Czy ogon macha psem? – o pewnym argumencie na rzecz heliocentryzmu

W listopadzie 1948 roku Albert Einstein napisał w liście do starego przyjaciela:

U nas, jak dotąd, wszystko dobrze. Także moja siostra nie cierpi, choć obiektywnie jej stan pogarsza się w sposób widoczny. Czytam jej co wieczór – dziś np. dziwne argumenty wysuwane przez Ptolemeusza przeciwko poglądowi Arystarcha, że Ziemia się obraca, a nawet obiega Słońce. Nie mogę się oprzeć skojarzeniu z niektórymi argumentami współczesnych fizyków: uczone i wyszukane, ale bez wyczucia. Ocena wagi argumentów w roztrząsaniach teoretycznych to zawsze kwestia intuicji.

Maja Einstein cierpiała po udarze i powoli gasła, była jednak sprawna umysłowo, toteż brat czytał jej wieczorami rozmaite książki, przeważnie klasyczne (Maja miała doktorat z filologii romańskiej). W sprawie mechaniki kwantowej Albert Einstein zapewne się mylił, miał jednak rację, że póki dane rozwiązanie naukowe dopiero się kształtuje, jest in statu nascendi, dopóty nie ma prostego sposobu ustalenia, jakie argumenty są trafne, a jakie nie, trzeba zawierzyć intuicji.

Dyskusja na temat tez kopernikańskich była długa i zażarta. Spojrzymy tu tylko na jeden argument, który sam nie miał jakiejś ogromnej wagi i niczego nie przesądził, ale wiązał się wyraźnie z wyobrażeniem wszechświata. Według Kopernika porusza się niewielka Ziemia, a nie ogromne niebo. W szczególności to owa niewielka Ziemia krąży wokół znacznie większego Słońca, a nie na odwrót.

Johannes Kepler pisał (Astronomia nova, 1609, Introductio): „Popatrzmy tedy na ciała Ziemi i Słońca i zdecydujmy, któremu z nich bardziej przystoi być źródłem ruchu tego drugiego. Czy to Słońce, które porusza także pozostałe planety, porusza Ziemią, czy też Ziemia – Słońcem, poruszającym owe pozostałe [planety] i tylekroć od niej większym?” Myślał tu o układzie Tychona Brahego, w myśl którego wszystkie planety prócz Ziemi krążą wokół Słońca. Dla Keplera było to nieprawdopodobne, gdyż uważał, że to Słońce jest źródłem siły poruszającej planetami, z jego punktu widzenia układ Tychona nie miał uzasadnienia dynamicznego, bo ruchem Słońca wokół Ziemi rządziłoby wówczas jakieś inne i odrębne prawo. Ponadto Słońce jest znacznie większe od Ziemi. Mamy więc ogon machający psem.

cyrano

Co wiedziano na temat rozmiarów Słońca i Ziemi? Astronomowie mieli zwyczaj używania kąta, tzw. paralaksy (dziennej). Paralaksa Słońca to kąt, pod jakim ze Słońca widać byłoby promień Ziemi. Oczywiście, niełatwo taki kąt znaleźć. Od starożytności wierzono, iż kąt ten wynosi 3′, Kepler przypuszczał, że równy on jest 1′, pod koniec wieku XVII znano już w przybliżeniu prawidłową wielkość: p\approx 9''. Z trójkąta prostokątnego na rysunku łatwo wyznaczyć odległość Słońca w jednostkach promienia Ziemi. Ten sam rysunek moglibyśmy zastosować, zamieniając miejscami Słońce i Ziemię: otrzymalibyśmy wówczas kątowy promień tarczy słonecznej widzianej z Ziemi \theta. W takim razie stosunek promienia Słońca R_S do promienia Ziemi R_Z równy jest

\dfrac{R_S}{R_Z}=\dfrac{\sin\theta}{\sin p}\approx \dfrac{\theta}{p}\approx \dfrac{16'}{p}.

(Sinusy małych kątów możemy zamienić wielkościami samych kątów.) Ptolemeusz sądził więc, że Słońce jest 5 razy większe od Ziemi, Kepler – że jest 15 razy większe, a naprawdę jest ono przeszło sto razy większe.

Digges_Leonard_1596_A_prognostication_everlastinge_of_right_good_effect_Page_15(1)

Leonard Digges, Prognostication Everlasting, 1596

Co odpowiadano na taki argument? Uczony jezuita Giovanni Riccioli w swoim niezwykle obszernym i kompetentnym dziele Almagestum novum (1651) nie miał innego wyjścia niż zwalczać Kopernika, gdyż tak postanowił Kościół Święty, a przynajmniej ówczesny papież, w sprawie Galileusza. Na argument, iż łatwiej i mniejszym kosztem byłoby Bogu i Naturze poruszać niewielką Ziemią zamiast ogromnym niebem, Riccioli stwierdza, że po pierwsze wysiłek nie jest tu aż tak wielki, ponieważ we wszechświecie ruch nie napotyka żadnego oporu, a po drugie Bóg oraz Inteligencje łatwo by sobie poradziły, nawet gdyby jakieś opory występowały.

Huygens_Christiaan_1698_The_celestial_worlds_discoverd_Page_15

Christiaan Huygens, Cosmotheoros, wyd. ang., 1698 (wartość paralaksy Słońca jest już mniej więcej znana)

Popularną wersję odpowiedzi znajdziemy u Besiana Arroya, dokora Sorbony i teologa miasta Lyonu, który w 1671 roku napisał książeczkę Le Prince Instruit (Władca oświecony), zadedykowaną samemu królowi, w której oświeca przyszłych polityków. Otóż Ziemia tkwi nieruchomo w środku, ponieważ jest ciężka. Zgodnie z fizyką Arystotelesa, gdyby nawet się poruszyła, to tylko ruchem prostoliniowym, bo ciężkie ciała spadają ku centrum świata. Gwiazdy zaś (tzn. wszelkie ciała niebieskie) „wedle swej naturalnej dyspozycji są lekkie, okrągłe i ustanowione, aby oświetlać Ziemię, toteż muszą się poruszać zgodnie ze swą naturalną skłonnością i dążnością, jaką dał im Wszechmocny”. Śmiechu warty jest Kopernik, w jego systemie jest tak, jakbyśmy przenosili komnaty, stoły i całe domostwa w pobliże pochodni, by je oświetlić, zamiast wnieść pochodnię do środka. Zwolennicy filozofii Arystotelesa nie wierzyli w jedność materii: dla nich ciała niebieskie były z eteru, nie miały więc bezwładności i stosunkowo nietrudno było nimi poruszyć. Inaczej to wyglądało dla tych, którzy jak Kepler i Galileusz, szukali jednolitych praw i jednolitej materii w całym wszechświecie.

