Isaac Newton i niektóre matematyczne sekrety Stwórcy

Pod koniec roku 1684 Isaac Newton zrozumiał, że ruchy planet wyjaśnić może siła przyciągania między nimi a Słońcem, która jest odwrotnie proporcjonalna do kwadratu odległości. Newton miał wówczas czterdzieści dwa lata i był bardzo mało aktywnym profesorem katedry Lucasa w Cambridge. Wbrew późniejszej legendzie nie odkrył tego prawa w młodości (choć niewiele mu brakowało). W poprzednich latach zajmował się głównie teologią i alchemią, nie szukając rozgłosu i niewiele kontaktując się ze światem zewnętrznym. Teraz spostrzegł, że rysuje się możliwość rozwiązania problemu nie dającego spokoju uczonym od czasów starożytnych. Aż do 1687 roku pracował gorączkowo nad wyprowadzaniem różnych konsekwencji prawa ciążenia powszechnego. Trudno dziwić się jego entuzjazmowi: jedno proste prawo matematyczne pozwalało zrozumieć wiele skomplikowanych zjawisk we wszechświecie.

Czemu siła ciążenia jest odwrotnie proporcjonalna do kwadratu odległości? Można przecież wyobrazić sobie inne możliwe prawa. Dla Newtona było to pytanie: czemu Stwórca zdecydował się na taki, a nie inny wszechświat? Wiele rozważań w Matematycznych zasadach filozofii naturalnej poświęconych jest ruchowi ciał pod działaniem sił zmieniających się w inny sposób z odległością: np. malejących jak trzecia czy piąta jej potęga. A także rosnących proporcjonalnie do odległości. Ten ostatni przypadek był interesujący, dawał bowiem ruchy eliptyczne. Wszystkie planety miałyby wówczas taki sam okres obiegu wokół Słońca.

Jak wygląda ruch planety pod działaniem siły przyciągania proporcjonalnej do odległości? Powszechnie znany jest jednowymiarowy przypadek takiego ruchu:

F=a=-\omega^2 x \Rightarrow x(t)=A\cos\omega t,

F, a, x, t są tu odpowiednio siłą, przyspieszeniem, wychyleniem z położenia równowagi (w którym siła jest równa zeru) i czasem, \omega wielkością stałą, tzw. częstością kołową, określoną przez wielkość siły i masę ciała, którą przyjmujemy za równą 1. Stała A jest dowolna. Jest to ruch harmoniczny, czyli najprostsze możliwe drgania.

W przypadku trójwymiarowym ruch nie jest dużo bardziej skomplikowany. Po pierwsze zachodzi w stałej płaszczyźnie, mamy więc tylko dwa wymiary. Po drugie można go potraktować jako dwa niezależne ruchy wzdłuż osi Ox oraz Oy:

\left\{ \begin{array}{l}  F_x=a_x=-\omega^2 x\\  \mbox{}\\  F_y=a_y=-\omega^2 y.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  a_x=A\cos\omega t\\  \mbox{}\\  a_y=B\sin\omega t.  \end{array}\right.

Wybraliśmy rozwiązania w taki sposób, aby planeta P zakreślała elipsę zorientowaną jak na rysunku.

Łatwo sprawdzić, że mamy do czynienia z elipsą, wyznaczając z powyższych równań funkcje trygonometryczne i korzystając z jedynki:

\cos^2\omega t+\sin^2 \omega t=1=\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}.

Każda elipsa jest rzutem jednostajnego ruchu po okręgu punktu Q (dokładnie tak, jak gdybyśmy patrzyli na ten ruch po okręgu z ukosa, pod pewnym kątem: okrąg skraca się wtedy w jednym kierunku). Częstość kołowa i okres są takie same dla wszystkich torów. Nazwijmy ten tor elipsą Hooke’a (od prawa Hooke’a), choć Newton bardzo by się zżymał na tę nazwę, także ten ruch zbadał bowiem sam, a Hooke’owi pamiętał do końca życia protekcjonalny i lekceważący sposób, w jaki ten go kiedyś potraktował w dyskusji na temat optyki. Z powodu tej animozji nie wiemy dziś na pewno, jak wyglądał Robert Hooke, Newton bowiem go przeżył i kazał usunąć jego portret z Towarzystwa Królewskiego.

Newton zadał sobie pytanie, jak te elipsy (w środku których byłoby Słońce) mają się do elips keplerowskich (w których ognisku jest Słońce)? Okazuje się, że można podać związek między siłami wywołującymi oba te ruchy.

Rozpatrzmy planetę P zakreślającą jakikolwiek tor pod wpływem siły \vec{F} skierowanej ku pewnemu stałemu punktowi S.

Na rysunku przedstawiona jest elipsa, ale kształt krzywej nie jest w tym punkcie istotny. Korzystamy ze wzoru na siłę  dośrodkową:

F_n=\dfrac{v^2}{\varrho},

gdzie \varrho jest promieniem krzywizny toru w danym punkcie. Wiemy także, iż moment pędu L naszej planety musi być stały:

L=rv\sin\varepsilon.

Wobec tego siła F równa jest

F=\dfrac{F_n}{\sin\varepsilon}=\dfrac{L^2}{\varrho r^2 \sin^3\varepsilon}.

Teraz zastosujemy uzyskane wyrażenie do porównania siły grawitacji z siłą Hooke’a. Wyobraźmy sobie, że taką samą elipsę zatacza planeta pod wpływem siły skierowanej ku ognisku elipsy S oraz pod wpływem siły skierowanej ku środkowi elipsy C. Przyjmujemy, że moment pędu planety jest w obu przypadkach taki sam. Wobec tego

\dfrac{F_S}{F_C}=\dfrac{r_C^2 \sin^3\varepsilon_C}{r_S^2 \sin^3\varepsilon_S}.

Odcinek EC jest równoległy do wektora prędkości. Stosując twierdzenie sinusów do trójkąta ECP , mamy:

\dfrac{\sin\varepsilon_C}{\sin\varepsilon_S}=\dfrac{EP}{r_C}.

Ostatnim potrzebnym elementem jest tzw. lemat Newtona: odległość EP=A, tzn. dużej półosi elipsy. Jest to własność elipsy, którą udowadniamy poniżej. Wobec tego siła grawitacji równa jest

F_S=\dfrac{F_C}{r_C}\dfrac{A^3}{r_S^2}=\omega^2 \cdot \dfrac{ A^3}{r_S^2}\sim \dfrac{1}{r_S^2}.

Otrzymaliśmy więc z elipsy Hooke’a elipsę keplerowską oraz z prawa Hooke’a prawo grawitacji. Oba te rodzaje ruchu okazują się matematycznie powiązane. Można pokazać, że tylko te dwa rodzaje sił prowadzą do torów zamkniętych, których peryhelia się nie obracają.

Lemat Newtona

Odcinek S'F jest równoległy do EC oraz \vec{v}. Trójkąt FPS' jest równoramienny, ponieważ promień światła wysłany z S i odbijający się w punkcie P przejdzie przez S'. Mamy zatem FP=PS'. Odcinki EC oraz S'F są równoległe i przepoławiają odcinek SS', a więc także i odcinek SF. Zatem SE=EF. Mamy więc

EP=EF+FP=\frac{1}{2}SF+\frac{1}{2}(FP+PS')=\dfrac{SP+PS'}{2}=A.

