Johannes Kepler: III prawo ruchu planet (15 V 1618)

Niemal wszystkie wielkie odkrycia naukowe dla swych odkrywców znaczyły co innego niż dla potomnych. Z tego powodu dzisiejsza wiedza jest często mało przydatna, gdy chcemy dowiedzieć się, w jaki sposób zostały dokonane jakieś odkrycia. Przykład praw Keplera jest tu wielce pouczający: to, co dziś uważamy za trzy prawa Keplera, on sam uważał za istotne wprawdzie, ale trzy pojedyncze fakty w całym gmachu astronomii, który zbudował.

Johannes Kepler zdecydował się zająć astronomią, kiedy odkrył – jak mu się zdawało – ukryty sens geometryczny proporcji orbit planetarnych. Stwórca zrealizował bowiem w niebiosach wielce barokową konstrukcję geometryczną. Nastąpiły długie lata studiowania ruchów planet, szczęśliwym zbiegiem okoliczności mógł wykorzystać zbiór obserwacji Tychona Brahego, najdokładniejszych w dziejach i obejmujących najdłuższy przedział czasu. Ktoś porównał sytuację przed Tychonem i obserwacje Tychona do oddzielnych fotografii i długiego filmu: ruchy planet monitorowane były przez duńskiego astronoma nieomal z dnia na dzień. Kepler pierwszy zbudował w pełni heliocentryczną astronomię, w której Słońce było nie tylko wielką lampą oświetlającą wszechświat i umieszczoną centralnie, ale także źródłem ruchu sześciu znanych planet. Uzyskane przez niego wyniki podsumowuje się dziś w formie trzech praw ruchu. Pamiętać jednak należy, że zawarte one były w książkach Keplera wśród długich rozważań i nigdzie nie zostały sformułowane w taki właśnie sposób.

Dwa pierwsze prawa znalazły się w Astronomia nova z 1609 roku. Eliptyczny kształt orbit był najbardziej oczywistym wynikiem tej pracy, choć wielu nie dało się przekonać: astronomowie przyzwyczajeni byli do kół poruszających się po kołach i podejście Keplera wydawało się dziwaczne. Tym bardziej, że nawet obserwacje Brahego nie były na tyle dokładne, by jakoś zdecydowanie rozstrzygać, jaki jest właściwie kształt orbity – mogły to być rozmaite owale, a poza tym krzywe takie można skonstruować na różne sposoby, więc elipsy wydawały się wnioskiem zbyt silnym. Tak rozumiał to np. Isaac Newton, kiedy pisał: „Kepler wiedział, iż orbity planet nie są kołowe, lecz owalne, i odgadł, że są eliptyczne”. Kepler nie tyle zresztą zgadywał, ile kierował się tu (obok obserwacji) własną teorią ruchu planet – pierwszą mechaniką niebios – lecz z pozycji newtonowskich próba ta była chybiona, więc Newton mógł potraktować to jako zgadywanie. Elipsy z czasem znalazły sobie miejsce wśród uznanych faktów astronomicznych. Aż do czasów Newtona nie wiedziano jednak, co zrobić z Keplerowskim prawem pól – dzisiejszym II prawem Keplera. Teoretyczne wyjaśnienia samego Keplera nie przekonały jego następców, w dodatku prawo to jest niełatwe do praktycznego stosowania, gdyż prowadzi do równania przestępnego: t=E-e\sin E, gdzie t jest czasem, e mimośrodem orbity, a E tzw. anomalią mimośrodową, wielkością potrzebną do obliczenia położenia planety na elipsie. Równanie Keplera należało rozwiązywać metodami przybliżonymi, co w XVII wieku było trudne zarówno praktycznie, jak i pojęciowo. II prawo Keplera odrodziło się dopiero dzięki Newtonowi, który spostrzegł, że musi ono obowiązywać zawsze, gdy siły działają wzdłuż linii łączącej planetę i Słońce, bez względu na konkretną zależność sił od odległości. Dziś mówimy, że w ruchu pod wpływem sił centralnych zachowany jest moment pędu.

Kepler traktował własną pracę nad geometrycznym i mechanicznym opisem ruchu planet jako bardzo długi wstęp, rodzaj dygresji, właściwym celem było odkrycie, czemu Stwórca zbudował układ planet tak, a nie jakoś inaczej. Z jego perspektywy najciekawsze więc wydawało się wyjaśnienie odległości, okresów i ekscentryczności orbit, a więc nie tyle mechanika, co warunki początkowe – one bowiem mówiły nam coś o Bogu. Uczony, kiedy tylko mógł, wracał do rozważań na temat harmonii świata, one właśnie wydawały mu się najcenniejsze. Niosły mu też pociechę – to w czasie żałoby po śmierci córeczki zajął się pisaniem Harmonice mundi („Harmonii świata”). Do brył platońskich z młodzieńczej konstrukcji doszły teraz harmonie muzyczne – idea pitagorejska. Johannes Kepler stworzył najbardziej rozbudowaną i szczegółowo opracowaną wersję tej starej idei. Wszechświat był dla niego kosmosem, uładzoną i piękną całością. Sądził, że potrafi wyjaśnić ekscentryczności orbit planetarnych. Tym, co miało budować harmonie muzyczne kosmosu były prędkości kątowe planet widziane ze Słońca. Ich zakres odpowiadał pewnej skali muzycznej. Była to więc muzyka czysto matematyczna, którą obserwować mogły mieszkające na Słońcu anioły.

To, co przepowiedziałem dwadzieścia dwa lata temu, kiedy odkryłem pięć brył foremnych między sferami niebieskimi; to, o czym mocno byłem przekonany wewnętrznie, zanim jeszcze ujrzałem Harmonie Ptolemeusza; to, co obiecałem przyjaciołom w tytule tej piątej Księgi, nim jeszcze nabrałem całkowitej pewności; to, o czym szesnaście lat temu pisałem publicznie, nalegając, iż musi być zbadane; to, co skłoniło mnie, by spędzić najlepszą część życia na spekulacjach astronomicznych, wybrać się do Tychona Brahego do Pragi i samemu zamieszkać w Pradze; to, do czego Bóg Najlepszy i Największy nakłaniał mój umysł i rozbudzał pragnienie poznania, przedłużając me życie i siły umysłu, a także dostarczając innych środków dzięki hojności dwóch cesarzy oraz szlachty stanów Górnej Austrii; to w końcu, gdy wypełniłem swoje obowiązki astronomiczne w wystarczającym stopniu, mogłem wreszcie wydobyć na światło i stwierdziłem, że jest prawdą bardziej nawet, niż miałem nadzieję: odkryłem pośród ruchów niebieskich pełną naturę harmonii, w stopniu, w jakim ona występuje, wraz ze wszystkimi swymi częściami, objaśnionymi w Księdze III – wprawdzie nie w taki sposób, w jaki ją sobie wyobrażałem (co stanowi nie najmniejszą część mojej radości), ale w zupełnie inny sposób, najpiękniejszy i zarazem najdoskonalszy. (KGW t. VI, s. 289; )

Samo III prawo Keplera jest prostą zależnością ilościową: jeśli wyrazimy okres obiegu planety T w latach, a półoś orbity a (czyli średnią odległość od Słońca) w jednostkach orbity Ziemi, to przyjmuje ono postać: T^2=a^3. Prawo to znajduje się w Księdze piątej Harmonice mundi jako ósme twierdzenie rozdziału trzeciego, a więc wplecione w pitagorejskie rozważania.

