Widmo wodoru i symetrie (2/2)

III. Wolfgang Pauli (1925)

Mechaniką kwantową nazywano z początku jedynie podejście macierzowe zapoczątkowane przez Wernera Heisenberga. Heisenberg nie potrafił jednak sobie poradzić z rachunkami dla atomu wodoru. Pierwsze kwantowe obliczenia energii stanów związanych elektronu w atomie wodoru przeprowadził Wolfgang Pauli. Wiemy z listu Heisenberga, że stało się to przed początkiem listopada 1925 r. Dopiero w połowie stycznia Pauli nadesłał tę pracę do „Zeitschrift für Physik”. Z kolei pierwsza praca Schrödingera w „Annalen der Physik” nosi datę wpłynięcia do wydawcy 27 I 1926 r. Obaj autorzy próbowali także rozwiązać zagadnienie relatywistyczne, ale im się to nie udało. Podejście Schrödingera omówiliśmy w poprzedniej części. Teraz zajmiemy się historycznie wcześniejszym, czysto algebraicznym podejściem Pauliego. 

Mamy do czynienia z hamiltonianem

H=\dfrac{{\bf p}^2}{2m}-\dfrac{e^2}{r}.

Rozwiązując zagadnienie klasyczne, należy znaleźć jak najwięcej całek ruchu, czyli wielkości zależnych od pędu i współrzędnych, które nie zmieniają się z czasem. Taką wielkością jest sam hamiltonian (zasada zachowania energii), a także moment pędu

L_i=\varepsilon_{ijk}x_jp_k,

gdzie sumujemy po powtarzających się indeksach, a \varepsilon_{123}=1, a poza tym jest antysymetryczne we wskaźnikach, tzn zmienia znak przy każdej zamianie pary wskaźników, np.

\varepsilon_{213}=-\varepsilon_{123}=-1;\;\; \varepsilon_{223}=-\varepsilon_{223}=0.

W prawej części zastosowaliśmy regułę antysymetrii do przestawienia wskaźników 22, co oczywiście nic nie zmienia i dlatego nasz symbol antysymetryczny znika. Pauli skorzystał z faktu, że w przypadku ruchu keplerowskiego, znana jest jeszcze inna całka ruchu – wektor Lagrange’a-Laplace’a-Rungego-Lenza, o którego zawiłych dziejach pisaliśmy wcześniej:

{\bf R}=-\dfrac{e^2 {\bf x}}{r}+\dfrac{{\bf p}\times {\bf L}}{m}.

W przypadku kwantowym operatory pędu i momentu pędu nie komutują ze sobą, więc ich kolejność w iloczynie wektorowym nie jest oczywista. Ponadto nasz wektor powinien mieć składowe hermitowskie, jeśli ma opisywać jakąś wielkość fizyczną. Pauli stwierdził, że odpowiednim wektorem będzie

{\bf R}=-\dfrac{e^2 {\bf x}}{r}+\dfrac{1}{2}\,\dfrac{{\bf p}\times {\bf L}-{\bf L}\times{\bf p} }{m}.

Korzystamy ze związków komutacyjnych pędu i współrzędnych znalezionych przez Heisenberga: [x_j,p_j]=i\hbar \delta_{ij}, gdzie symbol Kroneckera równy jest 1, gdy i=j i znika w pozostałych przypadkach. Okazuje się, że mamy wówczas następujące związki komutacyjne: 

gif

Trójka operatorów R_{i} komutuje też z hamiltonianem, czyli rzeczywiście jest to stała ruchu: [H, R_{i}] =0. Jeśli ograniczymy się do stanów o ustalonej energii E<0, możemy hamiltonian uważać za mnożenie przez tę energię:

png

Czynnik liczbowy po prawej stronie możemy uprościć, definiując nowy wektor

{\bf B}=\sqrt{\dfrac{m}{-2E}}{\bf R}.

Cała algebra upraszcza się, gdy zdefiniujemy nowe operatory:

{\bf A}_{\pm}=\dfrac{1}{2}\left({\bf L}\pm {\bf B}\right).

Mamy wtedy

[A_{\pm i}, A_{\pm j}]=i\hbar \varepsilon_{ijk} A_{\pm k},

dwie trójki operatorów zachowujące się dokładnie tak jak moment pędu:

[L_i,L_j]=i\hbar \varepsilon_{ijk} L_k.

Obie trójki operatorów komutują między sobą: [A_{+i},A_{-j}]=0. Możemy zastosować tutaj fakty znane w przypadku momentu pędu: dozwolone wartości kwadratu operatora to

\begin{array}{l} {\bf A}_{+}^2=\hbar^2 a_{-}(a_{-}+1), \\[10pt] {\bf A}_{-}^2=\hbar^2 a_{+}(a_{+}+1).\end{array}

Wektory {\bf R} oraz {\bf L} są prostopadłe: {\bf R}\cdot {\bf L}=0. Wobec tego

{\bf A}_{\pm}^2=\dfrac{1}{4}\left({\bf L}^2+\dfrac{m}{-2E}{\bf R}^2\right).

Oznacza to, że wartości obu kwadratów są jednakowe: a_{+}=a_{-}\equiv a. Obliczając kwadrat wektora LLRL, otrzymujemy:

{\bf R}^2=e^4+\dfrac{2H}{m}\,(L^2+\hbar^2)=e^4-\dfrac{-2E}{m}\,(L^2+\hbar^2).

Zatem

{\bf A}_{\pm}^2=\dfrac{1}{4}\left(\dfrac{me^4}{-2E}-\hbar^2\right),

skąd dozwolone energie stanów związanych E<0 są równe

E=-\dfrac{me^4}{2\hbar^2 (2a+1)^2}.

Wartości 2a+1 są równe liczbie dozwolonych rzutów operatora A_{\pm}3, czyli właśnie 2a+1=n. Ponieważ a przyjmować mogą wyłącznie wartości połowkowe: 0, 1/2,1, 3/2,\ldots, więc n=1,2,3,\ldots. Mamy n stanów o różnym rzucie A_{-3} i także n stanów o różnym rzucie A_{+3}, łącznie zatem n^2 stanów o tej samej energii.

Wolfgang Pauli w roku 1925 nie znał teorii grup i algebr Liego, ponieważ dotąd nie były to dziedziny przydatne w fizyce. Algebry operatorów z komutatorem nazywają się algebrami Liego. Obliczenia Pauliego wykorzystały fakt, że mamy tu do czynienia z sumą prostą dwóch algebr \mathfrak{so}(3) odpowiadających grupie obrotów w przestrzeni trójwymiarowej (operatory momentu pędu to generatory obrotów). Suma prosta jest w tym przypadku izomorficzna z algebrą obrotów w przestrzeni czterowymiarowej: \mathfrak{so}(4)=\mathfrak{so}(2)\bigoplus \mathfrak{so}(2). Pauli odkrył więc, że stany związane atomu wodoru podlegają symetrii obrotowej w czterech wymiarach i stąd bierze się degeneracja poziomów energetycznych. Rozważania teoriogrupowe pierwszy przedstawił w tym kontekście asystent Pauliego z Zurychu Valentin Bargmann, który niedługo potem pracował z Einsteinem w Princeton.

IV. Vladimir Fock (1935)

Bezpośrednie podejście do symetrii stanów związanych atomu wodoru zaprezentował Vladimir Fock na seminarium w swoim Instytucie Fizyki Uniwersytetu Leningradzkiego 8 lutego 1935 roku i w tym samym roku opublikował. W Związku Sowieckim rozkręcała się właśnie paranoja towarzysza Stalina znana jako Wielki Terror albo jeżowszczyzna – od nazwiska Nikołaja Jeżowa. To w tym właśnie roku Stalin stwierdził z trybuny: „Żyje się lepiej, żyje się weselej”. Trzydziestosześcioletni Fock, wybitny fizyk matematyczny, aresztowany został 8 marca 1935 roku, lecz tego samego dnia wypuszczony. Nocą 11 lutego 1937 roku znów został aresztowany (były to czasy, gdy wielu ludzi, jak kompozytor Dymitr Szostakowicz, czekało nocami ze spakowaną walizką, aż podjedzie czarny samochód NKWD). Terror stalinowski tym się różnił od nazistowskiego, że w Niemczech znane były z góry prześladowane grupy: Żydzi, komuniści, lewicowi artyści, reszta mogła spać w miarę spokojnie. W Rosji każdy mógł okazać się winny, choćby sam o tym nie wiedział. Fock został po kilku dniach zwolniony, ponieważ wstawił się za nim Piotr Kapica, mający dojście do ucha Stalina. Lata trzydzieste są bardzo twórczym okresem życia Vladimira Focka (metoda Hartree-Focka, przestrzeń Focka itd.), być może fizyka matematyczna była dla niego sposobem wymknięcia się z upiornej rzeczywistości.

Praca Focka wykorzystuje przestrzeń pędów. Funkcję falową można przedstawić jako transformatę Fouriera:

\psi({\bf x})={\displaystyle \int \exp{\left(\frac{i{\bf px}}{\hbar}\right)} \psi({\bf p})d^3{\bf p} }. 

Funkcja \psi({\bf p}) odgrywa jest gęstością prawdopodobieństwa w przestrzeni pędów. Transformacja taka jest, jak wiadomo, odwracalna i wzajemnie jednoznaczna. Równanie Schrödingera przyjmuje w przestrzeni pędów następującą postać:

\left( \dfrac{{\bf p}^2}{2m}-E \right)\psi({\bf p})=\dfrac{e^2}{2\pi^2\hbar}{\displaystyle \int \dfrac{ \psi({\bf q}) d^{3}{\bf q} }{|{\bf p}-{\bf q}|^2}}.

Uprościła się nam część z energią kinetyczną: teraz operator pędu to mnożenie przez pęd, ale nieco skomplikowała część z energią potencjalną: iloczyn funkcji przeszedł w splot transformat. Jeśli wprowadzimy oznaczenie:

E=-\dfrac{p^2_0}{2m},

możemy równanie Schrödingera zapisać w postaci quasi-czterowymiarowej:

\left( {\bf p}^2+p^2_0 \right)\psi({\bf p})=\dfrac{me^2}{\pi^2\hbar}{\displaystyle \int \dfrac{ \psi({\bf q}) d^{3}{\bf q} }{|{\bf p}-{\bf q}|^2}}.

Następnym krokiem jest zamiana zmiennych dana rzutem stereograficznym.

stereo

Trówymiarowy wektor {\bf p}/p_0 rzutujemy na punkt u leżący na 3-sferze tak, że linia łącząca końce wektorów przechodzi przez biegun północny 3-sfery. Nadal mamy trzy wymiary, ale teraz zanurzone w przestrzeni czterowymiarowej. Definiujemy nową funkcję

\hat{\psi}(u)=\dfrac{1}{\sqrt{p_0}}\left(\dfrac{p^2_0+{\bf p}^2}{2p_0} \right)^4 \psi({\bf p}).

Można obliczyć, że przy takiej definicji zachowane jest unormowanie funkcji:

CodeCogsEqn

Po lewej stronie całkujemy po powierzchni 3-sfery, po prawej po trójwymiarowej przestrzeni pędów. W nowych zmiennych równanie Schrödingera przybiera postać następującą:

\hat{\psi}(u)=\dfrac{me^2}{2\pi^2 p_0\hbar}{\displaystyle \int \dfrac{\hat{\psi}(v) dS}{|v-u|^2}}.

W tej postaci równanie jest jawnie symetryczne na obroty w przestrzeni czterowymiarowej (grupa SO(4)). Na 3-sferze zanurzonej w przestrzeni czterowymiarowej można określić harmoniki sferyczne podobnie jak na 2-sferze zanurzonej w przestrzeni trójwymiarowej. Rozpatrujemy w tym celu jednorodne wielomiany \mathcal{ Y} stopnia \lambda, które spełniają równanie Laplace’a w czterech wymiarach:

\Delta {\mathcal Y}_{\lambda\alpha}(u)=0,

gdzie \alpha numerują różne wielomiany spełniające ten warunek. Jest ich w przestrzeni czterowymiarowej (\lambda+1)^2. Gdy wyłączymy z tych wielomianów czynnik |u|^{\lambda}, otrzymamy harmoniki sferyczne w czterech wymiarach:

\Delta {\mathcal Y}_{\lambda\alpha}(u)=|u|^{\lambda}Y_{\lambda\alpha}(u/|u|).