Chrześcijanie tradycyjni wierzyli także, że cały świat stworzony został dla człowieka, jego rozmiary świadczyły o potędze Boga. Sceptycy widzieli to nieco inaczej. Cyrano de Bergerac pisał: „Dorzuć pan do tego nieznośną a właściwą ludziom pychę, która wmówiła im, że Naturę dla nich jedynie stworzono, jak gdyby ktoś mógł dać wiarę, że Słońce, olbrzymie ciało 434 razy większe od Ziemi [chodzi o objętość – J.K.], zapalono tylko z tej racji, aby dojrzewała ich nieszpułki i aby obradzała kapusta” (Tamten świat, przeł. J. Rogoziński). Bernard Le Bovier de Fontenelle dopowiadał: „Do owego szalonego Ateńczyka niejako podobni jesteśmy, który sobie uroił, że wszystkie okręty do portu Pirejskiego przybijające do niego należały. Nasze szaleństwo w tym się wydaje, iż mniemamy, że cały świat dla naszych szczególnie stworzony został wygód, i gdy się pytamy filozofów, na co się przyda tak wiele gwiazd stałych, których jedna część też by czyniła skutki, które wszystkie razem czynią, odpowiadają ozięble, iż do ukontentowania oczu ich służą” (przeł. E. Dębicki, przekład uwspółcześniony. za: W. Voisé, Historia kopernikanizmu w dwunastu szkicach). Książkę Fontenelle’a przełożył na polski ksiądz pijar Eustachy Dębicki w 1765 roku, a więc osiemdziesiąt lat po jej napisaniu. W 1687 roku kwestię, co krąży wokół czego rozstrzygnął Isaac Newton. Stwierdził z pewną satysfakcją, że nikt dotąd nie miał racji, gdyż planety i Słońce krążą wokół wspólnego środka masy, więc ściśle biorąc także Słońce nie jest nieruchome.

W połowie wieku XVIII do przeszłości należały nie tylko fizyka Arystotelesa i boje o kopernikanizm, ale zdążył zapanować i upaść także kartezjanizm, i to nawet we Francji, gdzie był najmocniejszy. Nikt poważnie już nie wątpił w mechanikę Newtona. Rewolucja naukowa XVII wieku dopiero teraz zaczęła docierać także do Polski. Ksiądz Jędrzej Kitowicz, nie do końca świadomie, daje świadectwo potwornego zacofania, z jakiego zaczęto się wówczas wydobywać:

W akademiach zaś publicznych, czyli generalnych, jako to krakowskiej, zamojskiej i wileńskiej, prócz nauk dopiero wyliczonych były nadto: nauka matematyki wszelkiego rodzaju, astrologii, geografii, geometrii, kosmografii, do tego: jurisprudencji, medycyny, i zwały się te akademie universitates. Co się tycze ogółem filozofii – tej patriarchów nie było więcej jak dwóch: Arystoteles i św. Tomasz, ponieważ na wszystkich dysputach nie tłomaczyli się inaczej walczący z sobą, tylko albo „iuxta mentem Aristotelis”, albo „iuxta mentem divi Thomae”. W akademiach kto się promował do godności doktorskiej w filozofii, musiał przysięgać, jako inaczej nie będzie trzymał i uczył, tylko „iuxta mentem divi Thomae”; ci tedy, którzy się trzymali zdania Arystotelesa, zwali się peripatetici, a którzy św. Tomasza, zwali się thomistae.

Pierwsi pijarowie jakoś około roku 1749 czyli trochę wyżej odważyli się wydrukować w jednym kalendarzyku politycznym niektóre kawałki z Kopernika, dowodzące, że się ziemia obraca, a słońce stoi. Czego ledwo dostrzegli jezuici, nie omięszkali i swoich rozumów, co ich tylko mieli najbystrzejszych, użyć przeciwko pijarom, ciężkim przeciwnikom swoim, ale też inne zakony przeciw nim poburzyć o takową hypothesim, czyli zdanie dawnej nauce przeciwne. Rozruch ten po szkołach był na kształt pospolitego ruszenia przeciwko pijarom; wydawali książki zbijające takową opinią, zapraszali pijarów na dysputy i najwięcej z tej materii pijarom dokuczeć usiłowali. Ci atoli, coraz nowy jaki kawałek wyrwawszy z teraźniejszych wodzów filozoficznych: Kopernika, Kartezjusza, Newtona, Leibniza, dokazali tego, że wszystkie szkoły przyjęły neoteryzm, czyli naukę recentiorum [nowszych autorów], według której ziemia się obraca koło słońca, nie słońce około ziemi, tak jak pieczenia obraca się koło ognia, nie ogień koło pieczeni. Koloru nie masz żadnego w rzeczach, tylko te barwy, które na nich widziemy: białe, czarne, zielone, czerwone, żółte etc., sprawuje temperament oczu i światła, czego jest wielkim dowodem jabłko na przykład, w dzień zielone, które toż samo przy świecach wydaje się granatowe; że ból, świerzbienie i inne czucia nie mają swego placu w ciele, tylko w duszy, ponieważ ciało bez duszy nic nie czuje. (Opis obyczajów za panowania Augusta III, rozdział O szkołach publicznych).

Równoważność masy i energii: Albert Einstein (1906, 1946)

Chodzi o słynny wzór E=mc^2. Jest to tzw. energia spoczynkowa ciała, czyli energia ciała, które jako całość się nie porusza. Jeśli ciało się porusza, to dodatkowo ma także energię kinetyczną (przy niewielkich prędkościach jest ona taka sama jak w mechanice newtonowskiej: E_k=\frac{mv^2}{2}). W teorii względności należy energię spoczynkową doliczać do bilansu wszystkich rodzajów energii – bez energii spoczynkowej bilans ten jest niepełny i zasada zachowania energii nie jest spełniona. Wzór Einsteina oznacza także, że jeśli pewne nieruchome ciało zwiększy energię, np. zostanie podgrzane, to wzrośnie także jego masa. W gruncie rzeczy współczynnik z prędkością światła: c^2 jest jedynie przelicznikiem między energią i masą, moglibyśmy np. mierzyć masę w jednostkach energii, co praktykuje się w odniesieniu do cząstek elementarnych. Energia odpowiadająca nawet niewielkim masom jest olbrzymia, obliczmy energię odpowiadającą 1 kg:

E=1\mbox{ kg}\cdot(3\cdot 10^8\mbox{ m/s})^2=9\cdot 10^{16}\mbox{ J}.