W ostatniej równości skorzystaliśmy z faktu, że suma odległości punktu elipsy od obu ognisk jest stała.

 

 

 

 

Tory planet i komet: wielkie odkrycie Isaaca Newtona

Johannes Kepler w roku 1609 ogłosił odkrycie, że planety poruszają się wokół Słońca po elipsach, a Słońce jest wspólnym ogniskiem tym wszystkich elips (I prawo Keplera). Nie bardzo mu wówczas chciano wierzyć, wprowadził bowiem nowe rodzaje sił, jedna miała ciągnąć planetę wokół Słońca, a druga, magnetyczna, miała na przemian, to przyciągać ją, to odpychać. Prędkość planety miała zależeć od jej odległości od Słońca: bliżej niego planeta poruszała się szybciej i na odwrót, kiedy była dalej, poruszała się wolniej (II prawo Keplera).

Z czasem astronomowie stwierdzili, że opisane przez Keplera prawa dobrze odzwierciedlają zjawiska na niebie: dokładność tablic wzrosła wielokrotnie. W 1687 roku ukazały się Matematyczne zasady filozofii przyrody, w których Isaac Newton wyjaśnił ruchy planet i szereg innych zjawisk, jak przypływy i odpływy mórz albo precesję ziemskiej osi obrotu za pomocą jednej jedynej siły: grawitacji. Wszystkie ciała we wszechświecie miały się przyciągać siłami odwrotnie proporcjonalnymi do ich odległości i proporcjonalnymi do mas. Jedno proste matematycznie prawo pozwalało zrozumieć dynamikę układu planetarnego. Problem postawiony jeszcze przez starożytnych Greków i Babilończyków został w ten sposób rozwiązany. Najważniejszą częścią tego rozwiązania było udowodnienie, że z prawa grawitacji wynikają Keplerowskie elipsy. Poniżej pokażemy współczesne sformułowanie tego rozwiązania.

Wyobraźmy sobie planetę P poruszającą się wokół nieruchomego Słońca (nie jest trudno pójść o krok dalej i uwzględnić także ruch Słońca).

Każda z orbit ma punkt najbliższy Słońca: perihelium P_0. Wybierzmy oś Ox tak, żeby przechodziła ona przez perihelium i następnie poruszała się w kierunku P. Równanie ruchu planety zgodnie z II zasadą dynamiki oraz prawem powszechnego ciążenia ma postać:

\dfrac{d\vec{v}}{dt}=-\dfrac{k}{r^2}\vec{e}_r.

Wektory \vec{e}_r, \vec{e}_\varphi mają odpowiednio kierunek promienia i kierunek do niego prostopadły (transwersalny) oraz długość jednostkową, k=GM jest iloczynem stałej grawitacyjnej i masy Słońca (masa planety nie wchodzi do zagadnienia). Znak minus pochodzi stąd, że grawitacja jest siłą przyciągającą.

W ruchu planety nie zmienia się wielkość jej momentu pędu (przyjmujemy tu masę planety równą 1):

L=rv_{\varphi}=r^2 \omega=const.

Jest to współczesne sformułowanie II prawa Keplera. Wchodzi do niego składowa \vec{v}_\varphi prędkości prostopadła do promienia. W ostatniej równości użyliśmy prędkości kątowej \omega=v_\varphi/r. Więcej szczegółów dotyczących tego wyrażenia można znaleźć niżej (*).

Pokażemy, że torem planety musi być krzywa stożkowa ze Słońcem w ognisku. W tym celu udowodnimy, że odległość planety od Słońca spełnia równanie stożkowej:

r=\dfrac{p}{1+e\cos\varphi},

gdzie p, e zwane są odpowiednio parametrem i mimośrodem stożkowej, a kąt \varphi jest kątem z osią Ox na rysunku. Wyprowadzenie tego równania można znaleźć poniżej (**).

Zakładamy, że moment pędu jest różny od zera: znaczy to, iż planeta nie porusza się po prostej przechodzącej przez Słońce. Oczywiście takie tory są matematycznie i fizycznie dopuszczalne, eliminujemy je jednak z dalszych rozważań.

Równanie ruchu planety można uprościć, jeśli zamiast czasu wprowadzić do niego kąt \varphi. Wyznaczając prędkość kątową z zasady zachowania momentu pędu, otrzymujemy

\omega=\dfrac{d\varphi}{dt}=\dfrac{L}{r^2}.

W obu równaniach występuje r^2 w mianowniku, wobec tego, dzieląc je stronami i korzystając ze wzorów na pochodną funkcji złożonej i odwrotnej, możemy się tej zależności pozbyć:

\dfrac{d\vec{v}}{d\varphi}=\dfrac{d\vec{v}}{dt}\cdot \dfrac{dt}{d\varphi}=-\dfrac{k}{L}\vec{e}_r.

Równanie wektorowe to para równań dla składowych wektora prędkości:

\left\{ \begin{array}{l} \dfrac{dv_x}{d\varphi}=-\dfrac{k}{L}\cos\varphi \\  \mbox{}\\  \dfrac{dv_y}{d\varphi}=-\dfrac{k}{L}\sin\varphi.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  v_x=-\dfrac{k}{L}\sin\varphi+A_x \\  \mbox{}\\  v_y=\dfrac{k}{L}\cos\varphi+A_y.  \end{array}\right.

Ostatnią parę równań możemy zapisać w postaci wektorowej

\vec{v}=\dfrac{k}{L}\vec{e}_\varphi+\vec{A}.

Wynik ma prostą interpretację geometryczną: pierwszy wektor po prawej stronie zakreśla okrąg o promieniu k/L, a promień wodzący tego okręgu tworzy z osią Ox kąt równy 90^{\circ}+\varphi, obracając się razem z promieniem wodzącym planety. W zależności od długości wektora \vec{A} możliwe są następujące cztery sytuacje:

Punkt P_0 odpowiada kątowi \varphi=0, wektor prędkości jest wtedy równoległy do osi Oy (w chwili gdy odległość osiąga minimum, składowa x prędkości musi znikać). Oznacza to, że A_x=0. W każdym przypadku koniec wektora prędkości zakreśla okrąg albo jego łuk. Krzywą taką nazywa się hodografem. Zatem hodograf ruchu keplerowskiego jest łukiem okręgu (w trzecim przypadku to okrąg bez dolnego punktu, w czwartym dozwolone są tylko te wartości \varphi, dla których wektor \vec{v} ma z okręgiem dwa punkty wspólne; pewien zakres kątów jest niedozwolony, ruch zachodzi tu po gałęzi hiperboli i ograniczony jest jej asymptotami.) Kształt hodografu ruchu keplerowskiego odkrył William Rowan Hamilton w XIX wieku i opublikował w pracy zawierającej wyłącznie słowny opis, bez żadnego rysunku i bez wzorów. Brytyjczycy (Hamilton był Irlandczykiem) po Newtonie specjalizowali się w takiej matematyce bez rachunków, co nie zawsze da się z sensem przeprowadzić. Nieco mniej formalne podejście do hodografu tego ruchu.

albo tutaj

Równanie hodografu daje nam prędkości, łatwo z nich przejść do równania toru. Wystarczy znaleźć składową v_\varphi prędkości. Otrzymamy ją przez rzutowanie wektora prędkości na kierunek promienia okręgu zaznaczonego na rysunkach. Otrzymujemy z nich

v_\varphi=\dfrac{k}{L}+A\cos\varphi \quad\Rightarrow\quad r=\dfrac{L}{k/L+A\cos\varphi}=\dfrac{\frac{L^2}{k}}{1+\frac{LA}{k}\cos\varphi}.

