Sny Kartezjusza (10/11 listopada 1619)

Z okazji czterechsetlecia snów Kartezjusz pozwalam sobie powtórzyć wpis sprzed ponad trzech lat.

Ludzie, a także i całe społeczeństwa robią sobie czasem wakacje od rozumu i popełniają błędy, mimo iż wiedzą, że postępują źle i nierozsądnie. Przedkładają jednak chwilowe upojenie bliskością innych, podobnie czujących, nad ustawiczny wysiłek chłodnego namysłu. Nie pomagają wówczas żadne argumenty ani statystyki. Na ekspertów patrzy się jak na błaznów bądź płatnych zdrajców. Ludzi mądrych uważa się za głupców albo sklerotyków. Największe głupstwa, a nawet szaleństwa prowadzące do zbrodni, zaczynały się wśród powszechnego entuzjazmu. Pod koniec czerwca 1914 roku serbski nacjonalista zastrzelił arcyksięcia Franciszka Ferdynanda i jego żonę Zofię. Uchroniło to być może Puszczę Białowieską przed wytrzebieniem zwierzyny (arcyksiążę był fanatykiem myślistwa), lecz incydent ten uruchomił międzynarodowe domino: wszyscy wszystkim zaczęli stawiać jakieś ultymatywne żądania i wypowiadać wojnę. Latem 1914 roku w całej Europie żegnano na dworcach kolejowych radosnych młodzieńców udających się na krótką – tak się wszystkim zdawało – męską przygodę wojenną.

 

Jesienią roku 1918 wracało ich o siedemnaście milionów mniej i nikt się już nie cieszył: ani zwycięzcy, ani pokonani. W roku 1933 entuzjazm milionów Niemców zagłuszył wszelkie wątpliwości i skrupuły, jakie powinien wzbudzić sposób rządzenia nazistów, jak i sama osoba ich paranoicznego Führera. Cierpieli zresztą „jedynie” Żydzi, komuniści, homoseksualiści i liberałowie – nie było się więc czym przejmować. Dumny naród niemiecki mógł wreszcie wziąć odwet na pogardzanej Europie. Nastrój udzielał się zresztą wszystkim, nawet w biednej, słabej i pełnej analfabetów Polsce wykrzykiwano, że nie oddamy ani guzika – i też bijano Żydów, bo byli bezbronni.

Być może znowu wchodzimy w okres „historii spuszczonej z łańcucha” i tańca na wulkanie. Ostatecznie okresy spokoju i choćby względnego dostatku nigdy nie były dniem powszednim historii, częstsze były plagi, wojny, choroby, zamieszki i głód. Niektórzy próbowali wśród powszechnego zamętu robić coś pożytecznego. Na przełomie roku 1916 i 1917 przebywający na froncie wschodnim astronom Karl Schwarzschild napisał dwie niezmiernie ważne prace na temat Einsteinowskiej teorii grawitacji. Rozwiązanie Schwarzschilda dotyczyło pola grawitacyjnego sferycznej masy, np. gwiazdy. Ani Einstein, ani Schwarzschild, który kilka miesięcy później umarł, nie rozumieli wówczas, jak wielkie znaczenie ma owo rozwiązanie – opisuje ono bowiem czarną dziurę, jeden z najosobliwszych obiektów w przyrodzie. Młody lekarz Tadeusz Żeleński, zajmował się w roku 1917 przekładaniem Kartezjusza na polski, starając się zaszczepić rodakom coś z francuskiej klarowności myślenia i prostej elegancji stylu.

 

Nie zapomnę tego wrażenia… Było to rok temu, w lecie, z początkiem czwartego roku wojny. Siedziałem w mojej izdebce dyżurnego lekarza wojskowej stacji opatrunkowej, i korzystając z chwilowej bezczynności, pracowałem nad pierwszymi rozdziałami tej książki. Tuż prawie pod oknami ochoczo rżnęła orkiestra, odprowadzając kilka marszkompanii, jadących, w ślicznych nowych butach, na „włoski front”. Na fali trywialnej melodii, myśl Descartes’a pędziła wartko, skocznie, radośnie, tak iż ledwo piórem mogłem jej nadążyć. Doznawałem szczególnego uczucia. Nigdy nie mam zbyt mocnego przeświadczenia o rzeczywistości zewnętrznego świata – w tej chwili miałem go mniej niż kiedykolwiek…

Rozprawa o metodzie ukazała się wraz z końcem wojny, pod opaską: „Tylko dla dorosłych”. Był to żarcik tłumacza, który chciał w ten sposób dotrzeć do niefilozoficznych czytelników. Rozmyślania swe Kartezjusz rozpoczął w roku 1619, podczas zupełnie innej wojny. Także i tamta wojna rozpoczęła się od zdarzenia dość małej wagi: oto z zamku na Hradczanach w Pradze rozeźleni protestanci wyrzucili przez okno dwóch przedstawicieli cesarza, którzy nie chcieli się zgodzić na budowanie kościołów, mimo że formalnie zagwarantowana była swoboda wyznania. Nieszczęśni wysłannicy przeżyli upadek z wysokości kilkunastu metrów – wedle katolików stało się to dzięki aniołom, które działając w czasie rzeczywistym, złagodziły skutki grawitacji, natomiast nieokrzesani protestanci przypisywali ten efekt kupie gnijących odpadków, nagromadzonych pod oknami wielkiej sali jadalnej zamku. Wojna nie zakończyła się żadnym miękkim lądowaniem, toczyła się przez trzydzieści lat, pustosząc znaczną część środkowej Europy. W zasadzie było to starcie dwóch głównych odmian chrześcijaństwa walczących o to, która z nich bliższa jest nauce Jezusa Chrystusa: czy katolicy przechowujący tradycję, w której niezmienność święcie wierzyli, czy protestanci, starający się samodzielnie zgłębiać tekst Pisma św. i odrzucający takie magiczne atrybuty religii, jak święte obrazy, relikwie, czy kult świętych. Kiedy obie strony wierzą niezachwianie we własne racje, tylko wyczerpanie zasobów może położyć kres konfliktowi. O początkach swoich rozmyślań pisał Kartezjusz następująco:

Byłem wówczas w Niemczech, dokąd powołały mnie wojny, które ciągną się tam jeszcze. Kiedy wracałem z koronacji cesarza [Ferdynanda II we Frankfurcie we wrześniu 1619 r.] do armii, początek zimy zatrzymał mnie na kwaterze, gdzie, nie znajdując żadnego towarzystwa, które by mi odpowiadało, i nie mając zresztą, na szczęście, trosk ani namiętności, które by mnie mąciły, siedziałem przez cały dzień zamknięty sam w ciepłej izbie, za jedyną rozrywkę zabawiając się z własnymi myślami. Jedną z pierwszych myśli było spostrzeżenie, że często dzieła złożone z rozmaitych części i wykonane ręką rozmaitych mistrzów mniej są doskonałe niż te, nad którymi pracował tylko jeden człowiek. Tak widzimy, że budowle, które jeden architekt podjął i wykonał, są zazwyczaj piękniejsze i lepiej rozmieszczone niż te, które wielu ludzi starało się skleić, posługując się starymi murami zbudowanymi w innych celach. (przeł. T. Żeleński-Boy)

Kartezjuszowi marzyła się więc nauka będąca dziełem jednego autora, jak poemat albo dzieło historyczne. Po części wynikało to chyba z jego temperamentu, trochę może ze swoistej wielkopańskiej wyniosłości w sferze intelektu – nie dopuszczał bowiem myśli, by ktokolwiek inny mógł dokonać czegoś ważnego w obszarze, który jego samego zajmował. Dlatego np. lekceważył dokonania Galileusza na polu mechaniki ani nie uważał za stosowne wspomnieć o tym, co zawdzięczał Willebrordowi Snellowi (prawo załamania światła) albo Isaakowi Beeckmanowi. Francis Bacon wyobrażał sobie naukę jako wielkie biuro patentowe użytecznych wynalazków, Kartezjusz sądził, że liczą się wybitne jednostki i ich myśli, a więc raczej konstrukcja niż detale. Znalazł naśladowców, pycha filozofów tworzących systemy osłabnąć miała dopiero w XX wieku. Podział na naukę i humanistykę przebiega zresztą do dziś w tym samym miejscu: jeśli ważniejszy jest indywidualny styl autora niż to, co mówi, i jeśli może on wybierać z tradycji dowolne elementy, które samodzielnie interpretuje, to mamy do czynienia z humanistyką. W nauce rządzą znacznie surowsze reguły: musimy znać ściśle określony kanon uznanej wiedzy (zazwyczaj z drugiej ręki), liczą się natomiast bezosobowe dokonania, dowód matematyczny czy eksperyment geniusza powtórzyć może każdy wykształcony specjalista i stanowi to wręcz warunek, aby praca była akceptowalna. Zapewne dlatego w nauce tak zażarcie toczą się spory o priorytet: inne cechy indywidualne roztapiają się w podręcznikach i z czasem coraz trudniej odróżnić wkład konkretnych uczonych. Kartezjusz miał nadzieję połączyć oba rodzaje działalności i stworzyć gmach wiedzy, którego żaden sceptycyzm nie mógłby zburzyć. Prawda jest tylko jedna, zatem i jej odkrywca w zasadzie musi być jeden, inni skazani są na pisanie gloss i uzupełnień. W listopadzie 1619 roku dwudziestotrzyletni uczony kwaterował w Neuburgu. Był żołnierzem zaciężnym księcia Bawarii, nie bardzo mu zależało na wygranej jednej albo drugiej strony, przedtem służył w Holandii. Czekano na cieplejszą porę roku, by na nowo podjąć działania zbrojne.

Na kwaterze unikał rozmów i pijatyk, którym oddawali się jego kompani, mało wychodził, całymi dniami rozmyślał nad nową podstawą wiedzy. Nie stworzył jej od razu, zapamiętał jednak i zapisał trzy sny, jakie miał w nocy z 10 na 11 listopada 1619 roku. Zarys racjonalnej filozofii objawił się więc w sposób zgoła nieracjonalny, uczony wierzył, że sny mogą być zsyłane przez Boga albo demony, to Stwórca w ostatecznym rachunku miał gwarantować, że wszystko to, co tu widzimy i przeżywamy nie jest tylko jakimś uporczywym sennym majakiem. W pierwszym śnie pojawiły się jakieś zjawy tak straszne, że zmuszony był kroczyć mocno przechylony na lewą stronę, gdyż z prawej strony czuł niezmierną słabość. Zawstydzony sytuacją, młodzieniec spróbował się wyprostować, wtedy jednak zawiał potężny wiatr w formie wiru i okręcił go kilkakroć na lewej nodze. Na swej drodze spostrzegł kolegium (może La Flèche, gdzie się uczył?) i zapragnął się w nim schronić. Miał zamiar dotrzeć do kościoła, aby się pomodlić. Minął znajomą osobę, lecz jej nie pozdrowił; kiedy chciał naprawić ten lapsus, nie mógł się cofnąć, ponieważ znowu zaczął wiać silny wiatr w kierunku kościoła. Spotkał też innego znajomego, który przekazał mu dla pana N. zamorski owoc, przypominający melona. Wszyscy inni widziani we śnie poruszali się i zachowywali normalnie, jedynie on jeden doświadczał trudności w utrzymaniu równowagi. Niebawem się ocknął i spostrzegł, że leży na lewym boku. Sądząc, że sen może być dziełem złego demona, uczony obrócił się na prawy bok i jął się modlić, pamiętając, iż w oczach Boga winny jest wielu grzechów, które popełniał w skrytości, tak aby ludzie ich nie widzieli. Po mniej więcej dwóch godzinach rozmyślań nad dobrem i złem zasnął znowu. We śnie usłyszał wielki huk, który wziął za grzmot pioruna. Natychmiast obudził się ze strachu i dostrzegł mrowie drobnych iskierek ognia wypełniających pokój. Zdarzało mu się już wcześniej doświadczać takiego zjawiska, teraz jednak zdecydowany był zaobserwować jego przyczyny i zamykając oraz otwierając oczy, śledził swoje wrażenia. Filozoficzny namysł rozproszył lęk i uczony zasnął po raz trzeci. Tym razem nie było się czego bać. Znalazł na stole książkę, o której nie pamiętał, by ją wcześniej tam położył. Otworzył ją, stwierdzając zaś, że to słownik, ucieszył się, ponieważ książka mogła się przydać. W tej samej chwili odkrył też obok inną książkę, także dla niego nową, nie mając pojęcia, skąd się wzięła. Była to antologia Corpus poetarum, otwarła mu się na wierszu zawierającym słowa: Quod vitae sectabor iter? (Jaką drogę życia wybiorę?). W tej samej chwili spostrzegł nieznanego mu męża, który wręczył mu, zachwalając jako znakomity, wiersz zaczynający się od słów Est et Non (Tak i nie). Zaczęli rozmawiać o tym wierszu, w którym Kartezjusz rozpoznał jedną z idylli Auzoniusza. Po chwili książki i dziwny interlokutor rozpłynęli się, a uczony, wciąż się nie budząc, uznał, że śni; ów słownik oznacza wszelką wiedzę zgromadzoną w jednym miejscu, antologia poezji, Corpus poetarum zaś – filozofię oraz mądrość złączone w jedno.

