Po co człowiekowi w życiu logarytmy? Henry Briggs (1617)

Zanim przejdziemy do tytułowego pytania, zacznijmy od tego, jak należy wyobrażać sobie teorię oraz praktykę. Cesare Ripa daje następującą odpowiedź:

Słowo Theoria, oznaczające u Greków kontemplowanie, oglądanie, u nas zaczęło być stosowane na oznaczenie wszelkiego wywodu rozumowego opartego na przyczynach rzeczy stosownie do właściwych im porządków i z uwzględnieniem zasad zależących nie od rozsądku, lecz raczej od intelektu, gdyż zasady zawisłe od rozsądku określają Praktykę, przeciwstawną wszak Teorii. Ze względu na te okoliczności uważam, że Teorię całkiem trafnie przedstawić można w postaci młodej Niewiasty spoglądającej w górę, z dłońmi złączonymi, na głowie mającej cyrkiel o ramionach rozwartych i celujących w Niebo. Ma ona być odziana w dostojną błękitną suknię, i schodzić ze szczytu schodów. Wszystkie te szczegóły symbolizują wybitność, dostojność i wzniosłość. (przeł. I. Kania)

(…) Praktykę można przedstawić w postaci Staruchy z głową i rękami opuszczonymi w dół, ubranej nędznie w bure suknie, z wielkim rozwartym cyrklem, którego jedna nóżka wbita jest w ziemię; jedną ręką wspiera się na rzeczonym cyrklu, drugą – na liniale, w taki sposób, że druga nóżka cyrkla dotyka końca liniału układając się razem w kształt greckiej litery π, którą oni zwykli oznaczać Praktykę, podczas gdy Teorię oznaczali literą θ. (przekł. jw.)

Kto chodził do szkoły, ten wie, że Teoria ma przewagę nad Praktyką: ledwo zdążymy oswoić się z jednym pojęciem, a już mówi się o następnych i idzie dalej i dalej, nie pokazując zastosowań. W podobny sposób działały uniwersytety i szkoły także na przełomie XVI i XVII wieku. Dlatego znaczna część Rewolucji naukowej przebiegała niejako równolegle do systemu edukacji, który nawet owej rewolucji nie zauważył, nadal kształcąc na bazie Arystotelesa.

Logarytmy są wynalazkiem praktycznym, jednym z niewielu ważnych pojęć matematycznych, które powinno się wynosić ze szkoły. I nie chodzi o definicję czy dziwaczne równania z niewiadomymi pod logarytmem, ale o ideę zapisywania bardzo dużych albo bardzo małych liczb w krótki sposób. Logarytmy dziesiętne wprowadził Henry Briggs, profesor w londyńskim Gresham College. Była to szkoła o nastawieniu praktycznym, kształciła mierniczych, inżynierów i nawigatorów (żegluga oceaniczna zmusiła korzystania z astronomicznych metod wyznaczania położenia, a te wymagały obliczeń matematycznych). Pomysł należał do Szkota Johna Napiera, choć niezależnie od niego wpadł na podobną ideę Jost Bürgi, zegarmistrz i konstruktor przyrządów, zaprzyjaźniony z Johannesem Keplerem. Logarytmy pozwalały znacznie przyspieszyć obliczenia numeryczne, ponieważ mnożenie i dzielenie zastępują dodawaniem i odejmowaniem – działaniami znacznie mniej czasochłonnymi. Mówiono, że dzięki logarytmom życie astronomów wydłużyło się dwukrotnie, tak bardzo skracały one bowiem rachunki. Najważniejsze tablice astronomiczne czasów nowożytnych: Tablice Rudolfińskie (1627) Johannesa Keplera zostały obliczone przy wykorzystaniu logarytmów. Dzieło to zawierało frontispis przedstawiający świątynię astronomii, w której kilku sławnych uczonych minionych wieków prowadzi zaświatową debatę nad systemem planetarnym. Jedynie dwie kolumny oznaczone imionami Kopernika i Tychona Brahego są zdrowe i mocne, w suterenie widzimy Johannesa Keplera pochylonego nad swymi pracami.

Przyjrzyjmy się alegorycznym figurom na dachu świątyni. Cesarski orzeł zrzuca guldeny, co było raczej pobożnym życzeniem Keplera niż faktem, choć w sumie dzieło powstało dzięki patronatowi kolejnych cesarzy od Rudolfa II począwszy. Kobiece postaci od lewej strony począwszy to Physica lucis – fizyka światła, Optica – dzierżąca teleskop, Logarithmica – alegoria, niemal bogini logarytmów, Doctrina triangulorum – trygonometria, Stathmica – statyka przedstawiona z dźwignią (prawo dźwigni odgrywało zdaniem Keplera istotną rolę w ruchu planet) oraz Magnetica – alegoria nauki o magnetyzmie (uczony sądził, że jedną z sił poruszających planety jest specjalna siła magnetyczna). W aureoli wokół głowy Logarithmiki znajdują się cyfry 6931472, odpowiadające \ln(2)=0,6931472, dlatego pręty, które trzyma nasza bogini mają stosunek długości 1:2.

Johannes Kepler widział więc wagę logarytmów dla astronomii. Henry Briggs obliczył pierwsze praktyczne tablice logarytmów dziesiętnych. Poniżej wyjaśnimy, jak tego dokonał, najpierw jednak spróbujemy odpowiedzieć na pytanie, do czego w życiu przydają się logarytmy. Są one potrzebne szczególnie wtedy, gdy mamy do czynienia z procesami, w których jakaś wielkość zmienia się bardzo silnie. Np. ludność świata w milionach od czasów prehistorycznych do roku 2015. Widzimy, co znaczy określenie eksplozja demograficzna i dlaczego jest nas dziś więcej niż wszystkich ludzi razem wziętych w minionych epokach. W zaświatach spotkalibyśmy niemal wyłącznie współczesnych.

Drugi wykres ma skalę logarytmiczną na osi pionowej: znacznie lepiej widać zmiany szybkości eksplozji demograficznej: nachylenie krzywej (tangens kąta) mierzy wskaźnik przyrostu naturalnego. Stałe nachylenie to stały przyrost procentowy. Nadal widzimy eksplozję w ostatnich stuleciach, ale teraz widać znacznie więcej szczegółów zachowania krzywej. Spójrzmy jeszcze na wykres obejmujący tylko dwa ostatnie stulecia.

Widać na nim właściwie trzy odcinki prostoliniowe: 1800-1900, 1900-1950, 1950-2015. Zupełnie niewidoczne są obie wojny światowe. Skoki przyrostu naturalnego wiążą się najwyraźniej z postępem cywilizacyjnym: nawozy sztuczne, mniejsza umieralność niemowląt i dzieci, dłuższy średni czas życia.

Logarytm dziesiętny to w zasadzie liczba zer w zapisie: zamiast liczb 0,01;10;100000 piszemy -2,1,5. Oczywiście, musimy umieć obliczać logarytmy także innych liczb niż całkowite potęgi dziesiątki. Jeśli np. naszą liczbą jest a=3\cdot 10^4, to widać od razu, że jej logarytm musi być większy niż 4, lecz mniejszy niż 5 (bo 10^4<3\cdot 10^4<10^5). Trzeba znaleźć taki wykładnik, aby 10^{x}=3. Wiadomo, że x=0,477121, mamy więc

a=3\cdot 10^{4}=10^{0,477121}\cdot 10^{4}=10^{0,477121+4}=10^{4,477121}.

Zatem \log 3\cdot 10^4=4,477121.

Możemy powiedzieć (niestandardowo), że liczba 3\cdot 10^4=30000 ma 4,477121 zer. Logarytm jest więc uogólnieniem liczby zer, skonstruowanym w taki sposób, żeby zachować zwykłe reguły potęgowania, np. 10^{x}\cdot 10^{y}=10^{x+y}.

Jak można skonstruować tablice logarytmów, wiedząc tyle, ile Henry Briggs, to znaczy bez znajomości szeregów, pochodnych itd.? W zasadzie wystarczy umiejętność wyciągania pierwiastka kwadratowego – dawniej uczono, jak to się robi. Szybką metodę przybliżoną znano od czasów starożytnych. Przyjmijmy więc, że umiemy wyciągać pierwiastki kwadratowe. Możemy obliczyć teraz kolejne pierwiastki kwadratowe z 10 aż powstanie tabelka jak poniżej.

Zaczerpnęliśmy ją z rozdziału 22 tomu I wykładów Richarda Feynmana. Oczywiście, nietrudno ją obliczyć samemu, ale warto też spojrzeć na stronice Feynmana poświęcone temu zagadnieniu. Richard Feynman cenił matematykę praktyczną, metody uzyskiwania konkretnych liczbowych odpowiedzi. Pewnie dlatego zainteresował się Briggsem i sposobem konstruowania tablic. Gdybyśmy znaleźli się na bezludnej wyspie, będziemy wiedzieć, jak obliczyć tablice logarytmów. Ważniejszym powodem jest może ten, że wiedza powinna tworzyć powiązany system, a nie bezładne nagromadzenie faktów, i Feynman zawsze starał się poznać całe łańcuchy rozumowań od faktów doświadczalnych do teorii. (Nawiasem mówiąc, ta swoista niechęć do wykraczania poza fakty stała się chyba przyczyną, dla której nie podobały mu się kwarki, zaproponowane teoretycznie. Wprowadził nawet swoją nazwę: partony na części protonu, które obserwuje się w rozproszeniach przy dużych energiach. Uparcie nie chciał ich jednak uznać za kwarki.)

Z tabelki widać, że kolejne pierwiastki przejawiają prostą regularność:

10^{x}\approx 1+2,3025 x. \mbox{   (*)}

Także Briggs to zauważył: zamiast obliczać pierwiastki odpowiadające małym wykładnikom, można zastosować powyższe przybliżenie. Weźmy teraz jakąkolwiek liczbę z przedziału (1,10), np. 3. Szukamy w trzeciej kolumnie tabeli czynników, które przybliżą 3 z dołu:

10^{\frac{1}{4}}\cdot 10^{\frac{1}{8}}\cdot 10^{\frac{1}{16}}\cdot 10^{\frac{1}{32}}\cdot 10^{\frac{1}{128}}=10^{0,476563}\approx 2,996143.

