Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Reklamy

Zanim zaśniesz, pomyśl, jak wiele zawdzięczasz Ptolemeuszowi

Każdy z nas, żyjących, jest dzieckiem szczęścia: nasze drzewo genealogiczne nie miało żadnych luk – inaczej nie przyszlibyśmy na świat. Odziedziczyliśmy jednak znacznie więcej niż geny: stoi za nami cała cywilizacja, korzystamy z dorobku pokoleń ludzi przemyślnych, inteligentnych, czasami genialnych. Od teorii promieniowania Einsteina przez pierwsze lasery w latach sześćdziesiątych dwudziestego wieku aż do odtwarzaczy Blue-ray i skanerów kodów paskowych w sklepie czy w bibliotece prowadzi droga długa, lecz możliwa do prześledzenia. Na szczęście nie musimy sami tej drogi powtarzać, korzystamy z gotowych wytworów, sprawdzonych technologii, podręczników udostępniających wiedzę kolejnym pokoleniom. Podobnie jest z tysiącem innych przedmiotów, wynalazków, odkryć. Cóż bardziej naturalnego?

Jeśli cofniemy się w czasie dostatecznie daleko, postęp wiedzy przestaje być w jakimś momencie oczywisty. Nasza cywilizacja naukowo-techniczna zaczęła się w XVII wieku na zachodzie Europy i stopniowo rozprzestrzeniła (w różnym stopniu) na resztę świata. Poprzednie wieki przynosiły bardzo powolny postęp, jeśli w ogóle go przynosiły. Kiedy upadło imperium rzymskie, przez całe wieki działo się w chrześcijańskiej części Europy bardzo niewiele dobrego. Cesarz Karol I nie potrafił nawet pisać i choć na starość mozolnie ćwiczył na woskowych tabliczkach, nie udało mu się jednak tej sztuki opanować. Przez wieki odsetek ludzi potrafiących pisać był znikomy, a przecież od czytania i pisania do twórczego uprawiania nauki jest jeszcze parę szczebli do pokonania. Dopiero po długiej, mniej więcej tysiącletniej przerwie Europa przyswoiła sobie dorobek nauki greckiej. Kopernik przy całej swej oryginalności był zaledwie uczniem Ptolemeusza i jego islamskich kontynuatorów.

Jednym z najważniejszych wątków w historii nauki była teoria ruchów planet, dziedzina na pozór mało praktyczna i odległa od zastosowań. Kto wie jednak, czy to nie teoria astronomiczna Ptolemeusza przesądziła o sukcesie zachodnioeuropejskiej nauki. Bez Ptolemeusza nie byłoby Kopernika, bez Kopernika trudno wyobrazić sobie Newtona, a bez Newtona całej reszty. To oczywiście tylko skrót rozumowania, ale można by je rozbudować. Zagadnienie ruchów planet wymagało dokładnych obserwacji i najlepszych dostępnych technik matematycznych od trygonometrii aż do analizy matematycznej i teorii równań różniczkowych.

Derek J. de Solla Price, amerykański historyk nauki, uważał, iż to właśnie astronomia Klaudiusza Ptolemeusza sprawiła, że nauka rozwinęła się w Europie, a nie np. w Chinach czy wśród Majów:

Można więc zaryzykować twierdzenie, że ta zwarta teoria stanowi intelektualne plateau naszej kultury – wysokie plateau, występujące wyłącznie u nas. We wszystkich dziedzinach nauki wszystkich innych kultur nie ma niczego, co mogłoby zaćmić tę wczesną, a tak wyrafinowaną i zaawansowaną próbę czysto matematycznego wyjaśnienia przyrody. Gdybyśmy mieli wskazać na jakiś cud w naszej historii intelektualnej, to nie wiadomo, czy nie tu właśnie należałoby szukać źródła naszej nowożytnej nauki. [Węzłowe problemy historii nauki, przeł. H. Krahelska, s. 15]

Dzieło Ptolemeusza, znane jako Almagest, było w istocie podsumowaniem długiej tradycji. Tak samo zresztą jak Elementy Euklidesa – druga najważniejsza książka naukowa Greków. Teksty się wówczas przepisywało, siłą rzeczy zostawały więc te najlepsze, przekazujące najbardziej uporządkowaną wiedzę, nikomu by się nie chciało opłacać kopisty dla powielenia rzeczy miernych. Almagest zawiera opis ruchu planet: możemy obliczyć za jego pomocą, gdzie danego dnia o danej godzinie będą się znajdować która planeta. I wynik będzie całkiem dokładny, jak na obserwacje przeprowadzane gołym okiem. Jest to więc kompletna szczegółowa teoria ruchów ciał niebieskich. Dzisiejsi inżynierowie, którzy modelują matematycznie np. przepływy powietrza wokół skrzydeł samolotu, kontynuują tę tradycję. Wiemy teraz, że za pomocą modeli matematycznych opisać można mnóstwo różnych zjawisk. Przyroda jest matematyczna, ale także i ekonomia czy nauki społeczne korzystają z matematyki.

