Naukowy idiotyzm roku 2016

714248_bced_51_34

Nie będę się znęcał nad tym artykułem Gościa niedzielnego (sprzedaż ponad 120 000 egzemplarzy!). Nieczuli manipulatorzy trzymają w ciekłym azocie piękne aryjskie bobaski. Dodam tylko z podziwem, że trzeba mieć naprawdę czułe sumienie, aby w dniach, gdy w Aleppo giną tysiącami ludzie, przejąć się dramatem mrozaczków. Katholikos po grecku znaczy powszechny.

Antonie van Leeuwenhoek: Delft, czyli wszechświat

W XVII wieku podróże po Europie stały się modne, choć mieszkając w kraju takim, jak Holandia, można było wiedzieć sporo o świecie, nawet nie ruszając się z domu. Antonie van Leeuwenhoek, kupiec bławatny i pasmanteryjny, terminował w Amsterdamie, podróżował do Anglii, większość jednak swego długiego, dziewięćdziesięcioletniego życia spędził w rodzinnym Delft. Nauką zajął się późno, bo grubo po trzydziestce, kiedy porzucił już handel i został urzędnikiem miejskim, służąc na wielu stanowiskach, m.in. geodety i kontrolera sprowadzanych win i innych trunków. Liczące przeszło dwadzieścia tysięcy mieszkańców Delft nigdy nie było tak dużym ośrodkiem, jak pobliska Haga (barki do stolicy odpływały co pół godziny), słynęło jednak ze swych niebieskich, ręcznie malowanych fajansów, miało też własną gildię malarzy. W Delft pracował przez całe życie, znany wówczas jedynie znawcom, Johannes Vermeer, rówieśnik Leeuwenhoeka. Wpis chrztu malarza datowany pięć dni wcześniej od chrztu uczonego znajduje się na tej samej stronie księgi parafialnej z roku 1632. Z pewnością znali się jako wybitni obywatele tego samego miasta, tak niezrównanie przedstawionego przez malarza.

view_of_delft

To o tym obrazie pisał Marcel Proust: „Odkąd w haskim muzeum zobaczyłem Widok Delft, wiem, że widziałem obraz najpiękniejszy na świecie”Niezrównany i subtelny kolorysta, cyzelował długo każdy szczegół swoich płócien. Namalował ich w rezultacie niewiele i mimo bogatego ożenku zmarł pogrążony w długach. Leeuwenhoeka wyznaczono na kuratora spadku po artyście. Nie przyjaźnili się zapewne i fakt ten dowodzi raczej tylko wysokiego mniemania władz miasta o uczciwości Leeuwenhoeka. Zadanie było delikatne i niewdzięczne, zostało jednak pomyślnie przeprowadzone do końca. Francuski szlachcic, Balthasar de Monconys, dziwił się bardzo, znajdując później u piekarza z Delft pewien obraz Vermeera, za który zapłacono sześćset liwrów, a za który podróżnik nie dałby więcej niż sześć pistoli. Mistrz piekarski z Delft znał się więc dużo lepiej na sztuce niż francuski szlachcic.

f1-large

Nie znamy upodobań Leeuwenhoeka, był człowiekiem niewykształconym, nie znał żadnego języka prócz własnego i sam przyznawał, że niechętnie pisze. Jeśli coś mogło zbliżyć tych dwóch ludzi, to upodobanie do wnikliwej obserwacji i mistyczna niemal adoracja światła. Tkaniny u Vermeera oddane są z niezwykłym pietyzmem, a być może właśnie od przyglądania się detalom tkanin za pomocą szkła powiększającego zaczęła się pasja Leeuwenhoeka. Musiał być człowiekiem niezwykle sumiennym i cierpliwym, gdyż wytrwale doskonalił kunszt szlifowania szkieł i zdołał zbudować mikroskopy lepsze niż ktokolwiek inny.

Używane przez niego mikroskopy miały tylko jedną kulistą soczewkę. Kula taka jest soczewką skupiającą i przy typowym współczynniku załamania szkła jej ognisko leży o pół promienia za powierzchnią (a więc w odległości \frac{3}{2}r od jej środka, patrz poniżej). Używając soczewki możemy przedmiot przybliżyć do oka znacznie bliżej niż wynosi odległość dobrego widzenia, równa zwykle D=25 \mbox{ cm}. Dzięki temu widzimy szczegóły pod większym kątem.

oko

Powiększenie kątowe równe jest

\dfrac{\beta}{\alpha}=\dfrac{h}{d}\dfrac{D}{h}=\dfrac{D}{d}.

Zastępujemy tu kąty (w radianach) ich tangensami, co stanowi dobre przybliżenie, gdy kąty są niewielkie. Odległość d w przypadku soczewki kulistej równa się \frac{3}{2}r. Należy więc używać jak najmniejszych kulek szklanych, powiększenia uzyskiwane przez Leeuwenhoeka sięgały kilkuset razy. Tak wygląda współczesna rekonstrukcja jego mikroskopu.

hl1

Strona Hansa Loncke

Holender prowadził dziennik obserwacji, jego fragmenty wysyłał do Towarzystwa Królewskiego do Londynu. Tłumaczone na angielski lub łacinę, ukazywały się przez wiele lat w „Philosophical Transactions”. Zrazu uczeni byli nieufni, z czasem jednak zaczęto Leewenhoeka i jego odkrycia traktować serio. Zaczęli go odwiedzać inni badacze, którzy mogli się naocznie przekonać, że Holender jest rzeczywiście wytrawnym obserwatorem i niczego nie zmyśla. Niektóre z jego odkryć zostały niezależnie powtórzone, ogólnie jednak był z tym kłopot: nikomu nie udawało się sporządzać tak małych kulek szklanych dobrej jakości optycznej. Angielski autorytet w dziedzinie optyki Robert Hooke, autor zdumiewających rysunków mikroskopowych, takich jak poniższa pchła, używał mikroskopu z dwóch soczewek i nie był przekonany do metody Leeuwenhoeka.

