Bertrand Russell: Czy matematyka to logika? (1900-1913)

Jego ojcem chrzestnym był John Stuart Mill i Bertrand „odziedziczył” po nim wiele poglądów. Nie było to wcale oczywiste: Mill umarł, gdy dziecko miało rok, odumarli go też wcześnie oboje liberalni rodzice, którzy przyjaźnili się z filozofem, a wychowanie przejęła wiktoriańska babka, unitarianka o bardzo rygorystycznej moralności, jak najdalsza od zachęcania do wolnomyślicielstwa. Mimo to młodzieniec po solennym rozpatrzeniu kwestii doszedł do wniosku, że Boga nie ma, uznając wszelkie formy kultu religijnego za pozbawione treści, a przy tym bardziej szkodliwe niż pożyteczne dla społeczeństwa.

Chcemy stać o własnych siłach i patrzeć na świat bez uprzedzeń, ale i bez złudzeń – na jego dobre i złe strony, jego piękno i brzydotę, chcemy widzieć świat takim, jakim jest, i nie odczuwać przed nim lęku. Powinniśmy podbijać świat inteligencją, a nie odnosić się doń z niewolniczą uległością wypływającą z przerażenia, jakie w nas budzi. Pojęcie Boga bierze swój początek ze starożytnych wschodnich despotyzmów. To pojęcie bezwarunkowo niegodne wolnych ludzi. (…)

Dobrze urządzony świat potrzebuje wiedzy, dobroci i odwagi. Nie potrzeba mu żalów i westchnień za przeszłością ani zakuwania w kajdany swobodnej inteligencji za pomocą słów wyrzeczonych niegdyś przez ignorantów. Potrzebuje on śmiałych poglądów i swobodnej inteligencji. Potrzebna mu jest nadzieja na przyszłość, a nie oglądanie się wstecz. (Dlaczego nie jestem chrześcijaninem?, 1927 r., przeł. A. Kurlandzka, przekład poprawiony)

Największym odkryciem jego młodości była matematyka. Wciąż jeszcze uczono jej, korzystając z Elementów Euklidesa.

W wieku lat jedenastu zabrałem się za Euklidesa, mając mojego brata jako nauczyciela. Było to jedno z wielkich  wydarzeń w moim życiu, równie olśniewające jak pierwsza miłość. Nie wyobrażałem sobie, że na świecie istnieje coś tak cudownego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie miałem z nim żadnych trudności. Wtedy to po raz pierwszy zaświtało mi w głowie, że może posiadam jaką taką inteligencję. (Autobiografia 1872-1914, przeł. B. Zieliński, przekład poprawiony)

W późniejszych latach Russell krytykował zresztą zwyczaj uczenia z Euklidesa, ponieważ starożytny podręcznik nie spełnia dzisiejszych wymagań logicznych. Logika i filozofia miały stać się głównymi dziedzinami wczesnej pracy naukowej Russella, choć niemal jednocześnie zajmował się polityką socjaldemokracji (niezbyt typowe zajęcie dla młodego lorda, przyszłego trzeciego earla Russella), ekonomią, filozofią Leibniza, podstawami geometrii. Jego wykształcenie z Cambridge, gdzie studiował, a później został członkiem Trinity College, było wprawdzie nierównej jakości, ale młody człowiek poczuł się tam nareszcie na swoim miejscu i zaczął odrabiać towarzysko lata samotnego przebywania z babką i rodziną. Zwrócono zresztą na niego uwagę od pierwszej chwili. Egzaminujący go filozof i matematyk Alfred North Whitehead postanowił przyjąć właśnie jego mimo gorszego wyniku punktowego, polecając go uwadze przyszłych kolegów. Whitehead został z czasem przyjacielem i współpracownikiem Russella.

Cambridge odegrało ważną rolę w moim życiu dzięki temu, że dało mi przyjaciół i pozwoliło zakosztować intelektualnych dyskusji, ale nie było ważne pod względem właściwego wykształcenia akademickiego. (…) Większość tego, czego nauczyłem się z filozofii, wydała mi się z czasem błędna i wiele następnych lat spędziłem na stopniowym oduczaniu się nawyków myślowych, których tam nabrałem. Jedynym takim nawykiem prawdziwie cennym była intelektualna uczciwość. Ta cnota z pewnością występowała nie tylko u moich kolegów, ale i u nauczycieli. (Autobiografia)

Portret pędzla Arthura Fry, 1923 r.

W roku 1900 Russell brał udział w Międzynarodowym Kongresie Filozoficznym w Paryżu. Wielkie wrażenie wywarły tam na nim osoba i prace Giuseppe Peano. Włoski matematyk był jednym z pionierów logiki matematycznej i teorii mnogości. Wprowadził m.in. symbolikę logiczną, która pozwalała sprowadzać twierdzenia matematyki do operacji na zdaniach logiki, np. \sim p oznaczało zaprzeczenie zdania p, p \lor q – alternatywę zdań p,q itd. Russell, który od lat interesował się tym, skąd się bierze pewność twierdzeń matematycznych, dostrzegł możliwość szczegółowego sprowadzenia podstaw matematyki do logiki.

We wspomnieniu wydaje mi się, że każdy dzień owego miesiąca był ciepły i słoneczny. Whitehead przebywał z żoną u nas w Fernhurst i wyjaśniałem mu moje nowe pomysły. Co wieczór dyskusja kończyła się na jakiejś trudności, a co rano stwierdzałem, że trudność z poprzedniego wieczora rozwiązała się sama, podczas gdy spałem. Był to okres intelektualnego upojenia. Moje odczucia przypominały wrażenie, które odnosi się, kiedy po wspinaczce na górę we mgle docieramy do szczytu i mgła się nagle rozwiewa i wiadać całą okolicę na mil czterdzieści wokoło. Przez całe lata usiłowałem przeanalizować podstawowe pojęcia matematyczne, takie jak porządek i liczby kardynalne. I oto nagle, w ciągu paru tygodni, odkryłem coś, co wydawało się ostatecznymi odpowiedziami na problemy, które zastanawiały mnie od lat. A odkrywając te odpowiedzi, wprowadzałem nową technikę matematyczną, dzięki której regiony pozostawiane poprzednio mglistości filzofów zdobywane były dla precyzji ścisłych formuł. Pod względem intelektualnym wrzesień 1900 roku był punktem szczytowym mojego życia. Powtarzałem sobie, że teraz nareszcie uczyniłam coś wartego zachodu i doznawałem uczucia, że muszę uważać, aby mnie nie przejechano na ulicy, zanim to spiszę. (jw.)

Stan upojenia, czujemy to przecież, musiał się kiedyś skończyć. W tym przypadku było nim odkrycie paradoksu. Jedno z jego sformułowań jest następujące. Rozważmy zbiór S=\{A| A \mbox{  jest zbiorem }  \land A \notin A \}. Słowami: S jest zbiorem takich zbiorów, które nie są jednocześnie swoimi elementami. Zbiór S może albo być swoim elementem: S\in S, albo nim nie być: S\notin S. W pierwszym przypadku zbiór S spełnia warunki definicji A, a więc S\notin S. W drugim S spełnia warunek definicyjny, a więc S\in S. Zatem w obu przypadkach natrafiamy na sprzeczność.

Z początku sądziłem, że powinienem z łatwością ją przezwyciężyć i że prawdopodobnie tkwi tu jakiś banalny błąd w rozumowaniu. Burali-Forti wykrył już podobną sprzeczność i przy analizie logicznej wyszło na jaw, że istnieje tu pokrewieństwo ze starożytnym paradoskem greckim dotyczącym Epimenidesa Kreteńczyka, który powiedział, że wszyscy Kreteńczycy są kłamcami. (…)

Wydawało się rzeczą niegodną dorosłego człowieka trwonić czas na takie błahostki, ale cóż mogłem począć? Trywialna czy nie, sprawa ta stanowiła wyzwanie. Przez drugą połowę roku 1901 przypuszczałem, że rozwiązanie będzie łatwe, lecz po upływie tego czasu doszedłem do wniosku, że wymaga to dużej pracy.

Russell opublikował książkę w 1903 r. The Principles of Mathematics, a kilka lat później wziął się wraz z Whiteheadem do pracy nad ogromnym trzytomowym dziełem Principia Mathematica.

Nie był to oczywiście rodzaj rękopisu, który można by przepisać na maszynie czy choćby skopiować. Kiedy go w końcu zabraliśmy do wydawnictwa [Cambridge University Press], był tak ogromny, że musieliśmy w tym celu wynająć stary wózek. Ale nawet i wtedy nasze trudności się nie zakończyły. Wydawnictwo oceniło, że straci na tej książce 600 funtów, a syndycy byli wprawdzie gotowi ponieść stratę w wysokości 300 funtów, ale uważali, że poza tę sumę posunąć się nie mogą. Towarzystwo Królewskie nader wspaniałomyślnie wpłaciło 200 funtów, a pozostałe 100 musieliśmy znaleźć sami. Tym sposobem zarobiliśmy po minus 50 funtów za pracę dziesięciu lat.

Fragment początkowy dowodu, że 1+1=2 (s. 379, t. 1). Zakończenie tego dowodu znajduje się dopiero w t. 2 na s. 89 (pierwsze wydanie)

Rozwiązanie paradoksu zaproponowane przez Russella i Whiteheada, teoria typów, nie było całkiem zadowalające. Później, w roku 1931, Kurt Gödel wykazał, że nie istnieje taki zbiór aksjomatów, który pozwoliłby rozstrzygnąć prawdziwość każdego twierdzenia, jakie zostanie sformułowane na jego gruncie.

 

 

Reklamy

Wieczny powrót od Retyka i Kopernika do Poincarégo

Niebo Greków składało się z wirujących z różną prędkością sfer. Jak pisał Platon w Timajosie:

…aby dać jasną miarę relatywnej powolności i szybkości, z którymi gwiazdy wykonują swoich osiem ruchów, Bóg umieścił na drugiej po Ziemi orbicie światło, które nazywamy teraz Słońcem, aby całe niebo było oświetlone, a jestestwa żyjące, wszelkie, jakie natura zamierzyła, mogły uczestniczyć w Liczbie, ucząc się arytmetyki przez obroty Tego Samego i podobnego. (…)  A na obieg innych gwiazd ludzie, z bardzo małymi wyjątkami, nie zwracają uwagi, nie nadają im nazw, nie porównują ich obiegów ilościowo, tak, że powiedzieć można, nie wiedzą, że czas to błędne wędrówki tych gwiazd nieprzeliczone i przedziwnie różnorodne. Mimo to można pojąć, że doskonała liczba czasu wypełnia rok doskonały wtedy, gdy wszystkie osiem obrotów, mających swoje względne stopnie szybkości, dokona się wspólnie i zakończy w tym samym czasie, mierzonym obrotem Tego Samego, które się porusza w sposób jednostajny. (39 c-39d)

Według Platona po 36 000 lat cykl kosmiczny się powtarza. W XVI w. Georg Joachim Retyk, jedyny uczeń Kopernika, powiązał epoki historyczne ze zmianami mimośrodu orbity Ziemi. Środek orbity Ziemi poruszał się bowiem u Kopernika po niewielkim kółku , a okres tego ruchu wynosił 3434 lat egipskich. Kiedy mimośród orbity Ziemi był największy Rzym stał się z republiki cesarstwem. Po ćwierci obiegu owego małego kółka powstał islam, a po następnej ćwierci ok. 1652 r. – upadnie, jak prorokował. Drugie przyjście Chrystusa miało nastąpić w roku 2510, gdy mimosród wróci po raz drugi do swej wartości w chwili stworzenia. W książce Kopernika nie znajdziemy rozważań tego typu. Nie ma jednak podstaw by sądzić, że ich nie aprobował. Astrologia była dziedziną respektowaną, głównym powodem badania położeń planet na niebie. Więc choć Kopernik nie był z pewnością entuzjastycznym astrologiem – nie zachowały się tworzone jego ręką horoskopy, to mógł wierzyć, że los Ziemi i jej mieszkańców jest powiązany ze zjawiskami niebieskimi. O obrotach było dziełem czysto astronomicznym i matematycznym, zatem umieszczanie w nim astrologicznych konkretów byłoby nie na miejscu.

Środek orbity Ziemi \bar{S} porusza się po małym kółku, rzeczywiste Słońce spoczywa sobie spokojnie obok, nie biorąc udziału w tych „rewolucjach”. Słowo użyte przez Kopernika w tytule De revolutionibus oznaczało obroty, a więc coś cyklicznego, z czasem zaczęło oznaczać wszelkie dramatyczne przemiany, na ogół już jednokierunkowe. Proporcje na rysunku są oczywiście przesadzone, inaczej niewiele byłoby widać.

Wraz z upadkiem idei sfer niebieskich znaczenie cyklów planetarnych zmalało, a czas zaczął wydawać się nieskończony niczym prosta euklidesowa: od minus do plus nieskończoności. Oczywiście, chrześcijanie obowiązani byli wierzyć w stworzenie świata i jego koniec, ale z braku dopływu nowych bodźców wiara ta wyraźnie słabła. Już w XVIII wieku niezbyt się buntowano, gdy Buffon obliczył wiek Ziemi na mniej więcej dziesięć razy dłuższy, niż wynikałby z Biblii. Potem Fourier, zajmując się stygnięciem Ziemi, jeszcze powiększył tę wartość. Mechanistyczny wszechświat najłatwiej było sobie wyobrażać jako trwający od zawsze i mający istnieć zawsze. Od połowy XIX w. do obrazu tego doszły dwie zasady termodynamiki. Według pierwszej – zasady zachowania energii – istnieje wielkość, która we wszystkich przemianach się nie zmienia, co przemawia za tym, że wszechświat nie ma końca. Według drugiej zasady energia rozkłada się z czasem coraz bardziej równomiernie, świat powinien stawać się jednolitym ośrodkiem o stałej gęstości i temperaturze. Tak więc choć istniałby zawsze, po pewnym czasie przechodziłby w postać mało interesującą i praktycznie martwą. Mówiło się o „śmierci cieplnej” wszechświata.

Pomysł wiecznego powrotu pojawił się w latach osiemdziesiątych XIX stulecia nie u uczonego, lecz u filozofa, Friedricha Nietzschego. Pisał on:

Jeśli wszechświat należy uważać za pewną ilość energii, za pewną liczbę ośrodków energii, a każda inna koncepcja pozostaje nieokreślona i przez to bezużyteczna, to wynika stąd, że wszechświat przejść musi przez obliczalną liczbę kombinacji w wielkiej grze losowej, którą jest jego istnienie. W nieskończoności, w takim albo innym momencie, zrealizowana musi zostać każda możliwa kombinacja; a nawet więcej: musi ona zostać zrealizowana nieskończenie wiele razy. (…) wszechświat ukazuje się więc jako ruch kolisty, który zdążył się już powtórzyć nieskończenie wiele razy i który toczy swą grę przez całą wieczność.

Nietzsche, pogrążający się już w szaleństwie, przekonany był, że rozumowanie takie przeczy mechanistycznej nauce, którą traktował pogardliwie. Jednak w roku 1889 Henri Poincaré udowodnił, że w newtonowskiej mechanice także mamy do czynienia z wiecznym powrotem. Jego rozprawa zatytułowana O problemie trzech ciał i równaniach dynamiki zawierała nowatorskie podejście do klasycznego tematu za pomocą metod topologii, czyli rozważań operujących ogólnymi pojęciami takimi jak ciągłość, które okazały się bardzo owocne. Poincaré stał się prekursorem teorii chaosu. A metody topologiczne wykazywały jeszcze nieraz swą przydatność: np. w badaniu osobliwości w ogólnej teorii względności (czarne dziury, początek wszechświata) czy w badaniach osobliwych stanów materii (Nobel 2016).

