Isaac Newton i niektóre matematyczne sekrety Stwórcy

Pod koniec roku 1684 Isaac Newton zrozumiał, że ruchy planet wyjaśnić może siła przyciągania między nimi a Słońcem, która jest odwrotnie proporcjonalna do kwadratu odległości. Newton miał wówczas czterdzieści dwa lata i był bardzo mało aktywnym profesorem katedry Lucasa w Cambridge. Wbrew późniejszej legendzie nie odkrył tego prawa w młodości (choć niewiele mu brakowało). W poprzednich latach zajmował się głównie teologią i alchemią, nie szukając rozgłosu i niewiele kontaktując się ze światem zewnętrznym. Teraz spostrzegł, że rysuje się możliwość rozwiązania problemu nie dającego spokoju uczonym od czasów starożytnych. Aż do 1687 roku pracował gorączkowo nad wyprowadzaniem różnych konsekwencji prawa ciążenia powszechnego. Trudno dziwić się jego entuzjazmowi: jedno proste prawo matematyczne pozwalało zrozumieć wiele skomplikowanych zjawisk we wszechświecie.

Czemu siła ciążenia jest odwrotnie proporcjonalna do kwadratu odległości? Można przecież wyobrazić sobie inne możliwe prawa. Dla Newtona było to pytanie: czemu Stwórca zdecydował się na taki, a nie inny wszechświat? Wiele rozważań w Matematycznych zasadach filozofii naturalnej poświęconych jest ruchowi ciał pod działaniem sił zmieniających się w inny sposób z odległością: np. malejących jak trzecia czy piąta jej potęga. A także rosnących proporcjonalnie do odległości. Ten ostatni przypadek był interesujący, dawał bowiem ruchy eliptyczne. Wszystkie planety miałyby wówczas taki sam okres obiegu wokół Słońca.

Jak wygląda ruch planety pod działaniem siły przyciągania proporcjonalnej do odległości? Powszechnie znany jest jednowymiarowy przypadek takiego ruchu:

F=a=-\omega^2 x \Rightarrow x(t)=A\cos\omega t,

F, a, x, t są tu odpowiednio siłą, przyspieszeniem, wychyleniem z położenia równowagi (w którym siła jest równa zeru) i czasem, \omega wielkością stałą, tzw. częstością kołową, określoną przez wielkość siły i masę ciała, którą przyjmujemy za równą 1. Stała A jest dowolna. Jest to ruch harmoniczny, czyli najprostsze możliwe drgania.

W przypadku trójwymiarowym ruch nie jest dużo bardziej skomplikowany. Po pierwsze zachodzi w stałej płaszczyźnie, mamy więc tylko dwa wymiary. Po drugie można go potraktować jako dwa niezależne ruchy wzdłuż osi Ox oraz Oy:

\left\{ \begin{array}{l}  F_x=a_x=-\omega^2 x\\  \mbox{}\\  F_y=a_y=-\omega^2 y.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  a_x=A\cos\omega t\\  \mbox{}\\  a_y=B\sin\omega t.  \end{array}\right.

Wybraliśmy rozwiązania w taki sposób, aby planeta P zakreślała elipsę zorientowaną jak na rysunku.

Łatwo sprawdzić, że mamy do czynienia z elipsą, wyznaczając z powyższych równań funkcje trygonometryczne i korzystając z jedynki:

\cos^2\omega t+\sin^2 \omega t=1=\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}.

Każda elipsa jest rzutem jednostajnego ruchu po okręgu punktu Q (dokładnie tak, jak gdybyśmy patrzyli na ten ruch po okręgu z ukosa, pod pewnym kątem: okrąg skraca się wtedy w jednym kierunku). Częstość kołowa i okres są takie same dla wszystkich torów. Nazwijmy ten tor elipsą Hooke’a (od prawa Hooke’a), choć Newton bardzo by się zżymał na tę nazwę, także ten ruch zbadał bowiem sam, a Hooke’owi pamiętał do końca życia protekcjonalny i lekceważący sposób, w jaki ten go kiedyś potraktował w dyskusji na temat optyki. Z powodu tej animozji nie wiemy dziś na pewno, jak wyglądał Robert Hooke, Newton bowiem go przeżył i kazał usunąć jego portret z Towarzystwa Królewskiego.

Newton zadał sobie pytanie, jak te elipsy (w środku których byłoby Słońce) mają się do elips keplerowskich (w których ognisku jest Słońce)? Okazuje się, że można podać związek między siłami wywołującymi oba te ruchy.

Rozpatrzmy planetę P zakreślającą jakikolwiek tor pod wpływem siły \vec{F} skierowanej ku pewnemu stałemu punktowi S.

Na rysunku przedstawiona jest elipsa, ale kształt krzywej nie jest w tym punkcie istotny. Korzystamy ze wzoru na siłę  dośrodkową:

F_n=\dfrac{v^2}{\varrho},

gdzie \varrho jest promieniem krzywizny toru w danym punkcie. Wiemy także, iż moment pędu L naszej planety musi być stały:

L=rv\sin\varepsilon.

Wobec tego siła F równa jest

F=\dfrac{F_n}{\sin\varepsilon}=\dfrac{L^2}{\varrho r^2 \sin^3\varepsilon}.

Teraz zastosujemy uzyskane wyrażenie do porównania siły grawitacji z siłą Hooke’a. Wyobraźmy sobie, że taką samą elipsę zatacza planeta pod wpływem siły skierowanej ku ognisku elipsy S oraz pod wpływem siły skierowanej ku środkowi elipsy C. Przyjmujemy, że moment pędu planety jest w obu przypadkach taki sam. Wobec tego

\dfrac{F_S}{F_C}=\dfrac{r_C^2 \sin^3\varepsilon_C}{r_S^2 \sin^3\varepsilon_S}.

Odcinek EC jest równoległy do wektora prędkości. Stosując twierdzenie sinusów do trójkąta ECP , mamy:

\dfrac{\sin\varepsilon_C}{\sin\varepsilon_S}=\dfrac{EP}{r_C}.

Ostatnim potrzebnym elementem jest tzw. lemat Newtona: odległość EP=A, tzn. dużej półosi elipsy. Jest to własność elipsy, którą udowadniamy poniżej. Wobec tego siła grawitacji równa jest

F_S=\dfrac{F_C}{r_C}\dfrac{A^3}{r_S^2}=\omega^2 \cdot \dfrac{ A^3}{r_S^2}\sim \dfrac{1}{r_S^2}.

Otrzymaliśmy więc z elipsy Hooke’a elipsę keplerowską oraz z prawa Hooke’a prawo grawitacji. Oba te rodzaje ruchu okazują się matematycznie powiązane. Można pokazać, że tylko te dwa rodzaje sił prowadzą do torów zamkniętych, których peryhelia się nie obracają.

Lemat Newtona

Odcinek S'F jest równoległy do EC oraz \vec{v}. Trójkąt FPS' jest równoramienny, ponieważ promień światła wysłany z S i odbijający się w punkcie P przejdzie przez S'. Mamy zatem FP=PS'. Odcinki EC oraz S'F są równoległe i przepoławiają odcinek SS', a więc także i odcinek SF. Zatem SE=EF. Mamy więc

EP=EF+FP=\frac{1}{2}SF+\frac{1}{2}(FP+PS')=\dfrac{SP+PS'}{2}=A.

