Leonhard Euler: wahadło (1777)

Pisałem o początkach kariery Leonharda Eulera. Później przez całe długie życie, dzień po dniu niestrudzenie prowadził obliczenia, tworząc setki prac, jakby na potwierdzenie kalwińskiej doktryny predestynacji: to Stwórca wybiera, a jego wybrani właściwie nawet nie odczuwają rozterek, jak postępować, bo muszą czynić dobrze. W naszych sceptycznych oczach był człowiekiem ambitnym, który wciąż musiał rozwiązywać zagadki i mało kto potrafił mu w tym dorównać. Czasem d’Alembert i Clairaut we Francji potrafili z nim konkurować. Pomysłowość metod łączył Euler z nadzwyczajną sumiennością w rachunkach. Spis prac Eulera liczy ponad 800 pozycji. Pisał, później raczej dyktował, ponieważ niemal całkiem stracił wzrok, co nie tylko nie zahamowało tempa jego pracy, lecz nawet je przyspieszyło, gdyż mniej spraw go rozpraszało, a rachunki i tak robił w pamięci. My zajmiemy się pracą E503, poświęconą ruchowi wahadła o dużej amplitudzie (wydrukowaną w roku 1780). Pojawia się w niej całka eliptyczna pierwszego rodzaju. To niejako zapowiedź wielkiego tematu matematyki w XIX wieku, a mianowicie funkcji eliptycznych, rozwijanych później przez Legendre’a, Abela, Jacobiego, Weierstrassa i Riemanna.

Pokażemy, jak okres oscylacji wahadła zależy od amplitudy. I pokażemy, jak zrobić o jeden krok dalej niż Euler, bo nauka to jedyny może obszar ludzkiej działalności, gdzie postęp jest rzeczywisty, co oznacza, że niemal każdy później urodzony może sięgać dalej niż dawni mistrzowie.

W czasach Eulera zegary wahadłowe wciąż były najdokładnieszym przyrządem do mierzenia czasu, teoria wahadła miała więc pewne znaczenie praktyczne. Euler zajmował się także wcześniej ruchami brył sztywnych, potrafił więc wykazać, że wahadłem może być jakakolwiek bryła o dowolnym kształcie. Jej ruch zawsze jest taki sam jak wahadła matematycznego o pewnej długości. Dlatego wystarczy rozważać wahadło matematyczne. Możemy sobie wyobrażać takie wahadło jako czerwony koralik o masie m=1 ślizgający się bez tarcia po okręgu o promieniu L. II zasada dynamiki daje wtedy

\ddot{\varphi}=-\dfrac{g}{L}\sin\varphi,

kropki oznaczają różniczkowanie po czasie. Możemy też zacząć nie od II zasady dynamiki, lecz od zasady zachowania energii (technicznie biorąc mamy wtedy o jedną całkę mniej). Ponieważ prędkość koralika to \dot{\varphi}L (\dot{\varphi} jest prędkością kątową), otrzymujemy równanie

\dfrac{L^2\dot{\varphi}^2}{2}+gL(1-\cos\varphi)=gL(1-\cos\varphi_m),

gdzie g jest przyspieszeniem ziemskim, a \varphi_m – kątem maksymalnego wychylenia. Nie rozpatrujemy przypadku energii na tyle dużej, by nasz koralik obiegał okrąg, nie jest to przypadek szczególnie interesujący. Możliwe ruchy wahadła przedstawia portret fazowy, wykres rozmaitych ruchów we współrzędnych (\varphi,\dot{varphi}).

Energia potencjalna ma kształt sinusoidy. Dla niewielkich energii ruch jest oscylacyjny w przedziale [-\vartheta,\vartheta], dla dużych energii prędkość kątowa \dot{\varphi} nie zmienia znaku. Jest wreszcie energia graniczna pozwalająca dotrzeć koralikowi do punktu \varphi=\pi, tym przypadkiem zajmiemy się osobno, bo jest ciekawy. Zasadę zachowania energii możemy przekształcić do postaci

\dot{\varphi}^2+4\omega^2\sin^2{\dfrac{\varphi}{2}}=4\omega^2\sin^2{\dfrac{\varphi_m}{2}},

wprowadziliśmy tu oznaczenie \omega=\sqrt{g/L} – jest to zwykła częstość kołowa wahadła przy małych wychyleniach. Możemy to sprawdzić. Przy małych wychyleniach \varphi\approx\sin\varphi. Mamy więc

\dot{\varphi}^2=\omega^2(\varphi_m^2-\varphi^2), \mbox{(*)}

i przekształcając

{\displaystyle  \int\dfrac{d\varphi}{\sqrt{\varphi_m^2-\varphi^2}}=\omega t+C \;\; \Rightarrow \arcsin{\dfrac{\varphi}{\varphi_m}}=\omega t+C,}

otrzymujemy zatem znane rozwiązanie oscylacyjne \varphi=\varphi_m\sin (\omega t+C).

Ruch przy małych wychyleniach ma własność izochronizmu, którą zaobserwował według legendy młody Galileusz w katedrze w Pizie, gdy zamiast skupiać się na przesłaniu duchowym, obserwował kołyszący się kandelabr. Amplituda wahań malała z czasem, ale okres się nie zmieniał. Widzimy, że wniosek ten jest słuszny, póki wychylenia są niewielkie. Gdybyśmy chcieli zbudować wahadło ściśle izochroniczne, zamiast łuku okręgu należy wziąć łuk cykloidy, co odkrył Christiaan Huygens.

W dalszym ciągu przyjmiemy \omega=1, czyli okresem wahadła przy małych wychyleniach bedzie okres sinusa, jaki przyjmują matematycy, tzn. 2\pi. Przy dużych wychyleniach okres będzie większy. Wygląda to następująco.