Harmoniki (hiper-)sferyczne zależą tylko od współrzędnych kątowych na sferze. Okazuje się, że funkcje te spełniają równanie (dowód poniżej):

Y_{\lambda\alpha}(u)=\dfrac{\lambda+1}{2\pi^2}{\displaystyle \int \dfrac{Y_{\lambda\alpha}(v) dS}{|v-u|^2}}.

Porównując z równaniem Schrödingera, otrzymujemy

\dfrac{me^2}{p_0\hbar}=\lambda+1 \Rightarrow E=-\dfrac{me^4}{2\hbar^2 (\lambda+1)^2}.

Widać, że \lambda+1=n=1,2,3,\ldots, bo \lambda było stopniem wielomianu, a więc liczbą całkowitą nieujemną. Liczba różnych stanów kwantowych o tej samej energii jest równa liczbie harmonik hipersferycznych, czyli n^2. Zaiste, żyje się lepiej, żyje się weselej.

Całą tę procedurę można uugólnić na „atom wodoru” w \mathbb{R}^n dla n\ge 2, lecz oprócz ew. przypadku dwuwymiarowego, ma to znaczenie tzw. akademickie. Zmieniają się tylko różne współczynniki, w 1957 r. zrobił te obliczenia S.P. Alliluev.

Podejście Focka doczekało się później przeniesienia do mechaniki klasycznej. O jednej z prac tego rodzaju kiedyś tu wspominałem. 

Obliczenia

Podamy dowód równania całkowego dla harmonik sferycznych w czterech wymiarach elegancką metodą podaną przez M. Bandera, C. Itzyksona, Rev. Mod. Phys. 38 (1966), 330-345. Korzystamy z faktu, że f(v)=1/|u-v|^2 spełnia w \mathbb{R}^4 równanie Laplace’a. Bierzemy jeszcze drugą funkcję harmoniczną {\mathcal Y}(v) i korzystamy z tożsamości Greena:

{\displaystyle \int (f\Delta {\mathcal Y}-{\mathcal Y}\Delta f) d^4 v=\int \left(f\dfrac{ \partial {\mathcal Y} }{\partial n}-{\mathcal Y}    \dfrac{ \partial f}{\partial n}\right)dS,}

po obszarze zaznaczonym na rysunku: jest to 3-sfera o promieniu jednostkowym wklęśnięta małą 3-sferą o promieniu \varepsilon\rightarrow 0 wokół punktu u. Zwrot wektorów normalnych zaznaczony jest na czerwono.

wcieta sfera

Lewa strona równania równa się zero. Obliczamy prawą stronę. Z jednorodności {\mathcal Y} wynika, że 

\dfrac{ \partial {\mathcal Y} }{\partial n}=\lambda {\mathcal Y}.

Wkład do drugiego składnika obliczamy osobno dla dużej i małej sfery. Oznaczmy s=|u-v|. Gradient funkcji f(v)=s^{-2} ma kierunek do punktu u.

gradient

Wartość gradientu to pochodna (s^{-2})'=-2s^{-3}. Zatem składowa normalna pochodnej jest równa na dużej sferze

\dfrac{ \partial f}{\partial n}=-\dfrac{2\sin\alpha/2}{s^2\cdot 2\sin\alpha/2}=-\dfrac{1}{s^2}.

Została nam jeszcze całka po małej sferze. W miarę jak zbliżamy się do punktu u możemy z coraz lepszą dokładnością zastąpić {\mathcal Y}(v) przez wartość w środku małej sfery: {\mathcal Y}(u). Gradient f ma kierunek i zwrot taki, jak normalne zewnątrzne dla małej sfery, czyli zostaje nam całka po połowie małej sfery:

{\displaystyle {\mathcal Y}(u) \dfrac{2}{\varepsilon^3} \int dS={\mathcal Y}(u) 2\pi^2,}

gdzie skorzystaliśmy z faktu, że pole powierzchni 3-sfery to 2\pi^2 r^3. Łącząc otrzymane wyniki, dostajemy równanie całkowe na funkcję Y={\mathcal Y}|_{S^3}.

V. Jeszcze raz Erwin Schrödinger, czyli supersymetryczna mechanika kwantowa avant la lettre (1940)

Idea supersymetrii, zwanej pieszczotliwie SUSY, powstała w latach siedemdziesiątych XX w. W kwantowej teorii pola oznaczało to symetrię między bozonami i fermionami. Schrödinger nigdy nie słyszał o tym pojęciu, jednak z perspektywy czasu jego metoda, którą tu przedstawimy, znalazła swoje miejsce w supersymetrycznej mechanice kwantowej. Niezależnie od tego, czy w przyrodzie istnieje supersymetria, metody te znalazły swoje zastosowania w innych dziedzinach.

Schrödinger zajmował się zagadnieniem faktoryzacji hamiltonianu, tzn. przedstawienia operatora Hamiltona jako iloczynu innych operatorów. Pokażemy najpierw ideę tego podejścia, a potem zastosujemy je do atomu wodoru.

Załóżmy, że mamy rozwiązać jednowymiarowe zagadnienie własne dla operatora Hamiltona z pewnym potencjałem V(x):

H=-\dfrac{d^2}{dx^2}+V(x).

Tworzymy parę operatorów

{\mathcal A}=\dfrac{d}{dx}+{\mathcal W}(x),

{\mathcal A}^{\dag}=-\dfrac{d}{dx}+{\mathcal W}(x).

Za ich pomocą da się utworzyć dwa hamiltoniany:

H^{(1)}={\mathcal A}^{\dag}{\mathcal A}=-\dfrac{d^2}{dx^2}+{\mathcal W}^{2}(x)-{\mathcal W}'(x),

H^{(2)}={\mathcal A}{\mathcal A}^{\dag}=-\dfrac{d^2}{dx^2}+{\mathcal W}^{2}(x)+{\mathcal W}'(x).

Funkcję {\mathcal W}(x) nazywamy superpotencjałem, należy ją dobrać tak, żeby przydała się w rozwiązaniu wyjściowego zagadnienia.

Niech \psi będzie funkcją własną operatora H^{(1)}, tzn. H^{(1)}\psi=E\psi. Działając na obie strony tej równości z lewej strony operatorem {\mathcal A} otrzymamy:

{\mathcal AA}^{\dag}{\mathcal A}\psi=E{\mathcal A}\psi \,\, \Rightarrow H^{(2)}{\mathcal A}\psi=E{\mathcal A}\psi.

Znaczy to, że {\mathcal A}\psi jest funkcją własną operatora H^{(2)} o tej samej wartości własnej. Podobnie możemy pokazać, że startując od funkcji własnej operatora H^{(2)}\chi=E\chi, możemy skonstruować wektor własny operatora H^{(1)} jako {\mathcal A}^{\dag}\chi. Jedynym wyjątkiem jest sytuacja, gdy {\mathcal A}\psi=0 lub {\mathcal A}^{\dag}\chi=0. Można pokazać, że tylko jedna z tych funkcji o zerowej wartości własnej daje się unormować (jest całkowalna w kwadracie).

Zastosujemy metodę SUSY do równania dla radialnej funkcji falowej (por. część II):

-\dfrac{\hbar^2}{2m}\,\dfrac{\partial^2 u}{\partial r^2}+\left(\dfrac{\hbar^2 l(l+1)}{2m r^2}-\dfrac{e^2}{r}\right)u=Eu.

Zapiszemy je w wersji przeskalowanej, żeby mniej pisać:

H_{l}=-\dfrac{d^2}{dx^2}-\dfrac{1}{x}+\dfrac{l(l+1)}{x^2}.

Jako superpotencjał wybieramy funkcję

{\mathcal W}(x)=-\dfrac{l+1}{x}+\dfrac{1}{2(l+1)}.

Pomocnicze hamiltoniany są równe:

H_{l}^{(1)}=H_{l}+\dfrac{1}{4(l+1)^2}.

H_{l}^{(2)}=H_{l+1}+\dfrac{1}{4(l+1)^2}.

Widzimy, że operatory {\mathcal A, \mathcal A}^{\dag} pozwalają przechodzić między różnymi wartościami l bez zmiany energii. Zaczniemy od poszukania funkcji odpowiadającej energii zero:

{\mathcal A}\psi=\left(\dfrac{d}{dx}-\dfrac{l+1}{x}+\dfrac{1}{2(l+1)}\right)\psi=0.

Rozwiązaniem tego równania jest funkcja

\psi_{0l}(x)=\exp{(-\int_{0}^{x}{\mathcal W}(y)dy)}=x^{l+1}\exp{(-x/2(l+1))}.

Energia tego stanu jest równa

E=-\dfrac{1}{4(l+1)^2},

co w jednostkach fizycznych daje -me^2/(2\hbar^2 (l+1)^2).

Związek między operatorami pomocniczymi można zapisać jako

H_{l}^{(2)}=H_{l+1}^{(1)}+\dfrac{1}{4(l+1)^2}-\dfrac{1}{4(l+2)^2}.

Niech \psi_{0,l+1} będzie stanem zerowym operatora H_{l+1}^{(1)}. Mamy więc

H^{(2)}_{l} \psi_{0,l+1}=\left(\dfrac{1}{4(l+1)^2}-\dfrac{1}{4(l+2)^2}\right) \psi_{0,l+1}.

W takim razie stan \psi_{1,l+1}={\mathcal A}_{l}^{\dag}\psi_{0,l+1} jest także stanem własnym H^{(1)}_{l} o tej samej wartości własnej, czyli mamy

H^{(1)}_{l}\psi_{1,l+1}=\left(\dfrac{1}{4(l+1)^2}-\dfrac{1}{4(l+2)^2}\right) \psi_{1,l+1}.

Ale H_{l}^{(1)}=H_{l}+\dfrac{1}{4(l+1)^2}, zatem

H_{l}\psi_{1,l+1}=-\dfrac{1}{4(l+2)^2}\psi_{1,l+1}, 

energia stanu \psi_{1,l+1} jest równa -\frac{1}{4(l+2)^2}. Kontynuując tę procedurę, otrzymamy po \nu krokach stan \psi_{\nu l}={\mathcal A}_{l}^{\dag}{\mathcal A}_{l+1}^{\dag}\ldots {\mathcal A}_{l+\nu-1}^{\dag}\psi_{0,l+1} o energii

E_{\nu l}=-\dfrac{1}{4(l+\nu+1)^2}.

Zazwyczaj oznacza się l+\nu-1=n. Procedura ta pozwala także wyznaczyć funkcje falowe za pomocą działania operatorów {\mathcal A}^{\dag}

Tutaj kończymy niekompletny przegląd sposobów podejścia do problemu atomu wodoru w nierelatywistycznej mechanice kwantowej. Od samego początku, od 1925 roku, wiedziano, że potrzebne jest podejście relatywistyczne. Od strony rachunkowej zapewniło to równanie Diraca, choć strona pojęciowa – kwantowa teoria pola – utrwaliła się nieco później. Poprawki relatywistyczne obejmują strukturę subtelną oraz jeszcze mniejszy efekt: przesunięcie Lamba, które ekscytowało fizyków pod koniec lat czterdziestych ub. wieku. Wygląda to następująco od strony eksperymentalnej.