Mamy już prawie 3. Brakujący czynnik to 3/2,996143=1,001287. Stosując przybliżenie (*) otrzymamy logarytm tego czynnika równy 0,000559. Liczbę tę należy dodać do wykładnika powyżej:

\log {3}=0,476563+0,000559=0,477121.

Metoda zastosowana przez Briggsa była nieco bardziej skomplikowana, ale w istocie sprowadzała się do tego samego. Zauważmy, że każdą liczbę z przedziału (0,1) możemy zapisać jako sumę potęg dwójkowych – będzie to po prostu owa liczba zapisana dwójkowo. Henry Briggs obliczył 54 kolejne pierwiastki z dokładnością 30 cyfr znaczących, co było pracą iście herkulesową (gdyby tylko Herkules pracował umysłowo, a nie fizycznie). W dodatku prawie wcale się przy tym nie mylił, drobne pomyłki nie wpłynęły na wyniki tablic. Zawierały one w pierwszej wersji logarytmy liczb od 1 do 1000 z dokładnością czternastu znaków. Po sześciu latach rozszerzył te tablice do liczb 1-20 000 oraz 90 000-100 000 z tą samą monstrualną dokładnością czternastu cyfr. Wydawca flamandzki Adriaan Vlacq zatrudnił mierniczego Ezechiela de Deckera, aby dokończyć tablice od 1 do 100 000. Miały one dokładność już tylko dziesięciu cyfr, de Decker stosował interpolację. Tablice Vlacqa ukazały się w 1627, trzy lata po niepełnych tablicach Briggsa.

Korzystałem m.in. z artykułu Iana Bruce’a, The agony and the ecstasy – the development of logarithms by Henry Briggs, „The Matematical Gazette”, t. 86 (2002), s. 216-227.

(*) Przybliżenie znalezione przez Briggsa łatwo uzasadnić rozwijając funkcję wykładniczą w szereg MacLaurina:

10^{x}=e^{x\ln 10}\approx 1+x\ln {10}.

 

 

 

Reklamy

Marcel Grossmann – przyjaciel i współpracownik Einsteina

Było ich pięcioro w Sekcji VIA Politechniki w Zurychu (obecna ETH) – „matematycy”: Marcel Grossmann, Jakob Ehrat i Louis Kollros oraz „fizycy”: Albert Einstein i Mileva Marić. Sekcja VIA była wydziałem ogólnym Politechniki, przygotowującym przyszłych nauczycieli matematyki i fizyki. Uczyli się oni (w nieco odmiennych proporcjach) matematyki i fizyki, tylko podgrupa „fizyków” miała praktyczne zajęcia laboratoryjne. Politechnika w Zurychu (obok paryskiej Sorbony) przyjmowała na studia kobiety, należąc pod tym względem do nielicznych wyjątków w Europie. Dlatego Mileva Marić, uzdolniona Serbka z Wojwodiny, trafiła tam na studia. Mileva została z czasem żoną Alberta, Marcel należał do jego najbliższych przyjaciół. Wzorowo prowadzone notatki Grossmanna z wykładów służyły Albertowi pomocą przed egzaminami, Einstein był bowiem studentem niezbyt sumiennym, czytał prace wielkich fizyków na własną rękę i zajmował się tym, co mu się akurat wydawało interesujące, a nie tym, co wynikało akurat z programu studiów. Nie miał w szczególności zbyt wiele zapału do tych części matematyki, które wydawały się oderwane od zastosowań w fizyce. Stracił na tym zapewne, ponieważ wśród wykładowców matematyki na Politechnice byli uczeni tak wybitni jak Adolf Hurwitz i Hermann Minkowski. Nie orientował się wówczas – podobnie jak większość jego profesorów – że w przyszłości aparat matematyczny fizyki bardzo się powiększy.

W lipcu 1900 roku wszyscy oni, oprócz Milevy, uzyskali dyplom Politechniki. Grossmann i Kollros zostali dość szybko profesorami tej uczelni, Einstein natomiast nie mógł przez długi czas znaleźć pracy. Pisał do Grossmanna z domu rodziców we Włoszech:

Drogi Marcelu! Gdy wczoraj znalazłem twój list, byłem wzruszony wiernością i życzliwością, które nie pozwoliły ci zapomnieć o starym przyjacielu pechowcu. Niełatwo byłoby znaleźć lepszych przyjaciół niż ty i [Jakob] Ehrat. Nie muszę chyba mówić, że byłbym szczęśliwy, mogąc zająć się tak piękną sferą aktywności, i że dołożyłbym starań, by nie zawieść okazanego mi zaufania. Już od trzech tygodni jestem u rodziców i stąd usiłuję zdobyć posadę asystenta na jakimkolwiek uniwersytecie. Już dawno bym uzyskał posadę, gdyby nie intrygi Webera. Pomimo to staram się nie przeoczyć żadnej okazji i nie tracę humoru. Bóg stworzył osła i dał mu grubą skórę.
Mamy tu prześliczną wiosnę i cały świat uśmiecha się tak radośnie, że siłą rzeczy trzeba odrzucić wszelką hipochondrię. Poza tym moi muzyczni znajomi chronią mnie od zgorzknienia.
Co się tyczy nauki – przyszło mi do głowy parę pięknych pomysłów, ale muszą one jeszcze dojrzeć. (14 IV 1901)

Dzięki ojcu Grossmanna, który znał dyrektora Biura Patentowego w Bernie, Friedricha Hallera, Einstein trafił do niego na rozmowę kwalifikacyjną i został przyjęty do pracy jako ekspert techniczny III klasy. Było to w czerwcu 1902 roku, po dwóch latach niepewności i braku stabilizacji finansowej. Einstein przez całe życie wdzięczny był Grossmannowi za pomoc w tym trudnym momencie.

W roku 1912 Marcel Grossmann już jako profesor ETH zaproponował Einsteinowi profesurę na tej uczelni. Sytuacja była już zupełnie inna: Einstein był najwybitniejszym fizykiem Europy, a więc i świata, jego prace z teorii względności, fizyki statystycznej, fizyki kwantowej zasługiwały już nie na jedną, lecz na kilka Nagród Nobla. Teraz to ETH miała zyskać sławnego uczonego, Einstein zgodził się, ponieważ w Pradze, gdzie przebywał, nie czuł się zbyt dobrze, a Mileva była zupełnie osamotniona. Einstein pracował intensywnie nad teorią grawitacji. Miał wtedy ponoć zwrócić się do swego kolegi słowami: „Grossmann, pomóż mi, bo inaczej zwariuję”.

Pracowali wspólnie w ciągu niecałych dwóch lat, jakie spędził Einstein w Zurychu. Opublikowali dwie wspólne prace. Pierwsza z nich, tzw. Entwurf, była chybionym zarysem teorii grawitacji. To Grossmann skierował uwagę Einsteina na geometrię różniczkową Levi-Civity i Ricciego-Curbastro. Fizycy zawdzięczają Grossmannowi określenie tensor (samo pojęcie było znane). Praca Entwurf składała się z dwóch części: fizycznej autorstwa Einsteina oraz matematycznej autorstwa Grossmanna. Grossmann zaprezentował w swej części zarys geometrii różniczkowej znanej w tamtym momencie w sposób jednolity i do pewnego stopnia autorski. Nie była to matematyka, którą Grossmann uprawiał naukowo ani przedtem, ani później. Jego specjalnością była geometria wykreślna oraz konstrukcje geometryczne w geometrii nieeuklidesowej. Jak się wydaje, sam wolał się dystansować od odpowiedzialności za prezentowaną teorię fizyczną. Czy jego pomoc ograniczała się wyłącznie do kwestii technicznych? I tak, i nie. Brał on udział w obliczeniach, część z nich znajduje się w tzw. Notatniku z Zurychu, analizowanym szczegółowo przez historyków. Podejście czysto matematyczne nie doprowadziło do sukcesu. Teoria przedstawiona w Enwurf jest nieelegancka i nieprawdziwa fizycznie (co nie od razu było jasne). Potęga formalizmu geometrii różniczkowej nie była wykorzystana w pełni, obaj, jak się zdaje, nie doceniali jej wtedy. Grossmann nie interesował się zbytnio dalszym losem teorii grawitacji, w każdym razie ich współpraca skończyła się w sposób naturalny w roku 1914. Einstein wyjechał do Berlina, aby objąć najbardziej prestiżowe stanowisko w Niemczech, stworzone specjalnie dla niego: miał być członkiem Pruskiej Akademii Nauk otrzymującym wysoką pensję bez żadnych zobowiązań dydaktycznych. Max Planck i Walther Nernst, którzy mu tę posadę zaproponowali, liczyli, że Berlin utrzyma dzięki temu pozycję najważniejszego centrum fizyki w Niemczech. Silną konkurencją było Monachium, gdzie pracował Arnold Sommerfeld, a później także Getynga, w czasach Maksa Borna i Jamesa Francka. Marcel Grossmann nie pracował wiele naukowo, zajął się uczeniem matematyki oraz organizacją. Ich synowie chodzili potem do jednej klasy gimnazjalnej w Zurychu (Mileva zamieszkała tam po rozstaniu z Albertem.

Einstein dopiero w roku 1915 spostrzegł, że teoria Entwurf nie jest tym, o czym myślał. Chodziło o to, że nie dało się jej zastosować w układzie obracającym się. Tymczasem jedną z głównych idei „uogólnionej” czy „ogólnej” teorii względności było dopuszczenie dowolnych układów współrzędnych. Dzięki pracy poprzednich lat mógł teraz Einstein szybko wrócić do niedokończonych obliczeń i części układanki szybko się domknęły. A właściwie kolejno domykały w listopadzie 1915 roku. Przez cztery tygodnie opublikował wtedy Einstein cztery kolejne prace (był to rytm posiedzeń Akademii Nauk), przy czym każda następna zmieniała nieco wyniki poprzedniej. Powstał zamęt, w którym tylko sam Einstein umiał się odnaleźć. Toteż w roku 1916 napisał dużą pracę podsumowującą wyniki.