Poincaré udowodnił następujące twierdzenie: Jeśli dopuszczalne stany układu mechanicznego zawarte są w pewnym ograniczonym obszarze D, to w dowolnym otoczeniu U każdego punktu obszaru D znajdzie się punkt s, który powraca do otoczenia U.

Można to narysować. Przestrzeń stanów to zbiór punktów, których współrzędnymi są położenia i pędy x,p (same położenia nie wystarczą, bo nie precyzują, jak zachodzi ruch; jest to tzw. przestrzeń fazowa układu). Naszym obszarem D jest niebieska elipsa (obszar ograniczony odpowiada temu, że np. energia układu jest stała). Rozpatrujemy dowolnie mały obszar U (u nas ma postać czerwonego kółka). Stany z obszaru U po jakimś kroku czasowym przechodzą w stany g(U), niemające wspólnego punktu z U (gdyby tak nie było, to już mamy tezę twierdzenia). Po kolejnych krokach czasowych otrzymujemy g^2(U),\ldots g^n(U). Wiadomo z mechaniki, że objętości tych wszystkich obszarów U, g(U),\ldots g^n(U) są jednakowe (twierdzenie Liouville’a). Skoro tak, to któryś z obszarów ciągu g^n(U) musi przeciąć się z U, a tym samym istnieć będzie punkt s należący zarówno do U, jak i g^n(U) (*)

Oznacza to, że wybierając dowolny stan początkowy i czekając dostatecznie długo, doczekamy się powrotu naszego układu jeśli nie do punktu początkowego to dowolnie blisko tego punktu. Wynik jest zupełnie ogólny, nie musimy nic wiedzieć na temat działających sił, a nasz układ może być dowolnie duży. Twierdzenie Poincarégo pokazuje więc, że na gruncie mechaniki mamy do czynienia z wiecznym powrotem. Można pokazać, że powroty takie będą się powtarzać nieskończenie wiele razy. Idea powrotu nie przeczy więc mechanicznemu światu, choć niezgodna jest ze śmiercią cieplną wszechświata. Poincaré zauważył filozoficzne konsekwencje swego twierdzenia. Zauważył je także młody matematyk Ernst Zermelo, asystent Plancka, który wystąpił z polemiką przeciwko koncepcji entropii Boltzmanna. Zermelo dał się potem poznać jako wybitny specjalista od podstaw matematyki, jego aksjomaty teorii mnogości stosowane są dziś powszechnie.

(*) Idea dowodu twierdzenia Poincarégo opiera się na zachowaniu objętości w przestrzeni fazowej. Kolejne zbiory g^k(U) mają takie same objętości, nie mogą więc być parami rozłączne, gdyż wtedy suma ich objętości przekroczyłaby każdą zadaną liczbę, a wszystko musi się zmieścić w większym obszarze D. Jeśli zaś jakaś para tych obszarów nie jest rozłączna, np. g^k(U) \cap g^l(U)\neq \O przy pewnych k>l\geq 0, to g^{k-l}(U)\cap U \neq\O , co oznacza, że dla jakiegoś punktu s\in U mamy s=g^{k-l}y, gdzie y\in S.

Zachowanie objętości kolejnych obszarów wynika stąd, że gdybyśmy wyobrazili sobie punkty przestrzeni fazowej jako punkty w poruszającej się cieczy, to dywergencja pola prędkości owej cieczy równa się zeru, a to jest warunek dla cieczy nieściśliwej, czyli zachowującej objętość. Oznaczając wektor prędkości \vec{q}=(\dot{x}_i,\dot{p}_i) dla i=1,\ldots, 3N (gdzie N jest liczbą cząstek składających się na układ), mamy

\mbox{div } \vec{q}=\dfrac{\partial\dot{x}_i}{\partial x_i}+\dfrac{\partial\dot{p}_i}{\partial p_i}=\dfrac{\partial^2 H}{\partial x_i \partial p_i}-\dfrac{\partial^2 H}{\partial p_i \partial x_i}=0,

gdzie H=H(x,p) jest hamiltonianem układu, po wskaźniku i sumujemy.

Dodatek matematyczny, twierdzenie Poincarégo w nowoczesnym sformułowaniu. Ujęcie to zawdzięczamy Constantinowi Carathéodory’emu, matematykowi z Getyngi, był już rok 1919. Pojawiło się pojęcie miary, będące uogólnieniem zwykłej objętości. Twierdzenie Poincarégo można uściślić w ten sposób, że zbiór punktów przestrzeni fazowej, które nigdy nie powracają do wybranego otoczenia jest miary zero. Zbiory miary zero, czyli zerowej objętości, mogą mieć skomplikowaną strukturę, ale są rzadkie w tym sensie, że nie można im przypisać żadnej dodatniej objętości. Nowoczesne pojęcie miary zbioru rozszerza dodawanie miar na zbiory przeliczalne (dające się ponumerować liczbami naturalnymi, ciągi zbiorów). Miara spełnia więc warunek:

\mu(\bigcup\limits_{i=1}^{\infty} A_i)=\sum\limits_{i=1}^{\infty} \mu(A_i),

gdy zbiory są parami rozłączne: A_i\cap A_j=\O, dla różnych wskaźników i,j. Pokażemy, że jeśli odwzorowanie g zachowuje miarę, a miara obszaru D jest skończona, to miara zbioru tych punktów D, które nie mają własności powracania, jest równa zeru. W tym sensie prawie każdy stan ma własność powracania.

Dla dowodu pokrywamy obszar D przeliczalną liczbą kul U_1, U_2, \ldots, . Dla każdej kuli U_n definiujemy jej podzbiór B_n jako zbiór tych s\in U_n, dla których g^k(s)\in U_n tylko dla skończenie wielu wartości wskaźnika k. Zbiór B=\bigcup\limits_{i=1}^{\infty} B_i jest zbiorem punktów niepowracających. Ponieważ \mu(B)\leq \sum\limits_{i=1}^{\infty} \mu(B_i), wystarczy udowodnić, że każdy ze zbiorów B_n jest miary zero.

W tym celu wybierzmy dowolny wskaźnik i. Będziemy teraz pisać oznaczenia U_i bez indeksu dla  uproszczenia zapisu.

Rozpatrzmy zbiór C=U\setminus \bigcup\limits_{p=1}^{\infty}g^{-p}(U). Punkt s\in g^{-k}(U) wtedy i tylko wtedy, gdy g^k(s)\in U oraz g^m(s)\notin U przy m>k. Zbiory g^{-i}(C), g^{-j}(C) są parami rozłączne, gdy wskaźniki i, j są różne, przy czym dopuszczamy, aby któryś z nich równał się zeru (g^{-0}(C)=C). Zbiór B_i=\bigcup\limits_{p=0}^{\infty}g^{-p}(C). Zatem mamy

\mu(B_i)=\sum\limits_{p=0}^{\infty}\mu(g^{-p}(C)).

Miary wszystkich zbiorów po prawej stronie są takie same, bo nasze odwzorowanie zachowuje miarę. Gdyby miary te były dodatnie, suma byłaby nieskończona, co jest niemożliwe, gdyż B_i\subset U_i, więc jego miara musi być skończona. Zatem wszystkie miary po prawej stronie są zerowe i \mu(B_i)=0. Zbiór B jest przeliczalną sumą B_i, zatem i on musi być miary zero. Dowód ten pochodzi z artykułu R. Daniela Mouldina, Probability and Nonlinear Systems, „Los Alamos Science” nr poświęcony Stanisławowi Ulamowi.

Twierdzenie Poincarégo o powracaniu ilustruje tzw. kot Arnolda (chodzi o Vladimira Arnolda, wybitnego matematyka rosyjskiego). Mamy tu ograniczoną przestrzeń stanów i pewną grupę stanów początkowych, które ułożone są w kształt kociego pyszczka. Gdy puścimy w ruch tę animację, zobaczymy, że w pewnych chwilach kot powraca.

 

Galileo Galiei, Dialog o dwu najważniejszych układach świata, 1632 (1/2): Początek i końcowy medykament

Dialog stanowi opus magnum Galileusza. Dobiegający siedemdziesiątki uczony uznał, że nadszedł w końcu czas, by ogłosić swoje poglądy na wszechświat i zagadnienie ruchu. Druk książki zakończył się w lutym 1632 roku. Jej pełny tytuł brzmiał: Dialog Galileo Galilei z Akademii Lincei, matematyka nadzwyczajnego uniwersytetu w Pizie, pierwszego filozofa i matematyka najjaśniejszego Wielkiego Księcia Toskanii, gdzie podczas spotkań w ciągu czterech dni dyskutuje się na temat dwóch największych układów świata: ptolemeuszowego i kopernikowego, proponując w sposób nierozstrzygający argumenty zarówno za jedną, jak i za drugą stroną. Frontispis przedstawiał trzech uczonych: Arystotelesa, Ptolemeusza i Kopernika (ten ostatni miał rysy przypominające raczej Galileusza), dyskutujących na temat układu świata. Natomiast strona tytułowa zawierała aż pięć różnych pozwoleń: dwa rzymskie bez daty i trzy florenckie z września 1630 roku.

Władze przywiązywały szczególną wagę do początku dzieła i końcowego argumentu, pochodzącego od samego Urbana VIII i nazywanego la medicina del fine – końcowym medykamentem, bo miał podważyć wszystko, co zostało wcześniej powiedziane, i tym samym niejako „uleczyć” chroniczną chorobę naukowych dociekań. Przypomina to nieco praktykę stosowaną w zupełnie innych czasach: w socjalistycznej Czechosłowacji filozofowie, chcąc zapewnić sobie minimum swobody naukowej, dodawali do swych prac wstępy i posłowia naszpikowane cytatami z Marksa, Engelsa i Lenina – nazywano je balkonami. W środku można było wówczas przemycić jakieś myśli zupełnie innej proweniencji.

Wstęp „Do wyrozumiałego Czytelnika” to tekst ociekający obłudą tak wielką, że aż ociera się o szyderstwo.

W latach ubiegłych, celem uniknięcia niebezpiecznego wzburzenia wśród współczesnych, ogłoszony został w Rzymie zbawienny dekret, nakazujący uzasadnione przemilczanie poglądów pitagorejczyków dotyczących ruchu Ziemi. Nie zbrakło takich, którzy zuchwale utrzymywali, że dekret ten nie został jakoby powzięty po rozważnym zbadaniu samego zagadnienia, ale jedynie pod wpływem nieuzasadnionych namiętności. Słyszało się też wyrzekania, że zgoła niebiegli w naukach astronomicznych konsultorzy nie powinni byli nagłymi zakazami podcinać skrzydeł umysłów badawczych.

Poczucie obowiązku nie pozwoliło mi milczeć, gdy doszły do mnie tak zuchwałe wyrzekania. W pełnym zrozumieniu tego tak bardzo roztropnego postanowienia uznałem za właściwe wystąpić publicznie na arenie świata jako świadek najszczerszej prawdy. Byłem podówczas w Rzymie (…) i nie bez uprzedniego zasięgnięcia mojej opinii nastąpiło ogłoszenie tego dekretu. Dlatego też zamiarem moim jest wykazanie pracą niniejszą narodom obcym, że o sprawach tych we Włoszech, a zwłaszcza w Rzymie, równie wiele wiadomo jak to, co w najśmielszych wyobrażeniach osiągnął wysiłek badawczy zagranicy; że zebrane przeze mnie owoce własnych rozmyślań odnoszące się do układu Kopernika podane były uprzednio do wiadomości cenzury rzymskiej, że zatem ze środowiska Wiecznego Miasta promieniują nie tylko dogmaty dla zbawienia duszy, ale i zdobycze wiedzy ku radości dociekających umysłów.

Naszkicowany w ten sposób zamysł pokazania, że władza absolutna nie tylko decyduje, bo ma siłę, ale jeszcze decyduje słusznie, bo ma także rację, i to nawet w marginalnych z jej punktu widzenia sprawach – jak kopernikanizm – nie wygląda przekonująco. Zwłaszcza że „radości dociekającego umysłu” bywały w Rzymie określane raczej jako zuchwalstwo i nowinkarstwo. Uroczysta obrona kwalifikacji astronomicznych konsultorów zwracała tylko niepotrzebnie uwagę na kulisy procesu decyzyjnego, które lepiej było trzymać w ukryciu: kiedy król jest nagi, głośny podziw dla jego szat wygląda dość podejrzanie. Przykre wrażenie robi też uwaga o zasięganiu opinii Galileusza – wygląda to tak, jakby starał się przekonać nie tylko innych, ale i samego siebie, że dekret z roku 1616 nie był porażką. Zdecydowanie robił dobrą minę do bardzo złej gry. Pragnął pokazać, że i on, i Kościół byli cały czas po właściwej stronie, choć być może nie wszyscy zewnętrzni obserwatorzy to dobrze rozumieli. Prawdopodobnie Galileusz próbował twórczo zinterpretować przeszłość, aby umożliwić pewną zmianę polityki przy zachowaniu pozorów niezmienności. Wiadomo było, że Kościół nie cofnie oficjalnej decyzji, ale to wcale nie oznaczało, iż nie można było zmienić sposobu jej rozumienia. Campanella przytoczył kiedyś w liście do Galileusza następujący przykład: sobór nicejski II zadekretował, że wolno malować anioły, gdyż są one cielesne. I nikt tej decyzji nigdy nie odwołał, choć wszyscy scholastycy byli zdania, iż anioły nie są cielesne. W sprawie kopernikańskiej pierwszy krok został już uczyniony: Urban VIII inaczej kładł akcenty w interpretacji dekretu z roku 1616, a nawet dał do zrozumienia, że dekret był niepotrzebny. Może więc była szansa na w miarę swobodną dyskusję przy zachowaniu pozorów? Zanim wybuchła „sprawa Galileusza”, taka możliwość istniała. Ponieważ dalsze wydarzenia potoczyły się w sposób dramatyczny, ta próba wypracowania kompromisu wydaje się niepotrzebna i zostawia jakiś cień na intencjach Galileusza.

Jeśli chodzi o podejście do omawianego zagadnienia, Galileusz przedstawia je następująco: „W niniejszej rozprawie zająłem stanowisko Kopernika, traktując je jako czystą hipotezę matematyczną i starając się za pomocą wszelkich sztuczek wykazać, że jest ono lepsze nie w porównaniu z twierdzeniem o spoczynku Ziemi traktowanym w sposób absolutny, lecz od tego, jakiego bronią niektórzy, uważający się za perypatetyków, lecz będący nimi tylko z nazwy, zadowoleni, że mogą tkwić w bezruchu* i oddawać hołd złudzie, niezdolni do samodzielnego filozofowania, posługujący się jedynie utrzymanymi w pamięci a przy tym źle zrozumianymi pojęciami czterech elementów”. W tym proustowskim zdaniu Galileusz deklaruje, że celem jego ataku są tacy perypatetycy, którzy nie potrafią dobrze filozofować. Niskie mniemanie o współczesnych sobie perypatetykach uczony powtarzał wielokrotnie, głosząc, że sam Arystoteles, który był dobrym filozofem, szanującym fakty i obserwacje, nie mógłby zajmować takiego stanowiska jak rozmaici uczeni z bożej łaski, używający wielkiego imienia jako listka figowego dla własnej ignorancji. Oczywiście dyskusja tego rodzaju nie mogła być czysto „matematyczna”, musiała być „filozoficzna” – w ówczesnym sensie, obejmującym fizykę i filozofię. W każdym razie deklarowanym zamysłem autora było prowadzenie debaty w sposób przyjęty od średniowiecza na uniwersytetach. W debatach takich wolno było bronić różnych, nawet mocno nieortodoksyjnych, kwestii, traktowano to jako swego rodzaju ćwiczenie czy eksperymentowanie myślowe.

