Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Reklamy

Yitang Zhang: pary liczb pierwszych (2013)

Chińskie malarstwo tuszem to szczególna technika wymagająca wielkiej koncentracji. Tusz wsiąka w papier i nic nie daje się poprawić, nie można też czekać, cały obraz musi zostać namalowany w ciągu kilku minut. Dlatego artysta najpierw długo zastanawia się nad tym, co i jak chce namalować, obmyśla pociągnięcia pędzla, by potem kilkoma szybkimi precyzyjnymi ruchami wykonać obraz. Jego celem nie jest oddanie wszystkich szczegółów, lecz uchwycenie istoty danej rzeczy.

il_fullxfull.138487743

Obraz ze strony http://imgkid.com/chinese-ink-wash-painting.shtml

Yitang Zhang jest matematykiem, zdolnością długotrwałej koncentracji przypomina wybitnych chińskich malarzy. Przeważnie pracuje spacerując. Niewiele przy tym pisze, właściwie dopiero wtedy, gdy ułoży mu się w głowie jakaś całość warta zapisania.

W kwietniu 2013 roku redakcja „Annals of Mathematics”, jednego z najbardziej prestiżowych pism matematycznych, otrzymała sensacyjną pracę z teorii liczb podpisaną przez niemal nieznanego autora o nazwisku Yitang Zhang. W tym roku pismo to otrzymało 915 prac, z czego tylko 37 zostało przyjęte do druku. Redaktor pisma szybko ustalił, że autor umieścił już kilka lat wcześniej jeden artykuł na arXiv.org, ale praca ta miała luki i nigdy nie została opublikowana w recenzowanym czasopiśmie. Zhang nie jest młody, zrobił doktorat w 1991 roku w Purdue University i potem nic nie publikował. Nie wyglądało to zachęcająco, ale sama praca wyglądała na poważną. Oczywiście, nie da się tak od razu ustalić, czy jakiś skomplikowany dowód jest prawdziwy, wymaga to dokładnego przejrzenia przez specjalistów, którzy wiedzą, co może się okazać prawdziwe, a co nie, i którzy sprawdzą pracę krok po kroku. Nawet bardzo kompetentni matematycy, zwłaszcza kiedy pracują sami, przeoczają czasem jakąś trudność (Andrew Wiles za pierwszym razem ogłosił dowód twierdzenia Fermata z istotną luką, która okazała się całkiem poważna). Praca została wysłana do recenzentów: Henryka Iwańca z Rutgers University i Johna Friedlandera z University of Toronto. Tak się złożyło, że obaj recenzenci spotkali się na tydzień w Princeton i z rosnącym zaciekawieniem zaczęli czytać pracę Zhanga, najpierw sprawdzając główne punkty, potem coraz dokładniej. Po kilku tygodniach zarekomendowali publikację jako pierwszorzędny wynik.

Jak wiele twierdzeń z teorii liczb, także to udowodnione przez Zhanga łatwo opisać, choć niezmiernie trudno udowodnić. Chodzi o liczby pierwsze. Z konstrukcji prostego sita Eratostenesa widać, że gdy przesuwamy się w górę zbioru liczb naturalnych, coraz rzadziej będziemy natrafiać na liczby pierwsze; każda liczba ma bowiem więcej potencjalnych podzielników. Wiadomo jednak, że bardzo wiele liczb pierwszych występuje w bliźniaczych parach, różniąc się o 2: (3,5), (5,7), (11, 13) itd. Pojawia się pytanie, czy par takich jest nieskończenie wiele? Wiadomo także, że jest wiele par liczb pierwszych różniących się o 4, o 6 itd. Można i dla takich par zadać pytanie, czy jest ich nieskończenie wiele? Zhang pokazał, że istnieje parzysta liczba naturalna N<7\cdot 10^7, dla której istnieje nieskończenie wiele par liczb pierwszych postaci (x,x+N). Daleko wprawdzie do N=2, ale wynik ten wzbudził sensację, ponieważ nikt się nie spodziewał, że dowód jest możliwy bez jakiegoś zasadniczego przełomu. Zaskoczeni byli także ci, których prace Zhang wykorzystał w swoim dowodzie – jak m.in. Henryk Iwaniec i John Friedlander. Zhang pokazał, że można zajść znacznie dalej, niż sądzili najlepsi eksperci. W dodatku zrobił to pracując sam i samodzielnie wyrabiając sobie pojęcie o sytuacji: zwykle liczący się w branży specjaliści znają się, komunikują, dyskutują, uzgadniają poglądy, słuchają swoich wykładów, spotykają się na konferencjach i seminariach – to wszystko bardzo pomaga. Samodzielne wyrabianie sobie poglądów jest niesamowicie pracochłonne, ludzie zwykle nie mają na to czasu poza swoją wąską specjalnością.

