Czemu rozkład Gaussa jest ,,normalny”? De Moivre, wzór Stirlinga i Laplace

Skąd się bierze wszechobecność rozkładu Gaussa? Jednym z powodów jest rozkład dwumianowy. Rozpatrzmy prościutki model. Przyjmijmy, że wzrost dorosłego mężczyzny warunkowany jest czterdziestoma genami w taki sposób, że każdy z nich może zwiększyć wzrost o 2 cm ponad pewne minimum albo nie zwiększyć. Zygota, z której powstaliśmy, wylosowała 40 genów i każdy z nich z prawdopodobieństwem p=\frac{1}{2} mógł dodać nam 2 cm wzrostu. Jeśli za minimum fizjologiczne uznamy 140 cm, to możliwy jest każdy wynik z przedziału (140, 220). Oczywiście, nie należy traktować tego przykładu dosłownie. Matematycznie oznaczałoby to 40 niezależnych losowań z prawdopodobieństwem sukcesu p. Rozkład liczby sukcesów wygląda wówczas następująco:

Dyskretny rozkład dwumianowy został tu przedstawiony z przybliżającym go rozkładem Gaussa. Naszym celem będzie zrozumienie, czemu takie przybliżenie działa, gdy mamy do czynienia z dużą liczbą prób.

Zacznijmy od samego rozkładu dwumianowego. Dla dwóch prób sytuacja wygląda tak (p – prawdopodobieństwo sukcesu, q=1-p – prawdopodobieństwo porażki):

Każda droga z lewa na prawo oznacza konkretny wynik. Wzdłuż drogi prawdopodobieństwa się mnożą, ponieważ są to niezależne próby (definicja zdarzeń niezależnych). Zeru sukcesów odpowiada prawdopodobieństwo q^2, dwóm sukcesom p^2. Jeden sukces możemy osiągnąć na dwa sposoby: sukces-porażka albo porażka-sukces, prawdopodobieństwa należy dodać, jeśli interesuje nas wyłącznie całkowita liczba sukcesów, a nie jej konkretna realizacja. Łatwo zauważyć związek z dwumianem Newtona

(p+q)^n=(p+q)(p+q)\ldots (p+q),

gdzie mamy n czynników. Każdy wynik to wybór jednego z dwóch składników nawiasu: p albo q. Mnożymy je kolejno przez siebie, co odpowiada losowaniom, a następnie dodajemy. Oczywiście suma wszystkich prawdopodobieństw równa jest 1. Składniki zawierające k sukcesów mają czynnik p^k. Wzór Newtona (znany zresztą przed Newtonem) daje nam

(p+q)^n=\displaystyle \sum_{k=0}^{n}{n\choose k}p^k q^{n-k}.

Prawdopodobieństwo k sukcesów jest równe

P(k)=\displaystyle {n\choose k}p^k q^{n-k}.

Jest to nasz punkt wyjścia. Przy dużych wartościach n obliczanie symboli Newtona było w XVIII wieku trudne, ponieważ występują tam silnie dużych liczb. Zwłaszcza w rejonie środka rozkładu obliczenia takie były kłopotliwe, ponieważ zostaje wiele czynników, które się nie skracają. Abraham de Moivre, francuski protestant zmuszony do emigracji z ojczyzny z przyczyn religijnych, spędził życie w Londynie, ucząc matematyki. Podobno jeździł po Londynie od ucznia do ucznia z kolejnymi kartkami wyrwanymi z Matematycznych zasad Newtona i w wolnym czasie zgłębiał treść tej masywnej księgi. De Moivre podał sposób przybliżania P(k) oraz wartości silni – to drugie przybliżenie nazywamy dziś wzorem Stirlinga od nazwiska drugiego matematyka, który w tym czasie zajmował się tym zagadnieniem.

Zaczniemy od P(k). Jeśli spojrzeć na histogram z obrazka rzuca się w oczy ogromna dysproporcja miedzy prawdopodobieństwami różnych wyników. Dlatego będziemy szukać przybliżenia nie dla P(k), lecz dla \ln P(k).

Wykres przedstawia histogram \ln P(k), a także przybliżającą go parabolę. Każdą przyzwoitą funkcję możemy przybliżyć rozwinięciem Taylora:

f(k)=f(k_0)+(k-k_0)f'(k_0)+\dfrac{1}{2!}(k-k_0)^2 f''(k_0)+\ldots.

W maksimum znika pierwsza pochodna, mamy więc

f(k)=f(k_0)+\dfrac{ (k-k_0)^2 f''(k_0)}{2}+\ldots.

Naszą funkcją jest

f(k)=\ln P(k)=\ln n!-\ln k!-\ln (n-k)! +k \ln p+(n-k) \ln q.

Potrzebujemy pochodnej z silni dla dużych wartości k oraz (n-k). Pochodna to przyrost funkcji odpowiadający jednostkowemu przyrostowi argumentu. Ponieważ

\ln k!=\ln 1+\ln 2+\ldots \ln k,

powinna ona być równa

\dfrac{d\ln k!}{dk}=\ln k.

Poniżej uzasadnimy to precyzyjnie, choć ostatni wzór powinien być zrozumiały intuicyjnie: nachylenie funkcji logarytmicznej stopniowo maleje, więc sumę można coraz lepiej przybliżać za pomocą pola pod krzywą.

Odpowiada to przybliżeniu

\ln k! \approx \displaystyle \int_{1}^{k} \ln t \, dt \Rightarrow \dfrac{d\ln k!}{dk}=\ln k.

Warunek na maksimum funkcji przybiera postać

\dfrac{d\ln P(k)}{dk}=-\ln k+\ln (n-k)+\ln p -\ln q =0 \Rightarrow k_0=np.

Druga pochodna równa jest

\dfrac{d^2 \ln P(k)}{dk^2}=-\dfrac{1}{k}-\dfrac{1}{n-k}=-\dfrac{1}{npq}.

Ostatnia równość daje wartość pochodnej w punkcie k=np. Nasze przybliżenie przybiera więc postać

P(k)=P(0) \exp\left(-\dfrac{(k-np)^2}{2npq}\right)+\ldots.

Jest to rozkład Gaussa o wartości średniej np oraz szerokości (odchyleniu standardowym) npq. Wartość P(0) można wyznaczyć z warunku normalizacji: pole pod naszą krzywą powinno być równe 1. Można ściśle pokazać, że przy dużych wartościach n wyrazy wyższych rzędów są do pominięcia przy obliczaniu prawdopodobieństw: różnice między parabolą a histogramem na wykresie dotyczą sytuacji, gdy prawdopodobieństwa są bardzo małe.

Przyjrzymy się teraz bliżej obliczaniu silni z dużych liczb. Zacznijmy od następującej funkcji zdefiniowanej jako całka:

g(t):=\displaystyle \int_{0}^{\infty}\exp(-\alpha t)\, dt,\alpha>0.

Różniczkując ją kolejno n razy po \alpha i kładąc na koniec \alpha=1, otrzymamy

n!=\displaystyle \int_{0}^{\infty} t^{n}\exp(- t)\, dx\equiv \Gamma (t+1).

Otrzymaliśmy funkcję gamma Eulera, która jest uogólnieniem silni, ponieważ zdefiniowana jest nie tylko dla wartości całkowitych n, lecz może być uogólniona na płaszczyznę zespoloną i określona wszędzie oprócz argumentów całkowitych ujemnych. Nam wystarczą tutaj wartości rzeczywiste dodatnie, szukamy przybliżenia dla dużych n. Zapiszmy funkcję podcałkową w postaci wykładniczej i zastosujmy rozwinięcie Taylora wokół maksimum, dokładnie tak jak powyżej dla funkcji P(k):

n!=\displaystyle \int_{0}^{\infty} \exp(n\ln t- t)\, dx\approx \exp(n\ln n-n)\int_{0}^{\infty} \exp\left(-\frac{(t-n)^2}{2n}\right) dt.

Wykres przedstawia przybliżenie gaussowskie oraz (na czerwono) wartości funkcji po wyłączeniu czynnika \exp (n\ln n-n). W przybliżeniu gaussowskim możemy rozszerzyć dolną granicę całkowania do -\infty, co nawet zmniejsza błąd przy niedużych wartościach n, a niczego nie psuje przy dużych wartościach n. Jeśli przeskalujemy funkcję gaussowską tak, aby miała jednostkową szerokość, porównanie wypadnie jeszcze lepiej.

 

Widzimy więc, że można ostatnią całkę wziąć po całej prostej. Jej wartość jest równa \sqrt{2\pi n}. Otrzymujemy wzór Stirlinga:

\ln n!\approx n\ln-n +\ln\sqrt{2\pi n}+O(1/12n).

Zaznaczyliśmy też wielkość następnego wyrazu w szeregu malejących potęg n. W wielu zastosowaniach można pominąć zupełnie całkę gaussowską i wnoszony przez nią wyraz \sqrt{2\pi n}. Jak się trochę popracuje nad dalszymi wyrazami rozwinięcia Taylora, można otrzymać i tę poprawkę 1/12n.

Pierre Simon Laplace rozwinął techniki szacowania wartości asymptotycznych całek. Jego wyprowadzenie wzoru Stirlinga było elegantsze, lecz rachunkowo trudniejsze (wymagało odwrócenia rozwinięcia w szereg). Laplace wykazał także, iż sumy zmiennych losowych zachowują się jak zmienne gaussowskie także w ogólniejszych sytuacjach niż ta przez nas rozpatrywana. Innymi słowy pierwszy zauważył, że zachodzi tzw. centralne twierdzenie graniczne. Ścisły dowód pojawił się znacznie później.

Skąd się wzięła liczba pi w rozkładzie Gaussa, czyli o niepojętej skuteczności matematyki w naukach przyrodniczych

Eugene Wigner, należał do „Marsjan”, jak nazywano w Stanach Zjednoczonych grupę niezwykle wybitnych uczonych z Węgier. Na pytanie Enrica Fermiego, dlaczego wysoce rozwinięte cywilizacje z kosmosu nie odwiedziły do tej pory Ziemi, Leo Szilard odpowiedział, że owszem, już tutaj są, ale sami siebie nazywają Węgrami. Była to niezwykła konstelacja talentów: Paul Erdős, Paul Halmos, Theodore von Kármán, John G. Kemeny, John von Neumann, George Pólya, Leó Szilárd, Edward Teller. Ukształtowały ich naukowo Niemcy, zwłaszcza Getynga i Berlin. Po dojściu nazistów do władzy uczeni ci z racji żydowskiego pochodzenia zmuszeni zostali do emigracji i w Stanach Zjednoczonych pracowali nad aerodynamiką, budową bomby atomowej i wodorowej, budową pierwszych komputerów, jak też dokonywali odkryć w matematyce czystej, jak najdalszych od zastosowań. Wigner był ekspertem w zastosowaniach teorii grup w mechanice kwantowej, laureatem Nagrody Nobla, a więc kimś, kto na co dzień stykał się z tym, że abstrakcyjna z pozoru matematyka znajduje wciąż nowe eksperymentalne potwierdzenia.