Można uzyskać takie krzywe numerycznie (por. Dziewiąty wykład Feynmana: Co mówi druga zasada dynamiki?), można je także wyrazić przez funkcje eliptyczne, znane każdemu programowi matematycznemu, jak darmowy SageMath albo kosztowna i ciężka Mathematica). Euler nie znał takich krzywych, choć musiał zdawać sobie sprawę z ich jakościowego przebiegu.

Wracając do równania (*), wprowadzamy podstawienie Eulera: k\sin\psi=\sin\varphi/2, gdzie k=\sin\varphi_m/2. Ma ono taką zaletę, że \psi może rosnąć monotonicznie, podczas gdy \varphi oscyluje. Równanie przyjmuje postać:

\left(\dfrac{d\psi}{dt}\right)^2=1-k^2\sin^2\psi.

Okres ruchu wahadła jest cztery razy większy niż czas potrzebny na zmianę \psi od 0 do do \pi/2:

{\displaystyle T=4\int_{0}^{\frac{\pi}{2}}\dfrac{d \psi}{\sqrt{1-k^2\sin^2\psi}}\equiv 4 K(k)}.

Wprowadziliśmy standardowe oznaczenie: K(k) nazywa się całką eliptyczną zupełną pierwszego rodzaju. Euler zastosował do jej obliczenia rozwinięcie funkcji podcałkowej w szereg dwumianowy. Otrzymuje się wówczas rozwinięcie

{\displaystyle K(k)=\dfrac{\pi}{2}\sum_{m=0}^{\infty}\left[\dfrac{(2m-1)!!}{(2m)!!}\right]^2 k^{2m}. }

Podwójna silnia to iloczyn kolejnych liczb parzystych bądź nieparzystych aż do największej. Zapis jest współczesny. Po drodze potrzebna jest całka \int_{0}^{\pi/2} \sin^{2m}\psi d\psi, którą Euler oczywiście znał. Szereg ten jest zbieżny dla k<1, choć jego praktyczna przydatność ogranicza się do niezbyt wielkich amplitud. Okres wahadła jest więc w przybliżeniu równy

T=2\pi\sqrt{\dfrac{L}{g}}\left(1+\dfrac{1}{4}\sin^2{\dfrac{\vartheta}{2}}+\dfrac{9 }{64}\sin^4 {\dfrac{\vartheta}{2}}+\ldots\right).

Na wykresie mamy stosunek okresu wahadła przy danej amplitudzie do okresu dla niewielkich amplitud. Widzimy, skąd się wziął obserwowany izochronizm: trzeba mocno wychylić wahadło, żeby dostrzec wydłużenie okresu. Jednak przy amplitudach bliskich \pi=180^{\circ} wydłużenie staje się duże, całka K(k)\rightarrow \infty.

Zajmiemy się teraz przypadkiem, gdy amplituda \varphi_m=\pi-\alpha_m, gdzie \alpha_m\ll 1. Korzystamy tu z poglądowego podejścia z pracy E. Butikova, Oscillations of a simple pendulum with extremely large amplitudes. Asymptotyczna postać całki eliptycznej przy wartościach k bliskich 1 jest dobrze znana (por. np. F. Bowman, Introduction to elliptic functions with applications), ale podejście Butikova pozwala nam lepiej zrozumieć ruch przy dużych amplitudach.

Najpierw zajmijmy się ruchem wahadła dla przypadku \varphi_m=\pi. Mamy wtedy

\dot{\varphi}=\cos\dfrac{\phi}{2}.

Rozwiązanie, w którym \varphi(0)=0, jest postaci

\varphi=\pi-4\;\mbox{arctg }(e^{-\omega t}).

Na wykresie kąty wyrażone są w stopniach. Widzimy, że położenie \varphi=\pi=190^{\circ} koralik osiąga po nieskończenie długim ruchu. Większość tego ruchu odbywa się w okolicach t=0, gdzie wykres stromo się wznosi. Jednak takie przybliżenie nie wystarczy do tego, aby znaleźć skończony okres odpowiadający \alpha_m\ne 0. Możemy zastosować je aż do pewnego kąta 1 \gg\alpha_c>0 i drugi odcinek ruchu od \alpha_c do maksymalnego wychylenia \alpha_m obliczyć w przybliżeniu małych kątów. Najłatwiej o tym myśleć jako o czasie potrzebnym do tego, by koralik znajdujący się początkowo w punkcie \alpha_m ześliznął się do punktu \alpha_c. Przyjmujemy, że oba te punkty leżą blisko najwyższego punktu okręgu. II zasada dynamiki przybiera postać (kąt \alpha liczony jest od szczytu okręgu)

\ddot{\alpha}=\omega^2 \sin \alpha\approx \omega^2\alpha \;\Rightarrow \alpha=\alpha_m \cosh \omega t.

Stąd znajdujemy czas t_1 potrzebny na osiągnięcie punktu \alpha_c:

\omega t_1=\ln \dfrac{2\alpha_c}{\alpha_m}.

Korzystając z poprzedniego rozwiązania, znajdujemy czas t_2 potrzebny na dotarcie od \varphi=0 do \varphi=\pi-\alpha_c:

\omega t_2=\ln\dfrac{4}{\alpha_c}.

Ćwierć okresu wahadła to t_1+t_2, otrzymujemy więc

T=\dfrac{2}{\pi}T_0 \ln\dfrac{8}{\alpha_m},

gdzie T_0 jest okresem przy niewielkich wychyleniach. Z równań wypadło pośrednie położenie \alpha_c. Okres wahadła jest więc logarytmicznie rozbieżny gdy \alpha_m\rightarrow 0.