Były dwie tradycje astronomiczne w tej części świata: babilońska i grecka. Klaudiusz Ptolemeusz opisał, ale także i rozwinął tradycję grecką. Babilończycy posługiwali się ciągami liczb, byli rachmistrzami. Ich astronomia była całkiem precyzyjna, ale przypominała długi wydruk wyników jakiegoś programu komputerowego bez użycia grafiki. Babilończycy obliczyli np. bardzo dokładnie wartość \sqrt{2}, ale to Grecy udowodnili, iż jest to liczba niewymierna. Dla nich był to stosunek długości przekątnej kwadratu do jego boku. Także ruch planet Grecy opisali w sposób geometryczny. Podstawą był ruch po okręgu. Wyobrażano sobie np., że roczny ruch Słońca zachodzi po okręgu. Hipparch zmierzył jednak długości astronomicznych pór roku: żadna z nich nie trwała równe ćwierć roku. Poradził sobie z tym w taki sposób, że uznał, iż Słońce porusza się wprawdzie po okręgu ruchem jednostajnym, ale Ziemia położona jest w pewnej odległości od środka okręgu. Znalazł odpowiednie parametry, żeby wszystko się zgadzało. Jego model zastosował potem niemal bez zmian Mikołaj Kopernik: zamienił tylko miejscami Ziemię i Słońce.

hipparch

Zobaczmy np., jak Ptolemeusz opisywał ruch planety takiej, jak Mars (analogiczne modele działają dla pozostałych dwóch planet górnych: Saturna i Jowisza). Mars zazwyczaj porusza się względem gwiazd z zachodu na wschód, ale od czasu do czasu, wtedy, gdy jest najjaśniejszy zmienia kierunek ruchu. Wygląda to tak.

marsretro

Jasne jest, że tutaj nie wystarczy taki prosty model jak w przypadku Słońca. Spójrzmy na to najpierw z perspektywy heliocentrycznej, do której jesteśmy przyzwyczajeni. (Pomijamy dalej fakt, że płaszczyzny orbit Ziemi i Marsa są lekko nachylone, nie popełniamy dużego błędu, płaszczyzny te przecinają się pod kątem mniejszym niż 2^{\circ}, Ptolemeusz miał osobną teorię dla opisania tego tzw. ruchu w szerokości.) Mamy dwa wektory opisujące ruch Marsa \vec{r}_M i Ziemi \vec{r}_Z. Końce obu tych wektorów zakreślają elipsy, ale są one w praktyce bardzo bliskie okręgom. To, co obserwujemy, to kierunek od Ziemi do Marsa (starożytni astronomowie niewiele wiedzieli o odległościach). Możemy zapisać wektor od Ziemi do Marsa jako różnicę:

\vec{R}=\vec{r}_M-\vec{r}_Z=\vec{r}_M+(-\vec{r}_Z)

ptolemeusz

Druga równość zilustrowana jest na rysunku z prawej strony. To jest właśnie model Ptolemeusza. Widać, że jeśli okręgi stanowią dobre przybliżenie orbit, model taki będzie działać. Duży okrąg nazwano później deferentem, mały – epicyklem. Z historycznego punktu widzenia największą zaletą modelu Ptolemeusza okazała się możliwość przejścia do heliocentryzmu, czyli od obrazka z prawej strony do obrazka z lewej. Gdybyśmy nie mieli geometrycznych przedstawień, byłoby to znacznie trudniejsze. Dokładnie biorąc, model Ptolemeusza zawierał jeszcze dwa szczegóły, które znacznie poprawiały zgodność z obserwacjami. Ziemia była nieco odsunięta od środka deferentu – inaczej mówiąc, Słońce było odsunięte od środka okręgu (orbity Marsa na lewym rysunku). Drugim szczegółem – i to jest wkład samego Ptolemeusza – jest ruch niejednostajny po deferencie. W obrazie kopernikańskim odpowiadałoby to niejednostajnemu ruchowi po orbicie, rzeczywiście planeta bliżej Słońca porusza się szybciej, to skutek zasady zachowania momentu pędu, jak podczas piruetów na lodzie: ręce wzdłuż ciała skutkują szybszym wirowaniem. Jak jednak Grek z II w.n.e., dysponując tylko prostą trygonometrią, mógł opisać taki ruch niejednostajny? Ptolemeusz przyjął, że istnieje wewnątrz deferentu pewien punkt E taki, że obserwowany z niego ruch środka epicykla jest jednostajny. Założenie to krytykowały później niezliczone pokolenia astronomów, z Kopernikiem włącznie, ale sprawdza się ono znakomicie w praktyce.