4879769

Odkrycia Holendra nie były aż tak spektakularne, gdyż dotyczyły żyjątek niezwykle drobnych, wręcz nieprawdopodobnie małych, o rozmiarach niewielu mikrometrów. Leeuwenhoek odkrył cały świat mikroflory bakteryjnej, obserwował przejawy życia w kroplach wody i w najróżniejszych płynach ustrojowych, jak krew i sperma. Tak wyglądały np. bakterie z jamy ustnej (specjaliści zidentyfikowali je później).

drawings-of-animalcules-form-leeuwenhoeks-letter-dr-jeremy-byrgess

Nasienie zwierząt i ludzi pełne było zadziwiających, żywo poruszających się stworów, przypominających kijanki. Leeuwenhoek odkrył w ten sposób plemniki. Badania tego rodzaju nieco go krępowały, tłumaczył, że spermę uzyskał bez grzechu jako skutek stosunku małżeńskiego. Sądził jednak, że odkrycie to jest w najwyższym stopniu godne uwagi.

lind006gesc01ill24

Ówcześni uczeni przypuszczali, że początkiem życia człowieka jest komórka jajowa (w istocie to, co brali za komórkę jajową było pęcherzykami jajnikowymi). Sądzono, że pramatka Ewa nosiła w sobie jajeczka wszystkich ludzi, którzy później przyszli na świat. Obserwacje Leeuwenhoeka wskazywały na coś zupełnie innego: to plemniki odgrywają decydującą rolę, podczas gdy komórka jajowa dostarcza jedynie pożywienia wzrastającemu organizmowi. Nicolas Hartsoeker, lekarz i rodak Leewuwenhoeka, przekonywał, że to plemnik zawiera całego człowieka w miniaturze (słówko homunculus pojawiło się dwa wieki później). Jak się zdaje, podobnego mniemania był także Leeuwenhoek.

human-sperm-17th-century-granger

Zapłodnienie zdaniem Hartsoekera nie polegało na tym, że najsilniejszy plemnik (powiedzmy Donald Trump) przebija się do środka komórki jajowej. Sądził on, że plemnik przyczepia się do jajeczka ogonkiem, przez który czerpie substancje odżywcze i który z czasem zamienia się w pępowinę łączącą zarodek z organizmem matki. Interpretując te poglądy w duchu tzw. obrońców życia: nie tylko zygota ludzka byłaby święta, ale należałoby jak osoby ludzkie traktować także wszystkie plemniki, które także byłyby święte. Oczywiście, wszystkie one powinny koniecznie mieć imiona, zanim umrą.

Leeuwenhoek był pionierem, jego badań nikt nie kontynuował. Częściowo sam sobie był winien, ponieważ nie ujawniał swojej metody wytwarzania soczewek i nikt inny tego nie potrafił. Nauka nie była przygotowana na cały ten zawrotny świat mikroorganizmów, kiedy nie można zrozumieć pewnych faktów, spycha się je po prostu na bok. Z czasem Leewenhoek spostrzegł, że młodzi ludzie nie są zainteresowani nauczeniem się jego sekretów i kontynuacją jego badań. Pisał: „Większość studentów idzie tam [na uniwersytet w Lejdzie], aby zarabiać pieniądze dzięki wiedzy albo zdobyć reputację w świecie uczonych. Lecz szlifowanie soczewek i odkrywanie rzeczy ukrytych przed wzrokiem nie ma z tym nic wspólnego”. Trzeba przyznać, że i dziś ten podział nie całkiem się zatarł: na tych, co odnoszą korzyści z nauki i tych, z których korzyść odnosi nauka.

kula
Kąt \beta, jak widać z rysunku, równy jest

\beta=\dfrac{h}{r+f}.

Ogniskową f znajdujemy, rozpatrując dwukrotne załamanie promienia bliskiego środka kuli (w ten sposób wszystkie kąty są małe, zostały na rysunku powiększone dla przejrzystości). Odchylenie na pierwszej powierzchni równe jest \delta-\varepsilon; oba kąty spełniają prawo załamania

\dfrac{\delta}{\varepsilon}=n,

gdzie n jest współczynnikiem załamania.

leeuwenhoek

Odchylenie na drugiej powierzchni jest takie samo. Należy uwzględnić fakt, że nasza soczewka jest gruba, tzn. promień zbliża się do osi z odległości x na odległość y. Ostatecznie, wartość ogniskowej równa jest

f=\dfrac{r}{2}\cdot \dfrac{2-n}{n-1}.

Przy n=1,5 otrzymamy f=\dfrac{1}{2}r.

D.A. Henderson, synek Franklina i racjonalność decyzji o szczepieniu

W tych dniach zmarł D.A. Henderson, epidemiolog, który walnie przyczynił się do zlikwidowania ospy na świecie. Był to wynik wieloletniej planowej pracy zespołu ludzi, którymi kierował najpierw w amerykańskiej CDC, a później w WHO. Fachowcy mówią, że to największy wymierny sukces w historii medycyny. Dramatem naszego świata jest fakt, że ludzie tacy jak on są niezbyt znani w przeciwieństwie do różnej maści celebrytów, skandalistów i kokainistów płci obojga.  OB-Henderson__13981471621450

Pisałem o epidemii w roku 1721 w Bostonie i tragicznym losie małego synka Benjamina Franklina. Stosując rachunek prawdopodobieństwa, nietrudno uzasadnić racjonalność decyzji o szczepieniu nawet przy niepełnych danych z XVIII wieku. Musimy pamiętać, że ówczesne szczepienie, tzw. inokulacja albo wariolizacja, różniły się od późniejszej metody. Zaszczepiano bowiem ludziom ospę ludzką, co w niektórych przypadkach kończyło się śmiercią. Dopiero pod koniec stulecia Edward Jenner odkrył, że bezpieczniejsze jest zaszczepianie ludziom ospy krowiej.

Zazwyczaj w podręcznikach matematyki mamy do czynienia z urnami, z których wyciąga się kule i w zależności od tego, co wyciągniemy, pojawiają się różne możliwości i budujemy drzewo rozmaitych ewentualności. Szczepienia są przykładem lepiej chyba przemawiającym do wyobraźni niż losowania białych i czarnych kul z urny.

Oto dane dla epidemii w Bostonie w roku 1721.

  • Liczba ludności miasta: 10 700
  • Poddanych inokulacji 281, z czego 6 zmarło
  • Spośród niepoddanych inokulacji 4917 zachorowało i przeżyło, 842 osoby zachorowały i zmarły, a 4654 osoby w ogóle nie zachorowały

Będziemy prawdopodobieństwa przybliżać częstościami, zazwyczaj nie mamy na to lepszego sposobu, należy pamiętać, że dane pochodzące z niewielkiej próby mogą się okazać niedokładne i dysponując większą statystyką, otrzymalibyśmy nieco inne wyniki. Mamy więc prawdopodobieństwo zgonu po inokulacji równe 6/281=0,021 i przeżycia inokulacji 1-0,021=0,979.

Prawdopodobieństwo zgonu wśród niepoddanych inokulacji oraz zarażonych jest równe 842/(842+4917)=0,146, a prawdopodobieństwo przeżycia w tej samej grupie równa się 1-0,146=0,854.