Wierzył bowiem, że wcale nie należy się dziwić, iż poeci, nawet bawiąc się płochymi rzeczami, wypowiadają wiele zdań poważniejszych, bardziej sensownych i lepiej wyrażonych niż to, co mówią filozofowie. Przypisywał to boskiemu natchnieniu oraz sile wyobraźni, która wydobywa zarodki mądrości (zawarte w umyśle każdego człowieka niczym iskry w krzemieniu) z większą łatwością i błyskotliwiej, niż czyni to rozum filozofów.

Rozmyślał też (ciągle we śnie) nad słowami Quod vitae sectabor iter? Po czym zbudził się, nie przestając się zastanawiać nad symboliką swoich snów. Sen trzeci, przechodzący w jawę, zapowiadać miał życie filozofa, który przezwycięży pokusy płynące z różnych stron. Nazajutrz filozof modlił się gorąco do Boga, by zechciał mu odsłonić swoją wolę, oświecić go i prowadzić w poszukiwaniu prawdy. Potem zwrócił się do Matki Bożej, polecając jej tę sprawę, najważniejszą w swym życiu, złożył też ślub, że przy okazji podróży do Italii, którą planował w najbliższym czasie, odbędzie pielgrzymkę do Loreto. Później zobowiązał się nawet, że od Wenecji odbędzie tę pielgrzymkę pieszo. Religijno-filozoficzny entuzjazm po kilku dniach opadł. Ostatecznie filozof nie wybrał się tej zimy do Italii. Nie znaczy to bynajmniej, że kiedy później ochłonął, przestał wierzyć w natchnienie płynące z owych snów. Epizod ten odegrał, jak się zdaje, ważną rolę w duchowym rozwoju Kartezjusza, choć trudno treść owych snów powiązać z jakimiś uchwytnymi etapami jego poglądów. Najprawdopodobniej rzecz dotyczy pewnych głębszych skojarzeń, poetyckiej strony filozofii, dopiero później umiał ją wyrazić w terminach jasnych, jak sądził, dla każdego człowieka obdarzonego rozsądkiem.

Wziąwszy pod rozwagę, iż zasady tych nauk winny być wszystkie zaczerpnięte z filozofii, w której nie znajdowałem jeszcze pewnych podstaw, pomyślałem, iż trzeba mi przede wszystkim starać się ustalić takowe, i że – wobec tego, iż jest to rzecz najważniejsza w świecie i w której najbardziej należało się obawiać pośpiechu i uprzedzenia – nie powinienem podejmować dzieła tego wprzódy, aż osiągnę wiek o wiele dojrzalszy niż dwadzieścia trzy lat, które wówczas liczyłem, i aż zużyję wiele czasu na przygotowanie się do tych zadań, tak wykorzeniając z umysłu wszystkie błędne mniemania, jakie przyjąłem weń przed tym czasem, jak też gromadząc rozmaite doświadczenia, aby zbierać materię dla moich rozumowań i ćwicząc się ciągle w metodzie, jaką obrałem, aby umocnić się w niej coraz więcej. (przeł. T. Żeleński-Boy)

Jeśli wierzyć wspomnieniom filozofa, rozpoczął on wtedy swego rodzaju eksperyment poznawczy, traktując życie i jego przypadki jako spektakl odbywający się na jego oczach i dostarczający materiału do przyszłej pracy filozoficznej. Ustalił sobie na okres przejściowy pewne reguły postępowania, ponieważ nie można zanegować wszystkiego jednocześnie. Sceptyczny po to, aby się ze sceptycyzmu raz na zawsze wydobyć, traktował te lata wędrówki jak prolog.

Upewniwszy się w ten sposób co do tych zasad i odłożywszy je na stronę wraz z prawdami wiary, które zawsze były na pierwszym miejscu w moich wierzeniach, osądziłem, iż, co do reszty mniemań, mogę swobodnie przystąpić do ich uprzątnięcia. Otóż, spodziewałem się lepiej z tym uporać, obcując z ludźmi, niż pozostając dłużej zamknięty w komorze, gdzie począłem wszystkie te myśli: zima tedy jeszcze niezupełnie dobiegła końca, a ja już puściłem się w drogę. I przez całe następne dziewięć lat czyniłem nie co innego, jak tylko tłukłem się tu i tam po świecie, starając się być raczej widzem niż aktorem we wszystkich komediach, jakie się na nim odgrywa. Rozważając w każdym przedmiocie szczególnie to, co mogłoby go uczynić podejrzanym i dać nam sposobność do omyłki, wykorzeniałem równocześnie z mego umysłu wszystkie błędy, jakie mogły się weń wprzódy wśliznąć. Nie iżbym w tym naśladował sceptyków, którzy wątpią, aby wątpić, i lubują się zawsze w niezdecydowaniu; przeciwnie, cały mój zamiar dążył tylko ku temu, aby się upewnić. Odrzucałem ruchomą ziemię i piasek, aby natrafić na skałę lub glinę. Udawało mi się to, jak sądzę, dość dobrze, ile że, starając się odkryć fałszywość lub niepewność twierdzeń, jakie rozpatrywałem, nie za pomocą słabych przypuszczeń, ale za pomocą jasnych i pewnych rozumowań, nie spotykałem wśród nich tak wątpliwego, z którego bym nie wyciągnął jakiejś dość pewnej konkluzji, choćby tej właśnie, iż nie zawiera ono nic pewnego. I jako burząc stare domostwo, zachowuje się zazwyczaj gruz, aby się nim posłużyć ku zbudowaniu nowego, tak niwecząc wszystkie mniemania, które osądziłem jako źle ugruntowane, czyniłem rozmaite spostrzeżenia i nabywałem mnogich doświadczeń, które posłużyły mi później ku zbudowaniu pewniejszych. Co więcej, ćwiczyłem się wciąż w metodzie, jaką sobie przepisałem; poza tym bowiem, iż starałem się na ogół prowadzić wszystkie moje myśli wedle reguł, zachowywałem sobie, od czasu do czasu, kilka godzin, które obracałem osobliwie na ćwiczenie się w trudnościach matematycznych lub nawet także w niektórych innych, które mogłem niejako upodobnić do matematycznych, odłączając je od zasad wszystkich nauk, które mi się nie zdawały dość pewne, jako ujrzycie, iż uczyniłem w wielu wyłożonych w tymże tomie. I tak, nie żyjąc na pozór w inny sposób niż ci, którzy, nie mając innego zadania, jak tylko pędzić życie lube a niewinne, starają się oddzielić przyjemności od błędów, i którzy, aby się cieszyć swoim wczasem nie nudząc się, zażywają wszystkich godziwych rozrywek, nie zaniedbywałem statecznego posuwania się w moim zamiarze i zapuszczania się w poznanie prawdy, być może więcej, niż gdybym był tylko czytał książki lub obcował z uczonymi. (przeł. T. Żeleński-Boy)

Niewiele wiemy o tych fascynujących Wanderjahre filozofa. Rok po nocy snów uczestniczył w oblężeniu i zdobyciu Pragi. Nie jest jasne, jaki był jego osobisty udział w walkach, ważnych dla losów Czech, wtedy to bowiem, w bitwie na Białej Górze, czescy protestanci ponieśli sromotną klęskę, która przesądziła o rządach Habsburgów na kilka wieków. Przywódcy powstania przeciw cesarzowi zostali ścięci, a ich głowy zatknięte na moście przez wiele lat stanowiły przestrogę dla potencjalnych buntowników. Palatyn reński, Fryderyk V, „zimowy król” Czech, uciekł, zabierając jedynie trochę klejnotów. Parę lat wcześniej na uroczystościach jego zaślubin z Anną Stuart odegrano Burzę Williama Shakespeare’a. Pochłonięty mocarstwowymi rojeniami młodzik, nie zwrócił zapewne żadnej uwagi na słowa Prospera:

Aktorzy moi, jak ci powiedziałem,

Były to duchy; na moje rozkazy

Na wiatr się lekki wszystkie rozpłynęły.

Jak bezpodstawna widzeń tych budowa,

Jasne pałace i wieże w chmur wieńcu,

Święte kościoły, wielka ziemi kula,

Tak wszystko kiedyś na nic się rozpłynie,

Jednego pyłku na ślad nie zostawi,

Jak moich duchów powietrzne zjawisko.

Sen i my z jednych złożeni pierwiastków;

Żywot nasz krótki w sen jest owinięty. —

 

 

Oko ludzkie i doskonałość stworzenia

Czy długa szyja żyrafy, zajęcze skoki albo narząd taki, jak ludzkie oko, są wytworem opatrznościowego inteligentnego projektu, czy też mogły ukształtować się samorzutnie wskutek ewolucji? Do połowy XIX wieku poglądy ewolucyjne były raczej odosobnione i niedopracowane. W żywych istotach widziano przykład mądrości bożej. Nawet arcyniedowiarek Voltaire pisał w swym Traité de métaphysique (czyli „Traktacie metafizycznym”):

Kiedy widzę zegarek, którego wskazówka pokazuje godziny, dochodzę do wniosku, że istota inteligentna rozmieściła sprężyny tej machiny w taki sposób, by wskazówka pokazywała godziny. Podobnie widząc sprężyny ciała ludzkiego, dochodzę do wniosku, że istota inteligentna rozmieściła jego narządy w taki sposób, aby mogło mieścić się i odżywiać przez dziewięć miesięcy w macicy; że oczy są mu dane, by widzieć, ręce, aby chwytać itd.

Voltaire nie był osobistym wrogiem Stwórcy, był deistą, sceptycznie zapatrującym się na Jego samozwańczych przedstawicieli na ziemi. Argument Voltaire’a podjęty został przez teologa Williama Paleya, który w zegarku znalezionym na wrzosowisku chciał widzieć dowód istnienia Boga, i to koniecznie w jego anglikańskiej odmianie. Rozwijana była, zwłaszcza w XIX wieku, tzw. teologia naturalna. Podkreślano w niej rozmaite przykłady dostosowania istot żywych albo ich poszczególnych narządów do swych funkcji i traktowano to jako przykłady inżynierskich talentów Stwórcy – był wszak wiek przemysłu napędzanego siłą pary, a niebawem także elektryczności, i inżynierowie byli w cenie.Także młody Charles Darwin znał i podzielał argumentację tego rodzaju, zanim odkrył inne rozwiązanie: żywe organizmy mogą ewoluować, a sukces odnoszą te z nich, którym najlepiej uda się wykorzystać swoje środowisko. Nie ma więc projektu ani zegarmistrza czy konstruktora, jest następowanie kolejnych innowacji, kumulujących się niekiedy w coś tak bliskiego doskonałości jak oko ludzkie albo gepard.