Ostatnie równanie jest biegunowym równaniem stożkowej o mimośrodzie e=\frac{LA}{k}, odległości liczone są od ogniska owej stożkowej. Otrzymaliśmy uogólnioną wersję I prawa Keplera.

Na rysunku oba tory: w przestrzeni prędkości oraz w przestrzeni położeń, czyli w zwykłej przestrzeni. A to paraboliczna orbita komety z roku 1680 wyznaczona przez Newtona (obliczenia robił Edmond Halley).

(*) Prędkość kątowa to

\omega=\dfrac{\Delta \varphi}{\Delta t}=\dfrac{v_\varphi \Delta t}{r \Delta t}=\dfrac{v_\varphi }{r }.

Zastępujemy tu dla małych kątów tangens wartością kąta w radianach.

(**) Stożkową definiuje się zadając pewien punkt, zwany ogniskiem oraz prostą, zwaną kierownicą (na rysunku czerwone) oraz wartość mimośrodu e.

Stożkową będzie zbiór takich punktów P, że ich odległość od ogniska jest e razy większa od ich odległości od kierownicy:

OP=ePP'.

Łatwo stąd znaleźć równanie stożkowej. Mamy bowiem

r\cos\varphi+PP'=QQ' \Rightarrow  r\cos\varphi+\dfrac{r}{e}=\dfrac{p}{e}.

Mnożąc ostatnie równanie obustronnie przez e i wyznaczając z niego r, otrzymujemy

r=\dfrac{p}{1+e\cos\varphi}.

Jak Ptolemeusz nie odkrył prawa Snella

Klaudiusz Ptolemeusz był astronomem i astrologiem, wierzył zapewne w boskość ciał niebieskich i studiowanie ich ruchów traktował jako udział w pewnym misterium. Bo też zrozumienie każdej, nawet drobnej tajemnicy świata ma w sobie coś z misterium i z obrzędu wtajemniczenia. Nie trzeba do tego mieszać ludzi w szatach rytualnych, profesjonalistów, którzy zazwyczaj niczego nie rozumieją. Nie potrzeba pleść o Bogu, o którym wszyscy wiemy bardzo niewiele.

Wyjaśnienie ruchu planet musiało Ptolemeuszowi przynieść wielką satysfakcję: dokończył dzieła wielu pokoleń. My dzisiaj patrzymy na jego teorię jak na wstęp do Kopernika i Keplera, lecz przez czternaście wieków uważano ją za niedościgniony wzór. Geocentryzm nikomu właściwie nie przeszkadzał, był oczywisty, tak jak my uważamy za oczywistość, że Ziemia się porusza, choć nie każdy potrafiłby wskazać doświadczalne dowody tego faktu. Ptolemeusz zresztą doskonale sobie zdawał sprawę z możliwości ruchu Ziemi, odrzucał ją przedstawiając pewne argumenty, a więc nie z braku wyobraźni.

Był zawodowym uczonym, zajmował się całością nauk matematycznych, a więc także geografią i skalami muzycznymi oraz optyką. Pierwszy opisał ilościowo i doświadczalnie zbadał zjawisko załamania światła. Używał do tego następującego przyrządu.

ptolemy_refraction

Światło biegnie po łamanej ZEH, DEB jest linią rozdziału dwóch ośrodków, np. na dole mamy wodę albo szkło (w kształcie połowy walca), a u góry powietrze. Koło zaopatrzone jest w podziałkę w stopniach. Uczony mierzył kąty padania i oraz załamania r. Oto jego wyniki dla granicy powietrze-woda.

 

i r
10 8
20 15,5
30 22,5
40 29
50 35
60 40,5
70 45,5
80 50

Jest to rzadki przypadek starożytnej pracy eksperymentalnej poza astronomią. Optyka była przedłużeniem astronomii, więc dość naturalne było zainteresowanie zjawiskami świetlnymi. Tabelka Ptolemeusza nie jest jednak do końca wynikiem doświadczalnym, zauważymy to, analizując dokładniej wartości kątów załamania i ich różnice.

i r pierwsze różnice drugie różnice
10 8 8
20 15,5 7,5 -0,5
30 22,5 7 -0,5
40 29 6,5 -0,5
50 35 6 -0,5
60 40,5 5,5 -0,5
70 45,5 5 -0,5
80 50 4,5 -0,5

Uczony najwyraźniej „poprawiał” surowe dane eksperymentalne, być może nawet nie wykonał wszystkich pomiarów, zachował się jak niesumienny student podczas zajęć laboratoryjnych: i tak przecież wiadomo, co ma wyjść. Nie należy z tego powodu wszczynać larum, że przyłapaliśmy Ptolemeusza na oszustwie: w jego czasach i jeszcze bardzo długo potem starano się raczej uzyskać pewną formułę, jakiś rodzaj matematycznego zrozumienia zamiast relacjonować listę wyników obarczonych błędami. Teoria i eksperyment spotykały się w nieco innym miejscu niż dziś. Ptolemeusz zapewne chciał po inżyniersku rozumieć, skąd się biorą liczby w jego tabelce. Funkcja liniowa tu nie pasuje, bo wówczas różnice byłyby stałe. Jeśli drugie różnice (czyli różnice kolejnych różnic) są stałe, to znaczy, że opisujemy obserwowaną zależność funkcją kwadratową (*). Jej wykresem będzie parabola.

woda

Czerwone kropki są prawidłowymi wynikami dla kątów załamania w wodzie. Błędy nie są wielkie, choć znacznie przewyższają niedokładności tolerowane wówczas w astronomii. Podobne dane przedstawia Ptolemeusz dla szkła, także i one są dopasowane do paraboli.

szklo

W istocie Ptolemeusz stracił okazję do odkrycia prawa bardziej zadowalającego pod względem matematycznym. Podał on bowiem także wyniki dla załamania z wody do szkła. Także i tym razem dopasował je do funkcji kwadratowej, choć z pewnymi anomaliami. Nie zauważył jednak, że skoro ma dane dla granic ośrodków powietrze-woda oraz szkło-woda, to kąty dla załamania z wody do szkła powinny już wynikać z poprzednich danych. Wystarczy bowiem wyobrazić sobie następującą sekwencję ośrodków: woda-powietrze-szkło. Dla obu granic znamy zależności miedzy kątami po obu stronach (Ptolemeusz wiedział, że kierunek biegu promieni nie ma znaczenia w załamaniu, wyobrażał sobie zresztą nie promienie świetlne, lecz promienie wzrokowe, które wybiegają z oka). Możemy sobie następnie wyobrazić, że warstwa powietrza staje się coraz cieńsza: kąty w wodzie i w szkle cały czas są takie same, logicznie jest więc przypuścić, że pierwsze dwie zależności dają nam tę trzecią (woda-szkło). Ptolemeusz nie poszedł tą drogą i chyba nie zauważył, że przybliżenie kwadratowe jest nie do utrzymania dla trzeciej pary ośrodków. W gruncie rzeczy prawo Snella, choć takie proste, wymaga spojrzenia na zjawisko załamania w odpowiedni sposób, mieści w sobie od razu pewną teorię. Nie miejmy za złe Ptolemeuszowi w II w.n.e., że nie poradził sobie z problemem, który jeszcze na początku wieku XVII okazał się za trudny dla samego Johannesa Keplera. Ostatecznie prawo załamania odkrył Ibn Sahl, żyjący w X wieku, kiedy nasi przodkowie kryli się po lasach, a w XVII wieku niezależnie od siebie Thomas Harriot, Willebrord Snell i René Descartes. Tylko ten trzeci opublikował to prawo, a także jego mechaniczne uzasadnienie, zresztą fałszywe.