Sen Wolfganga Pauliego (1938)

Pauli urodził się w tym samym roku, gdy Max Planck zapoczątkował niechcący fizykę kwantową. Z racji późnego urodzenia niezbyt przejmował się dylematami uczonych pierwszego pokolenia zmagającego się z pojęciami kwantowymi. Jego pokolenie – do którego należeli Heisenberg, Jordan, Dirac – stworzyło mechanikę kwantową i jej relatywistyczną wersję, czyli elektrodynamikę kwantową, dziedzinę w pełni rozwiniętą już po drugiej wojnie światowej (Schwinger, Tomonaga, Feynman, Bethe i in.). Pauli nie tylko obserwował z bliska rozwój fizyki kwantowej, ale także sam się do niego mocno przyczynił. M.in. sformułowaniem zakazu Pauliego: w danym stanie orbitalnym mogą znajdować się maksymalnie dwa elektrony. Zasada ta wyjaśnia ułożenie powłok i podpowłok elektronowych, czyli w konsekwencji układ okresowy pierwiastków i chemię. Pauli także zrozumiał, czemu cząstki kwantowe dzielą się na dwie grupy: fermionów (jak elektrony) i bozonów (jak bozon Higgsa). Zależy to od spinu cząstki. Spin połówkowy mają fermiony, całkowity – bozony. Podział ten określa w znacznej mierze zachowanie się cząstek kwantowych. Fermiony unikają się wzajemnie, jak elektrony w atomie albo białym karle. Bozony chętnie przebywają w tym samym stanie, dzięki czemu możliwy jest laser albo kondensacja Bosego-Einsteina. Twierdzenie o związku spinu ze statystyką stało się jednym z kamieni węgielnych kwantowej teorii pola.

Wiedeńczyk, syn profesora chemii, który przyjął katolicyzm dla ułatwienia kariery, miał za ojca chrzestnego wybitnego filozofa Ernsta Macha. Pisał o tym do Carla Junga:

Wśród moich książek znajduje się nieco zakurzona skrzyneczka zawierająca secesyjny srebrny kielich z kartą wizytową w środku. Z kielicha zdaje się unosić spokojny, dobroczynny i radosny duch z niegdysiejszej epoki. Wyobrażam sobie, jak przyjaźnie ściska on pańską dłoń, zadowolony z pańskiej osobistej definicji fizyki jako sympatycznej oznaki nieco może spóźnionego zrozumienia. (…) Wyraża on satysfakcję z faktu, iż sądy metafizyczne w  ogólności, zostały, jak zwykł był mówić, „zesłane do królestwa cieni prymitywnej postaci animizmu”. Kielich ów służył do chrztu i na karcie wpisano z ozdobnymi zakrętasami: „Dr E. Mach, profesor Uniwersytetu Wiedeńskiego”. Tak się zdarzyło, że ojciec mój bardzo był zaprzyjaźniony z jego rodziną i znajdował się w tamtym czasie całkowicie pod jego wpływem umysłowym, a on (Mach) zgodził się uprzejmie przyjąć rolę mego ojca chrzestnego. Musiał mieć znacznie silniejszą osobowość od księdza katolickiego, z takim namacalnym skutkiem, że byłem ochrzczony bardziej w obrządku antymetafizycznym niż katolickim. Jakkolwiek zresztą było, karta pozostała w kielichu i mimo wielkich przemian umysłowych, jakie potem przeszedłem, pozostaje nadal etykietką, którą noszę, a mianowicie „antymetafizycznego pochodzenia”. I w gruncie rzeczy, upraszczając to może zbytnio, Mach uważał metafizykę za korzeń zła na tym świecie – czyli w języku psychologicznym samego Diabła – i kielich wraz z kartą pozostają symbolem aqua permanens [termin alchemiczny, dosł. trwała woda], która chroni od złych metafizycznych duchów.

Nie potrzebuję opisywać bardziej szczegółowo Macha. Aby go poznać, wystarczy, by odczytał pan swój własny opis typu ekstrawertycznego. Był mistrzem eksperymentu i w jego mieszkaniu pełno było przeróżnych pryzmatów, spektroskopów, stroboskopów, generatorów elektrostatycznych i innych urządzeń. Zawsze gdy przychodziłem z wizytą, pokazywał jakieś ładne doświadczenie pomyślane tak, by weyeliminować bądź poprawić jakiś błąd w myśleniu. Uważając swoje własne nastawienie psychologiczne za coś powszechnego, radził każdemu praktykować ekonomię myślenia, stosując tę niższą dodatkową zdolność tak, oszczędnie, jak można. Jego własne myślenie ściśle i z bliska podążało za obserwacjami zmysłów i odczytami przyrządów laboratoryjnych. (…)

Chciałbym przytoczyć anegdotę, które może rozbawić szczególnie pana. Otóż Mach, daleki od pruderii i interesujący się zawsze wszelkimi prądami umysłowymi, wygłosił kiedyś opinię na temat psychoanalizy Freuda i jego szkoły. „Ludzie ci – stwierdził – chcą użyć waginy jako teleskopu, przez który ogląda się świat; nie jest to jednak jej funkcja naturalna, jest ona na to zbyt ciasna”. Przez jakiś czas słowa te powtarzali wszyscy na Uniwersytecie Wiedeńskim. To bardzo charakterystyczne dla instrumentalistycznego sposobu myślenia Macha. Psychoanaliza wywołała u niego natychmiast żywy konkretny obraz niewłaściwie użytego instrumentu – owego kobiecego narządu zestawionego w niewłaściwy sposób z okiem. [List z 31 marca 1953 roku]

Filozofia Macha odegrała sporą rolę w rozwoju Alberta Einsteina, zachęcając go do krytycznego spojrzenia na pojęcia czasu i przestrzeni w fizyce Newtonowskiej. Mach był nieprzejednanym krytykiem atomów w fizyce, uważając je za konstrukt metafizyczny i spierając się na ten temat z Ludwigiem Boltzmannem. Pozytywistyczne nastawienie Pauliego wyrażało się zupełnie inaczej. Słynął on wśród kolegów jako „bicz boży”, bezwględny krytyk nie dość umotywowanych koncepcji. Nie oszczędzał także wielkich uczonych, np. Einsteina, który go niezwykle cenił i przyczynił się do przyznania mu Nagrody Nobla. Czasem krytyki Pauliego tłumiły także dobrze rokujące pomysły, jak stało się w przypadku spinu elektronu. Hans Kronig pod wpływem Pauliego i Bohra wycofał się z publikacji pomysłu, co sprawiło, że to Samuel Goudsmit i Georg Uhlenbeck zapisali się jako ci, którzy wprowadzili pojęcie spinu. Można sądzić, że samemu Pauliemu nie służył jego własny hiperkrytycyzm, choć szczycił się tym, iż nie ogłosił nigdy błędnej pracy.

Niezwykle wcześnie rozwinięty intelektualnie Pauli miał przez większość życia kłopoty natury psychicznej. W latach dwudziestych prowadził właściwie podwójne życie. W dzień (zaczynający się raczej dość późno) był znakomitym uczonym, istotą racjonalną aż do szpiku kości. Jego ataki na prace kolegów traktowane były raczej wyrozumiale, choć mniej odporni psychicznie znosili taką agresję źle. Ale Pauli dzienny był jak dr Jekyll w zestawieniu ze swym nocnym wcieleniem Mr. Hyde’em. Ulubionym jego sposobem spędzania czasu było picie w rozmaitych lokalach nienajwyższej reputacji. W swej wersji nocnej Pauli wszczynał burdy, popełniał występki, których wstydził się w dzień.

Nie panując nad własnym życiem, zdecydował się spróbować psychoanalizy pod kierunkiem Carla Junga. Zajęli się m.in. interpretacją snów, które Pauli zaczął notować z dużą skrupulatnością. Dla Junga materiał około tysiąca snów jednego z najwybitniejszych uczonych był znakomitą okazją do studiów. Powoływał się na nie wielokrotnie bez podania nazwiska pacjenta.

Jung cieszył się, gdy jego pacjent śnił koliste struktury, mandale, uznając to za krok w kierunku zintegrowania nieświadomej i świadomej części psychiki pacjenta. Przytoczymy jeden z takich snów, z roku 1938. Był to kosmiczny zegar unoszony przez wielkiego ptaka. Pionowa tarcza, podzielona na 32 części, zaopatrzona była we wskazówkę. Po jednym obrocie wskazówki, koło środkowe obracało się o 1/32 obrotu. Złoty pierścień obracał się z kolei 32 razy wolniej niż koło środkowe. Na środkowym kole znajdowały się cztery postacie z wahadłami. Sen ten przyniósł Pauliemu poczucie „najbardziej wzniosłej harmonii”, towarzyszyły temu szczęście i spokój.

Rysunek ze strony poświęconej książce Arthura Millera, Deciphering the Cosmic Numbers.

Jung starał się odczytać w snach Pauliego archetypiczne postaci i symbole znane z alchemii, rozmaitych religii, astrologii. Wizja wspólnego dziedzictwa ludzkości, do którego mamy nieświadomy dostęp, jest niewątpliwie fascynująca. Każdej nocy śniąc, doświadczamy innej rzeczywistości, osobnej dla każdego, ale przecież niepokojąco wspólnej. Czy kryje się w tym coś więcej niż tylko kaprysy mózgu zmęczonego nieustannym uładzaniem i próbami zrozumienia dookolnej rzeczywistości? Teleskop Junga, obejmujący całą ezoteryczną tradycję ludzkości, jest niewątpliwie szerszy niż Freudowskie dostrzeganie seksualności na każdym kroku, choć nie bardzo wiemy, co tu jest szersze, a co węższe. Pojawia się też pytanie, czy te wszystkie biblioteki zapełnione setkami dzieł alchemicznych, teologicznych, astrologicznych są jedynie umysłowym folklorem, czy też mają jakąś wartość poznawczą? Owe tysiące profesorów od Trójcy Świętej, jak też i mniej licznych przeciwników tej doktryny, trudziły się nadaremnie? Sam Isaac Newton był ukrytym antytrynitarzem (w Trinity College!), gromadzącym argumenty przeciwko tej doktrynie, którą uważał za skażenie pierwotnego chrześcijaństwa. Na każde naukowe dzieło Newtona przypadała setka albo i tysiąc rozmaitych spekulacji platońskich, rozważań moralnych i teologicznych, objaśnień Pisma, nauk dla mędrców, alchemicznych przepisów. Zresztą sam Isaac Newton studiował Apokalipsę, konstrukcję świątyni Salomona, zajmował się czynnie alchemią. Czy cała ta nocna część ludzkości powinna się co najwyżej, z braku lepszych pomysłów, pomieścić w rubryce osobliwości?

Swoją drogą wizja zegara ze wskazówkami jest niezmiernie konserwatywna dla fizyka kwantowego. Matematyczne abstrakcje marnie przenoszą się do świata snów. Choć może są matematycy, którym śnią się funktory i kategorie, całe  skąpane w błękicie. Ciekawe, co śniło się Grothendieckowi.

Lars Onsager i model Isinga, czyli fizyka statystyczna a przejścia fazowe

Jesienią 1945 roku także uczeni wracali do pokojowego życia. Hendrik Casimir, doktorant Ehrenfesta i asystent Wolfganga Pauliego w ETH w Zurychu, lata wojny spędził w okupowanej Holandii, pragnął się więc dowiedzieć od swego dawnego szefa, co wydarzyło się w fizyce po stronie alianckiej: w Wielkiej Brytanii i w Stanach Zjednoczonych. Pauli, który spędził ten czas w Princeton, stwierdził, że w gruncie rzeczy niewiele się wydarzyło, prowadzono wprawdzie wiele prac nad radarem czy bombą atomową, ale w oczach Pauliego niezbyt się te kwestie liczyły. Dla niego ważne były dokonania intelektualne, a nie techniczne zastosowania. Właśnie jako dokonanie tego rodzaju – „arcydzieło analizy matematycznej” wyróżnił Pauli pracę Larsa Onsagera nad modelem Isinga z roku 1941. Na pochwałę ze strony Pauliego wyjątkowo trudno było zasłużyć, słynął on z ostrych ocen wygłaszanych często wprost w oczy („to nawet nie jest źle”). Był też wirtuozem trudnych technik, to on pierwszy rozwiązał problem atomu wodoru w mechanice kwantowej, w jej wersji macierzowej, zanim jeszcze powstało równanie Schrödingera.