I tutaj Euler zawiódł. Wiedział, że graniczne rozwiązanie ma postać, której użyliśmy powyżej. Próbował obliczyć czas, pisząc równanie

{\displaystyle \int\dfrac{d\alpha}{2 \sqrt{ \sin^2\dfrac{\alpha}{2}-\sin^2\dfrac{\alpha_m}{2}}}=\omega t+C}

i rozwijając je w szereg, a następnie sumując ten szereg. Niestety, jego wyrażenie asymptotyczne okazało się błędne. W czasach Eulera nie przywiązywano nadmiernej wagi do zbieżności szeregów, prawdopodobnie w tym tkwi problem. Bo rachunki wydają się prawidłowe.

Obwód świata w Samarkandzie: Al-Kashī i liczba pi (1424)  

W pierwszej połowie XV wieku położona na Jedwabnym Szlaku Samarkanda (dziś Uzbekistan) przeżywała swój okres świetności dzięki Uług Begowi, władcy wielce oświeconemu, miłośnikowi poezji, i co rzadsze: matematyki i astronomii. Pod jego patronatem stworzono szkołę, medresę, w której nauczali wybitni mędrcy, a także obserwatorium z największym na świecie kwadrantem.

Registan_square_Samarkand

512px-Ulugh_Beg's_Astronomic_Observatory

Najtrwalszym rezultatem tego złotego wieku okazały się tablice astronomiczne wraz z katalogiem gwiazd pierwszym po Ptolemeuszu. Najważniejszym matematykiem ośrodka w Samarkandzie był wywodzący się z perskiego miasta Kaszan, Dżiiad ad-Din Dżamszid Al-Kaszi (w transkrypcji angielskiej: Ghiyāth al-Dīn Jamshīd Al-Kāshī), którego będziemy krótko nazywać Al-Kaszi – co znaczy wywodzący się z Kaszan, podobnie jak da Vinci znaczy pochodzący z Vinci. W kwiecistym orientalnym stylu nazywano go „drugim Ptolemeuszem”, „perłą chwały swego wieku”, „królem inżynierów” i „rachmistrzem”. Porównanie z Ptolemeuszem lepiej by pasowało do astronomów z Maragi, ale w dziedzinie matematyki praktycznej, obliczeniowej, był Al-Kaszi mistrzem niewątpliwym. Używał do obliczeń systemu sześćdziesiętnego, jak to było w zwyczaju wśród astronomów, ale także poświęcił wiele uwagi systemowi dzisiętnemu, do którego, jak wiemy, należała przyszłość. W 1424 r. Al-Kaszi obliczył z wielką dokładnością liczbę \pi, potem obliczył także z dużą dokładnością wartość \sin 1^{\circ}. W znacznym stopniu pozostajemy tu w kręgu tradycji Archimedesa i Ptolemeusza, co pokazuje, jak rewolucyjne były w swim czasie te greckie osiągnięcia. W Europie dopiero pod koniec XV wieku trygonometria osiągnęła zbliżony do Samarkandy poziom, a liczbę \pi wyznaczono z podobną dokładnością znacznie później. Kilkanaście wieków po uczonych greckich osiągnięto wprawdzie spore postępy praktyczne, ale wciąż obracano się w kręgu idei tamtych uczonych znad Morza Śródziemnego. Dopiero rozwój algebry pod koniec XVI wieku i analizy matematycznej od połowy wieku XVII dostarczył zupełnie nowych pomysłów, dzięki którym matematyka i fizyka zaczęły się na nowo. Ośrodek w Samarkandzie nie przetrwał długo, Uług Beg został zabity w nieustających walkach o władzę, jakie toczono na obszarach Azji środkowej. Część dorobku tamtejszych uczonych „powróciła” przez Turcję i Wenecję do Europy.  

Metoda obliczania liczby \pi podana została przez Archimedesa. tmp_03uqumjo

Zacznijmy od sześciokąta foremnego wpisanego w okrąg. Wiemy, że długość jego boku równa jest promieniowi okręgu, który będziemy przyjmować za jednostkę długości. Obwód sześciokąta równy jest więc 6 i mamy biblijne przybliżenie \pi\approx 3. Nie jest ono zbyt dokładne. Archimedes pokazał, jak można je poprawić, podwajając liczbę boków wielokąta. Jeśli obliczyć długość boku takiego wielokąta, otrzymamy następne przybliżenie dla długości okręgu. Są to przybliżenia od dołu, ponieważ obwód wielokątów wpisanych jest mniejszy od długości okręgu. Chcąc uzyskać przybliżenie liczby \pi z góry, należy wziąć wielokąty foremne opisane na okręgu. Są one podobne do wielokątów wpisanych i bez trudu można znaleźć długość ich boku, a więc i przybliżenie \pi z góry. Archimedes użył 96-kąta i otrzymał oszacowanie 3\frac{10}{71}<\pi<3\frac{1}{7}. Al-Kaszi użył w zasadzie tej samej metody. Pragnął osiągnąć taką dokładność, aby można było wyznaczyć obwód świata z dokładnością mniejszą niż grubość końskiego włosa. Jego obliczenie wyglądało następująco. Przyjmijmy z nadmiarem, że promień świata równy jest 600 000 promieni Ziemi (al-Szirazi obliczał go na zaledwie 70 076,5 promieni Ziemi – skutek zadawnionego błędu Arystarcha). Obwód Ziemi to 8000 parasangów, z których każdy ma 12 000 łokci po 24 cale, a cal to 6 średnich ziaren jęczmienia, każde zaś z nich to 6 grubości włosa końskiego (z grzywy). Obwód świata równa się więc 0,5\cdot 10^{16} grubości końskiego włosa, co jest odwrotnością względnej dokładności, jakiej potrzebujemy.

podwajanie1

Rysując boki dwóch kolejnych wielokątów a_1,\,a_2 wpisane w półokrąg, usupełniamy je do trójkątów prostokątnych. Długości przyprostokątnych to c-1\, c_2. Obowiązuje twierdzenie Pitagorasa: a_1^2+c_1^2=a_2^2+c_2^2=4. Podwajanie liczby kątów wielokąta oznacza przepołowienie kąta środkowego, na którym oparty jest bok wielokąta.

podwajanie2

podwojenie3

Mamy więc c_2=\sqrt{2+c_1} i ogólnie dla podwojenia 6\cdot 2^n kąta:

c_{n+1}=\sqrt{2+c_n};\;\; c_1=\sqrt{3}.