W ostatniej równości skorzystaliśmy z faktu, że suma odległości punktu elipsy od obu ognisk jest stała.

 

 

 

 

Tory planet i komet: wielkie odkrycie Isaaca Newtona

Johannes Kepler w roku 1609 ogłosił odkrycie, że planety poruszają się wokół Słońca po elipsach, a Słońce jest wspólnym ogniskiem tym wszystkich elips (I prawo Keplera). Nie bardzo mu wówczas chciano wierzyć, wprowadził bowiem nowe rodzaje sił, jedna miała ciągnąć planetę wokół Słońca, a druga, magnetyczna, miała na przemian, to przyciągać ją, to odpychać. Prędkość planety miała zależeć od jej odległości od Słońca: bliżej niego planeta poruszała się szybciej i na odwrót, kiedy była dalej, poruszała się wolniej (II prawo Keplera).

Z czasem astronomowie stwierdzili, że opisane przez Keplera prawa dobrze odzwierciedlają zjawiska na niebie: dokładność tablic wzrosła wielokrotnie. W 1687 roku ukazały się Matematyczne zasady filozofii przyrody, w których Isaac Newton wyjaśnił ruchy planet i szereg innych zjawisk, jak przypływy i odpływy mórz albo precesję ziemskiej osi obrotu za pomocą jednej jedynej siły: grawitacji. Wszystkie ciała we wszechświecie miały się przyciągać siłami odwrotnie proporcjonalnymi do ich odległości i proporcjonalnymi do mas. Jedno proste matematycznie prawo pozwalało zrozumieć dynamikę układu planetarnego. Problem postawiony jeszcze przez starożytnych Greków i Babilończyków został w ten sposób rozwiązany. Najważniejszą częścią tego rozwiązania było udowodnienie, że z prawa grawitacji wynikają Keplerowskie elipsy. Poniżej pokażemy współczesne sformułowanie tego rozwiązania.

Wyobraźmy sobie planetę P poruszającą się wokół nieruchomego Słońca (nie jest trudno pójść o krok dalej i uwzględnić także ruch Słońca).

Każda z orbit ma punkt najbliższy Słońca: perihelium P_0. Wybierzmy oś Ox tak, żeby przechodziła ona przez perihelium i następnie poruszała się w kierunku P. Równanie ruchu planety zgodnie z II zasadą dynamiki oraz prawem powszechnego ciążenia ma postać:

\dfrac{d\vec{v}}{dt}=-\dfrac{k}{r^2}\vec{e}_r.

Wektory \vec{e}_r, \vec{e}_\varphi mają odpowiednio kierunek promienia i kierunek do niego prostopadły (transwersalny) oraz długość jednostkową, k=GM jest iloczynem stałej grawitacyjnej i masy Słońca (masa planety nie wchodzi do zagadnienia). Znak minus pochodzi stąd, że grawitacja jest siłą przyciągającą.

W ruchu planety nie zmienia się wielkość jej momentu pędu (przyjmujemy tu masę planety równą 1):

L=rv_{\varphi}=r^2 \omega=const.

Jest to współczesne sformułowanie II prawa Keplera. Wchodzi do niego składowa \vec{v}_\varphi prędkości prostopadła do promienia. W ostatniej równości użyliśmy prędkości kątowej \omega=v_\varphi/r. Więcej szczegółów dotyczących tego wyrażenia można znaleźć niżej (*).

Pokażemy, że torem planety musi być krzywa stożkowa ze Słońcem w ognisku. W tym celu udowodnimy, że odległość planety od Słońca spełnia równanie stożkowej:

r=\dfrac{p}{1+e\cos\varphi},

gdzie p, e zwane są odpowiednio parametrem i mimośrodem stożkowej, a kąt \varphi jest kątem z osią Ox na rysunku. Wyprowadzenie tego równania można znaleźć poniżej (**).

Zakładamy, że moment pędu jest różny od zera: znaczy to, iż planeta nie porusza się po prostej przechodzącej przez Słońce. Oczywiście takie tory są matematycznie i fizycznie dopuszczalne, eliminujemy je jednak z dalszych rozważań.

Równanie ruchu planety można uprościć, jeśli zamiast czasu wprowadzić do niego kąt \varphi. Wyznaczając prędkość kątową z zasady zachowania momentu pędu, otrzymujemy

\omega=\dfrac{d\varphi}{dt}=\dfrac{L}{r^2}.

W obu równaniach występuje r^2 w mianowniku, wobec tego, dzieląc je stronami i korzystając ze wzorów na pochodną funkcji złożonej i odwrotnej, możemy się tej zależności pozbyć:

\dfrac{d\vec{v}}{d\varphi}=\dfrac{d\vec{v}}{dt}\cdot \dfrac{dt}{d\varphi}=-\dfrac{k}{L}\vec{e}_r.

Równanie wektorowe to para równań dla składowych wektora prędkości:

\left\{ \begin{array}{l} \dfrac{dv_x}{d\varphi}=-\dfrac{k}{L}\cos\varphi \\  \mbox{}\\  \dfrac{dv_y}{d\varphi}=-\dfrac{k}{L}\sin\varphi.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  v_x=-\dfrac{k}{L}\sin\varphi+A_x \\  \mbox{}\\  v_y=\dfrac{k}{L}\cos\varphi+A_y.  \end{array}\right.

Ostatnią parę równań możemy zapisać w postaci wektorowej

\vec{v}=\dfrac{k}{L}\vec{e}_\varphi+\vec{A}.

Wynik ma prostą interpretację geometryczną: pierwszy wektor po prawej stronie zakreśla okrąg o promieniu k/L, a promień wodzący tego okręgu tworzy z osią Ox kąt równy 90^{\circ}+\varphi, obracając się razem z promieniem wodzącym planety. W zależności od długości wektora \vec{A} możliwe są następujące cztery sytuacje:

Punkt P_0 odpowiada kątowi \varphi=0, wektor prędkości jest wtedy równoległy do osi Oy (w chwili gdy odległość osiąga minimum, składowa x prędkości musi znikać). Oznacza to, że A_x=0. W każdym przypadku koniec wektora prędkości zakreśla okrąg albo jego łuk. Krzywą taką nazywa się hodografem. Zatem hodograf ruchu keplerowskiego jest łukiem okręgu (w trzecim przypadku to okrąg bez dolnego punktu, w czwartym dozwolone są tylko te wartości \varphi, dla których wektor \vec{v} ma z okręgiem dwa punkty wspólne; pewien zakres kątów jest niedozwolony, ruch zachodzi tu po gałęzi hiperboli i ograniczony jest jej asymptotami.) Kształt hodografu ruchu keplerowskiego odkrył William Rowan Hamilton w XIX wieku i opublikował w pracy zawierającej wyłącznie słowny opis, bez żadnego rysunku i bez wzorów. Brytyjczycy (Hamilton był Irlandczykiem) po Newtonie specjalizowali się w takiej matematyce bez rachunków, co nie zawsze da się z sensem przeprowadzić. Nieco mniej formalne podejście do hodografu tego ruchu.

albo tutaj

Równanie hodografu daje nam prędkości, łatwo z nich przejść do równania toru. Wystarczy znaleźć składową v_\varphi prędkości. Otrzymamy ją przez rzutowanie wektora prędkości na kierunek promienia okręgu zaznaczonego na rysunkach. Otrzymujemy z nich

v_\varphi=\dfrac{k}{L}+A\cos\varphi \quad\Rightarrow\quad r=\dfrac{L}{k/L+A\cos\varphi}=\dfrac{\frac{L^2}{k}}{1+\frac{LA}{k}\cos\varphi}.