Mowa tu będzie o trzech głównych zagadnieniach. Najpierw postaram się dowieść, że wszelkie doświadczenia, jakie można przeprowadzić na Ziemi, są niewystarczające, aby udowodnić jej ruch, i że równie dobrze odnosić się mogą do Ziemi ruchomej, jak i do Ziemi nieruchomej. Mam nadzieję, że w tych rozważaniach pojawi się wiele spostrzeżeń nieznanych starożytności.

Najogólniej mówiąc chodzi tu o zasadę względności, a więc twierdzenie, iż zjawiska fizyczne przebiegają tak samo na ruchomej Ziemi, jak przebiegałyby na Ziemi nieruchomej. Wysuwano od starożytności wiele różnych argumentów mających wykazać, że ruch Ziemi pociągałby za sobą jakieś dziwaczne, a nawet katastrofalne skutki: ptaki i chmury zostawałyby w tyle, wciąż wiałby wschodni wiatr, budynki musiałyby się walić itd. Tymczasem Galileusz, analizując szczegółowo te argumenty, potrafił wykazać, że z punktu widzenia fizyka nie ma (prawie) różnicy między Ziemią ruchomą a nieruchomą.

Dalej badane będą zjawiska niebieskie, przemawiające na korzyść hipotezy Kopernika, jak gdyby ona koniecznie miała się ostać zwycięsko – z dodatkiem nowych rozważań, zmierzających raczej ku ułatwieniu zadań astronomii, aniżeli ku wykryciu konieczności w przyrodzie.

Z wiadomych przyczyn Galileusz stara się podkreślić, że nie pretenduje do żadnych absolutnych stwierdzeń w kwestii kopernikańskiej.

Na trzecim miejscu mówić będę o różnych pomysłowych fantazjach. Powiedziałem wiele lat temu, że na nieznane zjawisko przypływów morskich można by rzucić pewne światło, zakładając ruch Ziemi. Wypowiedź ta moja, przechodząc z ust do ust, znalazła miłosiernych ojców, którzy przyjęli ją jak swoją, przedstawiając jako płód własnego umysłu.

Galileusz ze ślepym uporem trzymał się swojej teorii pływów, nie reagując na żadne fakty obserwacyjne, to znaczy z łatwością dostosowując ją do nich – co przypominało najgorsze praktyki perypatetyków, tak przez niego ganione. Uczony wciąż tropił i znajdował u innych jakieś zapożyczenia ze swych prac; niektóre wypowiedzi tego rodzaju sprawiają dziś wrażenie paranoi, rażąc swą niewątpliwą przesadą. Teoria pływów miała być punktem kulminacyjnym Dialogu, choć w istocie jej główną zaletą było to, że dostarczyła pretekstu do napisania znakomitej książki.

Po oddaniu cenzurze tego, co konieczne, Galileusz przedstawił pięćset stron rozważań ściśle naukowych w formie dialogu trzech interlokutorów. Na samym końcu, po omówieniu pływów, znajduje się następująca wymiana zdań:

SIMPLICIO: O ile chodzi o rozważania, które miały tu miejsce, a w szczególności o te ostatnie, o przyczynach przypływu i odpływu morza, to naprawdę nie powiem, bym je w zupełności rozumiał (…) jednakowoż nie mogę ich uznać za odpowiadające prawdzie i ostateczne we wnioskach; co więcej, mam wciąż przed oczyma mego umysłu najbardziej niewzruszoną naukę, przekazaną mi przez wielkiego i wybitnego uczonego, przed którą należy zamilknąć. Wiem, że wy obaj na pytanie, czy Bóg swoją nieskończoną wszechmocą i mądrością mógł przyznać elementowi wody owe ruchy zmienne, które w nim dostrzegamy, i to innym sposobem aniżeli wprawiając w ruch zawierające je zbiorniki, odpowiedzielibyście, jestem tego pewien, że i mógłby, i umiałby tego dokonać wieloma sposobami, dla naszego umysłu nawet niewyobrażalnymi. Na mocy tego wysnuwam bezpośredni wniosek, że byłoby zbytnią śmiałością chcieć ograniczać i zacieśniać potęgę i mądrość boską do poziomu ludzkich urojeń.

SALVIATI: Jest to zaprawdę cudowna i anielska nauka: a w zupełnej z nią zgodzie znajduje się również inna, również boska, która zezwala wprawdzie na roztrząsanie budowy wszechświata, ale poucza również (być może po to, by działanie ludzkie nie stępiło się i nie skostniało w lenistwie), że jeszcze dalecy jesteśmy od poznania istoty dzieł Jego ręki. (…)

SAGREDO: Niech to będzie ostatnim słowem naszych czterodniowych rozważań. (…) A teraz będziemy mogli, naszym zwyczajem, popłynąć oczekującą nas gondolą i zażyć świeżości wieczornej godziny.

Jednym z zarzutów wobec Galileusza miało być to, że „włożył końcowy medykament w usta głupka”, tj. Simplicia, który zresztą przedstawiany jest raczej jako chodzący worek komunałów i człowiek może nie nadzwyczajnie przenikliwy, ale dość pogodnego usposobienia, pozbawiony zjadliwości realnych przeciwników uczonego. Rzeczywiście argument papieski nie wypada najlepiej w kontekście Dialogu, wydaje się jednak, że Galileusz nie miał świadomego zamiaru szydzenia z jego wartości. Starał się raczej, ustami Salviatiego, inaczej go ukierunkować: boska wszechmoc objawia się także w niewyczerpanym bogactwie przyrody – tu Galileusz jest całkowicie szczery i wyraża swoje głębokie przekonanie. Jeśli w jego poglądach pojawiał się gdzieś Bóg, to chyba najbardziej bezpośrednio tam, gdzie ujawniały się tajniki przemyślnego urządzenia świata. Był to raczej Wielki Architekt niż Absolutny Władca z wizji Urbana VIII. Można powiedzieć, że dwaj wybitni Toskańczycy spotkali się w kwestiach kończących Dialog i żaden nie chciał ustąpić z racji bliskich swemu sercu.

Sformułowania Galileusza mogły razić pobożne uszy, nie było to jednak zamiarem uczonego, a wynikało raczej z jego chwilami zaskakującej niewrażliwości czy nawet braku słuchu na sposób myślenia ludzi reprezentujących tradycyjny Kościół. Ich argumenty docierały do niego tylko na poziomie intelektualnym, nie rozumiał jednak postawy, jaka się za tym kryła; wydaje się, że i oni w zetknięciu z nim odczuwali jakąś obcość – nie mogło to skończyć się dobrze.

* Galileusz robi tu aluzję do nazwy szkoły filozoficznej: „perypatetycy” tzn. chodzący, więc nieruchomy perypatetyk to oksymoron.

Cytaty z polskiego przekładu Dialogu E. Ligockiego przy współudziale K. Giustiniani-Kępińskiej (PWN Warszawa 1953)

Powstawanie kontynentów i oceanów (1922) – Alfred Wegener

Książka została napisana w okresie rekonwalescencji autora, dwukrotnie rannego na froncie zachodnim zaraz na początku wojny światowej (wrócił później do służby jako meteorolog). Ukazała się po raz pierwszy w roku 1915 nakładem wydawnictwa Vieweg & Sohn. Kolejne trzy wydania ukazały się już po wojnie. Z początkowych niecałych stu stron książka rozrosła się do ponad dwustu w czwartym wydaniu. Najważniesze historycznie okazało się wydanie trzecie z roku 1922, które stało się podstawą przekładów m.in. na angielski, francuski, hiszpański i rosyjski, wywołując ożywioną dyskusję nie tylko w kręgach naukowych.

Wysunięta przez Wegenera teoria dryfu kontynentów, przyjęta zrazu ze sceptycyzmem, niedowierzaniem, a nawet szyderstwem, w okresie międzywojennym zyskała niewielu zwolenników. Idee przesuwania się kontynentów wróciły triumfalnie dopiero w latach sześćdziesiątych ubiegłego wieku jako teoria płyt tektonicznych, która zrewolucjonizowała nauki o Ziemi.

Alfred Lothar Wegener z wykształcenia był astronomem, lecz po doktoracie dotyczącym Tablic Alfonsyńskich w roku 1905 postanowił zająć się meteorologią. Zapalony wędrowiec, alpinista i narciarz szukał dziedziny mniej obciążonej tradycją, dającej ponadto możliwość pracy w terenie, a nawet przygody. Wraz ze starszym bratem Kurtem ustanowił w roku 1906 światowy rekord czasu lotu balonem (52,5 godziny). W tym samym roku wyruszył na Grenlandię jako meteorolog duńskiej wyprawy. Spędził tam dwie zimy, tworząc pierwszą stację meteorologiczną i dokonując pomiarów atmosfery przy użyciu latawców oraz balonów. Po powrocie pracował na uniwersytecie w Marburgu, opracowywał wyniki obserwacji polarnych, napisał także podręcznik Termodynamika atmosfery (1911). Przygotowując go, Wegener zwrócił się o opinię do uznanego specjalisty profesora Wladimira Köppena z Hamburga, który przychylnie przyjął rękopis młodszego kolegi. Wegener poznał też córkę profesora Else i niebawem się z nią zaręczył. Na następną wyprawę na Grenlandię wyruszył w 1912 roku, Else spędziła ten czas w domu norweskiego meteorologa Vihelma Bjerknesa, ucząc jego dzieci niemieckiego, a sama ucząc się norweskiego oraz duńskiego (przełożyła potem na niemiecki dwie prace Bjerknesa). Latem 1913 roku wyprawa z udziałem Wegenera przebyła drogę w poprzek Grenlandii mniej na szerokości geograficznej 75°. Tego samego roku młody polarnik i Else wzięli ślub. Po wojnie światowej Wegener objął po przejściu teścia na emeryturę jego stanowisko w Morskim Obserwatorium Meteorologicznym w Hamburgu, przeniósł także swoje prawo nauczania na tamtejszy nowopowstały uniwersytet. We współpracy z Köppenem napisał książkę na temat paleoklimatologii, w której rozwinięte zostały pewne argumenty na rzecz dryftu kontynentalnego. Napisał też książkę na temat kraterów księżycowych, uznając je – zgodnie z prawdą, a wbrew ówczesnym poglądom – za skutek impaktów meteorytów. Mimo ożywionej aktywności Wegenerowi nie udawało się uzyskać katedry uniwersyteckiej, można przypuszczać, że pewną rolę odgrywała tu niechęć wobec jego śmiałych teorii. W 1924 roku został profesorem na katedrze meteorologii i geofizyki w prowincjonalnym Grazu w Austrii (stanowisko stworzono specjalnie dla niego, łącząc obie dziedziny, którymi się zajmował). Wegenerowie przeprowadzili się tam wraz ze swymi trzema córkami i teściem. Jak wspominała Else: „W pięknym Grazu niemal całkiem zatopiliśmy się w mieszczańskiej stabilizacji”. Wegener pracował naukowo, wszyscy troje odbywali liczne wycieczki, regularnie jeździli na narty w Alpy, wojna i ciężkie przejścia w Grenlandii wydawały się daleko poza nimi. Jednak w roku 1929 Alfred Wegener nie umiał się oprzeć okazji ponownej wyprawy na Grenlandię. Zmarł tam niespodziewanie w listopadzie 1930 roku, prawdopodobnie na atak serca z nadmiernego wysiłku, niedługo po swoich pięćdziesiątych urodzinach.

Alfred Wegener i jego towarzysz Rasmus Villumsen na kilka dni przed śmiercią (obaj zginęli w drodze między obozem w głębi Grenlandii a wybrzeżem)

Idea ruchu kontynentów przyszła Wegenerowi po raz pierwszy do głowy w roku 1910, gdy zwrócił uwagę na przystawanie linii brzegowych Ameryki Południowej i Afryki na mapie. Nie był pierwszym, który zauważył owo dopasowanie – jednak nauka instytucjonalna nauczyła się ten fakt ignorować. W roku 1911 Wegener zetknął się po raz pierwszy z danymi geologicznymi i paleontologicznymi, które wskazywały na podobieństwo obu kontynentów. Fakty te znane były specjalistom, interpretowano je jako świadectwo istnienia niegdyś pomostów lądowych między Afryką i Ameryką, uznając za pewnik, że kontynenty te zawsze były położone tak jak dziś (nieco słabsza wersja tego poglądu zakładała istnienie łańcucha wysp łączących oba kontynenty). Wegener postanowił zakwestionować ten pewnik i sprawdzić, czy koncepcja przesuwania się kontynentów może się obronić. W styczniu 1912 roku po raz pierwszy przedstawił swe pomysły publicznie na zjeździe Towarzystwa Geologicznego we Frankfurcie, a trzy lata później rozwinął je w książce. Jak się zdaje, koncepcja pomostów lądowych od początku nie trafiała mu do przekonania. Podstawowym jego argumentem była tu izostazja, obserwowane przez geologów dążenie do równowagi hydrostatycznej. Wiadomo było np., że lądy podnosiły się po ustąpieniu zlodowacenia. Góry mają niższy ciężar właściwy niż dno oceanów. Jeśli tak, to zbudowane z lżejszego materiału pomosty lądowe nie mogły zatonąć w gęstszym podłożu, gdyż przeczyłoby to prawu Archimedesa. Wegener zaczął na kontynenty patrzeć jak na dobrze mu znaną z Arktyki pokrywę lodową: tworzy ona względnie trwałe pływające struktury, które mogą łączyć się albo pękać na mniejsze części, przy czym większa część ich objętości zanurzona jest w wodzie. Podobne zjawiska – oczywiście w nieporównanie większej skali czasowej – mogły zachodzić w przypadku kontynentów na Ziemi.

Przyrodnik zwracał uwagę, że większą część powierzchni Ziemi stanowią albo głębie oceaniczne, albo niezby wysokie lądy.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 27)

Rozkład wysokości dla całej powierzchni Ziemi ma dwa wyraźne maksima, odpowiadające lądom oraz dnu oceanów. Przeczy to zdaniem Wegenera panującej w tym okresie teorii Eduarda Suessa kurczenia się (kontrakcji) Ziemi. Wyobrażano sobie, iż Ziemia stygnie z fazy ciekłej i stale się w związku z tym kurczy. Wywoływałoby to na jej powierzchni efekt podobny do marszczenia się skórki na wysychającym jabłku. Owo „marszczenie się” zewnętrznych warstw skorupy ziemskiej objawiać się miało m.in. fałdowaniem i wypiętrzaniem gór. Ponieważ kurczenie zachodzi stopniowo, więc w różnych jego fazach ta sama część powierzchni mogła znajdować się nad albo pod powierzchnią morza. Odkrycie pierwiastków promieniotwórczych, które stale wydzielają ciepło, stawiało teorię kontrakcji pod znakiem zapytania. W dodatku skały osadowe znajdowane na kontynentach wskazują na to, że tereny te mogły się znajdować jedynie płytko pod powierzchnią morza, nie stanowiły więc nigdy dna oceanicznego. Wegener sądził także, że gdyby to kurczenie się Ziemi odpowiadało za rzeźbę jej powierzchni, rozkład wysokości powinien mieć jedno tylko maksimum, takie jak przerywana linia na rycinie powyżej.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 35; dziś wiemy, że dno oceanów także należy do litosfery, która jednak jest tam znacznie cieńsza niż pod kontynentami)

Jego zdaniem lżejsza masa kontynentu, sial (od zawartości krzemu i aluminium: Si-Al) pływa w cięższej simie (od zawartości krzemu i magnezu: Si-Ma), która ma pewne cechy cieczy, przynajmniej w długiej skali czasowej. Toteż poziome przemieszczanie się kontynentów przypominałoby pływanie kier lodowych w morzu. Według oszacowania Wegenera grubość kontynentów (oznaczona M na rycinie) była rzędu 100 km (rycina jest schematyczna i nie oddaje prawidłowo skali).