Był to największy sukces naukowy Einsteina, choć dopiero po latach stało się jasne, jak znakomitą i świetnie zgadzającą się z doświadczeniami teorię stworzył. Nie ulega też kwestii, że nikt inny wtedy by jej nie zbudował. Grossmann bardzo tu Einsteinowi pomógł, kierując go we właściwą z matematycznego punktu widzenia stronę. Był jednak w tę pracę zaangażowany w mniejszym chyba stopniu niż Besso, który brał udział w obliczeniach obrotu peryhelium Merkurego. Einstein nie miał nigdy współpracownika, który dorównywałby mu intelektualnie. Być może zresztą uczeni mający silne osobowości nie bardzo dają się zaprzęgnąć do pracy zespołowej czy nawet partnerskiej, mają bowiem wyraźnie sprecyzowane cele i własne wyobrażenie drogi do nich.

Galileusz i Torricelli: krzywe balistyczne (pierwsza połowa XVII wieku)

Rewolucja naukowa XVII wieku ukazała nowe zastosowania matematyki: poznano kształt orbit planetarnych, a także krzywą balistyczną – tor wystrzelonego bądź rzuconego ciała. Jedną z osobliwości rozwoju nauki na planecie Ziemia jest fakt, że skomplikowany eliptyczny ruch planet został odkryty przez Johannesa Keplera, zanim jeszcze poznano prosty paraboliczny kształt krzywej balistycznej. Odkrycia te były zupełnie od siebie niezależne, dopiero Isaac Newton potrafił dostrzec, że w obu przypadkach mamy do czynienia z przejawami ciążenia powszechnego.
Galileusz bardziej niż ktokolwiek inny przyczynił się do zmiany sposobu podejścia do nauki o ruchu: miała ona stać się matematyczna i ugruntowana w eksperymencie. Miała też być zupełnie nowa, osiągnięcia dawnych filozofów traciły gwałtownie na znaczeniu.

Jak pisał Galileusz w jednej ze swych zjadliwych polemik z jezuitą, o. Grassim (występującym pod nom de plume Sarsi):

„[Sarsi] zadaje pełne irytacji pytania: za kim zatem należałoby pójść? Może za Ptolemeuszem (…)? A może za Kopernikiem, od którego trzeba się jednak trzymać z daleka, z powodu potępienia jego hipotez? (…) w podejściu Sarsiego daje się zauważyć silna wiara, że w filozofii zawsze trzeba się opierać na opiniach jakiegoś sławnego autora, tak jakby nasza inteligencja, jeśli nie weźmie sobie za męża cudzego rozumu, musiała na zawsze pozostać sterylna i bezpłodna. Albo może jest on zdania, że filozofia jest czymś na kształt księgi lub wytworu ludzkiej fantazji, jak Iliada albo Orland szalony, czyli dzieła, w którym najmniej się liczy, czy to, co jest napisane, jest prawdą. Panie Sarsi, nie tak się rzeczy mają! Filozofia zawarta jest w tej przeogromnej księdze, którą ciągle mamy otwartą przed oczami (nazywam tę księgę wszechświatem), jednakże nie można jej pojąć, jeśli wpierw nie pozna się języka, nie pozna się znaków, za których pomocą została napisana. A księga ta została napisana w języku matematyki, i jej literami są trójkąty, koła i inne figury geometryczne” (przeł. T. Sierotowicz).

Odkrycie parabolicznego kształtu krzywej balistycznej jest jednym ze sławnych osiągnięć Galileusza. Brzmi prosto, ale wyjaśnianie, czemu tak jest, czy rzeczywiście tak jest i w jakich warunkach, zajęło uczonemu wiele lat i nie całkiem się udało pod względem matematycznym. W zadowalającej i eleganckiej formie ujął to dopiero Evangelista Torricelli, rozwijając prace mistrza. Starość Galileusza upłynęła w areszcie domowym po wyroku inkwizycji. Nawet kiedy umarł, papież Urban VIII zakazał uroczystego pogrzebu i uczonego pochowano w miejscu nie oznaczonym żadnym nagrobkiem. Pierwszym pomnikiem Galileusza było popiersie wybudowane przez jego ucznia Vincenza Vivianiego na ścianie własnego domu pół wieku później. Krzywa balistyczna znalazła się wsród emblematycznych osiągnięć wielkiego Toskańczyka. Po następnych czterdziestu latach szczątki uczonego doczekały się nie tylko uroczystego pochówku, ale i zaczęły być traktowane jak relikwie (do dziś przechowywane tu i ówdzie), co było może nieuniknione w kraju tak bardzo katolickim, lecz nieźle by ubawiło samego Galileusza.

Punktem wyjścia były w poprzednim stuleciu rozważania takie, jak u Niccolò Fontany, zwanego Tartaglia (czyli „Jąkała”). Chwalił się on, że rozwiązał zagadnienie krzywej balistycznej. W jego pojęciu ruch pocisku czy innego wystrzelonego ciała składa się z trzech etapów: z początku jest to prostoliniowy ruch wymuszony, na końcu jest to także ruch prostoliniowy, lecz naturalny: spadanie pionowo w dół. Obie te fazy miały uzasadnienie w fizyce Arystotelesa. Zdroworozsądkowym dodatkiem było uznanie, że między tymi dwiema fazami jest jeszcze krzywoliniowe interludium, o którym teoria nie mówiła nic. Zupełnie gołosłownie Tartaglia twierdził, że zasięg strzału jest największy, gdy strzela się pod kątem 45° do poziomu. Istniały zatem aż dwie teorie tego, co się miało dziać podczas ruchu, w dodatku żadna z nich nie była ilościowa ani matematyczna. Arystoteles prowadził rozważania jakościowe, „filozoficzne”. Tymczasem artylerzyści rozumieli, że z teorią czy bez, pociski lecą wzdłuż określonej trajektorii.

Pierwszym patronem młodego Galileo Galilei z Florencji był Guidobaldo del Monte. Wspólnie przeprowadzili oni doświadczenia dotyczące kształtu krzywej balistycznej. Puszczali w tym celu ukośnie kulkę zanurzoną wcześniej w atramencie po nachylonej płaszczyźnie. Odkryli, że krzywa balistyczna jest symetryczna i podobna do paraboli lub hiperboli. Błędnie utożsamili jej kształt z krzywą łańcuchową – opisującą kształt ciężkiego łańcucha zamocowanego z obu końców. Galileusz do końca życia był przywiązany do tej obserwacji, choć w późniejszych doświadczeniach sprawdził, że obie krzywe są do siebie zbliżone tylko wtedy, gdy są dość płaskie. W drugiej połowie XVII wieku, stosując rachunek różniczkowy i całkowy, ustalono, że linia łańcuchowa to kombinacja funkcji wykładniczych (cosinus hiperboliczny), a więc nie ma wiele wspólnego z krzywą balistyczną.

Zrozumienie, skąd bierze się parabola jako krzywa balistyczna, wymagało czasu i eksperymentów. Galileusz zrozumiał, że ruch poziomy i ruch pionowy są od siebie niezależne (jeśli tylko opór ośrodka możemy pominąć). Pionowy spadek jest ruchem przyspieszonym, a więc odległość rośnie jak kwadrat czasu. Razem z jednostajnym ruchem poziomym daje to właśnie parabolę. Pierwszy opublikował te rozważania w roku 1632 Bonaventura Cavalieri, młody matematyk, który był przekonany, że Galileusz musiał je kiedyś wcześniej ogłosić. Starszy uczony zareagował furią, ale Cavalieri jakoś go ugłaskał i przekonał, że nie miał złych intencji. Dowód Cavalieriego, a także opublikowany później dowód Galileusza, odnosiły się do przypadku rzutu poziomego. Galileusz nie udowodnił, ściśle rzecz biorąc, że w rzucie ukośnym także powstaje parabola.

 

 

 

 

 

 

 

 

 

 

 

 

 

Powstawanie paraboli odcinki pionowe przebywane w równych czasach mają się jak 1:3:5:7 (czyli całkowite drogi mają się jak 1:4:9:16).  Rysunek z książki Cavalieriego, Lo Specchio ustorio („Zwierciadło zapalające”), 1632 r.

Jednak to Galileusza należy uznać za odkrywcę kształtu toru, on pierwszy bowiem zrozumiał w zasadzie wszystko, co było potrzebne do matematycznego opisu krzywej balistycznej. Przeprowadził też doświadczenia, w których mierzył zasięg rzutu poziomego kulek staczających się z równi pochyłej o różnych wysokościach. Uczony wiedział, że prędkość kulek u podnóża równi jest proporcjonalna do pierwiastka z wysokości. Zmierzył, że zasięg rzutu x jest proporcjonalny do tej prędkości.

Dopiero Evangelista Torricelli domknął stronę matematyczną teorii i udowodnił, że także w ruchu ukośnym mamy do czynienia z parabolą.

Znalazł też prosty sposób przedstawienia maksymalnej wysokości oraz zasięgu rzutu w zależności od kąta. Jeśli AB jest maksymalną wysokością przy pionowym strzale, to należy skonstruować półokrąg, jak na rysunku. Dla dowolnego kąta wystrzału rysujemy linię AF: mamy wówczas maksymalną wysokość równą AE=h, odcinek EF=x/4 jest równy jednej czwartej zasięgu. Widać od razu, że maksymalny zasięg uzyskamy dla kąta \alpha=45^{\circ}. Widać też, że przy kątach różnych od 45^{\circ} każdemu zasięgowi odpowiadają dwie wartości kąta: można więc osiągnąć tę odległość za pomocą dwóch parabol: jednej mniej, a drugiej bardziej stromej.

Ruch paraboliczny jest wypadkową jednostajnego ruchu prostoliniowego i swobodnego spadku w kierunku pionowym. Reszta jest ćwiczeniem geometrycznym.

Także Torricelli zbadał kształt krzywej bezpieczeństwa: oddzielającej punkty będące w zasięgu strzału od tych, które są poza zasięgiem (przy danej prędkości pocisku). Krzywa ta także jest parabolą o wysokości równej wysokości strzału pionowego, a połowa jej szerokości równa się maksymalnemu zasięgowi strzału.