W liberalnym i dżentelmeńskim świecie Darwina dyskusja musiała być rzetelna, wyzbyta demagogii. Dlatego w dziele O powstawaniu gatunków uczony zamieścił cały rozdział poświęcony trudnościom własnej teorii – coś, czego jego dzisiejsi koledzy, tak usilnie walczący o przetrwanie w akademickim środowisku, z reguły nie robią, poprzestając na autoreklamie.

Pisze Darwin:

Przypuszczenie, że oko ze wszystkimi swoimi niezrównanymi urządzeniami do nastawiania ogniskowej na rozmaite odległości, do dopuszczania rozmaitych ilości światła oraz korygowania aberracji sferycznej i chromatycznej mogło powstać drogą doboru naturalnego, wydaje się – przyznaję to otwarcie – w najwyższym stopniu niedorzeczne. Rozum jednak mi mówi, że jeśli można dowieść istnienia licznych stadiów pośrednich, od skomplikowanego i doskonałego oka do prostego i niedoskonałego, przy czym każde z tych stadiów jest użyteczne dla posiadacza, jeżeli zmiany te są bardzo niewielkie i dziedziczne (…), i jeżeli takie zmiany lub modyfikacje narządu będą zawsze korzystne dla zwierzęcia przy zmianie warunków życia, wtedy trudności przyjęcia, iż doskonałe i skomplikowane oko może powstać drogą doboru naturalnego (…) nie sposób uznać za rzeczywistą. [przeł. Sz. Dickstein, J. Nussbaum, popr. J. Popiołek, M. Yamazaki, s. 175-176]

O „doskonałości” oka ludzkiego powiemy nieco dalej. Najpierw spójrzmy na samą kwestię ewolucji od plamki ocznej do rozbudowanej struktury z gałką oczną, soczewką i siatkówką.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Dość łatwo wyobrazić sobie kolejne kroki ewolucyjne i korzyści z nich płynące: lepiej mieć jakiś detektor światła niż go nie mieć (np. u fotosyntezującej eugleny światło jest źródłem energii, korzystnie jest zatem znaleźć się w miejscu o lepszym oświetleniu). Podobnie, lepiej jest otrzymywać jakąś, nawet niedokładną informację o kierunku, z którego dociera światło, niż nie otrzymywać jej wcale. Naturalne więc są struktury typu camera obscura: otwór, przez który wpada światło, a naprzeciwko tego otworka komórki światłoczułe. Oko tego rodzaju pozwala zaobserwować jakiś obraz przedmiotu, ma jednak słabą zdolność rozdzielczą i wpuszcza niewiele światła. Owady wykorzystują wiele egzemplarzy takich oczu jednocześnie. Lepszym rozwiązaniem jest poszerzenie otworu, którym wpada światło i umieszczenie soczewki wytwarzającej obraz na światłoczułym ekranie – siatkówce. Można wówczas regulować ilość światła docierającego do siatkówki oraz uzyskać obraz o dobrej zdolności rozdzielczej.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Obliczono, że cała ta ścieżka ewolucyjna może zmieścić się w czasie rzędu pół miliona lat, przyjmując, że u małych organizmów morskich pokolenie trwa mniej więcej jeden rok). Oznacza to, że kiedy wydarzyła się eksplozja kambryjska: pojawienie się licznych zwierząt około 540 mln lat temu, to praktycznie natychmiast (w skali geologicznej) powinny się też pojawić oczy. Wśród skamieniałości z kambru znajdują się trylobity i żywiące się nimi drapieżniki anomalocaris – zwierzęta te posiadały oczy złożone. Odkryto też, że u gatunków tak różnych, jak myszy, owady i ludzie wpływ na budowę oka ma ten sam gen regulujący PAX6, najwyraźniej mieliśmy więc wspólnych przodków.

Grafika: Trevor D. Lamb, Evolution of the Eye, „Scientific American”, July 2011

Dzielimy przeszłość oka ze śluzicą (hagfish) i minogiem (lamprey). W rozwoju embrionalnym oko człowieka powtarza owe wczesne stadia rozwojowe.

Parę słów na temat jakości optycznej naszego oka. Nie jest ono bynajmniej konstrukcją idealną. W zasadzie ostry obraz odbieramy tylko poprzez czopki skupione w plamce żółtej na powierzchni około 1 mm² – jest to zdecydowanie najbardziej drogocenny fragment naszego ciała. Daje to pole widzenia rzędu zaledwie 2°. Czopki zapewniają nam też widzenie barwne, ponieważ występują w trzech odmianach, które wrażliwe są (głównie) na czerwień, zieleń i błękit. Wrażenie obrazu przed oczami tworzone jest przez nasz mózg, wzrok skanuje bowiem nieustannie pole widzenia (dlatego tak ważna jest ruchomość gałki ocznej). Mamy tu więc do czynienia z dobrej jakości kamerą o niezwykle wąskim polu widzenia, która tworzy szerszy obraz dzięki swoim bezustannym ruchom i oprogramowaniu. Spróbujmy np. przeczytać poniższy tekst, a zobaczymy, że idea linearnego odczytywania tekstu literaz za literą nie jest całkiem poprawna.

Nie werizłeim że mzóg mżoe bez polbrmeu oczdaytć sowła z pporyzsteaimawni ltemirai blye tlkyo perwizsa i otanista błyy na sowich mecscijah

Aberracje sferyczna i chromatyczna (*), o których mówił Darwin nie są w przypadku oka tak trudne do skorygowania, jak mu się zdawało, a to dlatego, że najważniejsze są promienie blisko osi optycznej, dla nich aberracje te są niewielkie. Możemy natomiast przystosowywać się do zmiennych warunków oświetlenia dzięki kurczeniu i rozszerzaniu źrenic oraz możemy modyfikować ogniskową całego oka tak, by obraz przedmiotów położonych niezbyt blisko oka był wyraźny (konkretna odległość dobrego widzenia zależy od indywidualnych cech oka oraz wieku jego posiadacza). W obrębie plamki żółtej zdolność rozdzielcza oka zbliża się do granicy dyfrakcyjnej, tzn. teoretycznej zdolności rozdzielczej (por. John Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop).

Pod względem konstrukcyjnym oko ludzkie jest jednak zbudowane gorzej niż oko ośmiornicy.

Po lewej stronie mamy oko kręgowca. Włókna nerwowe (2) przechodzą w nim przed światłoczułą siatkówką (1). Cały ten bałagan przed siatkówką pogarsza oczywiście jakość obrazu. Nerwy skupiają się w w dodatku w wiązkę (nerw wzrokowy) (3) w taki sposób, że pozostaje obszar oka niewrażliwy na światło, tzw. plamka ślepa (4). To, że jej zwykle nie widzimy, jest czarodziejstwem mózgu. Po prawej stronie mamy znacznie porządniejszy inżyniersko projekt oka głowonoga, gdzie siatkówka jest umieszczona przed nerwami wzrokowymi, które nie zakłócają biegu światła i nie tworzą plamki ślepej.

Jeśli Stwórca starał się osiągnąć projekt idealny, to udało mu się go zrealizować w przypadku ośmiornic, nie ludzi. Przypomina się odpowiedź wybitnego biologa J.S.E. Haldane’a na pytanie pewnego teologa, czego na temat Boga można dowiedzieć się z badań biologicznych. „Że wykazuje nadmierne upodobanie do chrząszczy” – brzmiała odpowiedź. Jest to aluzja do faktu, że istnieje około miliona gatunków chrząszczy, z czego tylko część jest znana badaczom.

(*) Aberracja sferyczna to efekt nieogniskowania wszystkich promieni w jednym miejscu przez soczewkę o powierzchniach idealnie sferycznych. W oku nie mamy do czynienia z tak prostą sytuacją, ale problem nieogniskowania w jednym punkcie także występuje.

Aberracja chromatyczna pojawia się, ponieważ promienie różnych barw mają różne współczynniki załamania, nawet więc gdyby kształt soczewki został zaprojektowany w sposób idealny, dotyczyłoby to jedynie jednej barwy, dla innych obraz musiałby być nieco rozmyty.

A kromatikus aberráció jelensége.

Johannes Kepler: Jak działa ludzkie oko? (1602-1604)

Jesienią roku 1602 Johannes Kepler, „matematyk” cesarza Rudolfa II (czyli nadworny astronom), bronić się musiał przed posądzeniami o lenistwo. Chodziło o zadanie obliczenia nowych tablic astronomicznych na podstawie obserwacji zmarłego niedawno Tychona Brahego. Zięć duńskiego astronoma, Franz Gansneb Tengnagel, parający się amatorsko astronomią, starał się przejąć to zadanie, ale głównie chodziło mu w tym o cenny zbiór obserwacji teścia, za które oczekiwał zapłaty u dworu. Tengnagel nie potrafił obliczać żadnych tablic, a Kepler był z pewnością jedynym uczonym zdolnym do zreformowania astronomii tak, żeby tablice owe były coś warte. Broniąc się przed zarzutami, Kepler zobowiązał się do napisania dwóch dzieł. Jedno z nich, Komentarze o ruchach Marsa, gotowe miało być na najbliższą Wielkanoc, drugie zaś – Optyczna część astronomii, już za osiem tygodni.

Prace te okazały się znacznie trudniejsze, niż to się zawsze optymistycznemu Keplerowi wydawało: książkę optyczną skończył dopiero pod koniec następnego roku (ukazała się w roku 1604), książka astronomiczna, Astronomia nova, ukazała się dopiero w 1609 roku. Wydłużenie terminów brało się z gruntowności uczonego, który nigdy nie poprzestawał na łatwych osiągnięciach i szedł w swych badaniach dużo dalej, niż potrafili to zrozumieć i zaakceptować jego koledzy. Obie książki były rewolucyjne: optyczna wyjaśniła rolę oka w widzeniu, astronomiczna zawierała odkrycie eliptycznego kształtu orbity Marsa.

Pierwszym zagadnieniem optycznym, którym zajął się Kepler jeszcze w Grazu, było tworzenie się obrazu w ciemni optycznej – camera obscura. Oto jak udało mu się rozwikłać ten problem:

(…) odwołałem się do własnych obserwacji w trzech wymiarach. Umieściłem w górze książkę tak, by zajęła miejsce świecącego ciała. Między nią a podłogą ustawiłem stolik mający wieloboczny otwór. Następnie przeciągnąłem nitkę z jednego rogu książki poprzez otwór aż na podłogę; jej koniec znalazł się na podłodze w takim punkcie, że nitka ocierała się o brzegi otworu; zakreśliłem wytworzone w taki sposób punkty i utworzyłem na podłodze figurę podobną do otworu. Podobnie za pomocą nitki przywiązanej do drugiego, trzeciego i czwartego rogu książki a następnie do pewnej liczby punktów wzdłuż jej krawędzi, na podłodze wynikła z tego pewna liczba zakreślonych figur w kształcie otworu, które razem utworzyły wielką czworokątną figurę kształtu książki.