Mapy Wegenera (Entstehung der Kontinente und Ozeane, 1929, s. 19, 20)

Teoria dryftu kontynentów nie tylko tłumaczyła dopasowanie kształtów różnych lądów, ale także w naturalny sposób objaśniała podobieństwa geologiczne: góry po jednej stronie Atlantyku znajdowały swe naturalne przedłużenie po drugiej jego stronie. Podobieństwa zachodziły także między kopalnymi gatunkami roślin i zwierząt z części świata oddzielonych barierą oceanu. Bez pomostów lądowych trudno było zrozumieć, w jaki sposób te same gatunki mogły wyewoluować w sposób niezależny od siebie.

(J.S. Monroe, S. Wicander, The Changing Earth, 4th edition, s. 33)

Wegener przyjął, że w erze paleozoicznej wszystkie kontynenty stanowiły jeden ląd, nazwany Pangea, który następnie popękał na oddzielne fragmenty, odsuwające się stopniowo od siebie. Jedna z krawędzi Pangei znajdowała się blisko bieguna południowego – gdyż kontynenty przesuwały się nie tylko względem siebie, ale także w stosunku do osi obrotu Ziemi. Dzięki temu można było wyjaśnić geologiczne ślady zlodowaceń paleozoicznych w miejscach położonych obecnie tak daleko od siebie, jak Argentyna, Afryka Południowa, Indie i Australia – wszystkie te lądy znajdowały się kiedyś blisko siebie, a także blisko bieguna ziemskiego.

Dane Wegenera wg współczesnego podręcznika (W. Frisch et al., Plate Tectonics, Springer 2011, s. 3)

Ciągłość pasm górskich oraz zlodowacenia i lasy karbońskie (E.J. Tarbuk, F.K. Lutgens, D. Tasa, Earth: An Introduction to Physical Geology, 11th edition, s. 46,47)

W oczach większości geologów hipoteza Wegenera zakrawała na szaleństwo. Jak zauważył jeden z geologów, przeciwnik dryftu: gdyby to była prawda, to należałoby napisać na nowo podręczniki z ostatnich trzydziestu lat – rzeczywiście, trzeba było to w końcu zrobić. Podobnie reagowali wykształceni ludzie XVI wieku, słysząc o koncepcji Kopernika. Obie teorie usuwały niejako metafizyczny grunt pod nogami, głosząc zmienność i ruch tam, gdzie pragnęlibyśmy stabilności i niezmienności. Obie brały początek ze stosunkowo prostego i nienowego pomysłu, który był po wielokroć odrzucany jako absurdalny. Sformułowane zostały dzięki innemu spojrzeniu na znane fakty, a nie dzięki jakimś nowym, nieznanym dotąd obserwacjom. Obie teorie przekraczały także granice między różnymi naukami. Kopernik „niedopuszczalnie” mieszał astronomię i fizykę. W sprofesjonalizowanym i wyspecjalizowanym dwudziestym wieku czyniono zarzut z tego, że teorię wysunął nie geolog, który strawił lata na badaniach terenowych, lecz autsajder: astronom zajmujący się głównie meteorologią. Warmia Kopernika i Marburg oraz Graz Wegenera, leżąc na uboczu, ułatwiały niezależne myślenie, wolne od presji poglądów środowiska. Obaj autorzy zdawali sobie do pewnego stopnia sprawę z kontrowersyjnosci swoich hipotez, choć żaden z nich nie spodziewał się chyba aż tak zażartego oporu. Oczywiście, każdy rewolucyjny pogląd rodzi nowe trudności i niełatwo z góry przesądzić, czy ostanie się wobec zarzutów. Obie teorie wykazywały też dość podobny brak: nie zawierały bowiem konkretnego mechanizmu, który tłumaczyłby zakładane ruchy. Mechanika arystotelesowska z trudem dawała się pogodzić z heliocentryzmem, w przypadku Wegenera trudność była może jeszcze większa, gdyż potrzebne prawa fizyki były wprawdzie znane, lecz nie było jasne, w jaki sposób miałyby z nich wynikać przemieszczenia kontynentów. Świadom tej trudności, uczony zaproponował dwa mechanizmy, choć podkreślał także, że jest zbyt wcześnie na tego rodzaju szczegóły. Mówił o sile odśrodkowej, która wywołać miała ucieczkę od biegunów – Polflucht, a także o siłach przypływowych Księżyca i Słońca, które wywołać miały przesuwanie kontynentów ku zachodowi. Wyjaśnienia te zostały bardzo ostro skrytykowane przez ekspertów.
Niektóre argumenty Wegenera były błędne, co nie powinno nas szczególnie dziwić w przypadku pracy tak pionierskiej (podobnie było z większoscią szczegółowych poglądów Kopernika oprócz samego heliocentryzmu). Stosunkowo największym błędem było bardzo późne oddzielenie się Grenlandii, która zdaniem Wegenera przesuwać się miała z szybkością rzędu 30 m rocznie. Wegener nadmiernie zawierzył pomiarom astronomicznym długości geograficznej, które nie miały dostatecznej dokładności. Dziś szybkości przesuwania się płyt tektonicznych można mierzyć bezpośrednio za pomocą systemu GPS i wiadomo, że są one rzędu kilku cm rocznie.

W latach dwudziestych ubiegłego wieku krytykowano jednak nie tylko słabe punkty teorii Wegenera, ale także i jej mocne strony. Wysuwano np. twierdzenie (H.S. Washington, 1923), że skały po obu stronach Atlantyku nie wykazują podobieństw. Nie zgadzał się z tym poglądem A.L. Du Toit, wybitny południowoafrykański geolog, który specjalnie w tym celu udał się do Ameryki Południowej i stwierdził, że podobieństwa geologiczne „są wręcz zdumiewające”. Du Toit stał się zwolennikiem teorii Wegenera. Szczególnie niechętne przyjęcie spotkało teorię Wegenera w Stanach Zjednoczonych i Wielkiej Brytanii, a więc w krajach w geologii przodujących. Przewodniczący Londyńskiego Towarzystwa Geologicznego J.W. Gregory stwierdził, że jeśli izostazja sprzeczna jest z zanurzaniem się dna oceanów, to tym gorzej dla izostazji. Zgadzał się z tym zdaniem także Harold Jeffreys, wybitny geofizyk, który na podstawie danych sejsmicznych wierzył w częściowo płynne jądro Ziemi, sądził jednak, że zewnętrzne jej warstwy są sztywne. Naomi Oreskes upatruje źródeł reakcji amerykańskich geologów na teorię Wegenera w ich niechęci do ogólnych, zbyt spekulatywnych teorii. Niewątpliwie pewna dyscyplina myślowa jest w naukach empirycznych niezbędna, nie należy budować pochopnych uogólnień i uczeni zdobywają pozycję w swoim cechu na podstawie rzeczowych i beznamiętnych obserwacji. Jednak żaden podręcznik metodologii nie nauczy nas, które uogólnienia są „pochopne”, a które – „śmiałe i nowatorskie”. Niemal zawsze prace rewolucyjne przekraczają granice uznanych dziedzin i dopuszczalnych metod. Idee Wegenera podjął Arthur Holmes, twórca datowania radiometrycznego, był w tym jednak niemal całkowicie odosobniony. Przypuszczał on, że ciepło wydzielane przez pierwiastki promieniotwórcze może przenosić się za pomocą prądów konwekcyjnych w płaszczu Ziemi. Prądy takie odpowiedzialne byłyby za przesuwanie kontynentów.

Przesuwanie się kontynentów wróciło do łask w latach sześćdziesiątych ubiegłego wieku dzięki wielu nowym obserwacjom i metodom. Postęp osiągnięty został przede wszystkim dzięki badaniom dna oceanów. Dopiero po drugiej wojnie światowej można było zastosować echosondy do precyzyjnego zbadania topografii dna morskiego. Dzięki badaniom magnetyzmu występujących tam skał można było stwierdzić, że podmorski Grzbiet Śródatlantycki jest strefą spredingu – miejscem, gdzie na powierzchnię wydobywa się nowy materiał z wnętrza Ziemi i tworzą płyty tektoniczne. Kontynenty są częścią płyt tektonicznych, nie torują sobie drogi w płynnym podłożu, lecz raczej są przesuwane wraz z całością płyty, do której należą (symetryczne zjawisko niszczenia płyt następuje w obszarach subdukcji, gdzie jedna płyta wsuwa się pod drugą). W marcu 1964 roku Towarzystwo Królewskie w Londynie zorganizowało konferencję poświęconą przesuwaniu się kontynentów. Zaprezentowano na niej pracę przedstawiającą komputerowe dopasowanie kształtu kontynentów po obu stronach Atlantyku (E. Bullard, J.E. Everett, A.G. Smith, The fit of the continents around the Atlantic, Phil. Trans. Roy. Soc. London A, 258: 41-51).

Okazało się ostatecznie, że Wegener miał rację: średni kwadratowy błąd dopasowania jest rzędu 50 km (co ciekawe, w latach dwudziestych jeden z geologów sporządził model, z którego wynikało, że takiego dopasowania wcale nie ma i luki między kontynentami sięgają 1200 km!). Płyty kontynentalne zachowują się jak sztywne dwuwymiarowe obiekty przesuwające się po powierzchni Ziemi. Oznacza to, że mają one krzywiznę Ziemi i ich ruchy są obrotami – zgodnie z twierdzeniem Eulera, mówiącym, iż dowolne złożenie obrotów przedstawić można jako obrót wokół pewnej ustalonej osi o pewien kąt. Swoistą ironią losu jest fakt, że trwają wciąż dyskusje na temat sił wywołujących przesuwanie się płyt tektonicznych, prądy konwekcyjne rozpatrywane przez Holmesa są raczej skutkiem niż przyczyną tych ruchów. Najczęściej uważa się, że dominuje jakiś mechanizm grawitacyjny.

Jedna ze współczesnych rekonstrukcji Pangei (za: A. Schettino, Quantitative Plate Tectonics, Springer 2015, s. 60)

 

Istota teorii względności (1923) – Albert Einstein

Ślepy żuk pełznący po powierzchni globusa nie wie, że tor, po którym się porusza, jest zakrzywiony. Ja miałem szczęście to zauważyć [A. Einstein]

Ta niewielka książeczka jest jedynym kompletnym przedstawieniem teorii przez jej twórcę, adresowanym do zawodowych uczonych, stanowiąc coś pośredniego między monografią a podręcznikiem. Ukazała się najpierw w 1923 roku w wersji angielskiej nakładem Princeton University Press oraz w wersji niemieckiej w wydawnictwie Vieweg & Sohn (z datą roczną 1922). Od tamtej pory doczekała się niezliczonych wydań w wielu językach. Uczony nie zmieniał głównego tekstu, choć z czasem dołączył kilka dodatków traktujących o późniejszych osiągnięciach.

Podstawą książki były wykłady wygłoszone w maju 1921 roku na uniwersytecie w Princeton. Czterdziestodwuletni Einstein wybrał się w swą pierwszą podróż za ocean, towarzysząc Chaimowi Weizmannowi i delegacji syjonistów. Ich celem było zebranie funduszy na założenie uniwersytetu w Jerozolimie. Uczony, który w kilku poprzednich latach z odrazą obserwował antysemityzm narastający w społeczeństwie niemieckim i który sam stał się ofiarą niewybrednych ataków z rasistowskimi podtekstami, zgodził się na ten wyjazd, rezygnując z udziału w pierwszym po wojnie Kongresie Solvaya, konferencji gromadzącej szczupłe grono najwybitniejszych fizyków świata. Po raz pierwszy wystąpił więc Einstein w roli działacza społecznego, wykorzystując autorytet naukowy do propagowania bliskich mu poglądów. Uczony witany był w Ameryce owacyjnie, zwłaszcza przez społeczność żydowską w Nowym Jorku, Bostonie, Cleveland. Niektórzy koledzy Einsteina, jak Fritz Haber, wybitny chemik, Żyd i niemiecki szowinista, mieli mu za złe podróż do Stanów Zjednoczonych, kraju niedawnego wroga. Rany wojenne nie zdążyły się jeszcze zabliźnić, zwłaszcza w Niemczech dźwigających ciężar przegranej wojny. Wielu niemieckich Żydów sądziło też, iż nie należy prowokować antysemityzmu i lepiej siedzieć cicho. Einstein, czy to dlatego, że spędził wiele lat w Szwajcarii, czy też z racji swego charakteru, nie podzielał takiego nastawienia, przeciwnie, to właśnie antysemityzm przyspieszył dojrzewanie jego żydowskiej tożsamości.

Podróż po Stanach Zjednoczonych miała też ważną część naukową. Einstein miał wykłady na Columbia University i w City College w Nowym Jorku, na uniwersytecie w Chicago oraz uniwersytecie Harvarda. W Princeton otrzymał stopień honorowy i wygłosił sławne zdanie, które później wyryto nad kominkiem w sali Wydziału Matematyki: „Pan Bóg jest wyrafinowany, lecz nie jest złośliwy” (odnosiło się ono do pewnych wyników eksperymentalnych zaprzeczających jego teorii). Bezpośrednio po uroczystościach rozpoczął się cykl pięciu wykładów odbywających się w kolejne dni tygodnia. Dwa pierwsze były popularne, następne bardziej techniczne. Wykładu inauguracyjnego słuchało około czterystu osób, podczas drugiego audytorium znacznie się przerzedziło, a kolejne odbywały się już w mniejszej sali dla niewielkiego grona słuchaczy. Na początku pobytu w Princeton uczony podpisał umowę z wydawnictwem uniwersytetu na publikację tekstu jego wystąpień. Ponieważ odbywały się one po niemiecku, wydawnictwo wynajęło niemiecką stenografkę, która notowała na żywo. Każdy z wykładów był na koniec podsumowywany po angielsku przez profesora fizyki Edwina Plimptona Adamsa, który został też tłumaczem wersji książkowej. Dopiero w styczniu 1922 roku uczony przesłał niemiecki tekst książki do wydawnictwa Vieweg & Sohn, wydrukowane przez nie korekty stały się podstawą angielskiego przekładu. Prace te wraz z poprawkami autorskimi zajęły cały rok 1922. Pod jego koniec wydrukowano wydanie niemieckie, a w styczniu ukończono druk wydania angielskiego. W trakcie tych prac ogłoszono wiadomość, że Albert Einstein został laureatem Nagrody Nobla za rok 1921. Laureat przebywał w tym czasie w Azji w drodze do Japonii.