Książka Torricellego ukazała się w 1644 roku (choć wyniki zostały uzyskane jeszcze za życia Galileusza i stary mistrz miał okazję się z nimi zapoznać). W 1687 roku Isaac Newton pokazał, że dowolny ruch orbitalny jest złożeniem ruchu prostoliniowego i spadku swobodnego. Musimy tylko wziąć pod uwagę, że wielkość grawitacji zmienia się od punktu do punktu, a więc opis tego rodzaju słuszny jest jedynie w bardzo krótkim przedziale czasu. Jest to spora komplikacja matematyczna, pozwala jednak opisać w sposób jednolity rozmaite ruchy we wszechświecie. Tor wypadkowy będzie parabolą jedynie lokalnie, jego kształt w przypadku planet jest jedną z krzywych stożkowych. Podobno Isaac Newton tylko raz wybuchnął śmiechem: kiedy ktoś go zapytał, jaki jest pożytek z matematyki. Lepiej niż jego współcześni rozumiemy teraz głębokie powody tego śmiechu.

Obliczenia. Jeśli wprowadzimy układ współrzędnych poziomej – X i pionowej Y, to wektor  początkowej możemy zapisać jako \vec{v}=[v\cos\alpha, v\sin\alpha], a przyspieszenie ziemskie \vec{g}=[0,-g]. Równania ruchu mają więc postać:

\begin{cases} X=v\cos\alpha t,\\  Y=v\sin\alpha t-\dfrac{gt^2}{2v^2 \cos^2\alpha}.\end{cases}

Dla \alpha\neq \pi/2 równanie toru można obliczyć, wyznaczając t z pierwszego równania i wstawiając do drugiego:

Y=X\mbox{tg}\,\alpha -\dfrac{gX^2}{2v^2 \cos^2\alpha}.

Jest to równanie z funkcją kwadratową X po prawej stronie – tor jest więc parabolą. Łatwo można wyznaczyć współrzędne wierzchołka paraboli (za pomocą szkolnych wzorów albo szukając maksimum funkcji). W oznaczeniach z rysunków otrzymamy

\begin{cases} \dfrac{x}{2}=\dfrac{v^2}{g}\sin\alpha\cos\alpha,\\ \\h=\dfrac{v^2}{2g}\sin^2\alpha.\end{cases}

Ostatnie wyrażenie słuszne jest także dla \alpha=\pi/2, co wynika np. z ciągłości funkcji: gdy zbliżamy się do kąta \pi/2 wysokość maksymalna nie powina mieć skoku. Zatem maksymalna wysokość możliwa do osiągnięcia równa jest

AB=\dfrac{v^2}{2g}.

Odcinki na rysunku Torricellego są z naszego współczesnego (trygonometrycznego) punktu widzenia równe:

\begin{cases}\dfrac{EF}{AB}=\dfrac{EF}{AF}\cdot\dfrac{AF}{AB}=\cos\alpha\sin\alpha,\\ \\  \dfrac{AE}{AB}=\dfrac{AE}{AF}\cdot\dfrac{AF}{AB}=\sin^2\alpha.\end{cases}

Zasięg i maksymalna wysokość skalują się zatem jak odpowiednie funkcje trygonometryczne, \sin2\alpha oraz \sin^2\alpha.

Richarda Feynmana droga do równania Schrödingera (1941)

Jeszcze w trakcie swoich studiów pierwszego stopnia w MIT (ukończył je w 1939 r.) Feynman dowiedział się o trudnościach elektrodynamiki kwantowej. Teoria taka była niezbędna do opisania oddziaływań przy większych energiach: kiedy mogą tworzyć się albo anihilować pary elektron-pozyton. Obliczenia prowadziły jednak do całek rozbieżnych, teoria wymagała nowego podejścia.

W swoim wykładzie noblowskim Richard Feynman opowiada o kilku ideach, które starał się rozwijać w trakcie swoich dalszych studiów w Princeton (na egzaminach wstępnych z fizyki uzyskał tam komplet punktów, co zdarzyło się po raz pierwszy). W roku 1942 r uzyskał doktorat pod kierunkiem Johna Archibalda Wheelera i niebawem zaczął pracę w Projekcie Manhattan.

Jednym z pomysłów Feynmana było nowe sformułowanie mechaniki kwantowej. Poszukiwał podejścia, w którym można by opisać, co dzieje się z cząstkami w czasoprzestrzeni. Chodziło mu o teorię relatywistyczną, w której opis taki wydaje się naturalny. Należało się spodziewać, że zamiast hamiltonianu pojawi się tu lagranżian cząstek (sformułowanie Lagrange’a mechaniki daje się łatwo zapisać w postaci jawnie kowariantnej, w której zgodność z teorią względności jest punktem wyjścia, a nie dodatkowym założeniem). Na początek udało mu się sformułować w nowy sposób „starą” mechanikę kwantową, która liczyła wprawdzie dopiero piętnaście lat, lecz dla młodego człowieka była to już prehistoria. Właśnie to sformułowanie znalazło się w doktoracie.

Punktem wyjścia była rozmowa z Herbertem Jehle w „Nassau Inn” w Princeton któregoś wieczoru. Jehle, Niemiec, syn generała, był kwakrem i pacyfistą, wyemigrował z nazistowskiej ojczyzny, pracował w Brukseli, w końcu trafił do obozu internowania w Gurs w Pirenejach w republice Vichy, skąd trafił do Stanów Zjednoczonych. Jehle znał pewną pracę Paula Diraca, w której pojawiał się lagranżian. Nazajutrz wybrali się obaj do biblioteki, aby odszukać tę pracę z 1933 roku. Była ona opublikowana w dość nieprawdopodobnym miejscu, bo w rosyjskim czasopiśmie „Physikalische Zeitschrift der Sowjetunion”.

Dirac pisze, jak znaleźć funkcję falową w chwili późniejszej t+\varepsilon z funkcji falowej w chwili t, korzystając z zasady Huygensa:

\psi(x,t+\varepsilon)={\displaystyle \int G(x,y)\psi(y,t)dy}.

Funkcja G(x,y) jest dziś zwana propagatorem cząstki. Funkcja falowa w późniejszym czasie jest więc sumą funkcji falowych w czasie wcześniejszym wziętą z odpowiednimi wagami – wagi te opisuje propagator. Angielski uczony stwierdził też, że propagator dla krótkich czasów „odpowiada” (corresponds to) wyrażeniu

e^{iL \varepsilon /\hbar},

gdzie L jest lagranżianem, \hbar – stałą Plancka. W wykładniku mamy tu działanie dla bardzo krótkiego czasu \varepsilon. Feynman spróbował natychmiast ustalić, co oznacza owa odpowiedniość. Jeśli wziąć dwa punkty x i y, to średnia prędkość cząstki powinna się równać

v=\frac{x-y}{\varepsilon},

a energia potencjalna powinna być także jakąś wartością średnią:

V=V(\frac{x+y}{2}).

Lagranżian to różnica energii kinetycznej i potencjalnej, a więc wyrażenie wykładnicze Diraca jest równe:

\exp\left(\frac{im(x-y)^2}{2\hbar\varepsilon}-\frac{i}{\hbar}V(\frac{x+y}{2})\varepsilon\right).

Dla niewielkich \varepsilon pierwszy składnik wykładnika będzie gwałtownie oscylował, drugi natomiast staje się coraz mniejszy i może być zastąpiony przybliżeniem liniowym. Oznaczając x-y=\xi i przyjmując, że „odpowiada” u Diraca znaczy „jest proporcjonalny”, mielibyśmy

\psi(x,t+\varepsilon) =A(\varepsilon) {\displaystyle \int \exp\left(\dfrac{im\xi^2}{2\varepsilon\hbar}\right)\left\{ 1-\dfrac{i\varepsilon}{\hbar}V(x-{\xi}/{2})\right\}\psi(x-\xi)d\xi}.

Ponieważ pierwszy czynnik pod całką gwałtownie oscyluje, więc możemy funkcję falową pod całką przybliżyć jej rozwinięciem Taylora wokół x:

\psi(x-\xi)\approx \psi(x)-\xi \dfrac{\partial \psi}{\partial x}+\dfrac{\xi^2}{2}\dfrac{\partial^2\psi}{\partial x^2}.

Także energię potencjalną możemy zamienić jej wartością w punkcie x. Całki po prawej stronie dają się w tym przybliżeniu bez trudu obliczyć i otrzymujemy:

\psi(x,t+\varepsilon)=\psi(x,t)-\dfrac{i\varepsilon }{\hbar}V(x)\psi(x,t)+\dfrac{i\hbar \varepsilon}{2m}\,\dfrac{\partial^2\psi}{\partial x^2}.

Możemy to równanie przekształcić do postaci

i\hbar \dfrac{\psi(x,t+\varepsilon)-\psi(x,t)}{\varepsilon}=-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi}{\partial x^2}+V(x)\psi(x,t),

co w granicy \varepsilon\rightarrow 0 przechodzi w równanie Schrödingera.

Jak opowiada Feynman, obliczenie to wykonał od razu w obecności Jehlego, który pilnie notował kolejne kroki.
Był to punkt wyjścia do całek Feynmana po trajektoriach (albo po historiach cząstki – jak nazwał to John Wheeler). Wyobraźmy sobie bowiem, że dany przedział czasu (0,T) dzielimy na N+1 podprzedziałów o długości \varepsilon każdy.

Propagator cząstki przyjmuje postać:

G(x,y)=A^{N+1}{\displaystyle \int\ldots\int \exp(\frac{i\varepsilon}{\hbar}(L(y,x_1)+L(x_1,x_2)+\ldots+L(x_N,x))dx_1\ldots dx_N}\mbox{(*)}.

Jeśli wyobrazimy sobie, że N\rightarrow\infty, to wykładnik w funkcji wykładniczej będzie dążył do całki działania pomnożonej przez czynnik i/\hbar:

\dfrac{i}{\hbar}S={\displaystyle \frac{i}{\hbar}\int_0^T L\left(x,\frac{dx}{dt}\right)dt}.

