Johannes Kepler: Jak działa ludzkie oko? (1602-1604)

Jesienią roku 1602 Johannes Kepler, „matematyk” cesarza Rudolfa II (czyli nadworny astronom), bronić się musiał przed posądzeniami o lenistwo. Chodziło o zadanie obliczenia nowych tablic astronomicznych na podstawie obserwacji zmarłego niedawno Tychona Brahego. Zięć duńskiego astronoma, Franz Gansneb Tengnagel, parający się amatorsko astronomią, starał się przejąć to zadanie, ale głównie chodziło mu w tym o cenny zbiór obserwacji teścia, za które oczekiwał zapłaty u dworu. Tengnagel nie potrafił obliczać żadnych tablic, a Kepler był z pewnością jedynym uczonym zdolnym do zreformowania astronomii tak, żeby tablice owe były coś warte. Broniąc się przed zarzutami, Kepler zobowiązał się do napisania dwóch dzieł. Jedno z nich, Komentarze o ruchach Marsa, gotowe miało być na najbliższą Wielkanoc, drugie zaś – Optyczna część astronomii, już za osiem tygodni.

Prace te okazały się znacznie trudniejsze, niż to się zawsze optymistycznemu Keplerowi wydawało: książkę optyczną skończył dopiero pod koniec następnego roku (ukazała się w roku 1604), książka astronomiczna, Astronomia nova, ukazała się dopiero w 1609 roku. Wydłużenie terminów brało się z gruntowności uczonego, który nigdy nie poprzestawał na łatwych osiągnięciach i szedł w swych badaniach dużo dalej, niż potrafili to zrozumieć i zaakceptować jego koledzy. Obie książki były rewolucyjne: optyczna wyjaśniła rolę oka w widzeniu, astronomiczna zawierała odkrycie eliptycznego kształtu orbity Marsa.

Pierwszym zagadnieniem optycznym, którym zajął się Kepler jeszcze w Grazu, było tworzenie się obrazu w ciemni optycznej – camera obscura. Oto jak udało mu się rozwikłać ten problem:

(…) odwołałem się do własnych obserwacji w trzech wymiarach. Umieściłem w górze książkę tak, by zajęła miejsce świecącego ciała. Między nią a podłogą ustawiłem stolik mający wieloboczny otwór. Następnie przeciągnąłem nitkę z jednego rogu książki poprzez otwór aż na podłogę; jej koniec znalazł się na podłodze w takim punkcie, że nitka ocierała się o brzegi otworu; zakreśliłem wytworzone w taki sposób punkty i utworzyłem na podłodze figurę podobną do otworu. Podobnie za pomocą nitki przywiązanej do drugiego, trzeciego i czwartego rogu książki a następnie do pewnej liczby punktów wzdłuż jej krawędzi, na podłodze wynikła z tego pewna liczba zakreślonych figur w kształcie otworu, które razem utworzyły wielką czworokątną figurę kształtu książki.

Bardzo możliwe, że metoda Keplera wzorowana była na procedurach opisanych przez Alberta Dürera w jego traktacie Unterweisung der Messung mit dem Zirkel und Richtscheit („Nauka mierzenia za pomocą cyrkla i liniału”, 1525). Książka Dürera była swego rodzaju praktycznym podręcznikiem geometrii przeznaczonym dla rysowników, architektów i rzemieślników. Posługując się nitkami Kepler ustalił, że każdy punkt przedmiotu jest w ciemni optycznej odwzorowywany na obraz otworu tego urządzenia, a przez nałożenie się takich obrazów otworu tworzy się obserwowany przez nas obraz przedmiotu. W ten sposób, jeśli powiedzmy otwór będzie miał kształt trójkąta, a obserwowanym przedmiotem będzie słońce, to każdy punkt słońca będzie odwzorowany jako trójkąt i z nałożenia się takich trójkątów powstanie ostatecznie obraz słońca, który będzie oczywiście okrągły, a nie trójkątny. Obraz ten będzie także nieco większy i tym bardziej rozmyty, im większa jest średnica otworu. Wyjaśniało to wyniki przeprowadzonych w Grazu obserwacji zaćmienia Słońca. Patrząc bezpośrednio na Słońce widać było wówczas ostro zakończony sierp, natomiast obraz Słońca dawany przez ciemnię optyczną miał zaokrąglone krawędzie. Kepler nie był pierwszym, który zrozumiał sposób działania camera obscura, ale zrobił to niezależnie od innych i pierwszy miał opublikować swoje wyniki.