Uczony spodziewał się otrzymać Nagrodę Nobla, w istocie przyszła ona dość późno i z istotnym zastrzeżeniem. Jak pisał Christopher Aurivillius, sekretarz Królewskiej Szwedzkiej Akademii Nauk, w liście do laureata: „Akademia (…) postanowiła przyznać panu Nagrodę Nobla w dziedzinie fizyki za ubiegły rok w uznaniu Pana dokonań w fizyce teoretycznej, w szczególności odkrycia teoretycznych podstaw zjawiska fotoelektrycznego, lecz z pominięciem zasług, które staną się Pana udziałem, gdy potwierdzą się sformułowane przez Pana teorie względności i grawitacji”. Teoria względności była więc w oczach szwedzkich akademików osiągnięciem kontrowersyjnym, podobnie myślało wielu uczonych.

Niewykluczone, że Einstein pragnął swoją książką przekonać część kolegów po fachu. Na początku lat dwudziestych obie teorie względności: szczególną z roku 1905 oraz ogólną z roku 1915 można było uznać za zakończony etap. Dzięki pracy Einsteina, ale także szeregu innych fizyków i matematyków, jak Max Planck, Max von Laue, David Hilbert, Felix Klein, Emmy Noether, Max Born, Hermann Weyl, Tullio Levi-Civita, Karl Schwarzschild, Hans Thirring, Josef Lense, Willem de Sitter, Hendrik Lorentz, Gunnar Nordström, Erich Kretschmann, Arthur Eddington, Paul Ehrenfest, Johannes Droste, Paul Langevin udało się wyjaśnić wiele aspektów nowej teorii – już sama lista nazwisk wskazuje, że praca Einsteina nie przebiegała w próżni, a ranga tych uczonych świadczy o poważnym traktowaniu osiągnięć Einsteina. Miał on jednak także sporo przeciwników, którzy z rozmaitych powodów odmawiali jego teorii naukowej wartości, a często także kwestionowali intelektualną uczciwość jej twórcy. Berliński profesor optyki Ernst Gehrcke uznawał teorię Einsteina za skutek zbiorowej sugestii, wybitni eksperymentatorzy (i laureaci Nagrody Nobla) Philipp Lenard i Johannes Stark nie potrafili się pogodzić ze światem nowych pojęć i widzieli w teorii względności produkt reklamy oraz sprytne pomieszanie elementów filozofii, matematyki i fizyki tak, by trudno było znaleźć uczonego zdolnego ją krytykować bez wykraczania poza ramy swej specjalności. Obaj ostatni nie ukrywali też swego antysemityzmu i stali się zwolennikami Adolfa Hitlera jeszcze we wczesnych latach dwudziestych, na długo przed rządami nazistów. Niektórzy, jak szwedzki oftalmolog i laureat Nagrody Nobla Allvar Gullstrand, sądzili, że teoria względności jest pusta wewnętrznie i może prowadzić do różnych wyników w tej samej sytuacji. Dochodziły do tego ostre podziały wśród filozofów, niektórzy jak Hans Reichenbach i Moritz Schlick mocno ją popierali, wielu jednak, jak Oskar Kraus czy Henri Bergson, wyrażało sceptycyzm, jeśli nie wrogość, wobec nowej teorii.
Większość uczonych była na ogół wciąż zdezorientowana, nie wiedząc, co sądzić. Toteż książka Einsteina skupiła się na podkreślaniu ciągłości w rozwoju fizyki, uwydatnieniu pewnej linii rozwoju, w której teoria względności stawała się naturalnym ogniwem. Nie sposób jednak ukryć, że teorie Einsteina zrywały z pojęciami absolutnej przestrzeni i absolutnego czasu, stanowiącymi fundament mechaniki, a z nią całej fizyki od czasów Isaaca Newtona. Kwestionowanie uświęconych tradycją zdobyczy nauki w oczach wielu było gestem obrazoburczym i świętokradczym. To, co starszych przejmowało zgrozą i oburzeniem, w oczach ówczesnych ludzi młodych stawało się fascynującą rewolucją. Karl Popper wspominał, jak wielką rolę w jego myśleniu o nauce odegrała teoria Einsteina, już sam fakt, że można było stworzyć realną alternatywę wobec królującej mechaniki Newtona miał dla niego rangę intelektualnego objawienia.

Zacząć wypada od samej nazwy: teoria względności. Z początku mówiło się o zasadzie względności, potem określać tak zaczęto teorię Einsteina z roku 1905 (szczególną teorię względności), a później Einstein zaczął mówić o uogólnionej bądź ogólnej teorii względności. W dyskursie potocznym zaczęto nazwy tę wiązać z zanegowaniem absolutnego czasu, a nawet szerzej z zanegowaniem dotychczasowej fizyki czy wręcz obowiązującej logiki albo etyki. Oczywiście, teoria względności, tak jak żadna udana teoria fizyczna, nie zmienia świata doświadczenia, ponieważ musi być zgodna z dotychczasowymi danymi eksperymentalnymi. Zmienia jedynie nasz sposób widzenia świata, przewidując nowe zjawiska i rozszerzając tym samym granice wiedzy. Mechanika newtonowska nadal obowiązuje, znamy tylko dokładniej jej ograniczenia. Max Planck, jeden z najwcześniejszych zwolenników teorii Einsteina, przekonuje w swej autobiografii naukowej, że jego zainteresowanie teorią względności wynikło właśnie z szukania w fizyce absolutu, ponieważ w świecie teorii względności są także wielkości oraz pojęcia niezmienne i absolutne. Dlatego nazwa ta bywa myląca.

W czerwcu 1905 roku redakcja „Annalen der Physik” otrzymała pracę nikomu nieznanego urzędnika Biura Patentowego w Bernie zatytułowaną O elektrodynamice ciał w ruchu. Rzecz dotyczyła jednego z najważniejszych zagadnień fizyki teoretycznej, którym w poprzednim dziesięcioleciu zajmowali się dwaj uznani luminarze Henri Poincaré i Hendrik Lorentz. Chodziło o eter – hipotetyczny ośrodek wypełniający świat. Na początku XIX stulecia Thomas Young i Augustin Fresnel wykazali, że światło jest falą. Wyobrażano sobie, że musi ono być falą sprężystą w eterze, czyli drganiem, które propaguje się na wszystkie strony podobnie jak fale akustyczne w powietrzu bądź innych ośrodkach sprężystych. Eter ów charakteryzować się musiał dość osobliwymi własnościami, gdyż z jednej strony był na tyle rzadki, by nie hamować ruchów planet, z drugiej zaś musiał być niezmiernie sprężysty, gdyż prędkość światła jest niewyobrażalnie duża w porównaniu np. z prędkością dźwięku. W przypadku dźwięku wiemy, że jego prędkość dodaje się wektorowo do prędkości powietrza: zmierzona prędkość będzie więc zależeć od prędkości ruchu powietrza. Podobne zjawisko zachodzić powinno także w przypadku światła. Ruch roczny Ziemi po orbicie wokół Słońca zachodzi z prędkością około 30 km/s, co stanowi 1/10 000 prędkości światła. Precyzyjne pomiary powinny wykryć zmiany obserwowanej prędkości światła. Przez cały wiek XIX szereg eksperymentatorów od François Arago w roku 1810 aż do Alberta Michelsona i Edwarda Morleya w roku 1887 starało się za pomocą różnych metod optycznych wykryć ruch Ziemi w eterze. Wyniki wszystkich tych doświadczeń były negatywne. Wyglądało to tak, jakby eter poruszał się razem z Ziemią, ale taka hipoteza rodziła sprzeczności z innymi obserwacjami.

Obok optyki innym wielkim tematem dziewiętnastowiecznej fizyki były elektryczność i magnetyzm. W latach sześćdziesiątych XIX wieku James Clerk Maxwell podsumował te wszystkie badania, podając jednolitą matematyczną teorię zjawisk elektrycznych, magnetycznych oraz optycznych – okazało się bowiem, że powinny istnieć fale elektromagnetyczne. Ich prędkość wynikająca z teorii Maxwella była bliska prędkości światła w próżni. Maxwell wysnuł więc wniosek, że światło jest rodzajem fal elektromagnetycznych. W latach 1887-1888 Heinrich Hertz wykazał, że można w laboratorium wytworzyć fale elektromagnetyczne o długości kilku metrów, które także rozchodzą się z prędkością światła. Teoria Maxwella została potwierdzona, stając się praktycznym narzędziem pracy inżynierów. Niemal równocześnie rozwijały się bowiem techniczne zastosowania elektromagnetyzmu: oświetlenie elektryczne, telefon i pierwsze elektrownie. Ojciec i stryj Einsteina, bracia Rudolf i Jakob, prowadzili najpierw w Monachium, później w północnych Włoszech firmę elektryczną i Albert niemal od dziecka miał do czynienia z techniką elektryczną. Elektrodynamika była także ważnym tematem zajęć laboratoryjnych i wykładów na Politechnice w Zurychu. Einstein jednak od początku nie chciał zostać inżynierem i narzekał, że program studiów nie obejmuje teorii Maxwella.

Teoria Maxwella pozwalała w jednolity sposób opisać ogromny obszar zjawisk. Czyniła to za pomocą pojęć pola elektrycznego oraz magnetycznego. W każdym punkcie przestrzeni i w każdej chwili można było za pomocą dwóch wektorów scharakteryzować stan pola. Wydawało się, że eter z początku wieku zyskał teraz nową funkcję, nośnika pola. Ważną cechą nowego podejścia była lokalność: to, co dzieje się z polem elektrycznym i magnetycznym w danym punkcie zależy od ładunków i prądów w tym samym punkcie. Zaburzenia pola rozchodzą się jako fale elektromagnetyczne. Była to więc fizyka pojęciowo odmienna od Newtonowskiej grawitacji, w której dwie masy oddziałują na siebie na odległość w sposób natychmiastowy. W teorii Maxwella ładunek jest źródłem pola w otaczającej go przestrzeni i pole to z kolei oddziałuje na inne ładunki. Prędkość rozchodzenia się zmian pola jest wielka, ale nie nieskończona. Choć Maxwell dokonał najważniejszej pracy, formułując teorię w sposób logicznie zamknięty, to dopiero jego następcy, m.in. Oliver Heaviside i Hendrik Lorentz, znaleźli prostsze i bardziej eleganckie jej wersje. Okazało się np., że każdy prąd elektryczny jest jedynie ruchem ładunków. Mamy więc dwa rodzaje ładunków, których położenia i prędkości określają stan pola w różnych miejscach – są to równania pola, czyli równania Maxwella. Znając zaś wartość pola elektrycznego i magnetycznego, możemy obliczyć siłę działającą na ładunek – są to równania ruchu (siła Lorentza).

Teoria Maxwella wyrastała z modelu pewnego ośrodka sprężystego i uczony, podobnie jak większość współczesnych, uważał, że jego rolą jest sprowadzenie zjawisk elektrycznych i magnetycznych do zjawisk mechanicznych. W odróżnieniu od teorii Newtona, w której mamy pojedyncze punkty materialne, tutaj substratem jest eter, który wyobrażano sobie jako pewien sprężysty materiał. Paradoksalny status eteru opisał na zjeździe Brytyjskiego Towarzystwa Krzewienia Nauk w Oksfordzie w roku 1894 markiz Salisbury, stwierdzając, że „główną, jeśli nie wyłączną, własnością słowa eter było dostarczanie rzeczownika do czasownika falować”.

Problem wykrycia ruchu Ziemi w eterze stał się tym bardziej palący. Wiadomo było wprawdzie, że inżynier stosować może równania Maxwella, nie przejmując się takimi subtelnościami, ale należało wyjaśnić negatywne wyniki doświadczeń. Hendrik Lorentz spróbował podejść do tego problemu w sposób systematyczny i wykazał, że każdemu stanowi pól w nieruchomym eterze odpowiada pewien stan pól w eterze ruchomym. Chciał w ten sposób podać ogólny dowód, że wszelkie zjawiska elektromagnetyczne przebiegają w taki sposób, aby nie można było ruchu Ziemi wykryć. Wprowadził przy tym dość szczególną konstrukcję matematyczną: w poruszającym się układzie należało zdefiniować czas w taki sposób, że zależał on od współrzędnej przestrzennej. Był to zdaniem Lorentza czas fikcyjny, potrzebny do dowodu niemożliwości wykrycia ruchu przez eter. Okazało się też, że należy założyć coś osobliwego na temat długości obiektów poruszających się: powinny one ulec nieznacznemu skróceniu o czynnik \sqrt{1-v^2/c^2}, gdzie v jest prędkością ruchu obiektu, a c – prędkością światła.

Praca Alberta Einsteina, eksperta technicznego III klasy z Berna, proponowała już we wstępie krok decydujący: pojęcie eteru świetlnego jest w fizyce „zbyteczne”. W ten sposób cała dziedzina badań nad zjawiskami w poruszającym się eterze przechodziła do historii, rozpoczynała się natomiast era szczególnej teorii względności.

Fizycy znali wcześniej zasadę względności. Dotyczyła ona mechaniki. I zasada dynamiki, czyli zasada bezwładności, mówi, że gdy żadne siły nie działają na ciało, to porusza się ono ruchem jednostajnym i prostoliniowym bądź spoczywa. Zasada ta nie dotyczy każdego układu współrzędnych (in. układu odniesienia). Obserwator w hamującym pociągu widzi, jak przewracają się przedmioty, które dotąd spokojnie sobie tkwiły w bezruchu. Hamujący pociąg nie jest więc układem odniesienia, w którym zasada bezwładności ma zastosowanie. Fizycy mówią: nie jest układem inercjalnym (tzn. takim, w którym obowiązuje zasada bezwładności). Pociąg jadący ruchem jednostajnym jest dobrym przybliżeniem układu inercjalnego, podobnie jak powierzchnia Ziemi. Wiemy jednak, że także powierzchnia Ziemi nie jest idealnym układem inercjalnym, ponieważ Ziemia wiruje wokół osi, a także porusza się ruchem rocznym wokół Słońca. Układ inercjalny jest więc pewnym ideałem teoretycznym. Zasady dynamiki mają w takim układzie szczególnie prostą postać i zazwyczaj tak są domyślnie sformułowane.

Ważną cechą układów inercjalnych jest to, że każdy układ odniesienia poruszający się ruchem jednostajnym i prostoliniowym względem jednego z nich jest także układem inercjalnym. mamy więc do czynienia z klasą równoważnych fizycznie układów odniesienia. W każdym z nich obowiązują zasady dynamiki w zwykłej postaci. Nie znaczy to, że nie możemy opisywać ruchu np. w odniesieniu do hamującego pociągu, musimy jednak wtedy uwzględnić dodatkowe siły, które nie wynikają z żadnych oddziaływań, lecz są skutkiem ruchu układu: w hamującym pociągu pasażerowie odczuwają siłę zwróconą ku jego przodowi, która znika, gdy pociąg się zatrzyma.

Isaac Newton sformułował w Matematycznych zasadach filozofii przyrody pojęcia absolutnej przestrzeni – czegoś w rodzaju nieskończonego pojemnika na wszystkie obiekty w świecie oraz absolutnego czasu. Prawa dynamiki obowiązywać miały, gdy ruch odnosimy do owej przestrzeni absolutnej, ale także w każdym układzie odniesienia poruszającym się ruchem jednostajnym i prostoliniowym. W rezultacie w fizyce Newtona nie ma sposobu na ustalenie, który z nieskończonego zbioru układów inercjalnych jest absolutną przestrzenią albo w języku dziewiętnastego wieku: eterem. Nie możemy więc ustalić absolutnego położenia żadnego przedmiotu w sposób empiryczny: dwa zdarzenia zachodzące w odstępie jednej minuty w tym samym punkcie (inercjalnego) pociągu zachodzą w różnych miejscach przestrzeni zdaniem obserwatora na peronie. Fizycznie oba punkty widzenia są równoprawne, a także punkty widzenia wszelkich innych obserwatorów inercjalnych. Absolutna przestrzeń należy więc do założeń metafizycznych Newtona, żadne eksperymenty nie pozwalają jej zlokalizować. Inaczej można powiedzieć, że w fizyce Newtona obowiązuje zasada względności: prawa fizyki są takie same w każdym układzie inercjalnym.