Słynny jest esej Wignera pt. Niepojęta skuteczność matematyki w naukach przyrodniczych. Zaczyna się on następująco:

Istnieje opowiadanie o dwóch ludziach, którzy przyjaźnili się ze sobą w czasie wyższych studiów, a którzy spotkawszy się, opowiadają sobie o swojej pracy. Jeden z nich zajął się statystyką i badał trendy społeczne. Pokazał on dawnemu koledze jeden ze swych artykułów. Artykuł rozpoczynał się, jak zwykle, uwagami na temat rozkładu Gaussa i autor wyjaśnił swemu rozmówcy znaczenie poszczególnych symboli dla sytuacji aktualnego społeczeństwa, dla przeciętnego społeczeństwa i tak dalej. Jego kolega okazał pewne niedowierzanie i nie był zupełnie pewny, czy przyjaciel nie żartuje sobie z niego. „Skąd ta twoja wiedza?” brzmiało jego pytanie. „I czym jest ten tu symbol?”. „Och”, odpowiedział statystyk, „to jest \pi”. „Co to jest?” „Stosunek obwodu koła do jego średnicy”. „No, teraz już twoje dowcipy zaszły za daleko”, rzekł na to kolega, „z całą pewnością społeczeństwo nie ma nic wspólnego z obwodem koła”. (przeł. J. Dembek)

Matematyka jest sztuką wyprowadzania wniosków, najlepiej nieoczywistych, z pewnych przyjętych założeń. W zasadzie nie możemy więc za jej pomocą otrzymać niczego istotnie nowego, co nie tkwiłoby niejako w tych założeniach. Jednak droga od np. podstawowych praw arytmetyki i definicji liczb pierwszych do sformułowania Wielkiego Twierdzenia Fermata i jego dowodu zajęła zajęła ludzkości parę tysięcy lat i przez ostatnie stulecia wielu wybitnych uczonych straciło całe lata na bezowocne próby. Jednak najbardziej zdumiewającym aspektem matematyki są jej zastosowania w innych naukach. Nie rozstrzygniemy tu pytania, czy kryje się w tym głęboka tajemnica, czy też w zasadzie rzecz jest trywialna (bo np. matematyka w gruncie rzeczy pochodzi z doświadczenia albo, jak wierzył Platon, świat zmysłowy stanowi jedynie niedoskonałą kopię świata idei, gdzie linie nie mają grubości, a sfery są zbiorami punktów równooddalonych od swego środka).

W zastosowaniach matematyki, takich jak statystyka albo fizyka, musimy przyjąć wiele dodatkowych założeń, które często są trudne do bezpośredniego zweryfikowania. Mimo to wiemy np., że rozkład Gaussa, krzywa dzwonowa, stosuje się nie tylko do rozkładu prędkości cząsteczek w gazie, ale i np. cen akcji albo wzrostu grupy ludzi (w dwóch ostatnich przypadkach lepsze wyniki daje rozpatrywanie logarytmu tych wielkości). Istnieją matematyczne powody wszędobylskości rozkładu Gaussa: jeśli dana wielkość jest sumą zmiennych losowych, to można oczekiwać, iż bedzie dążyć do rozkładu Gaussa, gdy liczba tych zmiennych staje się coraz większa i gdy są one od siebie niezależne.

Wróćmy teraz do anegdoty Wignera. Skąd wzięła się liczba \pi w rozkładzie Gaussa? Rozkład ten ma postać

p(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}},

gdzie \sigma jest parametrem opisującym szerokość krzywej: może ona być bardziej albo mniej rozłożysta. Poniważ opisuje prawdopodobieństwa, pole powierzchni pod krzywą musi być równe 1. Na wykresie \sigma=1.

Wartość p(0)  jest więc związana z \pi:

p(0)=0,39894\approx \dfrac{1}{\sqrt{2\pi}}.

Liczba \pi pojawia się tu dlatego, że pole powierzchni pod krzywą musi być równe 1. Inaczej mówiąc chodzi o wartość następującej całki (gdzie dla wygody pzbyliśmy się dwójki):

\displaystyle \int_{-\infty}^{\infty} e^{-x^{2}} dx=\sqrt{\pi}.

Całka nieoznaczona w tym wypadku nie wyraża się przez funkcje elementarne i obliczenie tej wartości wymaga pomysłu. Prawdopodobnie całkę tę pierwszy obliczył Pierre Simon Laplace (i to co najmniej na dwa sposoby). Prostszą metodę podał Denis Poisson, a my przedstawimy współczesne wariacje tej metody. Należy rozpatrzyć całkę dwuwymiarową po całej płaszczyżnie xy:

I^2= \displaystyle \iint e^{-x^2-y^2} dx dy=\left( \int e^{-x^2} dx\right)^2.

Zadanie sprowadza się do obliczenia objętości pod powierzchnią przypominającą (nieskończony) kapelusz z=e^{-x^2-y^2}.

Narysowaliśmy tylko jego środkową część. Inaczej mówiąc, jest to bryła powstająca z obrotu krzywej z=e^{-r^2} wokół osi z.

Objętość tej bryły możemy obliczyć dzieląc ją na walce o grubości dz i promieniu r^2=-\ln z:

I^2=-\displaystyle \int_0^1 \pi \ln z dz=\pi.

Możemy też podzielić naszą bryłę na wydrążone walce o grubości dr, promieniu r i wysokości z:

I^2=\displaystyle \int_0^{\infty} 2\pi r e^{-r^2}=\pi.

Ostatnią całkę oblicza się przez oczywiste podstawienie t=r^2.

Oba te rozwiązania sugerowałyby, że „nasze” \pi z rozkładu Gaussa ma jednak coś wspólnego z okręgami. W matematyce związki arytmetyki z geometrią są wszakże nieoczywiste: pokazywaliśmy przykłady szeregów Leibniza i Newtona prowadzących do liczby \pi (por. też tutaj). Także w naszym przypadku możemy sprowadzić problem do arytmetyki.

Rozkład Gaussa jest granicą rozkładu dwumianowego, czyli np. rozkładu liczby orłów (ktoś mniej patriotyczny niż ja mógłby rozważać liczbę reszek, ale my odrzucamy takie podejście) w serii rzutów monetą. Prawdopodobieństwa wyglądają wówczas następujaco:

Na histogramie przedstawiliśmy przypadek n=20 rzutów oraz stosowny rozkład Gaussa, który jest, jak widać całkiem dobrym przybliżeniem histogramu. Obliczmy prawdopodobieństwo, że w połowie rzutów otrzymamy orła – co odpowiada maksimum histogramu i krzywej Gaussa. Ponieważ prawdopodobieństwa wyrzucenia orła i reszki są równe, więc prawdopodobieństwo każdej serii jest równe iloczynowi: (\frac{1}{2})^n. Można przy tym tę połowę orłów uzyskać w rozmaitej kolejności – każdy konkretny wynik będzie wybraniem spośród zbioru n elementów podzbioru n/2 orłów. Można to zrobić na {n}\choose{n/2} sposobów (liczba kombinacji). Prawdopodobieństwo w środku naszego rozkładu będzie zatem równe (wzięliśmy n=2m):

P_m= \displaystyle {{2m}\choose{m}} \dfrac{1}{2^{2m}}.

Gdzie jak gdzie, ale w tym wyrażeniu nie ma chyba liczby \pi? Oczywiście, jest. Okazuje się, że

\displaystyle \lim_{m\rightarrow\infty} \sqrt{m}P_m=\dfrac{1}{\sqrt{\pi}}.

Inaczej mówiąc dla dużych wartości m mamy P_m\sim \frac{1}{\sqrt{\pi m}} – pojawia się pierwiastek z \pi, zmodyfikowany dodatkowym czynnikiem, który łatwo zrozumieć: rozkład dwumianowy przy rosnącym m coraz bardziej przypomina rozkład Gaussa, ale też staje się coraz szerszy, co skutkuje mniejszą wysokością, i tę właśnie zależność opisuje powyższy wzór.

W jaki sposób otrzymać ten wynik? Leonhard Euler w 1736 r. uzyskał przedstawienie funkcji sinus za pomocą nieskończonego iloczynu. Pomysł jest prosty. Każdy wielomian możemy przedstawić za pomocą iloczynu

f(x))=a(x-x_1)(x-x_2)\ldots (x-x_n),

gdzie x_1,x_2,\ldots, x_n to pierwiastki tego wielomianu, a jest stałą. Funkcja sinus jest też czymś w rodzaju wielomianu, tyle że ma nieskończenie wiele pierwiastków: 0, \pm\pi,\pm 2\pi,\ldots. Możemy zatem spróbować przedstawić ją następująco:

\sin x=x(1-\frac{x}{\pi}) (1+\frac{x}{\pi}) (1-\frac{x}{2\pi}) (1+\frac{x}{2 \pi}) \ldots.

Czynniki w nawiasach zapisane są tak, by dążyły do 1 wraz ze wzrostem numeru. Intuicja Eulera była trafna, przyglądając się temu rozwinięciu można uzyskać ciekawe wyniki, jak np.

\displaystyle \dfrac{\pi^2}{6}=1+\dfrac{1}{4}+\dfrac{1}{9}+\ldots.

Gdy podstawimy do tego iloczynu x=\pi/2, otrzymamy przedstawienie liczby \pi za pomocą nieskończonego iloczynu, tzw. wzór Wallisa. Nieco go przekształcając, można uzyskać naszą granicę \sqrt{m}P_m.

Kolejność historyczna była taka: najpierw John Wallis w roku 1655 odgadł swój wzór. Później w roku 1733 Abraham de Moivre udowodnił naszą równość. Jeszcze później, w 1736 r. Euler odkrył iloczyn nieskończony dla sinusa, w wieku XIX Karl Weierstrass pokazał, że pewna grupa wyjątkowo regularnych funkcji (funkcje całkowite) mają w istocie postać iloczynów.