Nie wyobrażamy sobie, co taka wielkość oznacza w praktyce. Bomba termojądrowa o wielkości 20 Mt trotylu wyzwala energię równoważną 0,93 kg. Inaczej mówiąc, masa produktów eksplozji jest mniejsza od masy substratów o 0,93 kg, ubytek ten przejawia się jako energia kinetyczna oraz energia promieniowania. Jest to 1000 razy więcej energii niż wyzwoliło się w wybuchu bomb nad Hiroszimą i Nagasaki.

timelipiec1946

Einstein został przez media uznany za duchowego ojca broni jądrowej, choć nie miał z nią nic wspólnego, nigdy nie zajmował się fizyką jądrową, a podczas drugiej wojny światowej nie dopuszczono go do Projektu Manhattan, ponieważ mu nie dowierzano. Zresztą pewnie nie na wiele by się przydał, problemy, które tam rozwiązywano, były raczej odległe od jego naukowych kompetencji, chodziło bowiem o inżynierskie zaplanowanie wybuchającego układu, postawienie fabryki rozdzielającej izotopy uranu itd. Wzór Einsteina pochodził z roku 1905, kiedy niewiele było nadziei, iż uda się go doświadczalnie potwierdzić. Łatwo zrozumieć dlaczego tak było: ubytek 1 kg masy odpowiada energii wyzwolonej w wybuchu 20\mbox{ Mt}=2\cdot 10^{10}\mbox{ kg} trotylu. Jeśli potraktować wybuch trotylu jako typową reakcję chemiczną, to widzimy, że należałoby ważyć produkty i substraty z dokładnością względną rzędu 10^{-10}, aby wykryć zmianę masy. Dlatego w chemii obowiązuje zasada zachowania masy, dopiero w reakcjach jądrowych pojawiają się energie, przy których wzór Einsteina zaczyna się praktycznie liczyć.

Uczony wielokrotnie przedstawiał różne proste doświadczenia myślowe, które uzasadniały ten wzór. Przedstawimy poniżej dwa takie rozumowania: z roku 1906 i z roku 1946.

einstein1906

Wyobraźmy sobie cylindryczny pojemnik o masie M zawieszony gdzieś w pustej przestrzeni i początkowo spoczywający. W pewnej chwili z lewego końca pojemnika wysyłana jest fala świetlna w kierunku w prawo. Fala ta ma energię E oraz pęd E/c – jest to wynik najzupełniej klasyczny, niezwiązany ani z teorią względności, ani z mechaniką kwantową. Można obliczyć, że kiedy fala elektromagnetyczna porusza jakimś ładunkiem i przekazuje mu energię E, to musi także przekazać mu pęd równy E/c (pęd ten przejawia się w zjawisku zwanym ciśnieniem promieniowania). W czasie, gdy fala biegnie w prawo, nasz pojemnik musi poruszać się w lewo: całkowity pęd musi nadal być równy zeru. Mamy więc

-Mv+\dfrac{E}{c}=0\Rightarrow v=\dfrac{E}{Mc}.

 Ruch pojemnika w lewo oraz impulsu falowego w prawo trwa, dopóki fala nie dobiegnie do prawego końca pojemnika, gdzie jest pochłonięta. Pojemnik przesunie się więc w lewo o wielkość

\Delta x=v\Delta t=\dfrac{E}{Mc}\dfrac{L}{c}=L\dfrac{E}{Mc^2}.

Położenie środka masy naszego układu nie może się zmienić pod wpływem tego, co dzieje się wewnątrz cylindra. Skoro cylinder przesunął się w lewo, to jakaś masa m wewnątrz niego musiała przemieścić się w prawo. W naszym przypadku jedynym fizycznym obiektem, który się przesunął, jest fala elektromagnetyczna: przebiegła ona odległość L w prawo. Skoro środek masy układu cylinder+fala elektromagnetyczna się nie przesuwa, to wielkości przesunięć obu tych obiektów muszą być w odwrotnym stosunku do ich mas:

\dfrac{m}{M}=\dfrac{\Delta x}{L}=\dfrac{E}{Mc^2}\Rightarrow m=\dfrac{E}{c^2}.

Powinniśmy więc przemieszczanie się energii traktować jako przemieszczanie się masy.

Drugie rozumowanie Einsteina pochodzi z roku 1946, co pokazuje, że wracał on niejednokrotnie do tych samych tematów i zastanawiał się nad nimi. Pisał w jednym z listów, że w wolnych chwilach lubi sobie wyprowadzić na nowo jakiś znany mu wzór czy zależność.

einstein1946

Teraz mamy spoczywające ciało o masie M, które pochłania dwie padające na nie z przeciwnych kierunków fale elektromagnetyczne. W tym układzie odniesienia ciało nadal będzie spoczywać po pochłonięciu obu fal, ponieważ ich pędy są przeciwne. Rozpatrzmy teraz tę samą sytuację w układzie primowanym, w którym nasze ciało przed pochłonięciem fal porusza się z prędkością v. Kierunki prędkości fal nieco się zmienią, jest to aberracja światła, odkryta kiedyś przez Jamesa Bradleya. Jeśli prędkość v jest niewielka w porównaniu z prędkością światła, kąt aberracji równy jest \alpha=v/c radianów (wynik ten nie wymaga teorii względności). Zastosujmy teraz zasadę zachowania pędu w układzie primowanym. Wiemy, że prędkość naszego ciała się nie zmieni, bo w układzie nieprimowanym spoczywa ono przed i po pochłonięciu impulsów światła. Musi więc zmienić się jego masa:

M'v=Mv+2\dfrac{E}{2c}\sin\alpha=\left(M+\dfrac{E}{c^2}\right)v \Rightarrow M'=M+\dfrac{E}{c^2}.

Masa nieruchomego ciała wzrosła wskutek pochłonięcia energii: kiedy leżymy na słońcu nasza masa rośnie.

Czemu warto czytać o Einsteinie?