Czas w fizyce Newtona jest rzeczywiście absolutny, to znaczy, można zawsze ustalić, czy zdarzenia są równoczesne, nawet gdy zachodzą one daleko od siebie (zresztą dla pewnego obserwatora inercjalnego będą one równoczesne i zarazem w tym samym punkcie przestrzeni).

Einstein uważał, iż zasadę względności należy rozciągnąć także na zjawiska elektromagnetyczne i zaproponował, aby obowiązywała ona jako nowe prawo fizyki: wszelkie prawa fizyki mają taką samą postać w każdym układzie inercjalnym. Drugim postulatem jego teorii było przyjecie, że prędkość światła w próżni jest dla każdego obserwatora inercjalnego równa tej samej wartości c (wynikającej z teorii Maxwella). Zamiast analizować szczegóły zaproponował więc dwie zasady ogólne, które jego współczesnym wydawały się przeczyć sobie wzajemnie. Rozszerzenie zasady względności na całą fizykę byłoby wprawdzie eleganckim wyjaśnieniem, dlaczego nie obserwujemy ruchu Ziemi w eterze (bo eteru nie ma), ale pojawia się trudność z drugim postulatem. Znaczy on bowiem, że nie tylko prędkość światła zawsze jest równa c, bez względu na ruch źródła światła, ale także równa jest c bez względu na to, czy obserwator goni falę świetlną, czy też porusza się jej naprzeciw. Przeczy to prawu składania prędkości, a przecież eksperymenty potwierdzają je na co dzień: gdy pasażer porusza się z prędkością u (względem pociągu) w kierunku do przodu pociągu jadącego z prędkością v (względem peronu), to jego prędkość względem peronu jest sumą u+v. Dlaczego prawo to nie działa, gdy jednym z obiektów jest światło?

Czyniono często zarzut Einsteinowi, że prędkość światła w próżni jest w jego teorii jakoś szczególnie wyróżniona. Rzeczywiście, istnieje w tej teorii graniczna prędkość poruszania się obiektów materialnych, np. przekazywania energii albo informacji, i to jest właśnie c. Można powiedzieć, że światło ma tę szczególną własność, iż porusza się z ową maksymalną prędkością. Nie ma jednak żadnych przeszkód, aby istniały inne obiekty poruszające się z prędkością c. Wiemy, że światło składa się z fotonów (było to treścią innej pracy Einsteina z tego samego roku, nie bez powodu nazywanego jego „cudownym rokiem”), cząstek poruszających się z prędkością c. Podobnie poruszają się inne cząstki, odkryte później, jak gluony, albo wciąż czekające na odkrycie, jak grawitony. Cząstki takie nie istnieją w stanie spoczynku, lecz zawsze poruszają się z prędkością c.

Istnienie maksymalnej prędkości, i to w dodatku zawsze jednakowej, pozwala na eksperymentalne badanie równoczesności dwóch zjawisk. Obserwator inercjalny może rozmieścić w swoim układzie odniesienia zegary w różnych punktach. Znając odległość tych puntów oraz prędkość światła, może te zegary zsynchronizować. Gdy jego zegar wskazuje czas t, wysyła sygnał do punktu odległego o r i umawia się z kolegą, który tam przebywa, że moment odebrania sygnału będzie czasem t+r/c. Dzięki temu przepisowi wszystkie zegary zostaną zsynchronizowane i można będzie ustalić zawsze czas danego zdarzenia, obserwując go na pobliskim zegarze. Metoda ta zastosowana w innym układzie inercjalnym może dać inne wyniki w odniesieniu do tej samej pary zdarzeń.

Przykład podany przez Einsteina pomaga to zrozumieć. Wyobraźmy sobie jadący pociąg i obserwatora na peronie. W chwili, gdy mija go środek pociągu, w jego początek i koniec uderzają równocześnie dwa pioruny. Ich uderzenia są równoczesne, ponieważ światło obu błyskawic dociera do naszego obserwatora w jednej chwili, a wiadomo, że odległość obu końców pociągu od obserwatora była w tym momencie taka sama. Inaczej opisze te zdarzenia obserwator siedzący w środku pociągu. Jego zdaniem piorun najpierw uderzył w przód pociągu, a dopiero później w jego tył (linia świata pasażera jest na rysunku zakreskowana, jest to zarazem jego oś czasu). Skoro równoczesność dwóch zdarzeń zależy od układu odniesienia, to znaczy, że czas absolutny nie istnieje. Wbrew pozorom nie burzy to jednak naszych koncepcji przyczyny i skutku. Musimy tylko precyzyjnie opisywać zdarzenia, podając ich położenie oraz czas. Zdarzenia takie, jak jednoczesne uderzenia dwóch piorunów w dwóch różnych punktach nie są z pewnością połączone związkiem przyczynowo-skutkowym, ponieważ wymagałoby to oddziaływania przenoszącego się natychmiastowo, z nieskończoną prędkością. Wszystkie zaś oddziaływania fizyczne mogą przenosić się co najwyżej z prędkością światła w próżni. Dlatego zmiana kolejności czasowej obu uderzeń pioruna nie burzy fizyki. Jeśli natomiast jakieś zdarzenie A może potencjalnie być przyczyną innego zdarzenia B, to dla każdego obserwatora ich kolejność czasowa będzie taka sama: t_A<t_B. Obalenie koncepcji absolutnego czasu nie oznacza zatem wprowadzenia anarchii w relacjach czasoprzestrzennych, lecz zaprowadzenie innego ładu niż dotąd.

Był to najważniejszy wniosek Einsteina. Oznaczał konieczność przebudowy samych podstaw fizyki: pojęć czasu i przestrzeni. Okazywało się, że teoria Maxwella zgodna jest z teorią względności, nie wymaga więc żadnej przebudowy. Przeciwnie, fikcyjny czas lokalny Lorentza należy interpretować jako czas rzeczywisty mierzony przez innego obserwatora. Póki znajdujemy się w jednym ustalonym układzie inercjalnym czas wydaje nam się absolutny. Rewolucja dotyczyła porównywania wyników pomiarów dokonywanych przez różnych obserwatorów. W przypadku elektrodynamiki oznaczało to względność pól elektrycznych i magnetycznych. Jeśli np. w jednym układzie odniesienia mamy spoczywający ładunek wytwarzający pole elektryczne, to w innym układzie ładunek ten będzie się poruszać – będziemy więc mieli do czynienia z prądem, i obserwować będziemy zarówno pole elektryczne, jak i magnetyczne. Oba wektory pola elektromagnetycznego stanowią więc z punktu widzenia teorii względności jedną całość, jeden obiekt matematyczny, którego składowe w różnych układach są różne, podobnie jak składowe zwykłego wektora w różnych układach współrzędnych.

Równania Maxwella są takie same w każdym układzie inercjalnym, więc i prędkość fali świetlnej będzie w każdym układzie taka sama. Większej przebudowy wymagała mechanika. Jej newtonowska wersja nadal pozostaje słuszna, gdy ciała poruszają się wolno w porównaniu do prędkości światła. Najważniejszą konsekwencją nowej mechaniki stało się słynne równanie E=mc^2, które pozwala zrozumieć m.in. reakcje, w których powstają albo giną cząstki, oraz skąd gwiazdy czerpią energię na świecenie przez miliardy lat.

Szczególna teoria względności rozwiązywała problemy, które od lat uciążliwie towarzyszyły fizykom, choć były one głównie natury pojęciowej. Można było na co dzień nie zaprzątać sobie głowy ruchem Ziemi w eterze i uprawiać fizykę tak, jakby Ziemia była nieruchoma. Także narzędzia do rozwiązania owych problemów zostały już wypracowane, głównie przez Lorentza i Poincarégo, Einstein je tylko radykalnie zreinterpretował. Pierwszy z fizyków pogodził się z sytuacją i zaprzyjaźnił z Einsteinem, drugi starał się ignorować prace młodszego kolegi (być może zresztą jego stosunek do Einsteina uległby z czasem zmianie, Poincaré zmarł w roku 1912, a więc przed stworzeniem ogólnej teorii względności). Ostatecznie elektrodynamika ciał w ruchu przeszła do historii, a podstawą fizyki stała się szczególna teoria względności.
Natomiast jej uogólnienie, czyli Einsteinowska teoria grawitacji, było praktycznie dziełem jednego tylko autora, stworzonym w latach 1907-1915.

Pojęciowym punktem wyjścia była prosty eksperyment myślowy: obserwator swobodnie spadający w polu grawitacyjnym nie będzie odczuwał grawitacji – będzie w stanie nieważkości, dziś dobrze znanym z lotów kosmicznych. Einstein uznał tę obserwację za „najszczęśliwsza myśl swego życia”. Z punktu widzenia fizyki Newtonowskiej istnieją dwa rodzaje masy: grawitacyjna i bezwładna. Pierwsza określa siłę, z jaką na ciało będzie oddziaływać grawitacja. Druga określa przyspieszenie ciała. Ponieważ obie te masy są jednakowe, więc przyspieszenie dowolnego ciała w danym polu grawitacyjnym jest takie same. Ilustruje to się czasem, demonstrując spadanie różnych ciał w rurze próżniowej. Obie masy skracają się zawsze, kiedy obliczamy przyspieszenie. Zdaniem Einsteina należało tę tożsamość wbudować w strukturę fizyki, zamiast ją tylko postulować jako dodatkowy warunek. Uczony sformułował zasadę równoważności pola grawitacyjnego i przyspieszenia. Znajdując się w zamkniętej kapsule, nie potrafilibyśmy odróżnić, czy nasza kapsuła porusza się ruchem przyspieszonym, czy spoczywa w polu grawitacyjnym (możliwe byłyby także kombinacje obu stanów). Grawitacja jest więc w fundamentalny sposób związana z bezwładnością. Einstein dążył do stworzenia teorii, która objaśniałaby jednocześnie grawitację oraz bezwładność. Argumentował przy tym, że układy inercjalne są sztucznym ograniczeniem dla fizyki, powinniśmy więc dopuścić także układy przyspieszone, nieinercjalne. Podobnie jak w szczególnej teorii względności każda prędkość ma zawsze charakter względny, w teorii uogólnionej także przyspieszenie miało stać się pojęciem względnym. Nawiązywał tu do rozważań Ernsta Macha, który sądził, że przyspieszenie jest względne. W swoim czasie Isaac Newton posłużył się przykładem wiadra z wodą wirującego na skręconym sznurze. Gdy wiadro przekaże ruch wirowy wodzie, jej powierzchnia staje się wklęsła, co jest skutkiem sił odśrodkowych. Możemy w ten sposób stwierdzić, czy woda wiruje względem absolutnej przestrzeni. Zdaniem Macha eksperyment ten dowodzi tylko tego, że woda obraca się względem dalekich gwiazd. Gdyby to owe gwiazdy zaczęły się obracać, skutek byłby ten sam, a przestrzeń absolutna nie istnieje.

Droga Einsteina do ogólnej teorii względności była zawikłana, lecz z perspektywy roku 1921 jej struktura matematyczna została już wyjaśniona. Rolę układów inercjalnych odgrywały teraz swobodnie spadające układy odniesienia. Obserwator znajdujący się w jednym z nich może stosować szczególną teorię względności. Różnica fizyczna między obiema teoriami polega jednak na tym, że szczególną teorię względności stosować można jedynie lokalnie. Nawet bowiem w spadającym swobodnie laboratorium można wykryć niewielkie zmiany przyspieszenia między różnymi jego punktami – są to siły przypływowe (poznane historycznie na przykładzie zjawiska przypływów i odpływów w oceanach, które są z różnymi siłami przyciągane grawitacyjnie przez Księżyc oraz Słońce). Oznacza to, że nie można wprowadzić jednego układu inercjalnego dla całego wszechświata, można tylko wprowadzać je lokalnie. Matematycznie rzecz biorąc, różnica między teorią ogólną i szczególną polega na geometrii: zakrzywionej w pierwszym przypadku, płaskiej w drugim. Einstein posłużył się czterowymiarowym sformułowaniem swej teorii szczególnej podanym przez Hermanna Minkowskiego. Czas i przestrzeń stanowią tu pewną całość, czasoprzestrzeń. W przypadku dwuwymiarowym w każdym punkcie powierzchni możemy zbudować płaszczyznę styczną. Jest ona zarazem dobrym przybliżeniem geometrii w otoczeniu danego punktu: w taki sposób posługujemy się planami miast, mimo że Ziemia nie jest płaska.

Teorię dwuwymiarowych powierzchni zawartych w trójwymiarowej przestrzeni zbudował Karl Friedrich Gauss. Zauważył przy tym, że wystarczy posługiwać się wielkościami dostępnymi bez wychodzenia poza powierzchnię. Można np. w ten sposób ustalić, czy jest ona zakrzywiona. Podejście Gaussa uogólnił później Bernhard Riemann, a inni matematycy rozwinęli je w systematyczne procedury dla powierzchni o dowolnej liczbie wymiarów.

W geometrii Riemanna współrzędne można wybrać w sposób dowolny, w przypadku zakrzywionych przestrzeni nie istnieje na ogół żaden szczególnie prosty układ współrzędnych, który mógłby odegrać taką rolę jak współrzędne kartezjańskie w przestrzeni euklidesowej. Nadal decydującą rolę odgrywa tu pojęcie odległości. Dla pary bliskich punktów możemy ją zawsze obliczyć w sposób euklidesowy, a długość dowolnej krzywej uzyskać przez sumowanie takich elementarnych odległości. Zamiast równania ds^2=dx^2+dy^2 na płaszczyźnie, mamy teraz równanie nieco bardziej skomplikowane

ds^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2.

Geometrię przestrzeni określa więc zbiór funkcji g_{\mu\nu} pozwalających obliczyć odległość punktów. Funkcje g_{\mu\nu} noszą nazwę tensora metrycznego (albo metryki). Można za ich pomocą wyrazić wszelkie własności geometryczne danej przestrzeni. W przypadku dwuwymiarowym wystarczą trzy takie funkcje, w przypadku czterowymiarowym należy znać ich dziesięć.

W zakrzywionej przestrzeni nie ma linii prostych, można jednak znaleźć ich odpowiedniki. Są to linie geodezyjne (albo geodetyki). Mają one niektóre własności linii prostych w geometrii euklidesowej: są np. najkrótszą drogą łączącą dwa punkty. Krzywe geodezyjne w teorii Einsteina są liniami świata cząstek poruszających się pod wpływem grawitacji. Metryka określa więc, jak poruszają się cząstki – grawitacja nie jest z punktu widzenia Einsteina siłą, lecz własnością czasoprzestrzeni. Należy dodać, że inne rodzaje sił działających na dane ciało sprawią, że przestanie się ono poruszać po geodezyjnej. Jedynie grawitacja wiąże się tak ściśle z geometrią. Jest to zgodne z faktem, że grawitacja jest powszechna, tzn. dotyczy wszystkich cząstek, a także działa na wszystkie w taki sam sposób – dzięki czemu można ją opisać jako własność czasoprzestrzeni. W teorii Einsteina nie potrzeba osobnej masy grawitacyjnej i bezwładnej.