Tutaj można zobaczyć model Ptolemeuszowy dla Marsa w ruchu (warto włączyć ślad planety: Trail on, żeby zobaczyć, jak skomplikowany jest ten ruch z ziemskiego układu odniesienia, skomplikowane spirale zakreślane przez planetę nigdy się nie powtarzają)

Klaudiusz Ptolemeusz mógłby świetnie się nadawać na portret na T-shircie, nie wiemy jednak, jak wyglądał. Nie znamy nawet jego imienia: Klaudiusz Ptolemeusz to jego nomen i cognomen, czyli dwa człony nazwiska. Żył w II w. w Aleksandrii, która nieco przypominała dzisiejszy Hong Kong albo Nowy Jork: wielkie, kosmopolityczne, bogate miasto, nieszczędzące pieniędzy na naukę. Prawdopodobnie był Grekiem, obywatelem Rzymu. Swoje wcześniejsze dzieła dedykował Syrusowi, o którym wiadomo jeszcze mniej: może był to jego nauczyciel, a może kochanek.

Śmierć Hypatii: rok 415 po narodzeniu Chrystusa

Aleksandria słynęła swoją biblioteką i swoim uczonymi – tutaj powstała większość znanych osiągnięć nauki greckiej – miasto było zhellenizowane, kto chciał uprawiać naukę, musiał uczyć się greki. D. J. de Solla Price wysunął kiedyś tezę, że bez aleksandryjskiej nauki niemożliwa byłaby rewolucja naukowa XVII wieku, a więc w konsekwencji nasza współczesna cywilizacja. Pewne jest w każdym razie, że w Aleksandrii uprawiano najlepszą naukę w ówczesnym świecie.

Miasto u ujścia Nilu było bogate i wielonarodowe, oprócz Egipcjan wiele do powiedzenia mieli w nim Grecy, znajdowała się tu także największa kolonia żydowska poza ziemiami Izraela.

Hypatia była córką matematyka Teona. Razem z ojcem pracowała nad komentarzem do Optyki Euklidesa i nad wydaniem Almagestu Ptolemeusza, sama napisała komentarze do Stożkowych Apoloniusza, a także do pierwszych sześciu ksiąg Arytmetyki Diofantosa – samych dzieł stworzonych w Aleksandrii wystarczało aż nadto na pracowite życie. Prawdopodobnie dzięki zainteresowaniu Hypatii sześć pierwszych ksiąg Diofantosa zachowało się do naszych czasów, teksty trwały wówczas dopóty, dopóki ktoś uznawał je za warte trudu przepisywania. Dzieła aleksandryjskie stały się później podstawą nauki islamskiej, a także europejskiej w XVI i XVII wieku. Nie było właściwie uczonego, który nie czytałby swoich greckich poprzedników i nie nawiązywał z nimi swoistego dialogu. Tak było z Kopernikiem i Newtonem. Właśnie czytając Diofantosa Pierre de Fermat wpadł na pomysł swego wielkiego twierdzenia.

Dioph3

Stronica Diofantosa ze słynnym dopiskiem Fermata (oryginał się nie zachował, dysponujemy jedynie wydaniem z roku 1670 przygotowanym przez syna uczonego Clémenta-Samuela de Fermat). „Sześcian natomiast na dwa sześciany ani czwarta potęga na sumę dwóch czwartych potęg, ani ogólnie żadna inna potęga prócz kwadratu na sumę dwóch takich samych nie może zostać rozłożona, czego dowód zaprawdę cudowny odkryłem, nie starczy nań jednak miejsca na tym marginesie”.

Życie Hypatii przypadło na schyłek kultury antycznej. Chrześcijanie nie potrzebowali pogańskiej nauki, której nie znali i nie rozumieli. Tępili też zawzięcie wszystkie inne religie – bo przecież tylko ich religia mogła być prawdziwa. Pogańskie świątynie burzono bądź zamieniano na kościoły. Osławiony był pod tym względem patriarcha Teofil, „wieczny nieprzyjaciel pokoju i cnoty, człowiek zuchwały i zły, którego ręce zbrukane były na przemian złotem i krwią” (Edward Gibbon, The Decline and Fall of the Roman Empire, rozdz. 28). Przypisuje mu się także niszczenie resztek „pogańskiej” biblioteki aleksandryjskiej. Nie wiadomo, czy było jeszcze co niszczyć, z pewnością jednak Teofil nie widziałby szczególnego powodu, by ją chronić.