(*) Łatwo zauważyć, że różnice dla funkcji kwadratowej są liniową funkcją argumentu. W przypadku biegu promieni z powietrza do wody Ptolemeusz stosuje (niejawnie) funkcję

r=\dfrac{33}{40}i-\dfrac{1}{400}i^2.

Funkcja odwrotna nie jest już kwadratowa (musimy rozwiązać ostatnią równość względem i). Zatem złożenie tej funkcji odwrotnej z funkcją kwadratową nie może nam dać funkcji kwadratowej dla trzeciej pary ośrodków.

Dane Ptolemeusza

 

Jak Johannes Kepler odkrył eliptyczny kształt orbity Marsa? (1605)

Kepler był pierwszym liczącym się naukowo zwolennikiem teorii heliocentrycznej. Otaczał wielką czcią postać Mikołaja Kopernika, ale astronomię zbudował właściwie na nowo. Zawiłą drogę do odkrycia tego, co dziś nazywamy dwoma pierwszymi prawami Keplera, opisał w legendarnie trudnej książce Astronomia nova. Dotyczyła ona głównie ruchu Marsa, częściowo także Ziemi. Uczony miał do dyspozycji wieloletnie precyzyjne obserwacje Tychona Brahego. Na ich podstawie zbudował teorię, która dorównywała im dokładnością, był to największy krok od czasów starożytnych Greków. Bez tak precyzyjnej teorii trudno sobie wyobrazić odkrycie prawa ciążenia przez Isaaca Newtona. Sam Newton sądził, iż Kepler wiedział, że orbity planet są owalne, a odgadł, że są one eliptyczne. W jakimś stopniu miał rację: nawet obserwacje Tychona, najlepsze, jakie kiedykolwiek zgromadzono, były zbyt mało dokładne, aby precyzyjnie wyznaczyć kształt orbity szukając jej punkt po punkcie. Odkrycie było więc wynikiem konfrontowania rozważań teoretycznych i obserwacji.
W praktyce dzięki pomysłowym metodom postępowania Kepler potrafił z dużą dokładnością wyznaczyć kierunek Słońce-Mars w zależności od czasu oraz z mniejszą dokładnością odległości planety od Słońca w różnych chwilach. Jego zdaniem Mars poruszany jest przez jakąś siłę emanującą ze Słońca. A właściwie wyobrażał sobie nawet dwie takie siły, pamiętajmy, że mechanika była wciąż na etapie arystotelesowskim: siła ciągnie albo popycha – ciało się porusza, siła przestaje działać – ciało staje. Była to dynamika przesuwanej szafy. Mimo to lepsza była taka dynamika niż żadna. Przed Keplerem, a i po nim, wyobrażano sobie ruchy planet jako coś całkowicie odmiennego od mechaniki ziemskich przedmiotów. Dla Kopernika Słońce było centralną latarnią w świecie, a nie źródłem siły.
Kepler przyjął, że ruch Marsa wokół Słońca zachodzi po krzywej zamkniętej. Najprościej było przyjąć, że jest nią okrąg o umownym promieniu równym 1. Musimy jednak wtedy Słońce odsunąć od środka okręgu o pewną wielkość znaną z obserwacji, tzw. mimośród orbity. W przypadku Marsa \mbox{AS}=e \approx 1/11.

mars 1 area law

Wiadomo też z obserwacji, że planeta porusza się szybciej, gdy jest bliżej Słońca. Z takim ruchem niejednostajnym Kepler zmierzył się jako pierwszy. Intuicyjnie wydawało mu się to zrozumiałe, że z mniejszej odległości Słońce oddziałuje silniej, a więc porusza szybciej naszą planetą (Wyobrażał sobie, że Słońce wiruje wokół osi i niejako zagarnia planety swoim polem siłowym, toteż ucieszył się, kiedy odkryto wirowanie Słońca wokół osi). Uprościmy rozważania na ten temat, zakładając tzw. prawo pól, czyli dziś II prawo Keplera. W trakcie swej wojny z Marsem (jak sam ją określał w alegorycznym duchu epoki) astronom stosował także różne inne przybliżenia, które dla uproszczenia pominiemy. Prawo pól mówi, że pole powierzchni zakreślonej przez promień wodzący Marsa, czyli np. powierzchni SCM jest proporcjonalne do czasu. Np. pole wycinka SM’C jest mniej więcej równe polu BAC, czyli ćwiartce koła. Znaczy to, że Mars znajdzie się w tym położeniu po jednej czwartej obiegu. Po połowie obiegu znajdzie się oczywiście w punkcie najbliższym Słońca (peryhelium).
Na przebycie łuku orbity CM planeta potrzebuje czasu t, który spełnia następującą proporcję

\dfrac{t}{T}=\dfrac{\mbox{pole MAC}+\mbox{pole SAM}}{\pi}\Rightarrow t=\beta+e\sin\beta.

Przyjęliśmy umownie, że okres obiegu Marsa T=2\pi. Jest to tzw. równanie Keplera. Kąt \beta nazywa się anomalią mimośrodową. Nie jest to wprawdzie ten kąt, który może wprost zainteresować astronoma i który można wyznaczyć z obserwacji (choć nie wprost – trudno umieścić się na Słońcu!). Istotnym obserwacyjnie kątem jest MSC, tzw. anomalia prawdziwa. Z rysunku widać, że anomalię tę można wyznaczyć w sposób trygonometryczny. Mając \beta, możemy więc znaleźć czas i położenie planety. Równanie Keplera jest przestępne, nie można podać prostego wyrażenia na funkcję \beta(t), był to jeden z kłopotów Keplera, a potem wszystkich następnych astronomów, gdyż równanie Keplera obowiązuje także dla orbity eliptycznej. Od teraz będziemy zakładać prawo pól dla każdego kształtu orbity. Kiedy zastosuje się je do Marsa, anomalie prawdziwe (czyli kąty widziane ze Słońca) różnią się od obserwowanych mniej więcej tak:

mars circular errors

(rysunek wg pracy H. Martynki)