Szczegół dotyczący P_m. Rozkład dwumianowy ma szerokość \sigma=\sqrt{m/2}, zatem związek de Moivre’a daje to samo co współczynnik \frac{1}{\sqrt{2\pi}\sigma} .

 

 

 

Adolphe Quetelet, krzywa dzwonowa i statystyczny człowiek (1835)

Był z wykształcenia matematykiem, z temperamentu organizatorem, lecz do historii przeszedł głównie dzięki swej niepohamowanej namiętności do stosowania metod statystycznych. Pragnął stworzyć statystyczną naukę o człowieku, opartą na rozmaitych szczegółowych spisach dotyczących narodzin, rozwoju, zdolności, karalności, chorób i zgonów ludnosci różnych obszarów czy grup. Jego dwutomowe dzieło z roku 1835 zatytułowane Sur l’homme et le développement de ses facultés, ou Essai de physique sociale („O człowieku i rozwoju jego zdolności, czyli zarys fizyki społecznej”) stało się szybko klasyczne. Quetelet wprowadził pojęcie statystycznego czy też przeciętnego człowieka (l’homme moyen), wyobrażając sobie, iż istnieje pewien idealny wzór, od którego poszczególni ludzie odchylają się za sprawą wielu różnych przyczyn. Pojęcie rozkładu statystycznego, który mieści całe spektrum badanej cechy, dopiero się kształtowało. Wcześniej  uczeni stosowali rozkłady statystyczne takie, jak rozkład Gaussa, do analizy błędów pomiarowych, gdy wiadomo, że mierzona wielkość przyjmuje pewną określoną wartość, a problemem jest jej ustalenie na podstawie obarczonych błędami pomiarów. Równolegle przebiegał społeczny proces uznania różnic między ludźmi za coś naturalnego, a nawet potrzebnego, nie za błąd w rozwoju czy niedostatek.

Jak to zwykle bywa w przypadku badań pionierskich, wiele wyników zostało potem zrewidowanych, niektóre stwierdzenia rażą dziś naiwnością. W swojej epoce był jednak Quetelet powszechnie uznawany za postać ważną, jego prace czytali uczeni tak różni, jak James Clerk Maxwell (który idee statystyczne zastosował do gazów) i Charles Darwin. Kontynuatorem prac Queteleta stał się kuzyn Darwina Francis Galton (to on ochrzcił rozkład Gaussa mianem rozkładu normalnego).

Znany powszechnie indeks masy ciała BMI (iloraz masy i kwadratu wzrostu) jest wynikiem obserwacji Queteleta, iż objętość ciała człowieka dorosłego nie jest proporcjonalna do sześcianu, lecz raczej do kwadratu wzrostu:

Gdyby człowiek rósł jednakowo we wszystkich wymiarach, ciężar w różnym wieku byłby proporcjonalny do sześcianu wzrostu. Obserwuje się jednak co innego. Wzrost masy jest mniej gwałtowny, z wyjątkiem pierwszego roku po urodzeniu, kiedy rzeczywiście na ogół obserwuje się powyższą proporcję. Potem jednak aż do okresu pokwitania ciężar ciała rośnie mniej więcej jak kwadrat wzrostu. (Sur l’homme, t. 2, s. 52)

Quetelet nie interesował się wszakże różnicami między ludźmi, starał się raczej odnaleźć typ idealny. Wskaźnik BMI zaczął być stosowany dopiero w drugiej połowie wieku XX, gdy problemem medycznym i ubezpieczeniowym w społeczeństwach zachodnich stały się nadwaga i otyłość.

W swym traktacie podał też Quetelet zaskakujący wzór na skłonność do przestępstwa y (mierzoną statystycznie) jako funcję wieku w latach x:

y=(1-\sin x)\,\dfrac{1}{1+2^{18-x}},

gdzie argument funkcji sinus podany jest w gradach: 100 gradów odpowiada kątowi prostemu. Wykres obserwowanej skłonności do przestępstwa wygląda u Qeteleta następująco:

źródło ilustracji: gallica.bnf.fr

Drugi wykres z płaskim obszarem szczytowym między trzydziestym a czterdziestym piątym rokiem życia dotyczy zdolności literackich. Wróćmy jeszcze do owej skłonności do przestępstwa.

Zależność Queteleta jest iloczynem dwóch funkcji: malejącej funkcji 1-\sin x w pierwszej ćwiartce (czyli czegoś zbliżonego do paraboli) oraz funkcji logistycznej, która opisuje szybki wzrost w okolicy x=18. Nb. krzywa logistyczna zastosowana została kilka lat później przez Pierre’a François Verhulsta, ucznia Quteleta, do modelowania ograniczonego wzrostu populacji, który zaczyna się wykładniczo (nieograniczone rozmnażanie), lecz osiąga naturalną barierę (np. brak pożywienia). Tutaj, w pracy Queteleta, krzywa logistyczna zdaje sprawę z osiągania dojrzałości przez człowieka, na dobre i złe. Oczywiście, nie powinniśmy zbyt serio traktować tego wzoru. Sam Quetelet w późniejszych latach ograniczał się do opisu danych statystycznych, nie upierając się przy żadnym wyrażeniu.

Wykres skłonności do przestępstw wg płci. Widzimy, że kobiety wkraczają później na ścieżkę kryminalną, lecz dłużej są aktywne.

Trwałym dorobkiem Queteleta okazało się stosowanie krzwej dzwonowej do opisu rozkładu statystycznego. Sam po raz pierwszy zastosował ją do statystyki obwodu w piersiach szkockich rekrutów. Jego dane wyglądały następująco:

Obwód w klatce piersiowej wyrażony jest w calach. Quetelet starał się dopasować do tych danych krzywą Gaussa, lecz w praktyce użył rozkładu dwumianowego z prawdopodobieństwami sukcesu/porażki 1/2 oraz liczbą prób równą 999 (tak, żeby mieć 1000 różnych wyników). Inaczej mówiąc, są to prawdopodobieństwa uzyskania k orłów w 999 rzutach monetą.

Jako uczeń Fouriera i Laplace’a wiedział dobrze, że rozkład dwumianowy dąży przy dużych wartościach liczby prób do rozkładu Gaussa. W ten sposób zaczęła się oszałamiająca kariera krzywej Gaussa w zastosowaniach statystycznych. W latach późniejszych przesadne stosowanie rozkładu Gaussa do wszelkich możliwych danych zaczęto nawet nazywać „quetelizmem” – bo, oczywiście, istnieją też inne rozkłady, choć w wielu sytuacjach właśnie rozkład Gaussa prawidłowo opisuje stan faktyczny.

Eudoksos i jego hippopede: początki greckiej astronomii matematycznej (pierwsza poł. IV w. p.n.e.)

Urodzony w Knidos, w Azji Mniejszej (dzisiejsza Turcja), Eudoksos syn Aischinesa był lekarzem, astronomem, geometrą i prawodawcą we własnym mieście – zestaw umiejętności zbliżony do tych, z których niemal dwa tysiące lat później słynął, choć w innych proporcjach, także Mikołaj Kopernik. Spośród wszystkich rozrzuconych po Śródziemnomorzu kolonii greckich w polityce, sztuce, filozofii nadal przodowały Ateny, które jednak wchodziły w fazę zmierzchu po złotym wieku. Na zewnątrz murów miejskich Platon, uczeń Sokratesa, założył swoją słynną Akademię. Jednym z jego uczniów był Eudoksos. Pisze Diogenes Laertios:

Kiedy miał bowiem dwadzieścia trzy lata i żył w trudnych warunkach materialnych, znęcony sławą sokratyków udał się do Aten wraz z lekarzem Teomedontem, na którego utrzymaniu pozostawał (a jak twierdzili niektórzy był jego kochankiem). Gdy wylądowali w Pireusie, zamieszkał tam i co dzień udawał się do Aten, gdzie słuchał wykładów sofistów, po czym wracał do swego mieszkania. Po upływie dwóch miesięcy wrócił do ojczyzny… (przeł. B. Kupis)

Był to początek licznych podróży Eudoksosa: spędził jakiś czas w Egipcie, w Kyzikos, na Sycylii, a także na dworze Mauzolosa (to na jego cześć wzniesiono pierwsze Mauzoleum) i znowu w Atenach. Był wybitnym matematykiem, jego teoria proporcji pozwoliła w sposób ścisły włączyć do matematyki liczby niewymierne, wskazuje się nieraz na jej podobieństwo z pracami Richarda Dedekinda i Karla Weierstrassa w drugiej połowie XIX wieku, kiedy także stanął przed matematykami problem umocnienia podstaw ich dyscypliny. Wiele wyników Eudoksosa trafiło później do Elementów Euklidesa.

Nas interesuje tutaj jedno konkretne odkrycie, a właściwie pewien błyskotliwy pomysł geometryczny Eudoksosa. Pamiętajmy, jesteśmy w IV w. p.n.e., nieznana jest jeszcze spora część geometrii, obserwacje astronomiczne rzadko bywają ścisłe, nie ma zresztą dokładnych zegarów, co w astronomii jest konieczne. Znamy natomiast wygląd nocnego nieba, znają go wszyscy. Wiemy, że gwiazdy krążą wokół obserwatora w rytmie doby gwiazdowej (nieco krótszej niż słoneczna). Łatwo to wyjaśnić: przymocowane są do sztywnej sfery, która wiruje w rytmie dobowym wokół Ziemi. Nietrudno też wyjaśnić roczny ruch Słońca na niebie: najwyraźniej okrąża ono w ciągu roku koło nachylone względem równika sfery niebieskiej. Punkt O to Ziemia, mała w porównaniu z kosmosem.

Podobny krok można uczynić i dla planet. Pojawia się tu wszakże komplikacja: otóż zazwyczaj poruszają się one z zachodu na wschód względem gwiazd, lecz od czasu do czasu zawracają na jakiś czas i w efekcie zakreślają na niebie pętlę albo zygzak.

Eudoksos wpadł na pomysł, jak taki ruch wsteczny, jak nazywają go astronomowie, dodać do „zwykłego” ruchu prostego. Potrzebne są dwie dodatkowe sfery poruszające się z taką samą prędkością kątową, lecz niemal przeciwnie. Tzn. gdyby osie obrotu obu tych sfer się pokrywały, oba obroty znosiłyby się wzajemnie. Gdy jednak osie te będą nachylone do siebie pod pewnym kątem, punkt na sferze – nasza planeta – zakreśli leżącą ósemkę, znak podobny do \infty. Mamy więc pewien ruch średni plus zakreślanie ósemki, którą starożytni nazywali hippopede – pęta końskie. Pętlę tego rodzaju zakładano koniom, aby nie oddaliły się samowolnie z miejsca parkowania.