Tak więc część mojej Tajemnicy kosmosu, która została zawieszona dwadzieścia dwa lata temu, ponieważ nie była jeszcze jasna, zostaje dokończona i tutaj umieszczona. Bo kiedy znalezione zostały prawdziwe odległości sfer, poprzez obserwacje Brahego i ustawiczny długotrwały trud, to w końcu – w końcu – prawda co do stosunku okresów i wielkości sfer
choć późno, wejrzała na opieszalca,
Wejrzała jednak i w końcu, po długim czasie, nastała.(*)
a jeśli trzeba wam dokładnego czasu, zrodzona została w umyśle 8 marca tego roku 1618, lecz poddana rachunkowi w pechowy sposób i odrzucona jako fałsz, aż wreszcie powróciła 15 maja i przyjmując inną linię ataku, pokonała ciemności mego umysłu. Tak silne było wsparcie siedemnastu lat mojej pracy nad obserwacjami Brahego oraz obecnych badań, które połączyły swe siły, iż z początku myślałem, że śnię i gdzieś w założeniach wprowadzam moją konkluzję. Ale jest absolutnie pewne i ścisłe, że stosunek okresów dowolnych dwóch planet równa się dokładnie stosunkowi ich średnich odległości do potęgi 3/2 (Harmonice mundi, 1619, s. 189; KGW t. VI, s. 302)

Spośród praw Keplera to było najmniej kontrowersyjne, bo łatwe do sprawdzenia. Co więcej, pozwalało poprawić wielkości orbit, ponieważ okresy obiegu znane były znacznie dokładniej niż odległości, co pierwszy zauważył Jeremiah Horrocks, który, gdyby nie zabrała go śmierć w wieku dwudziestu dwóch lat, z pewnością zostałby jednym z najważniejszych astronomów XVII stulecia.

(*) Wykształconemu klasycznie Keplerowi przyszła tu na myśl pierwsza ekloga Wergiliusza:

Wolność, która, choć późno, wejrzała na opieszalca,
Kiedy już siwiejące spod brzytwy sypały się włosy,
Wejrzała jednak i w końcu, po długim czasie, nastała.
(przeł. Z. Kubiak, Literatura Greków i Rzymian, s. 430)

Reklamy

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Isaac Newton i niektóre matematyczne sekrety Stwórcy

Pod koniec roku 1684 Isaac Newton zrozumiał, że ruchy planet wyjaśnić może siła przyciągania między nimi a Słońcem, która jest odwrotnie proporcjonalna do kwadratu odległości. Newton miał wówczas czterdzieści dwa lata i był bardzo mało aktywnym profesorem katedry Lucasa w Cambridge. Wbrew późniejszej legendzie nie odkrył tego prawa w młodości (choć niewiele mu brakowało). W poprzednich latach zajmował się głównie teologią i alchemią, nie szukając rozgłosu i niewiele kontaktując się ze światem zewnętrznym. Teraz spostrzegł, że rysuje się możliwość rozwiązania problemu nie dającego spokoju uczonym od czasów starożytnych. Aż do 1687 roku pracował gorączkowo nad wyprowadzaniem różnych konsekwencji prawa ciążenia powszechnego. Trudno dziwić się jego entuzjazmowi: jedno proste prawo matematyczne pozwalało zrozumieć wiele skomplikowanych zjawisk we wszechświecie.

Czemu siła ciążenia jest odwrotnie proporcjonalna do kwadratu odległości? Można przecież wyobrazić sobie inne możliwe prawa. Dla Newtona było to pytanie: czemu Stwórca zdecydował się na taki, a nie inny wszechświat? Wiele rozważań w Matematycznych zasadach filozofii naturalnej poświęconych jest ruchowi ciał pod działaniem sił zmieniających się w inny sposób z odległością: np. malejących jak trzecia czy piąta jej potęga. A także rosnących proporcjonalnie do odległości. Ten ostatni przypadek był interesujący, dawał bowiem ruchy eliptyczne. Wszystkie planety miałyby wówczas taki sam okres obiegu wokół Słońca.

Jak wygląda ruch planety pod działaniem siły przyciągania proporcjonalnej do odległości? Powszechnie znany jest jednowymiarowy przypadek takiego ruchu:

F=a=-\omega^2 x \Rightarrow x(t)=A\cos\omega t,

F, a, x, t są tu odpowiednio siłą, przyspieszeniem, wychyleniem z położenia równowagi (w którym siła jest równa zeru) i czasem, \omega wielkością stałą, tzw. częstością kołową, określoną przez wielkość siły i masę ciała, którą przyjmujemy za równą 1. Stała A jest dowolna. Jest to ruch harmoniczny, czyli najprostsze możliwe drgania.

W przypadku trójwymiarowym ruch nie jest dużo bardziej skomplikowany. Po pierwsze zachodzi w stałej płaszczyźnie, mamy więc tylko dwa wymiary. Po drugie można go potraktować jako dwa niezależne ruchy wzdłuż osi Ox oraz Oy:

\left\{ \begin{array}{l}  F_x=a_x=-\omega^2 x\\  \mbox{}\\  F_y=a_y=-\omega^2 y.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  a_x=A\cos\omega t\\  \mbox{}\\  a_y=B\sin\omega t.  \end{array}\right.

Wybraliśmy rozwiązania w taki sposób, aby planeta P zakreślała elipsę zorientowaną jak na rysunku.

Łatwo sprawdzić, że mamy do czynienia z elipsą, wyznaczając z powyższych równań funkcje trygonometryczne i korzystając z jedynki:

\cos^2\omega t+\sin^2 \omega t=1=\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}.

Każda elipsa jest rzutem jednostajnego ruchu po okręgu punktu Q (dokładnie tak, jak gdybyśmy patrzyli na ten ruch po okręgu z ukosa, pod pewnym kątem: okrąg skraca się wtedy w jednym kierunku). Częstość kołowa i okres są takie same dla wszystkich torów. Nazwijmy ten tor elipsą Hooke’a (od prawa Hooke’a), choć Newton bardzo by się zżymał na tę nazwę, także ten ruch zbadał bowiem sam, a Hooke’owi pamiętał do końca życia protekcjonalny i lekceważący sposób, w jaki ten go kiedyś potraktował w dyskusji na temat optyki. Z powodu tej animozji nie wiemy dziś na pewno, jak wyglądał Robert Hooke, Newton bowiem go przeżył i kazał usunąć jego portret z Towarzystwa Królewskiego.

Newton zadał sobie pytanie, jak te elipsy (w środku których byłoby Słońce) mają się do elips keplerowskich (w których ognisku jest Słońce)? Okazuje się, że można podać związek między siłami wywołującymi oba te ruchy.

Rozpatrzmy planetę P zakreślającą jakikolwiek tor pod wpływem siły \vec{F} skierowanej ku pewnemu stałemu punktowi S.