Yitang_Zhang

Zdjęcie: Wikipedia

Yitang Zhang umie pracować sam, chyba nawet nie potrafi inaczej. Urodził się w roku 1955 w Chinach, kiedy miał 15 lat został zesłany z matką na prowincję, żeby uprawiać rolę, jego ojciec, profesor elektrotechniki, także został zesłany, ale do innej części kraju. Studiować zaczął, mając 23 lata. Po studiach znalazł się w Stanach Zjednoczonych, gdzie zrobił doktorat. Jego promotor Tzuong-Tsieng Moh z uniwersytetu Purdue stwierdził, że Zhang nie zwracał się do niego o pomoc w znalezieniu pracy, toteż mu jej nie szukał. To, co się działo dalej, trudno nazwać karierą naukową czy w ogóle jakąkolwiek karierą. Zhang pracował w różnych dziwnych miejscach jak motel w Kentucky czy bar z kanapkami sieci Subway (zajmował się tam wprawdzie głównie księgowością, ale czasem musiał także robić kanapki). W końcu zatrudniono go na uniwersytecie New Hampshire, gdzie uczył rachunku różniczkowego i całkowego. Przypominano mu tam od czasu do czasu, że jeśli nie będzie miał publikacji, to straci etat.

Ciąg dalszy jest jak z naukowej bajki o Kopciuszku. Posypały się zaproszenia z najlepszych ośrodków matematycznych świata: z uniwersytetu Harvarda, z Princeton. Zhang otrzymał szereg nagród, w tym grant Fundacji MacArthura w roku 2014: oznacza to, że przez najbliższe pięć lat nie musi się martwić, z czego będzie żył. Zresztą i uniwersytet New Hampshire awansował go na profesora.

Dziwna historia nietuzinkowego człowieka, który nie zmieścił się w systemie, choć wiadomo, że mieszczą się w nim rozmaite miernoty (mówimy oczywiście tylko o USA). Imponujący spokój ducha. Zaskakuje także wiek uczonego. Matematycy, jak skrzypkowie, przeważnie najlepsi są młodzi. Isaac Newton pisał (odnosząc to także do siebie): „żaden stary człowiek (wyjąwszy doktora Wallisa) nie lubi matematyki”. Yitang Zhang, obok Johna Wallisa, także i pod tym względem należy do wyjątków. Dzięki innym matematykom, korzystającym z pracy Zhanga, wiadomo już, że najmniejsza liczba N, dla której istnieje nieskończenie wiele par liczb pierwszych postaci (x,x+N) jest nie większa niż 246.

Ładne artykuły o Zhangu zamieściły „The New Yorker”, a także „Quanta”.