Jako znakomity matematyk Eudoksos z pewnością potrafił udowodnić, że hippopede jest przecięciem sfery z wewnętrznie do niej stycznym walcem.

Możemy śmiało uznać, że tak narodziła się astronomia matematyczna, jak też i matematyczna fizyka, bo z czasem metody matematyki przeniknęły także do badań ziemskiej rzeczywistości. Eudoksos zainspirowany był naukami Platona, który sądził, że geometria ujmuje pewną rzeczywistość idealną, dostępną umysłowi i doskonalszą niż ta zmysłowa. Nie znamy reakcji Platona na pomysł Eudoksosa, znamy jednak reakcję jego ucznia Arystotelesa. Uznał on, że należy włączyć osiągnięcia Eudoksosa do wizji świata. Postąpił trochę tak, jak współczesny filozof, który zastanawia się nad sensem Wielkiego Wybuchu albo Standardowego Modelu Cząstek. Tę filozoficzną wersję modelu Eudoksosa znamy wszyscy jako zestaw koncentrycznych sfer: obraz panujący przez następne dwa tysiące lat.

 

Rysunek z Cosmographii Petera Apiana z XVI wieku, a więc książki współczesnej Kopernikowi. Tutaj można obejrzeć większe obrazki. W średniowieczu dodano do tego obrazka dodatkowe sfery: wody firmamentu ponad gwiazdami (zgodnie z Biblią, gdzie wody znajdowały się ponad niebem, aby mógł padać deszcz), a także zlokalizowano niebo teologiczne jako obszar na zewnątrz fizycznych sfer (Arystoteles sądził, że cały kosmos jest kulą i nie ma sensu mówić o obszarze na zewnątrz). U Apiana mamy: „Niebo empirejskie, siedzibę Boga oraz wszystkich zbawionych”.

W samej astronomii żywot hippopede i modelu kosmosu złożonego z koncentrycznych sfer był znacznie krótszy. Mimo całej błyskotliwości, hippopede nie wystarcza do opisania tego, co widzimy. Np. Mars jest wyraźnie znacznie jaśniejszy podczas ruchu wstecznego niż podczas ruchu prostego, co sugeruje zmiany odległości od Ziemi. Ponadto tory planet nie powtarzają się, więc nieuchronnie należy ten model skomplikować. Zrobili to Apoloniusz i Ptolemeusz. Najtrwalsza okazała się jednak idea matematycznego objaśnienia wszechświata. W tym sensie dzisiejsi badacze tacy, jak Roger Penrose czy Stephen Hawking, a wcześniej Johannes Kepler czy Isaac Newton, są kontynuatorami idei Eudoksosa, że za pomocą matematyki zrozumieć można wszechświat.

Na koniec przyjrzymy się geometrii modelu. Planeta obraca się najpierw o kąt \alpha od A do P_1 wokół osi z_1, a potem o taki sam kąt wokół osi z od P_1 do P.

Zrzutujmy ten ruch na płaszczyznę xy.

Otrzymujemy następującą sytuację: Okrąg, po którym porusza się P_1 zrzutowany na płaszczyznę xy jest elipsą. Punkt P'_1 możemy skonstruować jako rzut punktu P_0 na większym okręgu prostopadle do osi x na tę elipsę.  Trójkąt QP_1'P_0 jest prostokątny i obrót o kąt \alpha wokół osi z przeprowadza go w trójkąt RP'A. Punkt P' leży więc na okręgu przechodzącym przez punkty R,P',A, a kąt P'HA jest jako kąt środkowy równy 2\alpha. Ponieważ P' jest rzutem P na płaszczyznę xy, więc P leży na powierzchni bocznej walca o promieniu HA. Punkt P leży też oczywiście na sferze.

Joseph Louis Lagrange i „wektor Laplace’a-Rungego-Lenza” (1781)

Pisałem kiedyś o zasadzie Arnolda: „Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy”. Przykładem może tu być tzw. wektor Rungego-Lenza, niemal odkryty przez Jakoba Hermanna, a na pewno odkryty przez Josepha Lagrange’a.

Joseph Louis Lagrange jest mało znany poza kręgiem profesjonalnych matematyków i fizyków. Wiele jego dokonań weszło do języka nauki i stała się dobrem powszechnym, funkcjonującym często bezimiennie. Urodzony w Turynie jako Giuseppe Luigi Lagrangia, poddany królestwa Sardynii, syn urzędnika królewskiego francuskiego pochodzenia, odkrył w sobie talent matematyczny jako nastolatek-samouk. Ojciec stracił fortunę w ryzykownych spekulacjach i syn potrzebował płatnego zajęcia. Pod koniec życia uczony twierdził, że gdyby nie potrzeba zarabiania, pewne nie zostałby matematykiem. Zapewne przesadzał. Talent tej wielkości nie daje chyba możliwości wyboru. W każdym razie młody Lagrange zadziwił Leonharda Eulera, z którym zaczął korespondować na temat rachunku wariacyjnego. W wieku dziewiętnastu lat został też mianowany sostituto – „zastępcą” profesora matematyki w szkole artyleryjskiej w Turynie. Uczył tam młodzieńców starszych od siebie, artyleria była uczonym rodzajem wojsk – to ze szkoły artylerii Napoleon Bonaparte wyniósł swój szacunek do przedmiotów ścisłych. Niezbyt przedsiębiorczy i cichy Lagrange spędził w Turynie wiele lat. Dopiero w wieku trzydziestu lat dzięki protekcji Jeana d’Alemberta został powołany do Akademii Nauk w Berlinie w miejsce Eulera, który wolał carową Katarzynę II od Fryderyka II pruskiego. Piemontczyk spędził w Prusach dwie dekady, narzekając na chłody i pisząc wciąż nowe ważne prace. W Berlinie powstało jego największe dzieło Méchanique analitique (sic!), opublikowane w dwóch tomach już w Paryżu, gdzie spędził resztę życia. Tam podczas Rewolucji zajmował się wprowadzeniem metrycznego systemu miar oraz nowego kalendarza i nowego podziału doby. Metr zdefiniowano wtedy jako jedną czterdziestomilionową część południka paryskiego, lecz babiloński, sześćdziesiątkowy podział godzin i minut okazał się zbyt głęboko zakorzeniony i tutaj zmiany się nie przyjęły. Został też Lagrange pierwszym profesorem analizy w École polytechnique, elitarnej i bardzo nowoczesnej na swe czasy szkole wyższej, modelu dla licznych politechnik na całym świecie.

Książka Lagrange’a była, niemal równo sto lat po Zasadach matematycznych Isaaca Newtona, podsumowaniem dorobku Newtonowskiej mechaniki za pomocą metod analitycznych spod znaku Leibniza, Bernoullich i Eulera.

W książce tej nie znajdzie Czytelnik żadnych rysunków. Metody, jakie w niej wykładam, nie wymagają żadnych konstrukcji ani rozumowań geometrycznych bądź mechanicznych, lecz jedynie operacji algebraicznych poddanych regularnym i jednolitym procedurom. Ci, co kochają Analizę, z przyjemnością zobaczą, jak mechanika staje się jej kolejną gałęzią i będą mi wdzięczni za takie poszerzenie jej domeny.

Newton byłby zapewne wstrząśnięty lekturą dzieła Lagrange’a. Zwyciężyła w nim algebra, metody formalnego przekształcania równań. Algorytmy zwyciężyły z wyobraźnią, ponieważ do ich stosowania wystarczy trzymać się prostych reguł. W ten sposób druga zasada dynamiki stała się układem trzech (lub więcej, zależnie od problemu) równań różniczkowych. Zagadnienie trzech przyciągających się ciał – jeden z wielkich problemów epoki, wymaga dwunastu całkowań. Lagrange pokazał w jednej ze swych prac, jak z dwunastu potrzebnych całkowań, zostaje do wykonania tylko siedem. Osiągnięcia tego rodzaju musiały być elitarne, choć miały też szersze znaczenie. Wielkim problemem epoki ponewtonowskiej była stabilność Układu Słonecznego. Newton przypuszczał, że wzajemne przyciąganie planet doprowadzi z czasem do rozregulowania się kosmicznego zegara, co zresztą może leżeć w boskim planie stwórczym: jako gorliwy czytelnik i komentator Apokalipsy św. Jana traktował znaną nam postać świata jako przejściową, próbował nawet oszacować, kiedy nastąpi ponowne przyjście Chrystusa. Lagrange, a po nim Pierre Simon Laplace (obaj raczej indyferentni religijnie) podjęli zagadnienie stabilności Układu Słonecznego. Wyglądało na to, że system planetarny zmienia się jedynie okresowo i nie ma w nim jednokierunkowych zmian parametrów orbit takich, jak ich rozmiar czy mimośród – a zatem grawitacja nie musi prowadzić do katastrofy kosmicznej. Zagadnienie to okazało się zresztą bardziej skomplikowane, niż sądzili Lagrange i Laplace. Pokazał to pod koniec wieku XIX Henri Poincaré. W wieku XX zrozumiano, że w układach takich jak planetarne powszechnie występują zjawiska chaotyczne. Chaos nie jest jednak nieuchronny, niezbyt wielkie zaburzenia nie naruszają bowiem regularnego charakteru ruchu. Wielkim osiągnięciem dwudziestowiecznej mechaniki analitycznej jest teoria KAM, zwana tak od nazwisk jej twórców: Andrieja Kołmogorowa, Vladimira Arnolda (to jego nazwisko pojawia się w zasadzie Arnolda – sformułowanej oczywiście nie przez niego, lecz przez Michaela Berry’ego) i Jürgena Mosera.