Na rysunku przedstawiona jest elipsa, ale kształt krzywej nie jest w tym punkcie istotny. Korzystamy ze wzoru na siłę  dośrodkową:

F_n=\dfrac{v^2}{\varrho},

gdzie \varrho jest promieniem krzywizny toru w danym punkcie. Wiemy także, iż moment pędu L naszej planety musi być stały:

L=rv\sin\varepsilon.

Wobec tego siła F równa jest

F=\dfrac{F_n}{\sin\varepsilon}=\dfrac{L^2}{\varrho r^2 \sin^3\varepsilon}.

Teraz zastosujemy uzyskane wyrażenie do porównania siły grawitacji z siłą Hooke’a. Wyobraźmy sobie, że taką samą elipsę zatacza planeta pod wpływem siły skierowanej ku ognisku elipsy S oraz pod wpływem siły skierowanej ku środkowi elipsy C. Przyjmujemy, że moment pędu planety jest w obu przypadkach taki sam. Wobec tego

\dfrac{F_S}{F_C}=\dfrac{r_C^2 \sin^3\varepsilon_C}{r_S^2 \sin^3\varepsilon_S}.

Odcinek EC jest równoległy do wektora prędkości. Stosując twierdzenie sinusów do trójkąta ECP , mamy:

\dfrac{\sin\varepsilon_C}{\sin\varepsilon_S}=\dfrac{EP}{r_C}.

Ostatnim potrzebnym elementem jest tzw. lemat Newtona: odległość EP=A, tzn. dużej półosi elipsy. Jest to własność elipsy, którą udowadniamy poniżej. Wobec tego siła grawitacji równa jest

F_S=\dfrac{F_C}{r_C}\dfrac{A^3}{r_S^2}=\omega^2 \cdot \dfrac{ A^3}{r_S^2}\sim \dfrac{1}{r_S^2}.

Otrzymaliśmy więc z elipsy Hooke’a elipsę keplerowską oraz z prawa Hooke’a prawo grawitacji. Oba te rodzaje ruchu okazują się matematycznie powiązane. Można pokazać, że tylko te dwa rodzaje sił prowadzą do torów zamkniętych, których peryhelia się nie obracają.

Lemat Newtona

Odcinek S'F jest równoległy do EC oraz \vec{v}. Trójkąt FPS' jest równoramienny, ponieważ promień światła wysłany z S i odbijający się w punkcie P przejdzie przez S'. Mamy zatem FP=PS'. Odcinki EC oraz S'F są równoległe i przepoławiają odcinek SS', a więc także i odcinek SF. Zatem SE=EF. Mamy więc

EP=EF+FP=\frac{1}{2}SF+\frac{1}{2}(FP+PS')=\dfrac{SP+PS'}{2}=A.

W ostatniej równości skorzystaliśmy z faktu, że suma odległości punktu elipsy od obu ognisk jest stała.

 

 

 

 

Tory planet i komet: wielkie odkrycie Isaaca Newtona

Johannes Kepler w roku 1609 ogłosił odkrycie, że planety poruszają się wokół Słońca po elipsach, a Słońce jest wspólnym ogniskiem tym wszystkich elips (I prawo Keplera). Nie bardzo mu wówczas chciano wierzyć, wprowadził bowiem nowe rodzaje sił, jedna miała ciągnąć planetę wokół Słońca, a druga, magnetyczna, miała na przemian, to przyciągać ją, to odpychać. Prędkość planety miała zależeć od jej odległości od Słońca: bliżej niego planeta poruszała się szybciej i na odwrót, kiedy była dalej, poruszała się wolniej (II prawo Keplera).

Z czasem astronomowie stwierdzili, że opisane przez Keplera prawa dobrze odzwierciedlają zjawiska na niebie: dokładność tablic wzrosła wielokrotnie. W 1687 roku ukazały się Matematyczne zasady filozofii przyrody, w których Isaac Newton wyjaśnił ruchy planet i szereg innych zjawisk, jak przypływy i odpływy mórz albo precesję ziemskiej osi obrotu za pomocą jednej jedynej siły: grawitacji. Wszystkie ciała we wszechświecie miały się przyciągać siłami odwrotnie proporcjonalnymi do ich odległości i proporcjonalnymi do mas. Jedno proste matematycznie prawo pozwalało zrozumieć dynamikę układu planetarnego. Problem postawiony jeszcze przez starożytnych Greków i Babilończyków został w ten sposób rozwiązany. Najważniejszą częścią tego rozwiązania było udowodnienie, że z prawa grawitacji wynikają Keplerowskie elipsy. Poniżej pokażemy współczesne sformułowanie tego rozwiązania.

Wyobraźmy sobie planetę P poruszającą się wokół nieruchomego Słońca (nie jest trudno pójść o krok dalej i uwzględnić także ruch Słońca).

Każda z orbit ma punkt najbliższy Słońca: perihelium P_0. Wybierzmy oś Ox tak, żeby przechodziła ona przez perihelium i następnie poruszała się w kierunku P. Równanie ruchu planety zgodnie z II zasadą dynamiki oraz prawem powszechnego ciążenia ma postać:

\dfrac{d\vec{v}}{dt}=-\dfrac{k}{r^2}\vec{e}_r.

Wektory \vec{e}_r, \vec{e}_\varphi mają odpowiednio kierunek promienia i kierunek do niego prostopadły (transwersalny) oraz długość jednostkową, k=GM jest iloczynem stałej grawitacyjnej i masy Słońca (masa planety nie wchodzi do zagadnienia). Znak minus pochodzi stąd, że grawitacja jest siłą przyciągającą.

W ruchu planety nie zmienia się wielkość jej momentu pędu (przyjmujemy tu masę planety równą 1):

L=rv_{\varphi}=r^2 \omega=const.

Jest to współczesne sformułowanie II prawa Keplera. Wchodzi do niego składowa \vec{v}_\varphi prędkości prostopadła do promienia. W ostatniej równości użyliśmy prędkości kątowej \omega=v_\varphi/r. Więcej szczegółów dotyczących tego wyrażenia można znaleźć niżej (*).

Pokażemy, że torem planety musi być krzywa stożkowa ze Słońcem w ognisku. W tym celu udowodnimy, że odległość planety od Słońca spełnia równanie stożkowej:

r=\dfrac{p}{1+e\cos\varphi},

gdzie p, e zwane są odpowiednio parametrem i mimośrodem stożkowej, a kąt \varphi jest kątem z osią Ox na rysunku. Wyprowadzenie tego równania można znaleźć poniżej (**).

Zakładamy, że moment pędu jest różny od zera: znaczy to, iż planeta nie porusza się po prostej przechodzącej przez Słońce. Oczywiście takie tory są matematycznie i fizycznie dopuszczalne, eliminujemy je jednak z dalszych rozważań.

Równanie ruchu planety można uprościć, jeśli zamiast czasu wprowadzić do niego kąt \varphi. Wyznaczając prędkość kątową z zasady zachowania momentu pędu, otrzymujemy

\omega=\dfrac{d\varphi}{dt}=\dfrac{L}{r^2}.

W obu równaniach występuje r^2 w mianowniku, wobec tego, dzieląc je stronami i korzystając ze wzorów na pochodną funkcji złożonej i odwrotnej, możemy się tej zależności pozbyć:

\dfrac{d\vec{v}}{d\varphi}=\dfrac{d\vec{v}}{dt}\cdot \dfrac{dt}{d\varphi}=-\dfrac{k}{L}\vec{e}_r.