Wystarczy więc kolejno wyciągać pierwiastki kwadratowe i dodawać:

c_n=\sqrt{2+\sqrt{2+\ldots+\sqrt{2+\sqrt{3}} } }

a_n=\sqrt{2-\sqrt{2+\ldots+{2+\sqrt{3}} } }.

Al-Kaszi doszedł w ten sposób do 805306368-kąta foremnego. Liczba \pi jest równa w tym przybliżeniu 3,14159265358979323. Metoda Archimedesa nie jest szczególnie efektywna, dopiero rozwinięcia w szereg od XVIII wieku dostarczyły skutecznych przybliżeń. Oczywiście dla celów praktycznych niemal zawsze wystarczy dokładność Al-Kasziego, późniejsze długie rozwinięcia liczby \pi służyły raczej zbadaniu „anatomii” samej liczby albo testowaniu programów. Obecny rekord dokładności (sierpień 2021 r.) to 62,8\cdot 10^{12} cyfr. Jeszcze w 1914 roku Srinivasa Ramanujan podał szybko zbieżny szereg:

\dfrac{1}{\pi}=\dfrac {\sqrt{8}} {9801}\displaystyle\sum\limits_{n=0}^{\infty} \dfrac{(4n)!(1103+26390n)}{(n!)^4 396^{4n}}.

Udoskonalenia tej formuły pozwalają obliczać 14 cyfr znaczących z każdym kolejnym wyrazem rozwinięcia.

Innym praktycznym osiągnięciem Al-Kasziego było precyzyjne obliczenie wartości \sin 1^{\circ}. Funkcja sinus nie znana była Grekom, używali oni długości cięciwy okręgu w funkcji kąta środkowego.

crd

Dopiero Hindusi zorientowali się, że wygodniejsza może być funkcja

\sin\alpha=\dfrac{1}{2}\mbox{ crd } 2\alpha.

Uczeni islamscy przejęli tę techniczną nowinkę. Przy podziale kąta prostego na 90 stopni pojawiał się problem obliczenia \sin 1^{\circ}. Chodziło o to, że \sin 3^{\circ} można obliczyć z rozważania kątów w wielobokach: sin 30^{\circ} jest trywialny, \sin 36^{\circ} wynika z obliczenia długości boku pięciokąta foremnego. Łatwo więc uzyskać sinus kąta 6^{\circ}=36^{\circ}-30^{\circ} i jego połowy. Ale kąt 1^{\circ} wymaga podzielenia przez trzy, był to słynny nierozwiązywalny problem greckiej geometrii: trysekcja kąta. Dwa pozostałe to podwojenie sześcianu (konstrukcja \sqrt[3]{2} oraz kwadratura koła (skonstruowanie kwadratu o boku \sqrt{\pi}). Al-Kashi podał geometryczny dowód tożsamości

\sin 3\alpha=3\sin\alpha-4\sin^3\alpha.

Można ją odczytać z rysunku (nie pochodzi on z pracy Al-Kasziego):

potrojenie

Przy \alpha=1^{\circ} i oznaczając x=\sin 1^{\circ} oraz 3a=\sin 3^{\circ} otrzymujemy równanie sześcienne, które możemy zapisać następująco:

x=a+\dfrac{4}{3} x^3.

Pierwszym przybliżeniem jest x_0=a. Następne przybliżenia można znaleźć iterując równanie

x_n=a+\dfrac{4}{3}x_{n-1}^3.

Metoda ta działa znakomicie i Al-Kaszi otrzymał wynik \sin 1^{\circ}=0,01745240643728351. Było to pierwsze poważne zastosowanie tej metody. Z poniższego obrazka można sobie wydedukować, w jakich warunkach iteracje równania x=f(x) będą zbieżne.

iteracje

Arnold Sommerfeld i zagadka widma wodoru (1916)

Miał historycznego pecha: był 81 razy nominowany do Nagrody Nobla z fizyki, ale nigdy jej nie dostał. „Planck był autorytetem, Einstein – geniuszem, a Sommerfeld – nauczycielem”, jak ujął to historyk Armin Hermann. Nauczycielem noblistów, trzeba dodać. Czterech jego doktorantów i trzech postdoków zostało później laureatami Nobla, a do tego dochodzi mnóstwo nazwisk uczniów i współpracowników, które i dziś znane są fizykowi. Jego ośrodek w Monachium obok Getyngi Maksa Borna i Kopenhagi Nielsa Bohra wychował całe pokolenie genialnych chłopców lat dwudziestych (osobny był tylko Paul Dirac, ale on był zawsze osobny). Sommerfelda wyjaśnienie struktury subtelnej widma wodoru było eleganckie i niezwykle dokładne. Jednak osiągnięcia Sommerfelda nie stanowiły zamkniętej teorii, było jeszcze za wcześnie na mechanikę kwantową. Trudno czynić mu z tego zarzut: ani Planck, ani Einstein nie posunęli się dalej.

Sommerfeld był właściwie matematykiem zajmującym się zagadnieniami fizyki matematycznej. Gdy w 1906 r. objął katedrę fizyki teoretycznej w Monachium nie było jeszcze fizyki kwantowej oprócz pionierskich prac Plancka i Einsteina. Dopiero podczas wojny Sommerfeld zainteresował się serio zagadnieniami kwantowymi. 