Bardzo możliwe, że metoda Keplera wzorowana była na procedurach opisanych przez Alberta Dürera w jego traktacie Unterweisung der Messung mit dem Zirkel und Richtscheit („Nauka mierzenia za pomocą cyrkla i liniału”, 1525). Książka Dürera była swego rodzaju praktycznym podręcznikiem geometrii przeznaczonym dla rysowników, architektów i rzemieślników. Posługując się nitkami Kepler ustalił, że każdy punkt przedmiotu jest w ciemni optycznej odwzorowywany na obraz otworu tego urządzenia, a przez nałożenie się takich obrazów otworu tworzy się obserwowany przez nas obraz przedmiotu. W ten sposób, jeśli powiedzmy otwór będzie miał kształt trójkąta, a obserwowanym przedmiotem będzie słońce, to każdy punkt słońca będzie odwzorowany jako trójkąt i z nałożenia się takich trójkątów powstanie ostatecznie obraz słońca, który będzie oczywiście okrągły, a nie trójkątny. Obraz ten będzie także nieco większy i tym bardziej rozmyty, im większa jest średnica otworu. Wyjaśniało to wyniki przeprowadzonych w Grazu obserwacji zaćmienia Słońca. Patrząc bezpośrednio na Słońce widać było wówczas ostro zakończony sierp, natomiast obraz Słońca dawany przez ciemnię optyczną miał zaokrąglone krawędzie. Kepler nie był pierwszym, który zrozumiał sposób działania camera obscura, ale zrobił to niezależnie od innych i pierwszy miał opublikować swoje wyniki.

Panujące wówczas poglądy na widzenie wywodziły się od Alhazena (Ibn al-Hajsama), islamskiego uczonego urodzonego w Basrze mniej więcej wtedy, kiedy Mieszko zaczął myśleć o chrzcie Polski. Światło wedle jego teorii wpadało do oka prostopadle (tylko takie promienie dawały wkład do widzenia), a promienie załamywały się potem tak, aby powstał zmmniejszony obraz zewnętrznego przedmiotu. Promienie świetlne nie przecinały się wewnątrz oka, gdyż wtedy powstałby obraz odwrócony i widzielibyśmy wszystko „do góry nogami”. Obraz był także mały, mógł się więc zmieścić w nerwie i przedostać do mózgu – wyobrażano go sobie dość dosłownie jako mały obrazek przenoszony aż do mózgu.

Rysunek za Davidem C. Lindbergiem, Theories of Vision from Al-Kindi to Kepler.

W ciągu kilkudziesięciu lat drugiej połowy XVI wieku ukazało się sporo książek traktujących o budowie ciała ludzkiego na podstawie przeprowadzanych sekcji, a dzięki wynalazkowi druku oraz drzeworytom wyniki tych badań można było przedstawiać w postaci plansz i rysunków. Kepler korzystał z pracy Felixa Plattera, profesora medycyny z Bazylei, zatytułowanej De corporis humana structura et usu („O budowie i funkcjonowaniu ciała ludzkiego”, 1583), będącej w zasadzie zbiorem plansz anatomicznych z dodanym krótkim komentarzem. Używał także dzieła Anatomia Pragensis („Anatomia praska”) znanego mu osobiście i zaprzyjaźnionego z nim Jana Jesenskiego. Uważano wówczas przewąnie, że soczewka oczna, „humor krystaliczny”, odczuwa bezpośrednio światło i kolor, a ponieważ jest połączona z resztą oka i nerwem ocznym, przekazuje ten obraz dalej. Tymczasem Platter pokazał, że soczewka nie jest połączona z nerwem ocznym i siatkówką. Kwestia ta nie była zresztą jednoznacznie rozstrzygnięta przez anatomów, Jesensky różnił się tu od Plattera i Kepler przedłożył pogląd uczonego z Bazylei nad opinię swego przyjaciela.

Fragment planszy Plattera, Kepler zreprodukował ją w swoim dziele.

W miejsce koncepcji promieni prostopadłych Kepler zaproponował tworzenie się obrazu na siatkówce oka. „Widzenie zachodzi, kiedy obraz całej połowy sfery świata przed okiem (…) tworzy się na czerwonawej powierzchni siatkówki.” Promienie od przedmiotu padające w różnych punktach soczewki oka są przez nią załamywane w taki sposób, że skupiają się w punkt dokładnie na siatkówce, na tylnej ściance oka. Dzięki temu każdy punkt przedmiotu daje punktowy obraz na siatkówce. Wcześniej zbadał tworzenie się obrazu w kulistej soczewce zarówno teoretycznie, jak i eksperymentalnie (używając do doświadczeń kulistych szklanych kolb na mocz napełnionych wodą).

Cała ta koncepcja mechanizmu widzenia była pod wieloma względami rewolucyjna. Oko stawało się tylko przyrządem optycznym, zamiast być narządem zmysłów reagującym na swojej zewnętrznej powierzchni na światło. W ten sposób optyka oka stawała się częścią fizyki, podobnie jak dziś optyka aparatu fotograficznego. Część światłoczuła została przesunięta na siatkówkę, tam właśnie miał się wytwarzać obraz i to odwrócony. Był to rzeczywisty obraz, który Kepler nazwał pictura – można by go dostrzec na powierzchni siatkówki, gdyby dało się tam umieścić jakiegoś obserwatora. Kepler nie zamieścił żadnego rysunku tej sytuacji, ale ideę jego teorii dokładnie przedstawia rysunek z dzieła Kartezjusza La Dioptrique z roku 1637. Mamy tam nawet dodatkowego obserwatora oglądającego obraz na siatkówce monstrualnie wielkiego oka.

Tworzenie się obrazu w oku według teorii Keplera. (Rysunek z La Dioptrique Kartezjusza.)

Obraz na siatkówce jest jednak, niestety, odwrócony. Kepler niełatwo pogodził się z tą konsekwencją swojej teorii, pisze, że męczył się bardzo pragnąc wykazać, że promienie raz jeszcze się po drodze przecinają dając ostatecznie obraz prosty. Niezrozumiałe było, czemu nie widzimy wszystkiego do góry nogami. Powstawało też pytanie, jak to się dzieje, że stosunkowo duży obraz na siatkówce zostaje przesłany cienkim nerwem optycznym do mózgu. Teoria Keplera rodziła wyraźne kłopoty dla wciąż zalążkowej fizjologii widzenia. Wyraźnie rozdzielona została jednak część optyczna od części fizjologicznej widzenia: aż do utworzenia się obrazu na siatkówce mamy do czynienia z optyką, a co się dzieje z tym obrazem dalej, to pozostaje już w gestii fizjologów. Co więcej, obrazami rzeczywistymi, takimi jak na siatkówce, można zajmować się w sposób obiektywny: mierzyć ich położenie, rozmiary itd.

Ze ściśle technicznego punktu widzenia Kepler zbudował optykę geometryczną z jej wykreślaniem biegu promieni i szukaniem punktów przecięcia – wszystko to, czego do dziś uczy się w szkołach. Teoria Keplera wymagała rozpatrzenia biegu promieni przez ośrodek o kształcie zbliżonym do kuli. Kepler wykazał, że jeśli kulę taką przesłonimy przesłoną (odgrywającą rolę źrenicy) to będzie ona ogniskować promienie w jakimś punkcie. Będzie więc zachowywać się jak soczewka. Oczywiście taki model kulistego ośrodka z przesłoną nie jest dokładnym przedstawieniem gałki ocznej, ale Kepler argumentował, że zachowuje on najważniejsze cechy rzeczywistej sytuacji i jest wystarczający do jego celów.
Praktyczną konsekwencją pracy Keplera było wyjaśnienie, jak działają okulary korekcyjne. Okulary poprawiające wzrok stosowane były od kilkuset lat, pojawiły się już w XIII wieku, początkowo wytwarzano tylko soczewki wypukłe przeznaczone dla dalekowidzów, zwykle osób starszych (umożliwiło to wielu uczonym kontynuowanie pracy także w starszym wieku). W XV wieku zaczęto także szlifować soczewki wklęsłe korygujące wadę krótkowzroczności u osób młodych. Okulary były z początku przedmiotem zbytku i powodem do dumy dla swych posiadaczy, jak wnosić można choćby z przedstawień w sztuce: głowa kanonika w okularach wyrzeźbiona jest na fasadzie katedry w Meaux niedaleko Paryża (XIV wiek), van Eyck umieścił okulary na swoim słynnym obrazie Madonny kanonika van der Paele. Do tej pory stosowano jednak okulary jako wynalazek czysto praktyczny, nie rozumiejąc istoty ich działania. Praca Keplera otworzyła drogę do naukowego badania kwestii wad wzroku u ludzi. Umożliwiła też kilka lat później zrozumienie, jak działa teleskop astronomiczny.

Ściśle techniczne osiągnięcie dotyczące działania oka miało też ważne konsekwencje poznawcze i filozoficzne. Oto bowiem, używając wzroku, odwołujemy się w istocie do obrazów złożonych w całość przez mózg. Dociera do nas ze świata zestaw plamek, pikseli na siatkówce, które muszą dopiero zostać przetworzone w kształt drzewa albo znajomej twarzy. Wszelkie poznanie jest więc znacznie mniej bezpośrednie, niż to się dotąd wydawało. Cztery wieki później zaczynamy powoli rozumieć, jak z impulsów przewodzonych przez neurony mózg składa wyobrażenie tego, co widzimy. W istocie ostro widzimy tylko za pomocą plamki żółtej, niewielkiego fragmentu siatkówki, połączonego niewielką liczbą neuronów tworzących ciało kolankowate boczne z korą wzrokową. Ścieżka między okiem a mózgiem jest więc bardzo wąska i wciąż omiatamy wzrokiem otoczenie, aby zebrać potrzebne informacje. To, co widzimy, jest głównie kreacją naszego mózgu, o czym dobrze wiedzą śledczy, mający na codzień do czynienia z naocznymi świadkami wydarzeń.

Pascal i Voltaire: niemożliwy dialog (1733)

Konflikt intelektualny i etyczny miedzy wiarą chrześcijańską a nowożytną nauką i wywodzącym się z Oświecenia stosunkiem do świata jest w istocie nieusuwalny. Albo stawiamy na pierwszym miejscu Boga, a ludzie i świat wydają nam się jedynie przemijającym dodatkiem, albo wierzymy, że wszystko, o co warto walczyć, zabiegać i się troszczyć, znajduje się tutaj, na ziemi. Albo dusza nasza łaknie wieczności, albo nie wierzymy w żadną duszę ani w żadną wieczność (choć możemy rozumieć samo łaknienie).

Dwudziesty piąty List filozoficzny Voltaire’a poświęcony został polemice z Blaise’em Pascalem, wybitnym uczonym i przenikliwym acz fanatycznym myślicielem religijnym. Pozostawił on po sobie szkic wielkiego dzieła apologetycznego, które przeznaczone było dla ludzi z jego sfery: wykształconych libertynów, zdolnych jednak do refleksji nad światem i kondycją ludzką. Celem Myśli było zwrócenie uwagi na nicość wewnętrzną człowieka, jego zagubienie, samotność, niezdolność do radzenia sobie z własnymi trudnościami. Pascal sądził, że taka introspekcja musi doprowadzić do wniosku, iż jesteśmy stworzeniami upadłymi, noszącymi w sobie dziedzictwo grzechu pierworodnego. Tym, którzy to zrozumieją, proponował swój słynny zakład: sytuacja człowieka w świecie przypomina hazardzistę, który ma z jednej strony do stracenia marne, pełne cierpień i ułudy życie doczesne, a z drugiej – może wygrać wieczność, nagrodę nieskończenie cenniejszą od wszystkiego, co może go spotkać na ziemi. Sam Pascal dużo chorował i był człowiekiem wewnętrznie udręczonym, który w jakimś momencie wszystkie siły skierował ku Bogu, wyrzekając się nawet swego wielkiego talentu matematycznego.