Ostatnie równanie jest biegunowym równaniem stożkowej o mimośrodzie e=\frac{LA}{k}, odległości liczone są od ogniska owej stożkowej. Otrzymaliśmy uogólnioną wersję I prawa Keplera.

Na rysunku oba tory: w przestrzeni prędkości oraz w przestrzeni położeń, czyli w zwykłej przestrzeni. A to paraboliczna orbita komety z roku 1680 wyznaczona przez Newtona (obliczenia robił Edmond Halley).

(*) Prędkość kątowa to

\omega=\dfrac{\Delta \varphi}{\Delta t}=\dfrac{v_\varphi \Delta t}{r \Delta t}=\dfrac{v_\varphi }{r }.

Zastępujemy tu dla małych kątów tangens wartością kąta w radianach.

(**) Stożkową definiuje się zadając pewien punkt, zwany ogniskiem oraz prostą, zwaną kierownicą (na rysunku czerwone) oraz wartość mimośrodu e.

Stożkową będzie zbiór takich punktów P, że ich odległość od ogniska jest e razy większa od ich odległości od kierownicy:

OP=ePP'.

Łatwo stąd znaleźć równanie stożkowej. Mamy bowiem

r\cos\varphi+PP'=QQ' \Rightarrow  r\cos\varphi+\dfrac{r}{e}=\dfrac{p}{e}.

Mnożąc ostatnie równanie obustronnie przez e i wyznaczając z niego r, otrzymujemy

r=\dfrac{p}{1+e\cos\varphi}.

Evangelista Torricelli: nieskończona trąba i barometr (1643-1644)

Nauka powstająca w XVII wieku była iście rewolucyjna: podważono jednocześnie niemal cały tradycyjny system myślowy, wiedzę zgromadzoną od tysiącleci. Świat materialny zmienił się niewiele od średniowiecza, choć nauczono się żeglować po oceanach i korzystać z broni palnej. Jednak technika była wciąż prymitywna, energia trudno dostępna, a większość ludzi walczyła jedynie o przetrwanie. Zanim przeobraziła się cywilizacja, należało najpierw przebudować zawartość głów. Postęp pojęciowy jest zawsze niezmiernie trudny, trzeba pokonać własne nawyki myślowe, wyciągnąć wnioski z nowych założeń, niewielu ludzi potrafi żyć wśród tymczasowych koncepcji i bez żalu porzucać je na rzecz innych, nowych, lepiej opisujących wymykającą się rzeczywistość. M.in. dlatego niewielu jest einsteinów na świecie, mimo że nie brak ludzi bardzo inteligentnych i utalentowanych.

Evangelista Torricelli określany jest często jako uczeń Galileusza. W istocie był bardziej uczniem Benedetta Castellego, wiernego przyjaciela i okazjonalnie współpracownika mistrza z Florencji. Ze starym, niewidomym już uczonym spędził ledwie kilka miesięcy: od października 1641 r. do stycznia roku następnego, gdy Galileusz zmarł. Torricelli był już wtedy po trzydziestce i był ukształtowanym uczonym w duchu archimedesowym, gdzieś między matematyką a inżynierią i eksperymentem. Odziedziczył po Galileuszu stanowisko matematyka przy księciu Toskanii. Galileusz był także nadwornym filozofem, czyli fizykiem i astronomem, ale w owej chwili, dziesięć lat po wyroku inkwizycji, lepiej było nie kłuć w oczy władz kościelnych. Sławnego uczonego pochowano w nieoznaczonym grobie i musiało minąć sto lat, nim pozwolono na postawienie tablicy nagrobnej. Torricelli w roku 1643 stał się sławny w całej uczonej Europie dzięki rozważaniom na temat pewnej nieskończonej bryły, która miała skończoną objętość. Przypominała ona wnętrze trąby.

tromba

Bryła Torricellego powstaje z obrotu hiperboli (równobocznej) wokół jednej z asymptot. Wycinamy z niej tylko część zaznaczoną na rysunku: mamy zwężającą się, nieskończenie długą trąbę. Torricelli wykazał, że pole powierzchni takiej trąby jest nieskończone, lecz objętość jest skończona. Oszacujemy tę objętość. Dzielimy naszą bryłę na cylindryczne cienkie powłoki: leżą one jedna wewnątrz drugiej jak składany tubus. Pole podstawy takiej powłoki (wydrążonego walca) równe jest 2\pi r dr, co jest iloczynem długości okręgu i grubości naszej powłoki dr. Objętość wydrążonego walca o takiej podstawie  i wysokości h(r) możemy łatwo oszacować z góry:

dV=2\pi r dr h(r) < 2 \pi r dr \dfrac{a^2}{r}=2 \pi a^2 dr.

Zatem suma objętości wszystkich wydrążonych walców jest mniejsza niż 2\pi a^2 R, gdzie R to największy promień przekroju poprzecznego trąby. Torricelli obliczył tę objętość, stosując metodę Cavalieriego, a także przeprowadzając dowód w duchu Archimedesa. Paradoksalny wynik wzbudził zainteresowanie i komentowali go najwięksi matematycy epoki: jeśli był prawdziwy, granice matematyki matematyki zostały poszerzone.

W roku następnym został Torricelli odkrywcą barometru. Tak się zwykle mówi, bardzo upraszczając całą sprawę. On sam nie uznawał siebie za wynalazcę takiego przyrządu ani nad nim jakoś szczególnie nie pracował. Dopiero później urządzenie takie zaczęto nazywać barometrem i traktować jako przyrząd służący do pomiaru ciśnienia atmosferycznego. Torricelli niczego nie mierzył w sposób ciągły, lecz uważał swoje doświadczenie za rodzaj filozoficznego (tj. naukowego) pokazu. Chodziło w nim o istnienie próżni. Natura abhorret vacuum – natura nie znosi próżni – mawiali filozofowie scholastyczni, czerpiąc to twierdzenie od Arystotelesa. Wiadomo było z praktycznych doświadczeń inżynierów, iż nie można wciągnąć wody w rurze wyżej niż na 18 łokci. Galileusz objaśniał to siłami spoistości wody: gdy wysokość jej słupa przekracza owe 18 łokci, słup rozrywa się pod własnym ciężarem, tak jak rozerwałaby się pod własnym ciężarem dostatecznie długa kolumna z marmuru zawieszona od góry. Torricelli sądził inaczej, uważał, że słup cieczy równoważony jest ciśnieniem zewnętrznym. A skoro chodzi o równowagę, to zamiast 18 łokci wody wystarczy 5/4 łokcia i jeden cal żywego srebra (rtęci) – gdyż jego ciężar właściwy jest kilkanaście razy większy. Wystarczy wziąć szklaną rurkę długości, powiedzmy, dwóch łokci, zatopioną z jednej strony i nalać do niej rtęci. Następnie zatykamy rurkę palcem i odwracamy zatopioną częścią do góry, po czym wkładamy rurkę do naczynia z rtęcią (nikt w XVII wieku nie rozumiał, jak się zdaje, jak szkodliwe może być takie nieostrożne manipulowanie rtęcią, Newton żartował sobie, że posiwiał wcześnie z powodu używania rtęci w doświadczeniach alchemicznych, naprawdę chyba się tym jednak nie przejmował).