Norweg pracujący w Stanach Zjednoczonych, Lars Onsager należał do wielkich dziwaków nauki. Karierę zaczął od tego, że zgłosił się do Petera Debye’a w ETH, by mu powiedzieć, że jego teoria elektrolitów jest błędna. Szybko przeniósł się za ocean. Studenci nazywali prowadzony przez niego przedmiot „sadistical mechanics” – wykłady były trudne, matematyczne, wykładowca mówił z norweskim akcentem, a do tego zasłaniał swą dużą sylwetką tablicę. W Yale dopiero po zaoferowaniu mu posady postdoca zorientowano się, że Onsager, mimo dorobku naukowego wciąż nie ma doktoratu. Napisał więc doktorat o funkcjach Mathieu, z którym wydział chemii nie wiedział, co zrobić. W tej sytuacji matematycy zaproponowali, że mogą tę pracę uznać za doktorat na ich wydziale. Ostatecznie przyznano mu doktorat z chemii. Onsager w latach czterdziestych wykazał, że dwuwymiarowy model Isinga wykazuje przejście fazowe. Całości bardzo długiej pracy nigdy zresztą nie opublikował, lubił podsycać zainteresowanie kolegów na konferencjach, pisząc np. na tablicy postać uzyskanego przez siebie ścisłego wyniku. Konkurowali pod tym względem z Feynmanem, który też lubił nagle wtrącić w dyskusji jakiś niepublikowany dotąd wynik. Przez pewien czas obaj zajmowali się nadciekłością helu i nabrali do siebie wzajemnego respektu.

Przez ostatnie kilkadziesiąt lat podano wiele rozwiązań problemu Isinga, jednak choć krótsze niż oryginalna praca Onsagera, nadal wymagają one sporo pracy i dość zaawansowanych technik, toteż ograniczymy się poniżej do zarysowania kontekstu, w którym ta praca się pojawiła.

Model Isinga to wyprany z wszelkich zbędnych szczegółów model ferromagnetyka, czyli materiału takiego jak np. żelazo, wykazującego namagnesowanie. Każdy atom stanowi dla nas strzałkę, która może być skierowana do góry albo na dół, czyli przeciwnie do wektora pola magnetycznego \vec{B} albo zgodnie z nim. Nasze strzałki są skrajnie uproszczoną wersją igły kompasu: mogą mieć tylko dwa zwroty. Gdy strzałka skierowana jest zgodnie z polem, ma niższą energię, gdy przeciwnie – wyższą.

Energie równe są odpowiednio \pm \mu B, gdzie \mu jest tzw. momentem magnetycznym (np. elektron ma ściśle określony moment magnetyczny). Na razie mamy do czynienia z paramagnetykiem, bo nasze strzałki zwracają się chętniej równolegle do wektora pola niż antyrównolegle. Gdy jednak pole wyłączymy, prawdopodobieństwa obu orientacji staną się równe.

Model Isinga opisuje styuację, gdy rozmieszczone w sieci krystalicznej spiny-strzałki położone najbliżej siebie wolą ustawiać się zgodnie. Równoległe ustawienie najbliższych sąsiadów ma energię -J, antyrównoległe J. Zauważmy, że teraz do energii dają wkład wszystkie pary najbliższych sąsiadów, czyli całkowita energia będzie sumą po linkach między sąsiadami (linki te zaznaczone są na czerwono). W przypadku dwywymiarowym zaznaczyliśmy energie dla tylko jednego spinu i jego sąsiadów, żeby nie zaśmiecać rysunku.

Ponieważ sąsiednie spiny chętnie ustawiają się równolegle, mamy w takim układzie do czynienia z bliskim porządkiem: nasi sąsiedzi mają te same poglądy co my, a przynajmniej korzystniejsze energetycznie jest, żeby mieli takie same poglądy. Pytanie podstawowe dla takiego układu brzmi: w jakich sytuacjach ten bliski porządek rozciągnie się na całą wielką sieć, dając zgodne uporządkowanie większości spinów – daleki porządek („prawie wszyscy mają takie same poglądy”). Mówimy tu o poglądach, bo model Isinga można stosować do opisu każdej sytuacji, gdy bliski porządek może wytworzyć porządek daleki. Stosuje się pewne warianty modelu Isinga do badania rozpowszechniania się plotek albo aktywności neuronów w mózgu. Rzecz więc nie musi dotyczyć tylko naszych strzałek-spinów i fizyki. My ograniczymy się tutaj do fizyki, ale warto sobie zdawać sprawę, że wiele zjawisk zbiorowych, kolektywnych można opisywać metodami fizyki.

Wracając do modelu Isinga: jego zachowanie będzie zależeć od temperatury, a ściślej mówiąc od porównania dwóch charakterystycznych energii: energii oddziaływania J z energią termiczną kT, gdzie k to stała Boltzmanna (inaczej mówiąc kT to temperatura wyrażona nie w stopniach, lecz w jednostkach energii). W niskich temperaturach dominować powinno uporządkowanie, w wysokich nieuporządkowanie. Gdzieś pomiędzy tymi dwoma obszarami następuje przejście fazowe ferromagnetyk-paramagnetyk (ferromagnetyk jest uporządkowany, ferrum to żelazo). Na symulacjach komputerowych sieci 400×400 atomów wygląda to tak.

kT=2,0JkT=2,27J

konfiguracja całkiem chaotyczna, bez bliskiego porządku

kT=2,5J

(Obrazki uzyskane za pomocą programu Dana Schroedera)

Przed drugą wojną światową nie można było oczywiście zrobić takiej symulacji komputerowej. Poza tym istotne jest udowodnienie, czy rzeczywiście model Isinga wykazuje przejście fazowe, a jeśli tak to w jakiej temperaturze, co dzieje się w jej pobliżu itp. itd.

Zacznijmy od spinów nieoddziałujących, czyli pierwszego obrazka u góry. Podstawowe prawo fizyki statystycznej mówi, że prawdopodobieństwo danego stanu układu zależy od energii tego stanu:

p=C\exp{\left( -\frac{E}{kT}\right)},

gdzie C jest stałą proporcjonalności. Jest to rozkład Gibbsa albo Boltzmanna-Gibbsa, choć można by go też nazywać rozkładem Boltzmanna-Gibbsa-Einsteina, ponieważ Einstein, pracownik Urzędu Patentowego, rozwinął tę technikę w wolnych od pracy chwilach. Boltzmann był tu prekursorem, ale zajmował się wyłącznie przypadkiem gazu. Gibbs uogólnił jego podejście i opublikował o tym książkę w Stanach Zjednoczonych, Einstein poznał ją po kilku latach i nawet stwierdził, że gdyby znał ją wcześniej, nie ogłosiłby trzech swoich prac z lat 1902-1904.

Dla spinu w polu magnetycznym mamy tylko dwa przypadki:

p_{\pm}=C\exp{\left(\mp \frac{\mu B}{kT}\right)}\Rightarrow C=\dfrac{1}{Z},\, \mbox{gdzie }\, Z=\cosh \left({\frac{\mu B}{kT}}\right).

Średnia wartość spinu w kierunku pola równa jest

M=(+1)p_{+}+(-1)p_{-}= \mbox{tgh}\left(\frac{\mu B}{kT}\right).

Dla układu N spinów należy po prostu tę wartość przemnożyć przez liczbę spinów. Gdy wyrazimy pole w jednostkach \frac{kT}{\mu}, a wartość spinu jako ułamek wartości maksymalnej M_0, otrzymamy po prostu wykres tangensa hiperbolicznego.

Gdy nie ma pola magnetycznego B, wypadkowy kierunek spinu jest równy M=0. Przy niewielkich wartościach pola M (magnetyzacja) jest proporcjonalna do B. Przy dużych wartościach osiągamy nasycenie – praktycznie wszystkie spiny ułożone są wówczas w jednym kierunku. (Tak się składa, że dla prawdziwego elektronu w polu magnetycznym wynik jest ten sam, choć spin elektronu różni się technicznie od naszej strzałki. Ale to tylko nawiasem. Pozostajemy przy strzałkach).

Uwzględnienie oddziaływań między spinami bardzo komplikuje problem, gdyż nie możemy już traktować spinów jako niezależne statystycznie. Na symulacjach u góry widać, że w różnych temperaturach wyniki są odległe od całkiem przypadkowego ułożenia, mamy do czynienia z bliskim porządkiem. Rozkład Gibbsa daje nam wtedy prawdopodobieństwa z osobna dla każdej konfiguracji spinów – jest ich 2^{N}. W dodatku, żeby uzyskać wiarygodne wyniki musimy uwzględnić dużo spinów, w skończonych próbkach przejścia fazowe się rozmywają. Jeśli chcemy coś udowodnić, trzeba umieć obliczyć granicę przy N dążącym do nieskończoności (co było główną trudnością Onsagera przy rozwiązywaniu modelu 2D).

Prosty przybliżony sposób poradzenia sobie z uwzględnieniem oddziaływań podał Pierre Weiss. Nazywa to się dziś przybliżeniem pola molekularnego. Otóż orientacja sąsiadów wpływa na energię danego spinu poprzez wartości \pm J. Jeśli spin środkowy zwrócony jest ku górze, to energia oddziaływań z sąsiadami jest równa

E_{+}=-Js_{+}+Js_{-}=-J(s_{+}-s_{-}),

gdzie s_{\pm} to liczba sąsiadów z odpowiednią orientacją. Podobnie

E_{-}=Js_{+}-Js_{-}=J(s_{+}-s_{-}).

Zauważmy, że obie nasz spin środkowy ma takie energie, jakby był w zewnętrznym polu magnetycznym o wartości \mu B=J(s_{+}-s_{-}). Jak dotąd wszystko jest ściśle, ale też i nic nie obliczyliśmy. Krok decydujący i przybliżony polega teraz na uznaniu, że możemy po prawej stronie ostatnich wyrażeń wstawić wartości średnie. Wtedy nasz spin znajduje się niejako w uśrednionym polu zewnętrznym – im bardziej spolaryzowani sąsiedzi, tym większa presja energetyczna na ustawienie się tak jak i oni. Zatem oddziaływania mogą wywierać taki sam skutek jak zewnętrzne pole magnetyczne. Uśrednione wartości liczby sąsiadów każdej orientacji są równe sp_{\pm}, gdzie s jest całkowitą liczbą sąsiadów (dla łańcucha 1D s=2, dla sieci kwadratowej 2D s=4). Możemy teraz wykorzystać wynik dla nieoddziałujących spinów i otrzymać równanie, które zawiera M po obu stronach. Rozwiązując to równanie, dostaje się magnetyzację jako funkcję temperatury w tym przybliżeniu. Wygląda ona następująco (nie ma tu zewnętrznego pola magnetycznego, to, co obserwujemy jest wyłącznie skutkiem oddziaływania spinów):

Temperatura, przy której magnetyzacja spada do zera, to tzw. temperatura Curie (chodzi o doktorat Pierre’a Curie jeszcze przed ślubem z naszą rodaczką Marią Skłodowską). Oczywiście magnetyzacje dodatnie i ujemne są tak samo możliwe. Układ ochładzany poniżej T_{c} ma tutaj dwie możliwości: zależnie od tego, co przeważy, wartości będą dodatnie bądź ujemne. Temperatura Curie równa jest

kT_c=Js.

Opisane zachowanie jest całkiem rozsądne z eksperymentalnego punktu widzenia. Jednak ścisłe rozpatrzenie modelu Isinga dla przypadku łańcucha 1D przynosi niezbyt przyjemny wniosek: układ nie ma w ogóle fazy ferromagnetycznej. A więc w tym przypadku przybliżenie pola molekularnego zawodzi kompletnie. Wynik ten był treścią doktoratu Ernsta Isinga w roku 1924. Podał on też argumenty na rzecz braku uporządkowania dalekiego zasięgu (ferromagnetyzmu) także w przypadku 2D.

Następnym wydarzeniem w dziejach tego modelu był argument Rudolfa Peierlsa opublikowany w roku 1936. Peierls, wychowanek Sommerfelda i Heisenberga, asystent Pauliego w ETH, nie miał po roku 1933 czego szukać w swej ojczyźnie, stając się jeszcze jednym z wielkich uczonych wypchniętych z Niemiec nazistowskich na emigrację. Z czasem pracował on w programie Manhattan i brytyjskim Tube Alloys, otrzymał brytyjski tytuł szlachecki. Niemcy już nigdy nie odzyskały swoich uczonych i swojej pozycji naukowej sprzed wojny. Argument Peierlsa, choć nie do końca prawidłowy w jego sformułowaniu, dowodził, że w dostatecznie niskich temperaturach 2D model Isinga ma fazę ferromagnetyczną.