Voltaire’owi zakład Pascala wydawał się czymś niestosownym: skoro tylko jeden człowiek na milion ma zostać zbawiony, i w dodatku nie ma on na to najmniejszego wpływu, to jak można tej rzeszy nieszczęśników stawiać przed oczami obraz raju, jaki czeka zbawionych? Takim gadaniem można tylko tworzyć ateuszy. Nie podzielał też głębokiego wzruszenia wzniosłą tajemnicą grzechu pierworodnego:

Niedole życia nie są na gruncie filozofii dowodem upadku człowieka, podobnie jak niedole konia dorożkarskiego nie dowodzą, że kiedyś konie były wielkie i tłuste, i nigdy nikt nie siekł ich batem, i dopiero odkąd jeden z nich zjadł za dużo siana, wszyscy jego potomkowie zostali skazani na ciągnięcie dorożek.

Oto jeden z Pascalowskich obrazów sytuacji człowieka:

Widząc zaślepienie i nędzę człowieka, patrząc na cały wszechświat niemy i człowieka bez światła, zdanego samemu sobie, jak gdyby zbłąkanego w tym zakątku świata bez świadomości, kto go tam rzucił ani co tam robi, co się z nim stanie po śmierci, niezdolnego do jakiej bądź wiedzy, doznaję przerażenia jak człowiek, którego by przeniesiono uśpionego na opustoszałą i straszliwą wyspę i który by się obudził bez świadomości, gdzie jest, i bez sposobu wydobycia się stamtąd. I podziwiam, w jaki sposób może ktoś nie wpaść w rozpacz w tak opłakanym położeniu.

Odpowiedź Voltaire’a jest płaska jak stół, przypomina reakcję ciągle zajętego, robiącego plany i czynnego ekstrawertyka na wyznania kogoś pogrążonego w depresji. Cóż, ludzie bywają szczęśliwsi albo mniej szczęśliwi, tak samo zresztą jak zwierzęta.

Kiedy patrzę na Paryż albo Londyn, nie widzę żadnego powodu, by popadać w rozpacz, o której mówi pan Pascal; widzę miasto, które w niczym nie przypomina wyspy bezludnej, jest pełne ludzi, bogate, strzeżone przez policję, i ludzie są tu szczęśliwi w takim stopniu, w jakim leży to w ich naturze. (…) Postrzegać wszechświat jako karcer, a ludzi jako zbrodniarzy, których czeka egzekucja, to pomysł fanatyka. Wierzyć, że świat jest miejscem rozkoszy, gdzie powinniśmy zażywać jedynie przyjemności, to mrzonka sybaryty. Wierzyć, że ziemia, ludzie i zwierzęta są takie, jakie być powinny w porządku Opatrzności, to, jak sądzę, myśl człowieka mądrego.

Pascal bodaj pierwszy zwrócił uwagę, że ludziom trudno jest żyć chwilą teraźniejszą, stwarzają więc sobie rzeczywistość wirtualną.

Niechaj każdy zbada swoje myśli, ujrzy, iż wszystkie zaprzątnięte są przeszłością i przyszłością. Nie myślimy prawie zupełnie o teraźniejszości; a jeśli myślimy, to jeno aby zaczerpnąć z niej treść do snucia przyszłości. Teraźniejszość nie jest nigdy naszym celem; przeszłość i teraźniejszość to nasze środki; jedynie przyszłość jest naszym celem. Tak więc nie żyjemy nigdy, ale spodziewamy się żyć; gotujemy się wciąż do szczęścia, a co za tym idzie, nie kosztujemy go nigdy.

Odpowiedź Voltaire’a:

Gdyby ludzie byli dość nieszczęśliwi, aby zajmować się jedynie teraźniejszością, nikt by nie siał, nie budował, nie zadrzewiał, nikt by się o nic nie troszczył…

Pascal znał wiele osób poświęcających całe życie zabawie, szukaniu kolejnych rozrywek, grom hazardowym, polowaniom, wszystkiemu, co pomaga się zapomnieć. Nie potrafł wybaczyć ludziom tej wiecznej nieumiejętności stawienia czoła samym sobie.

Skąd pochodzi, iż ten człowiek, który dopiero co stracił jedynego syna i który przygnieciony procesami i kłopotami, dziś rano był jeszcze tak stroskany, nie myśli o tym w tej chwili? Nie dziwcie się: cały jest pochłonięty myślą, którędy przejdzie jeleń, którego psy ścigają z takim zapałem od sześciu godzin. Nie trzeba więcej! Choćby człowiek najbardziej był przejęty smutkiem, jeżeli można to uzyskać, aby go wciągnąć do jakiej zabawy, na ten czas już jest szczęśliwy. A znów człowiek choćby najszczęśliwszy, jeśli go nie rozerwie i nie pochłonie jakaś namiętność lub zabawka, która zabroni przystępu nudzie, stanie się niebawem markotny i nieszczęśliwy. Bez rozrywki nie ma radości; przy rozrywce nie ma smutku.

Na to Voltaire odpowiada:

Ten człowiek wspaniale się zachowuje: odwrócenie uwagi pewniej leczy ból niż chinina gorączkę; nie wińmy o to natury, która zawsze gotowa jest nas poratować.

Albo inny punkt sporu, żywy także dziś. Pascal za horror uważał już samą myśl o samobójstwie; odbierający sobie życie skazuje się na wieczne potępienie. Voltaire widzi jednak tę sprawę z doczesnego i praktycznego punktu widzenia. Zastrzegając się, że mówi en philosophe – z filozoficznego, a więc nie religijnego punktu widzenia – stwierdza po prostu, że kiedy człowiek niezdolny jest już służyć społeczeństwu, to nie uczyni mu żadnej krzywdy, umierając. Daje przykład:

Starzec ma kamienie i cierpi nieznośne bóle; mówią mu: „umrze pan, jeśli nie pozwoli się pan pokroić; jeśli pana pokroją, to będzie pan ględzić, ślinić się i niedomagać jeszcze przez rok, będąc ciężarem dla siebie i dla innych”.

Pascal na każdym kroku doszukuje się potwierdzenia religii i w Piśmie Świętym dostrzega prawdy, do których astronomowie doszli dopiero niedawno.

Ileż gwiazd, które nie istniały dla dawniejszych flozofów, odkryły nam lunety! Zaczepiano wręcz Pismo św. co do ilości gwiazd, powiadając: „Jest ich tylko tysiąc i dwadzieścia dwie, wiemy o tym”.

Na co Voltaire sucho odparowuje:

Jest pewne, że Pismo Święte w kwestiach fizyki trzyma się pojęć potocznych; na tej zasadzie przyjmuje ono, że Ziemia jest nieruchoma, Słońce się porusza itd. Gdy mówi, że gwiazdy są niezliczone, to nie przez wyrafinowanie astronomiczne, ale by się dopasować do przyjętych pojęć. (…) Nie zostało nam ono dane, aby z nas uczynić fizyków, i wszystko na to wskazuje, że Bóg nie objawił ani Habakukowi, ani Baruchowi, ani Micheaszowi, iż pewnego dnia pewien Anglik nazwiskiem Flamsteed umieści ponad siedem tysięcy gwiazd w swoim katalogu.

W duchowym universum Pascala wielkie znaczenie miały cuda, zamykające usta mędrkom. Podaje on przy tym zadziwiający argument: fałszywym cudom nikt by nie wierzył, gdyby nie było prawdziwych. „W ten sam sposób trzeba rozumować co do religii; nie byłoby bowiem możebne, aby ludzie wyroili sobie tyle fałszywych religii, gdyby nie istniała prawdziwa”.

Voltaire ripostuje:

Zdaje mi się, że natura ludzka wcale nie potrzebuje czegoś prawdziwego, by popaść w błąd. Przypisywano tysiąc fałszywych wpływów Księżycowi, zanim jeszcze ktokolwiek pomyślał o prawdziwym związku z przypływami morza. Pierwszy chory bez trudu uwierzył pierwszemu szarlatanowi. Nikt nie widział wilkołaków ani czarowników, a wielu w nich wierzyło. Nikt nie widział transmutacji metali, a wielu zostało zrujnowanych przez wiarę w kamień filozofczny. Czyż Rzymianie, Grecy, wszyscy poganie wierzyli w fałszywe cuda, których było u nich pełno, tylko dlatego że widzieli prawdziwe?

Blaise Pascal, któremu nawet uprawianie matematyki wydało się zajęciem zbyt frywolnym, jeszcze mniej miał zrozumienia dla poezji. Ogłosił, że poezja, w odróżnieniu np. od matematyki czy medycyny, nie ma żadnego celu i stąd biorą się owe sztuczne poetyckie zwroty w rodzaju: „wiek złoty, cud naszych dni, złowróżbny laur, piękna gwiazda” – tworzą one specjalną gwarę poetycką.

Voltaire odpowiada:

Nie powinno się mówić: piękność geometryczna albo piękność medyczna, ponieważ ani twierdzenie, ani przeczyszczenie nie działają przyjemnie na zmysły, a miano piękna nadaje się tylko rzeczom, które mogą czarować zmysły, takim jak muzyka, malarstwo, wymowa, poezja, regularna architektura itd. (…) Pan Pascal musiał mieć bardzo kiepski gust, mówiąc, że złowróżbny laur, piękna gwiazda i głupstwa w tym rodzaju są pięknościami poetyckimi.

Mamy też jeszcze jedną zasadniczą różnicę postaw obu wielkich pisarzy. Według Pascala: „Jeżeli jest Bóg, trzeba kochać tylko jego, a nie doczesne stworzenia”. Odpowiedź Voltaire’a nie jest wyłącznie wyrozumowanym stanowiskiem, ale jego głębokim przeświadczeniem:

Trzeba kochać, i to bardzo czule, stworzenia. Trzeba kochać ojczyznę, żonę, ojca, swoje dzieci. Tak bardzo trzeba je kochać, że Bóg zmusza nas, byśmy je kochali nawet wbrew sobie. Wszelkie inne zasady mogą z nas tylko zrobić nieludzkich rezonerów; ile w tym prawdy, widać w postępowaniu Pascala, który źle traktował swoją siostrę i odtrącił jej pomoc ze strachu, że będzie to wyglądało, jakby kochał stworzenie: można o tym przeczytać w jego biografii. Gdyby tak się należało zachowywać, co by się stało z ludzkim społeczeństwem?

Tekst Myśli w przekładzie T. Żeleńskiego (Boya).

Wstęp do sprawy Galileusza

Sprawa Galileusza była tyleż heroiczną, co bezskuteczną próbą zatrzymania czasu i naukowego postępu przez Kościół rzymski. Od czasu skazania Galileusza pojawił się wzór działania, powtarzający się aż do dziś: „nauki” Kościoła, interpretowane przez słabo zorientowanych w nauce teologów, utrzymywane jedynie siłą stojącej za nimi instytucji, wycofywały się stopniowo i chyłkiem z co bardziej oczywistych głupstw głoszonych jako prawdy objawione. Co nie znaczy, że działo się to szybko. Jak zauważył kiedyś Albert Camus: „Książki Kopernika i Galileusza były na indeksie do 1822 roku. Trzy wieki uporu to już kokieteria” (przeł. J. Guze).

Odkrycia dokonywane w XVII wieku w astronomii i fizyce prowadziły do obrazu świata coraz bardziej oddalonego od potocznych wyobrażeń, a więc także i od zdroworozsądkowej u swego korzenia filozofii Arystotelesa oraz od literalnego rozumienia tekstu Pisma Świętego. Teoria Kopernika była jednym z pierwszych przykładów, gdy nauka głosiła tezę sprzeczną z naszym bezpośrednim doświadczeniem. Zamęt poznawczy jeszcze bardziej pogłębiły teleskopowe odkrycia Galileusza na niebie. Już sam fakt, że istnieją obiekty niepostrzegalne gołym okiem, stanowił duży wstrząs dla współczesnych. Sam uczony pod wpływem tych odkryć zaczął coraz śmielej głosić kopernikanizm, uznając, że potrafi nie tylko udowodnić fałszywość fizyki arystotelesowskiej, ale także wykazać naukowo ruch Ziemi.