Równanie wektorowe to para równań dla składowych wektora prędkości:

\left\{ \begin{array}{l} \dfrac{dv_x}{d\varphi}=-\dfrac{k}{L}\cos\varphi \\  \mbox{}\\  \dfrac{dv_y}{d\varphi}=-\dfrac{k}{L}\sin\varphi.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  v_x=-\dfrac{k}{L}\sin\varphi+A_x \\  \mbox{}\\  v_y=\dfrac{k}{L}\cos\varphi+A_y.  \end{array}\right.

Ostatnią parę równań możemy zapisać w postaci wektorowej

\vec{v}=\dfrac{k}{L}\vec{e}_\varphi+\vec{A}.

Wynik ma prostą interpretację geometryczną: pierwszy wektor po prawej stronie zakreśla okrąg o promieniu k/L, a promień wodzący tego okręgu tworzy z osią Ox kąt równy 90^{\circ}+\varphi, obracając się razem z promieniem wodzącym planety. W zależności od długości wektora \vec{A} możliwe są następujące cztery sytuacje:

Punkt P_0 odpowiada kątowi \varphi=0, wektor prędkości jest wtedy równoległy do osi Oy (w chwili gdy odległość osiąga minimum, składowa x prędkości musi znikać). Oznacza to, że A_x=0. W każdym przypadku koniec wektora prędkości zakreśla okrąg albo jego łuk. Krzywą taką nazywa się hodografem. Zatem hodograf ruchu keplerowskiego jest łukiem okręgu (w trzecim przypadku to okrąg bez dolnego punktu, w czwartym dozwolone są tylko te wartości \varphi, dla których wektor \vec{v} ma z okręgiem dwa punkty wspólne; pewien zakres kątów jest niedozwolony, ruch zachodzi tu po gałęzi hiperboli i ograniczony jest jej asymptotami.) Kształt hodografu ruchu keplerowskiego odkrył William Rowan Hamilton w XIX wieku i opublikował w pracy zawierającej wyłącznie słowny opis, bez żadnego rysunku i bez wzorów. Brytyjczycy (Hamilton był Irlandczykiem) po Newtonie specjalizowali się w takiej matematyce bez rachunków, co nie zawsze da się z sensem przeprowadzić. Nieco mniej formalne podejście do hodografu tego ruchu.

albo tutaj

Równanie hodografu daje nam prędkości, łatwo z nich przejść do równania toru. Wystarczy znaleźć składową v_\varphi prędkości. Otrzymamy ją przez rzutowanie wektora prędkości na kierunek promienia okręgu zaznaczonego na rysunkach. Otrzymujemy z nich

v_\varphi=\dfrac{k}{L}+A\cos\varphi \quad\Rightarrow\quad r=\dfrac{L}{k/L+A\cos\varphi}=\dfrac{\frac{L^2}{k}}{1+\frac{LA}{k}\cos\varphi}.

Ostatnie równanie jest biegunowym równaniem stożkowej o mimośrodzie e=\frac{LA}{k}, odległości liczone są od ogniska owej stożkowej. Otrzymaliśmy uogólnioną wersję I prawa Keplera.

Na rysunku oba tory: w przestrzeni prędkości oraz w przestrzeni położeń, czyli w zwykłej przestrzeni. A to paraboliczna orbita komety z roku 1680 wyznaczona przez Newtona (obliczenia robił Edmond Halley).

(*) Prędkość kątowa to

\omega=\dfrac{\Delta \varphi}{\Delta t}=\dfrac{v_\varphi \Delta t}{r \Delta t}=\dfrac{v_\varphi }{r }.

Zastępujemy tu dla małych kątów tangens wartością kąta w radianach.

(**) Stożkową definiuje się zadając pewien punkt, zwany ogniskiem oraz prostą, zwaną kierownicą (na rysunku czerwone) oraz wartość mimośrodu e.

Stożkową będzie zbiór takich punktów P, że ich odległość od ogniska jest e razy większa od ich odległości od kierownicy:

OP=ePP'.

Łatwo stąd znaleźć równanie stożkowej. Mamy bowiem

r\cos\varphi+PP'=QQ' \Rightarrow  r\cos\varphi+\dfrac{r}{e}=\dfrac{p}{e}.

Mnożąc ostatnie równanie obustronnie przez e i wyznaczając z niego r, otrzymujemy

r=\dfrac{p}{1+e\cos\varphi}.

Jak Ptolemeusz nie odkrył prawa Snella

Klaudiusz Ptolemeusz był astronomem i astrologiem, wierzył zapewne w boskość ciał niebieskich i studiowanie ich ruchów traktował jako udział w pewnym misterium. Bo też zrozumienie każdej, nawet drobnej tajemnicy świata ma w sobie coś z misterium i z obrzędu wtajemniczenia. Nie trzeba do tego mieszać ludzi w szatach rytualnych, profesjonalistów, którzy zazwyczaj niczego nie rozumieją. Nie potrzeba pleść o Bogu, o którym wszyscy wiemy bardzo niewiele.

Wyjaśnienie ruchu planet musiało Ptolemeuszowi przynieść wielką satysfakcję: dokończył dzieła wielu pokoleń. My dzisiaj patrzymy na jego teorię jak na wstęp do Kopernika i Keplera, lecz przez czternaście wieków uważano ją za niedościgniony wzór. Geocentryzm nikomu właściwie nie przeszkadzał, był oczywisty, tak jak my uważamy za oczywistość, że Ziemia się porusza, choć nie każdy potrafiłby wskazać doświadczalne dowody tego faktu. Ptolemeusz zresztą doskonale sobie zdawał sprawę z możliwości ruchu Ziemi, odrzucał ją przedstawiając pewne argumenty, a więc nie z braku wyobraźni.

Był zawodowym uczonym, zajmował się całością nauk matematycznych, a więc także geografią i skalami muzycznymi oraz optyką. Pierwszy opisał ilościowo i doświadczalnie zbadał zjawisko załamania światła. Używał do tego następującego przyrządu.

ptolemy_refraction

Światło biegnie po łamanej ZEH, DEB jest linią rozdziału dwóch ośrodków, np. na dole mamy wodę albo szkło (w kształcie połowy walca), a u góry powietrze. Koło zaopatrzone jest w podziałkę w stopniach. Uczony mierzył kąty padania i oraz załamania r. Oto jego wyniki dla granicy powietrze-woda.