Znając metrykę czasoprzestrzeni, możemy wyznaczyć geodezyjne, czyli obliczyć, jak poruszają się ciała pod wpływem grawitacji. Są to równania ruchu, zastępujące zasady dynamiki Newtona. Aby jednak wyznaczyć metrykę, potrzebne są równania, które musi ona spełniać. Są to równania pola, największe osiągnięcie Einsteina jako fizyka. Przystępując do pracy nad ogólną teorią względności uczony wiedział jedynie, że powinna ona zawierać teorię szczególną a także Newtonowską teorię grawitacji. Równania pola powinny mieć postać znaną z teorii Maxwella: (pewne kombinacje pochodnych pól)=(źródła pola). W przypadku grawitacyjnym źródłem powinna być masa, ale to także znaczy: energia. W teorii szczególnej opisuje się energię i pęd zbioru cząstek jako tensor energii pędu T_{\mu\nu}, zbiór dziesięciu wielkości danych w każdym punkcie czasoprzestrzeni. Masy powinny decydować o krzywiźnie czasoprzestrzeni. Zatem po lewej stronie równań pola powinna znaleźć się wielkość informująca o krzywiźnie. Okazuje się, że praktycznie jedyną możliwością jest tu tzw. tensor Einsteina, G_{\mu\nu} zbiór dziesięciu pochodnych metryki. Równania muszą więc przybrać postać

G_{\mu\nu}=\kappa T_{\mu\nu}.

gdzie \kappa jest odpowiednio dobraną stałą związaną ze stałą grawitacyjną. Sama postać zapisu tych równań zapewnia, że możemy w dowolny sposób wybrać współrzędne, a równania nadal pozostaną słuszne. Znalezienie prawidłowych równań pola pod koniec listopada 1915 roku zakończyło odyseję Einsteina: ogólna teoria względności została zbudowana.

Jeszcze w listopadzie 1915 roku uzyskał Einstein dla swej teorii pierwsze potwierdzenie obserwacyjne. Obliczył bowiem wielkość obrotu orbity Merkurego wokół Słońca – niewielkiej rozbieżności między obserwacjami a teorią Newtona nie udawało się wyjaśnić od półwiecza. Teraz okazało się, że przyczyną rozbieżności było niedokładne prawo grawitacji. Przewidział też Einstein, że promienie gwiazd biegnące blisko powierzchni Słońca powinny uginać się o kąt 1,74’’. Efekt ten został w roku 1919 potwierdzony podczas całkowitego zaćmienia Słońca przez dwie ekspedycje brytyjskie. Teoria grawitacji Einsteina okazała się ogromnym sukcesem, jest powszechnie uważana za najpiękniejszą teorię w fizyce. Nie wszystko jednak poszło po myśli jej twórcy. Okazało się np., że choć wprawdzie grawitacja i bezwładność zostały ze sobą zespolone, to nie udało się jednak zrealizować idei Macha. W teorii Einsteina wirowanie całego wszechświata jest czym innym niż wirowanie wiadra Newtona. Einstein z pewnym uporem trzymał się zasady Macha nawet wówczas, gdy wykazano, że nie obowiązuje ona w jego teorii. Wbrew przewidywaniom twórcy grawitacja może prowadzić do zapadania się materii i tworzenia czarnych dziur, w których zamknięta jest osobliwość czasoprzestrzeni. Einstein zmieniał w ciągu swej późniejszej kariery zdanie na temat tego, czy istnieją fale grawitacyjne: początkowo je przewidywał, później nabrał wątpliwości. Jego początkowe przybliżone podejście okazało się słuszne i fale grawitacyjne zostały odkryte w roku 2015.

Einstein dadaista (1919-1920)

Przyjmowanie nowej prawdy naukowej to proces dramatyczny. Grają w nim rolę emocje, ambicje, przesądy, ale na szczęście także racjonalne przesłanki – na dłuższą metę nie da się utrzymać teorii, która nie ma eksperymentalnych potwierdzeń i dzięki której nie udało się zrozumieć niczego nowego. Teoria względności zyskała efektowne potwierdzenie w roku 1919 i Albert Einstein nagle stał się sławny na cały świat.

Artystka awangardowa Hannah Höch umieściła go na sławnym kolażu Cięcie dadaistycznym nożem kuchennym przez piwny brzuch najnowszej epoki weimarskiej w kulturze Niemiec (1919).

Hannah Höch, Cut with the Kitchen Knife Dada Through the Last Weimar Beer-Belly Cultural Epoch of Germany, 1919-20

Obrazek na flickr zawiera identyfikację niektórych postaci kolażu. A tu jest jego większa wersja:

https://www.artsy.net/artwork/hannah-hoch-cut-with-the-dada-kitchen-knife-through-the-last-weimar-beer-belly-cultural-epoch-in-germanyc

Na prawo od Einsteina mamy nieco pokiereszowaną twarz cesarza Wilhelma II, który abdykował po przegranej wojnie i uciekł do Holandii, pod nim fragment fotografii z manifestacji bezrobotnych. Są także Karol Marks i Lenin, niemieccy komuniści i artyści. Obok Einsteina głowa prezydenta Republiki Weimarskiej Friedricha Eberta doklejona do torsu tancerki topless. W prawym dolnym rogu znajduje się główka autorki na tle mapy Europy z zaznaczonymi krajami, w których kobiety nie mają jeszcze prawa głosu (Francja, Portugalia, Bałkany; Polska znalazła się tu chyba przez pomyłkę). Einstein – Żyd i naukowy rewolucjonista – niemal automatycznie łączony był z lewicą społeczną i artystycznym undergroundem. Wciąż zapowiadano jego wyjazd do Moskwy, gdzie nigdy nie był ani się też nigdy nie wybierał. Jeszcze po drugiej wojnie światowej FBI usiłowało ustalić, czy uczony był członkiem partii komunistycznej w Niemczech (nie był, nie był też żadnym sympatykiem komunizmu), przeszukiwano jego śmieci i podsłuchiwano telefon.

W roku 1919 fizyk nieoczekiwanie znalazł się w centrum zainteresowania mediów. Jego teoria zaczęła ściągać na siebie entuzjazm albo oburzenie, które trudno dziś zrozumieć. Jako element kultury masowej zaczęła być krytykowana, objaśniana bądź zwalczana przez ludzi, którzy nie mieli pojęcia o fizyce. Z jakiegoś powodu wszyscy zapragnęli mieć na jej temat własny pogląd. Szczególnie bulwersowała względność czasu: oto nie płynie on jednakowo dla wszystkich i zamiast być solidną podstawą rzeczywistości sam staje się jeszcze jednym zjawiskiem, kolejną zmienną fizyczną, podlegającą pomiarowi. Czas własny mierzony przez dwóch obserwatorów, którzy rozdzielili się i potem ponownie spotykają, zależy od ich historii, od tego, co im się po drodze przydarzyło, obaj na ogół zmierzą inny odstęp czasu pomiędzy spotkaniami. Jest to paradoks bliźniąt – w istocie żaden paradoks, lecz własność naszego świata sprawdzana tysiące razy eksperymentalnie, choć nie na bliźniakach.

W Niemczech publiczna dyskusja na temat teorii względności od początku zatruta była oparami nacjonalizmu: Żyd Einstein dla niektórych nie był dość narodowoniemiecki, toteż nie mógł mieć racji. Intelekt żydowski różni się bowiem od germańskiego: jest powierzchowny, nie zgłębia istoty rzeczy, tworzy sztuczne uogólnienia, lubuje się w abstrakcjach. Żydzi w Niemczech stanowili zaledwie 1% ludności, lecz spośród nich wywodziła się wielka część wybitnych uczonych, w miastach takich jak Berlin większość prawników i lekarzy było pochodzenia żydowskiego, do Żydów należały wielkie domy towarowe i koncerny prasowe. Konstytucję Republiki Weimarskiej napisał Żyd. Z punktu widzenia nacjonalistów to Żydzi stali za przegraną wojną (teoria noża w plecy) i to oni teraz bogacili się w kapitalistycznej gospodarce. Nawet komunistami, buntującymi się przeciwko kapitalizmowi, też często byli Żydzi.

W życiu politycznym jest mniej przypadków, niż się sądzi. Osoba Einsteina była wygodnym celem ataków: żeby wzbudzić wrogość, trzeba najpierw stworzyć postać wroga, wykazać, jak przebiegłe są jego knowania. Paul Weyland, zawodowy hochsztapler i mąciciel, umyślił sobie, że przeprowadzi całą kampanię przeciwko teorii względności i jej autorowi. Założył coś, co nazywało się Grupą Roboczą Niemieckich Przyrodników dla Zachowania Czystej Nauki (Arbeitgemeinschaft
deutscher Naturforscher zur Erhaltung reiner Wissenschaft). Naprawdę istniał chyba tylko ten szyld oraz pieniądze, które Weyland obiecywał różnym uczonym za wzięcie udziału w zwalczaniu teorii względności – 10 do 15 tys. marek – nie wiadomo, czy ktoś ostatecznie otrzymał taką sumę, czy też Weyland dopiero zamierzał ją zarobić. Jak się zdaje, Weyland zachęcany był przez dwóch noblistów, antysemitów i nacjonalistów: Philippa Lenarda i Johannesa Starka. W sierpniu 1920 roku w wielkiej sali Filharmonii Berlińskiej odbył się pierwszy z zapowiadanej serii antyeinsteinowskich sabatów. Wystąpili na nim sam Weyland oraz profesor eksperymentator z Berlina, Ernst Gehrcke, od lat zwalczający teorię względności. Weyland, określający Einsteina jako naukowego dadaistę, następująco przedstawił sytuację Niemiec:

Teraz, gdy zubożeliśmy pod względem finansowym, prowadzi się działania mające nam odebrać naszą własność  intelektualną; od dziś mamy przestać myśleć w sposób niezależny. W polityce to się im udało. Widzicie to każdego dnia i każdej godziny we wszystkich wiadomościach, jak oszalała grupa bezkrytycznych ludzi pod wodzą pozbawionych  skrupułów i egoistycznych przywódców zmierza do bolszewizmu. Etyka i moralność stały się pustymi słowami, ludzie, którzy starają się zabić w Niemcach wszystko, co czyniło ich wielkimi, teraz chcą im odebrać także naukę. (…) Bo konsekwencje i intencje teorii względności i zasady względności Einsteina i jego zwolenników sięgają dalej i głębiej, niż uświadamia to sobie opinia publiczna.

Niewykluczone, że Weyland starał się po prostu zarobić na biletach wstępu na owo przedstawienie. Zjawiło się sporo publiczności, w tym sam Einstein. Gehrcke przedstawił główne tezy swej broszury: Teoria względności – naukowa sugestia masowa, wydanej nakładem Grupy Roboczej jako pierwszy zeszyt serii. Gehrcke starał się ograniczać do argumentacji naukowej i żywo zaprzeczał, że kierują nim jakieś pozanaukowe względy. Przeświadczony był jednak, że zdemaskował rozmaite szalbierstwa Einsteina. Jego zdaniem Einstein sprytnie wykorzystywał fakt, że naukowcy ograniczeni są swoją specjalnością i stworzył teorię, która zawiera elementy filozofii, fizyki i matematyki tak pomieszane, że nikt nie czuje się dostatecznie kompetentny, aby ją zanegować.

Ernst Gehrcke. Einstein powiedział o nim: „ Gdyby miał tyle inteligencji co arogancji, to dyskusja z nim byłaby nawet przyjemna”.

Z rzeczy pozytywnych Gehrcke wierzył w istnienie eteru i wypowiedzi Einsteina na ten temat uważał za sprytne kluczenie oraz mylenie tropów. Rzeczywiście, był tu Einstein niekonsekwentny: najpierw, w szczególnej teorii, z młodzieńczą dezynwolturą stwierdził, że eter jest zbędny, później, w teorii ogólnej, obdarzył czasoprzestrzeń strukturą geometryczną, która w pewnym stopniu mogła przypominać eter. Nie była to jednak zmiana poglądów filozoficznych, lecz raczej podążanie za fizyką: fizyk nie może sobie zadekretować, że zawsze będzie trzymać się jakichś ram pojęciowych, bo przyroda może nie zechcieć z nim współpracować w tej kwestii. W każdym razie to, co dla kogoś innego byłoby naukowym namysłem, ewolucją poglądów wskutek wieloletniej pracy, w oczach Gehrckego stało się po prostu próbą oszustwa. Szczególnie upodobał sobie Gehrcke następujący argument przeciwko paradoksowi bliźniąt: skoro Einstein twierdzi, że wszystkie ruchy są względne, to obaj bliźniacy znajdują się w symetrycznej sytuacji, bo z każdym z nich można związać układ odniesienia (co jest prawdą, ale nie oznacza, że historie obu stają się dzięki temu symetryczne). Wiele też mówił Gehrcke o grawitacyjnym przesunięciu linii widmowych ku czerwieni, które było przewidziane przez Einsteina, lecz nie zostało zaobserwowane. Pomijał przy tym trudności obserwacyjne: przewidywany efekt był niewielki w porównaniu z szerokością typowych linii widmowych ciał niebieskich. Jako specjalista od optyki musiał to świetnie rozumieć, wolał jednak udawać, że obserwacje wyraźnie przeczą teorii względności. Także obserwacje Eddingtona – ugięcia promieni świetlnych w pobliżu Słońca – zbył pobieżnym omówieniem, jakby już fakt potwierdzenia niemieckiej teorii przez Anglika tuż po wojnie nie stanowił dodatkowego argumentu na rzecz Einsteina. Nikt nigdy nie kwestionował zresztą absolutnej uczciwości i prawdomówności kwakra Eddingtona. Milczał też Gehrcke na temat berlińskich zwolenników teorii względności: przede wszystkim Maksa Plancka, uchodzącego za największy autorytet nie tylko naukowy, ale i moralny, a także Maksa von Laue, noblisty i niewątpliwie „prawdziwego” Niemca. Postawa Gehrckego charakteryzowała się nienaukowymi uprzedzeniami, nawet jeśli pozornie prowadził on debatę ściśle naukową.

Ostatecznie z serii wykładów i wydawnictw nic nie wyszło. Inni naukowcy wycofali się z przedsięwzięcia, widząc, że nie przyniesie im ono chluby. Wycofał się też chyłkiem Philipp Lenard, który nawet poczuł się urażony tym, że jest wymieniany w kontekście tej sprawy – najwyraźniej wydawało mu się, że hipokryzja warta jest tyle samo co cnota.

Epizody tego rodzaju nie były na szczęście całą prawdą o nauce niemieckiej, ale też stanowiły coś więcej niż nieprzyjemne incydenty. Życie publiczne Niemiec przesiąknięte było nienawiścią i żądzą odwetu. W roku 1920 Niemcy nie były jeszcze skazane na powtórną wojnę i jej złowieszcze konsekwencje. Były jednak krajem wewnętrznie bardzo podzielonym. Podziały te z upływem lat rosły i po wieloletnim podżeganiu do nienawiści, po zimnej wojnie domowej z elementami przemocy, wykoleiły kraj zupełnie. Stało się to w latach trzydziestych, gdy gospodarka zaczęła już wychodzić z kryzysu. To najlepszy dowód, że Marks się mylił: ekonomia nie determinuje historii. Jeśli na nią wpływa, to w sposób pośredni, poprzez społeczne nastroje, a one zależą od wielu czynników, także irracjonalnych i trudnych do zmierzenia. W przypadku Niemiec wielką rolę odegrało poczucie upokorzenia przegraną wojną i jej wersalskimi następstwami. Hitler obiecywał lepszą przyszłość i jednocześnie wpędził Niemcy w wojnę, która musiała być przegrana – wystarczyło spojrzeć na mapę. Ale społeczeństwo powodowane resentymentem łatwo dało sobie wyperswadować, że w taki właśnie sposób uda się stworzyć potęgę kraju i zapewnić trwały pokój. Gdyby Niemcy nie cierpieli na ten chorobliwy, pełen kompleksów nacjonalizm, ich kraj stałby się mocarstwem dwadzieścia lat wcześniej w sposób pokojowy. Nacjonalizm nigdy nie jest lekarstwem, zawsze jest chorobą.