torr

Uczony sądził, że nad rtęcią tworzy się próżnia. A więc łatwo jest ją wytworzyć i natura się jej nie lęka. O swoich doświadczeniach napisał do Michelangela Ricciego w czerwcu 1644 roku. Pokazywał je też ojcu Marinowi Mersenne’owi, który spełniał w owych czasach rolę serwera pocztowego dla środowiska uczonych, gdy ten odwiedził go we Florencji. Nie słychać, aby Torricelli zamienił swoją odwróconą rurkę na stały przyrząd, który można z dnia na dzień obserwować. Spodziewał się chyba, że zmiany ciśnienia atmosferycznego będą większe, niż są w rzeczywistości. W tym samym liście pisał, iż żyjemy na dnie oceanu powietrza – coś podobnego sugerował kilkanaście lat wcześniej Giovanni Battista Baliani w liście do Galileusza. Torricelli mógł o takim poglądzie słyszeć. Tak czy owak nie zajmował się sprawą dłużej, dopiero kilka lat później stała się ona europejską sensacją, gdy doświadczenia podobne zaczęto powtarzać w różnych krajach, a przede wszystkim we Francji, a zagadnieniem ciśnienia atmosferycznego i istnienia próżni zajął się m.in. Blaise Pascal. Dla jego analitycznego i skłonnego do paradoksów umysłu pogląd, który przeczył jednocześnie scholastykom i „nowoczesnemu” Kartezjuszowi, musiał wydawać się wielce interesujący. Torricelli zmarł młodo, w roku 1649, i nie dożył czasów, w których uznano go za „odkrywcę barometru”. Zapewne byłby zdziwiony, że ten maleńki fragment jego naukowego dorobku doczekał się takiej sławy, podczas gdy o reszcie mało kto dziś pamięta.

List Torricellego do Ricciego.

Jego angielski przekład

 

Parabola, sounding-board i piękno geometrii

Wielka Brytania ma do dziś znakomitą tradycję uprawiania nauki za stosunkowo niewielkie pieniądze. Royal Society i inne uczone towarzystwa były długo organizacjami zrzeszającymi amatorów na równi z zawodowcami. Sprawiało to, że rozmaite dziwne eksperymenty czy obserwacje osobliwości sąsiadowały w angielskich czasopismach z rzetelnymi osiągnięciami profesjonalistów. Przynajmniej jednak za dziwactwa te rząd Jego/Jej Królewskiej Mości nie musiał wypłacać wysokich apanaży czy to w formie pensji, czy grantów na dogłębne studia nad niczym.

W 1826 roku zbudowano w Attercliffe koło Sheffield niewielki kościół. Okazało się, że występował w nim silny pogłos i choć dźwięk mowy pastora był dobrze słyszalny, to zamazany i niewyraźny. Standardowym sposobem wzmacniania dźwięku idącego od ambony do wiernych była drewniana płyta, sounding-board, umieszczana zwykle poziomo nad amboną. Odbijała ona część dźwięku w stronę publiczności. Określenie sounding-board do dziś zresztą funkcjonuje w angielszczyźnie, lecz głównie w sensie przenośnym. W Attercliffe tego rodzaju rozwiązanie nie pomogło. Toteż wielebny John Blackburn, który studiował w St. John’s College w Cambridge, sięgnął po rozwiązanie znane z geometrii od czasów starożytnych. Wiadomo, że paraboloida – powierzchnia powstająca przy obrocie paraboli wokół osi – ma własność ogniskowania promieni w jednym punkcie. Może więc także służyć jako reflektor, gdy w ognisku umieścimy źródło naszych promieni. John Blackburn obudował więc ambonę w taki sposób, że mówca znajdował się w jej ognisku, a dźwięk rozchodził się na wnętrze kościoła.

Efekty były znakomite, wielebny Blackburn opisał ze szczegółami swą konstrukcję w „The Philosophical Magazine” w roku 1829. Podobnego rozwiązania używa się do dziś, np. w mikrofonach parabolicznych zbierających dźwięk z jakiegoś kierunku i umożliwiających słuchanie rozmów ze sporej odległości.

512px-parabolicmicrophone

Innych przykładów dostarczają wszelkie teleskopy optyczne i radiowe, tu np. gigantyczny radioteleskop w Arecibo, za pomocą którego Aleksander Wolszczan odkrył pierwsze planety poza Układem Słonecznym (a macierzysty UMK zerwał z nim współpracę, bo uczony kiedyś spotykał się z jakimiś agentami SB – co godne i sprawiedliwe, a także słuszne i zbawienne – wszak mamy tylu uczonych, którzy z nikim się nie spotykali oraz niczego nie odkryli).

telescopio_arecibo_thumb

Z jakichś powodów, znanych wyłącznie wysokim komisjom ds. programów nauczania, nie uczy się w szkole nic ponadto, że parabola to wykres funkcji kwadratowej, np. y=ax^2. W sposób naturalny pojawia się ta krzywa w rzutach (gdy opór powietrza jest do pominięcia). Np. w rzucie poziomym ciało przesuwa się poziomo wciąż z tą samą prędkością początkową v, spadając jednocześnie pionowo z przyspieszeniem ziemskim g. Mamy więc dwa równania: w kierunku poziomym x położenie jest proporcjonalne do czasu, a w kierunku pionowym y – do kwadratu czasu (oś y kierujemy w dół).

\left\{ \begin{array}{l}  x=vt\\  y=\dfrac{gt^2}{2} \end{array} \right.\quad \Rightarrow \quad y=\left(\dfrac{g}{2v^2}\right)x^2=ax^2

Dokładnie tyle potrafił udowodnić Galileusz na temat rzutów (miał techniczny problem z rzutami ukośnymi, nie było jeszcze geometrii analitycznej). Rzut poziomy można zilustrować pokazem, przedstawiony zabytkowy przyrząd pochodzi z Teylers Museum w Haarlemie.

large1

Kulka stacza się po łuku z lewej strony i następnie przelatuje przez kolejne pierścienie rozmieszczone zgodnie z równaniem paraboli.