 

i r
10 8
20 15,5
30 22,5
40 29
50 35
60 40,5
70 45,5
80 50

Jest to rzadki przypadek starożytnej pracy eksperymentalnej poza astronomią. Optyka była przedłużeniem astronomii, więc dość naturalne było zainteresowanie zjawiskami świetlnymi. Tabelka Ptolemeusza nie jest jednak do końca wynikiem doświadczalnym, zauważymy to, analizując dokładniej wartości kątów załamania i ich różnice.

i r pierwsze różnice drugie różnice
10 8 8
20 15,5 7,5 -0,5
30 22,5 7 -0,5
40 29 6,5 -0,5
50 35 6 -0,5
60 40,5 5,5 -0,5
70 45,5 5 -0,5
80 50 4,5 -0,5

Uczony najwyraźniej „poprawiał” surowe dane eksperymentalne, być może nawet nie wykonał wszystkich pomiarów, zachował się jak niesumienny student podczas zajęć laboratoryjnych: i tak przecież wiadomo, co ma wyjść. Nie należy z tego powodu wszczynać larum, że przyłapaliśmy Ptolemeusza na oszustwie: w jego czasach i jeszcze bardzo długo potem starano się raczej uzyskać pewną formułę, jakiś rodzaj matematycznego zrozumienia zamiast relacjonować listę wyników obarczonych błędami. Teoria i eksperyment spotykały się w nieco innym miejscu niż dziś. Ptolemeusz zapewne chciał po inżyniersku rozumieć, skąd się biorą liczby w jego tabelce. Funkcja liniowa tu nie pasuje, bo wówczas różnice byłyby stałe. Jeśli drugie różnice (czyli różnice kolejnych różnic) są stałe, to znaczy, że opisujemy obserwowaną zależność funkcją kwadratową (*). Jej wykresem będzie parabola.

woda

Czerwone kropki są prawidłowymi wynikami dla kątów załamania w wodzie. Błędy nie są wielkie, choć znacznie przewyższają niedokładności tolerowane wówczas w astronomii. Podobne dane przedstawia Ptolemeusz dla szkła, także i one są dopasowane do paraboli.

szklo

W istocie Ptolemeusz stracił okazję do odkrycia prawa bardziej zadowalającego pod względem matematycznym. Podał on bowiem także wyniki dla załamania z wody do szkła. Także i tym razem dopasował je do funkcji kwadratowej, choć z pewnymi anomaliami. Nie zauważył jednak, że skoro ma dane dla granic ośrodków powietrze-woda oraz szkło-woda, to kąty dla załamania z wody do szkła powinny już wynikać z poprzednich danych. Wystarczy bowiem wyobrazić sobie następującą sekwencję ośrodków: woda-powietrze-szkło. Dla obu granic znamy zależności miedzy kątami po obu stronach (Ptolemeusz wiedział, że kierunek biegu promieni nie ma znaczenia w załamaniu, wyobrażał sobie zresztą nie promienie świetlne, lecz promienie wzrokowe, które wybiegają z oka). Możemy sobie następnie wyobrazić, że warstwa powietrza staje się coraz cieńsza: kąty w wodzie i w szkle cały czas są takie same, logicznie jest więc przypuścić, że pierwsze dwie zależności dają nam tę trzecią (woda-szkło). Ptolemeusz nie poszedł tą drogą i chyba nie zauważył, że przybliżenie kwadratowe jest nie do utrzymania dla trzeciej pary ośrodków. W gruncie rzeczy prawo Snella, choć takie proste, wymaga spojrzenia na zjawisko załamania w odpowiedni sposób, mieści w sobie od razu pewną teorię. Nie miejmy za złe Ptolemeuszowi w II w.n.e., że nie poradził sobie z problemem, który jeszcze na początku wieku XVII okazał się za trudny dla samego Johannesa Keplera. Ostatecznie prawo załamania odkrył Ibn Sahl, żyjący w X wieku, kiedy nasi przodkowie kryli się po lasach, a w XVII wieku niezależnie od siebie Thomas Harriot, Willebrord Snell i René Descartes. Tylko ten trzeci opublikował to prawo, a także jego mechaniczne uzasadnienie, zresztą fałszywe.

(*) Łatwo zauważyć, że różnice dla funkcji kwadratowej są liniową funkcją argumentu. W przypadku biegu promieni z powietrza do wody Ptolemeusz stosuje (niejawnie) funkcję

r=\dfrac{33}{40}i-\dfrac{1}{400}i^2.

Funkcja odwrotna nie jest już kwadratowa (musimy rozwiązać ostatnią równość względem i). Zatem złożenie tej funkcji odwrotnej z funkcją kwadratową nie może nam dać funkcji kwadratowej dla trzeciej pary ośrodków.

Dane Ptolemeusza

 

Jak Johannes Kepler odkrył eliptyczny kształt orbity Marsa? (1605)

Kepler był pierwszym liczącym się naukowo zwolennikiem teorii heliocentrycznej. Otaczał wielką czcią postać Mikołaja Kopernika, ale astronomię zbudował właściwie na nowo. Zawiłą drogę do odkrycia tego, co dziś nazywamy dwoma pierwszymi prawami Keplera, opisał w legendarnie trudnej książce Astronomia nova. Dotyczyła ona głównie ruchu Marsa, częściowo także Ziemi. Uczony miał do dyspozycji wieloletnie precyzyjne obserwacje Tychona Brahego. Na ich podstawie zbudował teorię, która dorównywała im dokładnością, był to największy krok od czasów starożytnych Greków. Bez tak precyzyjnej teorii trudno sobie wyobrazić odkrycie prawa ciążenia przez Isaaca Newtona. Sam Newton sądził, iż Kepler wiedział, że orbity planet są owalne, a odgadł, że są one eliptyczne. W jakimś stopniu miał rację: nawet obserwacje Tychona, najlepsze, jakie kiedykolwiek zgromadzono, były zbyt mało dokładne, aby precyzyjnie wyznaczyć kształt orbity szukając jej punkt po punkcie. Odkrycie było więc wynikiem konfrontowania rozważań teoretycznych i obserwacji.
W praktyce dzięki pomysłowym metodom postępowania Kepler potrafił z dużą dokładnością wyznaczyć kierunek Słońce-Mars w zależności od czasu oraz z mniejszą dokładnością odległości planety od Słońca w różnych chwilach. Jego zdaniem Mars poruszany jest przez jakąś siłę emanującą ze Słońca. A właściwie wyobrażał sobie nawet dwie takie siły, pamiętajmy, że mechanika była wciąż na etapie arystotelesowskim: siła ciągnie albo popycha – ciało się porusza, siła przestaje działać – ciało staje. Była to dynamika przesuwanej szafy. Mimo to lepsza była taka dynamika niż żadna. Przed Keplerem, a i po nim, wyobrażano sobie ruchy planet jako coś całkowicie odmiennego od mechaniki ziemskich przedmiotów. Dla Kopernika Słońce było centralną latarnią w świecie, a nie źródłem siły.
Kepler przyjął, że ruch Marsa wokół Słońca zachodzi po krzywej zamkniętej. Najprościej było przyjąć, że jest nią okrąg o umownym promieniu równym 1. Musimy jednak wtedy Słońce odsunąć od środka okręgu o pewną wielkość znaną z obserwacji, tzw. mimośród orbity. W przypadku Marsa \mbox{AS}=e \approx 1/11.

mars 1 area law

Wiadomo też z obserwacji, że planeta porusza się szybciej, gdy jest bliżej Słońca. Z takim ruchem niejednostajnym Kepler zmierzył się jako pierwszy. Intuicyjnie wydawało mu się to zrozumiałe, że z mniejszej odległości Słońce oddziałuje silniej, a więc porusza szybciej naszą planetą (Wyobrażał sobie, że Słońce wiruje wokół osi i niejako zagarnia planety swoim polem siłowym, toteż ucieszył się, kiedy odkryto wirowanie Słońca wokół osi). Uprościmy rozważania na ten temat, zakładając tzw. prawo pól, czyli dziś II prawo Keplera. W trakcie swej wojny z Marsem (jak sam ją określał w alegorycznym duchu epoki) astronom stosował także różne inne przybliżenia, które dla uproszczenia pominiemy. Prawo pól mówi, że pole powierzchni zakreślonej przez promień wodzący Marsa, czyli np. powierzchni SCM jest proporcjonalne do czasu. Np. pole wycinka SM’C jest mniej więcej równe polu BAC, czyli ćwiartce koła. Znaczy to, że Mars znajdzie się w tym położeniu po jednej czwartej obiegu. Po połowie obiegu znajdzie się oczywiście w punkcie najbliższym Słońca (peryhelium).
Na przebycie łuku orbity CM planeta potrzebuje czasu t, który spełnia następującą proporcję

\dfrac{t}{T}=\dfrac{\mbox{pole MAC}+\mbox{pole SAM}}{\pi}\Rightarrow t=\beta+e\sin\beta.