 

 

Kosmologia relatywistyczna w kwadrans II

  • Metryka czasoprzestrzeni

Dla naszego jednorodnego i izotropowego modelu z płaską 3-przestrzenią metryka wszechświata przyjmuje prostą postać:

ds^2=c^2 dt^2-R^2 d\vec{x}\,^2=c^2 dt^2-R^2 (dr^2+r^2 d\vartheta^2+r^2 \sin^2\vartheta d\varphi^2).

Druga postać zapisana jest przez współrzędne sferyczne r, \vartheta, \varphi. Współrzędne x,y,z oraz r, \vartheta, \varphi dla danej galaktyki pozostają stałe (o ile nie ma ona ruchu własnego, a tylko bierze udział w rozszerzaniu wszechświata: przepływie Hubble’a). Jedyny parametr, czynnik skali R(t) opisuje ewolucję wszechświata, czyli jego rozszerzanie (choć równie dopuszczalne teoretycznie byłoby kurczenie się). Czasoprzestrzeń ta nie jest płaska, mimo że płaska jest 3-przestrzeń. Ogólna teoria względności dopuszcza dowolne układy współrzędnych, ten nasz wyróżniony jest fizycznie: w tym układzie współrzędnych mamy wspólny kosmiczny czas oraz współrzędne współporuszające się. Odległość danej galaktyki od nas (r=0) równa jest

D=R(t)r,

oznacza to, że szybkość oddalania się danej galaktyki równa jest (przyjmujemy, że galaktyka nie ma ruchu własnego):

\dot{D}=\dot{R}r =\dfrac{\dot{R}}{R}Rr\equiv H(t) D.

Jest to prawo Hubble’a. Zauważmy, że ta odległość mierzona jest w danej chwili kosmicznego czasu, a więc i prędkość powinna być obecną prędkością galaktyki. W rzeczywistości nie możemy obserwować całej przestrzeni w żadnej chwili – jedyne, co widzimy, to stożek przeszłości: dalsze obiekty w chwilach odpowiednio wcześniejszych itd. W napisanym powyżej prawie Hubble’a prędkość nie musi być mniejsza niż c. Nie musimy się tym przejmować, ponieważ startujemy z metryki, która automatycznie zapewnia lokalną stałość prędkości, a jedynie to się liczy.

  • Mikrofalowe promieniowanie tła (CMB)

Do tej pory mówiliśmy tylko o grawitacji, nie interesowaliśmy się zjawiskami opisanymi przez inne dziedziny fizyki. Jeśli wszechświat był kiedyś gęsty, to musiał także być gorący. Rozpatrzmy, co się dzieje z gęstością energii promieniowania u (w dżulach na metr sześcienny), gdy objętość V się zmienia. Z I zasady termodynamiki mamy (rozszerzanie jest adiabatyczne):

dE=d(uV)=V du+u dV=-p dV,

gdzie p jest ciśnieniem promieniowania. Jest ono równe p=\frac{1}{3}u. Wstawiając to do I zasady termodynamiki i korzystając z faktu, że V=\frac{4}{3}\pi R^3, a dV=4\pi R^2 dR, dostaniemy

\dfrac{du}{u}+4\dfrac{dR}{R}=0\Rightarrow u\sim R^{-4}.

Gęstość energii podzielona przez c^2 daje wkład promieniowania do całkowitej gęstości materii – wielkość, którą należy traktować jako źródło grawitacji w równaniu (*) z pierwszej części. Patrząc nieco inaczej, długość fali promieniowania powinna skalować się, jak R^{-1}, a liczba fotonów w jednostce objętości jak R^{-3}.

Ponieważ energia atomów zależy od współczynnika skali jak R^{-3}, więc dla małych R energia promieniowania wszystko zdominuje. Wiadomo też, że gęstość energii promieniowania jest proporcjonalna do czwartej potęgi temperatury T^4, otrzymujemy więc

T\sim\dfrac{1}{R}.

Temperatura promieniowania jest tym wyższa, im bliżej Wielkiego Wybuchu jesteśmy i energia promieniowania dominuje nad innymi postaciami energii. Mamy więc gorący Wielki Wybuch. W 1965 roku zaobserwowano promieniowanie, które pozostało z wczesnego etapu wszechświata i które z tego powodu zwane jest też reliktowym, jest bowiem czymś w rodzaju skamieliny. Od tamtej pory badane jest ono z coraz większą dokładnością przez różne misje, ostatnią był satelita Planck.

To, co dociera do nas z każdego kierunku wszechświata jest promieniowaniem cieplnym, rozkładem Plancka, o temperaturze niecałe 3K, a więc głównie mikrofalowym. Promieniowanie to jest obrazem wszechświata w chwili t=380 \,000 lat po Wielkim Wybuchu. Zostało wyemitowane gdy czynnik skali był 1000 razy mniejszy niż dziś, miało więc ono wówczas temperaturę 3000 K i przypadało na obszar widzialny i podczerwień. Co więcej, okazuje się, że z bardzo dużą dokładnością (10^{-5}) temperatura owego promieniowania jest taka sama w każdym kierunku. Kolejne misje satelitarne badały właśnie owe fluktuacje: ich rozkład i wielkość zawierają najróżniejsze informacje na temat wszechświata w tamtym momencie. Z niejednorodności tych wyewoluował dzisiejszy wszechświat.

Skąd wzięło się promieniowanie tła? Wszechświat przed t=380\, 000 lat składał się głównie z protonów i elektronów, które miały na tyle dużą energię kinetyczną (temperaturę), że nie łączyły się w atomy wodoru. Taka plazma silnie rozprasza promieniowanie elektromagnetyczne, ponieważ naładowane cząstki wprawiane są przez nie w drgania, a to z kolei oznacza wysyłanie nowej fali elektromagnetycznej (jak w antenie) kosztem energii fali pierwotnej. W rezultacie energia wysyłana jest na wszystkie strony, ośrodek nie przepuszcza promieniowania. Sytuacja zmieniła się, gdy temperatura spadła na tyle, by elektrony mogły utworzyć z protonami atomy wodoru. Powstał wtedy zwykły atomowy gaz, tak samo przezroczysty jak np. powietrze. Od tamtej pory termodynamiczne losy atomów i promieniowania rozprzęgły się. Z atomów powstało wszystko, co dziś widzimy: gwiazdy, planety, galaktyki itp., natomiast promieniowanie stygło w miarę rozszerzania, aż dotarło do nas.

Mała dygresja. Przy okazji promieniowania zauważmy, że statyczny wszechświat Einsteina, omawiany poprzednio, byłby niestabilny także z powodów astrofizycznych. Gdyby nawet dobrać odpowiednio jego gęstość i stałą grawitacyjną, to po pewnym czasie zmieniłaby się jego zawartość: gwiazdy syntetyzują hel z wodoru i cięższe pierwiastki z lżejszych, zamieniając różnicę energii na promieniowanie. Z czasem więc mniej będzie materii atomowej, a więcej promieniowania. Gdyby to było wszystko, pole grawitacyjne by się nie zmieniło, ponieważ obie zmiany są równe za sprawą zasady zachowania energii. Jednak źródłem pola grawitacyjnego jest nie sama gęstość materii \varrho, lecz wielkość \varrho+3p/c^2. Oznacza to, że pole grawitacyjne stanie się silniejsze po zamianie materii atomowej na promieniowanie, gdyż dla promieniowania (po uwzględnieniu, że p=u/3c^2\equiv \varrho/3) mamy: \varrho +3p/c^2=2\varrho. W einsteinowskiej grawitacji ciśnienie światła też jest źródłem pola grawitacyjnego.

  • Odległości

W rozszerzającym się wszechświecie należy być ostrożnym, kiedy mówi się o odległościach. Jedną z możliwych definicji wymieniliśmy wyżej: to odległość mierzona w danym momencie kosmicznego czasu. Do innej miary odległości prowadzi chwila wyemitowania światła t_e, które obserwujemy dziś w t_0. Światło to biegło więc t_0-t_e lat. Jak daleko znajdowało się owe źródło w chwili emisji? Inaczej mówiąc, jak daleko dotrze światło wysłane w chwili t_e z punktu r=0 i odebrane w chwili t_0? Światło biegnie po linii świata, dla której ds=0, a więc jego współrzędna r w chwili t_0 będzie równa

c dt=R(t) dr \Rightarrow r={\displaystyle \int_{t_e}^{t_0}}\dfrac{c dt}{R(t)}.

Odległość tego punktu w chwili emisji jest dana równaniem

D=R(t_e)r,

a dzisiejsza odległość tego punktu równa jest

D_{now}=R(t_0)r.

Odległość D jako funkcja chwili emisji jest to stożek przeszłości zbudowany na zdarzeniu tu i teraz. Ponieważ wszechświat kurczy się, gdy cofamy się w czasie, więc odległości D osiągają maksimum dla pewnej chwili emisji. Oznacza to, że wszystko, co widzimy, znajduje się w odległościach nie większych od owego maksimum. W ten sposób kątowe rozmiary galaktyk osiągają pewne minimum, a te, które wysłały światło jeszcze wcześniej, będą widziane jako większe na niebie (choć słabsze).

Na rysunku widzimy kształt stożka przeszłości i dwie linie świata galaktyk. Każdą z nich mogliśmy zobaczyć w chwili przecięcia jej linii świata ze stożkiem przeszłości. Obie były wtedy w podobnej odległości, powinny więc być jednakowej wielkości kątowej. Światło odpowiadające czerwonej galaktyce biegło do nas dłużej, a  jego długość fali rozciągnęła się bardziej, uległa większemu przesunięciu ku czerwieni w języku astronomów. Dziś obie znajdują się znacznie dalej od nas, ale już tego nie zobaczymy.

  • Trudności kosmologii Wielkiego Wybuchu: płaskość i horyzonty

Obserwowana 3-przestrzeń jest płaska. Oznacza to, że całkowita gęstość wszystkich form energii równa się dokładnie wartości krytycznej. Inaczej mówiąc nasz wszechświat ma dokładnie prędkość ucieczki: ani mniej, ani więcej. Oznacza to, że np. w jedną nanosekundę po Wielkim Wybuchu gęstość musiała być dopasowana bardzo ściśle, inaczej nasz wszechświat zachowywałby się całkiem inaczej. To tak, jakbyśmy wystrzelili z Ziemi pocisk z prędkością idealnie równą 11,2 km/s, ani trochę więcej, ani trochę mniej. Nie jest to niemożliwe, nie wygląda jednak na sytuację zbyt „naturalną” – postawiłem cudzysłów, ponieważ nie wiemy, co jest, a co nie jest naturalne dla wszechświata. Fizycy woleliby jakiś mechanizm, który faworyzuje płaski wszechświat.

Źródło: Ned Wright Cosmological Tutorial

Innym problemem jest stałość temperatury promieniowania tła docierającego z każdej strony. Na pierwszy rzut oka stałość ta wygląda zdroworozsądkowo: gaz był w równowadze termicznej, więc wysyłał promieniowanie o jednej temperaturze. Żeby zobaczyć, dlaczego jest to problem, wprowadźmy tzw. czas konforemny, spełniający warunek dt =R d\tau. Mamy wówczas

ds^2=R^2(c^2 d\tau^2-d\vec{x}\,^2).

Nasza metryka jest taka jak przestrzeni Minkowskiego, choć niezupełnie, gdyż przemnożona jest przez pewien wspólny czynnik skali. Nie ma sztuczki sprowadzającej zakrzywioną przestrzeń do płaskiej, ponieważ są one geometrycznie różne. Nasza czasoprzestrzeń nadal jest zakrzywiona, czego oznaką jest funkcja R(t). Jednak takie współrzędne są wygodne, gdyż zapewniają, że światło na wykresie czasoprzestrzennym biegnie pod kątem \pm 45^{\circ} (przyjmujemy c=1). Galaktyki w tym układzie współrzędnych mają stałe położenia, czyli ich linie świata biegną pionowo w górę. Sytuacja wygląda wówczas następująco. W chwili rozprzęgnięcia promieniowania z atomami stożki przeszłości różnych punktów CMB były rozłączne.

Rozłączne stożki przeszłości oznaczają, że w przeszłości zdarzenia takie nie miały żadnych wspólnych zdarzeń, a więc i możliwości wyrównania temperatury, bo takie wyrównywanie następuje dzięki wymianie energii. Izotropia promieniowania tła staje się więc wynikiem jakiegoś bardzo szczególnego wyboru warunków początkowych. Znów: fizycy woleliby nie zakładać aż tak szczególnych warunków początkowych. Obliczenia pokazują, że promieniowanie docierające z kątów większych niż $1,5^{\circ}$ powinno być fizycznie niezależne. Cała sfera niebieska rozpada się na ok. 10 000 niezależnych kawałków. Z jakiegoś powodu wszystkie te kawałki mają taką samą temperaturę.

Standardowym sposobem uniknięcia tych paradoksów jest inflacja. W bardzo wczesnym etapie po Wielkim Wybuchu, np. t=10^{-35} s przez bardzo krótki czas mamy dużą stałą kosmologiczną i wszechświat rozszerza się wykładniczo zgodnie z modelem de Sittera. Potem wraca do zwykłego modelu, o którym mówiliśmy. W przypadku płaskości skutek inflacji jest taki, jakbyśmy niewiarygodnie mocno nadmuchali balon: jego powierzchnia stanie się automatycznie płaska, przynajmniej dla naszej dokładności pomiarów. Także problem horyzontu rozwiązuje się wtedy dość naturalnie. Inflacja trwa bardzo krótko, licząc w czasie kosmicznym, ale długo w czasie konforemnym. Wygląda to tak.

Skutek jest więc taki, jakbyśmy cofnęli chwilę Wielkiego Wybuchu i dzięki temu stożki przeszłości różnych punktów promieniowania tła zdążyły się zetknąć.

Inflacja przewiduje także właściwe zachowanie fluktuacji promieniowania tła, co jest ważne, bo przesądza o dalszej ewolucji wszechświata.

Jak to zwykle bywa, każde rozwiązanie rodzi dalsze pytania i trudności. Nie wiadomo nic o konkretnym fizycznym mechanizmie inflacji, to znaczy wiadomo tyle, ile wynika z ograniczeń kosmologicznych, nic nie wiemy natomiast o konkretnych polach, które miałyby inflację wywołać. Jest też problem łagodnego wyjścia z fazy inflacyjnej, tzw. graceful exit. Chodzi o to, że modele przewidujące inflację na ogół nie chcą się zatrzymać, lecz dalej wywołują zachowania budzące wątpliwości. Np. generują bąble czasoprzestrzeni, które byłyby oddzielnymi wszechświatami. Nie ma więc żadnego ogólnie przyjętego opisu tej fazy wszechświata. Niektórzy, np. Roger Penrose, sądzą, że idea ta więcej kłopotów rodzi niż rozwiązuje.