Sytuacja w mieście zaogniła się jeszcze bardziej, gdy po śmierci Teofila patriarchą i biskupem został jego siostrzeniec Cyryl – późniejszy święty, jeden z ojców i doktorów Kościoła – hierarcha nie mniej wojowniczy i równie ograniczony. Po poganach przyszła kolej na Żydów. Ponieważ chrześcijanie byli w większości, więc ostatecznie „mnóstwo Żydów opuściło miasto i to wydarzenie na pewno odbiło się na gospodarce miasta. Cyryl zaś niewątpliwie wykorzystał te wypadki, aby pozbyć się z Aleksandrii jak największej liczby Żydów. Wiedział bowiem, że osłabi to tradycyjną wrogość między wyznaniami i zmniejszy grono przeciwników polityki Kościoła w mieście” (M. Dzielska, Hypatia). Ta niezawodna metoda rozładowywania konfliktów nieraz jeszcze była z powodzeniem stosowana.

W wyniku zamieszek splądrowano mienie żydowskie i jedną z synagog zamieniono ku bożej chwale na kościół pod wezwaniem św. Jerzego. Prefekt Egiptu Orestes, podejrzewany o niechęć do chrześcijan, napadnięty został na ulicy przez chrześcijańskich fanatyków, jego gwardia przyboczna uciekła, a jeden z mnichów, niejaki Ammoniusz, trafił Orestesa kamieniem w głowę. Został później pojmany i zmarł w trakcie tortur. Biskup Cyryl przyznał mu palmę męczeńską za obronę wiary.

Hypatia nie była ani Żydówką, ani chrześcijanką. Maria Dzielska stawia tezę, że Hypatia miała wpływ na Orestesa i dlatego ją zabito. Autorytet Hypatii był jednak wyłącznie duchowy, a politykę w mieście uprawiało się, organizując bojówki i kontrbojówki. Zapewne oboje wraz z Orestesem starali się obronić miasto przed jedynowładztwem duchownych, w dodatku tak skrajnych i nieprzejednanych jak Cyryl.

Nietrudno było podburzyć przeciwko niej tłuszczę, skoro nawet świątobliwy historyk, biskup Jan z Nikiu, stwierdza: „Była w tym czasie w Aleksandrii pogańska filozofka o imieniu Hypatia; zajmowała się stale magią, astrolabiami i instrumentami muzycznymi i omamiła wielu ludzi szatańskimi sztuczkami. Nadzwyczajnie szanował ją prefekt miasta [Orestes], gdyż omamiła go swoją magią. Przestał uczęszczać do kościoła, jak zwykł to dotychczas czynić”. Dalej następuje opis prowokacji żydowskich i chrześcijańskiej odpowiedzi w postaci pogromu. Nie tłumacząc, jaki związek miały te wszystkie sprawy z Hypatią, Jan z Nikiu kontynuuje z wyraźną satysfakcją: „Następnie tłum wiernych Pańskich pod przewodnictwem urzędnika Piotra – który był doskonałym sługą Jezusa Chrystusa – zabrał się za szukanie owej pogańskiej kobiety, która swymi magicznymi sztuczkami omamiła mieszkańców miasta oraz prefekta. A gdy dowiedzieli się, gdzie przebywa, udali się po nią i zastali ją siedzącą na wysokim krześle. Zmusili ją do zejścia i wlekli ją po ziemi, aż zawlekli do wielkiego kościoła, zwanego Cezarejon. Było to podczas postu. I zdarli z niej szaty, i wlekli ją po ulicach miasta, aż umarła. I zanieśli ją do miejsca zwanego Kinaron, i spalili jej ciało w ogniu. Cały lud otoczył patriarchę Cyryla, obwołując go «nowym Teofilem», który zniszczył pozostałości pogaństwa w mieście”.

Wygląda więc na to, że gdy tłum spalił, co mógł żydowskiego, zajął się Hypatią, możliwe, że stało się to w trakcie jej wykładu. Ów „doskonały sługa Jezusa Chrystusa” Piotr, urzędnik, a może, jak piszą inni, kościelny lektor, mający niższe święcenia – sprawia, że ciarki przebiegają po krzyżu…

index

Frontispis Indeksu ksiąg zakazanych papieża Benedykta XIV z roku 1758. Podpis głosi: „I wielu też z tych, co uprawiali magię, poznosiło księgi i paliło je wobec wszystkich. Wartość ich obliczono na pięćdziesiąt tysięcy denarów w srebrze” (Dz 19,19). Indeks ten jako pierwszy nie powtarzał ogólnego zakazu ksiąg nauczających o ruchu Ziemi i nieruchomości Słońca, choć utrzymał szczegółowy zakaz czytania dzieł Kopernika, Keplera i Galileusza.