Czterdziestopięcioletni profesor nie został powołany do wojska ze względu na wiek, zresztą pomimo swego patriotyzmu nie był entuzjastą wojny, jak większość jego rodaków. Wkrótce jednak i jemu udzieliła się nieuchronna atmosfera paranoi i oblężonej twierdzy, podpisał np. antybrytyjski apel Wilhelma Wiena wzywający, by niemieccy uczeni nie publikowali w angielskich czasopismach i odrzucali „nieuzasadnione wpływy naukowe Anglików”. Było więcej tego rodzaju wstydliwych wystąpień, zresztą po obu stronach konfliktu. Zaledwie rok wcześniej, w roku 1913, zarówno Wien, jak Sommerfeld brali udział w drugim Kongresie Solvaya, gdzie spotykała się elita ówczesnych fizyków i mogło się wydawać, że nauki ścisłe nie mają narodowości.

855px-Solvay_conference_1913

Sommerfeld znany był z otwartości i bliskich kontaktów ze swymi studentami. Chodził z nimi na piwo i jeździli wspólnie na narty, w tamtych czasach taka postawa była rzadkością. Einstein, kiedy poznał Sommerfelda, obiecywał sobie, że będzie miał podobne podejście do studentów. Podczas wojny Sommerfeld prowadził wprawdzie nadal wykłady, ale wielu studentów i młodszych kolegów było na froncie. Chętnie jednak w miarę możliwości korespondowali na tematy naukowe, pozwalało im to na chwilę zapomnieć o toczącej się wciąż wojnie.

Sommerfeld stosował metodę, którą później wielokrotnie stosował Steven Weinberg: jeśli chcesz nauczyć się jakiegoś przedmiotu, wygłoś na ten temat cykl wykładów. W przypadku Sommerfelda wynikiem jest wielotomowy kurs fizyki teoretycznej, a także monografia Atombau und Spektrallinien („Budowa atomu i linie widmowe”), biblia pierwszych lat fizyki kwantowej. W przypadku Weinberga to seria znakomitych solidnych podręczników na różnym poziomie, a także zarys historii fizyki.

W lutym 1915 roku Sommerfeld pisał do Wiena: „W tym semestrze prowadziłem wykłady na temat [modelu] Bohra i interesuję się tą kwestią, na ile wojna pozwala. Dzisiejsze 100 000 Rosjan to z pewnością piękniejsza wiadomość niż wyjaśnienie serii Balmera przez Bohra. Mam jednak piękne nowe wyniki na ten temat.” Owe 100 000 Rosjan to jeńcy po bitwie nad jeziorami mazurskimi. Przez cały rok 1915 Sommerfeld pracował, choć z przerwami, nad zagadnieniem atomu. Udało mu się uogólnić warunki kwantowania Bohra, a następnie zastosował do elektronu mechanikę szczególnej teorii względności (którą także w owym czasie wykładał). Model relatywistyczny pozwolił wyjaśnić rozszczepienie optycznych linii widmowych wodoru, a także optycznych i rentgenowskich linii cięższych pierwiastków. Wyjaśniła się w ten sposób kwestia znana od wielu lat: linie widmowe pierwiastków mają często kilka blisko położonych składowych widocznych przy dużej zdolności rozdzielczej (np. żółta linia sodu świecąca w lampach sodowych jest dubletem). Tę strukturę subtelną wodoru odkryli Albert Michelson i Edward Morley jeszcze w roku 1887. Dzięki Sommerfeldowi wyjaśniło się, że odgrywa tu rolę szczególna teoria względności, w latach 1915-1916 jej słuszność wcale nie była jeszcze oczywista, obie teorie względności jeszcze długo później uchodziły za „kontrowersyjne”, pamiętajmy, że Nagrodę Nobla przyznano Einsteinowi z wyraźnym zastrzeżeniem, iż nie jest nagrodą za teorię względności. Wspominany w tym blogu kilkukrotnie Ernst Gehrcke, zaciekły przeciwnik teorii Einsteina, był specjalistą od pomiarów widmowych. Przez lata spierał się z Friedrichem Paschenem, który zmierzył wielkość rozszczepienia linii zgodną z wynikami Sommerfelda. Gehrcke otrzymywał wciąż nieco inną wartość. I to z pozornie obiektywnych pomiarów, w których widmo było rejestrowane przez przyrząd. Nienawiść zaślepia. 

Wynik Sommerfelda niemal pokrywa się z tym, co uzyskano później z równania Diraca. Eleganckie i zgodne z obserwacjami wyniki Sommerfelda stały się największym sukcesem tzw. starej teorii kwantów, czyli fizyki sprzed powstania mechaniki kwantowej. Co ciekawe, twórcy mechaniki kwantowej, Schrödinger i Pauli, publikując rozwiązania dla atomu wodoru w styczniu 1926 roku, nie do końca byli usatysfakcjonowani. Obaj bowiem, zupełnie niezależnie, próbowali osiągnąć wynik Sommerfelda i im się to nie udało. Musieli zadowolić się podejściem nierelatywistycznym, bez struktury subtelnej. Mieli więc świadomość, że górują pod względem metody, ale nie dorównują wynikom Sommerfelda. Relatywistyczną mechanikę kwantową zapoczątkował w 1928 r. Paul Dirac, lecz okazało się dość szybko, jeszcze w latach trzydziestych, że potrzebna jest tu kwantowa teoria pola. Obliczenia w ramach teorii pola szybko doprowadziły do impasu: niektóre wyniki okazywały się nieskończone. Wyjście z tego impasu znaleziono dopiero po II wojnie światowej: było nim sformułowanie elektrodynamiki kwantowej przez Juliana Schwingera, Shin’ichirō Tomonagę i Richarda Feynmana. Dopiero wtedy dokładność teorii (a także pomiarów) wyprzedziła wyniki Sommerfelda i Diraca.