Andrew Wiles: wielkie twierdzenie Fermata i matematyka czysta (1986-1995)

„Moje doświadczenia z uprawianiem matematyki najlepiej można chyba opisać, porównując je do wędrówki po ciemnym niezbadanym domu. Wchodzę do pierwszego pokoju: panuje w nim zupełny mrok. Błądzę po omacku i wpadam na meble, ale stopniowo uczę się, gdzie stoi każdy z nich. Po jakichś sześciu miesiącach znajduję wyłącznik i naraz wszystko staje się jasne, widzę dokładnie, gdzie jestem. A potem wchodzę do następnego ciemnego pokoju i spędzam tam następne sześć miesięcy. I każde z tych olśnień – czasem trwają one tylko chwilę, a czasem dzień albo dwa – jest tylko kulminacją owych wielu miesięcy błądzenia po omacku i bez nich byłoby niemożliwe” (Andrew Wiles on Solving Fermat).

Mówi się czasem, że w każdej dziedzinie wiedzy tyle jest prawdy, ile jest w niej matematyki. Odkrycie, że świat fizyczny można opisać w języku matematyki i że właściwie tylko od nas zależy, z jak wielką dokładnością to zrobimy, uważam za największe osiągnięcie ludzkości. Nie chodzi o to, że pewne aspekty świata dają się ująć matematycznie, bo to wiedzieli już starożytni. Istotą nowożytnej nauki jest wiara, że w zasadzie każdy aspekt świata fizycznego (ale i chemicznego, a coraz częściej także biologicznego czy ekonomicznego) daje się opisać stosownym modelem matematycznym. Nie tylko planety czy dźwignie, ale spadanie liścia na wietrze, drogę cyklonu, atomy i cokolwiek nam przyjdzie do głowy.

Jednocześnie matematyka, choć tak potrzebna wszystkim, jest w zasadzie samowystarczalna i wielu matematyków niezbyt interesuje się innymi naukami, po cichu uważając je za stratę czasu. Wciąż istnieje platoński ideał matematyki czystej, przebywającej tam, gdzie idea Piękna, gdzieś w pobliżu idei Dobra. I niektórzy matematycy spędzają całe życie w swoim zaczarowanym pałacu nie z tego świata. W nagrodę omija ich nieco tak powszechna dziś komercjalizacja i pogoń za szybkimi wynikami (co najmniej dwa odkrycia rocznie).

Andrew Wiles jest niewątpliwie matematykiem czystym – w każdym sensie tego słowa. Jego dziedzina to teoria liczb, a więc badanie własności najprostszych liczb: 1, 2, 3, … – liczb naturalnych. Kiedy spostrzegł, że możliwe jest zaatakowanie wielkiego twierdzenia Fermata, zamknął się na siedem lat na strychu i nie mówiąc o tym nikomu, pracował. Nie publikował w tym czasie, musiał więc wtajemniczyć swojego dziekana. Nie chciał, aby koledzy wciąż go pytali, jak mu idzie. Być może obawiał się także, iż ktoś mógłby go ubiec. Nie ma powodu wstydzić się takich uczuć – nie mają przecież nic wspólnego z podkładaniem nogi konkurentom. Jest w tym duch sportowej walki: wszyscy mają równe szanse, oni też mogą położyć na szalę swoją reputację. Wygra najlepszy.

576px-Andrew_wiles1-3

Wygrał Andrew Wiles. Twierdzenie Fermata było słynną szklaną górą, na którą daremnie próbowali wspiąć się wciąż nowi śmiałkowie. Niemal każdy ambitniejszy matematyk próbował zmierzyć się z tym twierdzeniem. Nie każdy miał dość rozsądku, aby w porę przestać się nim zajmować.
Właściwie była to tylko błyskotliwa hipoteza. Pierre Fermat, jurysta w parlamencie Tuluzy, a w wolnych chwilach matematyk, jakby od niechcenia i dla rozrywki wytyczył wiele nowych dróg. W roku 1637 na marginesie czytanego przez siebie Diofantosa zanotował, że równanie