OPiszemy krótko argument Peierlsa w wersji Wipfa (Statistical Approach to Quantum Field Theory, 2013). Wybierzmy na początek wszystkie spiny do góry, jest to stan o najniższej energii. Stany o orientacji ujemnej będą tworzyły wyspy rozmaitej wielkości, które można zamknąć konturem. Zbiór takich zamkniętych konturów określa jednoznacznie konfigurację spinów. Kontury ważne są dlatego, że po ich obu stronach mamy spiny skierowane antyrównolegle, czyli utworzenie takiego kontury, ściany domenowej, wymaga energii 2Jn, gdzie n to długość konturu.

 

.

Można następnie pokazać, że prawdopodobieństwo utworzenia konturu o długości n jest nie większe niż \exp{\left(-\frac{2Jn}{kT} \right)}. Wynika to z rozkładu Gibbsa, po drodze robi się następującą sztuczkę: zmieniamy znaki wszystkich spinów wewnątrz konturu: sam kontur wówczas znika, natomiast pozostałe energie się nie zmieniają.

Następny krok to wybranie jakiegoś spinu nie leżącego na krawędzi. Chcemy oszacować prawdopodobieństwo, że nasz spin będzie ujemny. Musi on leżeć wewnątrz jakiejś ściany domenowej o pewnej długości n. Możliwe wartości n są parzyste, począwszy od n=4 (samotny spin ujemny). Oszacujmy liczbę konturów A(n) zawierających nasz spin i mających długość n.

 

 

W tym celu prowadzimy od naszego spinu półprostą w prawo (szary kolor na rysunku). Musi ona przecinać jakiś pionowy kontur w jednej z odległości: \frac{1}{2},\frac{3}{2},\ldots, \frac{n-3}{2}. Ostatnia z odległości odpowiada konturowi prostokątnemu o wysokości 1 i długości \frac{n-2}{2}. Mamy więc tutaj (n-1) możliwości. Startując z tego przecięcia i wykonując pętlę, mamy do zrobienia (n-1) kroków, a w każdym nie więcej niż trzy możliwości. Zatem

A(n)\le \frac{n-2}{2} \cdot 3^{n-1}.

Prawdopodobieństwo, że nasz wybrany spin jest ujemny jest więc mniejsze niż

\displaystyle \sum_{n=4}^{\infty}\frac{n-2}{2}3^{n-1} \exp{\left(-\frac{2Jn}{kT}\right)}\le \dfrac{y^2}{3(1-y)^2},

gdzie y=9\exp{(-\frac{2J}{kT})}. Łatwo sprawdzić, że prawa strona nierówności maleje z temperaturą, a więc dla dostatecznie niskiej temperatury prawdopodobieństwo może stać się mniejsze niż \frac{1}{2}. Dotyczy to wszystkich spinów oprócz brzegu. A więc w dostatecznie niskiej temperaturze większość spinów będzie zwrócona tak jak na brzegu, czyli do góry.

W przypadku 2D wystąpuje więc faza ferromagnetyczna wbrew wnioskom Isinga. Onsager potrafił obliczyć funkcję Z=\sum_{\sigma} \exp{-\frac{E_\sigma}{kT}} po wszystkich konfiguracjach \sigma całej sieci. W roku 1948 obliczył też magnetyzację jako funkcję temperatury w tym modelu i napisał wynik na tablicy na dwóch różnych konferencjach. Ma ona następujący kształt.

Mimo upływu lat nie można uzyskać ścisłego rozwiązania 2D szybko, wszystkie metody są dość techniczne. Nie udało się też otrzymać rozwiązania w obecności pola magnetycznego. Także przypadek 3D pozostaje nierozwiązany, i to nie dlatego że nikt nie próbował. Kenneth Wilson, laureat Nobla za zjawiska krytyczne (a więc takie jak w modelu Isinga), wspominał w swoim wykładzie noblowskim, że kiedy jako świeżo upieczony naukowiec zastanawiał się nad przedmiotem badań dla siebie, poszedł zapytać Murraya Gell-Manna i Richarda Feynmana, nad czym aktualnie pracują. Gell-Mann pokazał mu model Isinga i powiedział, że gdyby udało mu się uzyskać rozwiązanie dla przypadku 3D, byłoby miło. Feynman, jak to Feynman – odrzekł, że nic nie robi.

Jakob Hermann pisze do Johanna Bernoulliego na temat ruchu planet, 12 lipca 1710 r.

Ulmenses sunt mathematici – mieszkańcy Ulm to matematycy – głosiło stare porzekadło. Znamy jednego matematyka z Ulm Johannesa Faulhabera, który miał kontakty z Keplerem i być może z Kartezjuszem. Słynna ogrzewana komora, w której rozmyślał francuski filozof pewnej jesieni, mieściła się w Neuburgu niezbyt oddalonym od Ulm. No i w Ulm urodził się Albert Einstein, lecz rodzina rok później się przeprowadziła i uczony jako człowiek dorosły nigdy potem nie odwiedził już swego miasta rodzinnego.

Prawdziwą kolebką matematyków była natomiast leżąca niezbyt daleko od Ulm Bazylea. Stąd pochodziła rozgałęziona rodzina Bernoullich, a także Leonhard Euler i Jakob Hermann. Protoplastą naukowego rodu był Jakob Bernoulli, to od niego uczyli się matematyki jego brat Johann oraz Jakob Hermann. Johann z kolei był ojcem wybitnego Daniela i nauczycielem genialnego Eulera. Ponieważ posad dla matematyków nie było w Europie wiele, więc wszyscy ci matematycy sporo podróżowali. Dzięki bazylejskim matematykom rachunek różniczkowy i całkowy Leibniza stał się podstawą nowożytnej matematyki.

Drugim wielkim zadaniem uczonych od końca XVII wieku stało się przyswojenie osiągnięć Isaaca Newtona. Matematyczne zasady filozofii przyrody zawierały rewolucyjną fizykę przedstawioną za pomocą indywidualnego języka matematycznego, stworzonego przez autora. Nie było w historii nauki traktatu tak oryginalnego zarówno pod względem treści fizycznej, jak i matematycznej. Toteż jego zrozumienie i opanowanie zajmowało całe lata nawet wybitnym uczonym. Na kontynencie panował matematyczny idiom Leibniza i twierdzenia Newtona tłumaczono niejako na tę zrozumiałą wśród uczonych symbolikę.

Jakob Hermann pierwszy podał różniczkowe sformułowanie II zasady dynamiki. Miało ono u niego postać

G=M dV: dT,

gdzie G,M oznaczały siłę i masę, a dV, dT – różniczki prędkości i czasu. Zapis ten pojawił się dopiero na 57 stronie jego traktatu Phoronomia (1716) i odnosił się do siły ciężkości zależnej od położenia. Oczywiście, Newton już w 1687 r. rozważał takie siły, ale wyłącznie w postaci geometrycznej. Jego II prawo brzmiało: „Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.” Newton miał na myśli zmiany pędu ciała w pewnym krótkim czasie. Jednym problemem tego sformułowania była kwestia opisywania zmian w czasie, drugim problemem był wektorowy charakter siły: ilość ruchu, pęd, zmienia się w kierunku przyłożonej siły.

Pokażemy, jak Hermann rozwiązał problem ruchu ciała przyciąganego siłą odwrotnie proporcjonalną do kwadratu odległości od nieruchomego centrum. Zwolennicy Leibniza mieli zastrzeżenia do Newtonowskiego dowodu tego faktu, zbyt szkicowego. Pragnęli wyraźnego wykazania, że tylko stożkowe (albo część linii prostej) mogą być torem ciała. Opisywałem kiedyś rozwiązanie tego problemu podane w XIX wieku przez Williama Rowana Hamiltona.

Wyobrażamy sobie przyciągane przez centrum S ciało zakreślające krzywą CD. Jego ruch w nieskończenie krótkim czasie dt można przedstawić jako sumę wektorową ruchu bezwładnego od C do E oraz spadania od E do D wzdłuż kierunku siły w punkcie C, tzn. odcinki SC i DE są równoległe. Zmiana współrzędnej x w ruchu bezwładnym byłaby równa dx. Efekt działania siły przyciągającej to różniczka drugiego rzędu ddx (co później zapisywano d^{2}x). Oczywiście do ddx wchodzi tylko x-owa składowa siły.

Dziś narysowalibyśmy to tak, Hermann odnajduje trójkąty podobne na swoim rysunku i dochodzi do wniosku, że

ddx \propto F\dfrac{x}{r} dt^2.

Pole SCD zakreślane w czasie dt można przedstawić jako pole trójkąta o bokach [x,y] oraz [dx,dy], a więc jest ono równe połowie pola równoległoboku dt\propto y dx-x dy.
Ostatecznie różniczkę ddx możemy zapisać następująco (siła jest odwrotnie proporcjonalna do kwadratu odległości):

-a ddx=\dfrac{x}{r^3}(y dx-x dy)^2,

gdzie a jest stałą proporcjonalności. Naszym zadaniem jest znalezienie równania krzywej.
Całką tego równania jest

a dx=\dfrac{y}{r}(ydx-xdy).

Dzieląc obustronnie przez x^2 i całkując ponownie, otrzymujemy

-\dfrac{a}{x}+c=-\dfrac{r}{x}\;\Rightarrow\; a-cx=r,

gdzie c jest stałą całkowania. Jest to równanie stożkowej (po obustronnym podniesieniu do kwadratu otrzymamy wielomian kwadratowy w zmiennych x,y).

Postępowanie Hermanna jest pomysłowe, choć całkowania są nieintuicyjne. Można jednak, jak zawsze, sprawdzić je, idąc od końca do początku, tzn. wykonując dwa kolejne różniczkowania. Tak naprawdę sztuka rozwiązywania równań różniczkowych jest często zamaskowanym odgadywaniem całek. Różniczkowania wynikają z reguły Leibniza dla iloczynu d(uv)=v du+u dv.
W naszym przypadku mamy np. dla drugiego równania

d\left(\dfrac{y}{r}\right)=\dfrac{rdy-ydr}{r^2}=\dfrac{r^2 dy-y rdr}{r^3}.

Pamiętając, że r^2=x^2+y^2, mamy rdr=xdx+ydy. Itd. itp. rachunki „od końca” są łatwe. W pierwszym całkowaniu przyjęliśmy stałą całkowania równą zeru, co nie zmniejsza ogólności wyniku, bo Hermann zakłada, iż oś Sx jest osią toru planety, tzn. przecięcie z osią x z lewej strony punktu S następuje w peryhelium albo aphelium, czyli przy y=0 powinno być dx=0.
Johann Bernoulli, który miał dość nieznośny charakter (nigdy nie dość wypominania mu, jak to konkurował ze swym synem Danielem) odpowiedział wybrzydzaniem na procedurę Hermanna i przedstawił swoją ogólniejszą, opartą na innym podejściu.

Z dzisiejszego punktu widzenia Hermann odkrył pewną całkę pierwszą problemu Keplera (tak się dziś nazywa problem ruchu wokół centrum przyciągającego jak 1/r^2). Całka pierwsza to wyrażenie, którego wartość nie zmienia się podczas ruchu. U Hermanna jest to

-\dfrac{dx}{dt}L_{z}-\dfrac{y}{r}=A_{y}=const.

W wyrażeniu tym L_z=xp_{y}-yp_{x}. Gdyby zająć się przyspieszeniem wzdłuż osi Sy, otrzymalibyśmy drugą całkę. Razem składają się one na wektor

\vec{A}=\vec{p}\times \vec{L}-\dfrac{\vec{r}}{r}.