Prawdopodobieństwo zarażenia osoby niepoddanej inokulacji możemy próbować oszacować na podstawie naszych danych jako (4917+842)/(4654+4917+842)=0,553. Jest to szacowanie z dołu: musimy pamiętać, że część spośród 4654 osób, które nie zachorowały, przeszła już kiedyś ospę i była uodporniona na resztę życia. Jeśli prawdopodobieństwo zarażenia osoby, która nie przeszła ospy, oznaczymy przez x, mamy następujące drzewo możliwości.

qc23465.f1

Rysunek z pracy M Best, A Katamba, and D Neuhauser, Making the right decision: Benjamin Franklin’s son dies of smallpox in 1736.

Jeśli przyjmiemy x=0,553, to prawdopodobieństwo przeżycia bez inokulacji będzie równe (1-x)+x \cdot 0,854=0,919. Jak widać, wartość ta jest mniejsza od prawdopodobieństwa przeżycia inokulacji, zatem statystycznie biorąc, zabieg ten zwiększa szanse przeżycia. Gdybyśmy mieli więcej informacji, wartość x mogłaby się okazać jeszcze większa, a to by oznaczało, że prawdopodobieństwo przeżycia bez inokulacji jest jeszcze mniejsze (można zapisać to prawdopodobieństwo jako 1-x+0,854x=1-0,146x, jest to więc malejąca funkcja zmiennej x).

Można też się zastanowić, jaka musi być najmniejsza wartość x, żeby inokulacja była racjonalnym zabiegiem. Granicą racjonalności będą równe prawdopodobieństwa zgonu: x\cdot 0,146=0,021, skąd x> 0,144. Ponieważ dane wskazują, że prawie na pewno ostatni warunek jest spełniony, inokulacja jest racjonalnym zabiegiem.

Nie mamy, niestety, danych dla epidemii w 1736 roku w Filadelfii, gdzie mieszkał Benjamin Franklin z rodziną. Mamy jednak dane dla późniejszej epidemii w Bostonie w roku 1752.

  • Boston liczył wówczas 15 684 mieszkańców
  • 5998 osób przeszło już ospę i nie musiało się jej obawiać
  • 2124 osoby poddały się inokulacji (znacznie więcej niż w roku 1721), 30 z nich zmarło
  • 1843 osoby uciekły na wieś, by przeczekać epidemię, nie wiemy, jak wiele spośród nich zmarło.
  • 5719 osób nie poddało się inokulacji ani nie uciekło; 97% spośród nich zachorowało, a 539 zmarło

Prawdopodobieństwo zgonu po inokulacji równe jest 30/2124=0,014; prawdopodobieństwo przeżycia: 0,986. Wartości zbliżone są do tego, co otrzymaliśmy wyżej dla roku 1721.

Wśród niezaszczepionych i narażonych na zachorowanie śmiertelność była równa 539/(0,97\cdot 5719)=0,097, prawdopodobieństwo przeżycia choroby równało się 1-0,097=0,903. Oznaczało to, że nie robiąc nic, ma się prawdopodobieństwo przeżycia 0,03+0,97\cdot 0,903=0,906. Należy porównywać to z wartością 0,986 dla zaszczepionych. Inokulacja była więc znacznie lepszą decyzją.

Statystyka z roku 1752 obejmuje jeszcze możliwość ucieczki z miasta. Była to najprostsza metoda unikania chorób epidemicznych i kogo było na nią stać, ten ją stosował. Nie znamy prawdopodobieństwa zachorowania wśród tych, co uciekli. Oznaczmy je przez y. Mamy więc następujące drzewo możliwości.

qc23465.f2

(Rysunek z pracy jw.)

Można zadać pytanie, jakie powinno być y, aby ucieczka była lepszym wyjściem niż pozostanie w Bostonie i poddanie się inokulacji. Prawdopodobieństwo zgonu osoby uciekającej to 0,097y, należy je porównać z prawdopodobieństwem zgonu po inokulacji, równym 0,014. A zatem, jeśli y< 0,144, to ucieczka jest racjonalna. Trudno jest oczywiście oszacować wartość y, zależy ona np. od tego, czy uciekniemy, zanim jeszcze epidemia się rozwinie, czy w jej późniejszej fazie (choroba ma pewien okres inkubacji, możemy więc wyjeżdżając czuć się dobrze mimo zarażenia). W dodatku uciekając, nadal nie mamy odporności na ospę, a w Bostonie w ciągu osiemnastego wieku większe epidemie wystąpiły w latach 1721, 1730, 1752, 1764, 1776, 1778 oraz 1792. Można się było spodziewać, że za kilkanaście lat choroba znów się pojawi.

Zabdiel Boylston, czarna ospa w Bostonie i siła charakteru (1721-1722)

W XX wieku czarna ospa zabiła 300 mln. ludzi – trzy razy więcej niż zginęło w obu wojnach światowych. I w tym samym XX wieku udało się tę chorobę wyeliminować. Można, oczywiście, buntować się przeciwko nowoczesnej cywilizacji, ale żadna z tych 300 mln. osób nie zrozumiałaby, o co nam właściwie chodzi. Nie ma jednak szczepionki przeciwko głupocie i w naszych światłych czasach dzieci chorują albo będą chorować na rozmaite groźne przypadłości jedynie dlatego, że ich rodzice albo rodzice ich kolegów są podejrzliwymi idiotami, którzy sądzą, że wiedzą lepiej niż eksperci.