Przyjęliśmy umownie, że okres obiegu Marsa T=2\pi. Jest to tzw. równanie Keplera. Kąt \beta nazywa się anomalią mimośrodową. Nie jest to wprawdzie ten kąt, który może wprost zainteresować astronoma i który można wyznaczyć z obserwacji (choć nie wprost – trudno umieścić się na Słońcu!). Istotnym obserwacyjnie kątem jest MSC, tzw. anomalia prawdziwa. Z rysunku widać, że anomalię tę można wyznaczyć w sposób trygonometryczny. Mając \beta, możemy więc znaleźć czas i położenie planety. Równanie Keplera jest przestępne, nie można podać prostego wyrażenia na funkcję \beta(t), był to jeden z kłopotów Keplera, a potem wszystkich następnych astronomów, gdyż równanie Keplera obowiązuje także dla orbity eliptycznej. Od teraz będziemy zakładać prawo pól dla każdego kształtu orbity. Kiedy zastosuje się je do Marsa, anomalie prawdziwe (czyli kąty widziane ze Słońca) różnią się od obserwowanych mniej więcej tak:

mars circular errors

(rysunek wg pracy H. Martynki)

Różnice nie są wielkie, lecz w miarę wyraźne. Kepler znał tylko kilka punktów tej krzywej, nie miał do dyspozycji żadnych narzędzi obliczeniowych, nawet logarytmy były nieznane, każde mnożenie, dzielenie itd. trzeba było mozolnie wykonywać krok po kroku. Obserwacje Tychona pozwalały na błędy rzędu jednej albo dwóch minut kątowych (bez użycia teleskopu nie da się zresztą rozróżnić mniejszych kątów, patrz George Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop? Nasze oko ograniczone jest średnicą źrenicy, a także gęstością komórek światłoczułych na siatkówce). Kepler sprawdził także, że orbita Marsa powinna być odrobinę spłaszczona. Rzecz jednak w tym, że nie szukał jedynie odpowiedniej krzywej, ale chciał także, żeby jej kształt wynikał jakoś z mechaniki. Wpadł na pomysł dość dziwaczny dla nas, ale uzasadniony tradycją astronomii: na dużym kole (deferencie) obraca się małe koło (epicykl). Można taką konstrukcją zastąpić okrąg rozważany wyżej.

mars2 ekscent

Odcinek CM jest stale równoległy do SA. Można albo sobie wyobrażać ruch po czerwonym okręgu albo po dwóch czarnych, wynik będzie ten sam. Nowy pomysł Keplera polegał na tym, aby epicykl nadal obracał się jednostajnie, ale ruch planety miał być niejednostajny: w rezultacie kąt NXM będzie większy niż kąt NSC i wypadkowa krzywa stanie się spłaszczonym nieco owalem. Jednostajny obrót epicykla uważał Kepler za możliwy fizycznie (wymagało to jakiejś dodatkowej siły wywołującej ten obrót, ale tak czy owak potrzebował dwóch różnych sił: jednej wywołującej krążenie wokół Słońca oraz drugiej na przemian zbliżającej i oddalającej planetę od Słońca).

mars oval

Owal też nie spełnił zadania. Kepler miał kłopoty z obliczeniem jego kształtu, choć zadanie nie jest szczególnie trudne, gdy zastosować trygonometrię w zapisie algebraicznym albo prosty rachunek całkowy – narzędzia te nie były mu dostępne, bo ich jeszcze nie było. Błędy w anomaliach prawdziwych okazały się teraz równie duże co poprzednio, miały jednak inne znaki.

mars errors oval

(rysunek wg pracy H. Martynki)

Wskazywało to na zbytnie spłaszczenie owalu w stosunku do rzeczywistości. Owal miał rzeczywiście kształt jajka (ovum), choć w praktyce jajo to nie różniło się wiele od elipsy i w jakimś momencie Kepler zaczął je przybliżać elipsą. Nie zauważył, że prawo pól zastosowane do różnych elips oznacza, że planety tak się poruszające znajdują się w każdej chwili na jednej linii prostopadłej do osi NMM’. Zatem jeśli błękitna elipsa daje położenie M’, a okrąg położenie N i oba są z przeciwnym błędem, to rozwiązaniem powinna być elipsa pośrednia między tymi dwiema (okrąg to też elipsa).

mars 3 ellipses

W każdym z tych przypadków słuszne jest równanie Keplera, które wypisaliśmy wyżej. Kepler szukał jednak wyjaśnienia fizycznego: owal miał jakieś uzasadnienie, inna elipsa nie bardzo. Bez epicykla i bez okręgu znalazł się w kropce. Wrócił do odległości. Owal był nieco węższy w kierunku prostopadłym do osi (linia łącząca położenie najbliższe i najdalsze od Słońca, u nas pozioma). Między okręgiem a owalem zostawał cienki sierp, lunula – jak go określił.

mars lunulae1

Astronom wiedział, że prawdziwy tor planety mieści się gdzieś pośrodku. Obserwowane odległości nie przesądzały jednak gdzie dokładnie. Wczesną wiosną 1605 roku zauważył dość szczególne prawo, które pasowało do obserwacji i tego, co wiedział.

mars click

Najpierw przyjrzyjmy się niebieskiemu trójkątowi SKA. Kepler wiedział, że kąt na rysunku równy jest dla Marsa \varphi=5^{\circ} 18'. Przy takim kącie SK=1,00429, a więc do jedynki dodana jest mniej więcej połowa szerokości lunuli. Tymczasem odległość SM powinna być równa wówczas 1. Czyli tam, gdzie orbita jest najwęższa, od okręgu należałoby ująć mniej więcej 0,00429. Prawo, które zaproponował, przedstawione jest na rysunku. Zamiast odległości SN należało w każdym punkcie wziąć odległość ND – była to więc reguła, o ile należy skrócić promień w stosunku do promienia wodzącego SN (N leży na okręgu). Zapisane trygonometrycznie prawo to ma rzeczywiście prostą postać

r=1+e\sin\beta.