W lutym 2016 roku ogłoszono odkrycie fal grawitacyjnych docierających z kosmosu. Po raz
kolejny potwierdziła się w ten sposób teoria grawitacji Alberta Einsteina. Mimo że od śmierci uczonego minęło przeszło sześćdziesiąt lat, wciąż docierają do nas nowe konsekwencje jego odkryć: soczewkowanie grawitacyjne, kondensacja Bosego-Einsteina, a teraz fale grawitacyjne stają się narzędziem dla nowych pokoleń badaczy. Ten bodaj najsłynniejszy uczony wszech czasów wniósł ogromny wkład do fizyki: fotony, pierwsze zastosowania idei kwantów, względność czasu, równoważność masy i energii, teoria grawitacji, która zmieniła nasz sposób myślenia o wszechświecie – nie jest to wyczerpująca lista jego osiągnięć. Jednak nie tylko one sprawiły, że miliony ludzi tak interesowały się jego życiem i poglądami.
Przebył długą drogę od zbuntowanego ucznia porzucającego gimnazjum do siwowłosego mędrca, którego zna cały świat. Był człowiekiem odważnym i bezkompromisowym, zabierał głos w obronie wolności, zwalczał nacjonalizm i rasizm, zachowując przy tym poczucie humoru i dystans do własnej osoby. Jego niezależny charakter narażał go stale na kłopoty: po studiach on jeden spośród swego rocznika długo nie mógł znaleźć pracy, nie chciała go żadna uczelnia ani szkoła. Pierwszą stałą posadę znalazł w biurze patentowym w Bernie. Przepracował tam siedem lat i w tym czasie powstała znaczna część jego dorobku naukowego. Także później nie stał się typowym profesorem, rzadko prowadził wykłady, nie miał doktorantów, chętnie współpracował z inżynierami, był współautorem wielu patentów. Niemal dwadzieścia lat spędził w Berlinie, gdzie jego żydowskie pochodzenie i lewicowe poglądy często ściągały na niego niewybredne ataki antysemitów i „dobrych Niemców”. Kiedy Adolf Hitler został kanclerzem i zaczął bezwzględnie podporządkowywać sobie kraj, Einstein publicznie oświadczył, że będzie „żył wyłącznie w państwie, w którym na pierwszym miejscu stoją wolności obywatelskie, tolerancja i równość obywateli wobec prawa. Niestety, nie jest to rzeczywistość obecnych Niemiec”. Zerwał wszelkie oficjalne więzi z ojczyzną i zaangażował się w pomoc ludziom zmuszonym do jej opuszczenia. Resztę życia spędził w Stanach Zjednoczonych, pracując w coraz większym osamotnieniu nad jednolitą teorią pola i zabierając od czasu do czasu głos w sprawach publicznych. Także i tutaj jego poglądy nie wszystkim się podobały: FBI Johna Edgara Hoovera zgromadziło grube teczki donosów i podsłuchów, szukając jakichś śladów antyamerykańskiej działalności uczonego.
Pracując nad swą nigdy nieukończoną jednolitą teorią pola, mawiał: „Wielkość naukowa jest w zasadzie kwestią charakteru. Najważniejsze to nie iść na zgniłe kompromisy”. Do końca pozostał nonkonformistą, nie pozował na nadczłowieka i choć mylił się wielokrotnie, zarówno w sprawach naukowych, jak i obywatelskich, były to zawsze błędy uczciwe i popełnione w dobrej wierze.

Augustin Fresnel: piękna matematyka dyfrakcji (1818)

Stanisław Lem stwierdził kiedyś: „Nikt nic nie czyta, a jeśli czyta, to nic nie rozumie, a jeśli nawet rozumie, to nic nie pamięta”. Zjawisko to zresztą stare jak świat, w gruncie rzeczy różne informacje przypominają elementy puzzli: bez nich nie da się złożyć obrazka, ale one same nie wystarczą, bo trzeba jeszcze je odpowiednio dopasować. Każdy, kto się czegoś uczył, zauważył pewnie, że jeśli uda nam się coś dobrze zrozumieć, stworzyć pewną logiczną strukturę z tego, czego się uczyliśmy, to trudno to potem zapomnieć. Łatwo się zapomina fragmenty, które nigdy nam do niczego nie pasowały albo pasowały dość luźno.

Historycy mają skłonność sądzić, że jeśli X czytał albo choć posiadał w bibliotece tekst Y, to znaczy, że Y wpłynął na X. Często zresztą X sam nie wie, czy Y na niego wpłynął. Na uniwersytecie w Getyndze, będącym matematycznym centrum Niemiec, sto lat temu mówiło się o „nostryfikacji” idei czy pomysłów. Znane nawet było pojęcie „samonostryfikacji”, gdy ktoś wpadał na pomysł kiedyś już przez niego samego opublikowany. Einstein latem roku 1915 wygłosił tam cykl wykładów o swej teorii grawitacji, sądząc, że jest zakończona. Jesienią zauważył, że równania pola grawitacyjnego powinny być inne i zaczął nad nimi gorączkowo pracować, tym intensywniej, że w Getyndze David Hilbert zajął się tym samym tematem – groziła więc Einsteinowi „nostryfikacja” ze strony jednego z najlepszych matematyków tamtych czasów. Ostatecznie to Einstein pierwszy zapisał prawidłowe równania teorii grawitacji, można powiedzieć, że wszystko się skończyło szczęśliwie, bo włożył wiele trudu w zbudowanie tej teorii i należała mu się taka finałowa satysfakcja.

Augustin Fresnel był z zawodu inżynierem drogowym, nadzorował rozmaite budowy na prowincji. Może nie zająłby się poważniej fizyką, która go interesowała, lecz o której nie wiedział zbyt wiele, gdyby nie Napoleon. Wielki cesarz powrócił właśnie z zesłania na Elbie i próbował odbudować imperium, co jak wiemy skończyło się bitwą pod Waterloo. Fresnel jako polityczny przeciwnik cesarstwa stracił posadę i miał dużo wolnego czasu, który spędzał w rodzinnej wiosce matki, Mathieu w regionie Calvados, pod nadzorem policji. Z pomocą miejscowego kowala zbudował przyrządy do obserwacji optycznych, kropla miodu służyła mu za soczewkę. Znał matematykę. Czytał trochę Thomasa Younga, ale że nie znał angielskiego, niezbyt chyba wiele od niego zaczerpnął. Nie będziemy dociekać, ile dokładnie wziął od Younga, w każdym razie posunął się znacznie dalej niż angielski przyrodnik, tworząc matematyczną teorię światła jako fal i sprawdzając ją za pomocą świetnych eksperymentów. Kilka lat później został przyjęty do paryskiej Akademii Nauk. Słabowity przez całe życie, zmarł na gruźlicę w 1827 roku, niedługo po swoich trzydziestych dziewiątych urodzinach – żył więc tak samo długo jak Chopin, Słowacki i Riemann, którzy cierpieli na tę chorobę.

fresnel-1

W roku 1818 Fresnel przedstawił matematycznie prawidłową teorię ugięcia światła na nieprzezroczystej półpłaszczyźnie. Podstawą tej teorii jest zasada Huygensa: każdy punkt czoła fali traktujemy jak nowe źródło fal, które rozchodzą się we wszystkich kierunkach. W punkcie obserwacji, np. w jakimś punkcie ekranu, sumują się drgania przychodzące od każdego punktu fali. Łatwo opisać, jak to będzie wyglądać, gdy mamy tylko dwie fale dochodzące do danego punktu. Obserwujemy wówczas sumę drgań (wtedy nie wiedziano, co tam właściwie drga, my dziś wiemy, że są to pola elektryczne oraz magnetyczne).

fresnelDrganie można przedstawić jako rzut obracającego się wektora o pewnej długości. Na rysunku wektory te obracają się przeciwnie do wskazówek zegara z prędkością kątową

\omega=\dfrac{2\pi}{T},

gdzie T jest okresem fali (i drgania w danym punkcie), \omega nazywa się częstością kołową. Złożenie dwóch drgań o takiej samej częstości będzie sumowaniem dwóch obracających się wektorów. Ponieważ oba obracają się tak samo, możemy obrazek unieruchomić i dodawać te wektory tak, jak się dodaje wektory – według reguły równoległoboku albo (dolny rysunek) rysując je jeden za drugim. Wynik będzie taki sam, ale tą drugą techniką możemy dodać tyle wektorów, ile zechcemy.