Nazywa się go wektorem Rungego-Lenza, choć odkrył go właściwie Jakob Hermann. W pełni zdał sobie sprawę z faktu, że mamy trzy takie całki pierwsze, czyli w istocie wektor, Joseph Lagrange, a po nim Pierre Simon Laplace. Laplace przedyskutował też systematycznie wszystkie całki pierwsze problemu Keplera (trzy to moment pędu, trzy to nasz wektor, jedna to energia całkowita planety). Carl David Runge (ur. 1856) oraz Wilhelm Lenz (ur. 1888) pojawiają się w tej historii późno i w rolach dość przypadkowych. Pierwszy (znany z algorytmu Rungego-Kutty) użył tego wektora w swoim podręczniku analizy wektorowej, drugi zastosował go do pewnego problemu w starej teorii kwantów, przepisując go z podręcznika Rungego. Zupełnie niekosztowny sposób wejścia do historii. Wilhelm Lenz jest natomiast autorem tzw. modelu Isinga (Ernst Ising był jego doktorantem). Wektor odegrał pewną rolę w powstaniu mechaniki kwantowej. Stosując go, Wolfgang Pauli otrzymał wartości energii w atomie wodoru na podstawie formalizmu macierzowego Heisenberga. Chwilę później Erwin Schrödinger zrobił to samo w swoim formalizmie i wielu fizyków nie wiedziało, co o tym myśleć, bo na pierwszy rzut oka oba podejścia różniły się kompletnie.

P.A.M. Dirac i jego równanie (1927-1928)

Paul Dirac znany był z powściągliwej małomówności i z tego, że nie wdaje się w grzecznościowe pogaduszki. Richard Feynman opowiadał, że kiedy spotkał po raz pierwszy Paula Diraca na jakiejś konferencji, to po długiej chwili milczenia starszy uczony rzekł: „Mam równanie. Czy pan także?”

Rozmaite wypowiedzi Diraca cytowane są często jako żarty, gdyż brzmią z pozoru absurdalnie. Paul Adrien Maurice Dirac sprawiał wrażenie postaci beckettowskiej: chudy, z długimi kończynami i wielkimi stopami, nie okazujący emocji, porozumiewający się pełnymi zdaniami (ponieważ nie wolno zacząć zdania, jeśli się nie wie, jak je zakończyć), myślący w kategoriach logicznych i matematycznych, a nie emocjonalnych czy etycznych. Jego przyjaciel Charles Galton Darwin, fizyk, wnuk twórcy teorii ewolucji, dopiero po kilku latach znajomości z Dirakiem odważył się zapytać, co właściwie znaczą inicjały P.A.M. przed jego nazwiskiem. Po przeczytaniu Zbrodni i kary Dostojewskiego Dirac miał tylko jedną uwagę, i to raczej techniczną niż etyczną czy psychologiczną: otóż w książce słońce wschodzi dwukrotnie tego samego dnia.

Anegdota z równaniem mówi sporo o obu rozmówcach. Dirac cenił konkrety, lubił np. słuchać wielogodzinnych monologów Nielsa Bohra, ale wątpił, czy coś z nich wyniósł, ponieważ prawie wcale nie było w nich równań. Toteż cenił sobie niewątpliwie fakt, iż odkrył jedno z fundamentalnych równań przyrody, które stosuje się do wszystkich cząstek o spinie ½: a więc elektronów, protonów, nieodkrytych jeszcze wtedy neutronów oraz kwarków, z których nukleony się składają. Feynman pozostawił po sobie wprawdzie całki Feynmana, diagramy Feynmana i wiele innych osiągnięć, nie odkrył jednak nigdy żadnego fundamentalnego prawa przyrody i jak się zdaje jego ambicja cierpiała z tego powodu.

Jesienią 1927 roku Paul Dirac, młodzieniec zaledwie dwudziestopięcioletni, zaproszony został na Kongres Solvaya do Brukseli. Była to konferencja bardzo elitarna, gromadząca obecne i przyszłe znakomitości naukowe. Na pamiątkowym zdjęciu siedzi w samym środku za Einsteinem, wiemy, że bardzo był dumny z tej fotografii i posłał ją na swój macierzysty uniwersytet w Bristolu. Niewykluczone, że specjalnie usiadł za Einsteinem, jego teorię względności podziwiał bowiem od lat i poznał, zanim jeszcze zajął się fizyką atomową – jak to wtedy mówiono, czyli fizyką mikroświata. Najważniejsze postacie na tym zdjęciu to Niels Bohr i Max Born, przywódcy i patroni całego ruchu kwantowej odnowy w fizyce. W Kopenhadze i Getyndze tworzyły się zasady nowej mechaniki. Zaczęła ją praca Wernera Heisenberga z 1925 roku. Niedługo później dołączyli Born i Pascual Jordan.

Od jesieni 1925 roku mechanikę kwantową współtworzył też Paul Dirac. Był studentem Ralpha Fowlera w Cambridge. Fowler rozpoznał jego niebywały talent: młody inżynier elektryk i absolwent studiów drugiego stopnia z matematyki na uniwersytecie w Bristolu dostał stypendium do Cambridge i błyskawicznie uzupełnił braki z fizyki, nie tylko najnowszej, nie znał np. dotąd równań Maxwella. Fowler miał znakomite kontakty i chyba one przydały się Diracowi najbardziej. Młody uczony otrzymał od niego jeszcze przed drukiem korekty artykułu Heisenberga i zrozumiał ich znaczenie. Kiedy niedługo później opublikował swoją pierwszą pracę na temat mechaniki kwantowej, Max Born zdumiony był, że pojawił się ktoś spoza wąskiej grupy znanych mu ludzi pracujących w tej dziedzinie i w dodatku jego osiągnięcia są porównywalne do tego, co udało się stworzyć w Getyndze i Kopenhadze. Dirac, równieśnik Jordana, miał dwadzieścia trzy lata, pół roku mniej niż Heisenberg i dwa lata mniej niż Wolfgang Pauli. Pracował nad doktoratem. Dzięki Fowlerowi jego prace szybko się ukazywały w „Proceedings of the Royal Society”, a czas bardzo się wtedy liczył. Dirac zaczął korespondować z Hiesenbergiem, który od razu poczuł ogromny respekt do brytyjskiego kolegi. Po doktoracie wyjechał do Kopenhagi i Getyngi. Poznał wielu fizyków, ale nie zmienił swej metody pracy: przez sześć dni w tygodniu intensywne myślenie od rana do obiadu, w niedziele piesze wycieczki. Nie współpracował też z nikim, przez całe życie pracował sam, uważając, że tak jest najlepiej, bo ważne idee są zawsze dziełem konkretnego człowieka, nie zespołu.

Tak więc po dwóch latach swej naukowej kariery Dirac znalazł się w elitarnym gronie na Konferencji Solvaya. Przeszła ona do historii za sprawą dyskusji Bohra z Einsteinem, który nie potrafił się pogodzić z probabilistycznym charakterem nowej mechaniki – można w niej obliczać i przewidywać jedynie prawdopodobieństwa zdarzeń. To w trakcie jednej z takich dyskusji padły słynne słowa: „Bóg nie gra w kości”. W mechanice kwantowej zrezygnować trzeba także z pełnej wiedzy o zjawiskach w mikroświecie: im dokładniej zmierzymy położenie elektronu, tym mniej będziemy wiedzieli na temat jego pędu. Dirac zupełnie nie interesował się sporami filozoficznymi na temat podstaw mechaniki kwantowej. Dla niego była to piękna teoria, do której zbudowania się przyczynił, fascynowała go matematyczna elegancja całego obrazu, napisał zresztą niedługo później słynną książkę The Principles of Quantum Mechanics, przedstawiającą całą tę konstrukcję w niezrównany klarowny, choć też niezwykle zwięzły sposób.

Jesienią 1927 roku Paul Dirac pragnął odkryć swoje równanie. Chodziło o rozwiązanie zagadnienia elektronu w sposób zgodny z teorią względności Einsteina. Z problemem tym pierwszy zetknął się w roku 1925 Erwin Schrödinger, drugi outsider fizyki kwantowej, pracujący w Zurychu. Wiadomo było, że cząstki takie jak elektron związane są z pewnymi wielkościami falowymi. Schrödinger przyjął, że stan elektronu opisywany jest pewną funkcją położenia i czasu \psi(\vec{r},t). Funkcja ta spełniać musi równanie o postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi \mbox{ (*)},

gdzie H jest pewnym operatorem działającym na funkcję. Najłatwiej wyjaśnić to na przykładach. Operatorem takim jest np. mnożenie \psi przez którąś ze współrzędnych, np. x. Wynikiem działania tego operatora jest nowa funkcja równa x\psi. Innym operatorem jest różniczkowanie, np. po zmiennej x. Wynikiem działania tego operatora jest wówczas \frac{\partial \psi}{\partial x}. Innym przykładem operatora jest pochodna po czasie z lewej strony równania Schrödingera. Za każdym razem tworzymy z wyjściowej funkcji \psi jakąś nową funkcję. Operator H zwany hamiltonianem (albo operatorem Hamiltona) jest kwantową wersją wyrażenia na energię cząstki. Jeśli np. energia cząstki o masie m składa się z energii kinetycznej i potencjalnej V(\vec{x}), to możemy ją zapisać w postaci

E=\dfrac{{\vec{p}\,}^2}{2m}+V(\vec{x}).

Kwantowy operator Hamiltona będzie wówczas równy

H=-\dfrac{\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}\right)+V(\vec{r})\equiv -\dfrac{\hbar^2}{2m}\Delta+V(\vec{r}).

Operator V(\vec{r}) jest po prostu operatorem mnożenia, energię kinetyczną konstruujemy z pędu za pomocą podstawienia

p_x\rightarrow -i\hbar\dfrac{\partial}{\partial x}

i analogicznie dla pozostałych współrzędnych. Równanie Schrödingera (*) jest podstawowym prawem mechaniki kwantowej. Rozwiązując je, dowiadujemy się, w jaki spośob zmienia się funkcja falowa, a więc stan naszego elektronu. Najprostszym możliwym rozwiązaniem tego równania w przypadku cząstki swobodnej (tzn. gdy V=0) jest funkcja opisującą falę:

\psi=A \exp{\frac{i}{\hbar}(\vec{p}\,\vec{r}-Et)}, \mbox{ (**)}

gdzie p_x, p_y, p_x oraz E są parametrami liczbowymi. Łatwo sprawdzić, że różniczkowanie tej funkcji sprowadza się do mnożenia przez odpowiedni czynnik i ostatecznie równanie Schrödingera da nam warunek:

E=\dfrac{\vec{p}\,^2}{2m},

jak powinno być dla cząstki swobodnej i parametry są składowymi pędu oraz energią cząstki. Zbudowaliśmy stan o określonej energii i jednocześnie określonym pędzie. Jasne jest, że przyjmujemy tu energię kinetyczną w postaci newtonowskiej, a więc nierelatywistycznej.

Erwin Schrödinger początkowo poszukiwał równania relatywistycznego dla swojej funkcji \psi i nawet takie równanie znalazł. Ma ono następującą postać w przypadku swobodnym:

\dfrac{1}{c^2}\dfrac{\partial^2 \psi}{\partial {t}^2}-\Delta \psi+\left(\dfrac{mc}{\hbar}\right)^2 \psi=0.

Podstawiając do niego funkcję (**), otrzymamy równanie

E^2-p^2c^2=m^2c^4,

a więc prawidłowy związek energii i pędu dla cząstki o masie m w teorii względności. Oczywiście równanie dla cząstki swobodnej niewiele znaczy, interesujące są przypadki, gdy mamy pewien potencjał V(\vec{r}), np. gdy elektron porusza się w polu elektrostatycznym nieruchomego protonu. Jest to prawie atom wodoru (prawie – ponieważ w prawdziwym atomie wodoru proton, choć znacznie masywniejszy, może też się poruszać). Nietrudno równanie Kleina-Gordona rozszerzyć tak, aby zawierało zewnętrzne pole elektromagnetyczne. Wiadomo było jednak, że elektron ma spin, co sprawia, że jego stany są podwojone i np. w polu magnetycznym ta różnica się ujawnia jako rozszczepienie linii widmowych (efekt Zeemana). Czemu więc Schrödinger nie opublikował tego równania, które dziś nazywa się równaniem Kleina-Gordona? Schrödinger uznał, że trzeba ograniczyć się na początek do równania nierelatywistycznego i opublikował równanie (*) zastosowane m.in. do atomu wodoru. Nie jest jasne, czy chodziło mu o brak spinu, czy może dostrzegł inne trudności z rozwiązaniami równania Kleina-Gordona.