Różnice nie są wielkie, lecz w miarę wyraźne. Kepler znał tylko kilka punktów tej krzywej, nie miał do dyspozycji żadnych narzędzi obliczeniowych, nawet logarytmy były nieznane, każde mnożenie, dzielenie itd. trzeba było mozolnie wykonywać krok po kroku. Obserwacje Tychona pozwalały na błędy rzędu jednej albo dwóch minut kątowych (bez użycia teleskopu nie da się zresztą rozróżnić mniejszych kątów, patrz George Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop? Nasze oko ograniczone jest średnicą źrenicy, a także gęstością komórek światłoczułych na siatkówce). Kepler sprawdził także, że orbita Marsa powinna być odrobinę spłaszczona. Rzecz jednak w tym, że nie szukał jedynie odpowiedniej krzywej, ale chciał także, żeby jej kształt wynikał jakoś z mechaniki. Wpadł na pomysł dość dziwaczny dla nas, ale uzasadniony tradycją astronomii: na dużym kole (deferencie) obraca się małe koło (epicykl). Można taką konstrukcją zastąpić okrąg rozważany wyżej.

mars2 ekscent

Odcinek CM jest stale równoległy do SA. Można albo sobie wyobrażać ruch po czerwonym okręgu albo po dwóch czarnych, wynik będzie ten sam. Nowy pomysł Keplera polegał na tym, aby epicykl nadal obracał się jednostajnie, ale ruch planety miał być niejednostajny: w rezultacie kąt NXM będzie większy niż kąt NSC i wypadkowa krzywa stanie się spłaszczonym nieco owalem. Jednostajny obrót epicykla uważał Kepler za możliwy fizycznie (wymagało to jakiejś dodatkowej siły wywołującej ten obrót, ale tak czy owak potrzebował dwóch różnych sił: jednej wywołującej krążenie wokół Słońca oraz drugiej na przemian zbliżającej i oddalającej planetę od Słońca).

mars oval

Owal też nie spełnił zadania. Kepler miał kłopoty z obliczeniem jego kształtu, choć zadanie nie jest szczególnie trudne, gdy zastosować trygonometrię w zapisie algebraicznym albo prosty rachunek całkowy – narzędzia te nie były mu dostępne, bo ich jeszcze nie było. Błędy w anomaliach prawdziwych okazały się teraz równie duże co poprzednio, miały jednak inne znaki.

mars errors oval

(rysunek wg pracy H. Martynki)

Wskazywało to na zbytnie spłaszczenie owalu w stosunku do rzeczywistości. Owal miał rzeczywiście kształt jajka (ovum), choć w praktyce jajo to nie różniło się wiele od elipsy i w jakimś momencie Kepler zaczął je przybliżać elipsą. Nie zauważył, że prawo pól zastosowane do różnych elips oznacza, że planety tak się poruszające znajdują się w każdej chwili na jednej linii prostopadłej do osi NMM’. Zatem jeśli błękitna elipsa daje położenie M’, a okrąg położenie N i oba są z przeciwnym błędem, to rozwiązaniem powinna być elipsa pośrednia między tymi dwiema (okrąg to też elipsa).

mars 3 ellipses

W każdym z tych przypadków słuszne jest równanie Keplera, które wypisaliśmy wyżej. Kepler szukał jednak wyjaśnienia fizycznego: owal miał jakieś uzasadnienie, inna elipsa nie bardzo. Bez epicykla i bez okręgu znalazł się w kropce. Wrócił do odległości. Owal był nieco węższy w kierunku prostopadłym do osi (linia łącząca położenie najbliższe i najdalsze od Słońca, u nas pozioma). Między okręgiem a owalem zostawał cienki sierp, lunula – jak go określił.

mars lunulae1

Astronom wiedział, że prawdziwy tor planety mieści się gdzieś pośrodku. Obserwowane odległości nie przesądzały jednak gdzie dokładnie. Wczesną wiosną 1605 roku zauważył dość szczególne prawo, które pasowało do obserwacji i tego, co wiedział.

mars click

Najpierw przyjrzyjmy się niebieskiemu trójkątowi SKA. Kepler wiedział, że kąt na rysunku równy jest dla Marsa \varphi=5^{\circ} 18'. Przy takim kącie SK=1,00429, a więc do jedynki dodana jest mniej więcej połowa szerokości lunuli. Tymczasem odległość SM powinna być równa wówczas 1. Czyli tam, gdzie orbita jest najwęższa, od okręgu należałoby ująć mniej więcej 0,00429. Prawo, które zaproponował, przedstawione jest na rysunku. Zamiast odległości SN należało w każdym punkcie wziąć odległość ND – była to więc reguła, o ile należy skrócić promień w stosunku do promienia wodzącego SN (N leży na okręgu). Zapisane trygonometrycznie prawo to ma rzeczywiście prostą postać

r=1+e\sin\beta.

Można było mieć nadzieję, że tak proste prawo wynika jakoś z mechaniki. Miało ono zastąpić ów nieszczęsny epicykl, który sprawił mu mnóstwo zachodu. Brakowało jeszcze ustalenia, w którym kierunku należy odłożyć ową odległość r. W końcu zauważył, że prawidłowy rysunek wygląda następująco.

mars kepler ellipse

Można wykazać, że odkładając odległość DN jako SM (obie zaznaczone są na niebiesko), otrzymujemy punkt M leżący na elipsie. Spośród wszystkich elips, które mają taką samą długość dużej półosi, wybieramy dzięki tej konstrukcji taką, że Słońce znajduje się w jej ognisku (sam astronom nie zauważył tego w pierwszej chwili). Nie jest to oczywisty sposób na skonstruowanie elipsy, ale jest on prawidłowy. Zapisane przez nas równania oraz łatwy do wyznaczenia z rysunku kąt anomalii prawdziwej dają nam równania ruchu planety w postaci parametrycznej, gdzie \beta jest parametrem. Zauważmy, że linia AN nie celuje ku planecie, lecz ku pewnemu punktowi na pomocniczym okręgu. Konstrukcja jest dość zawiła, ale nie da się tego zrobić dużo prościej, to ruchy planet są skomplikowane.
W rzeczywistości orbity Marsa rozpatrywane przez Keplera bardzo mało się od siebie różnią. Na rysunku przedstawiłem przypadek e=0,4, mimośrody planet nie są tak duże. Widzimy, dlaczego starożytne teorie oparte na okręgach działały tak dobrze.

mars e equal04

(rysunek wg pracy H. Martynki)

A tak poprawiła się dokładność przewidywań w teorii Keplera w porównaniu z efemerydami przed nim.

marspos

Dane O. Gingericha

Dla porządku zapiszę jeszcze wzory dla anomalii prawdziwej v, czyli kąta MSC na rysunku wyżej. Rzutując SM na prostą SC, otrzymujemy:

r\cos v=e+\cos\beta.

Rzutując SM na prostą NM, otrzymujemy:

r\sin v=\sqrt{1-e^2}\sin\beta,

gdzie \sqrt{1-e^2} jest stosunkiem długości małej osi elipsy do dużej. Łatwo stąd otrzymać także biegunowe równanie elipsy, lepiej znane niż wzór Keplera na r. Mnożąc obie strony wzoru z \cos v przez e oraz dodając do obu stron 1, mamy:

1+er\cos v=e^2+(1+e\cos\beta)=e^2+r.

Wyznaczając r, dostajemy równanie elipsy

r=\dfrac{1-e^2}{1-e\cos v}.