Można było mieć nadzieję, że tak proste prawo wynika jakoś z mechaniki. Miało ono zastąpić ów nieszczęsny epicykl, który sprawił mu mnóstwo zachodu. Brakowało jeszcze ustalenia, w którym kierunku należy odłożyć ową odległość r. W końcu zauważył, że prawidłowy rysunek wygląda następująco.

mars kepler ellipse

Można wykazać, że odkładając odległość DN jako SM (obie zaznaczone są na niebiesko), otrzymujemy punkt M leżący na elipsie. Spośród wszystkich elips, które mają taką samą długość dużej półosi, wybieramy dzięki tej konstrukcji taką, że Słońce znajduje się w jej ognisku (sam astronom nie zauważył tego w pierwszej chwili). Nie jest to oczywisty sposób na skonstruowanie elipsy, ale jest on prawidłowy. Zapisane przez nas równania oraz łatwy do wyznaczenia z rysunku kąt anomalii prawdziwej dają nam równania ruchu planety w postaci parametrycznej, gdzie \beta jest parametrem. Zauważmy, że linia AN nie celuje ku planecie, lecz ku pewnemu punktowi na pomocniczym okręgu. Konstrukcja jest dość zawiła, ale nie da się tego zrobić dużo prościej, to ruchy planet są skomplikowane.
W rzeczywistości orbity Marsa rozpatrywane przez Keplera bardzo mało się od siebie różnią. Na rysunku przedstawiłem przypadek e=0,4, mimośrody planet nie są tak duże. Widzimy, dlaczego starożytne teorie oparte na okręgach działały tak dobrze.

mars e equal04

(rysunek wg pracy H. Martynki)

A tak poprawiła się dokładność przewidywań w teorii Keplera w porównaniu z efemerydami przed nim.

marspos

Dane O. Gingericha

Dla porządku zapiszę jeszcze wzory dla anomalii prawdziwej v, czyli kąta MSC na rysunku wyżej. Rzutując SM na prostą SC, otrzymujemy:

r\cos v=e+\cos\beta.

Rzutując SM na prostą NM, otrzymujemy:

r\sin v=\sqrt{1-e^2}\sin\beta,

gdzie \sqrt{1-e^2} jest stosunkiem długości małej osi elipsy do dużej. Łatwo stąd otrzymać także biegunowe równanie elipsy, lepiej znane niż wzór Keplera na r. Mnożąc obie strony wzoru z \cos v przez e oraz dodając do obu stron 1, mamy:

1+er\cos v=e^2+(1+e\cos\beta)=e^2+r.

Wyznaczając r, dostajemy równanie elipsy

r=\dfrac{1-e^2}{1-e\cos v}.

W podręcznikach cosinusy mają inne znaki, ponieważ my trzymamy się historycznego sposobu liczenia kątów od aphelium, a obecnie liczy się od perihelium: \cos(\pi-\alpha)=-\cos\alpha. Owal Keplera ma równanie

r=\dfrac{1-e^2}{\sqrt{1-2e\cos v+e^2}}.

Czy ogon macha psem? – o pewnym argumencie na rzecz heliocentryzmu

W listopadzie 1948 roku Albert Einstein napisał w liście do starego przyjaciela:

U nas, jak dotąd, wszystko dobrze. Także moja siostra nie cierpi, choć obiektywnie jej stan pogarsza się w sposób widoczny. Czytam jej co wieczór – dziś np. dziwne argumenty wysuwane przez Ptolemeusza przeciwko poglądowi Arystarcha, że Ziemia się obraca, a nawet obiega Słońce. Nie mogę się oprzeć skojarzeniu z niektórymi argumentami współczesnych fizyków: uczone i wyszukane, ale bez wyczucia. Ocena wagi argumentów w roztrząsaniach teoretycznych to zawsze kwestia intuicji.

Maja Einstein cierpiała po udarze i powoli gasła, była jednak sprawna umysłowo, toteż brat czytał jej wieczorami rozmaite książki, przeważnie klasyczne (Maja miała doktorat z filologii romańskiej). W sprawie mechaniki kwantowej Albert Einstein zapewne się mylił, miał jednak rację, że póki dane rozwiązanie naukowe dopiero się kształtuje, jest in statu nascendi, dopóty nie ma prostego sposobu ustalenia, jakie argumenty są trafne, a jakie nie, trzeba zawierzyć intuicji.

Dyskusja na temat tez kopernikańskich była długa i zażarta. Spojrzymy tu tylko na jeden argument, który sam nie miał jakiejś ogromnej wagi i niczego nie przesądził, ale wiązał się wyraźnie z wyobrażeniem wszechświata. Według Kopernika porusza się niewielka Ziemia, a nie ogromne niebo. W szczególności to owa niewielka Ziemia krąży wokół znacznie większego Słońca, a nie na odwrót.

Johannes Kepler pisał (Astronomia nova, 1609, Introductio): „Popatrzmy tedy na ciała Ziemi i Słońca i zdecydujmy, któremu z nich bardziej przystoi być źródłem ruchu tego drugiego. Czy to Słońce, które porusza także pozostałe planety, porusza Ziemią, czy też Ziemia – Słońcem, poruszającym owe pozostałe [planety] i tylekroć od niej większym?” Myślał tu o układzie Tychona Brahego, w myśl którego wszystkie planety prócz Ziemi krążą wokół Słońca. Dla Keplera było to nieprawdopodobne, gdyż uważał, że to Słońce jest źródłem siły poruszającej planetami, z jego punktu widzenia układ Tychona nie miał uzasadnienia dynamicznego, bo ruchem Słońca wokół Ziemi rządziłoby wówczas jakieś inne i odrębne prawo. Ponadto Słońce jest znacznie większe od Ziemi. Mamy więc ogon machający psem.

cyrano

Co wiedziano na temat rozmiarów Słońca i Ziemi? Astronomowie mieli zwyczaj używania kąta, tzw. paralaksy (dziennej). Paralaksa Słońca to kąt, pod jakim ze Słońca widać byłoby promień Ziemi. Oczywiście, niełatwo taki kąt znaleźć. Od starożytności wierzono, iż kąt ten wynosi 3′, Kepler przypuszczał, że równy on jest 1′, pod koniec wieku XVII znano już w przybliżeniu prawidłową wielkość: p\approx 9''. Z trójkąta prostokątnego na rysunku łatwo wyznaczyć odległość Słońca w jednostkach promienia Ziemi. Ten sam rysunek moglibyśmy zastosować, zamieniając miejscami Słońce i Ziemię: otrzymalibyśmy wówczas kątowy promień tarczy słonecznej widzianej z Ziemi \theta. W takim razie stosunek promienia Słońca R_S do promienia Ziemi R_Z równy jest

\dfrac{R_S}{R_Z}=\dfrac{\sin\theta}{\sin p}\approx \dfrac{\theta}{p}\approx \dfrac{16'}{p}.

(Sinusy małych kątów możemy zamienić wielkościami samych kątów.) Ptolemeusz sądził więc, że Słońce jest 5 razy większe od Ziemi, Kepler – że jest 15 razy większe, a naprawdę jest ono przeszło sto razy większe.

Digges_Leonard_1596_A_prognostication_everlastinge_of_right_good_effect_Page_15(1)

Leonard Digges, Prognostication Everlasting, 1596

Co odpowiadano na taki argument? Uczony jezuita Giovanni Riccioli w swoim niezwykle obszernym i kompetentnym dziele Almagestum novum (1651) nie miał innego wyjścia niż zwalczać Kopernika, gdyż tak postanowił Kościół Święty, a przynajmniej ówczesny papież, w sprawie Galileusza. Na argument, iż łatwiej i mniejszym kosztem byłoby Bogu i Naturze poruszać niewielką Ziemią zamiast ogromnym niebem, Riccioli stwierdza, że po pierwsze wysiłek nie jest tu aż tak wielki, ponieważ we wszechświecie ruch nie napotyka żadnego oporu, a po drugie Bóg oraz Inteligencje łatwo by sobie poradziły, nawet gdyby jakieś opory występowały.