Z punktu widzenia Diraca równanie Kleina-Gordona nie było rozwiązaniem problemu elektronu. Owszem, relatywistyczny związek między energią i pędem cząstki był spełniony, ale równanie zawierało drugą pochodną czasową, a nie pierwszą jak równanie Schrödingera. Zdaniem Diraca równanie podstawowe powinno być pierwszego rzędu w czasie, tak aby wartości funkcji falowej w danej chwili determinowały jej wartości w przyszłości (w przypadku równania drugiego rzędu należy znać jeszcze wartości pochodnych czasowych). Jak pogodzić to z relatywistyczną postacią energii? Hamiltonian powinien mieć postać:

H=\sqrt{-c^2\hbar^2 \Delta+m^2c^4},

Oczywiście, wyciąganie pierwiastka kwadratowego z laplasjanu nie jest operacją standardową. Inżyniersko nastawiony do matematyki Paul Dirac, nieodrodny spadkobierca Olivera Heaviside’a, nie zamierzał się poddawać z tak trywialnego powodu. Równanie dla cząstki swobodnej powinno być pierwszego rzędu w czasie, w teorii względności znaczy to, że powinno być także pierwszego rzędu w pochodnych przestrzennych – poniważ przestrzeń i czas są symetryczne u Einsteina. Należy więc szukać równania postaci

i\hbar \gamma^{\mu}\dfrac{\partial \psi}{\partial x^{\mu}}=mc\psi, \mbox{ (***)}

gdzie sumujemy po wskaźnikach czasoprzestrzennych \mu=0,1,2,3 oraz x^0=ct. Żądamy, aby \gamma^{\mu} nie zależały od czasu ani współrzędnych przestrzennych, a także aby dwukrotne zastosowanie operatora po lewej stronie dało nam m^2, jak w równaniu Kleina-Gordona – wtedy relatywistyczny związek energii i pędu będzie spełniony. Łatwo zauważyć, że stanie się tak, jeśli

\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}=2\cdot diag(1,-1-1-1),

gdzie g^{\mu\nu} jest metryką czasoprzestrzeni Minkowskiego. Jakimi obiektami muszą być owe cztery \gamma^{\mu}? Mają one antykomutować ze sobą, czyli ich iloczyn zmienia znak przy przestawieniu, a kwadraty mają być równe \pm 1. Dirac odkrył, że \gamma^{\mu} muszą być macierzami 4×4, a więc funkcja \psi musi zawierać cztery składowe:

\psi=\begin{pmatrix} \psi_1\\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.

Inaczej mówiąc, równanie (***) jest układem czterech równań liniowych o stałych współczynnikach. Zaraz po Nowym Roku 1928 Ralph Fowler przekazał pracę do druku i miesiąc później się ukazała. Po miesiącu Dirac uzupełnił ją o drugą część. Mógł być teraz pewien: miał swoje równanie.

Dirac zaczął sprawdzać konsekwencje odkrytego równania. Okazało się, że zawiera ono informację o stanach spinowych elektronu. Co więcej, spinowy moment pędu okazywał się równy \hbar/2, a moment magnetyczny równy dokładnie magnetonowi Bohra. Znaczyło to, że w tym przypadku stosunek momentu magnetycznego do momentu pędu jest dwukrotnie większy niż dla orbitalnego momentu pędu, co potwierdzały eksperymenty (Nb. w roku 1915 Albert Einstein i Wander de Haas, zięć Hendrika Lorentza, przegapili okazję do pierwszorzędnego odkrycia doświadczalnego, zmierzyli bowiem ten stosunek i wyszedł im taki, jak oczekiwali, ale dwa razy mniejszy niż w rzeczywistości). Równanie elektronu Diraca w polu kulombowskim odtwarzało znane wyniki dla energii uzyskane wcześniej przez Arnolda Sommerfelda za pomocą relatywistycznej wersji modelu Bohra (model Bohra-Sommerfelda).

Co z czterema składowymi funkcji falowej? Potrzebne były dwie składowe do opisania spinu, ale cztery? Równanie Diraca zawiera rozwiązania zarówno dla energii dodatniej +\sqrt{p^2c^2+m^2c^4}, jak i -\sqrt{p^2c^2+m^2c^4}. Paul Dirac zauważył też, że rozwiązania te stwarzają realny problem: energia elektronu nie jest bowiem ograniczona z dołu, a to w przypadku układu kwantowego znaczy, że prędzej czy później powinien on przejść do stanu o niższej energii. W mechanice kwantowej panuje skrajny liberalizm: wszystko, co nie jest zabronione, jest dozwolone i się kiedyś zdarzy. Jedynym wyjściem wydawało się znaleźć jakiś zakaz, który musiałby być naruszany podczas takiego przejścia. Dwa lata później Dirac zaproponował, że stany o ujemnej energii są zajęte, więc ponieważ elektrony podlegają zakazowi Pauliego, zwykle nie ma takich przejść. Możliwe jest wzbudzenie elektronu z ujemną energią do stanu z energią dodatnią, pozostawi on dziurę, która będzie się zachowywać jak cząstka o takiej samej masie, lecz dodatnia. Otrzymujemy w ten sposób parę elektron i antyelektron. W 1932 roku cząstka taka została odkryta i nazwana pozytonem. Nic więc dziwnego, że już w roku następnym P.A.M. Dirac otrzymał Nagrodę Nobla (po połowie ze Schrödingerem). Inne wyjaśnienie dla rozwiązań o energii ujemnej podał później Richard Feynman: u niego pozytony są elektronami, które poruszają się wstecz w czasie, zamiast energii zmienia się znak czasu. Współczesna kwantowa teoria pola nie potrzebuje takich obrazów, wprowadza się w niej przestrzeń stanów bogatszą niż w mechanice kwantowej, gdyż pojawia się możliwość procesów kreacji oraz anihliacji par. Równanie Diraca obowiązuje nadal, lecz zamiast funkcji falowej mamy operator pola, obiekt jeszcze nieco bardziej abstrakcyjny.

Znakomitą biografię Diraca napisał Graham Farmelo, została ona jednak całkiem popsuta w polskim przekładzie, który językowo jest poniżej wszelkiej krytyki. Szkoda, bo pewnie nieprędko pojawi się drugie wydanie.

Co to znaczy być wielkim człowiekiem? Przypadek Alberta Einsteina

John G. Kemeny, matematyk, późniejszy współtwórca języka BASIC, był przez rok asystentem Einsteina. Miał 22 lata, kończył właśnie doktorat z podstaw matematyki u Alonzo Churcha w Princeton, i zgłosił się do Einsteina, zapewne wcześniej ktoś go polecił jako zdolnego młodego człowieka. Einstein kazał sobie ze szczegółami opowiedzieć, czego dotyczyła praca Kemeny’ego. Młody człowiek protestował, że nie chce zawracać mu głowy, ale Einstein nalegał. Przez pół godziny rozmawiali o pracy Kemeny’ego, po czym Einstein rzekł: „To teraz ja panu opowiem o mojej pracy”. I tak się zaczęła ich współpraca. Scena ta jest wielce charakterystyczna dla Einsteina, który zawsze wszystkich traktował jednakowo, lekce sobie ważąc atrybuty społecznego prestiżu: stanowiska, urzędy, bogactwo, specjalne stroje, uroczyste ceremonie. Kiedy dziennikarze nie dawali mu spokoju z okazji którychś urodzin, stwierdził, że takie uroczystości są dla dzieci.

Był niezwykle sławny, żaden uczony przed nim nie był postacią tak bardzo rozpoznawalną. Oczywiście, duży udział miały w tym media, które w tym okresie zaczęły posługiwać się obrazem. Dziennikarze robili sensację z tego, że ukończył nową pracę, jak i z tego, że nie nosi skarpetek. Skąd jednak brała się niezmienna i autentyczna fascynacja szerokiej publiczności jego osobą? Większość czytelników prasy niewiele przecież rozumiała z naukowych osiągnięć Einsteina. Wiadomo było tylko, że dotyczą spraw fundamentalnych: pojmowania przestrzeni, czasu, rozchodzenia się światła, wszechświata jako całości. Jego odkrycia sięgały naszych elementarnych pojęć, wydawały się paradoksalne: czas może inaczej płynąć dla różnych obserwatorów, przestrzeń może być nieograniczona, lecz skończona, a każde dwie linie proste gdzieś się przecinają, światło jest przyciągane przez Słońce. Niewątpliwie pobudzało to wyobraźnię, zmieniało sposób widzenia świata, nawet jeśli się nie było naukowcem.

Jednak publiczny wizerunek Einsteina nie ograniczał się do nauki. Był jeszcze Einstein – persona publiczna, człowiek prosty w obejściu, bezpośredni, obdarzony poczuciem humoru, ciepły. Zabierał głos w sprawach, które wydawały mu się ważne: sprzeciwiał się bezmyślnemu hurrapatriotyzmowi niemieckiemu podczas I wojny światowej, po wojnie zabiegał o to, by jego rodaków nie traktować z niewspółmierną surowością. Gdy z Europy wschodniej, w tym z Polski, napływać zaczęli żydowscy uchodźcy, Einstein domagał się dobrego ich traktowania. Prowadził nawet osobny wykład, na który owi Ostjuden mogli uczęszczać, uniwersytet bowiem stawiał przeszkody formalne. Ze wschodniej Europy wywodziło się zresztą świetne grono żydowskich matematyków i fizyków, którzy w większości trafili później do Stanów Zjednoczonych. Einstein dopiero w okresie po I wojnie zaczął się zastanawiać nad swoją żydowską tożsamością, zaczął popierać syjonistów, raczej przez rozum, nigdy nie podzielał bowiem ich religijnego entuzjazmu. Był pacyfistą, dopóki Hitler nie doszedł do władzy i nie zmusił go do rewizji poglądów. Był socjalistą, niepraktykującym w żadnej partii, lecz wierzącym, że społeczeństwa powinny być zorganizowane na zasadach równości i bardziej sprawiedliwego podziału dóbr. W czasach nazizmu jako jeden z pierwszych nie miał złudzeń co do charakteru tego, co nastąpi. Wywoływał u hitlerowców furię, ponieważ jego głos był słyszalny na całym świecie. Pomagał uchodźcom z Niemiec i z Włoch, wystawiał niezliczone opinie i zaświadczenia o pomocy materialnej – niezbędne, aby dostać się do Stanów Zjednoczonych. Także w Stanach Zjednoczonych został zaangażowanym obywatelem, wypowiadającym się na ważne tematy. Charakterystyczny dla jego postawy publicznej był brak interesowności: nie kandydował do niczego ani nie kierowały nim inne motywy niż głębokie wewnętrzne przekonanie. Sądził, że sława naukowa zobowiązuje go do służenia swoim czasem i nazwiskiem (a często także pieniędzmi) wtedy, gdy można komuś pomóc albo gdy jego głos może wpłynąć na postawę innych. Odpisywał na wszystkie listy, które wydawały mu się istotne, zachowywał się tak samo wobec dzieci, jak i prezydentów. Przyjaźnił się z belgijską królową, małego sąsiada w Princeton nauczył jeździć na rowerze. Kolega uczonego z Instytutu Badań Zaawansowanych, Erich Kahler, pisarz i historyk idei, opowiadał, że kiedyś taksówkarz w Nowym Jorku powiedział mu, że sama świadomość, iż na świecie żyje Albert Einstein, sprawia, że czuje się mniej samotny.

Związek między działalnością publiczną a naukową nie był u Einsteina przypadkowy. W jego pojęciu wybitny uczony powinien być zarazem dobrym człowiekiem. Zachwycał się młodym Nielsem Bohrem, kiedy go poznał osobiście: że taki wybitny naukowo i że jest szlachetnym człowiekiem. Bolało go, gdy działo się inaczej, nieważne czy teraz, czy kiedyś. Niedługo przed śmiercią zwierzał się, że bolała go małostkowość Galileusza, który ignorował i lekceważył osiągnięcia Keplera.