Widzimy, że wynik dodawania zależy tylko od różnicy fazy \varphi między dwoma drganiami.

Rozpatrzmy teraz falę płaską padającą na nieprzezroczystą półpłaszczyznę AB, punkty B, D, E i C współtworzą czoło fali biegnącej z lewej strony z dalekiego źródła. Możemy odpowiadające im drgania zapisać jako strzałki, wszystkie mają tę samą fazę – ustawiliśmy je pionowo.

f30-07_tc_bigRysunek 30.7 z wykładów Feynmana (kto czuje niedosyt, może zajrzeć do podrozdziału 30-6 w t. 1)

Załóżmy, że interesuje nas natężenie światła w pewnym punkcie P. Fala docierająca do tego punktu z E musi przebyć odległość s, nieco większą niż odległość ekranu b:

fresnel1Z trójkąta prostokątnego na rysunku i z twierdzenia Pitagorasa, otrzymujemy

(b+\Delta)^2=b^2+2b\Delta+\Delta^2=b^2+h^2.

Różnice odległości \Delta, które mogą być dla nas ważne, są porównywalne z długością fali światła, a więc są znacznie mniejsze niż typowa odległość ekranu, możemy więc pominąć \Delta^2 w porównaniu do 2b\Delta, otrzymujemy wówczas:

\Delta=\dfrac{h^2}{2b}.

Dodając przyczynki od różnych punktów czoła fali, możemy przyjąć, że amplitudy fal cząstkowych są jednakowe: dodajemy więc wektory tej samej długości. Nie możemy natomiast pominąć faz. Różnica fazy między falą z E i falą z D będzie równa

\varphi=2\pi\dfrac{\Delta}{\lambda}=\dfrac{\pi h^2}{b\lambda}\sim h^2.

Zsumowanie nieskończenie wielu fal cząstkowych to obliczenie całki – coś, co Fresnel jako dobry inżynier z początku XIX wieku potrafił. Możemy uzyskać jakościowe wyobrażenie o wyniku, dodając bardzo wiele jednakowych strzałek. Zaczynamy od punktu D leżącego najbliżej punktu obserwacji P. Gdy przesuwamy się wyżej, faza rośnie proporcjonalnie do h^2: w wyniku powstanie spirala zwijająca się od punktu D w prawo i w górę, spirala ta zawija się coraz gęściej wokół pewnego punktu.

f30-08_tc_big(Rysunek 30-8 z wykładów Feynmana)

Podobnie będzie z wektorami z fragmentu BD naszego czoła fali, będzie im odpowiadać fragment spirali od B_P do D. Całkowite drganie odpowiadające punktowi obserwacji P dane będzie wektorem B_{P\infty} na rysunku. Jeśli nasz punkt obserwacji będzie leżał w cieniu, jak Q na rysunku, dodawać będziemy tylko fale cząstkowe od B_Q w górę i nasz wektor wypadkowy będzie miał koniec w punkcie \infty, im dalej w cień, tym bardziej spada natężenie światła. Po jasnej stronie półpłaszczyzny w punkcie R: musimy wystartować w B_{R} na lewym zwoju spirali i zakończyć gdzieś na prawym zwoju, co w rezultacie da wektor w przybliżeniu od lewego centrum spirali do jakiegoś punktu w pobliżu centrum prawego: długość wektora będzie się (niemal) okresowo zmieniać. Kwadrat długości naszego wektora to natężenie światła, czyli to co zwykle rejestrujemy. Obliczony ściśle wynik wygląda następująco:

FresnelFresnel_diffraction_of_straight_edge_density_plotwikimedia commons, autor: Gisling

Oś y wykresu leży na krawędzi szczeliny, na lewo mamy część „zacienioną”, na prawo – „jasną”, oś x wyskalowana jest w jednostkach \sqrt{b\lambda/2} (dla żółtego światła o \lambda=0,6 \mu m i odległości ekranu b=3,3 m będzie to skala w milimetrach. Wahania natężenia widać jako prążki. Tak wygląda granica cienia, jeśli się jej dokładniej przyjrzeć i jeśli fala padająca ma dobrze określoną fazę, np. oświetlamy naszą półpłaszczyznę laserem. Można to zrobić i bez lasera (jak Fresnel w XIX wieku), ale wówczas źródło fal musi być dostatecznie małe.

CornuSpiral1Elegancka spirala, którą otrzymaliśmy wyżej nazywa się spiralą Cornu. Fresnel obliczył całki, które są tu potrzebne, samo przestawienie graficzne jest późniejsze.

Najłatwiej zastosować tutaj wzór Eulera: nasza płaszczyzna jest wówczas płaszczyzną zespoloną, a dodawanie wektorów jest dodawaniem liczb zespolonych. Napiszmy jeszcze wzór na zespoloną sumę drgań S (kwadrat jej modułu to natężenie światła):

S=\int\limits_{-a}^{\infty} e^{i\frac{\pi h^2}{b\lambda}} dh,

a to odległość DB. Część rzeczywista i urojona tej liczby wyraża się przez tzw. całki Fresnela, funkcje wprowadzone do nauki i obliczone po raz pierwszy przez naszego uczonego.

B. P. Abbott et al.: Odkrycie fal grawitacyjnych (11 lutego 2016)

Grupa uczonych z projektów LIGO i VIRGO poinformowała o pierwszej bezpośredniej obserwacji fal grawitacyjnych. Autorów jest bardzo wielu, dobrze mieć w takiej sytuacji nazwisko z samego początku alfabetu: praca będzie bowiem cytowana tysiące razy jako B.P. Abbott et al. (Pełna lista autorów w artykule.)