Pokażemy, że kształt paraboliczny może ogniskować promienie w jednym punkcie. Starożytni, którzy nie znali algebry, definiowali parabolę inaczej: jest to zbiór punktów równoodległych od pewnej zadanej prostej (fioletowa na rysunku)oraz od pewnego punktu F.

parabola

Łatwo pokazać, jak można konstrukcyjnie wyznaczyć punkty paraboli. Zaczynamy od P’. Wystawiamy z tego punktu prostopadłą do naszej poziomej prostej (zwanej kierownicą) oraz budujemy dwusieczną odcinka FP’: XP. Szukany punkt P paraboli leży na przecięciu obu prostych i spełnia warunki definicji paraboli. Z konstrukcji tej wynika też, że kąty FPX oraz XPP’ są równe, więc promień biegnący pionowo z góry do P odbije się w kierunku F. Ponieważ dotyczy to każdego promienia biegnącego wzdłuż osi, więc wszystkie one przetną się w F (zwanym ogniskiem).

Łatwo też pokazać, że tak wyznaczona krzywa spełnia algebraiczne równanie paraboli. Niech ognisko znajduje się w punkcie (0,f) układu współrzędnych, kierownica zaś ma równanie y=-f (na rysunku f=0,25). Równe odległości punktu (x,y) od kierownicy i od ogniska dają równanie

(y+f)^2=x^2+(y-f)^2 \Rightarrow y=\dfrac{x^2}{4f}.

Istnieje jeszcze inna definicja paraboli jako przecięcia stożka. Wyobraźmy sobie stożek, bierzemy płaszczyznę styczną do jednej z jego tworzących SR, a następnie przecinamy stożek inną płaszczyzną równoległą do tej pierwszej. Krzywa powstająca na przecięciu płaszczyzny z powierzchnią stożka będzie parabolą.

parabola_conic

Z rysunku odczytać możemy równanie krzywej. Zaczynając od okręgu na dole, mamy x^2=\mbox{PM}\cdot \mbox{MR} (jest to znane twierdzenie nt. wysokości trójkąta prostokątnego (u nas PLR). Ze środkowego rysunku (obie płaszczyzny są prostopadłe do rysunku) widać, że długość MR nie zależy od tego, na jakiej wysokości przetniemy stożek płaszczyzną prostopadłą do jego osi. Natomiast długość PM z twierdzenia Talesa jest proporcjonalna do y, mamy więc y\propto x^2. Ta ostatnia definicja sugeruje związek paraboli z innymi możliwymi przecięciami stożka: elipsą oraz hiperbolą. Ale to już całkiem inna historia.

Pierre Fermat: zasada najmniejszego działania dla światła (1657-1662)

Greccy geometrzy zauważyli, że światło biegnie po najkrótszej drodze, i to zarówno wtedy, gdy porusza się prostoliniowo między dwoma punktami (np. A i C), jak i wówczas, gdy po drodze odbija się od zwierciadła, biegnąc po łamanej ABC. Najkrótszej drodze odpowiada prawo odbicia: kąt odbicia równy jest kątowi padania.

fermat-heron

Rozumowanie z rysunku znajdujemy u Herona z Aleksandrii w jego Katoptryce (czyli optyce zwierciadeł). Jeśli punkt A odbijemy symetrycznie w płaszczyźnie zwierciadła (prostopadłej do rysunku), otrzymujemy A’. Drogi A’B i AB są więc równe. Zamiast ABC możemy rozpatrywać A’BC. Dowolna łamana AXC ma taką samą długość, jak A’XC. Ponieważ każda łamana biegnąca od A’ do C jest dłuższa niż odcinek prostej, więc najkrótsza droga równa jest ABC i punkt B leży wówczas na odcinku A’C. Łatwo widać, że dla takiej drogi kąt odbicia równa się kątowi padania.

W roku 1657 Pierre Fermat, radca parlamentu (czyli sądu) w Tuluzie, otrzymał w prezencie książkę poświęconą światłu.

la_lumiere_cureau_de_la-chambre

Jej autorem był Marin Cureau de La Chambre, lekarz, do którego nastoletni Ludwik XIV, przyszły Król-Słońce miał ogromne zaufanie. Fermat, urzędnik królewski, czuł się w obowiązku zajrzeć do książki doradcy tak uczonego i ustosunkowanego na dworze (zręczność dyplomatyczną autora widać i w tym, że na karcie tytułowej jego własne nazwisko złożone jest znacznie mniejszą czcionką niż nazwisko potężnego kardynała Mazarin). Książka zawierała dowód Herona. Cureau de La Chambre zwracał też uwagę, że gdy światło się załamuje, przebywana przez nie droga już nie jest najkrótsza.

fermat0

Droga ABC jest oczywiście dłuższa niż ADC na rysunku. Fermat znał, jak wszyscy, prawo załamania (prawo Snella), opublikowane przez Kartezjusza w 1637 roku. Nie zgadzał się jednak z fizycznym wyprowadzeniem tego prawa, niezbyt wierzył chyba w te wszystkie niewidzialne cząstki rozmaitych kształtów i wielkości, które miały się ze sobą zderzać i na siebie napierać, tłumacząc absolutnie wszystko: od ruchu planet i optyki, po magnetyzm i ciężkość ciał. Jako matematyk szukał wyjaśnienia elegantszego i mniej uwikłanego w trudne do sprawdzenia przesłanki. Gdyby przyjąć, że w gęstszym ośrodku światło napotyka większy opór, to należałoby drogę w ośrodku liczyć np. podwójnie. A więc nadal można podejrzewać, że światło wybiera najłatwiejszą drogę. Należałoby jednak minimalizować nie sumę dróg, lecz pewną ich kombinację, np. AB+2BC. Gęstszemu ośrodkowi odpowiadałby większy współczynnik: wyglądało to rozsądnie, gdyż u Kartezjusza światło miało „większą siłę” w ośrodku gęstszym, co nie jest zbyt intuicyjne (ani zrozumiałe). Nie chcąc wdawać się w spory na temat natury światła, Fermat unikał mówienia o jego prędkości – bowiem zdaniem kartezjan oraz Cureau de La Chambre światło rozchodzi się momentalnie. Sporów z kartezjanami, uczniami mistrza, nie uniknął, podobnie jak dwadzieścia lat wcześniej z ojcem-założycielem tej sekty filozoficznej. Fermat znany był z wysuwania twierdzeń, których nie chciało mu się albo których nie potrafił dowieść, słynnym przykładem jest jego Wielkie Twierdzenie udowodnione pod koniec XX wieku. Także i tym razem niezbyt chętnie brał się do sprawdzenia, czy rzeczywiście światło podlega zasadzie najmniejszego działania. Miał własną metodę szukania ekstremum, dość toporną z dzisiejszego punktu widzenia, zastąpioną później przez obliczanie pochodnych. W wersji Fermata prowadziła ona do długich rachunków, ale w pierwszym dniu nowego roku 1662 zakomunikował Cureau de La Chambre, że obliczenia się udały i prowadzą do znanego prawa załamania. Niemal pięcioletnie opóźnienie między wysunięciem twierdzenia a zbadaniem jego konsekwencji tłumaczył Fermat dwiema przeszkodami: po pierwsze, nie był całkiem pewien, jak należy sformułować zasadę minimum i czy prawo Snella jest ściśle słuszne. Drugą przeszkodą była, typowa dla matematyków, niechęć do długich rachunków. W tym przypadku w grę wchodziły cztery odcinki, a więc cztery pierwiastki z sumy kwadratów współrzędnych. „Obawa, że po długich i trudnych rachunkach dojdę do jakiejś fantastycznej i nieregularnej proporcji oraz moja naturalna skłonność do lenistwa pozostawiły rzecz w tym stanie aż do ostatniego napomnienia, którego udzielił mi w pańskim imieniu pan przewodniczący de Miremont. (…) Nagroda za tę pracę okazała się zupełnie nadzwyczajna, niespodziewana i szczęśliwa. Kiedy bowiem przebrnąłem przez wszystkie równania, mnożenia, antytezy i inne operacje, jakich wymaga moja metoda (…) stwierdziłem, że moja zasada daje dokładnie tę samą proporcję załamania, jaką ustalił pan Descartes. Tak bardzo zaskoczył mnie ten niespodziewany wynik, że z trudem mogłem dojść do siebie. Wiele razy powtórzyłem różne operacje algebraiczne, otrzymując stale ten sam wynik, choć moje rozumowanie zakłada, iż przejście światła przez gęste ciała jest trudniejsze niż przez rzadkie, co uważam za prawdziwe oraz niewątpliwe, niemniej jednak pan Descartes zakłada coś przeciwnego”.