W modelu Bohra dozwolone są orbity kołowe, które spełniają warunek

L=mrv=n\dfrac{h}{2\pi},

gdzie L,r,m,v,h to odpowiednio moment pędu, promień orbity, masa i prędkość elektronu oraz stała Plancka, a n jest dodatnią liczbą całkowitą. Max Planck interesował się zagadnieniem oscylatora harmonicznego – oscylatory takie emitują bądź pochłaniają fale elektromagnetyczne. Można opisać je w przestrzeni fazowej, gdzie współrzędnymi są położenie q oraz pęd p. Jeśli położenie w zależności od czasu opisane jest równaniem q=A \sin 2\pi\nu t (\nu jest częstością), to pęd elektronu jest równy p=m2\pi\nu A \cos 2\pi\nu t i łatwo sprawdzić, że tor w przestrzeni fazowej jest elipsą (wystarczy skorzystać z jedynki trygonometrycznej). Warunek kwantowania Plancka ma postać następującą:

quantum action

Pole zakreślane w przestrzeni fazowej przez elektron jest wielokrotnością stałej h. Można ten warunek zapisać w postaci

W={\displaystyle \int dp dq =nh.}

Zastanawiano się także nad dodaniem jakiejś stałej w rodzaju 1/2 do n, ale na razie zostawmy to bez stałej. Dla eliptycznego toru w przestrzeni fazowej, mamy więc W=\pi A (m\omega A)=nh. Obliczając energię oscylatora, otrzymamy

E=\dfrac{p_{max}^2}{2m}= nh\nu.

Jest to zgodne z tym, co na temat oscylatorów twierdzili Planck i Einstein.

Warunek kwantowania można zapisać także w postaci:

W={\displaystyle \int (p_{+}-p_{-})dq=\oint p dq=nh.}

Druga całka jest po zamkniętym konturze, jej sens geometryczny jest taki sam.

quantum_action_3

quantum_action_2

Sommerfeld zastosował warunki kwantowania w tej drugiej postaci do ruchu elektronu w polu kulombowskim. Ruch klasyczny jest płaski, mamy więc dwa stopnie swobody. Położenie elektronu określają np. współrzędne biegunowe: odległość od jądra r oraz kąt \varphi z ustalonym kierunkiem. Odpowiadają tym zmiennym dwa pędy: składowa radialna p_r oraz składowa styczna p_{\varphi}. W naszym przypadku element odległości ds w zmiennych biegunowych ma postać

ds^2=dr^2+r^2 d\varphi^2.

polar coordinates

Iloczyn p dq w przypadku składowej radialnej przyjmuje postać m\frac{dr}{dt} dr=p_r dr, a w przypadku składowej stycznej p_{\perp}r d\varphi = p_{\varphi} d\varphi \equiv L d\varphi, pędem skojarzonym z kątem jest po prostu moment pędu. Można to uzasadnić ściślej, istnieje w mechanice precyzyjny przepis, jak dowolnej zmiennej uogólnionej przypisać odpowiedni pęd, por. niżej (*).

Przestrzeń fazowa jest teraz czterowymiarowa. Mamy dwa warunki kwantowania dla obu par zmiennych. Dla kąta \varphi i L warunek jest trywialny i pokrywa się z warunkiem Bohra:

{\displaystyle \oint L d\varphi=L2\pi=n_{\varphi}h.}

Dla zmiennych radialnych otrzymujemy coś nowego:

{\displaystyle \oint p_r dr=n_{\varphi} h}

gdzie liczby kwantowe n_r, n_{\varphi} mogą się różnić. Ponieważ dopuszczamy teraz zmiany odległości od jądra, należy się spodziewać, że podobnie jak w przypadku ruchu planet wokół Słońca dopuszczalne ruchy elektronu będą zachodzić po elipsach (mówimy tylko o stanach związanych, warunki kwantowania dotyczą tylko takiej sytuacji). 

Energia kinetyczna elektronu jest zatem równa

E_k=\dfrac{m}{2}\dfrac{ds^2}{dt^2}=\dfrac{m}{2}(\dot{r}^2+r^2\dot{\varphi}^2)=\dfrac{p_r^2}{2m}+\dfrac{p_{\varphi}^2}{2mr^2}.

Całkowita energia elektronu w atomie wodoru (pomijamy ruch jądra) dana jest wyrażeniem

E=\dfrac{p_r^2}{2m}+\dfrac{p_{\varphi}^2}{2mr^2}-\dfrac{e^2}{r},

gdzie piszemy e^2\equiv\dfrac{q_e^2}{4\pi\varepsilon_0} (q_e, \varepsilon_0 to ładunek elementarny i przenikalność dielektryczna próżni). Możemy wyznaczyć p_r z równania energii i wstawić do warunku kwantowania. Obliczając całkę (**) i wyznaczając E dostajemy wynik Bohra:

E=-\dfrac{me^4}{2\hbar^2 (n_r+n_{\varphi})^2}\equiv-mc^2\dfrac{\alpha^2}{2n^2}.

Zamiast jednej liczby kwantowej, mamy teraz sumę dwóch liczb kwantowych: n=n_r+n_{\varphi}. Stała \alpha jest bezwymiarowa i równa

\alpha=\dfrac{e^2}{\hbar c}\approx 1/137.

Stała ta zwana stałą struktury subtelnej nabiera znaczenia w teorii relatywistycznej, jak zobaczymy niżej. Istnieje więc pewna liczba stanów o tej samej energii: wszystkie odpowiadają orbitom o tej samej dużej osi i różnym spłaszczeniu. Łatwo pokazać, że stosunek długości osi małej b i dużej a jest równy

\dfrac{b}{a}=\dfrac{n_{\varphi}}{n_r+n_{\varphi}}.