W podręcznikach cosinusy mają inne znaki, ponieważ my trzymamy się historycznego sposobu liczenia kątów od aphelium, a obecnie liczy się od perihelium: \cos(\pi-\alpha)=-\cos\alpha. Owal Keplera ma równanie

r=\dfrac{1-e^2}{\sqrt{1-2e\cos v+e^2}}.

Czy ogon macha psem? – o pewnym argumencie na rzecz heliocentryzmu

W listopadzie 1948 roku Albert Einstein napisał w liście do starego przyjaciela:

U nas, jak dotąd, wszystko dobrze. Także moja siostra nie cierpi, choć obiektywnie jej stan pogarsza się w sposób widoczny. Czytam jej co wieczór – dziś np. dziwne argumenty wysuwane przez Ptolemeusza przeciwko poglądowi Arystarcha, że Ziemia się obraca, a nawet obiega Słońce. Nie mogę się oprzeć skojarzeniu z niektórymi argumentami współczesnych fizyków: uczone i wyszukane, ale bez wyczucia. Ocena wagi argumentów w roztrząsaniach teoretycznych to zawsze kwestia intuicji.

Maja Einstein cierpiała po udarze i powoli gasła, była jednak sprawna umysłowo, toteż brat czytał jej wieczorami rozmaite książki, przeważnie klasyczne (Maja miała doktorat z filologii romańskiej). W sprawie mechaniki kwantowej Albert Einstein zapewne się mylił, miał jednak rację, że póki dane rozwiązanie naukowe dopiero się kształtuje, jest in statu nascendi, dopóty nie ma prostego sposobu ustalenia, jakie argumenty są trafne, a jakie nie, trzeba zawierzyć intuicji.

Dyskusja na temat tez kopernikańskich była długa i zażarta. Spojrzymy tu tylko na jeden argument, który sam nie miał jakiejś ogromnej wagi i niczego nie przesądził, ale wiązał się wyraźnie z wyobrażeniem wszechświata. Według Kopernika porusza się niewielka Ziemia, a nie ogromne niebo. W szczególności to owa niewielka Ziemia krąży wokół znacznie większego Słońca, a nie na odwrót.

Johannes Kepler pisał (Astronomia nova, 1609, Introductio): „Popatrzmy tedy na ciała Ziemi i Słońca i zdecydujmy, któremu z nich bardziej przystoi być źródłem ruchu tego drugiego. Czy to Słońce, które porusza także pozostałe planety, porusza Ziemią, czy też Ziemia – Słońcem, poruszającym owe pozostałe [planety] i tylekroć od niej większym?” Myślał tu o układzie Tychona Brahego, w myśl którego wszystkie planety prócz Ziemi krążą wokół Słońca. Dla Keplera było to nieprawdopodobne, gdyż uważał, że to Słońce jest źródłem siły poruszającej planetami, z jego punktu widzenia układ Tychona nie miał uzasadnienia dynamicznego, bo ruchem Słońca wokół Ziemi rządziłoby wówczas jakieś inne i odrębne prawo. Ponadto Słońce jest znacznie większe od Ziemi. Mamy więc ogon machający psem.

cyrano

Co wiedziano na temat rozmiarów Słońca i Ziemi? Astronomowie mieli zwyczaj używania kąta, tzw. paralaksy (dziennej). Paralaksa Słońca to kąt, pod jakim ze Słońca widać byłoby promień Ziemi. Oczywiście, niełatwo taki kąt znaleźć. Od starożytności wierzono, iż kąt ten wynosi 3′, Kepler przypuszczał, że równy on jest 1′, pod koniec wieku XVII znano już w przybliżeniu prawidłową wielkość: p\approx 9''. Z trójkąta prostokątnego na rysunku łatwo wyznaczyć odległość Słońca w jednostkach promienia Ziemi. Ten sam rysunek moglibyśmy zastosować, zamieniając miejscami Słońce i Ziemię: otrzymalibyśmy wówczas kątowy promień tarczy słonecznej widzianej z Ziemi \theta. W takim razie stosunek promienia Słońca R_S do promienia Ziemi R_Z równy jest

\dfrac{R_S}{R_Z}=\dfrac{\sin\theta}{\sin p}\approx \dfrac{\theta}{p}\approx \dfrac{16'}{p}.

(Sinusy małych kątów możemy zamienić wielkościami samych kątów.) Ptolemeusz sądził więc, że Słońce jest 5 razy większe od Ziemi, Kepler – że jest 15 razy większe, a naprawdę jest ono przeszło sto razy większe.

Digges_Leonard_1596_A_prognostication_everlastinge_of_right_good_effect_Page_15(1)

Leonard Digges, Prognostication Everlasting, 1596

Co odpowiadano na taki argument? Uczony jezuita Giovanni Riccioli w swoim niezwykle obszernym i kompetentnym dziele Almagestum novum (1651) nie miał innego wyjścia niż zwalczać Kopernika, gdyż tak postanowił Kościół Święty, a przynajmniej ówczesny papież, w sprawie Galileusza. Na argument, iż łatwiej i mniejszym kosztem byłoby Bogu i Naturze poruszać niewielką Ziemią zamiast ogromnym niebem, Riccioli stwierdza, że po pierwsze wysiłek nie jest tu aż tak wielki, ponieważ we wszechświecie ruch nie napotyka żadnego oporu, a po drugie Bóg oraz Inteligencje łatwo by sobie poradziły, nawet gdyby jakieś opory występowały.

Huygens_Christiaan_1698_The_celestial_worlds_discoverd_Page_15

Christiaan Huygens, Cosmotheoros, wyd. ang., 1698 (wartość paralaksy Słońca jest już mniej więcej znana)

Popularną wersję odpowiedzi znajdziemy u Besiana Arroya, dokora Sorbony i teologa miasta Lyonu, który w 1671 roku napisał książeczkę Le Prince Instruit (Władca oświecony), zadedykowaną samemu królowi, w której oświeca przyszłych polityków. Otóż Ziemia tkwi nieruchomo w środku, ponieważ jest ciężka. Zgodnie z fizyką Arystotelesa, gdyby nawet się poruszyła, to tylko ruchem prostoliniowym, bo ciężkie ciała spadają ku centrum świata. Gwiazdy zaś (tzn. wszelkie ciała niebieskie) „wedle swej naturalnej dyspozycji są lekkie, okrągłe i ustanowione, aby oświetlać Ziemię, toteż muszą się poruszać zgodnie ze swą naturalną skłonnością i dążnością, jaką dał im Wszechmocny”. Śmiechu warty jest Kopernik, w jego systemie jest tak, jakbyśmy przenosili komnaty, stoły i całe domostwa w pobliże pochodni, by je oświetlić, zamiast wnieść pochodnię do środka. Zwolennicy filozofii Arystotelesa nie wierzyli w jedność materii: dla nich ciała niebieskie były z eteru, nie miały więc bezwładności i stosunkowo nietrudno było nimi poruszyć. Inaczej to wyglądało dla tych, którzy jak Kepler i Galileusz, szukali jednolitych praw i jednolitej materii w całym wszechświecie.