Panujące wówczas poglądy na widzenie wywodziły się od Alhazena (Ibn al-Hajsama), islamskiego uczonego urodzonego w Basrze mniej więcej wtedy, kiedy Mieszko zaczął myśleć o chrzcie Polski. Światło wedle jego teorii wpadało do oka prostopadle (tylko takie promienie dawały wkład do widzenia), a promienie załamywały się potem tak, aby powstał zmmniejszony obraz zewnętrznego przedmiotu. Promienie świetlne nie przecinały się wewnątrz oka, gdyż wtedy powstałby obraz odwrócony i widzielibyśmy wszystko „do góry nogami”. Obraz był także mały, mógł się więc zmieścić w nerwie i przedostać do mózgu – wyobrażano go sobie dość dosłownie jako mały obrazek przenoszony aż do mózgu.

Rysunek za Davidem C. Lindbergiem, Theories of Vision from Al-Kindi to Kepler.

W ciągu kilkudziesięciu lat drugiej połowy XVI wieku ukazało się sporo książek traktujących o budowie ciała ludzkiego na podstawie przeprowadzanych sekcji, a dzięki wynalazkowi druku oraz drzeworytom wyniki tych badań można było przedstawiać w postaci plansz i rysunków. Kepler korzystał z pracy Felixa Plattera, profesora medycyny z Bazylei, zatytułowanej De corporis humana structura et usu („O budowie i funkcjonowaniu ciała ludzkiego”, 1583), będącej w zasadzie zbiorem plansz anatomicznych z dodanym krótkim komentarzem. Używał także dzieła Anatomia Pragensis („Anatomia praska”) znanego mu osobiście i zaprzyjaźnionego z nim Jana Jesenskiego. Uważano wówczas przewąnie, że soczewka oczna, „humor krystaliczny”, odczuwa bezpośrednio światło i kolor, a ponieważ jest połączona z resztą oka i nerwem ocznym, przekazuje ten obraz dalej. Tymczasem Platter pokazał, że soczewka nie jest połączona z nerwem ocznym i siatkówką. Kwestia ta nie była zresztą jednoznacznie rozstrzygnięta przez anatomów, Jesensky różnił się tu od Plattera i Kepler przedłożył pogląd uczonego z Bazylei nad opinię swego przyjaciela.

Fragment planszy Plattera, Kepler zreprodukował ją w swoim dziele.

W miejsce koncepcji promieni prostopadłych Kepler zaproponował tworzenie się obrazu na siatkówce oka. „Widzenie zachodzi, kiedy obraz całej połowy sfery świata przed okiem (…) tworzy się na czerwonawej powierzchni siatkówki.” Promienie od przedmiotu padające w różnych punktach soczewki oka są przez nią załamywane w taki sposób, że skupiają się w punkt dokładnie na siatkówce, na tylnej ściance oka. Dzięki temu każdy punkt przedmiotu daje punktowy obraz na siatkówce. Wcześniej zbadał tworzenie się obrazu w kulistej soczewce zarówno teoretycznie, jak i eksperymentalnie (używając do doświadczeń kulistych szklanych kolb na mocz napełnionych wodą).

Cała ta koncepcja mechanizmu widzenia była pod wieloma względami rewolucyjna. Oko stawało się tylko przyrządem optycznym, zamiast być narządem zmysłów reagującym na swojej zewnętrznej powierzchni na światło. W ten sposób optyka oka stawała się częścią fizyki, podobnie jak dziś optyka aparatu fotograficznego. Część światłoczuła została przesunięta na siatkówkę, tam właśnie miał się wytwarzać obraz i to odwrócony. Był to rzeczywisty obraz, który Kepler nazwał pictura – można by go dostrzec na powierzchni siatkówki, gdyby dało się tam umieścić jakiegoś obserwatora. Kepler nie zamieścił żadnego rysunku tej sytuacji, ale ideę jego teorii dokładnie przedstawia rysunek z dzieła Kartezjusza La Dioptrique z roku 1637. Mamy tam nawet dodatkowego obserwatora oglądającego obraz na siatkówce monstrualnie wielkiego oka.

Tworzenie się obrazu w oku według teorii Keplera. (Rysunek z La Dioptrique Kartezjusza.)