Mamy więc procedurę obliczania wartości G(x,y) za pomocą sumy po różnych możliwych trajektoriach. G można zinterpretować fizycznie: kwadrat modułu tej zespolonej wartości jest prawdopodobieństwem, że cząstka z punktu czasoprzestrzeni (y,0) przemieści się do punktu (x,T). Po drodze „próbuje” ona niejako wszelkich możliwych trajektorii i każda z nich daje wkład proporcjonalny do wartości działania:

G(x,T|y,0) \sim {\displaystyle \sum_{trajektorie}e^{iS[trajektoria]/\hbar}}.

Zapisujemy to następująco:

G(x,T|y,0)= {\displaystyle \int e^{iS[x(t)]/\hbar}{\mathcal D}[x(t)]}.

Całka Feynmana jest w istocie granicą wyrażeń (*) i w celu obliczenia jej wartości musimy wracać do tej definicji. Okazuje się jednak, że sformułowanie to pozwala nie tylko spojrzeć inaczej na znaną fizykę, ale także umożliwia konkretne numeryczne obliczenia metodą Monte Carlo. Pozwala też łatwo zrozumieć, czemu przechodząc od fizyki kwantowej do klasycznej, otrzymujemy zasadę najmniejszego działania.

Wartości potrzebnych całek wynikają ze znanego wzoru:

{\displaystyle \int_{-\infty}^{\infty}e^{-\alpha x^2}dx=\sqrt{\dfrac{\pi}{\alpha}} }.

Jest on słuszny także dla czysto urojonych wartości \alpha. Różniczkowanie tego wzoru po \alpha generuje nam także całkę \int x^2 e^{-\alpha x^2} dx. Stała A równa jest

A=\sqrt{\dfrac{m}{2\pi i\hbar \varepsilon}}.

Kiedyś napiszę może trochę więcej na temat obliczania całek przez Feynmana, nieprzypadkowo zajmował się on w Los Alamos nadzorowaniem praktycznych obliczeń numerycznych – jak mało kto potrafił bowiem szybko obliczyć niemal wszystko, co daje się obliczyć metodami klasycznej analizy.

 

Skąd się bierze Maxwellowski rozkład prędkości cząsteczek w gazie doskonałym?

James Clerk Maxwell podał w roku 1859 postać rozkładu prawdopodobieństwa prędkości cząsteczek w gazie doskonałym. Okazuje się, że prawdopodobieństwo, iż np. x-owa składowa prędkości losowo wybranej cząsteczki należy do przedziału (x, x+dx) równe jest

p(x)dx=C\exp(-\alpha x^2)dx,

gdzie C jest stałą normalizacyjną (wybraną tak, aby prawdopodobieństwo zdarzenia pewnego było równe 1). Jest to słynny rozkład Gaussa, zwany też rozkladem normalnym, gdyż pojawia się on w najróżniejszych kontekstach.

Składowa x-owa prędkości danej cząsteczki zmienia się wskutek zderzeń z innymi cząsteczkami w sposób przypadkowy i w rezultacie opisywana jest takim rozkładem o kształcie dzwonu. Jeśli całkowita energia gazu jest stała, to stała jest także suma kwadratów wszystkich prędkości:

E=\dfrac{m{\vec{v}_1}\,^2}{2}+\ldots+\dfrac{m\vec{v}_N\,^2}{2}=const.

(m jest masą cząseczki gazu). Kwadrat każdego wektora jest sumą trzech kwadratów jego współrzędnych. Oznaczając więc wszystkie składowe wszystkich prędkości cząsteczek gazu jako x_1,x_2, \ldots, x_{3N}, mamy 3N-wymiarową przestrzeń prędkości. Warunek stałości energii przyjmuje postać:

x_1^2+x_2^2+\ldots+x_{3N}^2=R^2,

co geometrycznie oznacza, że koniec wektora prędkości Y=[x_1, x_2,\ldots, x_{3N}] leży na powierzchni sfery S^{3N-1} o promieniu R (sfera ma o jeden wymiar mniej niż przestrzeń).

Aby wyprowadzić rozkład Maxwella, przyjmijmy najprostsze założenie: każde położenie końca wektora Y na sferze jest jednakowo prawdopodobne.

Szukamy teraz rozkładu prawdopodobieństwa którejkolwiek pojedynczej składowej np. x\equiv x_1 (jest ona jednocześnie x-ową składową prędkości cząsteczki nr 1). W przypadku sfery S^2 możemy to narysować.

Prawdopodobieństwo, że x bedzie leżeć w cienkim pasie sfery zaznaczonym na rysunku jest proporcjonalne do pola powierzchni pasa sferycznego równej iloczynowi długości razy szerokość:

\Delta S=2\pi R\sin\vartheta \times R\Delta \vartheta.

Sumując pola powierzchni takich pasów, czyli całkując, otrzymamy wzór na pole powierzchni sfery S^2:

S_2(R)={\displaystyle \int_{0}^{\pi} 2\pi R^2 \sin\vartheta d\vartheta}=4\pi R^2.

Prawdopodobieństwo znalezienia końca wektora Y w pasie sferycznym byłoby w takim razie równe ilorazowi obu tych wielkości

p(\vartheta)\Delta\vartheta=\dfrac{2\pi R \sin\vartheta}{4\pi R^2}\times R\Delta\vartheta= \dfrac{S_1(R\sin\vartheta)}{S_2(R)} R\Delta \vartheta.

Szerokość naszego pasa jest zarazem „polem” sfery S^1, tzn. długością okręgu o promieniu R\sin\vartheta (co widać z rysunku). Dla trójwymiarowego wektora Y rozkład ten nie jest szczególnie interesujący. Fizycznie odpowiadałby jednocząstkowemu gazowi doskonałemu. Prędkość tej jednej jedynej cząsteczki przyjmuje z równym prawdopodbieństwem dowolny kierunek w przestrzeni. Długość wektora jest określona przez energię tej cząstki.

Ostatnie wyrażenie dla prawdopodobieństwa można zastosować równie dobrze w przestrzeni 3N-wymiarowej. Możemy zawsze ustalić wartość jednej ze współrzędnych x_1\equiv x. Pozostałe współrzędne spełniają wtedy warunek

x_2^2+x_3^2+\ldots+x_{3N}^2=R^2-x^2

i jest to jedyne ograniczenie. Znaczy to, że pozostałe składowe leżą na sferze wymiarze o jeden mniejszym i mniejszym promieniu. Pole powierzchni sfery S^n jest równe pewnej stałej zależnej od wymiaru razy promień sfery do potęgi n-tej:

S_n(r)=C_n r^n.

Korzystając z tego faktu możemy szukane prawdopodobieństwo zapisać w postaci

p(x)dx=\dfrac{S_{3N-2}(\sqrt{R^2-x^2})}{S_{3N-1}(R)} R\Delta\vartheta \sim \left(1-\dfrac{x^2}{R^2}\right)^{\frac{3N}{2}}dx.

Ostatnie wyrażenie możemy dla dużych wartości N zapisać jako potęgę liczby e:

\left(1-\dfrac{x^2}{R^2}\right)^{R^2\cdot\frac{3N}{2R^2}}dx=\exp(-\alpha x^2) dx.

Parametr \alpha jest równy

\alpha=\dfrac{3N}{2R^2}=\dfrac{3Nm}{4E}=\dfrac{3m}{4\epsilon},

gdzie \epsilon jest energią przypadającą na jedną cząsteczkę gazu. Możemy wyrazić tę ostatnią energię za pomocą temperatury T:

\epsilon=\dfrac{3}{2}kT \Rightarrow \alpha=\dfrac{m}{2kT}.

Otrzymaliśmy rozkład Maxwella. Stałą C można znaleźć z warunku unormowania (można ją też obliczyć bezpośrednio, potrzeba jednak wówczas wiedzieć więcej nt. stałych C_n, czyli postaci wzoru na pole sfery S^n).

Rozkład Maxwella wynika więc z założenia o równomiernym rozkładzie prawdopodobieństwa na sferze w przestrzeni 3N-wymiarowej. Założenie to nazywane jest rozkładem mikrokanonicznym i jest jednym z postulatów fizyki statystycznej. Wyobrażamy sobie, że stan naszego układu, czyli wektor Y wędruje po dozwolonej powierzchni w taki sposób, że jego koniec może znaleźć się z jednakowym prawdopodobieństwem w otoczeniu każdego punktu sfery. Jest to założenie ergodyczności.

Oczywiście, nie znaczy to, że układ zderzających się cząstek gazu musi być ergodyczny. Jak to często bywa w fizyce: z jednej strony pośrednio sprawdzamy to założenie, badając rozmaite jego konsekwencje i porównując z doświadczeniem. Z drugiej strony, można badać pewne proste przypadki, aby sprawdzić, czy założenie ergodyczności jest prawdziwe w tych sytuacjach. W 1963 r. Yakov Sinai, wybitny matematyk rosyjski, udowodnił, że gaz doskonały sztywnych zderzających się kul jest ergodyczny.

W pewnej chwili zamieniliśmy R \Delta\vartheta wartoscią dx. Nie są one ściśle biorąc równe, mamy bowiem

dx=-R\sin\vartheta d \vartheta \Rightarrow Rd\vartheta=\dfrac{dx}{\sqrt{1-\frac{x^2}{R^2}}}.

Dodatkowy czynnik pod pierwiastkiem nie ma znaczenia, gdy wartości R są duże. Widać to też z rysunku: gdy |x|\ll R, to R d\vartheta \approx dx.