x^p+y^p=z^p

ma wprawdzie rozwiązania naturalne, gdy p=2, ale nie ma ich dla żadnej wyższej potęgi p. Stwierdził nawet, że ma dowód, ale nie zmieści mu się na wolnym miejscu na stronie, toteż go nie zamieścił. Luźne stwierdzenia tego rodzaju w wypadku Fermata należało traktować poważnie, rzadko bowiem zawodziła go intuicja.
Sam Fermat podał (w innym miejscu) dowód swego twierdzenia dla p=4, wynikała z tego także jego prawdziwość dla wykładników postaci p=4n. Łatwo też pokazać, że wystarczy dowieść twierdzenia Fermata dla wykładników będących nieparzystymi liczbami pierwszymi.
Następny krok wykonał pod koniec XVIII wieku Leonhard Euler, niestrudzony syn pastora z Bazylei, który umiał obrócić na swoją korzyść ambicje absolutnych władców swej epoki i pracował na zmianę pod rządami Fryderyka II w Prusach albo Katarzyny II w Rosji. Ani królowi, ani carycy nie zależało jakoś szczególnie na matematyce, ale obojgu bardzo zależało na splendorze. Euler wykazał słuszność twierdzenia w przypadku p=3 (nie do końca, dowód został później uzupełniony). Następne generacje matematyków przyniosły dowody wielu różnych szczególnych przypadków twierdzenia Fermata, wciąż nie było jednak dowodu ogólnego. Póki takiego dowodu nie ma, wszystko jest możliwe – bywały już przypadki hipotez, które wydawały się słuszne, lecz w końcu okazały się fałszywe. Euler wysunął np. hipotezę, że równanie

x^4+y^4+z^4=w^4

nie ma rozwiązań naturalnych. W 1988 roku Noam Elkies znalazł kontrprzykład:

2682440^4 + 15365639^4 + 18796760^4 = 20615673^4.

Wielu wybitnych matematyków unikało twierdzenia Fermata. David Hilbert, zapytany, czemu nigdy się nim nie zajmował, stwierdził, że musiałby stracić trzy lata na opanowanie tego wszystkiego, co mogłoby być potrzebne, a on nie ma trzech lat do stracenia. Andrew Wiles był w lepszej sytuacji: dzięki pracy poprzedników miał już do dyspozycji niezbędne elementy. Co więcej, twierdzenie Fermata przestało być interesującym faktem na uboczu rozwoju matematyki, lecz stało się tematem ważnym. W 1986 roku Gerhard Frey wykazał, że gdyby istniał kontrprzykład do twierdzenia Fermata, musiałaby istnieć pewna krzywa eliptyczna o szczególnych i niespotykanych własnościach. Krzywe eliptyczne to wykresy równania

y^2=x^3+ax^2+bx+c,

o ile wykres nie ma żadnych punktów osobliwych (przecięć ani załamań).

eliptyczne

Krzywe te mają wiele interesujących własności: można je wyrazić za pomocą tzw. funkcji eliptycznych (stąd nazwa), każda sieczna przecina je dokładnie w trzech punktach, co pozwala każdej parze punktów przyporządkować trzeci (można wprowadzić strukturę grupy). W teorii liczb bada się sytuacje, gdy a, b, c są całkowite albo wymierne. Istnienie krzywej Freya przeczyłoby tzw. hipotezie Shimury-Taniyamy dotyczącej pewnych własności krzywych eliptycznych. Wiles postanowił dowieść tej hipotezy, a właściwie jej słabszej wersji, wystarczającej do jego celów. Jeśli (słabsza) hipoteza Shimury-Taniyamy jest słuszna, to nie może istnieć krzywa Freya. a tym samym twierdzenie Fermata zostało udowodnione niewprost. Hipoteza Shimury-Taniyamy została zresztą później udowodniona w wersji silniejszej i z punktu widzenia specjalistów to właśnie osiągnięcie jest najważniejsze: łączy bowiem w nieoczekiwany sposób analizę matematyczną z geometrią. Zatem twierdzenie Fermata okazało się nie tylko trudną ciekawostką, lecz pozwoliło zrozumieć głębsze związki między różnymi dziedzinami matematyki. To właśnie było zawsze najciekawsze w teorii liczb: aby zrozumieć problemy dotyczące np. podzielności i liczb pierwszych, potrzebne są głębokie idee dotyczące funkcji zmiennej zespolonej.
Andrew Wiles wyszedł z ukrycia w czerwcu 1993 roku, gdy wygłosił serię wykładów w swoim rodzinnym Cambridge w Anglii. Choć ich tytuł nie zapowiadał sensacji, to bookmacher w Cambridge nie chciał przyjmować zakładów o to twierdzenie: nie znał się na matematyce, lecz kiedy kolejni studenci zaczęli zgłaszać się z propozycją takiego samego zakładu, zrozumiał, że zapewne coś się święci. Do historii przeszło zakończenie ostatniego wykładu: po wykazaniu, że twierdzenie Fermata zostało właśnie udowodnione, Wiles stwierdził: „Myślę, że na tym zakończę”.