Obraz na siatkówce jest jednak, niestety, odwrócony. Kepler niełatwo pogodził się z tą konsekwencją swojej teorii, pisze, że męczył się bardzo pragnąc wykazać, że promienie raz jeszcze się po drodze przecinają dając ostatecznie obraz prosty. Niezrozumiałe było, czemu nie widzimy wszystkiego do góry nogami. Powstawało też pytanie, jak to się dzieje, że stosunkowo duży obraz na siatkówce zostaje przesłany cienkim nerwem optycznym do mózgu. Teoria Keplera rodziła wyraźne kłopoty dla wciąż zalążkowej fizjologii widzenia. Wyraźnie rozdzielona została jednak część optyczna od części fizjologicznej widzenia: aż do utworzenia się obrazu na siatkówce mamy do czynienia z optyką, a co się dzieje z tym obrazem dalej, to pozostaje już w gestii fizjologów. Co więcej, obrazami rzeczywistymi, takimi jak na siatkówce, można zajmować się w sposób obiektywny: mierzyć ich położenie, rozmiary itd.

Ze ściśle technicznego punktu widzenia Kepler zbudował optykę geometryczną z jej wykreślaniem biegu promieni i szukaniem punktów przecięcia – wszystko to, czego do dziś uczy się w szkołach. Teoria Keplera wymagała rozpatrzenia biegu promieni przez ośrodek o kształcie zbliżonym do kuli. Kepler wykazał, że jeśli kulę taką przesłonimy przesłoną (odgrywającą rolę źrenicy) to będzie ona ogniskować promienie w jakimś punkcie. Będzie więc zachowywać się jak soczewka. Oczywiście taki model kulistego ośrodka z przesłoną nie jest dokładnym przedstawieniem gałki ocznej, ale Kepler argumentował, że zachowuje on najważniejsze cechy rzeczywistej sytuacji i jest wystarczający do jego celów.
Praktyczną konsekwencją pracy Keplera było wyjaśnienie, jak działają okulary korekcyjne. Okulary poprawiające wzrok stosowane były od kilkuset lat, pojawiły się już w XIII wieku, początkowo wytwarzano tylko soczewki wypukłe przeznaczone dla dalekowidzów, zwykle osób starszych (umożliwiło to wielu uczonym kontynuowanie pracy także w starszym wieku). W XV wieku zaczęto także szlifować soczewki wklęsłe korygujące wadę krótkowzroczności u osób młodych. Okulary były z początku przedmiotem zbytku i powodem do dumy dla swych posiadaczy, jak wnosić można choćby z przedstawień w sztuce: głowa kanonika w okularach wyrzeźbiona jest na fasadzie katedry w Meaux niedaleko Paryża (XIV wiek), van Eyck umieścił okulary na swoim słynnym obrazie Madonny kanonika van der Paele. Do tej pory stosowano jednak okulary jako wynalazek czysto praktyczny, nie rozumiejąc istoty ich działania. Praca Keplera otworzyła drogę do naukowego badania kwestii wad wzroku u ludzi. Umożliwiła też kilka lat później zrozumienie, jak działa teleskop astronomiczny.

Ściśle techniczne osiągnięcie dotyczące działania oka miało też ważne konsekwencje poznawcze i filozoficzne. Oto bowiem, używając wzroku, odwołujemy się w istocie do obrazów złożonych w całość przez mózg. Dociera do nas ze świata zestaw plamek, pikseli na siatkówce, które muszą dopiero zostać przetworzone w kształt drzewa albo znajomej twarzy. Wszelkie poznanie jest więc znacznie mniej bezpośrednie, niż to się dotąd wydawało. Cztery wieki później zaczynamy powoli rozumieć, jak z impulsów przewodzonych przez neurony mózg składa wyobrażenie tego, co widzimy. W istocie ostro widzimy tylko za pomocą plamki żółtej, niewielkiego fragmentu siatkówki, połączonego niewielką liczbą neuronów tworzących ciało kolankowate boczne z korą wzrokową. Ścieżka między okiem a mózgiem jest więc bardzo wąska i wciąż omiatamy wzrokiem otoczenie, aby zebrać potrzebne informacje. To, co widzimy, jest głównie kreacją naszego mózgu, o czym dobrze wiedzą śledczy, mający na codzień do czynienia z naocznymi świadkami wydarzeń.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s