Stanisław Ulam (2/2)

Wciąż jest dla mnie źródłem nieustającego zdziwienia, że kilka znaków nagryzmolonych na tablicy lub na kartce papieru może zmienić bieg ludzkich spraw. [S. Ulam]

Każdego roku, od 1936 aż do 1939, Stanisław Ulam spędzał lato w Polsce. Spotykał się ze swoimi matematycznymi przyjaciółmi, w tym Banachem i Mazurem, we Lwowie albo gdzieś w okolicach, gdzie spędzali wakacje. Jego dorobek matematyczny obejmował szereg dziedzin: teorię mnogości, teorię miary i rachunek prawdopodobieństwa, teorię transformacji, teorię grup. Były to na ogół niewielkie prace rozwiązujące lub stawiające jakiś problem. Na uniwersytecie Harvarda we współpracy z Johnem Oxtobym Ulam napisał swoją najdłuższą pracę, opublikowaną następnie w „Annals of Mathematics”, wysoko cenionym piśmie wydawanym w Princeton. Praca dotyczyła teorii ergodycznej. W mechanice klasycznej każdy nietrywialny układ fizyczny wędruje po swojej przestrzeni stanów (in. przestrzeni fazowej) w taki sposób, że wraca kiedyś w sąsiedztwo każdego punktu już odwiedzonego. Fakt ten jest podstawą fizyki statystycznej, w której zakłada się, że wszystkie stany o określonej energii są jednakowo prawdopodobne. Praca Ulama i Oxtoby’ego dowodziła, że przekształcenia spełniające warunek ergodyczności są w pewnym sensie typowe. Uzyskany przez nich wynik nie mógł być wprost zastosowany do fizyki, ale tak jest bardzo często: ścisłe potwierdzenie intuicji fizyków zazwyczaj nie jest łatwe.

Stanisław Ulam łatwo przywykł do amerykańskiego życia i z przyjemnością wracał do niego po wakacjach. Latem 1939 roku zabrał ze sobą młodszego brata, Adama. Na statek w Gdyni odprowadzili ich ojciec i stryj. Widmo wojny wisiało nad Polską, choć, jak zauważył Ulam, zagrożenie to wyraźniej dostrzegano w Stanach Zjednoczonych niż w Polsce, gdzie do ostatniej chwili łudzono się nadziejami na jakiś zwrot dyplomatyczny w zaostrzającym się napięciu. Różnice w sposobie oceny wynikały zapewne nie tylko z dystansu Amerykanów. Do Stanów Zjednoczonych dotarło w ostatnich latach wielu uchodźców z Niemiec, którzy lepiej niż inni rozumieli istotę nazistowskiego reżimu. W Polsce prasa, koła wojskowe i politycy zgodnie uprawiali propagandę w stylu „nie oddamy ani guzika”, co skończyło się klęską nie tylko militarną i polityczną, ale także klęską moralną – kraj był bowiem zupełnie nieprzygotowany do wojny i tysiące, może miliony ludzi, rzuciły się do panicznej i bezładnej ucieczki: jedni na wschód, inni na zachód. Dowódcy niemieccy zdumieni byli łatwością tego zwycięstwa, które po dwu tygodniach było już w zasadzie zupełne.

Dla Stanisława Ulama wojna oznaczała nie tylko lęk o najbliższych i przyjaciół pozostawionych w kraju, ale i obowiązek utrzymywania młodszego brata, który zaczął jesienią studia (z czasem został znanym sowietologiem). Znalezienie płatnej pracy akademickiej nie było łatwe, Ulam musiał zadowolić się uniwersytetem stanu Wisconsin w Madison. Po Harvardzie i Princeton nie było to wymarzonym rozwiązaniem, jednak uczelnia okazała się całkiem przyzwoita, Ulam zaprzyjaźnił się tam z wieloma wykładowcami, nie tylko zresztą z matematykami, ale i z fizykami, ekonomistami. Wygłosił kiedyś zaimprowizowany wykład na zjeździe astronomów (na temat wyboru układu odniesienia, w którym ruch ciał wygląda prościej – była to topologiczna wersja problemu kopernikańskiego). W tym okresie wielu wybitnych uczonych, zwłaszcza pochodzących z Europy, pracowało na mniejszych uczelniach, fala emigracji wywołała bowiem nadmiar szukających pracy akademików. W Madison pracował Eugene Wigner, fizyk i szkolny kolega von Neumanna, przyszły noblista. Na seminaria prowadzone przez Ulama przyjeżdżali do Madison matematycy tej klasy co André Weil, urodzony w Warszawie Samuel Eilenberg czy Paul Erdös, wszyscy oni stali się sławami światowego formatu. Erdös zaprzyjaźnił się z Ulamem i odwiedzał go czasami, rozmowy były jego ulubioną formą pracy matematycznej, z czasem opublikował wspólne prace z kilkuset innymi badaczami. Matematycy obliczają liczbę Erdösa: on sam ma liczbę zero; ci, którzy z nim pracowali, mają liczbę jeden; ci, którzy pracowali z posiadającymi liczbę jeden, mają liczbę dwa itd. Oczywiście, Ulam miał liczbę Erdösa równą jeden. Zabawa ta unaocznia, jak silną rolę odgrywa współpraca nawet w dziedzinie tak z pozoru indywidualnej jak matematyka (choć trzeba też dodać, że Erdös, podobnie jak Ulam, wyjątkowo lubił pracę w towarzystwie innych).

W 1941 roku Ulam otrzymał obywatelstwo amerykańskie i kiedy Stany Zjednoczone przystąpiły do wojny, chciał pracować na rzecz wojska. Dzięki rekomendacji von Neumanna trafił do Los Alamos i Projektu Manhattan jako jeden z niewielu matematyków. Spotkał tam i poznał osobiście wielu fizyków i chemików o głośnych nazwiskach, nigdy chyba w historii nie zgromadzono w jednym miejscu w pracy nad wspólnym projektem tak wielu wybitnych specjalistów. Wielu z nich było emigrantami, których dotychczasowe życie zburzył mniej lub bardziej nazizm. Wśród kierujących projektem byli dwaj znakomici fizycy jądrowi: Hans Bethe i Enrico Fermi. Pierwszy miał babkę Żydówkę, przez co stracił profesurę w Tybindze, drugi miał za żonę Żydówkę i w roku 1938 zmuszony był opuścić Włochy. Ulam obu uczonych bardzo szanował, lecz szczególny respekt budził w nim Fermi – ostatni chyba fizyk będący zarazem eksperymentatorem i teoretykiem. Nie rozstający się z suwakiem logarytmicznym Fermi, który umiał szybko obliczyć każdą potrzebną wielkość, miał też solidne przygotowanie matematyczne i okazało się, że zna np. pracę Oxtoby’ego i Ulama. Dzięki Projektowi Manhattan Stanisław Ulam zaczął pracować z fizykami i tak już miało zostać przez długie lata. Jego talent matematyczny niespodziewanie okazał się przydatny w zagadnieniach z pogranicza inżynierii. Taki przeskok z podstaw matematyki do zagadnień praktycznych byłby niewyobrażalny dla większości matematyków. Ulam trafił do grupy kierowanej przez Edwarda Tellera, jeszcze jednego emigranta z Węgier. Pierwszym zagadnieniem, którym się tam zajął, było oddziaływanie gazu elektronowego z promieniowaniem. Teller uzyskał z rozważań wymiarowych postać równania, chciał aby te rozważania uściślić. Ulam zaproponował własne dość elementarne rozwiązanie, z którego wynikało, że wzór Tellera trzeba uzupełnić współczynnikiem cztery. Niezadowolony Teller zlecił to samo zadanie komuś innemu, kto posługując się znacznie bardziej rozbudowanym aparatem matematycznym, uzyskał dla owego współczynnika liczbowego także wartość zbliżoną do czterech.

Ulam, Richard Feynman i John von Neumann w Los Alamos

Rodzaj talentu matematycznego Stanisława Ulama był nietypowy, jedyny w swoim rodzaju. Posiadał on dar formułowania problemów w sposób jak najprostszy, zachowując jedynie najistotniejsze ich cechy. Wyobrażał sobie przy tym zjawiska, a nie tylko równania, które je opisują. Łatwo też przychodziły mu oszacowania liczbowe, co w Los Alamos było niezwykle ważne – nie chodziło tam przecież o zrozumienie idealnej sytuacji laboratoryjnej, ale o skonstruowanie jak najefektywniejszej bomby. Należało więc wejść w świat rzeczywistych obiektów, kształtów, własności różnych materiałów, współwystępowania rozmaitych zjawisk. Zazwyczaj praca fizyków polega na czymś odwrotnym: szuka się najprostszych i „najczystszych” sytuacji, w których można zmierzyć dane zjawisko.

Po zakończeniu wojny i Projektu Manhattan Stanisław Ulam wrócił do pracy akademickiej. Został profesorem nadzwyczajnym na Uniwersytecie Południowej Kalifornii (USC). Uczelnia okazała się słaba, Los Angeles było miastem trudnym do mieszkania i poruszania się z powodu korków ulicznych. Pewnego dnia Ulam poważnie zachorował, zaczął mieć problemy z mówieniem. Przeprowadzono operację, otwierając czaszkę. Znaleziono ostry stan zapalny, który leczono nowymi wówczas antybiotykami, podawanymi bezpośrednio do wnętrza czaszki. Uczony po pewnym czasie doszedł do siebie, jednak z obawą myślał, czy po tym wszystkim jego umysł wróci do dawnej sprawności. Przekonał się o tym, kiedy odwiedził go Paul Erdös. Zagrali w szachy i Ulam wygrał. Zaczął podejrzewać, że może przyjaciel pozwolił mu wygrać dla podtrzymania go na duchu. Zagrali więc jeszcze raz. Uspokoił się dopiero, kiedy wygrał po raz drugi, a Erdös wyraźnie się tym zirytował.

Nie pozostał na USC długo, tym bardziej że po chorobie wpadł w długi. Otrzymał propozycję pracy w Los Alamos dla armii amerykańskiej. Wprawdzie sławni i wielcy po zakończeniu Projektu Manhattan rozjechali się po różnych ośrodkach, ale laboratorium w Los Alamos zostało i nieoczekiwanie dawało Ulamowi możliwość ciekawej i względnie niezależnej pracy. Problemy, nad którymi tam pracowano, były konkretne, co zdaniem Ulama bardzo się liczyło. Sądził on bowiem, że naprawdę ważne problemy wywodzą się z praktyki, a nie filozoficznych rozważań. Mógł dobierać sobie współpracowników, co było szczególnie ważne wobec jego metody pracy. Polegała ona na tym, że Ulam szkicował możliwości rozwiązania danego zagadnienia, a współpracownicy starali się te pomysły zrealizować. Niewykluczone, że przebyta choroba odebrała Ulamowi czysto techniczną sprawność dokonywania obliczeń czy prowadzenia jakiegoś długiego dowodu. Starał się tego po sobie nie pokazywać. Pozostała mu jednak wyobraźnia i umiejętność dostrzegania bez dowodu, czy twierdzenie jest prawdziwe, czy nie, i w jaki sposób można dążyć do wytyczonego celu. Toteż pracował przede wszystkim nad wytyczaniem kierunków i formułowaniem problemów – co w sumie jest może ważniejsze niż szczegółowe rozwiązania. Przypominał swoim stylem pracy pracującego po przeciwnej stronie Atlantyku Jakowa Zeldowicza.