Chrześcijanie tradycyjni wierzyli także, że cały świat stworzony został dla człowieka, jego rozmiary świadczyły o potędze Boga. Sceptycy widzieli to nieco inaczej. Cyrano de Bergerac pisał: „Dorzuć pan do tego nieznośną a właściwą ludziom pychę, która wmówiła im, że Naturę dla nich jedynie stworzono, jak gdyby ktoś mógł dać wiarę, że Słońce, olbrzymie ciało 434 razy większe od Ziemi [chodzi o objętość – J.K.], zapalono tylko z tej racji, aby dojrzewała ich nieszpułki i aby obradzała kapusta” (Tamten świat, przeł. J. Rogoziński). Bernard Le Bovier de Fontenelle dopowiadał: „Do owego szalonego Ateńczyka niejako podobni jesteśmy, który sobie uroił, że wszystkie okręty do portu Pirejskiego przybijające do niego należały. Nasze szaleństwo w tym się wydaje, iż mniemamy, że cały świat dla naszych szczególnie stworzony został wygód, i gdy się pytamy filozofów, na co się przyda tak wiele gwiazd stałych, których jedna część też by czyniła skutki, które wszystkie razem czynią, odpowiadają ozięble, iż do ukontentowania oczu ich służą” (przeł. E. Dębicki, przekład uwspółcześniony. za: W. Voisé, Historia kopernikanizmu w dwunastu szkicach). Książkę Fontenelle’a przełożył na polski ksiądz pijar Eustachy Dębicki w 1765 roku, a więc osiemdziesiąt lat po jej napisaniu. W 1687 roku kwestię, co krąży wokół czego rozstrzygnął Isaac Newton. Stwierdził z pewną satysfakcją, że nikt dotąd nie miał racji, gdyż planety i Słońce krążą wokół wspólnego środka masy, więc ściśle biorąc także Słońce nie jest nieruchome.

W połowie wieku XVIII do przeszłości należały nie tylko fizyka Arystotelesa i boje o kopernikanizm, ale zdążył zapanować i upaść także kartezjanizm, i to nawet we Francji, gdzie był najmocniejszy. Nikt poważnie już nie wątpił w mechanikę Newtona. Rewolucja naukowa XVII wieku dopiero teraz zaczęła docierać także do Polski. Ksiądz Jędrzej Kitowicz, nie do końca świadomie, daje świadectwo potwornego zacofania, z jakiego zaczęto się wówczas wydobywać:

W akademiach zaś publicznych, czyli generalnych, jako to krakowskiej, zamojskiej i wileńskiej, prócz nauk dopiero wyliczonych były nadto: nauka matematyki wszelkiego rodzaju, astrologii, geografii, geometrii, kosmografii, do tego: jurisprudencji, medycyny, i zwały się te akademie universitates. Co się tycze ogółem filozofii – tej patriarchów nie było więcej jak dwóch: Arystoteles i św. Tomasz, ponieważ na wszystkich dysputach nie tłomaczyli się inaczej walczący z sobą, tylko albo „iuxta mentem Aristotelis”, albo „iuxta mentem divi Thomae”. W akademiach kto się promował do godności doktorskiej w filozofii, musiał przysięgać, jako inaczej nie będzie trzymał i uczył, tylko „iuxta mentem divi Thomae”; ci tedy, którzy się trzymali zdania Arystotelesa, zwali się peripatetici, a którzy św. Tomasza, zwali się thomistae.

Pierwsi pijarowie jakoś około roku 1749 czyli trochę wyżej odważyli się wydrukować w jednym kalendarzyku politycznym niektóre kawałki z Kopernika, dowodzące, że się ziemia obraca, a słońce stoi. Czego ledwo dostrzegli jezuici, nie omięszkali i swoich rozumów, co ich tylko mieli najbystrzejszych, użyć przeciwko pijarom, ciężkim przeciwnikom swoim, ale też inne zakony przeciw nim poburzyć o takową hypothesim, czyli zdanie dawnej nauce przeciwne. Rozruch ten po szkołach był na kształt pospolitego ruszenia przeciwko pijarom; wydawali książki zbijające takową opinią, zapraszali pijarów na dysputy i najwięcej z tej materii pijarom dokuczeć usiłowali. Ci atoli, coraz nowy jaki kawałek wyrwawszy z teraźniejszych wodzów filozoficznych: Kopernika, Kartezjusza, Newtona, Leibniza, dokazali tego, że wszystkie szkoły przyjęły neoteryzm, czyli naukę recentiorum [nowszych autorów], według której ziemia się obraca koło słońca, nie słońce około ziemi, tak jak pieczenia obraca się koło ognia, nie ogień koło pieczeni. Koloru nie masz żadnego w rzeczach, tylko te barwy, które na nich widziemy: białe, czarne, zielone, czerwone, żółte etc., sprawuje temperament oczu i światła, czego jest wielkim dowodem jabłko na przykład, w dzień zielone, które toż samo przy świecach wydaje się granatowe; że ból, świerzbienie i inne czucia nie mają swego placu w ciele, tylko w duszy, ponieważ ciało bez duszy nic nie czuje. (Opis obyczajów za panowania Augusta III, rozdział O szkołach publicznych).

Arystarch z Samos (przed 230 r. p.n.e.)

Archimedes wspomina o jego osobliwym poglądzie na wszechświat:

Wedle jego hipotez gwiazdy stałe oraz Słońce są nieruchome, Ziemia unoszona jest po kole wokół centralnie położonego Słońca, a sfera gwiazd stałych (mająca ten sam środek co Słońce) jest tak ogromna, iż koło, po którym według niego unoszona jest Ziemia, ma się do odległości gwiazd stałych jak środek sfery do jej powierzchni.

Następnie Archimedes udaje, że nie rozumie, o co chodzi: środek sfery to punkt, a więc nie jest w żadnej proporcji do promienia sfery. Arystarch najwyraźniej miał na myśli tylko tyle, że sfera gwiazd stałych musi być ogromna w porównaniu do orbity Ziemi, inaczej dostrzeglibyśmy, że gwiazdy przesuwają się w cyklu rocznym. Wymaganie takie było konieczne w każdej teorii heliocentrycznej, paralaksę roczną odkryto bowiem dopiero w 1838 roku, wcześniej było to technicznie niemożliwe. Pogląd Arystarcha nie przyjął się wśród greckich astronomów, można tylko spekulować, dlaczego tak się stało. Ścisła astronomia matematyczna Greków miała dopiero powstać. Najprawdopodobniej system geocentryczny pozwalał zdać sprawę z obserwowanych zjawisk, nie prowadząc do żadnych paradoksów i nie zmuszając naszej wyobraźni do gwałtownego przeskoku. Toteż poczekaliśmy na ów przeskok jeszcze trochę, bo aż do Kopernika, a właściwie Keplera i Galileusza.