Najtrudniejsze było jednak jeszcze przed nim. W dowodzie znaleziono istotną lukę, co nie dziwi w przypadku pracy tak długiej (ponad sto stron w „Annals of Mathematics”) i robionej samotnie. Wiles wraz ze swoim dawnym studentem Richardem Taylorem usiłowali dowód poprawić, lecz sprawa wyglądała coraz poważniej. Bez tego jednego elementu cała układanka byłaby na nic. Pracowali ponad rok bez rezultatu i Wiles bliski już był decyzji o rezygnacji z dalszych prób, kiedy nagle okazało się, że pewien jego stary pomysł z okresu samotnej pracy, zarzucony później, teraz nieoczekiwanie się przydał.
„Wierzę że, aby osiągnąć w życiu zadowolenie, musisz robić coś, co cię pasjonuje. (…) Tylko taka pasja pozwala się nie poddawać, kiedy utkniesz na jakimś trudnym problemie i poczujesz się sfrustrowany. Jako matematyk staniesz się częścią wspólnoty, która istnieje od tysięcy lat, i wniesiesz wkład do twórczego projektu, rozciągającego się na całe wieki i cywilizacje. Życie jest zbyt krótkie, aby marnować je na rzeczy, które cię nie obchodzą…” (wywiad z Claudio Bartoccim, 2004, w: C. Bartocci, R. Betti, A. Guerraggio, R. Lucchetti (red.), Mathematical Lives: Protagonists of the Twentieth Century From Hilbert to Wiles, Springer 2011).

Słowa Wilesa o wspólnocie badaczy stosują się także i do twierdzenia Fermata. Oto lista tych, którzy oprócz niego wnieśli do tego problemu swój ważny wkład tylko w XX wieku: Spencer Bloch (USA), Henri Carayol (Francja), John Coates (Australia), Pierre Deligne (Belgia), Ehud de Shalit (Izrael), Fred Diamond (USA), Gerd Faltings (Niemcy), Matthias Flach (Niemcy), Gerhard Frey (Niemcy), Alexander Grothendieck (Francja), Yves Hellegouarch (Francja), Haruzo Hida (Japonia), Kenkichi Iwasawa (Japonia), Kazuya Kato (Japonia), Nick Katz (USA), V.A. Kolyvagin (Rosja), Ernst Kunz (Niemcy), Robert Langlands (Kanada), Hendrik Lenstra (Holandia), Wen-Ch’ing Winnie Li (USA), Barry Mazur (USA), André Néron (Francja), Ravi Ramakrishna (USA), Michel Raynaud (Francja), Ken Ribet (USA), Karl Rubin (USA), Jean-Pierre Serre (Francja), Goro Shimura (Japonia), Yutaka Taniyama (Japonia), John Tate (USA), Richard Taylor (Wielka Brytania), Jacques Tilouine (Francja), Jerry Tunnell (USA), André Weil (Francja).