Sommerfeld wykluczył stany o zerowym momencie pędu, gdy tor elektronu jest odcinkiem o końcu w jądrze atomu. W ten sposób zamiast trzeciej orbity Bohra mamy zestaw okręgu i dwóch elips (jądro jest zawsze w ognisku elipsy). Mamy więc w ogólności wiele stanów o tej samej energii: zdegenerowanych.

sommerfeld 3

Nietrudno procedurę Sommerfelda uogólnić na przypadek relatywistyczny. Klasyczne elipsy ulegają teraz precesji. Nie jest to precesja Einsteina z ogólnej teorii względności, Sommerfeld, śledzący na bieżąco postępy Einsteina, doskonale wiedział o różnicy. Obliczył nawet, że w przypadku Merkurego precesja byłaby równa 7 sekund kątowych na stulecie.

p0347-sel

Rysunek z Atombau Sommerfelda

Wystarczy wstawić mc^2+E=\sqrt{p^2c^2+m^2c^4} do równania na energię, E jest ujemną energią wiązania. Ponownie wyznaczając p_r i całkując warunek kwantowy, otrzymamy

E+mc^2=mc^2\left\{ 1+\dfrac{\alpha^2}{\left( n_r+\sqrt{n_{\varphi}^2-\alpha^2}\right)^2} \right\}^{-\frac{1}{2}}.

W bardziej przejrzystym przybliżeniu w postaci szeregu w stałej struktury subtelnej:

E\approx -mc^2\dfrac{\alpha^2}{2n^2}-mc^2\dfrac{\alpha^4}{2n^4}\left( \dfrac{n_r+n_\varphi}{n_{\varphi}}-\dfrac{3}{4}\right).

Wyniki te niewiele zmieniają się w teorii Diraca, należy tylko zastąpić n_{\varphi} przez j+\frac{1}{2}, gdzie j jest liczbą kwantową całkowitego momentu pędu z uwzględnieniem spinu. Oczywiście w roku 1916 o spinie jeszcze nikt nie słyszał. W elektrodynamice kwantowej wyniki uzyskuje się w postaci szeregu potęgowego względem \alpha. Dzięki takim rozwinięciom można elektrodynamikę potwierdzić z dokładnością kilkunastu cyfr znaczących.

 

(*) W przypadku współrzędnych uogólnionych pędy zdefiniowane są jako

p_i=\dfrac{\partial E_k}{\partial \dot{q_i}},

gdzie E_k jest energią kinetyczną, a \dot{q_i} pochodną czasową zmiennej q_i.

(**) Całki występujące w obu wersjach kwantowania Sommerfelda są postaci

{\displaystyle \oint \dfrac{dx}{x}\sqrt{-Ax^2+2Bx-C}=2\pi\left(\dfrac{B}{\sqrt{A}}-\sqrt{C}\right) }.

Współczynniki A,B,C są dodatnie i wyrażenie podcałkowe ma dwa miejsca zerowe. Można w tym przypadku znaleźć całkę nieoznaczoną i wziąć ją w odpowiednich granicach. Metoda elegancka to scałkowanie wyrażenia na płaszczyźnie zespolonej z rozcięciem wzdłuż osi rzeczywistej między dwoma pierwiastkami. Można też użyć pakietu Sagemath, Maxima albo Mathematica.

Widmo wodoru i symetrie (1/2)

I. Od Balmera do Bohra

Naszym bohaterem jest zbiór linii widmowych wodoru i proste wyrażenie, które go opisuje. Widmo składa się z serii, z których najbardziej znana jest seria Balmera przypadająca na obszar widzialny i bliski nadfiolet.

 

Długości fali w angstremach (1 {\rm \AA}=10^{-10} {\rm m}).

Jakob Balmer, znając długości czterech pierwszych linii, odgadł ukrytą w nich prawidłowość. Długości fal spełniają równanie

\lambda=h\,\dfrac{n^2}{n^2-4},\;\;n=3,4,5,6,

gdzie h jest stałą. Okazało się, że seria linii jest nieskończona, jeszcze za życia Balmera jego wzór potwierdził się dla kilkunastu linii. Okazało się też, że istnieją inne serie widmowe. Wszystkie można opisać wzorem

\dfrac{1}{\lambda}=R\left(\dfrac{1}{m^2}-\dfrac{1}{n^2}\right),\; n=m+1,\,m+2,\,\ldots,

gdzie m=1,2,3, \ldots, a stała R zwana jest stałą Rydberga. Co ważne, wzór Balmera, w tej wersji zwany najczęściej wzorem Rydberga, w przypadku wodoru spełniony jest bardzo dokładnie, choć jeszcze pod koniec XIX wieku zaobserwowano, że linie widmowe wodoru są naprawdę dubletami: parami bardzo blisko położonych linii. Tą tzw. strukturą subtelną nie będziemy się tu zajmować. Wyjaśnia ją równanie Diraca, a więc uwzględnienie efektów relatywistycznych oraz spinu elektronu. Efekty relatywistyczne są jednak poprawkami do energii rzędu \alpha^2, gdzie \alpha\approx\frac{1}{137} jest stałą struktury subtelnej, a więc pięć rzędów wielkości mniejszymi.

Postać wzoru Rydberga łatwo zrozumieć jako zapis zasady zachowania energii, jeśli posłużymy się pojęciem fotonu, wprowadzonym przez Alberta Einsteina w 1905 r. (określenie foton jest dużo późniejsze). Cząstki światła mają energię

E=h\nu=\dfrac{h c}{\lambda},

h, c, \nu oznaczają odpowiednio stałą Plancka, prędkość światła i częstość fotonu. Zatem wzór Rydberga oznacza, że poziomy energetyczne elektronu w atomie wodoru dane są równaniem

E_n=-\dfrac{hcR}{n^2},\,\, n=1,2,3,\ldots.

Dlaczego taka, a nie inna wartość R? Dlaczego pojawia się tu kwadrat liczby naturalnej? Tak proste wyrażenie powinno mieć jakieś uzasadnienie. 