Pokażemy, jak Lagrange wprowadził trzy stałe ruchu Keplerowskiego, które dziś nazywa się powszechnie wektorem (Laplace’a)-Rungego-Lenza. Było to w roku 1779, a dwa lata później zostało opublikowane w pracach Akademii Berlińskiej (w Oeuvres de Lagrange, t. 5, s. 127-133). Algebraiczne podejście Lagrange’a łatwo daje się uogólnić na przestrzeń n-wymiarową {\mathbb R}^n, dlatego tak je pokażemy, uwspółcześniając nieco zapis. Siła grawitacji jest odwrotnie proporcjonalna do kwadratu odległości od centrum, działa wzdłuż promienia wodzącego planety (wektor o współrzędnych x_i/r jest wektorem jednostkowym o kierunku promienia wodzącego). Przyspieszenie planety zapisane jako składowe kartezjańskie spełnia równania

\ddot{x}_i=-\dfrac{\mu x_i}{r^3},\,i=1\ldots n,

gdzie kropki oznaczają pochodne po czasie t, \mu jest iloczynem masy Słońca i stałej grawitacyjnej, a r=x_ix_i\equiv x_1^2+\ldots+x_n^2. Po powtarzających się wskaźnikach sumujemy – jest to konwencja sumacyjna Einsteina, którą uczony żartobliwie nazywał swoim największym odkryciem matematycznym (nigdy nie uważał się za matematyka, lecz za fizyka, któremu przyszło stosować nowe techniki matematyczne i który przychodził do matematyki z innej strony). Za czasów Lagrange’a i jeszcze długo później pisano po trzy równania dla współrzędnych x,y,z, co wydłużało (niepotrzebnie z naszego dzisiejszego punktu widzenia) prace. Sam zapis równań jako trzech składowych kartezjańskich nie był czymś oczywistym za życia Newtona, a więc nawet na początku XVIII wieku. Jakob Hermann uważał, iż wymaga to uzasadnienia.

Szukamy wyrażeń, kombinacji współrzędnych i prędkości, które pozostają stałe podczas ruchu (są to tzw. całki pierwsze). Znanym wyrażeniem tego rodzaju jest energia E będąca sumą energii kinetycznej i potencjalnej:

E=\dfrac{1}{2}\dot{x}_1^2-\dfrac{\mu}{r}.

Lagrange podał jeszcze inne całki ruchu Keplerowskiego (w istocie wystarczy, aby siła działająca ze strony centrum skierowana była radialnie, konkretna jej postać jest nieistotna):

L_{ij}=x_i\dot{x}_j-x_j\dot{x}_i.

Mamy tych całek tyle, ile możliwości wyboru dwóch różnych wskaźników spośród n, czyli {n\choose 2}=\frac{n(n-1}{2}. Naprawdę jest to Keplerowskie prawo pól w przebraniu, a właściwie prawo pól plus stwierdzenie, że ruch zachodzi w płaszczyźnie (to ostatnie bywa nazywane zerowym prawem Keplera, co jest o tyle słuszne historycznie, że od niego Johannes Kepler zaczął swoje badania – przyjął je jako założenie. Kopernik nie wiedział, że tory planet są płaskie!). Zawsze możemy wybrać współrzędne tak, żeby co najwyżej dwie były różne od zera podczas ruchu, np. x_1, x_2. W przypadku 3D trzy całki (L_{23},L_{31},L_{12}) zachowują się jak wektor, jest to wektor momentu pędu.

Trzecia grupa całek, odkryta przez Lagrange’a i właściwa tylko siłom grawitacji, daje się zapisać w postaci

\mu e_i=-\dfrac{\mu x_i}{r}+\dot{x}_j L_{ij},\,i=1 \ldots n.

Wartości e_i są stałe. Jest to wektor zwany powszechnie w literaturze wektorem Rungego-Lenza. Lepiej poinformowani piszą o wektorze Laplace’a-Rungego-Lenza. W istocie jest to wektor Lagrange’a, którego szczególny przypadek podał Jakob Hermann, o czym Lagrange zapewne nie wiedział. Nie interesował go zresztą fakt, że jest to wektor, ważne dla niego były trzy całki ruchu. Laplace zaczerpnął te całki z pracy Lagrange’a i spopularyzował je, umieszczając w słynnym traktacie o mechanice niebios: Traité de mécanique céleste. Laplace, który uczył się pracy naukowej, czytając Lagrange’a, nie zawsze był lojalny wobec starszego kolegi. Ten zaś był chyba zbyt dumny, aby stale jak kupiec podkreślać swoje zasługi, co czyniła większość uczonych, konkurujących między sobą o niewielką pulę płatnych posad. Całki Lagrange’a z dzieł Laplace’a czerpali później inni bądź też sami odkrywali je niezależnie, jak William Rowan Hamilton. Runge i Lenz trafili do historii przypadkiem, z lenistwa późniejszych autorów, zbyt zajętych bieżącą pracą, aby włożyć wysiłek w przypisy.

Zobaczmy jeszcze, jak z wektora Lagrange’a wynika kształt toru planety. Mnożąc obie strony ostatniego równania przez x_i i sumując po powtarzającym się wskaźniku i, otrzymujemy

r +e_i x_i=L^2, 

gdzie L^2= \frac{1}{2} L_{ij}L_{ij}.Jest to równanie stożkowej o mimośrodzie e=\sqrt{e_i e_i}.

Trzeba podkreślić, że dla Lagrange’a nie było to jakieś szczególne osiągnięcie, lecz jedynie punkt wyjścia do pracy nad bardziej skomplikowanym zagadnieniem, gdy do problemu Keplera dodamy jeszcze siłę zaburzającą, jak w rzeczywistym problemie ruchu planet przyciąganych nie tylko przez Słońce, ale także przez inne planety.

Pokażemy jeszcze powyższe wyniki w zapisie wektorowym. Mamy wówczas

{\bf \ddot{r}}=-\dfrac{\mu {\bf r}}{r^3}.

Moment pędu równa się

{\bf L = r\times\dot{r}},

a wektor Lagrange’a:

\mu {\bf e}=-\dfrac{\mu {\bf r}}{r}+{\bf \dot{r}\times L}.

Mnożąc obie strony skalarnie przez {\bf r}, otrzymamy

r+{\bf e\cdot r}=\dfrac{L^2}{\mu}.

Uwaga techniczna. Łatwo sprawdzić, że podane wielkości są całkami pierwszymi, trudniej było je oczywiście odgadnąć. Kluczem jest tutaj obliczenie pochodnej po czasie z wektora jednostkowego, co Lagrange robi pozornie bez powodu, to znaczy powód wyjaśnia się po chwili. Mamy bowiem

\dfrac{d}{dt}\left(\dfrac{x_i}{r}\right)=\dfrac{\dot{x}_i r-\dot{r} x_i}{r^2}=\dfrac{x_jL_{ji}}{r^3}.

Korzystamy z faktu, że r\dot{r}=x_i\dot{x}_i (jest to zróżniczkowane tw. Pitagorasa: r^2=\sum_i x^2_i). Postać wektorowa jest przejrzysta, lecz ograniczona do {\bf R}^3.

 

 

Louis Bachelier: Teoria spekulacji (1900)

Louis Bachelier był o dziewięć lat starszy od Einsteina. Prawdopodobnie nigdy się nie zetknęli i nie wiedzieli, że ich badania mają ze sobą coś wspólnego. Pierwszy badał ceny akcji na giełdzie, drugi – podstawowe prawa fizyki. Obaj stosowali metody rachunku prawdopodobieństwa. Na początku XX wieku podejście takie było awangardowe, zdarzenia losowe wydawały się marginesem dobrze naoliwionej i przewidywalnej machiny świata. Machina ta jest jednak zbyt złożona i zbyt wielka, abyśmy potrafili wyobrazić sobie wszystkie jej trybiki jednocześnie. Nie sposób np. przewidzieć ruchu cząstek w gazie, gdyż jest ich zbyt wiele i nie znamy dokładnie ich położeń i prędkości, a w dodatku zderzenia, które są nadwrażliwe na warunki początkowe, stale „tasują” owe położenia i prędkości. (Z podobnego powodu nigdy nie uda się obliczyć, jaka będzie pogoda za rok.) Także giełda zachowuje się w sposób przypadkowy:

Niezliczone są okoliczności, które mogą wpływać na ruchy giełdy: zdarzenia przeszłe, obecne, bądź tylko przewidywane, nie mając często widocznego związku z jej zachowaniem, wpływają jednak na notowania. Obok tych przyczyn niejako naturalnych wpływ mają także przyczyny sztuczne: giełda reaguje na samą siebie i bieżące jej ruchy są nie tylko funkcją ruchów uprzednich, ale także jej obecnego stanu. Określenie tych ruchów zależy od nieskończenie wielu czynników, nie można tu więc mieć nadziei na matematyczną przewidywalność. Sprzeczne opinie na temat tych zmian są tak podzielone, że kupujący liczą na wzrost cen, sprzedający zaś na ich spadek.

Tymi słowami zaczyna się praca doktorska Bacheliera, zatytułowana  Théorie de la spéculation, czyli „Teoria spekulacji”, obroniona na Sorbonie w roku 1900. Opiekunem pracy był Henri Poincaré, matematyk, fizyk, filozof, uczony uniwersalny, który rozumiał, że matematyka powinna sięgać poza swe tradycyjne obszary zastosowań. Rzecz była pionierska, choć z czysto matematycznego punktu widzenia Bachelier nie osiągnął zbyt wiele. Rachunek prawdopodobieństwa nie miał wówczas ścisłych podstaw aksjomatycznych, te zapewnił mu dopiero Andriej Kołmogorow w latach trzydziestych. Kołmogorow cytował zresztą Bacheliera w odróżnieniu od jego francuskich kolegów. Kariera naukowa Bacheliera nie ułożyła się zbyt dobrze. Przed pierwszą wojną światową zajmował kiepsko płatną posadę wykładowcy na Sorbonie, potem jako szeregowy żołnierz brał udział w wojnie. Dopiero w 1927 toku udało mu się zostać profesorem w prowincjonalnym Besançon. Dziś nazywany założycielem matematyki finansowej, za życia pozostawał niezauważony. To zresztą typowy los pionierów w nauce. Ważną rolę w tłumieniu nowatorstwa odgrywają granice dyscyplin: Bachelier pojawił się zbyt wcześnie, by docenili go ekonomiści. Pół wieku później jego doktorat z uznaniem czytali późniejsi laureaci ekonomicznych Nagród im. Nobla. Słynny model Blacka-Scholesa dla ceny opcji mógłby w zasadzie powstać już przed pierwszą wojną światową, praca Bacheliera po niewielkich zmianach zupełnie by do tego wystarczyła. Trudność leżała tu nie po stronie matematyki, lecz ekonomii. Inaczej było w przypadku fizyki: tam prace Einsteina i Smoluchowskiego zostały szybko zaakceptowane. Być może czas potrzebny był w tym przypadku na pogodzenie się z myślą, że procesy zachodzące w ekonomii nie różnią się diametralnie  od zjawisk fizycznych. Być może po prostu język prawdopodobieństw i statystyk wszedł na trwałe do myślenia naukowego.