Fermat zakłada więc, że nie suma dróg s_1+s_2 musi być minimalna, lecz suma ich kombinacji liniowych s_1+ns_2, gdzie n jest współczynnikiem załamania drugiego ośrodka (względem pierwszego). Łatwo widać, że jeśli przyjmiemy za prędkość światła w drugim ośrodku wielkość v=c/n (gdzie c jest prędkością w ośrodku pierwszym), to można tę zasadę sformułować jako zasadę najkrótszego czasu:

t=\dfrac{s_1}{c}+\dfrac{s_2}{v}=\dfrac{s_1+n s_2}{c}.

Fermat dumny był z otrzymania eleganckiego wyniku, lecz kartezjanie uważali go za ciekawostkę matematyczną, a nie zasadę odnoszącą się do światła. Zasada Fermata nabrała sensu dopiero dla Christiaana Huygensa, który światło uznawał za rozchodzące się zaburzenie eteru, coś w rodzaju fali nieokresowej, jak np. fala uderzeniowa. Wiedział on już, że prędkość światła jest skończona. Huygens przedstawił też elegancki dowód, że zasada Fermata prowadzi do prawa załamania Snella. Jest on wyraźnie prostszy niż obliczenie Fermata – zwykle udaje się uprościć rozumowanie, kiedy już wiadomo, dokąd prowadzi.

fermat-a-la-huygens

Porównujemy rzeczywisty bieg promienia światła ABC z fikcyjnym AFC. Budujemy prostokąt AOHB, mamy w ten sposób pewność, że AB=OH. Na BC opuszczamy prostopadłą GF z punktu G. Z prawa załamania mamy

\dfrac{\mbox{HF}}{\mbox{BG}}=\dfrac{\sin\alpha}{\sin\beta}=n.

Zachodzą też nierówności

\mbox{AF}>\mbox{OH}+\mbox{HF}=\mbox{AB}+n\mbox{BG},

n\mbox{FC}>n\mbox{GC}.

Dodając te nierówności stronami, otrzymujemy:

\mbox{AF}+n\mbox{FC}>\mbox{AB}+n\mbox{BC}.

Zmieniając nieco nasz rysunek, możemy zrozumieć przyczynę prawa załamania dla fal. Linie AA’ oraz BH to czoła fali w pierwszym ośrodku, GF oraz CC’ to czoła fali w drugim ośrodku. W czasie potrzebnym na przejście odległości HF w pierwszym ośrodku, w drugim fala przejdzie odległość BG.

fermat-huygens2

Zatem stosunek obu odległości równy jest

\dfrac{\sin\alpha}{\sin\beta}=\dfrac{c}{v}=n.

Bezpośrednie wyjaśnienie zasady Fermata daje nam mechanika kwantowa albo falowa teoria światła: faza światła zależy od czasu. W sąsiedztwie ekstremum fazy zmieniają się bardzo powoli i rezultatem jest silna fala wypadkowa.

Warto może przytoczyć dzisiejszą wersję obliczeń Fermata. Jest ona banalna, co nie oznacza, że jesteśmy mądrzejsi od Fermata, ale że mamy lepsze techniki rachunkowe. Pojawiły się one już kilka lat później w rękopisach Isaaca Newtona, które niewielu widziało, a później w 1684 roku w pierwszej publikacji Leibniza na temat rachunku różniczkowego. Metoda Fermata przekształciła się w algorytmy, do których stosowania wcale nie potrzeba inteligencji, z powodzeniem robią to dziś programy w rodzaju WolframAlpha itp.

fermat

Wielkość, którą mamy zminimalizować, ma postać:

s(x)=\sqrt{(x-x_a)^2+y_a^2}+n\sqrt{((x-x_b)^2+y_b^2}.

Szukamy ekstremum tej funkcji, przyrównując jej pochodną do zera:

s'(x)=\dfrac{2(x-x_a)}{2\sqrt{(x-x_a)^2+y_a^2}}+n\dfrac{2(x-x_b)}{2\sqrt{((x-x_b)^2+y_b^2}}=0.

Łatwo spostrzec, patrząc na rysunek, że pierwszy składnik równy jest \sin\alpha, a drugi -n\sin\beta, skąd otrzymujemy prawo Snella.

Spirala logarytmiczna

Ponieważ pisałem o spiralach u van Gogha, więc może warto napisać trochę więcej o ich matematyce. Zdefiniujmy spiralę jako krzywą, która zawsze tworzy kąt \alpha z promieniem wodzącym z początku układu.

logarithmic_spiral

Najłatwiej równanie spirali zaleźć we współrzędnych biegunowych: położenie punktu określamy przez odległość od początku układu r oraz kąt \varphi, jaki tworzy promień wodzący z ustaloną półosią. Kąty liczymy przeciwnie do wskazówek zegara. Wielkim odkryciem XVII wieku w matematyce było zauważenie, że krzywe gładkie można traktować jak złożone z bardzo krótkich odcinków linii prostych, najlepiej nieskończenie małych odcinków (ale zawsze można sobie wyobrażać coraz mniejsze odcinki skończone). Narysujmy sobie taki nieskończenie mały odcinek spirali. Oczywiście, musimy narysować odcinek skończony (niebieski na rysunku), nieskończenie małe wielkości nie nadają się do rysowania.

logarithmic-spiral

Stałość kąta \alpha oznacza, że stały, tj. niezależny od punktu jest także jego cotangens:

\mbox{ctg}\alpha=k=\dfrac{dr}{rd\varphi}\Rightarrow \dfrac{dr}{r}=k d\varphi.

Oznaczyliśmy cotangens kąta \alpha literą k, żeby mniej pisać. Wielkość ta nie zależy od punktu spirali. Znaczy to, że gdy obracamy wektor wodzący o d\varphi, to jego nowa długość równa się

r+dr=r(1+kd\varphi).