Dzięki pracy dla armii Ulam należał do pionierów stosowania komputerów. Układając pewien trudny pasjans w okresie rekonwalescencji, zdał sobie sprawę, że bardzo trudno byłoby obliczyć, jakie jest prawdopodobieństwo ułożenia tego pasjansa, łatwo natomiast można by go było modelować za pomocą komputera, który mógłby przeprowadzić wiele prób, dzięki czemu można by empirycznie stwierdzić, jakie jest szukane prawdopodobieństwo. Rozwinięciem tej idei opracowanym we współpracy z von Neumannem i Nickiem Metropolisem są metody Monte Carlo (nazwa zaczerpnięta ze skojarzenia z wujem Ulama, który pożyczał od krewnych pieniądze i następnie przepuszczał je w Monte Carlo). Zamiast np. rozwiązywać równanie różniczkowe, opisujące dyfuzję neutronów z pewnego stanu początkowego, możemy prześledzić losy wielu neutronów i zobaczyć, jakie są charakterystyczne cechy ich rozkładu. Dla pięćdziesięciu cząstek startujących z punktu x=0 tory w błądzeniu przypadkowym mogą być np. takie jak na wykresie.

Po zebraniu pewnej statystyki można znaleźć kształt rozkładu końcowego. Im więcej wykonamy losowań, tym dokładniej będziemy znali rozkład cząstek po danym czasie.

Rozkład uzyskany w tym przypadku jest łatwy do obliczenia analitycznego (jest rozkładem normalnym). Wystarczy jednak nieco zmodyfikować zagadnienie: dodać dwa wymiary, różne kształty i materiały, a problem dyfuzji stanie się bardzo trudny do rozwiązania metodami analitycznymi, choć symulacja komputerowa nadal będzie stosunkowo prosta. Pionierzy tej metody musieli zaczynać kompletnie od zera, rozwiązując np. zagadnienie, jak komputer, który prowadzi obliczenia arytmetyczne na liczbach – a więc otrzymując zawsze ściśle określony i jednoznaczny wynik, może generować liczby losowe. Jak sprawić, aby liczby te podlegały określonemu prawu statystycznemu? Jak sprawdzać uzyskane wyniki itd itp. Metoda Monte Carlo używana jest dziś w wielu dziedzinach od fizyki do finansów i stała się zespołem wyspecjalizowanych praktyk.

Stanisław Ulam odegrał istotną rolę w projekcie bomby wodorowej. Była to idée fixe Tellera: zbudować bombę opartą na procesie syntezy lekkich pierwiastków w cięższe. W przyrodzie procesy takie odbywają się we wnętrzu gwiazd, gdzie panują ogromne temperatury i materia jest bardzo gęsta. Warunki tak ekstremalne potrzebne są do tego, by dodatnio naładowane jądra mogły zbliżyć się do siebie, pokonując odpychanie elektrostatyczne. Dopiero bowiem w odległościach rzędu 10^{-15} m możliwe jest przegrupowanie nukleonów, wskutek czego wyzwala się energia.

Synteza helu z dwóch izotopów wodoru: deuteru i trytu; bomby wykorzystują głównie deuter (rys. Wikipedia)

Warunki takie można by wytworzyć za pomocą wstępnego wybuchu zwykłej bomby atomowej. Edward Teller (jeszcze jeden żydowski emigrant z Węgier) pracował nad pomysłem „superbomby” już w trakcie Projektu Manhattan. Nie zrezygnował z niego także i później. W roku 1950 prezydent Harry Truman podjął decyzję o pracach nad superbombą. Okazało się jednak szybko, że początkowy pomysł Tellera nie nadaje się do realizacji. Udowodnił to Stanisław Ulam ze współpracownikami, potwierdziły zaś obliczenia Ulama i Enrico Fermiego. Także obliczenia komputerowe von Neumanna dawały ten sam wynik. Sytuacja stała się trudna dla Tellera, którego oskarżano, że nakłonił władze polityczne do decyzji, nie mając w ręku żadnej rozsądnej teorii działania superbomby. Koszt przedsięwzięcia był ogromny, rywalizacja z Rosją zawzięta, a więc i stawka projektu bardzo wysoka. Impas przełamał Stanisław Ulam, który zaproponował implozyjny mechanizm działania superbomby. Razem z Tellerem napisali raport, który stał się podstawą amerykańskiego projektu. Bomba została zbudowana, lecz stosunki miedzy Tellerem a Ulamem gwałtownie się oziębiły. Teller nie potrafił prawdopodobnie wybaczyć Ulamowi dwukrotnej porażki prestiżowej. Ulam natomiast uważał, że zainteresowani i tak wiedzą, ile kto jest wart.

Raport Tellera i Ulama został po latach odtajniony, lecz większość z kilkunastu jego stron jest kompletnie pusta. Armia amerykańska najwyraźniej uznała, że wciąż jest za wcześnie na publiczne informowanie o technologii bomb wodorowych. Może to być zresztą także przykład nadmiernej ostrożności wojskowych w kwestiach tajemnic, militarne znaczenie bomb wodorowych nie jest bowiem aż tak wielkie, jak sądzono na początku. Dalsze prace szły raczej nad zmniejszaniem siły rażenia, bo co po wygranej wojnie, skoro zwycięzcy zostaną w niej zabici powiedzmy dziesięć razy, a pokonani – dwadzieścia. Angielszczyzna ma na to zgrabne słówko: overkill (*).

Gian-Carlo Rota charakteryzuje Ulama następująco:

Dopiero po kilku latach zdałem sobie sprawę z tego, co jest prawdziwą profesją Stana Ulama. Wielu z nas, pracujących w Laboratorium i mających z nim styczność, wiedziało, jak bardzo nie lubi on zostawać sam, że wzywa nas o zaskakujących porach, by wybawić go od samotności hotelowego pokoju albo czterech ścian swego gabinetu, kiedy już skończył codzienną rundę rozmów międzymiastowych.

Pewnego dnia zebrałem się na odwagę i zapytałem, czemu stale potrzebuje towarzystwa; odpowiedź, jakiej udzielił była wielce znamienna. „Kiedy jestem sam – zwierzył się – zmuszony jestem przemyśleć różne rzeczy i widzę ich tak wiele, że wolę nie myśleć”. Ujrzałem go wtedy w prawdziwym świetle: ten człowiek, mający na koncie największą liczbę trafnych przypuszczeń w matematyce, który potrafi pokonać inżynierów na ich własnym polu, który w jednej chwili ocenia zdarzenia i ludzi, należy do niemal już doszczętnie wymarłej profesji proroków.

Z mężami Starego Testamentu i wyrocznią delficką dźwigał on ciężkie brzemię natychmiastowego widzenia. I jak wszyscy zawodowi prorocy cierpiał na coś, co Sigmund Freud nazwałby „kompleksem Proteusza”. Wielka szkoda, że wśród pacjentów Freuda nie było żadnych proroków.

W dawnych czasach ciemne orzeczenia Sybilli interpretowane były przez wyszkolonych specjalistów, tak zwanych hermeneutów, których zadaniem było przełożenie kryptycznych fraz na greckie zdania. W przypadku Ulama laboratorium w Los Alamos wynajmowało konsultantów, których zadaniem było wyrażenie jego kryptycznych komunikatów w popsutym żargonie współczesnej matematyki.

Stanisław Ulam zmarł niespodziewanie w wieku 75 lat na atak serca. Jak pisze Françoise Ulam:

mawiał, że „najlepszym rodzajem śmierci jest nagły atak serca lub zastrzelenie przez zazdrosnego męża”. Miał szczęście umrzeć w ten pierwszy sposób, choć myślę, że chyba wolałby ten drugi.

(*) Ulam komentował w roku 1965: „Mam wrażenie, iż to interesujące pojęcie, jakim jest overkill, przez lewicę atakowane jest z powodu marnotrawstwa – jako nieekonomiczne, podczas gdy skrajna prawica popiera je z przyczyn psychologicznych: gdyż daje im poczucie męskości, której brak odczuwają.”

Toczyła się wówczas debata, czy Stany Zjednoczone powinny zgodzić się na zakaz prób jądrowych. Ulam i Teller stali na odmiennych stanowiskach, ilustruje to rysunek Herblocka: „Mądry ojciec zna swoje własne dziecko”.