Obserwacji dokonały niezależnie od siebie dwa laboratoria LIGO w Stanach Zjednoczonych: w Hanford w stanie Washington oraz w Livingston w stanie Louisiana. Są one odległe o 3000 km, dzięki czemu można coś powiedzieć o kierunku, z którego dobiegł sygnał. Tak wygląda interferometr w Hanford, drugi jest podobny.

lho_aerial_photoW zasadzie urządzenia te są ogromnymi interferometrami Michelsona w kształcie litery L, w których fala świetlna rozdzielana jest na dwie części biegnące w prostopadłych ramionach, na ich końcu obie fale odbijają się i wracają z powrotem do punktu wyjścia. Dzięki interferencji tych powracających fal można bardzo precyzyjnie mierzyć drobne przesunięcia zwierciadeł na końcach litery L.

large (1)
W rzeczywistości światło biegnie wielokrotnie wzdłuż każdego z ramion, powiększając tę odległość 4 km trzysta razy. Wykres przedstawia czułość obu detektorów, mierzoną wielkością jest odkształcenie \Delta L/L. Widzimy, jak niewiarygodnie mała jest ta wielkość: właśnie dlatego fale grawitacyjne wykryto dopiero teraz, po dziesiątkach lat ulepszania aparatury. Przy tak wielkiej precyzji problemem są wszelkie wstrząsy, sztuka ich unikania oraz odfiltrowywania z danych została rozwinięta do perfekcji: dlatego też praca zamieszczona wczoraj w „Physical Review Letters” ma tak wielu autorów (reprezentują oni ponad setkę instytucji naukowych).

Co właściwie odkryto? Otóż 14 września 2015 roku o godzinie 9:50:45 czasu Greenwich detektory zarejestrowały następujące odkształcenia:

large (2)

U góry są zarejestrowane w dwóch ośrodkach odkształcenia (jednostka wynosi 10^{-21}!). Na prawym wykresie zostały one nałożone na siebie po przesunięciu w czasie. Oba detektory zakołysały się nieznacznie: trochę tak, jak kołysze się łódka, gdy dotrze do niej fala wywołana przepływającym statkiem. Mamy w istocie dwie łódki (detektory), więc fala dociera do nich niejednocześnie, ale wciąż jest to ta sama fala. Pod wynikami eksperymentów jest ich rekonstrukcja metodami numerycznymi, o czym za chwilę. „Wodą” w tych eksperymentach jest sama przestrzeń. Ogólna teoria względności opisuje czasoprzestrzeń jako pewien dynamiczny ośrodek, nie ma w nim sił grawitacji, są tylko odkształcenia czasoprzestrzeni. Fale grawitacyjne są takim szczególnym odkształceniem, które może przenosić energię i rozchodzić się podobnie do fal elektromagnetycznych. Fale te mogą mieć dwie polaryzacje + oraz x, oznaczenia są dość oczywiste, gdy popatrzymy na rysunki. Przedstawiają one, jak deformowałby się pierścień mas punktowych pod wpływem przechodzącej fali grawitacyjnej (fala biegnie prostopadle do płaszczyzny rysunku, fale grawitacyjne są poprzeczne).

GravitationalWave_PlusPolarizationGravitationalWave_CrossPolarization

https://en.wikipedia.org/wiki/Gravitational_wave

Widzimy więc, że detektory będą najwrażliwsze na fale biegnące prostopadle do płaszczyzny L. Odległości mas w detektorach nieznacznie się zmieniły, z przyczyn technicznych nie mamy pierścienia koralików a tylko dwa prostopadłe odcinki.

Z jednej strony wykrycie fal grawitacyjnych jest ogromnym sukcesem technik doświadczalnych, przez pół wieku wielu ludzi pracowało nad ich doskonaleniem, aż do tego pierwszego pomiaru, niewątpliwie wkrótce nastąpią następne. Ale jest i druga strona tej historii: postęp w rozumieniu teorii Einsteina. Niecałe sto lat temu, 22 czerwca 1916 roku, przedstawił on pierwszą pracę na ten temat w Pruskiej Akademii Nauk. Dwa lata później, poprawił pewne błędy w tej pracy i obliczył szybkość tracenia energii związaną z promieniowaniem fal grawitacyjnych. Nikt wówczas nawet nie myślał o wykryciu takich fal, nie było nawet pewności, czy wnioski Einsteina są prawdziwe, on sam zakwestionował je w latach trzydziestych, choć później się z tego wycofał. Przedmiot wzbudzał jednak pewne kontrowersje. Już po śmierci Einsteina wyjaśniono kwestię istnienia czarnych dziur. Rozwinęły się też numeryczne metody pozwalające badać, co dzieje się z takimi obiektami, gdy zbliżą się zanadto do siebie (zbliżają się, ponieważ wypromieniowują fale grawitacyjne). Powstaje wówczas jedna duża czarna dziura. Właśnie takie zjawisko zostało zaobserwowane przez uczonych z LIGO.

large

Dopiero nałożenie precyzyjnych symulacji numerycznych na obserwowane dane pozwala zrozumieć, co zaobserwowano. Były to ostatnie chwile przez złączeniem się dwóch dużych czarnych dziur w jedną większą. Ich masy wynosiły 36 i 29 mas Słońca, po połączeniu masa czarnej dziury równa jest 62 mas Słońca. Energia wypromieniowana w postaci fal grawitacyjnych szacowana jest na około 3 masy Słońca (E=mc^2). Zjawisko to zaszło bardzo daleko od nas, ponad miliard lat świetlnych, było jednak tak gwałtowne, że można je było zaobserwować na Ziemi. Ponieważ rozwinięte zostały zarówno metody eksperymentalne, jak i sztuka numerycznych symulacji, możemy być pewni, że niebawem badania takie staną się rutynowym narzędziem astrofizyków. Einstein zasłużył na kolejną Nagrodę Nobla, podobnie jak ludzie, którzy rozwijali te projekty, niewątpliwie posypią się za to odkrycie nagrody. Można ubolewać, że zapewne otrzymają je głównie szefowie projektów, ale każdy z autorów wczorajszej pracy będzie miał co opowiadać wnukom.

Projekty takie jak LIGO są kosztowne, słysząc o tym, wielu ludzi niezwiązanych z nauką zadaje pytanie o cel i sens takich wydatków. Co nam przyjdzie z wiedzy o czarnych dziurach odległych o miliard lat świetlnych? Wbrew pozorom nauka podstawowa ma aspekty praktyczne: w projektach tego rodzaju ludzkość ćwiczy rozmaite możliwości. Kamery CCD najpierw miały zastosowania w astronomii, zanim trafiły do popularnych aparatów cyfrowych, magnetyczny rezonans jądrowy czy pozytonowa tomografia emisyjna pozwalają zdiagnozować choroby i ratują ludzkie życie itd. itp. Trudne eksperymenty naukowe poszerzają granice tego, co w ogóle jest możliwe technicznie. Dla mnie badania takie mają też inny, może nawet ważniejszy aspekt. Wyraził to trafnie amerykański fizyk Robert R. Wilson, który jako młody człowiek pracował w Projekcie Manhattan, a w latach sześćdziesiątych zabiegał o zbudowanie akceleratora w słynnym potem ośrodku Fermilab. W roku 1969 Wilson przepytywany był przed komisją Kongresu na temat celowości budowy dużego akceleratora cząstek. Senator John Pastore zapytał go, czy akcelerator taki wzmocni bezpieczeństwo kraju. Usłyszał, że nie. Po kilku następnych pytaniach idących w tym samym kierunku, Robert Wilson stwierdził, że projekt nie ma wprawdzie bezpośredniego wpływu na obronność kraju, przyczynia się jednak do tego, iż warto jest go bronić. 

