już dojrzałym.erwin

Jednak to on napisał najpopularniejsze równanie teorii – nazwane jego imieniem i do dziś niezwykle ważne w różnych zastosowaniach. Jego podejście było całkowicie oryginalne i zupełnie różne od wspomnianych „chłopców” z Getyngi i Cambridge, zamiast kwantów Schrödinger mówił o falach. Reguły Bohra określały dozwolone orbity w atomie, orbity te były numerowane kolejnymi liczbami naturalnymi (słowo „kwantowanie” znaczy właśnie to, że nie wszystkie wartości są dozwolone, lecz jedynie pewien ich ciąg). Schrödinger zadał sobie pytanie, skąd mogą się brać takie liczby naturalne? W fizyce klasycznej znane są takie zagadnienia: mówi się wówczas o falach stojących. Są to np. różne drgania struny zamocowanej na końcach: dopuszczalne są tylko takie sinusoidy, które na końcach mają zera. Dzięki temu struna emituje dźwięk podstawowy i jego wielokrotności (w sensie częstotliwości).

Standing_waves_on_a_string

Fale stojące mają ściśle określone częstotliwości, różne instrumenty muzyczne wykorzystują ten fakt na wiele pomysłowych sposobów. Zawsze mamy tam do czynienia z ograniczonym obszarem przestrzennym, w którym powstaje dźwięk – np. piszczałka organów albo układ trębacz+trąbka.

Czy można elektron w atomie wodoru potraktować jako taką falę stojącą? Problem był oczywiście trójwymiarowy – bardziej skomplikowany niż struna, ale komplikacje były wyłącznie natury matematycznej. W dodatku fale były już dobrze znane i zbadane przez poprzednie generacje matematyków i fizyków. Rzeczywiście, elektron w atomie wodoru można uznać za związany przyciąganiem elektrostatycznym. Przyciąganie to sprawia, że jest on zamknięty w czymś, co nazywamy studnią potencjału. Schrödinger obliczył kształt dozwolonych funkcji falowych elektronu – muszą one mieć tę cechę, że maleją asymptotycznie do zera wraz z odległością od protonu. Obliczył też dozwolone wartości – okazały się prawidłowe. Wynik Bohra po raz trzeci został uzyskany z jeszcze innych założeń.

hydrogen_functions

Nasuwało się pytanie, co znaczy sama funkcja falowa, oznaczana odtąd tradycyjnie grecką literą ψ (psi)? W dodatku równanie Schrödingera jest zespolone, więc i funkcja falowa ψ też powinna być zespolona. Liczba zespolona to para liczb rzeczywistych: np. długość wektora na płaszczyźnie i jego kąt z osią Ox. Schrödinger wyobrażał sobie, że kwadrat modułu (długości zespolonego wektora) opisuje rozmycie ładunku elektronu w przestrzeni. Nie miał racji, ów kwadrat opisuje prawdopodobieństwo znalezienia elektronu w danym obszarze, ale sam elektron nie jest w żaden sposób rozmyty: albo obserwujemy cały elektron, albo nie ma go wcale.

W zasadzie od razu było jasne, że cykl prac Schrödingera z roku 1926 wart jest Nagrody Nobla i rzeczywiście uczony otrzymał ją kilka lat później razem z Dirakiem, a rok po Heisenbergu.

Zastanawiano się nieraz nad tym wybuchem kreatywności profesora, który dotąd był szanowanym fizykiem, lecz nie uchodził za geniusza. Herman Weyl, znakomity matematyk, twierdził, że ów przypływ energii twórczej Schrödingera związany był z jego ówczesnymi sukcesami erotycznymi. Weyl zapewne wiedział, co mówi, był bowiem kochankiem żony Schrödingera, Anny. Pierwszą pracę na temat atomu wodoru pisał Schrödinger podczas urlopu bożonarodzeniowego 1925 w Arosie. Towarzyszyła mu tam jedna z jego dawnych flam, jej nazwisko pozostaje nieznane historykom. W trakcie roku 1926 Schrödinger poznał (dzięki żonie) czternastoletnią Ithi Junger, której pomagał w matematyce i w której się zakochał. Ich związek trwał kilka lat, został zresztą w pełni skonsumowany dopiero po ukończeniu przez Ithi lat siedemnastu. Na zdjęciu z lewej strony Ithi, w środku Hilde March, żona kolegi Schrödingera i matka jego nieślubnego dziecka, z prawej Anny. Tryb życia uczonego oburzał niektórych, choć najbardziej zainteresowana, Anny Schrödinger, nie wydawała się nim szczególnie zbulwersowana, Weyl nie był zresztą jej jedynym kochankiem.

women