W XVIII wieku nie znano przyczyn ani mechanizmu szerzenia się ospy, jasne było tylko, że jest to choroba zakaźna. Ponieważ objawy występują dopiero po 12 dniach, więc izolacja chorych była na ogół spóźniona i zdążyli oni już zarazić osoby, z którymi się stykali. Wiadomo też było z obserwacji, że ci, którzy przeszli chorobę i przeżyli, byli na nią później odporni. Ryzyko było tak duże, że w Anglii w XVII wieku był zwyczaj, by nie zapisywać majątku dzieciom, zanim nie przeszły ospy, ponieważ ich przyszłość była wciąż bardzo niepewna. Spośród tych, co przeżyli, wielu było oślepionych albo oszpeconych na całe życie. Jedną z takich osób, których urodę zniszczyła ospa, była Mary Wortley Montagu, arystokratka, pisarka (sama nauczyła się łaciny w ojcowskiej bibliotece) i żona ambasadora brytyjskiego w Konstantynopolu. Dowiedziała się ona o praktyce wariolizacji stosowanej w imperium osmańskim: pobierano płyn z pęcherzyków na skórze chorego i zaszczepiano go osobom zdrowym. Pacjenci chorowali wówczas na ogół w sposób łagodny, nabywając przy tym odporności. Nie zawsze wariolizacja przynosiła pożądane efekty, zdarzały się przy jej stosowaniu wypadki śmiertelne. Montagu propagowała tę metodę w Londynie, przekonując m.in. księżnę Walii Karolinę do zaszczepienia dzieci. Metoda była kontrowersyjna. Wyglądała na jakiś rodzaj zabobonu, w dodatku przychodziła do Europy z krajów niecieszących się zaufaniem w sprawach medycznych i naukowych: stosowano ją na Kaukazie, w Afryce. W Konstantynopolu szczepieniami zajmowały się zwykle stare kobiety, co też nie wyglądało wiarygodnie w oczach Zachodu. Z punktu widzenia dzisiejszej wiedzy wariolizacja stanowiła postęp, lecz była obarczona ryzykiem. Dopiero pod koniec XVIII wieku Edward Jenner wynalazł skuteczną odmianę tej metody szczepienia: należy zaszczepiać ospę krowią, pacjenci wówczas nie chorują i nabierają odporności na ospę ludzką. Także i wtedy nie rozumiano, dlaczego szczepienie jest skuteczne i jak działa, opierano się wyłącznie na obserwacjach.

W kwietniu 1721 roku do Bostonu, stolicy Massachusetts, zawinął okręt „Seahorse”, płynący z Barbadosu. Jeden z członków załogi zachorował na ospę i został odizolowany w domu z czerwoną ostrzegawczą flagą. Później zachorowali także inni marynarze z tej jednostki i stało się jasne, że kwarantanna nie wystarczy, ponieważ choroba zdążyła się już rozprzestrzenić. Ówczesny Boston był małym miastem, liczącym sobie około jedenastu tysięcy mieszkańców. Rządy duchowe sprawowała w nim dynastia purytańskich ministrów: wiekowy Increase Mather i jego dobiegający sześćdziesiątki syn, Cotton Mather. Obaj zapisali się poprzednio w annałach ścigania czarownic i czarowników: to za ich aprobatą toczyła się sprawa w Salem w roku 1692. Wszechstronnie wykształcony w Ameryce i w Anglii, Cotton Mather, członek Towarzystwa Królewskiego, był zarazem ciasnym bigotem, głęboko wierzącym w realność i szkodliwość czarów. W swym dziele Pamiętne zrządzenia opatrzności opisywał przypadek irlandzkiej praczki, niejakiej Glover, która jako czarownica nękała pobożną rodzinę Goodwinów, którzy podczas owych diabelskich ataków głuchli, niemieli, ślepli albo wszystko to na raz. Mather przyczynił się do prześladowań w Salem, choć zarazem podkreślał potrzebę niezbitych dowodów w każdym przypadku. Teraz, wobec zagrożenia ospą, także starał się interweniować i tym razem jego wpływ okazał się jednoznacznie korzystny. Mather przekonany był bowiem do wariolizacji: czytał o niej wcześniej w „Transactions of the Royal Society”, miał też w domu niewolnika z Afryki, który mu opowiadał o tej metodzie. Minister skierował do lekarzy bostońskich pismo przedstawiające zalety wariolizacji. Medycy zareagowali wrogo, obawiając się, że wskutek wariolizacji epidemia jeszcze bardziej się rozszerzy. Wrogo też reagowali niektórzy duchowni. Ich zdaniem człowiek nie powinien ingerować w naznaczony przez Boga bieg wypadków. Znaleziono nawet pierwowzór wariolizacji w Księdze Hioba: „Odszedł szatan sprzed oblicza Pańskiego i obsypał Hioba trądem złośliwym, od palca stopy aż do wierzchu głowy. [Hiob] wziął więc skorupę, by się nią drapać siedząc na gnoju” (Hi 2, 7-8). A więc także Pismo św. wskazywało więc wyraźnie, że nie należy nikogo szczepić. Pismo św, jak zawsze, wskazuje we wszystkich kierunkach jednocześnie.

Jedynie chirurg Zabdiel Boylston gotów był spróbować wariolizacji. Nie miał on wykształcenia akademickiego, uczył się medycyny od swego ojca i innego jeszcze lekarza, w Ameryce nie było zresztą żadnej szkoły medycznej. Boylston dał się poznać jako sprawny chirurg, który nie obawiał się przeprowadzać ryzykownych operacji, jak usuwanie kamieni żółciowych czy pierwsza mastektomia w Ameryce. Operacje przeprowadzało się bez znieczulenia, należało wszystko robić błyskawicznie, żeby pacjent nie zmarł wskutek szoku i upływu krwi. Później groziły mu oczywiście wszelkie infekcje, Boylston był ponoć pedantycznie czysty i zapewne pomagało to jego pacjentom (nikt wówczas nie kojarzył chirurgii z czystością). Pierwsze szczepienia ospy przeprowadził na własnym synu oraz parze swych niewolników: ojcu i synu. Wszyscy trzej przeżyli. Boylston zaczął więc stosować tę metodę, choć przyjmowano to wrogo i lekarz obawiał się o swe bezpieczeństwo. W pewnym momencie rada miejska oficjalnie zakazała mu tych praktyk. Nie ujął się też za nim Mather, nie do końca chyba przekonany do wariolizacji (nie zaszczepił np. własnego syna). Ostatecznie Boylston przeprowadzał szczepienia na niezbyt dużą skalę, tylko u pacjentów, którzy sami się z tym do niego zwracali. Był także ostro krytykowany w miejscowej prasie. W tygodniowej gazecie wydawanej przez Jamesa Franklina (terminował u niego wtedy młodszy brat, Benjamin, który z czasem miał zostać najsławniejszym uczonym Ameryki) szczepienia atakowano jako szkodliwy przesąd. W pewnym stopniu postawa gazety wynikała z jej opozycyjności: James Franklin był przeciwny rządom Mathera i atmosferze moralnego terroru wprowadzanej przez purytanów, nietrudno więc było go przekonać, że duchowny także i tym razem broni jakichś przesądów. Ostatecznie w ciągu niecałego roku zachorowało w Bostonie około 6000 osób – ponad połowa ludności (około tysiąca bogatszych wyjechało na wieś i tam przeczekali epidemię). Zmarły w tym czasie na ospę 844 osoby, czyli 14% zainfekowanych. Za Boylstonem przemawiały liczby: spośród 286 osób, jakie zaszczepił, zmarło jedynie sześć. W dodatku nie zawsze było jasne, czy osoby te były zdrowe w momencie wariolizacji, być może choroba już się u nich rozwijała, lecz nie dawała jeszcze widocznych objawów. Tak czy inaczej było to tylko 2,4% – statystycznie biorąc, wariolizacja działała.