Arystarch pochodził z Samos, tak jak Pitagoras, Azja Mniejsza i pobliskie wyspy (obecnie wybrzeże Turcji i wyspy greckie – okolice pojawiające się w newsach z powodu imigrantów) to kolebka naszej cywilizacji naukowej. W czasach Arystarcha, w pierwszej połowie III w.p.n.e., upłynęły już trzy wieki od Talesa z Miletu, nauka przeniosła się do Aleksandrii. Dwa pokolenia przed Arystarchem Euklides zebrał większość znanej wiedzy geometrycznej w Elementy, jedną z najważniejszych książek w dziejach ludzkości. Arystarch także przebywał w Aleksandrii, ale nie znamy szczegółów. To, co wiemy o tych greckich uczonych: ich najważniejsze dzieła, nie zawsze w całości, i prawie żadnych szczegółów biograficznych, bliskie jest ideałowi Alberta Einsteina. Sądził on, że liczą się tylko osiągnięcia, a błędy i biografia to rzeczy nieistotne.

Znany był jako Arystarch Matematyk, zapewne dla odróżnienia od imienników o odmiennych zainteresowaniach. Zachowała się jedna tylko jego praca: O rozmiarach i odległościach Słońca i Księżyca. Jak na matematyka przystało, szacuje on owe odległości z góry i z dołu. Największe znaczenie miało jego oszacowanie odległości Ziemia-Słońce w porównaniu do odległości Ziemia-Księżyc. Wyszło mu, że Słońce jest od nas 18 do 20 razy dalej niż Księżyc, a tym samym, że musi ono być mniej więcej tyle samo razy większe od naszego satelity, gdyż średnice kątowe obu ciał są jednakowe – wiemy to z przebiegu zaćmień Słońca. Liczby podane przez Arystarcha są mniej więcej 20 razy zaniżone, ale wynik ten przyjmowali wszyscy astronomowie aż do Kopernika. Kepler nieco je poprawił, ale też właściwie nic pewnego nie wiedział. Odległość Ziemia-Słońce wyznaczono poprawnie dopiero w drugiej połowie XVII wieku.

arystarch0

Istotę rozumowania Arystarcha przedstawia rysunek. Przyjął on założenie, że kiedy widzimy dokładnie połowę Księżyca, kąt między nim a Słońcem równy jest 87º. Dokładnie biorąc, nie używano wtedy stopni, Arystarch mówi, że kąt jest mniejszy od kąta prostego o 1/30 kąta prostego. Według naszej wiedzy trygonometrycznej, stosunek obu odległości równy jest

\dfrac{d}{r}=\dfrac{1}{\sin 3^{\circ}}

Co trzeba zrobić? Wystarczy wpisać w Google’a: sin(3 deg), a otrzymamy wynik: 0.0523359562. Wartość 1/sin(3 deg) jest równa mniej więcej 19. Oczywiście, w czasach Arystarcha nie było Google’a, nie było też pojęcia funkcji sinus, które z Indii przeszło do Arabów i następnie do Europy, ale dużo później. Używali go dopiero Regiomontanus i Kopernik, który pierwszy ogłosił tablice sinusów. Grecka trygonometria powstała dużo później niż działał Arystarch. A więc jak oszacować wielkość sinusa (my dla wygody będziemy używać funkcji trygonometrycznych i kątów wyrażonych w stopniach), kiedy nie mamy nic? Arystarch wiedział, jak szybko rosną sinusy i tangensy wraz z kątem. Można to przedstawić rysunkiem.

arystarch

Widzimy z niego, że dodając takie same kąty, dodajemy coraz mniejsze wartości do sinusa (z lewej strony) i coraz większe odcinki do tangensa (z prawej strony). Nie wiemy, czy umiał tego dowieść, zachowane dowody tych faktów są dużo późniejsze. Intuicyjnie rzecz jest jednak jasna. Mamy nierówności:

\dfrac{\sin n\alpha}{\sin\alpha} < n<\dfrac{\mbox{tg}\: n\alpha}{\mbox{tg}\: \alpha}.

 

Jedno oszacowanie jest proste:

\dfrac{\sin 30^{\circ}}{\sin 3^{\circ}}<10\Rightarrow \dfrac{1}{\sin 3^{\circ}}<20.

Skorzystaliśmy z wartości sinusa 30º – a tę ostatnią można znaleźć, przepoławiając trójkąt równoboczny.

Do drugiego oszacowania można użyć funkcji tangens (oczywiście Arystarch mówił o pewnych proporcjach). Np.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{\cos 3^{\circ}}{\sin 3^{\circ}}=\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{15}{\mbox{tg}\: 45^{\circ}}=15.

Arystarch nie poszedł jednak na łatwiznę i znalazł oszacowanie dla \mbox{tg}\: 22,5^{\circ}, co pozwala ulepszyć wynik. Oto, jak rozumował, szukając tej wartości.

arystarch2

Mamy tu łuk okręgu o promieniu równym 1. Rysujemy dwusieczną kąta prostego, a potem jeszcze raz dwusieczną (linia kropkowana), szukaną wartość x możemy odnaleźć w trójkącie prostokątnym ABC, który jest także równoramienny. Stosując twierdzenie Pitagorasa (rodaka z Samos), otrzymamy równanie kwadratowe, które pozwala wyrazić x przez \sqrt{2}. Arystarch szukał czegoś prostszego, napisał więc następujące szacowanie:

(1-x)^2=2x^2>\dfrac{49}{25}x^2=\left(\dfrac{7}{5}x\right)^2,

opuszczając kwadraty po obu stronach i wyznaczając x, dostajemy

x=\mbox{tg}\: 22,5^{\circ}<\dfrac{5}{12}\Rightarrow \dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>\dfrac{12}{5}.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{22,5}{3}\dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>18.

Mamy więc wynik Arystarcha. Znaczył on, że Słońce jest wielkie w porównaniu z Księżycem, a także z Ziemią (oszacował on też odległość Księżyca od Ziemi). Być może z powodu wielkości Słońca, Arystarch zaczął rozważać hipotezę heliocentryczną: naturalniej wygląda, gdy mniejsze ciało krąży wokół większego niż odwrotnie. Wartość kąta 87º przyjęta była najprawdopodobniej tylko po to, żeby pokazać, że nawet jak się weźmie jakiś mały kąt, to można oszacować stosunki boków w trójkącie. Jak na matematyka przystało, nie przejmował się bardzo rzeczywistymi wartościami liczbowymi, jeśli nie są całkowite albo nie mają jakichś szczególnych własności. Ironią historii niedbałe szacowanie Arystarcha przetrwało aż po XVII wiek. Już po Arystarchu wyznaczono odległość Księżyca od Ziemi na 60 promieni ziemskich. Słońce byłoby więc w odległości 1200 promieni ziemskich. Przyjmując jeszcze, ze sfery planet powinny do siebie przylegać, wyznaczano wielkość wszystkich sfer aż do gwiazd stałych. Oczywiście, nic to nie miało wspólnego z rzeczywistością.

Nawiasem mówiąc wartość \sin 3^{\circ} daje się wyrazić przez ułamki i pierwiastki z liczb całkowitych, co oznacza, że można ją uzyskać za pomocą jakiejś konstrukcji geometrycznej. Dokładne wyrażenie wygląda następująco:

\sin(3^{\circ})=-\frac{\sqrt{\frac{3}{2}}}{8}-\frac{1}{8 \sqrt{2}}+\frac{\sqrt{\frac{5}{2}}}{8}+\frac{\sqrt{\frac{15}{2}}}{8}+\frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}-\frac{1}{2} \sqrt{\frac{3}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}ˆ

Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.