Bachelier wyobrażał sobie, że istnieje jakaś fundamentalna cena akcji, od której z czasem odchyla się cena rzeczywista. Jego rozważania dotyczyły odchyleń od tej wartości fundamentalnej. Przyjmował, że ich rozkład prawdopodobieństwa dla danego czasu t opisany jest słynną krzywą dzwonową Gaussa:

p(x,t) dx=C(t)\exp{({-a(t)^2 x^2})} dx,

gdzie p(x)dx jest prawdopodobieństwem znalezienia ceny w niewielkim przedziale (x,x+dx). Inaczej mówiąc, pole pod tą krzywą ma sens prawdopodobieństwa. Bachelier napisał też równanie, jakie powinny spełniać funkcje p(x,t). Zakładając, że ruchy naszej akcji w ciągu czasu t_1 i potem w ciągu czasu t_2 są niezależne statystycznie, mamy następujące równanie

p(x,t_1+t_2)=\displaystyle{\int p(x-y,t_2)p(y,t_1) dy. }

Sens tego wyrażenia jest następujący: prawdopodobieństwo, że cena w czasie t_1 odchyli się o y od początkowej wartości to p(y,t_1); prawdopodobieństwo, że w czasie t_2 cena przejdzie od wartości y do x jest równe p(x-y,t_2). Prawdopodobieństwa te mnożymy, ponieważ zdarzenia są niezależne, następnie sumujemy po wszystkich wartościach y, czyli całkujemy. Dziś równanie to nazywamy równaniem Chapmana-Kołmogorowa, a operację tworzenia z dwóch rozkładów prawdopodobieństwa trzeciego – splotem. Splatając dwie krzywe Gaussa, otrzymujemy trzecią krzywą Gaussa, przy czym spełniona musi być zależność:

\dfrac{1}{a(t_1+t_2)^2}=\dfrac{1}{a(t_1)^2}+\dfrac{1}{a(t_2)^2}.

Łatwo stąd zauważyć, że 1/a^2 powinno być proporcjonalne do czasu. Ostatecznie otrzymujemy dla funkcji p(x,t) wyrażenie

{\displaystyle p(x,t)=\dfrac{1}{\sqrt{4\pi kt}}\exp{\left(-\dfrac{x^2}{4kt}\right)}.}

Gęstość prawdopodobieństwa ceny akcji rozpływa się z czasem coraz szerzej. Współczynnik k określa, jak szybko. Wariancja naszego rozkładu równa jest 2kt. Mamy tu analogię ze zjawiskiem dyfuzji.

I nie jest to przypadek, gęstość prawdopodobieństwa spełnia bowiem równanie dyfuzji:

\dfrac{\partial p(x,t)}{\partial t}=k\dfrac{\partial^2 p(x,t)}{\partial t^2}.

Te samo równanie opisuje przewodnictwo cieplne, co badał Joseph Fourier. W nowoczesnej matematyce finansowej stosuje się rozkład Gaussa nie do wartości ceny, lecz do wartości jej logarytmu. Usuwa to natychmiast kłopotliwą obiekcję, jaką można mieć do rozważań Bacheliera: rozkład Gaussa jest niezerowy dla każdego x, więc cena dowolnej akcji mogłaby spaść poniżej zera z niezerowym prawdopodobieństwem.

 

Problem Keplera: Planety poruszają się po okręgach

Jednym z najważnieszych wątków w historii nauk ścisłych było badanie ruchów planet. Starożytni i Kopernik starali się je przedstawić jako złożenie jednostajnych lub prawie ruchów po okręgach. Doskonała machina kosmosu powinna być swego rodzaju majstersztykiem, czyli działającym dowodem umiejętności Majstra, który ją stworzył. Johannes Kepler włączył do tych rozważań nową, barokową wizję świata i estetykę. W sfery niebieskie wpisane zostały elipsy, a kosmos stał się dynamiczny, dopuszczalne było teraz przyspieszanie i zwalnianie ruchu, geometria pożeniona została z fizyką. Dopiero jednak Isaac Newton podał matematyczne wyjaśnienie fizyki ruchu planet: działa na nie ze strony Słońca siła grawitacji odwrotnie proporcjonalna do kwadratu odległości. Wyjaśnił w ten sposób odkryte przez Keplera prawidłowości za pomocą siły, która w tajemniczy sposób oddziaływała poprzez próżnię. Można powiedzieć, że dalszy rozwój fizyki to dzieje przyzwyczajania się do prawa ciążenia Newtona. Okazało się one niezwykle precyzyjne i płodne, dopiero w 1915 r. Albert Einstein zaproponował lepszą, to znaczy bliższą obserwacjom teorię grawitacji.

Także spora część matematyki po Newtonie dotyczyła mechaniki niebios, czyli rozmaitych ruchów pod wpływem siły ciążenia. Problemem Keplera nazywają matematycy zagadnienie ruchu wokół nieruchomego centrum pod działaniem siły odwrotnie proporcjonalnej do kwadratu odległości. Jest to zerowe przybliżenie dla Układu Słonecznego: gdy pominiemy siły grawitacji pomiędzy planetami i innymi małymi ciałami tego Układu. Przyspieszenie planety \vec{a} jest równe

\vec{a}=-\dfrac{\vec{r}}{r^3},

gdzie \vec{r} jest zależnym od czasu położeniem i pominęliśmy nieistotne dla matematyka stałe. Oczywiście rozwiązania tego równania są doskonale znane. Jak się jednak okazuje, wciąż można coś nowego na ich temat powiedzieć. Korzystamy tu z pracy Jespera Göranssona z roku 2015, na którą zwrócił uwagę John Baez. Rzecz jest tym bardziej interesująca przez to, że Göransson nie jest chyba akademickim uczonym, lecz amatorem w ściśle etymologicznym znaczeniu słowa, czyli miłośnikiem (nie mylić z amatorszczyzną, którą można spotkać bez trudu i na uczelniach).

Rozwiązaniami problemu Keplera są ruchy po elipsach, parabolach bądź hiperbolach – zależnie od znaku całkowitej energii E (v jest prędkością cząstki):

E=\dfrac{v^2}{2}-\dfrac{1}{r}.

Zajmiemy się poniżej przypadkiem eliptycznym, gdy energia jest ujemna. Zamiast opisywać zależność położenia od czasu t wprowadzimy nową zmienną u, która spełnia równanie

\dfrac{dt}{du}=r.

Wszystkie orbity elipityczne mają u nas okres 2\pi, zarówno gdy używamy czasu t, jak i przy użyciu „czasu” u. Gdy planeta jest bliżej centrum u biegnie szybciej. Możemy ruch planety opisać podając czterowymiarowy wektor (t,\vec{r}). Oznaczmy prędkości mierzone wzgledem nowego czasu primami. Równanie energii przybiera postać

(x')^2+(y')^2+(z')^2+(t'-1)^2=1.

Koniec wektora czterowymiarowej prędkości (t',\vec{r'}) leży na sferze S^3 o środku (1,0,0,0). Narysowaliśmy sferę S^2, pomijając zmienną z'. Okazuje się, że możliwe ruchy naszego punktu są kołami wielkimi w S^3, tzn. kołami o promieniu 1. Koła wielkie są najkrótszymi drogami łączącymi punkty na sferze, z tego powodu wybierają je samoloty na długich trasach – dlatego np. lecąc z Londynu do Seattle, przelatujemy nad Grenlandią. Kiedy się spojrzy na globus, widać, że to ma sens. A więc wszystkie ruchy w problemie Keplera odpowiadają kołom wielkim w przestrzeni prędkości i odbywają się ze stałą jednostkową prędkością. Inaczej mówiąc, „czas” u jest kątem mierzonym ze środka sfery. Narysowaliśmy jedno z takich kół wielkich, nachylone pod kątem \alpha do równika. Gdy kąt \alpha=0, planeta zakreśli okrąg w płaszczyźnie xy. Gdy kąt \alpha=\frac{\pi}{2}, planeta będzie się poruszać wzdłuż osi x, to także jeden z możliwych ruchów: spadanie wprost na centrum. Mówiliśmy o obrotach w płaszczyźnie ty. W czterowymiarowej przestrzeni mamy sześć możliwych płaszczyzn i dowolny obrót czterowymiarowy przeprowadza koło wielkie w jakieś inne koło wielkie. Ruchy planety mają więc symetrię czterowymiarowej grupy obrotów SO(4). Możemy więc powiedzieć, że planeta zawsze porusza się jednostajnie po okręgu na sferze S^3, a elipsy, które obserwujemy, wynikają z rzutowania czterowymiarowej czasoprzestrzeni na przestrzeń trójwymiarową. Wektor prędkości (x',y',z') zakreśla elipsę wynikającą wprost z rzutowania.

Łatwo pokazać, że położenia planety leżą na elipsie o mimośrodzie e związanym z kątem \alpha związkiem

e=\sin\alpha.

Ta elipsa jest przesunięta o e tak, że początek układu (centrum siły, Słońce) jest w jej ognisku.

„Nowy czas” u jest w istocie znaną od czasów Keplera anomalią mimośrodową.

Jest to szczególna konstrukcja: gdy planeta P zakreśla elipsę, to punkt P', jej swoisty cień, zakreśla okrąg jednostkowy. Kąt u związany jest z fizycznym czasem t równaniem Keplera:

t=u-e\sin u.

Odległość planety od Słońca dana jest prostym równaniem oscylacyjnym:

r=1-e\cos u.

Fakt ten odkrył kiedyś Kepler podczas swej „wojny z Marsem”. Göransson pokazał też analogiczne konstrukcje dla energii dodatniej i zerowej. W pierwszym przypadku ruch odbywa się po hiperboloidzie z metryką Minkowskiego (grupą symetrii jest grupa Lorentza), w drugim po paraboloidzie (grupą symetrii są izometrie euklidesowe).

 

 

Newton, Leibniz i liczba pi z szeregu Fouriera

Pisałem niedawno o szeregach odkrytych przez Leibniza i Newtona, a związanych z liczbą \pi. Oba te szeregi można łatwo powiązać ze sobą za pomocą rozwinięcia Fouriera. Kiedyś już pisałem o Josephie Fourierze i jego nieśmiertelnym wynalazku. Tutaj pokażemy tylko, jak to się wiąże z szeregami Leibniza:

\dfrac{\pi}{4}=1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\ldots

i Newtona:

\dfrac{\pi}{2\sqrt{2}}=1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}+\ldots.