smallpox account-x

Doświadczenia swe Boylston opisał w książce, przyjęto go też do Towarzystwa Królewskiego. Wariolizację zaczęto, choć z oporami, uznawać. Nabrał do niej przekonania także Benjamin Franklin, choć obawiał się związanego z nią ryzyka. Pisze w swej autobiografii:

W roku 1736 straciłem jednego z mych synów, pięknego czteroletniego chłopca. Umarł na ospę, którą się w zwykły sposób zaraził. Długo i gorzko żałowałem potem i nadal żałuję, że nie kazałem go szczepić. Wspominam o tym ku przestrodze rodziców, którzy nie szczepią swych dzieci z obawy, że mogłyby wskutek tego umrzeć, czego nigdy nie mogliby sobie wybaczyć. Mój przykład świadczy, że żałować trzeba nieraz i w przeciwnym wypadku, a wobec tego lepiej wybierać drogę bezpieczniejszą. (przeł. J. Stawiński)

Robert M. May, Mitchell Feigenbaum i początki teorii chaosu (1975-1978)

Niektórzy uważają nauki ścisłe za nudne, ponieważ wszystko się w nich oblicza i wszystko poddane jest rygorom jakichś praw i formuł, w których brak rzekomo miejsca na twórczą swobodę. Okazuje się jednak, że nawet najprostsze wzory matematyczne prowadzić mogą do nieprzewidywalnych wyników.

Robert M. May zaczynał jako fizyk teoretyczny, potem zajął się matematyką stosowaną, a tak naprawdę jej zastosowaniami w biologii. Zwrócił on uwagę na niezwykłe własności prostego odwzorowania. Załóżmy, że chcemy modelować liczbę organizmów w jakimś zamkniętym środowisku w różnych latach. Organizmy się rozmnażają, więc ich liczba w danym roku x_{n+1} zależy od ich liczby w roku poprzednim x_{n} :

x_{n+1}=r x_{n},

gdzie parametr r oznacza współczynnik związany z przyrostem naturalnym. Jeśli r>1, to przyrost naturalny jest dodatni. Oznaczałoby to, że liczba naszych organizmów będzie rosła coraz szybciej, tworząc ciąg geometryczny. Byłby to przypadek eksplozji demograficznej albo sepsy. Zazwyczaj wzrost hamowany jest dostępnością pożywienia: im więcej jest organizmów, tym trudniej o pożywienie. Jeśli nasza nisza ekologiczna jest skończona, to możemy użyć zmodyfikowanej postaci poprzedniego wzoru:

x_{n+1}=r x_{n} (1-x_{n}),

Liczbę organizmów przedstawiamy teraz jako ułamek pewnej wartości maksymalnej, w ten sposób nasze x_{n} zawarte są w przedziale [0,1]. Efektywny współczynnik przyrostu jest teraz równy r (1-x_{n}) , maleje więc w miarę zapełniania się środowiska. Otrzymujemy w ten sposób proste równanie pozwalające obliczać liczbę organizmów w kolejnych pokoleniach. Odwzorowanie takie nazywa się logistycznym, uwzględnia ono skończoność zasobów i nadal jest stosunkowo proste. Zależy ono tylko od jednego parametru r, który powinien znajdować się w przedziale [0,4], żeby wynik kolejnej iteracji nie wyprowadził nas poza przedział [0,1], co w naszym modelu nie miałoby sensu. Robert May zdał sobie sprawę, że zachowanie odwzorowania logistycznego bywa zaskakujące i nietrywialne. W 1976 roku ogłosił w „Nature” artykuł o „prostych modelach matematycznych z bardzo złożoną dynamiką”. Głównym przykładem było odwzorowanie logistyczne.

Co może się stać, gdy zaczniemy wykonywać kolejne iteracje? Przy pewnym szczęściu mogłoby się okazać, że x=r x(1-x), Mamy wówczas punkt stały: za każdym razem dostaniemy to samo. Jeśli jednak zaczniemy od innej wartości, należy się spodziewać, że z czasem sytuacja będzie dążyć do stanu równowagi. Rzeczywiście tak się dzieje dla r<3. Np. dla r=2,9, startując z punktu x_0=0,5, otrzymamy oscylacje dążące do pewnej granicy. Jej wartość nie zależy od x_0, rozwiązanie dąży do punktu stałego.

image

Mamy więc dążenie do równowagi ekologicznej. Można tę sytuację zilustrować następującym wykresem:

r290

Mamy tu wykresy dwóch funkcji y=rx(1-x) oraz y=x. Startujemy z x_0=0,5, wynikiem pierwszej iteracji jest wartość leżąca na paraboli pionowo nad x_0. Chcemy następnie, aby wartość ta była punktem wyjścia do następnej iteracji: rysujemy więc odcinek poziomy aż do przecięcia z prostą y=x. Opuszczając teraz odcinek pionowy na parabolę, generujemy następny punkt, a przesuwając go poziomo do przecięcia z y=x, mamy punkt wyjścia dla iteracji nr 2. Widać, że punkty dążą do punktu stałego, który odpowiada przecięciu obu naszych wykresów funkcji.

Weźmy teraz wartość r=3,2. Oto, co dostajemy z iteracji: po pominięciu pewnej liczby początkowych wartości nasz wykres zaczyna oscylować:

image (1)

Zamiast równowagi ekologicznej mamy zależność okresową. Wykres pajęczynowy wygląda następująco:

r3.20

Dla jeszcze większych wartości, np. r=3,5 zamiast równowagi, dostajemy cykl o okresie cztery:

image (2)

 

r350

Co dalej? Można się domyślić, że teraz nic już nie zatrzyma kolejnych podwojeń. Nasze okresowe cykle będą się rozdwajać na cykle o podwojonym okresie. Wreszcie dla jeszcze większych wartości parametru r dostaniemy zachowanie chaotyczne, tak jakby okres stał się nieskończony.

image (5)

r380

Okazuje się, że to jeszcze nie koniec komplikacji: otóż dla pewnych wartości r powyżej progu chaotyczności, ponownie otrzymujemy wartości okresowe.

image (7)

r3832

Ten okres równy 3 podwaja się dla nieco większych wartości, w sumie obraz jest dość skomplikowany, i o tym właśnie napisał Robert M. May.

bifurkacje may

Tak przedstawiał się wykres w pracy z roku 1976. Na osi poziomej mamy parametr r, na pionowej wartości x. W istocie sytuacja jest znacznie skomplikowana, niż wówczas sądzono. Oto jakiś jej zwiastun:

tmp_m6W9Wb

Widzimy tu podwojenia i potem następne podwojenia. Wykres ten ma strukturę fraktalną: jego małe fragmenty są w powiększeniu takie jak większe. Łatwo go obejrzeć z większą rozdzielczością. Możemy też sami się pobawić oglądaniem tej struktury.