Max_Liebermann_Portrait_Albert_Einstein_1925

Rysunek Maksa Liebermanna. „Obraz bardziej przypominał jego niż mnie, co mu zresztą wyszło na dobre”.

Był uczonym, który zawsze czuł pewne wyrzuty sumienia na myśl, że zajmuje się sprawami tak abstrakcyjnymi i odległymi od codzienności. Często mawiał, że nauką najlepiej zajmować się po godzinach pracy – człowiek zachowuje wówczas całe prawo do błędów i nie czuje presji uzyskiwania ciągle oryginalnych wyników. Dla niego praca naukowa była mierzeniem się z problemami zasadniczymi, przedsięwzięciem obarczonym ogromnym ryzykiem niepowodzenia. Inna działalność go po prostu nie interesowała.

Nadużywa się słowa geniusz w odniesieniu do Einsteina. Nie był on jakimś nadczłowiekiem, supermózgiem przerastającym nawet najwybitniejszych swoich kolegów o klasę. Z pewnością Wolfgang Pauli albo Paul M. Dirac nie byli gorzej wyposażeni umysłowo. Jednak pod względem osiągnięć Einstein ustępuje może tylko Isaakowi Newtonowi. Lew Landau miał ranking fizyków w skali logarytmicznej (każde przesunięcie o jednostkę oznaczało wielokrotny spadek możliwości intelektualnych). Newton miał 0; Einstein 0,5; Dirac, Heisenberg i Bohr: 1 (sobie Landau przyznawał 2 – a był wybitny nawet jak na noblistę). Oczywiście, to tylko rodzaj zabawy. Liczą się najróżniejsze cechy jakościowe umysłu, a nie jakaś abstrakcyjna sprawność.

Siłą Einsteina i jego obsesją była jedność fizyki, poszukiwanie coraz ogólniejszych zasad, wyszukiwanie sprzeczności między różnymi teoriami. To on pierwszy postawił na porządku dziennym kwestię istnienia jednej wszechobejmującej teorii fizycznej, teorii wszystkiego, jak się to później utarło nazywać. Sam Einstein pisał o tym kiedyś do swego przyjaciela Paula Ehrenfesta, starając się go pocieszyć, gdyż Ehrenfest był nadmiernie krytyczny wobec swoich możliwości naukowych (co zapewne było jedną z przyczyn jego samobójstwa). „Istnieją tacy, którzy mają dobrego nosa do zasad podstawowych [Prinzipienfuchser] i wirtuozi (…) – pisał – wszyscy trzej [razem z Bohrem – J.K.] należymy do tego pierwszego rodzaju i nie mamy (a na pewno my dwaj) talentu wirtuoza. (…) Efekt spotkania z wybitnym wirtuozem (Born albo Debye): zniechęcenie. Działa to zresztą podobnie w drugą stronę”. Rzeczywiście Einstein i Ehrenfest (a także Bohr) rzadko prowadzili długie obliczenia, a jeśli już to robili, to często się mylili. Ich przewaga była w tym, że z góry potrafili sobie wyobrazić, jaki powinien być wynik, byli intuicjonistami. O pracy Bohra na temat linii widmowych Einstein wypowiedział się, że to „najwyższy stopień muzykalności w dziedzinie myśli” [przeł. J. Bieroń]. Einstein całkiem świadomie nie interesował się szczegółowym opracowaniem pewnych idei, nawet gdy pochodziły od niego. Stwierdził np., że ciepło właściwe w bardzo uproszczonym modelu kryształu powinno spadać wraz z temperaturą. I to mu wystarczyło. Zbadanie bardziej rozbudowanych modeli, lepiej odpowiadających obserwacjom, zostawił kolegom Peterowi Debye’owi i Maksowi Bornowi. Einsteina interesowało kwantowanie, a nie szczegółowe zachowanie różnych kryształów. Jego praca od lat dwudziestych wyglądała najczęściej tak, że miał jakiegoś kompetentnego matematyka do pomocy. Byli to zwykle ludzie po doktoratach, czasem niedługo przed profesurą. Oni wykonywali większość obliczeń, Einstein decydował, co robić dalej. Mówi się czasem, że byli to asystenci Einsteina – bardzo buntował się przeciw takiemu określeniu Leopold Infeld. Z pewnością w wielu przypadkach ich wkład był poważny, ale niemal zawsze były to prace Einstein+X, gdzie X nie był uczonym klasy powiedzmy Landaua (jedynym wyjątkiem była krótka praca z Paulim). Nastawienie na podstawowe zasady towarzyszyło Einsteinowi od samego początku, rzadko też korzystał z wyników eksperymentalnych: albo były one stare i znane (jak ciepło właściwe diamentu albo obrót peryhelium Merkurego), albo ich jeszcze wcale nie było.

Einstein nie był też rasowym matematykiem (w odróżnieniu od Isaaka Newtona czy Edwarda Wittena). Teorie matematyczne interesowały go tylko o tyle, o ile mogły mu się przydać. Ponieważ jednak nie miał czysto matematycznej wyobraźni, więc jego prace w drugiej połowie życia w pewnym sensie nie mogły się udać. Stracił bowiem intuicyjne oparcie w fizyce, a zajął się teoriami, których zasada konstrukcyjna była czysto matematyczna, formalna. Wyszła z tego fizyka matematyczna – czyli coś w rodzaju świnki morskiej (ani świnka, ani morska). Oczywiście, wyostrzam sytuację, te nieudane prace Einsteina wystarczyłyby komu innemu na całkiem przyzwoitą karierę. Są one nieudane jedynie w tym sensie, że nie będziemy się o nich uczyć w podręcznikach.

Erwin Schrödinger, kwanty i amory, 1926

Stworzenie mechaniki kwantowej było zapewne największym osiągnięciem wieku XX w fizyce, pozwalając – jeśli nie rozumieć – to w każdym razie obliczać, jak zachowują się cząstki mikroświata. Dzisiejszy postęp technologii, genetyki molekularnej, nanotechnologii byłby bez tej teorii zupełnie niemożliwy. Żałować wypada, iż zasad mechaniki kwantowej nie uczy się w szkole – to wcale nie musi być trudne, a z pewnością jest ciekawsze niż równie pochyłe i bloczki zaśmiecające egzaminy maturalne z fizyki i w konsekwencji programy szkolne.

W roku 1925 Werner Heisenberg (23 lata) i niezależnie od niego Paul Dirac (22 lata) sformułowali abstrakcyjne zasady mechaniki kwantowej. Mówiło się o Knabenphysik – fizyce tworzonej przez chłopców. Z początku nie było jasne, jak stosować i jak rozumieć owe dziwne zasady. Formalizm był mądrzejszy od jego autorów. Sytuacja zmieniała się jednak z miesiąca na miesiąc. Już w styczniu 1926 roku było jasne, że mechanika kwantowa ma sens: udało się zastosować formalizm Heisenberga do atomu wodoru i obliczyć skwantowane energie elektronu (Wolfgang Pauli, 25 lat). To samo uzyskał Bohr w 1913 roku, ale jego model był niekonsekwentny: trochę klasyczny, trochę ad hoc. Teraz teoria była na tyle zwariowana, że mogła być prawdziwa.

W zestawieniu z innymi twórcami mechaniki kwantowej trzydziestosiedmioletni Erwin Schrödinger może wydawać się człowiekiem bardzo już dojrzałym.erwin

Jednak to on napisał najpopularniejsze równanie teorii – nazwane jego imieniem i do dziś niezwykle ważne w różnych zastosowaniach. Jego podejście było całkowicie oryginalne i zupełnie różne od wspomnianych „chłopców” z Getyngi i Cambridge, zamiast kwantów Schrödinger mówił o falach. Reguły Bohra określały dozwolone orbity w atomie, orbity te były numerowane kolejnymi liczbami naturalnymi (słowo „kwantowanie” znaczy właśnie to, że nie wszystkie wartości są dozwolone, lecz jedynie pewien ich ciąg). Schrödinger zadał sobie pytanie, skąd mogą się brać takie liczby naturalne? W fizyce klasycznej znane są takie zagadnienia: mówi się wówczas o falach stojących. Są to np. różne drgania struny zamocowanej na końcach: dopuszczalne są tylko takie sinusoidy, które na końcach mają zera. Dzięki temu struna emituje dźwięk podstawowy i jego wielokrotności (w sensie częstotliwości).

Standing_waves_on_a_string

Fale stojące mają ściśle określone częstotliwości, różne instrumenty muzyczne wykorzystują ten fakt na wiele pomysłowych sposobów. Zawsze mamy tam do czynienia z ograniczonym obszarem przestrzennym, w którym powstaje dźwięk – np. piszczałka organów albo układ trębacz+trąbka.

Czy można elektron w atomie wodoru potraktować jako taką falę stojącą? Problem był oczywiście trójwymiarowy – bardziej skomplikowany niż struna, ale komplikacje były wyłącznie natury matematycznej. W dodatku fale były już dobrze znane i zbadane przez poprzednie generacje matematyków i fizyków. Rzeczywiście, elektron w atomie wodoru można uznać za związany przyciąganiem elektrostatycznym. Przyciąganie to sprawia, że jest on zamknięty w czymś, co nazywamy studnią potencjału. Schrödinger obliczył kształt dozwolonych funkcji falowych elektronu – muszą one mieć tę cechę, że maleją asymptotycznie do zera wraz z odległością od protonu. Obliczył też dozwolone wartości – okazały się prawidłowe. Wynik Bohra po raz trzeci został uzyskany z jeszcze innych założeń.

hydrogen_functions

Nasuwało się pytanie, co znaczy sama funkcja falowa, oznaczana odtąd tradycyjnie grecką literą ψ (psi)? W dodatku równanie Schrödingera jest zespolone, więc i funkcja falowa ψ też powinna być zespolona. Liczba zespolona to para liczb rzeczywistych: np. długość wektora na płaszczyźnie i jego kąt z osią Ox. Schrödinger wyobrażał sobie, że kwadrat modułu (długości zespolonego wektora) opisuje rozmycie ładunku elektronu w przestrzeni. Nie miał racji, ów kwadrat opisuje prawdopodobieństwo znalezienia elektronu w danym obszarze, ale sam elektron nie jest w żaden sposób rozmyty: albo obserwujemy cały elektron, albo nie ma go wcale.

W zasadzie od razu było jasne, że cykl prac Schrödingera z roku 1926 wart jest Nagrody Nobla i rzeczywiście uczony otrzymał ją kilka lat później razem z Dirakiem, a rok po Heisenbergu.

Zastanawiano się nieraz nad tym wybuchem kreatywności profesora, który dotąd był szanowanym fizykiem, lecz nie uchodził za geniusza. Herman Weyl, znakomity matematyk, twierdził, że ów przypływ energii twórczej Schrödingera związany był z jego ówczesnymi sukcesami erotycznymi. Weyl zapewne wiedział, co mówi, był bowiem kochankiem żony Schrödingera, Anny. Pierwszą pracę na temat atomu wodoru pisał Schrödinger podczas urlopu bożonarodzeniowego 1925 w Arosie. Towarzyszyła mu tam jedna z jego dawnych flam, jej nazwisko pozostaje nieznane historykom. W trakcie roku 1926 Schrödinger poznał (dzięki żonie) czternastoletnią Ithi Junger, której pomagał w matematyce i w której się zakochał. Ich związek trwał kilka lat, został zresztą w pełni skonsumowany dopiero po ukończeniu przez Ithi lat siedemnastu. Na zdjęciu z lewej strony Ithi, w środku Hilde March, żona kolegi Schrödingera i matka jego nieślubnego dziecka, z prawej Anny. Tryb życia uczonego oburzał niektórych, choć najbardziej zainteresowana, Anny Schrödinger, nie wydawała się nim szczególnie zbulwersowana, Weyl nie był zresztą jej jedynym kochankiem.

women