Rozwinięcie w szereg Fouriera stosuje się do funkcji okresowych. Weźmy np. funkcję f(x)=x w przedziale x\in (-\pi,\pi).

Możemy zrobić z niej funkcję okresową powtarzając jedynie zęby piły na kolejnych przedziałach. Funkcja ta jest nieciągła na końcach przedziałów, ale to nie szkodzi. Idea Fouriera polega na przybliżeniu dowolnej funkcji f(x) nieskończoną sumą sinusów i cosinusów o coraz mniejszych okresach. W naszym przypadku okresem f(x) jest 2\pi, a funkcja jest nieparzysta, jak sinus. Szukamy więc rozwinięcia następującej postaci:

{\displaystyle f(x)=\sum_{i=1}^{\infty}a_{n}\sin nx}.

Żeby znaleźć wartości współczynników rozwinięcia, mnożymy obie strony przez \sin mx. Ponieważ całka po okresie z iloczynu dwóch sinusów znika, więc z prawej strony przeżywa tylko wyraz n=m (*):

{\displaystyle \int_{-\pi}^{\pi} f(x)\sin mx dx =a_m \int_{-\pi}^{\pi} \sin^2 mx dx=a_m \pi}.

Ostatnia równość po prawej stronie wynika stąd, że kwadrat sinusa scałkowany po wielokrotności okresów daje \frac{1}{2} razy długość przedziału całkowania.
W naszym przypadku

x=2\left(\dfrac{\sin x}{1}-\dfrac{\sin 2x}{2}+\dfrac{\sin 3x}{3}+\ldots\right),

gdzie cały czas ograniczamy się do przedziału (-\pi,\pi). Proszę zobaczyć, co otrzymamy, biorąc coraz większe liczby składników sumy.


Widać gołym okiem, że szereg jest zbieżny oprócz może końców przedziału, gdzie nasza funkcja ma skok.
Teraz wystarczy wziąć dwie wartości argumentu. Dla x=\frac{\pi}{2} otrzymamy szereg Leibniza, dla x=\frac{\pi}{4} – szereg Newtona. Warto zauważyć, że jesteśmy daleko od końców przedziału, gdzie mogą być kłopoty ze zbieżnością. Oczywiście Joseph Fourier to już XIX wiek, czyli matematyka bogatsza o 150 lat rozwoju od czasów Leibniza i Newtona. Najprostszy znany mi wykład o szeregach Fouriera znaleźć można w rozdz. 50 t.1 Wykładów Feynmana.

(*) Wynika to z tożsamości:

2\sin mx\sin nx=\cos(n-m)x-\cos(n+m)x.

Całka z cosinusa po okresie równa jest zero, więc tylko pierwszy wyraz po prawej stronie dla m=n przeżywa całkowanie.

Jakob Hermann pisze do Johanna Bernoulliego na temat ruchu planet, 12 lipca 1710 r.

Ulmenses sunt mathematici – mieszkańcy Ulm to matematycy – głosiło stare porzekadło. Znamy jednego matematyka z Ulm Johannesa Faulhabera, który miał kontakty z Keplerem i być może z Kartezjuszem. Słynna ogrzewana komora, w której rozmyślał francuski filozof pewnej jesieni, mieściła się w Neuburgu niezbyt oddalonym od Ulm. No i w Ulm urodził się Albert Einstein, lecz rodzina rok później się przeprowadziła i uczony jako człowiek dorosły nigdy potem nie odwiedził już swego miasta rodzinnego.

Prawdziwą kolebką matematyków była natomiast leżąca niezbyt daleko od Ulm Bazylea. Stąd pochodziła rozgałęziona rodzina Bernoullich, a także Leonhard Euler i Jakob Hermann. Protoplastą naukowego rodu był Jakob Bernoulli, to od niego uczyli się matematyki jego brat Johann oraz Jakob Hermann. Johann z kolei był ojcem wybitnego Daniela i nauczycielem genialnego Eulera. Ponieważ posad dla matematyków nie było w Europie wiele, więc wszyscy ci matematycy sporo podróżowali. Dzięki bazylejskim matematykom rachunek różniczkowy i całkowy Leibniza stał się podstawą nowożytnej matematyki.

Drugim wielkim zadaniem uczonych od końca XVII wieku stało się przyswojenie osiągnięć Isaaca Newtona. Matematyczne zasady filozofii przyrody zawierały rewolucyjną fizykę przedstawioną za pomocą indywidualnego języka matematycznego, stworzonego przez autora. Nie było w historii nauki traktatu tak oryginalnego zarówno pod względem treści fizycznej, jak i matematycznej. Toteż jego zrozumienie i opanowanie zajmowało całe lata nawet wybitnym uczonym. Na kontynencie panował matematyczny idiom Leibniza i twierdzenia Newtona tłumaczono niejako na tę zrozumiałą wśród uczonych symbolikę.

Jakob Hermann pierwszy podał różniczkowe sformułowanie II zasady dynamiki. Miało ono u niego postać

G=M dV: dT,

gdzie G,M oznaczały siłę i masę, a dV, dT – różniczki prędkości i czasu. Zapis ten pojawił się dopiero na 57 stronie jego traktatu Phoronomia (1716) i odnosił się do siły ciężkości zależnej od położenia. Oczywiście, Newton już w 1687 r. rozważał takie siły, ale wyłącznie w postaci geometrycznej. Jego II prawo brzmiało: „Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.” Newton miał na myśli zmiany pędu ciała w pewnym krótkim czasie. Jednym problemem tego sformułowania była kwestia opisywania zmian w czasie, drugim problemem był wektorowy charakter siły: ilość ruchu, pęd, zmienia się w kierunku przyłożonej siły.

Pokażemy, jak Hermann rozwiązał problem ruchu ciała przyciąganego siłą odwrotnie proporcjonalną do kwadratu odległości od nieruchomego centrum. Zwolennicy Leibniza mieli zastrzeżenia do Newtonowskiego dowodu tego faktu, zbyt szkicowego. Pragnęli wyraźnego wykazania, że tylko stożkowe (albo część linii prostej) mogą być torem ciała. Opisywałem kiedyś rozwiązanie tego problemu podane w XIX wieku przez Williama Rowana Hamiltona.

Wyobrażamy sobie przyciągane przez centrum S ciało zakreślające krzywą CD. Jego ruch w nieskończenie krótkim czasie dt można przedstawić jako sumę wektorową ruchu bezwładnego od C do E oraz spadania od E do D wzdłuż kierunku siły w punkcie C, tzn. odcinki SC i DE są równoległe. Zmiana współrzędnej x w ruchu bezwładnym byłaby równa dx. Efekt działania siły przyciągającej to różniczka drugiego rzędu ddx (co później zapisywano d^{2}x). Oczywiście do ddx wchodzi tylko x-owa składowa siły.

Dziś narysowalibyśmy to tak, Hermann odnajduje trójkąty podobne na swoim rysunku i dochodzi do wniosku, że

ddx \propto F\dfrac{x}{r} dt^2.

Pole SCD zakreślane w czasie dt można przedstawić jako pole trójkąta o bokach [x,y] oraz [dx,dy], a więc jest ono równe połowie pola równoległoboku dt\propto y dx-x dy.
Ostatecznie różniczkę ddx możemy zapisać następująco (siła jest odwrotnie proporcjonalna do kwadratu odległości):

-a ddx=\dfrac{x}{r^3}(y dx-x dy)^2,

gdzie a jest stałą proporcjonalności. Naszym zadaniem jest znalezienie równania krzywej.
Całką tego równania jest

a dx=\dfrac{y}{r}(ydx-xdy).

Dzieląc obustronnie przez x^2 i całkując ponownie, otrzymujemy

-\dfrac{a}{x}+c=-\dfrac{r}{x}\;\Rightarrow\; a-cx=r,

gdzie c jest stałą całkowania. Jest to równanie stożkowej (po obustronnym podniesieniu do kwadratu otrzymamy wielomian kwadratowy w zmiennych x,y).

Postępowanie Hermanna jest pomysłowe, choć całkowania są nieintuicyjne. Można jednak, jak zawsze, sprawdzić je, idąc od końca do początku, tzn. wykonując dwa kolejne różniczkowania. Tak naprawdę sztuka rozwiązywania równań różniczkowych jest często zamaskowanym odgadywaniem całek. Różniczkowania wynikają z reguły Leibniza dla iloczynu d(uv)=v du+u dv.
W naszym przypadku mamy np. dla drugiego równania

d\left(\dfrac{y}{r}\right)=\dfrac{rdy-ydr}{r^2}=\dfrac{r^2 dy-y rdr}{r^3}.

Pamiętając, że r^2=x^2+y^2, mamy rdr=xdx+ydy. Itd. itp. rachunki „od końca” są łatwe. W pierwszym całkowaniu przyjęliśmy stałą całkowania równą zeru, co nie zmniejsza ogólności wyniku, bo Hermann zakłada, iż oś Sx jest osią toru planety, tzn. przecięcie z osią x z lewej strony punktu S następuje w peryhelium albo aphelium, czyli przy y=0 powinno być dx=0.
Johann Bernoulli, który miał dość nieznośny charakter (nigdy nie dość wypominania mu, jak to konkurował ze swym synem Danielem) odpowiedział wybrzydzaniem na procedurę Hermanna i przedstawił swoją ogólniejszą, opartą na innym podejściu.

Z dzisiejszego punktu widzenia Hermann odkrył pewną całkę pierwszą problemu Keplera (tak się dziś nazywa problem ruchu wokół centrum przyciągającego jak 1/r^2). Całka pierwsza to wyrażenie, którego wartość nie zmienia się podczas ruchu. U Hermanna jest to

-\dfrac{dx}{dt}L_{z}-\dfrac{y}{r}=A_{y}=const.

W wyrażeniu tym L_z=xp_{y}-yp_{x}. Gdyby zająć się przyspieszeniem wzdłuż osi Sy, otrzymalibyśmy drugą całkę. Razem składają się one na wektor

\vec{A}=\vec{p}\times \vec{L}-\dfrac{\vec{r}}{r}.