 

Większość wartości r powyżej 3,56995 wykazuje zachowania chaotyczne. Oznacza to np., że można by kolejnych tak generowanych liczb używać jako liczb pseudolosowych (niemal każda wartość początkowa prowadzi do innego ciągu).

W tym miejscu mogłoby się wydawać, że odwzorowanie logistyczne, dane równaniem kwadratowym jest jakoś wyróżnione. Okazuje się wszakże, że inne krzywe mające maksimum będą prowadzić do podobnych rezultatów. Odkrył to Mitchell Feigenbaum, potomek uchodźców z Polski (ojciec) i z Ukrainy (matka), który zrobił doktorat z cząstek elementarnych, długo nie publikował i jest człowiekiem dość ekscentrycznym. Bawił się on namiętnie wszystkim, co służyło do liczenia, aż wpadł mu w ręce pierwszy programowalny kalkulator HP-65. Za jego pomocą dokonał słynnego odkrycia uniwersalności w dochodzeniu do chaosu. Gdy rozpatrzymy kolejne wartości progów, przy których podwaja się okres, otrzymamy dla odwzorowania logistycznego, co następuje:

n 2^n r_n r_{n}-r_{n-1} ilorazy
1 2 3
2 4 3,44949 0,44949
3 8 3,54409 0,0946 4,751479915
4 16 3,564407 0,020317 4,656199242
5 32 3,5687594 0,0043524 4,667999265
6 64 3,5696916 0,0009322 4,66895516

Ponieważ liczyło się to długo, więc Feigenbaum próbował odgadywać, przy jakiej wartości pojawi się następny próg. Różnice kolejnych wartości bardzo szybko maleją. Feigenbaum odkrył, że

\dfrac{r_{n+1}-r_{n}}{r_{n+2}-r_{n+1}}\rightarrow 4,669201.

Okazało się, że jeśli zastąpić krzywą logistyczną jakąś inną funkcją o podobnym przebiegu, np. połówką sinusoidy, granica ta pozostanie taka sama. Wśród całego tego chaosu coś pozostaje stałe. Wartość tę nazywa się dziś Deltą Feigenbauma. Można ją też oglądać w zbiorze Mandelbrota: gdy powiększamy odpowiedni jego fragment przesuwając się przy tym, obserwujemy kolejne okręgi o promieniach w stosunku stałej Feigenbauma.

Mandelbrot_zoom

 

 

https://en.wikipedia.org/wiki/Self-similarity

Z podobnym zjawiskiem uniwersalności spotykamy się w dziedzinie przejść fazowych, gdzie także obowiązują prawa skalowania i wykładniki w tych prawach powtarzają się dla wielu różnych układów. Praca Feigenbauma przyniosła mu sławę: nie każdy odkrywa jakąś nową stałą matematyczną. Jest to pewnie jedyny przypadek, aby za pomocą kalkulatora dokonano istotnego odkrycia, niebawem narzędziem stały się komputery, sam Feigenbaum też ich potrzebował, aby dokładniej znaleźć wartość swoich stałych (bo jest jeszcze jedna). Z początku niezbyt ścisłe argumenty oraz eksperymenty numeryczne były jego głównym osiągnięciem, miał w związku z tym spory kłopot z publikacją: przez kilka lat różne pisma odrzucały jego artykuł, który dopiero w 1978 ukazał się on w „Journal of Statistical Physics”. Recenzenci dość często nie wiedzą, co zrobić z pracą zanadto nowatorską i niesztampową. Żyjemy w czasach nauki biurokratycznej, choć realny postęp niekoniecznie nadchodzi z przewidywalnych kierunków.

Arkusz Google’a z odwzorowaniem logistycznym

Od igły Buffona do metody Monte Carlo: statystyczne wyznaczenie liczby pi oraz wielkości mrowiska

Jean Marie Leclerc, hrabia de Buffon, był obok swego rówieśnika ze Szwecji Carla Linneusza najsławniejszym naturalistą drugiej połowy XVIII wieku. Za jego życia ukazało się trzydzieści sześć tomów historii naturalnej, a jeszcze kilka po jego śmierci z pozostawionych przez uczonego materiałów. W młodości nic nie zapowiadało, że zdolny jest do tak gigantycznej pracy. Studiował nauki przyrodnicze i Newtona zamiast poświęcić się prawu i być jak ojciec, adwokat parlamentu Burgundii oraz poborca podatku od soli. W Angers zabił w pojedynku chorwackiego oficera i musiał uciekać. Podróżował dłuższy czas po Europie razem z Evelynem Pierrepontem, drugim diukiem Kingston-upon-Hall, potem osiadł w Paryżu i zaczął starać się o przyjęcie do Akademii Nauk. Bardziej od zasług naukowych liczyły się kontakty, Buffon napisał jednak oryginalną, choć nietrudną pracę dotyczącą pewnej gry hazardowej, le jeu du franc-carreau. Polegała ona na tym, aby upuszczać przypadkowo monetę na posadzkę z drobnych płytek. Liczyło się, czy moneta mieści się całkowicie wewnątrz jednej z płytek, czy przecina jakieś granice między nimi. Buffon zastanawiał się, jak duże muszą być monety w stosunku do długości boku kwadratowej płytki, aby gra taka była sprawiedliwa. Przedstawił też jej prostszą odmianę: rzucamy w sposób przypadkowy igły długości l na podłogę z desek o szerokości d i sprawdzamy, czy igła przecina linię oddzielającą deski. Znów można zadać pytanie, przy jakim stosunku l/d gra będzie sprawiedliwa.

BuffonsNeedle

http://demonstrations.wolfram.com/BuffonsNeedleProblem/

Okazuje się, że prawdopodobieństwo przecięcia którejś linii równe jest

p=\dfrac{2}{\pi}\dfrac{l}{d}.