Galileusz zajął się teologią z konieczności, ponieważ został zadenuncjowany jako heretyk i stał się celem niewybrednych ataków ze strony dominikanów z Florencji. Najważniejszy z jego tekstów teologicznych, List do Wielkiej Księżny Krystyny (1615), pochodzi z okresu, gdy uczony wciąż jeszcze miał nadzieję, że Kościół katolicki nie opowie się oficjalnie przeciwko nauce kopernikańskiej. Wymagało to jednak odstąpienia od dosłownej interpretacji niektórych fragmentów Pisma Świętego. Galileusz przedstawił własną propozycję hermeneutyki Biblii, zwracając uwagę na fakt, że adresowana jest ona także do ludzi nieuczonych i posługuje się w tym celu językiem potocznym, nie można więc oczekiwać od tekstu Pisma objaśnień zjawisk przyrodniczych. Co więcej, przywołując tradycję dwóch ksiąg: księgi objawionej i księgi przyrody, stara się wykazać, że w razie pozornego konfliktu obu tych źródeł poznania, gdyby jakaś dobrze udowodniona prawda nauk przyrodniczych stała w sprzeczności z naszym zrozumieniem Pisma, należałoby zastanowić się nad zmianą interpretacji tekstu świętego. Podkreślić należy, że przynajmniej w ogólnych zarysach taki punkt widzenia nie był jakoś szczególnie oryginalny w XVII wieku. Przed Galileuszem zbliżone podejście hermeneutyczne głosił Johannes Kepler, później w podobnym duchu wypowiadali się niemal wszyscy przedstawiciele nowej nauki, nawet tacy fundamentaliści biblijni jak Isaac Newton. Jako przykład nowej interpretacji Biblii podaje Galileusz cud z Księgi Jozuego, gdy wedle tekstu Pisma Św. (Joz, 10, 13) słońce zatrzymało się na pewien czas. Otóż cud ten – zdaniem Galileusza – można zrozumieć naukowo, gdy przyjmiemy, że Słońce (znajdujące się pośrodku układu planetarnego) przestało obracać się wokół osi, co z kolei sprawiło, że także planety stanęły i cały kosmiczny zegar znieruchomiał, po czym znowu ruszył. Jak się wydaje, Galileusz zaczerpnął tu wiele ze wstępu do Astronomia nova (1609) Keplera, gdzie zaproponowany został taki właśnie mechanizm omawianego cudu (cudowne było zatrzymanie i ponowne uruchomienie Słońca, pozostałe zjawiska przebiegały w sposób naturalny).

Kościół katolicki wyjątkowo niechętnie patrzył na próby indywidualnej interpretacji Pisma, zwłaszcza podejmowane przez ludzi świeckich, nawet tak wybitnych jak Galileusz. Toteż różne zabiegi Galileusza, w tym jego kampania informacyjno-propagandowa prowadzona w Rzymie wśród najwyższego duchowieństwa, nie odniosły skutku. W roku 1616 nieruchomość Słońca uznano za sprzeczną z tekstem Pisma Św., a ruch Ziemi – za co najmniej błąd w wierze. Sam Galileusz został napomniany, by nie głosił poglądów kopernikańskich, choć dokładny sens tego napomnienia pozostaje wciąż niejasny – zachowały się na ten temat dwa nieco różne w treści dokumenty. Galileusz zrozumiał, że musi zamilknąć, choć poglądów kopernikańskich nie zmienił. Na razie uczonego nie spotkało nic złego. Do jego patronów w tym okresie należał m. in. kardynał Maffeo Barberini, który w 1620 r. napisał nawet na jego cześć wiersz pod tytułem Adulatio perniciosa („Zgubna pochwała”). Jak bardzo proroczy okazał się tytuł owego wiersza, miał się Galileusz przekonać, gdy Barberini został papieżem, przybierając imię Urbana VIII. Papież uważał się za intelektualistę i uczony uznał, że nadszedł sprzyjający czas na otwarte opowiedzenie się za ruchem Ziemi, ogłaszając w 1632 r. Dialog o dwu najważniejszych układach świata Ptolemeuszowym i Kopernikowym. Książka miała wprawdzie wszelkie możliwe zezwolenia władz kościelnych, lecz nie przypadła do gustu papieżowi. Rozpętała się burza, zakończona skazaniem Galileusza na dożywotni areszt domowy i całkowity zakaz publikacji. Musiał też publicznie podczas upokarzającej ceremonii wyrzec się swych poglądów.

Obraz z XIX wieku przedstawiający wyrzeczenie się poglądów przez Galileusza (Joseph-Nicolas Robert-Fleury). W rzeczywistości uczony wystąpił w worku pokutnym i musiał klęczeć, odczytując poniższy tekst:

Ja, Galileo, syn Vincenza Galilei z Florencji, w wieku lat moich 70, osobiście stanąwszy przed sądem, na klęczkach w obliczu waszym, najdostojniejsi i najwielebniejsi panowie kardynałowie, generalni inkwizytorzy w całej powszechności chrześcijańskiej przeciwko występkowi herezji, mając przed oczami moimi najświętszą Ewangelię, której dotykam własnymi rękami, przysięgam, że zawsze wierzyłem, obecnie wierzę i z pomocą bożą w przyszłości wierzyć będę w to wszystko, co utrzymuje, głosi i czego naucza św. Kościół katolicki i apostolski. Ponieważ jednak po tym, gdy to Święte Oficjum upomniało mnie i nakazało z mocą prawną, bym całkowicie porzucił fałszywe mniemanie, że Słońce jest środkiem świata i nie porusza się, a Ziemia nie jest środkiem świata i się porusza, i abym nie utrzymywał, nie bronił ani nie nauczał tej fałszywej doktryny, i po tym, gdy mi podano do wiadomości, że doktryna ta jest sprzeczna z Pismem Świętym, napisałem i ogłosiłem drukiem książkę, w której omawiam tę potępioną już doktrynę i na jej poparcie przytaczam bardzo przekonujące argumenty, nie dając żadnego rozwiązania – przeto uznany zostałem za mocno podejrzanego o herezję, a mianowicie, iż utrzymywałem i wierzyłem, że Słońce, nieruchome, jest środkiem świata (*), a Ziemia nie jest tym środkiem i się porusza.
Pragnę tedy z umysłów Waszych Eminencji i każdego prawego chrześcijanina usunąć to mocne podejrzenie, jakie słusznie wzbudziłem. (…) Przysięgam, że w przyszłości nigdy już nie będę głosił ani twierdził, słowem bądź pismem, niczego, co skłoniłoby do takiego podejrzenia. Jeślibym zaś poznał jakiegoś heretyka lub podejrzanego o herezję, doniosę o tym Świętemu Oficjum (…) Ja, Galileo Galilei, wyrzekam się, przysięgam, obiecuję i przyjmuję wszystko to, co wyżej przeczytałem, i na przypieczętowanie tego własnoręcznie podpisuję niniejszy dokument, który odczytałem słowo po słowie w Rzymie, w klasztorze Santa Maria sopra Minerva, dzisiaj, w dniu 22 czerwca 1633 roku.
Ja, Galileo Galilei, wyrzekłem się, jak wyżej, i własnoręcznie podpisuję.

Sprawa Galileusza jest oczywiście w jakiejś mierze konfliktem intelektualnym, starciem idei. Rozstrzygała się kwestia nowego podejścia do interpretacji Pisma Św. Kościół instytucjonalny nie miał jednak cienia wątpliwości, że filozofia nadal powinna być służką tradycyjnie rozumianej teologii. Galileusz i jego zwolennicy (często także duchowni) nie zostali wysłuchani – linia podziału biegła tu zresztą nie tyle między Kościołem a nauką, co raczej między zwolennikami nowych idei a ich przeciwnikami. Ostateczne decyzje zarówno w roku 1616, jak i w roku 1633 zapadły bez głębszego rozważenia tez Galileusza. W tym drugim przypadku sprawdzano tylko, czy można znaleźć w książce podstawy do oskarżenia jej autora. Bardzo możliwe, że jakąś rolę odegrał tu gniew Urbana VIII, który poczuł się urażony widząc własne słowa włożone w usta Simplicia – niezbyt rozgarniętego uczestnika Galileuszowego Dialogu. Cała sprawa Galileusza stała się głośnym przykładem użycia (czy też nadużycia) władzy doczesnej Kościoła katolickiego do cenzurowania treści teorii naukowej. Nie ma w tym kontekście znaczenia, czy Galileusz miał mocne dowody naukowe przemawiające za ruchem Ziemi – bardzo rzadko uczony może przedstawić takie dowody już w chwili publikacji swej teorii.

Przemiana światopoglądowa związana z rewolucją naukową była już wówczas w toku i żadne zakazy nie mogły tego odwrócić. Jednak tak ostry konflikt nie był nieuchronny. W tym konkretnym przypadku rolę odegrały zapewne cechy osobiste uczonego, który miał temperament zjadliwego polemisty, a także szersze uwarunkowania, jak osłabiona pozycja polityczna papieża i potrydencka mentalność oblężonej twierdzy.

Nie wszędzie dopasowanie prawd naukowych i prawd religijnych dokonywało się w sposób administracyjny, jak w Rzymie. W krajach protestanckich nie było żadnego odpowiednika sprawy Galileusza. W roku 1638 John Wilkins opublikował w Londynie książkę The Discovery of A World in the Moone, w której głosił kopernikanizm zbliżony do poglądów Galileusza. Wilkinsa nie tylko nie spotkały z powodu książki żadne represje, ale pod koniec życia został biskupem Kościoła anglikańskiego i jednym z założycieli Towarzystwa Królewskiego.

Konsekwencje sprawy Galileusza dla dalszego rozwoju nauki były stosunkowo niewielkie, m. in. dlatego, że niebawem znaczenie zyskały kraje północne, przede wszystkim Francja, Holandia i Anglia, gdzie cenzura kościelna miała wpływ niewielki albo żaden. Kartezjusz wolał jednak na wszelki wypadek mieszkać w Holandii i wstrzymał się z ogłoszeniem gotowego w roku 1633 Świata albo traktatu o świetle. Kartezjusz, podobnie jak Galileusz, był szczerym katolikiem i z wielu powodów nie chciał konfliktu ze swym kościołem.

Wstyd Kościoła pozostał do dziś. Jeszcze pod koniec XX wieku, kiedy podjęto na wniosek Jana Pawła II badania nad sprawą Galileusza, strona kościelna starała się zrzucić z siebie winę, przyznając jedynie, że uczony „wiele wycierpiał
(…) ze strony ludzi i instytucji Kościoła”, dodając zarazem jednym tchem, że to Galileusz błędnie rozumiał metodę naukową.

(*) Nb. Galileusz nie uważał, że Słońce jest środkiem świata, w ogóle nie wierzył, aby istniał jakiś środek świata, ale z pozycji klęcznej trudno było zaczynać na ten temat dyskusję.

Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym – Galileo Galilei (1/2)

Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym – Galileo Galilei (2/2)

Bertrand Russell: Czy matematyka to logika? (1900-1913)

Jego ojcem chrzestnym był John Stuart Mill i Bertrand „odziedziczył” po nim wiele poglądów. Nie było to wcale oczywiste: Mill umarł, gdy dziecko miało rok, odumarli go też wcześnie oboje liberalni rodzice, którzy przyjaźnili się z filozofem, a wychowanie przejęła wiktoriańska babka, unitarianka o bardzo rygorystycznej moralności, jak najdalsza od zachęcania do wolnomyślicielstwa. Mimo to młodzieniec po solennym rozpatrzeniu kwestii doszedł do wniosku, że Boga nie ma, uznając wszelkie formy kultu religijnego za pozbawione treści, a przy tym bardziej szkodliwe niż pożyteczne dla społeczeństwa.

Chcemy stać o własnych siłach i patrzeć na świat bez uprzedzeń, ale i bez złudzeń – na jego dobre i złe strony, jego piękno i brzydotę, chcemy widzieć świat takim, jakim jest, i nie odczuwać przed nim lęku. Powinniśmy podbijać świat inteligencją, a nie odnosić się doń z niewolniczą uległością wypływającą z przerażenia, jakie w nas budzi. Pojęcie Boga bierze swój początek ze starożytnych wschodnich despotyzmów. To pojęcie bezwarunkowo niegodne wolnych ludzi. (…)

Dobrze urządzony świat potrzebuje wiedzy, dobroci i odwagi. Nie potrzeba mu żalów i westchnień za przeszłością ani zakuwania w kajdany swobodnej inteligencji za pomocą słów wyrzeczonych niegdyś przez ignorantów. Potrzebuje on śmiałych poglądów i swobodnej inteligencji. Potrzebna mu jest nadzieja na przyszłość, a nie oglądanie się wstecz. (Dlaczego nie jestem chrześcijaninem?, 1927 r., przeł. A. Kurlandzka, przekład poprawiony)

Największym odkryciem jego młodości była matematyka. Wciąż jeszcze uczono jej, korzystając z Elementów Euklidesa.

W wieku lat jedenastu zabrałem się za Euklidesa, mając mojego brata jako nauczyciela. Było to jedno z wielkich  wydarzeń w moim życiu, równie olśniewające jak pierwsza miłość. Nie wyobrażałem sobie, że na świecie istnieje coś tak cudownego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie miałem z nim żadnych trudności. Wtedy to po raz pierwszy zaświtało mi w głowie, że może posiadam jaką taką inteligencję. (Autobiografia 1872-1914, przeł. B. Zieliński, przekład poprawiony)

W późniejszych latach Russell krytykował zresztą zwyczaj uczenia z Euklidesa, ponieważ starożytny podręcznik nie spełnia dzisiejszych wymagań logicznych. Logika i filozofia miały stać się głównymi dziedzinami wczesnej pracy naukowej Russella, choć niemal jednocześnie zajmował się polityką socjaldemokracji (niezbyt typowe zajęcie dla młodego lorda, przyszłego trzeciego earla Russella), ekonomią, filozofią Leibniza, podstawami geometrii. Jego wykształcenie z Cambridge, gdzie studiował, a później został członkiem Trinity College, było wprawdzie nierównej jakości, ale młody człowiek poczuł się tam nareszcie na swoim miejscu i zaczął odrabiać towarzysko lata samotnego przebywania z babką i rodziną. Zwrócono zresztą na niego uwagę od pierwszej chwili. Egzaminujący go filozof i matematyk Alfred North Whitehead postanowił przyjąć właśnie jego mimo gorszego wyniku punktowego, polecając go uwadze przyszłych kolegów. Whitehead został z czasem przyjacielem i współpracownikiem Russella.

Cambridge odegrało ważną rolę w moim życiu dzięki temu, że dało mi przyjaciół i pozwoliło zakosztować intelektualnych dyskusji, ale nie było ważne pod względem właściwego wykształcenia akademickiego. (…) Większość tego, czego nauczyłem się z filozofii, wydała mi się z czasem błędna i wiele następnych lat spędziłem na stopniowym oduczaniu się nawyków myślowych, których tam nabrałem. Jedynym takim nawykiem prawdziwie cennym była intelektualna uczciwość. Ta cnota z pewnością występowała nie tylko u moich kolegów, ale i u nauczycieli. (Autobiografia)

Portret pędzla Arthura Fry, 1923 r.

W roku 1900 Russell brał udział w Międzynarodowym Kongresie Filozoficznym w Paryżu. Wielkie wrażenie wywarły tam na nim osoba i prace Giuseppe Peano. Włoski matematyk był jednym z pionierów logiki matematycznej i teorii mnogości. Wprowadził m.in. symbolikę logiczną, która pozwalała sprowadzać twierdzenia matematyki do operacji na zdaniach logiki, np. \sim p oznaczało zaprzeczenie zdania p, p \lor q – alternatywę zdań p,q itd. Russell, który od lat interesował się tym, skąd się bierze pewność twierdzeń matematycznych, dostrzegł możliwość szczegółowego sprowadzenia podstaw matematyki do logiki.

We wspomnieniu wydaje mi się, że każdy dzień owego miesiąca był ciepły i słoneczny. Whitehead przebywał z żoną u nas w Fernhurst i wyjaśniałem mu moje nowe pomysły. Co wieczór dyskusja kończyła się na jakiejś trudności, a co rano stwierdzałem, że trudność z poprzedniego wieczora rozwiązała się sama, podczas gdy spałem. Był to okres intelektualnego upojenia. Moje odczucia przypominały wrażenie, które odnosi się, kiedy po wspinaczce na górę we mgle docieramy do szczytu i mgła się nagle rozwiewa i wiadać całą okolicę na mil czterdzieści wokoło. Przez całe lata usiłowałem przeanalizować podstawowe pojęcia matematyczne, takie jak porządek i liczby kardynalne. I oto nagle, w ciągu paru tygodni, odkryłem coś, co wydawało się ostatecznymi odpowiedziami na problemy, które zastanawiały mnie od lat. A odkrywając te odpowiedzi, wprowadzałem nową technikę matematyczną, dzięki której regiony pozostawiane poprzednio mglistości filzofów zdobywane były dla precyzji ścisłych formuł. Pod względem intelektualnym wrzesień 1900 roku był punktem szczytowym mojego życia. Powtarzałem sobie, że teraz nareszcie uczyniłam coś wartego zachodu i doznawałem uczucia, że muszę uważać, aby mnie nie przejechano na ulicy, zanim to spiszę. (jw.)

Stan upojenia, czujemy to przecież, musiał się kiedyś skończyć. W tym przypadku było nim odkrycie paradoksu. Jedno z jego sformułowań jest następujące. Rozważmy zbiór S=\{A| A \mbox{  jest zbiorem }  \land A \notin A \}. Słowami: S jest zbiorem takich zbiorów, które nie są jednocześnie swoimi elementami. Zbiór S może albo być swoim elementem: S\in S, albo nim nie być: S\notin S. W pierwszym przypadku zbiór S spełnia warunki definicji A, a więc S\notin S. W drugim S spełnia warunek definicyjny, a więc S\in S. Zatem w obu przypadkach natrafiamy na sprzeczność.

Z początku sądziłem, że powinienem z łatwością ją przezwyciężyć i że prawdopodobnie tkwi tu jakiś banalny błąd w rozumowaniu. Burali-Forti wykrył już podobną sprzeczność i przy analizie logicznej wyszło na jaw, że istnieje tu pokrewieństwo ze starożytnym paradoskem greckim dotyczącym Epimenidesa Kreteńczyka, który powiedział, że wszyscy Kreteńczycy są kłamcami. (…)

Wydawało się rzeczą niegodną dorosłego człowieka trwonić czas na takie błahostki, ale cóż mogłem począć? Trywialna czy nie, sprawa ta stanowiła wyzwanie. Przez drugą połowę roku 1901 przypuszczałem, że rozwiązanie będzie łatwe, lecz po upływie tego czasu doszedłem do wniosku, że wymaga to dużej pracy.

Russell opublikował książkę w 1903 r. The Principles of Mathematics, a kilka lat później wziął się wraz z Whiteheadem do pracy nad ogromnym trzytomowym dziełem Principia Mathematica.

Nie był to oczywiście rodzaj rękopisu, który można by przepisać na maszynie czy choćby skopiować. Kiedy go w końcu zabraliśmy do wydawnictwa [Cambridge University Press], był tak ogromny, że musieliśmy w tym celu wynająć stary wózek. Ale nawet i wtedy nasze trudności się nie zakończyły. Wydawnictwo oceniło, że straci na tej książce 600 funtów, a syndycy byli wprawdzie gotowi ponieść stratę w wysokości 300 funtów, ale uważali, że poza tę sumę posunąć się nie mogą. Towarzystwo Królewskie nader wspaniałomyślnie wpłaciło 200 funtów, a pozostałe 100 musieliśmy znaleźć sami. Tym sposobem zarobiliśmy po minus 50 funtów za pracę dziesięciu lat.

Fragment początkowy dowodu, że 1+1=2 (s. 379, t. 1). Zakończenie tego dowodu znajduje się dopiero w t. 2 na s. 89 (pierwsze wydanie)

Rozwiązanie paradoksu zaproponowane przez Russella i Whiteheada, teoria typów, nie było całkiem zadowalające. Później, w roku 1931, Kurt Gödel wykazał, że nie istnieje taki zbiór aksjomatów, który pozwoliłby rozstrzygnąć prawdziwość każdego twierdzenia, jakie zostanie sformułowane na jego gruncie.

 

 

Wieczny powrót od Retyka i Kopernika do Poincarégo

Niebo Greków składało się z wirujących z różną prędkością sfer. Jak pisał Platon w Timajosie:

…aby dać jasną miarę relatywnej powolności i szybkości, z którymi gwiazdy wykonują swoich osiem ruchów, Bóg umieścił na drugiej po Ziemi orbicie światło, które nazywamy teraz Słońcem, aby całe niebo było oświetlone, a jestestwa żyjące, wszelkie, jakie natura zamierzyła, mogły uczestniczyć w Liczbie, ucząc się arytmetyki przez obroty Tego Samego i podobnego. (…)  A na obieg innych gwiazd ludzie, z bardzo małymi wyjątkami, nie zwracają uwagi, nie nadają im nazw, nie porównują ich obiegów ilościowo, tak, że powiedzieć można, nie wiedzą, że czas to błędne wędrówki tych gwiazd nieprzeliczone i przedziwnie różnorodne. Mimo to można pojąć, że doskonała liczba czasu wypełnia rok doskonały wtedy, gdy wszystkie osiem obrotów, mających swoje względne stopnie szybkości, dokona się wspólnie i zakończy w tym samym czasie, mierzonym obrotem Tego Samego, które się porusza w sposób jednostajny. (39 c-39d)

Według Platona po 36 000 lat cykl kosmiczny się powtarza. W XVI w. Georg Joachim Retyk, jedyny uczeń Kopernika, powiązał epoki historyczne ze zmianami mimośrodu orbity Ziemi. Środek orbity Ziemi poruszał się bowiem u Kopernika po niewielkim kółku , a okres tego ruchu wynosił 3434 lat egipskich. Kiedy mimośród orbity Ziemi był największy Rzym stał się z republiki cesarstwem. Po ćwierci obiegu owego małego kółka powstał islam, a po następnej ćwierci ok. 1652 r. – upadnie, jak prorokował. Drugie przyjście Chrystusa miało nastąpić w roku 2510, gdy mimosród wróci po raz drugi do swej wartości w chwili stworzenia. W książce Kopernika nie znajdziemy rozważań tego typu. Nie ma jednak podstaw by sądzić, że ich nie aprobował. Astrologia była dziedziną respektowaną, głównym powodem badania położeń planet na niebie. Więc choć Kopernik nie był z pewnością entuzjastycznym astrologiem – nie zachowały się tworzone jego ręką horoskopy, to mógł wierzyć, że los Ziemi i jej mieszkańców jest powiązany ze zjawiskami niebieskimi. O obrotach było dziełem czysto astronomicznym i matematycznym, zatem umieszczanie w nim astrologicznych konkretów byłoby nie na miejscu.