Huygens_Christiaan_1698_The_celestial_worlds_discoverd_Page_15

Christiaan Huygens, Cosmotheoros, wyd. ang., 1698 (wartość paralaksy Słońca jest już mniej więcej znana)

Popularną wersję odpowiedzi znajdziemy u Besiana Arroya, dokora Sorbony i teologa miasta Lyonu, który w 1671 roku napisał książeczkę Le Prince Instruit (Władca oświecony), zadedykowaną samemu królowi, w której oświeca przyszłych polityków. Otóż Ziemia tkwi nieruchomo w środku, ponieważ jest ciężka. Zgodnie z fizyką Arystotelesa, gdyby nawet się poruszyła, to tylko ruchem prostoliniowym, bo ciężkie ciała spadają ku centrum świata. Gwiazdy zaś (tzn. wszelkie ciała niebieskie) „wedle swej naturalnej dyspozycji są lekkie, okrągłe i ustanowione, aby oświetlać Ziemię, toteż muszą się poruszać zgodnie ze swą naturalną skłonnością i dążnością, jaką dał im Wszechmocny”. Śmiechu warty jest Kopernik, w jego systemie jest tak, jakbyśmy przenosili komnaty, stoły i całe domostwa w pobliże pochodni, by je oświetlić, zamiast wnieść pochodnię do środka. Zwolennicy filozofii Arystotelesa nie wierzyli w jedność materii: dla nich ciała niebieskie były z eteru, nie miały więc bezwładności i stosunkowo nietrudno było nimi poruszyć. Inaczej to wyglądało dla tych, którzy jak Kepler i Galileusz, szukali jednolitych praw i jednolitej materii w całym wszechświecie.

Chrześcijanie tradycyjni wierzyli także, że cały świat stworzony został dla człowieka, jego rozmiary świadczyły o potędze Boga. Sceptycy widzieli to nieco inaczej. Cyrano de Bergerac pisał: „Dorzuć pan do tego nieznośną a właściwą ludziom pychę, która wmówiła im, że Naturę dla nich jedynie stworzono, jak gdyby ktoś mógł dać wiarę, że Słońce, olbrzymie ciało 434 razy większe od Ziemi [chodzi o objętość – J.K.], zapalono tylko z tej racji, aby dojrzewała ich nieszpułki i aby obradzała kapusta” (Tamten świat, przeł. J. Rogoziński). Bernard Le Bovier de Fontenelle dopowiadał: „Do owego szalonego Ateńczyka niejako podobni jesteśmy, który sobie uroił, że wszystkie okręty do portu Pirejskiego przybijające do niego należały. Nasze szaleństwo w tym się wydaje, iż mniemamy, że cały świat dla naszych szczególnie stworzony został wygód, i gdy się pytamy filozofów, na co się przyda tak wiele gwiazd stałych, których jedna część też by czyniła skutki, które wszystkie razem czynią, odpowiadają ozięble, iż do ukontentowania oczu ich służą” (przeł. E. Dębicki, przekład uwspółcześniony. za: W. Voisé, Historia kopernikanizmu w dwunastu szkicach). Książkę Fontenelle’a przełożył na polski ksiądz pijar Eustachy Dębicki w 1765 roku, a więc osiemdziesiąt lat po jej napisaniu. W 1687 roku kwestię, co krąży wokół czego rozstrzygnął Isaac Newton. Stwierdził z pewną satysfakcją, że nikt dotąd nie miał racji, gdyż planety i Słońce krążą wokół wspólnego środka masy, więc ściśle biorąc także Słońce nie jest nieruchome.

W połowie wieku XVIII do przeszłości należały nie tylko fizyka Arystotelesa i boje o kopernikanizm, ale zdążył zapanować i upaść także kartezjanizm, i to nawet we Francji, gdzie był najmocniejszy. Nikt poważnie już nie wątpił w mechanikę Newtona. Rewolucja naukowa XVII wieku dopiero teraz zaczęła docierać także do Polski. Ksiądz Jędrzej Kitowicz, nie do końca świadomie, daje świadectwo potwornego zacofania, z jakiego zaczęto się wówczas wydobywać:

W akademiach zaś publicznych, czyli generalnych, jako to krakowskiej, zamojskiej i wileńskiej, prócz nauk dopiero wyliczonych były nadto: nauka matematyki wszelkiego rodzaju, astrologii, geografii, geometrii, kosmografii, do tego: jurisprudencji, medycyny, i zwały się te akademie universitates. Co się tycze ogółem filozofii – tej patriarchów nie było więcej jak dwóch: Arystoteles i św. Tomasz, ponieważ na wszystkich dysputach nie tłomaczyli się inaczej walczący z sobą, tylko albo „iuxta mentem Aristotelis”, albo „iuxta mentem divi Thomae”. W akademiach kto się promował do godności doktorskiej w filozofii, musiał przysięgać, jako inaczej nie będzie trzymał i uczył, tylko „iuxta mentem divi Thomae”; ci tedy, którzy się trzymali zdania Arystotelesa, zwali się peripatetici, a którzy św. Tomasza, zwali się thomistae.

Pierwsi pijarowie jakoś około roku 1749 czyli trochę wyżej odważyli się wydrukować w jednym kalendarzyku politycznym niektóre kawałki z Kopernika, dowodzące, że się ziemia obraca, a słońce stoi. Czego ledwo dostrzegli jezuici, nie omięszkali i swoich rozumów, co ich tylko mieli najbystrzejszych, użyć przeciwko pijarom, ciężkim przeciwnikom swoim, ale też inne zakony przeciw nim poburzyć o takową hypothesim, czyli zdanie dawnej nauce przeciwne. Rozruch ten po szkołach był na kształt pospolitego ruszenia przeciwko pijarom; wydawali książki zbijające takową opinią, zapraszali pijarów na dysputy i najwięcej z tej materii pijarom dokuczeć usiłowali. Ci atoli, coraz nowy jaki kawałek wyrwawszy z teraźniejszych wodzów filozoficznych: Kopernika, Kartezjusza, Newtona, Leibniza, dokazali tego, że wszystkie szkoły przyjęły neoteryzm, czyli naukę recentiorum [nowszych autorów], według której ziemia się obraca koło słońca, nie słońce około ziemi, tak jak pieczenia obraca się koło ognia, nie ogień koło pieczeni. Koloru nie masz żadnego w rzeczach, tylko te barwy, które na nich widziemy: białe, czarne, zielone, czerwone, żółte etc., sprawuje temperament oczu i światła, czego jest wielkim dowodem jabłko na przykład, w dzień zielone, które toż samo przy świecach wydaje się granatowe; że ból, świerzbienie i inne czucia nie mają swego placu w ciele, tylko w duszy, ponieważ ciało bez duszy nic nie czuje. (Opis obyczajów za panowania Augusta III, rozdział O szkołach publicznych).