 Dane pochodzą z pracy: B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 – Published 11 February 2016

Albert Einstein o Hitlerze (1935)

W roku 1933 i latach następnych Adolf Hitler był w Niemczech niewątpliwie „człowiekiem roku”. Choć nigdy nie zdobył samodzielnej większości parlamentarnej, rządził, nie oglądając się na takie regulaminowe szczegóły. Zresztą opozycja najpierw była podzielona, później poparła go prawicowa DNVP, a jeszcze później rozwiązał wszystkie partie. Trudno dziś zrozumieć, co tak uwodzicielskiego miały wygłaszane przez niego paranoiczne brednie. Prawdopodobnie miliony ludzi pragnęły odreagować swoje własne upokorzenia i swoje własne niepowodzenia – Hitler był do nich podobny, lecz umiał to przekuć w sukces i władzę. Niemcy mieli kompleks osaczenia: wokół był zły świat, który dybał na ich dobrostan, nie pozwalał poszerzyć granic i miał pretensje o jakieś zbrodnie wojenne w Belgii. Zresztą wróg czyhał także wewnątrz: Żydzi knuli, spiskowali i manipulowali biednymi prostolinijnymi Niemcami.

„Berliner Illustrirte Zeitung”, która kiedyś zamieściła portret Einsteina, teraz miała nowych bohaterów.

ALBERT EINSTEIN (1879-1955). American (German-born) theoretical physicist. On the cover of 'Berliner Illustrirte Zeitung,' 1919.

BIZ-10.9.1933_a

Trudno wyobrazić sobie kogoś mniej podatnego na stadne emocje niż Einstein. Nie dlatego gardził Hitlerem, że był słynnym uczonym, którego nic w Niemczech nie trzymało. Gdyby nie odniósł sukcesu naukowego i pozostał nikomu nieznanym urzędnikiem biura patentowego, myślałby tak samo.

Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby. Ową hańbiącą plamę na honorze cywilizacji należałoby usunąć jak najprędzej. O jakże nienawidzę tego bohaterstwa na komendę, bezmyślnej przemocy i bogoojczyźniactwa [Vaterlenderei, słówko Nietzschego – J.K.]

A to jego niepublikowany tekst o Hitlerze. Nie został opublikowany prawdopodobnie dlatego, że mógłby zaszkodzić krewnym w Niemczech albo jego siostrze mieszkającej w faszystowskich Włoszech.

Ku wiecznemu wstydowi Niemiec rozgrywa się w sercu Europy groteskowy i tragiczny spektakl; nie przynosi on chwały wspólnocie narodów, które zwą się cywilizowanymi!

Przez wieki naród niemiecki poddawany był indoktrynacji przez niekończący się szereg nauczycieli i sierżantów od musztry. Niemców zmuszano do ciężkiej pracy i uczenia się wielu rzeczy, wpajając im jednocześnie ślepe posłuszeństwo, wojskową dyscyplinę i brutalność. Powojenna demokratyczna konstytucja Republiki Weimarskiej pasowała do obywateli Niemiec mniej więcej tak samo, jak szaty wielkoluda na Tomcia Palucha. Potem nadeszły inflacja i kryzys, i wszyscy żyli w strachu i napięciu.

Zjawił się Hitler, człowiek o miernych zdolnościach umysłowych, nienadający się do żadnej użytecznej pracy, zionący zawiścią i żółcią na wszystkich, których natura i okoliczności obdarzyły hojniej niż jego. Wywodząc się z dołów klasy średniej, miał na tyle dużo klasowej pychy, by nienawidzić nawet klasy pracującej walczącej o większą równość w poziomie życia. Najbardziej ze wszystkiego znienawidził jednak kulturę i wykształcenie, na zawsze mu niedostępne. W swym desperackim pragnieniu władzy odkrył, iż jego przemówienia, tak mętne i przesiąknięte nienawiścią, przyjmowane są z dzikim aplauzem przez tych, których sytuacja i orientacja podobne były do jego własnej. Pozbierał te ludzkie szumowiny na ulicach i w piwiarniach i zorganizował wokół siebie. W taki sposób rozpoczął karierę polityczną.

Tym jednak, co przesądziło o jego przywództwie, była nieprzejednana nienawiść do wszystkiego, co zagraniczne, a zwłaszcza jego odraza do bezbronnej mniejszości, niemieckich Żydów. Ich wrażliwość intelektualna wywoływała u niego niepokój, uznawał ją – do pewnego stopnia słusznie – za niegermańską.

Bezustanne tyrady przeciwko tym dwóm «wrogom» pozwoliły mu zdobyć poparcie mas, którym obiecywał wspaniałe triumfy i złoty wiek. Sprytnie wykorzystał do swoich celów odwieczne niemieckie zamiłowanie do dyscypliny, rozkazów, ślepego posłuszeństwa i okrucieństwa. W taki sposób został Führerem.

Pieniądze płynęły obficie do jego skarbca, w niemałej części od klas posiadających, bo te widziały w nim narzędzie, mogące zapobiec społecznemu i ekonomicznemu wyzwoleniu narodu, które zaczęło się w Republice Weimarskiej. Grał przed ludźmi, wykorzystując romantyczną i pseudopatriotyczną frazeologię, do której zostali przyzwyczajeni w okresie poprzedzającym wojnę światową, a także oszustwo o rzekomej wyższości rasy aryjskiej czy nordyckiej, które jest mitem wymyślonym przez antysemitów do realizacji ich złowieszczych celów. Jego rozszczepiona osobowość sprawia, iż nie można stwierdzić, w jakim stopniu on sam wierzy w ów nonsens, który wciąż propaguje. Jednakże ci, którzy się wokół niego zgromadzili albo którzy wypłynęli na powierzchnię na fali nazizmu, to w przeważającej części zatwardziali cynicy, dokładnie świadomi fałszu stosowanych przez siebie metod.

Tymczasem koledzy Einsteina, tacy jak Max Planck, starali się dbać o naukę niemiecką (nieco skurczoną po wyjeździe Żydów), wszystko inne traktując jako nienależące do ich obowiązków. Tutaj widzimy Maksa Plancka na rocznicowym zebraniu Kaiser-Wilhelm Gesellschaft w 1936 roku.

planck 25 lat KWG 1936

Można powiedzieć, że bez Einsteina wszystko szło nawet lepiej: Instytut Fizyczny tego towarzystwa po Einsteinie miał nowego dyrektora Petera Debye’a, który nareszcie zdobył fundusze na wzniesienie budynku dla tej placówki – częściowo pochodziły z Ministerstwa Lotnictwa, częściowo zaś z Fundacji Rockefellera. Holender z pochodzenia, wybitny fizyk, Debye, jak się zdaje, nie był nazistą, starał się być apolityczny; nawet gdy wyjechał później do Stanów Zjednoczonych, urządził to tak, że był tylko urlopowany z Instytutu i pozostawiona w Berlinie córka pobierała jego wynagrodzenie.