Wzór ten słuszny jest dla l\le d.Buffon ogłosił swe rozważania, po czterdziestu z górą latach, w roku 1777, w długiej rozprawie Essai d’arithmétique morale (arytmetyka moralna to rachunek prawdopodobieństwa). Dla kogoś, kto przełożył na francuski Traktat o fluksjach Isaaca Newtona, nie było to trudne zagadnienie. W roku 1812 Pierre Simon de Laplace zwrócił uwagę, że jeśli znamy stosunek długości igły do odległości linii, możemy eksperymentalnie wyznaczyć wartość liczby \pi. Np. na rysunku powyżej wylosowano 100 rzutów i igła przecina linię 66 razy oraz l=d. Wartość liczby \pi oszacowana na podstawie tego eksperymentu równa jest

\pi=\dfrac{2}{0,66}\approx 3,03

 My pokażemy, jak znaleźć to prawdopodobieństwo, nie korzystając z żadnych całek. Jeśli igła dowolnej długości l pada losowo na układ równoległych linii, to może je przeciąć pewną skończoną liczbę razy. Załóżmy, że zliczamy liczby przecięć dla kolejnych rzutów.

buffon1

Wartość oczekiwana liczby przecięć równa jest

E(l)=p_1+2p_2+3p_3+\ldots.

 Prawdopodobieństwo, że przecięć będzie k oznaczyliśmy p_k, suma zawiera tyle składników, ile trzeba dla danej długości igły. Jeśli podzielimy naszą igłę na dwie części o długościach l=l_1+l_2, to można ustalić zawsze, która część przecina daną linię.

buffon1_5

Jeśli przecięcia obu części będziemy zliczać oddzielnie, a następnie je zsumujemy, wynik nie może być inny niż przed podzieleniem igły:

E(l)=E(l_1)+E(l_2).

Moglibyśmy podzielić igłę na dowolną liczbę kawałków, łatwo widać, że E(cl)=cE(l) dla dowolnych wymiernych wartości c. Funkcja E(l) jest rosnąca, możemy więc napisać

E(l)=E(1)l=cl.

Wyznaczenie E(l) sprowadza się więc do znalezienia stałej c, która jest niezależna od długości igły.

Wyobraźmy sobie, że nasza igła to kawałek drutu, który zaginamy, jak na rysunku. Wartość oczekiwana liczby przecięć nadal będzie sumą wartości oczekiwanych liczby przecięć obu części. Inaczej mówiąc, wygięcie drutu nie zmieni wartości oczekiwanej całkowitej liczby liczby przecięć.

buffon2

A skoro tak, to możemy wyobrazić sobie, że rzucamy jakieś wielokąty foremne i obliczamy wartość oczekiwaną całkowitej liczby przecięć wielokąta z liniami prostymi. Nadal powinna to być ta sama funkcja E(l).

buffon2_5

Aby znaleźć wartość stałej c rozpatrzymy zamiast wielokątów ich graniczny przypadek czyli okrąg o średnicy d. Okręgi takie przecinają nasze linie proste dokładnie w dwóch punktach.

buffon3

Możemy więc napisać równość

2=E(d\pi)=d\pi E(1) \Rightarrow E(l)=\dfrac{2l}{\pi d}.

Obliczyliśmy w ten sposób wartość oczekiwaną liczby przecięć dla dowolnej igły. Co to ma wspólnego z prawdopodobieństwem pojedynczego przecięcia? Jeśli nasza igła jest krótsza niż odległość linii, to może przeciąć najwyżej jedną z nich, a więc E(l)=p_1.

Nietrudno zauważyć, że nasze obliczenie sprowadza się do ustalenia stosunku dwóch pól powierzchni z rysunku, czyli inaczej mówiąc do obliczenia pola powierzchni między sinusoidą a osią odciętych.

buffon0Można sobie wyobrazić bardziej bezpośredni sposób obliczenia pola powierzchni i tym samym liczby \pi. Wyobraźmy sobie kwadrat i załóżmy, że losujemy w sposób całkowicie przypadkowy punkty wewnątrz tego kwadratu. Jeśli w kwadrat wpiszemy okrąg, to niektóre z nich znajdą się wewnątrz okręgu, inne na zewnątrz.

MonteCarlo1000

Na rysunku wylosowano 1000 punktów, 773 leżą wewnątrz okręgu, zatem

\dfrac{\pi}{4}\approx\dfrac{773}{1000}\Rightarrow \pi\approx 3,092

Obliczenie to stanowi prosty przykład działania metody Monte Carlo. Jest ona dość powolna, bo trzeba wygenerować wiele punktów, aby wynik był w miarę dokładny. Zauważmy jednak, że moglibyśmy w ten sposób zmierzyć pole pod dowolną krzywą, czyli mówiąc inaczej, obliczyć dowolną całkę. Metodę tę zaproponował w roku 1946 Stanisław Ulam, pracujący wówczas w Los Alamos. Dzięki pierwszemu komputerowi ENIAC można już było generować liczby losowe. Podczas rekonwalescencji po chorobie Ulam, specjalista od metod probabilistycznych, a do tego wielki miłośnik gier i hazardu, układał sobie pasjanse Canfielda i zaczął zastanawiać się, jak obliczyć w tym przypadku prawdopodobieństwo sukcesu. Było to trudne, ale można by np. wymodelować pewną liczbę gier i oszacować prawdopodobieństwo na podstawie częstości sukcesów. Razem z Johnem von Neumannem zastosowali po raz pierwszy metodę Monte Carlo do obliczeń dyfuzji neutronów.

Ciekawe zastosowania rozumowania typu igły Buffona można napotkać w biologii. Wyobraźmy sobie płaski obszar wypukły o polu powierzchni S. Zamiast igieł mamy dwa zestawy łuków krzywych. Ich całkowita długość to l_1 oraz l_2. Jeśli będziemy losowo umieszczać krzywe obu rodzajów w naszym obszarze, to średnia liczba przecięć między krzywymi obu rodzajów dana jest wzorem analogicznym do wzoru Buffona:

E=\dfrac{2l_1l_2}{\pi S}.

Możemy np. posłużyć się tą zależnością do statystycznego wyznaczenia pod mikroskopem długości pewnej krzywej (np. kawałka korzenia rośliny). Umieszczamy losowo w naszym obszarze badaną krzywą wraz z odcinkami prostej o ustalonej długości. Teraz wystarczy obliczyć, ile razy badana krzywa przecina się z odcinkami prostoliniowymi, co jest znacznie prostsze niż śledzenie za konkretną krzywą (wyobraźmy sobie, że mamy do zbadania tysiące takich korzeni).

root

Niech N będzie liczbę przecięć, zaś H całkowitą długością wylosowanych odcinków, wówczas długość krzywej równa jest

R=\dfrac{\pi NS}{2H}.