Środek orbity Ziemi \bar{S} porusza się po małym kółku, rzeczywiste Słońce spoczywa sobie spokojnie obok, nie biorąc udziału w tych „rewolucjach”. Słowo użyte przez Kopernika w tytule De revolutionibus oznaczało obroty, a więc coś cyklicznego, z czasem zaczęło oznaczać wszelkie dramatyczne przemiany, na ogół już jednokierunkowe. Proporcje na rysunku są oczywiście przesadzone, inaczej niewiele byłoby widać.

Wraz z upadkiem idei sfer niebieskich znaczenie cyklów planetarnych zmalało, a czas zaczął wydawać się nieskończony niczym prosta euklidesowa: od minus do plus nieskończoności. Oczywiście, chrześcijanie obowiązani byli wierzyć w stworzenie świata i jego koniec, ale z braku dopływu nowych bodźców wiara ta wyraźnie słabła. Już w XVIII wieku niezbyt się buntowano, gdy Buffon obliczył wiek Ziemi na mniej więcej dziesięć razy dłuższy, niż wynikałby z Biblii. Potem Fourier, zajmując się stygnięciem Ziemi, jeszcze powiększył tę wartość. Mechanistyczny wszechświat najłatwiej było sobie wyobrażać jako trwający od zawsze i mający istnieć zawsze. Od połowy XIX w. do obrazu tego doszły dwie zasady termodynamiki. Według pierwszej – zasady zachowania energii – istnieje wielkość, która we wszystkich przemianach się nie zmienia, co przemawia za tym, że wszechświat nie ma końca. Według drugiej zasady energia rozkłada się z czasem coraz bardziej równomiernie, świat powinien stawać się jednolitym ośrodkiem o stałej gęstości i temperaturze. Tak więc choć istniałby zawsze, po pewnym czasie przechodziłby w postać mało interesującą i praktycznie martwą. Mówiło się o „śmierci cieplnej” wszechświata.

Pomysł wiecznego powrotu pojawił się w latach osiemdziesiątych XIX stulecia nie u uczonego, lecz u filozofa, Friedricha Nietzschego. Pisał on:

Jeśli wszechświat należy uważać za pewną ilość energii, za pewną liczbę ośrodków energii, a każda inna koncepcja pozostaje nieokreślona i przez to bezużyteczna, to wynika stąd, że wszechświat przejść musi przez obliczalną liczbę kombinacji w wielkiej grze losowej, którą jest jego istnienie. W nieskończoności, w takim albo innym momencie, zrealizowana musi zostać każda możliwa kombinacja; a nawet więcej: musi ona zostać zrealizowana nieskończenie wiele razy. (…) wszechświat ukazuje się więc jako ruch kolisty, który zdążył się już powtórzyć nieskończenie wiele razy i który toczy swą grę przez całą wieczność.

Nietzsche, pogrążający się już w szaleństwie, przekonany był, że rozumowanie takie przeczy mechanistycznej nauce, którą traktował pogardliwie. Jednak w roku 1889 Henri Poincaré udowodnił, że w newtonowskiej mechanice także mamy do czynienia z wiecznym powrotem. Jego rozprawa zatytułowana O problemie trzech ciał i równaniach dynamiki zawierała nowatorskie podejście do klasycznego tematu za pomocą metod topologii, czyli rozważań operujących ogólnymi pojęciami takimi jak ciągłość, które okazały się bardzo owocne. Poincaré stał się prekursorem teorii chaosu. A metody topologiczne wykazywały jeszcze nieraz swą przydatność: np. w badaniu osobliwości w ogólnej teorii względności (czarne dziury, początek wszechświata) czy w badaniach osobliwych stanów materii (Nobel 2016).

Poincaré udowodnił następujące twierdzenie: Jeśli dopuszczalne stany układu mechanicznego zawarte są w pewnym ograniczonym obszarze D, to w dowolnym otoczeniu U każdego punktu obszaru D znajdzie się punkt s, który powraca do otoczenia U.

Można to narysować. Przestrzeń stanów to zbiór punktów, których współrzędnymi są położenia i pędy x,p (same położenia nie wystarczą, bo nie precyzują, jak zachodzi ruch; jest to tzw. przestrzeń fazowa układu). Naszym obszarem D jest niebieska elipsa (obszar ograniczony odpowiada temu, że np. energia układu jest stała). Rozpatrujemy dowolnie mały obszar U (u nas ma postać czerwonego kółka). Stany z obszaru U po jakimś kroku czasowym przechodzą w stany g(U), niemające wspólnego punktu z U (gdyby tak nie było, to już mamy tezę twierdzenia). Po kolejnych krokach czasowych otrzymujemy g^2(U),\ldots g^n(U). Wiadomo z mechaniki, że objętości tych wszystkich obszarów U, g(U),\ldots g^n(U) są jednakowe (twierdzenie Liouville’a). Skoro tak, to któryś z obszarów ciągu g^n(U) musi przeciąć się z U, a tym samym istnieć będzie punkt s należący zarówno do U, jak i g^n(U) (*)

Oznacza to, że wybierając dowolny stan początkowy i czekając dostatecznie długo, doczekamy się powrotu naszego układu jeśli nie do punktu początkowego to dowolnie blisko tego punktu. Wynik jest zupełnie ogólny, nie musimy nic wiedzieć na temat działających sił, a nasz układ może być dowolnie duży. Twierdzenie Poincarégo pokazuje więc, że na gruncie mechaniki mamy do czynienia z wiecznym powrotem. Można pokazać, że powroty takie będą się powtarzać nieskończenie wiele razy. Idea powrotu nie przeczy więc mechanicznemu światu, choć niezgodna jest ze śmiercią cieplną wszechświata. Poincaré zauważył filozoficzne konsekwencje swego twierdzenia. Zauważył je także młody matematyk Ernst Zermelo, asystent Plancka, który wystąpił z polemiką przeciwko koncepcji entropii Boltzmanna. Zermelo dał się potem poznać jako wybitny specjalista od podstaw matematyki, jego aksjomaty teorii mnogości stosowane są dziś powszechnie.

(*) Idea dowodu twierdzenia Poincarégo opiera się na zachowaniu objętości w przestrzeni fazowej. Kolejne zbiory g^k(U) mają takie same objętości, nie mogą więc być parami rozłączne, gdyż wtedy suma ich objętości przekroczyłaby każdą zadaną liczbę, a wszystko musi się zmieścić w większym obszarze D. Jeśli zaś jakaś para tych obszarów nie jest rozłączna, np. g^k(U) \cap g^l(U)\neq \O przy pewnych k>l\geq 0, to g^{k-l}(U)\cap U \neq\O , co oznacza, że dla jakiegoś punktu s\in U mamy s=g^{k-l}y, gdzie y\in S.

Zachowanie objętości kolejnych obszarów wynika stąd, że gdybyśmy wyobrazili sobie punkty przestrzeni fazowej jako punkty w poruszającej się cieczy, to dywergencja pola prędkości owej cieczy równa się zeru, a to jest warunek dla cieczy nieściśliwej, czyli zachowującej objętość. Oznaczając wektor prędkości \vec{q}=(\dot{x}_i,\dot{p}_i) dla i=1,\ldots, 3N (gdzie N jest liczbą cząstek składających się na układ), mamy

\mbox{div } \vec{q}=\dfrac{\partial\dot{x}_i}{\partial x_i}+\dfrac{\partial\dot{p}_i}{\partial p_i}=\dfrac{\partial^2 H}{\partial x_i \partial p_i}-\dfrac{\partial^2 H}{\partial p_i \partial x_i}=0,

gdzie H=H(x,p) jest hamiltonianem układu, po wskaźniku i sumujemy.

Dodatek matematyczny, twierdzenie Poincarégo w nowoczesnym sformułowaniu. Ujęcie to zawdzięczamy Constantinowi Carathéodory’emu, matematykowi z Getyngi, był już rok 1919. Pojawiło się pojęcie miary, będące uogólnieniem zwykłej objętości. Twierdzenie Poincarégo można uściślić w ten sposób, że zbiór punktów przestrzeni fazowej, które nigdy nie powracają do wybranego otoczenia jest miary zero. Zbiory miary zero, czyli zerowej objętości, mogą mieć skomplikowaną strukturę, ale są rzadkie w tym sensie, że nie można im przypisać żadnej dodatniej objętości. Nowoczesne pojęcie miary zbioru rozszerza dodawanie miar na zbiory przeliczalne (dające się ponumerować liczbami naturalnymi, ciągi zbiorów). Miara spełnia więc warunek:

\mu(\bigcup\limits_{i=1}^{\infty} A_i)=\sum\limits_{i=1}^{\infty} \mu(A_i),

gdy zbiory są parami rozłączne: A_i\cap A_j=\O, dla różnych wskaźników i,j. Pokażemy, że jeśli odwzorowanie g zachowuje miarę, a miara obszaru D jest skończona, to miara zbioru tych punktów D, które nie mają własności powracania, jest równa zeru. W tym sensie prawie każdy stan ma własność powracania.

Dla dowodu pokrywamy obszar D przeliczalną liczbą kul U_1, U_2, \ldots, . Dla każdej kuli U_n definiujemy jej podzbiór B_n jako zbiór tych s\in U_n, dla których g^k(s)\in U_n tylko dla skończenie wielu wartości wskaźnika k. Zbiór B=\bigcup\limits_{i=1}^{\infty} B_i jest zbiorem punktów niepowracających. Ponieważ \mu(B)\leq \sum\limits_{i=1}^{\infty} \mu(B_i), wystarczy udowodnić, że każdy ze zbiorów B_n jest miary zero.

W tym celu wybierzmy dowolny wskaźnik i. Będziemy teraz pisać oznaczenia U_i bez indeksu dla  uproszczenia zapisu.

Rozpatrzmy zbiór C=U\setminus \bigcup\limits_{p=1}^{\infty}g^{-p}(U). Punkt s\in g^{-k}(U) wtedy i tylko wtedy, gdy g^k(s)\in U oraz g^m(s)\notin U przy m>k. Zbiory g^{-i}(C), g^{-j}(C) są parami rozłączne, gdy wskaźniki i, j są różne, przy czym dopuszczamy, aby któryś z nich równał się zeru (g^{-0}(C)=C). Zbiór B_i=\bigcup\limits_{p=0}^{\infty}g^{-p}(C). Zatem mamy

\mu(B_i)=\sum\limits_{p=0}^{\infty}\mu(g^{-p}(C)).

Miary wszystkich zbiorów po prawej stronie są takie same, bo nasze odwzorowanie zachowuje miarę. Gdyby miary te były dodatnie, suma byłaby nieskończona, co jest niemożliwe, gdyż B_i\subset U_i, więc jego miara musi być skończona. Zatem wszystkie miary po prawej stronie są zerowe i \mu(B_i)=0. Zbiór B jest przeliczalną sumą B_i, zatem i on musi być miary zero. Dowód ten pochodzi z artykułu R. Daniela Mouldina, Probability and Nonlinear Systems, „Los Alamos Science” nr poświęcony Stanisławowi Ulamowi.

Twierdzenie Poincarégo o powracaniu ilustruje tzw. kot Arnolda (chodzi o Vladimira Arnolda, wybitnego matematyka rosyjskiego). Mamy tu ograniczoną przestrzeń stanów i pewną grupę stanów początkowych, które ułożone są w kształt kociego pyszczka. Gdy puścimy w ruch tę animację, zobaczymy, że w pewnych chwilach kot powraca.