Po dwóch obrotach o d\varphi dostaniemy r(1+kd\varphi)^2. Gdyby kąt był czasem, a k stopą procentową, to mielibyśmy procent składany: po każdym okresie d\varphi nasz kapitał rośnie o stały czynnik (1+kd\varphi). Sens geometryczny tej spirali jest więc łatwy do uchwycenia: każdy obrót o ustalony kąt oznacza wzrost promienia o ustalony procent, czyli o ustalony czynnik. Wzrost jest więc wykładniczy. Zaczynając od promienia r_0 przy kącie \varphi=0, mamy po n obrotach

r=r_0(1+kd\varphi)^n.

Skończony kąt \varphi możemy uzyskać jako złożenie bardzo wielu obrotów o mały kąt d\varphi. Będzie wówczas spełniony warunek \varphi=nd\varphi. Promień r będzie równy

r=r_0\left(1+\dfrac{k\varphi}{n}\right)^n \Rightarrow r=r_0  e^{k\varphi},

gdzie e oznacza podstawę logarytmu naturalnego (*). Wykładnicza zależność r(\varphi) oznacza, że obracając się w kierunku ujemnym, nigdy nie otrzymamy zera, a więc nasza spirala nie tylko rozwija się nieskończenie, ale i zwija w pobliżu zera nieskończenie wiele razy. Wynika to po prostu z faktu, że \varphi może przyjmować dowolne wartości rzeczywiste, dodatnie, ujemne (albo zero), a r zawsze będzie dodatnie. Nie można narysować otoczenia początku układu, bo tam spirala zwija się nieskończenie wiele razy.

logarithmicspiral

Łatwo jest też obliczyć długość spirali od punktu początkowego do danego kąta \varphi. Patrząc jeszcze raz na nasz nieskończenie mały odcinek spirali, widzimy, że całkowita jej długość jest proporcjonalna do r, a więc skończona:

ds=\dfrac{dr}{\cos\alpha}\Rightarrow s=\dfrac{r}{\cos\alpha}.

(*) Możemy sobie wyobrażać, że liczba n staje się coraz większa, ale tak aby nd\varphi=\varphi . Korzystamy z z granicy przy n\rightarrow\infty:

\lim_{n\rightarrow\infty}\left(1+\dfrac{x}{n}\right)^n=e^x.

Vincent van Gogh, Gwiaździsta noc: chaos i kosmos (czerwiec 1889)

W Słowniku komunałów Gustave’a Flauberta czytamy: „GENIUSZ: nie ma czego podziwiać, to tylko «neuroza»”. Niechęć i fałszywą wyższość dobrze myślącego obywatela, zmieszaną z udawanym współczuciem, znajdujemy w notatce z lokalnej gazety w Arles pod koniec roku 1888:

KRONIKA LOKALNA
Ubiegłej niedzieli pół godziny przed północą niejaki Vincent Vangogh, malarz, narodowości holenderskiej, zjawił się w domu publicznym nr 1, gdzie poprosił niejaką Rachel i wręczył jej …swoje ucho, ze słowami „proszę przechować ten cenny przedmiot”, a następnie odszedł. Policja, poinformowana o tym zajściu, którego sprawca z pewnością musiał być nieszczęsnym szaleńcem, udała się następnego ranka do mieszkania owego osobnika i zastała go śpiącego w swoim łóżku, bez żadnych prawie oznak życia.
Nieszczęśnik przyjęty został natychmiast do szpitala.

W słowach tych czuje się krzywy uśmieszek podrzędnego pismaka, który nie dostąpił jeszcze zaszczytu pisywania do szmatławca pod własnym nazwiskiem i chce nas zabawić pikantną anegdotą: wiadomo, ci artyści…
W wieku trzydziestu pięciu lat Vincent van Gogh z niezrozumiałym uporem trzyma się myśli, iż jest malarzem, choć nikt nie ceni jego płócien; nie ukończył żadnej szkoły ani nie radził sobie z typowymi ćwiczeniami rysunkowymi, powtarzano mu raczej, że się do tego nie nadaje; jest biedakiem, utrzymywanym przez niezamożnego brata, cierpi też na niemożliwą dziś do zdiagnozowania chorobę psychiczną z epizodami psychotycznymi.
Mieszczańskie społeczeństwo nie zna już właściwie pojęcia powołania: wybiera się jedynie lepszy bądź gorszy sposób zarabiania pieniędzy. Śmierć Boga dotknęła wszystkich, najbardziej może kościoły i ich funkcjonariuszy, którzy też coraz rzadziej mówią o powołaniu, rozumiejąc przez nie zazwyczaj wygodne i dostatnie życie bez kłopotów. Van Gogh, człowiek na swój sposób głęboko religijny, niezbyt cenił kapłanów i ich urzędowo administrowaną moralność.
Sto lat później Muzeum van Gogha w Amsterdamie odwiedzają każdego roku miliony widzów, w osobliwej pielgrzymce śledząc mozolne wykluwanie się artysty. Widziany na tle swoich współczesnych, nie robi specjalnego wrażenia, ulega modzie na japońszczyznę i impresjonizm, kopiuje tych, których podziwia: wielkich jak Jean François Millet czy Eugène Delacroix albo niezbyt dziś pamiętanych, jak Gustave Doré. Nie jest zręczny, nic nie przychodzi mu łatwo i nic też nie zapowiada wielkiej sztuki. Jeśli czymś się wyróżnia, to uważnością, dostrzeganiem rzeczy drobnych i ludzi niepozornych, biednych, zniszczonych, w czym nic dziwnego, bo sam jest jednym z nich. Pielgrzymka do świętego miejsca sztuki wznosi się spiralnie z piętra na piętro. Dopiero na ostatnim z nich, najwyższym, znajduje się garstka obrazów, które są racją istnienia tego muzeum i które zmieniły nasz sposób patrzenia. Ich autor spędził ten okres – ostatnie dwa lata życia – przeważnie w zakładach dla obłąkanych, z poczuciem zbliżającego się końca.
Romantyczny idea twórczego natchnienia, które niczym duch boży tchnie, kędy chce, do dziś zachowała aktualność. Oznacza to, że nic nie pomoże odmieniać słowo kreatywność przez przypadki i organizować rozmaite warsztaty, liczy się tylko powołanie, a tego nie zapewni żaden certyfikat ani dyplom. Jest ono równie rzadkie co zbawienie u kalwinów, jego znaki zaś nie zawsze łatwe do odczytania przez ludzi, których wzrok przysłania łuska. Nie znamy rzeczywistych źródeł geniuszu, nie jest on jednak z pewnością objawem choroby. Niewykluczone, że dzisiejsze antydepresanty pozbawiłyby van Gogha twórczej siły, ale nie znaczy to wcale, że wystarczy być chorym i nie przyjmować leków, aby stać się artystą podobnej miary.