Zależność ta (oraz rysunek) pochodzą z klasycznej pracy E.I. Newmana, A Method of Estimating the total length of root in a SampleJournal of Applied Ecology, t. 3, (May, 1966), s. 139-145. Wzór Newmana można też wykorzystać do znalezienia pola powierzchni S, gdy znane są pozostałe wielkości. Sugerowano, że algorytmu tego rodzaju używają mrówki, szacując, czy jakieś miejsce nadaje się na nowe mrowisko. Dwa zestawy krzywych byłyby w tym przypadku dwoma trasami tej samej mrówki-zwiadowcy: liczyłaby ona, ile razy pierwsza trasa i druga się przecinają (trasy są znaczone feromonami, zakłada się, że mrówka reaguje na swoje indywidualne feromony). Nie potrafię ocenić, czy to dobra hipoteza, z pewnością ciekawa. Szczegóły można znaleźć w pracy: E.B. Mallon, N.R. Franks, Ants estimate area using Buffon’s needle, „Proc. R. Soc. London” B, t. 267 (2000) s. 765-770.

Racjonalni inaczej? Kognitywistyka kwantowa

Nie jest to tytuł grantu z Akademii Lagadyjskiej. Chodzi o zastosowanie reguł kwantowej probabilistyki do psychologii. Nie zakładamy, że umysł jest układem kwantowym (być może zresztą jest, ale tutaj to nieistotne). Stosujemy reguły fizyki kwantowej jako alternatywne podejście do kwestii prawdopodobieństwa. Zdaniem wielu współczesnych badaczy, zwłaszcza w obszarze informacji kwantowej, fizyka kwantowa jest czymś więcej niż tylko fizyką, a mianowicie pewnym rodzajem teorii probabilistycznej, różnym od klasycznego prawdopodobieństwa, Laplace’a i Kołmogorowa. Nie jest więc niemożliwe, że zasadnicze reguły prawdopodobieństwa kwantowego można zastosować także poza fizyką.

Stan układu w mechanice kwantowej przedstawia się za pomocą wektora. Ów wektor stanu zawiera potencjalne odpowiedzi na różne pytania eksperymentalne, jakie możemy zadać, wykonując odpowiedni pomiar. W najprostszej sytuacji możemy sobie wyobrażać, że jest to wektor na płaszczyźnie. Pomiar może dać nam binarną odpowiedź: nasz układ ma własność F albo przeciwną ~F. Geometrycznym odpowiednikiem pomiaru jest rzutowanie wektora stanu na osie układu współrzędnych.

linda problem0

Możemy więc nasz wektor zapisać jako sumę rzutów na kierunki F oraz ~F, albo na jakieś inne dwa prostopadłe kierunki B oraz ~B. Operator rzutowania oznaczamy przez P z odpowiednim indeksem:

S=P_{F}S+P_{\sim F}S=P_{B}S+P_{\sim B}S

Kwadraty długości owych rzutów są prawdopodobieństwami uzyskania określonych wyników. Przyjmujemy, że nasz wektor S ma długość jednostkową. Suma kwadratów długości obu rzutów jest zatem także równa 1 (jak powinno być dla prawdopodobieństw wykluczających się zdarzeń, których suma jest pewna), obrót układu współrzędnych tego nie zmienia, bo długość wektora S nadal musi być równa 1.

Oto dwa przykłady zastosowania tego podejścia. Pierwszy to Problem Lindy. Uczestnikom badania przedstawia się sylwetkę Lindy, która studiowała filozofię w liberalnym college’u, interesowała się problemami dyskryminacji i rasizmu, brała udział w demonstracjach przeciwko broni atomowej, jest singielką. Pytamy, co jest bardziej prawdopodobne: czy to, że Linda pracuje w banku przy obsłudze klientów, czy to, że pracuje w banku przy obsłudze klientów oraz jest feministką. Badani częściej wybierają drugą możliwość. Według klasycznej teorii prawdopodobieństwa dołączenie dodatkowego warunku nie może powiększać prawdopodobieństwa (B\cap F\subset B). W modelu kwantowym może być inaczej.

linda problem

Jeśli wektor stanu umysłu S rzutujemy najpierw na oś F, to przechodzi on w wektor P_F S. Pytanie o pracę w banku daje nam kolejne rzutowanie, tym razem na oś B. Wynik jest wyraźnie różny od rzutowania S od razu na oś B (czyli wykonania jednego pomiaru). Kwadraty długości to prawdopodobieństwa, można zatem rozwiązać Problem Lindy.

Jako drugi przykład rozpatrzymy znany z badań opinii publicznej fakt, że kolejność zadania pytań ma wpływ na wyniki. W prowadzonych w Stanach Zjednoczonych sondażach pytano: „Czy uważasz Billa Clintona za człowieka uczciwego i godnego zaufania?”, zadawano też to samo pytanie w odniesieniu do Ala Gore’a (był wiceprezydentem za kadencji Clintona). Ci, którzy, najpierw pytani o Gore’a, odpowiedzieli pozytywnie, częściej byli dobrego zdania o Clintonie niż w przypadku pozytywnej odpowiedzi na pytania w odwrotnej kolejności.

problem gore clinton

 

 

Operacje rzutowania na oś C i na oś G nie są przemienne: wynik zależy od kolejności. Według klasycznego podejścia mamy tu do czynienia z iloczynem zdarzeń, a ten jest przemienny.

Podejście kwantowe może wydawać się zupełnie arbitralne i dowolne: zawsze możemy sobie ustawić osie, jak wygodnie w danym przypadku. Jednak pewne związki miedzy prawdopodobieństwami są niezależne od modelu i potwierdzają się w badaniach empirycznych. Rośnie także liczba sytuacji, w których zastosowano takie podejście (np. dylemat więźnia). Nie jest dla mnie jasne, czy liczby zespolone odgrywają tutaj jakąś rolę. W mechanice kwantowej tylko w szczególnych przypadkach można ograniczać się do wektorów rzeczywistych, najważniejsza część mechaniki kwantowej związana jest z liczbami zespolonymi. Por. też: Piękna fizyka: kwantowe interferencje do kwadratu. W każdym razie se non è vero, è ben trovato.

Podejście to omawia praca: Peter D. Bruza, Zheng Wang, and Jerome R. Busemeyer, Quantum cognition: a new theoretical approach to psychology, „Trends in Cognitive Sciences”, t. 19, nr 7 ((July 2015), s. 383-393, a także wiele innych publikacji.