Stanisław Ulam (1/2)

Wyraz jego twarzy jest zazwyczaj ironiczny i kpiący. W istocie porusza go bardzo wszystko, co jest komiczne. Być może posiada pewien dar rozpoznawania i natychmiastowego wychwytywania śmieszności, nic więc dziwnego, że maluje się to na jego twarzy.
Jego wypowiedzi są bardzo nierówne, czasem poważne, czasem wesołe, ale nigdy nudne. Stara się bawić i rozweselać ludzi, których lubi. Nic, z wyjątkiem nauk ścisłych, nie wydaje mi się aż tak pewne czy oczywiste, by nie dopuszczał możliwości istnienia różnych opinii: sądzi, że na niemal każdy temat można powiedzieć niemal wszystko.
Posiada pewien talent matematyczny i zręczność, które pozwoliły mu zdobyć rozgłos w młodym wieku. Pracując w samotności aż do ukończenia dwudziestu pięciu lat, raczej późno stał się człowiekiem bardziej światowym. Jednak nigdy nie bywa nieuprzejmy, gdyż nie jest szorstki ani surowy. Jeżeli czasem kogoś obrazi, to przez nieuwagę lub niewiedzę.
Jego mowa nie jest gładka ani pełna wdzięku. Kiedy mówi coś miłego, to dlatego, że tak myśli. Cechuje go szczerość i prawdomówność, czasem nieco zbyt wielka, ale nigdy brutalna.
Niecierpliwy i choleryczny, czasami bywa gwałtowny. Bardzo bierze sobie do serca wszystko, co go rani, ale uraza zazwyczaj mija, kiedy da ujście swoim uczuciom. Łatwo na niego wpływać i nim kierować, pod warunkiem, że nie zdaje sobie z tego sprawy.
Niektórzy sądzą, że jest złośliwy, ponieważ bezlitośnie naśmiewa się z pretensjonalnych głupców. W rzeczywistości ma wrażliwe usposobienie, co sprawia, że jego nastrój często się zmienia. Może być jednocześnie wesoły i smutny.
Pan U. zachowuje się zgodnie z następującą zasadą: mówi mnóstwo głupich rzeczy, rzadko je zapisuje i nigdy żadnej z nich nie robi. (przeł. A. Górnicka, przekład nieco poprawiony za oryginałem d’Alemberta)

Autocharakterystykę tę przedstawił (oczywiście po francusku) Stanisław Ulam swojej przyszłej żonie Françoise, dopiero na końcu dodając, że napisał ją Jean Le Rond d’Alembert, jeden ze sławnych fizyków matematycznych XVIII stulecia i autor większości artykułów na temat nauk ścisłych w Wielkiej Encyklopedii Francuskiej.

Czy jest to tylko zabawny zbieg okoliczności, czy też obu uczonych łączy jakieś głębsze powinowactwo? Z pewnością obaj starali się przez całe życie uparcie zachować wolność, d′Alembert przytacza określenie jednego ze swych przyjaciół, że stał się „niewolnikiem swej wolności” – określenie to dobrze pasuje także do Ulama. Wbrew pozorom zachowanie takiej suwerenności poczynań jest w dzisiejszej nauce równie trudne co w XVIII wieku. Stanisław Ulam starał się pracować tak, żeby sprawiało mu to przyjemność, nie lubił presji. Cenił pomysłowość, szybkość rozumowań, nie był z tych, którzy latami rozwijają jakąś jedną metodę czy teorię, choć oczywiście miał swoje ulubione tematy czy sposoby podejścia. W najlepszym sensie tego słowa (pochodzącego od łacińskiego „kochać”) był raczej amatorem niż profesjonalnym uczonym akademickim – co w XX wieku było znacznie rzadsze niż w XVIII.
Już Galileusz pisał przy okazji pewnej uczonej polemiki:

Jeśliby roztrząsanie trudnych problemów było tym samym co przenoszenie ciężarów, czynność, przy której wiele koni przenosi więcej worków ziarna niż jeden koń, zgodziłbym się z tym, że wiele dysput wartych jest więcej niż jedna; ale dysputowanie (discorrere) przypomina bieganie (correre), a nie dźwiganie, toteż jeden koń berberyjski pobiegnie dalej niż sto koni fryzyjskich. (przeł. A. Wasilewska)

W osiemnastowiecznym Paryżu grzechem było mówić głupstwa, a jeszcze większym mówić głupstwa z wysiłkiem. Coś z tej atmosfery przetrwało może w środkowoeuropejskich kawiarniach, w których na początku XX wieku tak chętnie spotykali się artyści i uczeni. Ulam starał się trzymać rzeczy istotnych. Nie słuchał np. dłużej niż dziesięć minut wykładów zaproszonych uczonych, ponieważ jeśli ktoś w ciągu dziesięciu minut nie powiedział nic ciekawego, to zapewne nie będzie miał nic do powiedzenia i potem.

Cechą, która zdecydowanie różni d’Alemberta i Ulama jest stosunek do priorytetu własnych odkryć. Pierwszy zaciekle walczył o pierwszeństwo, drugi natomiast zupełnie się nie wdawał w spory tego rodzaju, uważając je za uwłaczające godności. Paradoksalnie w obu przypadkach – d’Alemberta i Ulama – przyczyną mogła być duma zraniona postępowaniem ludzi, których niezbyt się ceni.

Stanisław Ulam początkowo nie zamierzał zostać matematykiem. W rodzinnym Lwowie uczęszczał do gimnazjum klasycznego. Program nauczania takich szkół, podobny w większości Europy: daleki od problemów świata współczesnego, z naciskiem na historię i naukę martwych języków. Te abstrakcyjne zajęcia kształtować miały przyszłą elitę: urzędników, lekarzy, prawników, uczonych. Były czymś w rodzaju wieloletniej próby i budowały wspólną kulturę absolwentów. Wiemy, że Albert Einstein nie zniósł bezdusznej dyscypliny panującej w gimnazjum monachijskim i rzucił szkołę dwa lata przed maturą. Utalentowanemu językowo Ulamowi nauka przychodziła z łatwością, maturę zdał znakomicie, a greka i łacina towarzyszyły mu przez resztę życia, stanowiąc rodzaj kodu, jakim mógł się porozumiewać z kolegami, którzy przeszli podobną edukację. Uważał zresztą gramatykę łacińską za dobre wprowadzenie do myślenia logicznego.

Jako uczeń interesował się astronomią i fizyką. Ojciec, prawnik, dumny był, że jego nastoletni syn „rozumie” teorię względności, która w latach dwudziestych ubiegłego wieku stała się sensacją daleko wykraczającą poza kręgi naukowe. Młody Ulam zafascynowany też był niektórymi zagadnieniami matematycznymi, np. czy istnieją nieparzyste liczby doskonałe (liczby doskonałe są sumą swoich dzielników właściwych, jak 6=1+2+3. Rozwiązanie nie jest znane do dziś). Nie chciał zostać prawnikiem, w ówczesnej Polsce Żydzi niełatwo zostawali profesorami, więc i kariera naukowa wydawała się utrudniona. Postanowił zapisać się na miejscową politechnikę, z jakichś powodów był to Wydział Ogólny, a nie Elektryczny, który dawał konkretny zawód. Ponieważ młody człowiek nieco nudził się na wykładach dla pierwszego roku, zaczął chodzić na wykłady Kazimierza Kuratowskiego z teorii mnogości. Młody profesor chętnie rozmawiał ze swym studentem, Ulam odprowadzał go do domu i gawędzili o matematyce. Kuratowski, widząc inteligencję swego studenta, podsunął mu do rozwiązania pewne zagadnienie z teorii mnogości. Ulamowi udało się rozwiązać problem i praca została opublikowana w „Fundamenta Mathematicae”, polskim piśmie poświęconym głównie teorii mnogości i będącym czymś w rodzaju organu polskiej szkoły matematycznej. Dopiero jednak po rozwiązaniu drugiego problemu zasugerowanego przez Kuratowskiego Ulam zdecydował się zostać matematykiem, stało się to przed końcem jego pierwszego roku studiów.

Wkrótce poznał też innych matematyków lwowskich i wiele czasu spędzał w ich pokojach na dyskusjach. Później rozmowy te przenosiły się często do kawiarni. Jedna z takich sesji w kawiarni „Szkockiej” ze Stanisławem Mazurem i Stefanem Banachem trwała, jak wspomina Ulam, siedemnaście godzin z przerwami na posiłki. Z rozmów tych pochodził materiał do jego prac, jak też znaczna część jego wiedzy matematycznej. Ulam nigdy nie należał do uczonych, którzy pilnie śledzą postępy w wybranych dziedzinach i wiedzą na ten temat wszystko. Lubił rozpoczynać od zera, nawet gdy przy okazji odkrywał po raz drugi pojęcia czy fakty znane już w literaturze.

Nieformalny sposób uprawiania nauki bardzo odpowiadał towarzyskiemu Ulamowi, który z trudem naginał się do formalnych wymagań i zdawania egzaminów. W 1932 roku jako student został zaproszony do wygłoszenia komunikatu na Kongresie Matematycznym w Zurychu, gdzie spotkał wielu sławnych uczonych, potem jesienią w ciągu kilku tygodni napisał pracę magisterską, w roku następnym doktorat. Miał wtedy dwadzieścia cztery lata i coraz mniejsze szanse na karierę w Polsce. W sąsiednich Niemczech do władzy doszedł Adolf Hitler, bardzo wielu uczonych żydowskiego pochodzenia, w tym matematyków, musiało opuścić Niemcy. Odbywając w 1934 roku podróż po ośrodkach matematycznych Europy, pochłonięty matematyką Stanisław Ulam ledwie zdawał sobie jednak sprawę z tego, co się dzieje w świecie polityki. W roku następnym poznał Johna von Neumanna, który choć tylko kilka lat od niego starszy, był już sławny. Von Neumann, syn budapeszteńskiego bankiera żydowskiego pochodzenia, nie miał złudzeń co do sytuacji w Europie, toteż wyemigrował do Stanów Zjednoczonych, stary kontynent odwiedzając tylko z okazji jakichś konferencji czy spotkań. Obaj uczeni zaprzyjaźnili się. Poza matematyką łączyło ich sporo: dawne Austro-Węgry, kultura żydowska, klasyczne wykształcenie, pewna kosmopolityczna ogłada i dobre wychowanie. Von Neumann cenił ogromną pewność siebie Ulama, a także jego trudny do przewidzenia tok myślenia. Coś podobnego stwierdził też kiedyś na temat Ulama Stefan Banach: że formułuje on problemy w sposób „dziwny” i proponuje też „dziwne” rozwiązania, które często są skuteczne.

Von Neumann sprawił, że zaproszono Stanisława Ulama do Instytutu Badań Zaawansowanych w Princeton, gdzie tworzono coś w rodzaju ziemskiego raju dla uczonych, zaczynając od matematyków i fizyków teoretycznych. Jedną z pierwszych gwiazd tego Instytutu stał się Albert Einstein. Najmłodszym profesorem był tam von Neumann. Ulam należał do grupy młodych badaczy zapraszanych, by mieli okazję popracować wśród uznanych kolegów. Semestr w Princeton zaowocował trzyletnim stypendium na uniwersytecie Harvarda w Society of Fellows, organizacji finansującej dobrze zapowiadających się młodych uczonych.