Po wojnie Otto Hahn zaproponował Einsteinowi członkostwo w nowym Max-Planck-Gesellschaft, założonym po likwidacji Kaiser-Wilhelm-Gesellschaft.

„Postawa niemieckich intelektualistów – rozpatrywanych jako klasa – nie była lepsza niż motłochu” – odpisał mu Einstein, uzasadniając odmowę. Nie zezwalał też na wznowienia swoich książek w Niemczech.

Albert Einstein na dwóch fotografiach, czyli jak pionier został konserwatystą (1911, 1927)

Pierwsza fotografia pochodzi z roku 1911 i przedstawia uczestników I Kongresu Solvaya. Ernest Solvay, bogaty przemysłowiec, wzbogacił się na wynalezionej przez siebie metodzie produkcji sody. Nie miał akademickiego wykształcenia, lecz wykazywał pewne ambicje naukowe. Zwołany do Brukseli kongres zgromadził najwybitniejszych fizyków epoki, organizował go Hendrik Lorentz, który zaprosił m.in. Alberta Einsteina.

1911

Podpisana wersja tej fotografii

Trzydziestodwuletni Einstein stoi z cygarem w drugim rzędzie obok Paula Langevina, z którym szybko się zaprzyjaźnił (nb. w tym właśnie czasie wybuchł skandal prasowy w Paryżu wokół romansu żonatego Langevina ze starszą od niego Marią Skłodowską-Curie, jedyną kobietą na zdjęciu). Dla Einsteina był to pierwsza międzynarodowa konferencja naukowa i okazja do poznania sławnych fizyków spoza Niemiec. Zaledwie dwa lata wcześniej zaczął pracować na uczelni, do Brukseli przyjechał z Pragi, gdzie od wiosny tego roku był profesorem zwyczajnym. Okna jego gabinetu wychodziły na ogród szpitala psychiatrycznego. Einstein lubił pokazywać swoim gościom spacerujących alejkami pensjonariuszy tego zakładu ze słowami: „oto wariaci, którzy nie zajmują się kwantami”. Sam intensywnie pracował nad nową fizyką kwantową, m.in. odkrył, dlaczego ciepło właściwe diamentu maleje wraz z temperaturą. Zjawisko to jest kwantowe: drgania atomów węgla w krysztale diamentu mogą bowiem zachodzić tylko ze ściśle określonymi – skwantowanymi – energiami. W ten sposób okazało się, że nowa fizyka potrzebna jest do wyjaśnienia obserwowanych od dawna faktów. Dziś wiemy, że właśnie fizyka kwantowa wyjaśnia własności atomów, kryształów, cieczy – całą chemię i fizykę różnych materiałów, a także sporą część biologii. Inni uczeni zainteresowali się tym kręgiem zagadnień, szybko rosła więc liczba prac poświęconych kwantom. Tak więc stojący skromnie w drugim rzędzie Einstein reprezentował wówczas naukową awangardę, nie zawsze dobrze przyjmowaną przez starszych kolegów.

 

kwanty

Widzimy, jak szybko rosła liczba autorów idących w ślad za Einsteinem. Liczby nie wydają się może imponujące, ale ogólną liczbę fizyków w Europie w tamtej epoce szacuje się na 1000-1500, z czego nie wszyscy byli aktywni naukowo (Wykresy z T.S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894-1912, Clarendon Press, Oxford 1978, s. 217).

solvay_conference_1927_

Druga fotografia przedstawia uczestników V Kongresu Solvaya w roku 1927. Nosił on tytuł Elektrony i fotony. Fotony, cząstki światła, zostały zapostulowane przez Einsteina w roku 1905, teraz niejako oficjalnie uznano, że miał rację. A więc niewątpliwy triumf. Nikt przez dwadzieścia lat nie chciał wierzyć w owe kwanty światła, po eksperymentach Comptona i innych, wreszcie w nie uwierzono. Triumf zabarwiony był jednak goryczą. W latach 1925-1926 młodzi fizycy przedstawili mechanikę kwantową, z którą Einstein nie potrafił się zgodzić ani wtedy, ani nigdy później. Był nadal sprawny intelektualnie, nie zapomniał fizyki, ale należało wyjść poza krąg dotychczasowych idei, rozstać się z pewnym ideałem nauki. Rewolucji dokonali ludzie młodzi, mówiono o tym Knabenphysik – fizyka chłopców.
Fotografia ilustruje wymownie, jak wzrosła pozycja Einsteina w środowisku naukowym w ciągu tych kilkunastu lat. Teraz on zajmuje miejsce centralne. Siedzi między starym Lorentzem a posiwiałym Langevinem z nawoskowanymi wąsami, niczym rewolucjonista uwięziony w świecie XIX wieku. Obok Lorentza mocno postarzała, surowa i niepobłażająca Maria Skłodowska-Curie i znużony Max Planck. Dopiero w drugim rzędzie znajdujemy chudego, jakby wyjętego z dramatu Becketta Paula Diraca, arystokratycznego, rasowego Louisa de Broglie’a, uprzejmego i skromnego Maksa Borna, wychowawcę siedmiu noblistów, i wreszcie silnego i skupionego Nielsa Bohra. Elegancki Erwin Schrödinger, sceptyczny Wolfgang Pauli i szelmowsko chłopięcy Werner Heisenberg stoją skromnie w trzecim rzędzie. Trudno o bardziej symboliczny obraz zmiany warty: Einstein stał się teraz kimś podobnym do Lorentza czy Plancka, a więc wybitnym uczonym, którego należy szanować, ale od którego nie można się zbyt wiele nauczyć. Liczyli się młodzi ludzie z drugiego i trzeciego rzędu oraz ich duchowi przewodnicy, Bohr i Born. W ciągu następnych kilku lat twórcy mechaniki kwantowej otrzymali Nagrody Nobla, wszyscy oprócz Diraca nominowani byli zresztą także przez Einsteina. Najwybitniejszy spośród nich, Paul Dirac, musiał zadowolić się Nagrodą Nobla wraz ze Schrödingerem. Właśnie Paul Dirac w latach 1927-1928 pokazał, jak można sformułować kwantową teorię elektronów i fotonów. Było to otwarcie drogi, która zakończyła się dwadzieścia lat później zbudowaniem konsekwentnej elektrodynamiki kwantowej przez Richarda Feynmana, Freemana Dysona, Juliana Schwingera i Shin’itiro Tomonagę.