Nazywa się go wektorem Rungego-Lenza, choć odkrył go właściwie Jakob Hermann. W pełni zdał sobie sprawę z faktu, że mamy trzy takie całki pierwsze, czyli w istocie wektor, Joseph Lagrange, a po nim Pierre Simon Laplace. Laplace przedyskutował też systematycznie wszystkie całki pierwsze problemu Keplera (trzy to moment pędu, trzy to nasz wektor, jedna to energia całkowita planety). Carl David Runge (ur. 1856) oraz Wilhelm Lenz (ur. 1888) pojawiają się w tej historii późno i w rolach dość przypadkowych. Pierwszy (znany z algorytmu Rungego-Kutty) użył tego wektora w swoim podręczniku analizy wektorowej, drugi zastosował go do pewnego problemu w starej teorii kwantów, przepisując go z podręcznika Rungego. Zupełnie niekosztowny sposób wejścia do historii. Wilhelm Lenz jest natomiast autorem tzw. modelu Isinga (Ernst Ising był jego doktorantem). Wektor odegrał pewną rolę w powstaniu mechaniki kwantowej. Stosując go, Wolfgang Pauli otrzymał wartości energii w atomie wodoru na podstawie formalizmu macierzowego Heisenberga. Chwilę później Erwin Schrödinger zrobił to samo w swoim formalizmie i wielu fizyków nie wiedziało, co o tym myśleć, bo na pierwszy rzut oka oba podejścia różniły się kompletnie.

Leibniz, Newton i liczba pi (1676)

W roku 1676 dobiegł końca czteroletni pobyt Gottfrieda Wilhelma Leibniza w Paryżu. Teologiczno-dyplomatyczne cele jego misji nie zostały osiągnięte, Leibniz zetknął się jednak w Paryżu z najnowszymi naukami ścisłymi, w szczególności zajął się bliżej matematyką. Były to najświetniejsze lata paryskiej działalności Christiaana Huygensa, którego traktat o zegarze wahadłowym wtedy właśnie ujrzał światło dzienne. Leibniz chłonął nowości i robił szybkie postępy. Już w roku 1673 udało mu się znaleźć słynne przedstawienie liczby pi za pomocą szeregu. Odkrycie to zrobiło spore wrażenie zarówno na paryskich uczonych, jak i na samym odkrywcy, zachęcając go do dalszej pracy w dziedzinie matematyki (w przypadku uczonego tak wszechstronnie uzdolnionego, jak Leibniz, wybór dziedziny nie był bynajmniej czymś oczywistym). Dwa lata później odkrył Leibniz rachunek różniczkowy i całkowy. Ale szereg stanowił wciąż jego powód do dumy. Toteż pochwalił się nim, pisząc w roku 1676 do Henry’ego Oldenburga, sekretarza londyńskiego Royal Society. Z pewnym niedowierzaniem dowiedział się, że „jego” szereg znany jest na Wyspach. Było to trochę tak, jakby ktoś wracając z Princeton z wynikiem, który wszystkich zachwycił, usłyszał, że w Rosji na prowincji dawno już o tym wiedzą.

Szereg to uogólnienie sumy na przypadek nieskończonej liczby wyrazów. Znanym przykładem jest szereg geometryczny. Np.

\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\ldots =1.

Co można zilustrować dzieleniem pola kwadratu jednostkowego na kolejne połowy.

Oczywiście, nie zawsze suma taka jest dobrze określona. Jednym z najprostszych nieoczywistych szeregów jest szereg harmoniczny, odwrotności kolejnych liczb naturalnych:

1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\ldots

Można łatwo pokazać, że szereg ten jest rozbieżny, tzn. jego sumy częściowe przekraczają dowolną z góry zadaną liczbę – należy tylko zsumować odpowiednio wiele składników. Podobnie rozbieżny jest szereg odwrotności liczb nieparzystych (mimo że z poprzedniego szeregu wybraliśmy jedynie co drugi wyraz):

1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\ldots

Nawet gdy ograniczymy się jedynie do odwrotności liczb pierwszych, szereg pozostanie rozbieżny, ten ostatni fakt udowodnił Leonhard Euler.

Szereg Leibniza ma następującą postać:

\dfrac{\pi}{4}=1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\ldots

Jest on naprzemienny, tzn. znaki kolejnych wyrazów się przeplatają. Szereg taki na pewno jest zbieżny, jeśli tylko jego wyraz ogólny dąży do zera. Nie zawsze jednak łatwo jest znaleźć wartość takiej sumy. Leibnizowi udało się odkryć powiązanie z liczbą \pi, znaną z geometrii. Na pierwszy rzut oka nie ma żadnych powodów, aby taki szereg, zbudowany za pomocą prostej arytmetyki, doprowadzić miał do liczby \pi. Stąd wrażenie, jakie to odkrycie wywarło. Jak ujął to dwudziestowieczny matematyk K.H.D. Knopp: „Dzięki temu rozwinięciu opadła jakby zasłona spowijająca tę dziwną liczbę [\pi]”.

Za pośrednictwem Oldenburga Isaac Newton reprezentował wyspiarzy. Profesor z Cambridge (które było wtedy matematyczną pustynią) przesłał mu dwa obszerne listy z przeznaczeniem dla Leibniza. Newton znany był wtedy w Europie jedynie z prac optycznych. Był jednak, i może przede wszystkim, matematykiem, najwybitniejszym w tamtej epoce. Derek T. Whiteside poświęcił najlepsze lata życia na wydanie jego rękopisów matematycznych w ośmiu ogromnych tomach. Większość tego materiału z różnych powodów nie ukazała się drukiem za życia Newtona. W chwili gdy napisał Leibniz, Newton był – by tak rzec – w trakcie czwartego tomu swoich dzieł, dawno po odkryciu rachunku fluksji i fluent, czyli swojej wersji rachunku różniczkowego i całkowego (a jak zwykle u matematyków pierwsze tomy dzieł zebranych są najciekawsze). Obaj uczeni chwalili się wynikami, nie przedstawiając dowodów i tylko mgliście napomykając o rachunku. Tak się składa, że rozwinięcia w szereg stanowiły inny ulubiony temat Newtona. Odkrył np., że naprzemienny szereg harmoniczny związany jest z wartościami funkcji logarytmicznej:

\ln{2}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\ldots .

Przemawiała do niego elegancja samych rozwinięć, a także ich aspekt praktyczny: pozwalały one obliczać wartości różnych funkcji albo stałych matematycznych, takich jak \pi. Posługując się odkrytym przez siebie rozwinięciem w szereg funkcji logarytmicznej, młody Isaac Newton obliczył kiedyś dla zabawy wartość

\ln{1,1}=0,09531 01798 04324 86004 39521 23280 76509 22206 05365  30864 4199183.

Prócz ludycznego miało to też aspekt praktyczny. Tablice logarytmów stosowane były w geodezji, nawigacji, astronomii. Znając z dużą dokładnością jedną lub kilka wartości logarytmu, można zbudować tablice, już z mniejszą liczbą cyfr znaczących (ze względu na błędy zaokragleń). Newton znał oczywiście szereg Leibniza. Zrewanżował mu się innym szeregiem, łudząco podobnym:

\dfrac{\pi}{2\sqrt{2}}=1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}+\ldots.

Dokumenty Leibniza pokazują, że mimo wskazówki, jak można ten szereg otrzymać, sztuka ta nie udała się Leibnizowi.

Henry Oldenburg niedługo później zmarł i Newton stracił na długo kontakt z Royal Society i z szerszym światem. Zresztą w tamtych latach pochłaniała go raczej teologia niż matematyka. Żaden z nich nie opisał drugiemu rachunku różniczkowego i całkowego. Po latach obaj zaczęli podejrzewać tego drugiego o kradzież intelektualną. Był to objaw paranoi, o którą nietrudno było w sytuacji, gdy matematycy chętniej publikowali wyniki niż metody zastosowane do ich uzyskania.

Spójrzmy na koniec na szczegóły. Otóż Leibniz, czytając pewien artykuł Pascala, wpadł na pomysł, aby szukanie pola pod jedną krzywą przekształcić w szukanie pola pod inną krzywą. Nazwał to metodą transmutacji. Opierała się ona na następującej obserwacji.

Rysujemy styczną do krzywej w pewnym punkcie, przecina ona oś y w pewnym punkcie. Rozpatrujemy następnie krzywoliniowy „trójkąt” złożony z małego odcinka krzywej i dwóch boków równoległych do osi. Gdy ów „trójkąt” staje się coraz mniejszy, zbliża się do prawdziwego trójkąta. Możemy napisać proporcję

\dfrac{dx}{ds}=\dfrac{h}{y} \, \Rightarrow y dx=h ds.

Pola infinitezymalnego (=„nieskończenie małego”) trójkąta utworzonego z dwóch promieni wodzących (linie przerywane) i odcinka krzywej równe jest \frac{1}{2} h ds. Sumując takie pola, czyli całkując, możemy obliczyć pole skończonego wycinka krzywej. Korzystając zaś z powyższej proporcji pole to można zamienić polem pewnej innej krzywej y(x): \frac{1}{2}\int{h ds}=\frac{1}{2}\int{ y dx}. Wynik ten może się przydać, jeśli zamiana jednej krzywej drugą prowadzi do uproszczenia problemu. Leibniz zastosował swoją metodę do okręgu.

Leibniz chciał obliczyć pole ćwiartki koła (\frac{\pi}{4}, składającej się z wycinka kołowego i trójkąta. Pole wycinka znaleźć można obliczając pole pod krzywą y(x), która ma równanie zapisane na rysunku. Łatwiej jest obliczyć pole między osią y a krzywą:

Szczegóły rachunku znaleźć można tutaj. Ostatecznie otrzymujemy

\dfrac{\pi}{4}={\displaystyle \int_{0}^{1}\dfrac{dx}{1+x^2}}.

Ułamek po prawej stronie zastępujemy szeregiem geometrycznym:

\dfrac{1}{1+x^2}=1-x^2+x^4-x^6+\ldots

i całkujemy wyraz po wyrazie. Wynik Newtona uzyskuje się z całki

{\displaystyle \int_{-1}^{1}\dfrac{dx}{1+\sqrt{2} x+x^2}=\dfrac{\pi}{\sqrt{2}}=2\int_{0}^{1}\dfrac{1+x^2}{1+x^4}dx}.

Całkę po prawej stronie rozwijamy w szereg jw. Leibniz nie znał, jak się wydaje, rozkładu na czynniki

1+x^4=(1+\sqrt{2}x+x^2)(1-\sqrt{2}x+x^2).