Koniecznie chciałbym teraz namalować niebo gwiaździste. Często wydaje mi się, że noc jest jeszcze bogatsza w kolory niż dzień, zabarwiona najbardziej intensywnymi fioletami, błękitami i zieleniami.
Gdy zwrócisz na nie uwagę, zauważysz, że niektóre gwiazdy są cytrynowe, inne świecą różowo, zielono albo niebiesko jak niezapominajki. I jest chyba oczywiste, że aby namalować niebo gwiaździste, nie wystarczy porozmieszczać białe punkty na błękitnej czerni. (List do Willemien van Gogh 14 IX 1888)

…czy życie całe jest dla nas widoczne, czy też przed śmiercią znamy tylko jego jedną półkulę?
(…) nic o tym nie wiem, ale widok gwiazd zawsze mnie rozmarza w równie prosty sposób, jak czarne punkty wyobrażające na mapie miasta i wsie. Dlaczego, powiadam sobie, świetlne punkty na firmamencie miałyby być dla mnie mniej dostępne niż czarne punkty na mapie Francji?
Udając się do Taraskonu czy do Rouen wsiadamy do pociągu, kiedy wybieramy się do gwiazd, śmierć jest naszym sposobem lokomocji.
Jedno jest niewątpliwe w tym rozumowaniu: żywi nie możemy pojechać na gwiazdę, tak samo jak nie możemy wsiąść do pociągu umarli.
I w końcu nie wydaje się niemożliwe, żeby cholera, piasek w nerkach, suchoty, rak nie mogły być środkiem komunikacji niebieskiej, tak samo jak statek parowy, omnibus i pociąg są środkami komunikacji ziemskiej.
Umrzeć spokojnie ze starości znaczyłoby pójść do nieba pieszo. (List do Theo 9 albo 10 VII 1888)

Zapewniam cię, że jest mi tu dobrze, i na razie nie widzę powodu, dla którego miałbym zamieszkać w Paryżu albo w jego okolicy. Mam mały pokój oklejony szarozieloną tapetą, firanki są zielone, koloru wody, z motywem z bladych róż, które ożywiają cienkie kreski krwistej czerwieni. (…) przez okratowane okno widzę zamknięty kwadrat zboża – perspektywa jak u van Goyena; z rana widzę, jak nad tym polem wstaje słońce w całej swej chwale. (…) Sala, w której przebywa się w dni deszczowe, przypomina poczekalnię trzeciej klasy w jakimś zapomnianym od Boga miasteczku, tym bardziej że są tu szacowni wariaci, którzy zawsze chodzą w kapeluszu na głowie, w okularach, w stroju podróżnym i z laską w ręce – mniej więcej jak w kąpielisku nadmorskim; grają tu rolę podróżnych. (…)

Narysowałem wczoraj bardzo wielką ćmę, dość rzadką, zwaną trupia główka (w rzeczywistości Pawica gruszkówka, Saturnia pyri) w zdumiewająco dystyngowanych kolorach: czarnym, szarym, białym, cieniowaną z przebłyskami karminu bądź nieznacznie wpadającymi w oliwkową zieleń. (List do Theo, 23 V 1889)

 

papillon-de-nuitunnamed-2742px-vincent_van_gogh_-_emperor_moth_-_google_art_project

Tego ranka widziałem pejzaż z mego okna na długo przed wschodem słońca, świeciła jedynie Gwiazda Zaranna, która wydawała się bardzo wielka. (List do Theo, między 31 V a 6 VI 1889)

van-gogh-starry-night-469x376

Na stronie Moma

Próbowano odnaleźć na namalowanym niebie znane gwiazdozbiory, co się chyba tylko połowicznie udało i nie ma większego znaczenia. Świeci na nim Gwiazda Zaranna – Wenus i dziwny Księżyc: gdyby miało to być przed wschodem słońca, powinien mieć kształt pochylonej do tyłu litery C. Światła wioski są tego samego koloru co gwiazdy, to z pewnością nieprzypadkowe, tak samo jak nieprzypadkowe są dwa pionowe akcenty obrazu: płomienisty cyprys i wieża wiejskiego kościółka Saint Martin. W oczach van Gogha natura ważyła więcej niż ludzkie obrzędy.

Arystofanes wyśmiewał filozofię w osobie Sokratesa, co bamałuci tylko młodzieńców, szerząc bezbożność (jak wiemy, za to właśnie filozof skazany został na śmierć przez wypicie cykuty – satyryk po stronie siły to postać doprawdy ohydna). Owóż ta arystofanesowa kreatura Sokratesa naucza, że nie istnieje Zeus, a światem rządzą chmury.

– A któż to je zmusza, jeśli nie Zeus, by się ruszały i tłukły?
– Nie żaden Zeus, lecz powietrzny wir. (przeł. J. Ławińska-Tyszkowska)

Dla Greków kosmos był przeciwieństwem chaosu. Słowa kosmos – znaczącego tyle, co piękny ład, regularny porządek (z tego samego rdzenia mamy kosmetykę, czyli sztukę upiększania) – w odniesieniu do wszechświata użył Pitagoras. Chaos przerażał Greków, dlatego wir powietrzny albo atomy Demokryta były doktryną wywrotową, która burzy państwo i porządek. Napięcie między boskim ładem i niezliczonymi atomami, drobinami krążącymi i pulsującymi w próżni, przez długie wieki wydawało się nieusuwalne.

Niebo gwiaździste van Gogha to nie tylko dalekie światła, lecz także porywający wszystko spiralny wir. Uczeni komentatorzy zastanawiali się nad owymi spiralami. Van Gogh mógł gdzieś widzieć rysunki mgławic spiralnych, obserwowanych wówczas przez jeden tylko przyrząd na świecie, wielki teleskop lorda Rosse’a. Były one reprodukowane w niezliczonych książkach i czasopismach. Nikt nie rozumiał dobrze, czym są owe spirale ani skąd się biorą (tego drugiego nie wiemy zbyt dokładnie także i dziś). Nie wiedziano też, czy chodzi o zbiorowiska gwiazd, czy obłoki gazu, a może są to tworzące się nowe układy planetarne?

f3-large

Kształt spiralnych ramion wielu galaktyk bliski jest spirali logarytmicznej. To osobliwa krzywa, którą Jakob Bernoulli kazał wyryć na swoim nagrobku z napisem: resurgo eadem mutata – zmieniona odradzam się ta sama (wyryto mu jednak spiralę Archimedesa bez porównania banalniejszą).

logarithmic_spiral

Rysunek http://www.daviddarling.info/encyclopedia/L/logarithmic_spiral.html

Spiralę taką zatacza jastrząb, polując na zdobycz, którą stara się widzieć stale pod tym samym kątem do kierunku lotu – z tego powodu krzywa ta bywa nazywana spiralą równokątną. Aby dotrzeć do punktu środkowego, trzeba nieskończenie wielu okrążeń, choć droga przebywana przy tej okazji jest skończona. Spiralę taką zataczają ćmy wokół lampy, uczeni wyjaśniają to błędem nawigacji: zachowując stały kąt względem Księżyca ćma leci po linii prostej, zachowując natomiast stały kąt do lampy, zatacza śmiertelną spiralę.

Oli

Przekłady listów do Theo wg J. Guze, z niewielkimi zmianami i uzupełnieniami, datowanie wg http://vangoghletters.org/vg/letters.html.