Niels Bohr pierwszy podał teoretyczne wyjaśnienie wartości stałej Rydberga w swoim planetarnym modelu atomu. Energie elektronu na dozwolonych orbitach są w nim równe

E_n=-\dfrac{me^4}{2\hbar^2 n^2},

tutaj m oznacza masę elektronu, e^2=\frac{q_e^2}{4\pi\epsilon_0} to kwadrat ładunku elementarnego razy stała z prawa Coulomba, \hbar\equiv h/2\pi. Liczba naturalna n jest u niego po prostu numerem orbity i konsekwencją postulatu kwantowego:

L=mvr=n\hbar.

Słowami: moment pędu L elektronu na orbicie o promieniu r i prędkości v jest wielokrotnością stałej Plancka. Postulat ten nie wynikał z głębszych rozważań, trzeba go było przyjąć, aby otrzymać prawidłowe wyniki. Można powiedzieć, że Bohr przesunął zgadywankę Balmera z numerologii na teren fizyki.

Ogromnym sukcesem było powiązanie stałej Rydberga z wielkościami elementarnymi: masą i ładunkiem elektronu, stałą Plancka i siłą oddziaływań elektrostatycznych. Zawsze kiedy uda się tego rodzaju sztuka, znaczy, że jesteśmy blisko jakieś bardziej fundamentalnej prawdy. Jednak model Bohra od początku był prowizoryczny. W myśl klasycznej elektrodynamiki elektron krążący po orbicie z pewną częstością f powinien promieniować falę elektromagnetyczną o częstości f. Tymczasem w jego modelu do emisji promieniowania dochodzi, gdy elektron przeskakuje między dwiema orbitami, z których każda charakteryzuje się jakąś częstością krążenia f_n. Podobieństwo do fizyki klasycznej pojawia się dopiero, gdy weźmiemy dwie orbity o dużych numerach, wtedy

\nu_{n+1 n}\approx f_{n}\approx f_{n+1}.

Niels Bohr bardzo niechętnie pogodził się z ideą fotonu. Rozumiał oczywiście, że eksperyment potwierdza proste równanie h\nu=E_n-E_m, tajemnicą był jednak mechanizm fizyczny, jaki za tym stał. Nie znał go ani Einstein, ani Bohr, foton wszedł do fizyki na dobre dopiero w roku 1925. Teorią, która poprawnie przewiduje wartości energii w atomie wodoru, jest mechanika kwantowa. A w pełni konsekwentny opis emisji fotonu daje dopiero kwantowa teoria pola, w której foton jest kwantem pola elektromagnetycznego.

II. Erwin Schrödinger, 1925

W połowie roku 1925 Werner Heisenberg wpadł na pomysł, aby wprowadzić do fizyki wielkości, których mnożenie jest nieprzemienne: operatory albo macierze. W krótkim czasie powstały trzy na pozór niezależne formalizmy do opisania fizyki kwantowej: macierze Heisenberga (oraz Maksa Borna i Pascuala Jordana, którzy wraz z Heisenbergiem rozwinęli tę ideę), funkcje falowe Erwina Schrödingera oraz abstrakcyjny formalizm Paula Diraca.

Krótkie omówienie formalizmu mechaniki kwantowej znajduje się na końcu wpisu.

Wersja Schrödingera najbardziej przypominała klasyczną fizykę drgań. Aby znaleźć dozwolone energie elektronu należy rozwiązać równanie 

-\dfrac{\hbar^2}{2m}\Delta\psi-\dfrac{e^2}{r}\psi=E\psi,

gdzie r jest odległością od jądra, a \Delta to laplasjan, czyli suma drugich pochodnych:

\Delta\equiv \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}.

Wyraz z laplasjanem odpowiada energii kinetycznej, drugi wyraz po lewej stronie odpowiada energii potencjalnej. Szukamy takich funkcji \psi(x,y,z), które wstawione po lewej stronie dadzą po prawej liczbę pomnożoną przez tę samą funkcję \psi. Funkcja taka to funkcja własna, a energia jest wartością własną. Otrzymujemy w ten sposób stany niezależne od czasu, stacjonarne, i tylko takimi będziemy się zajmować.

Funkcje falowe \psi powinny znikać w nieskończoności oraz nie mieć osobliwości. Warunki te prowadzą do skwantowanych poziomów energetycznych. Ponieważ problem jest sferycznie symetryczny (energia potencjalna zależy tylko od odległości elektronu od protonu r), więc można wprowadzić współrzędne sferyczne: odległość od początku układu r, dopełnienie szerokości geograficznej do 90^{\circ} oznaczane \vartheta oraz długość geograficzną oznaczaną \varphi.

spherical

Korzystamy z tożsamości

\Delta\equiv \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}=\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right)-\dfrac{L^2}{\hbar^2},

gdzie L^2 jest operatorem zależnym tylko od kątów, a nie od r. Możemy zapisać równanie Schrödingera w postaci

L^2 \psi=\hbar^2\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial\psi}{\partial r}\right)+2mr^2\left(E+\dfrac{e^2}{r}\right)\psi.

Sama funkcja falowa nie musi być jednak sferycznie symetryczna i można ją zapisać w postaci iloczynu funkcji zależnych od promienia i od kątów:

\psi(r,\vartheta,\varphi)=R(r)Y(\vartheta,\varphi).

Podstawiając tę funkcję do równania Schrödingera i dzieląc obustronnie przez \psi możemy doprowadzić je do postaci:

\dfrac{L^2 Y}{Y}=\lambda=\dfrac{1}{R}\, \hbar^2\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial R}{\partial r}\right)+2mr^2\left(E+\dfrac{e^2}{r}\right).

Po lewej stronie mamy funkcje zależne od kątów, po skrajnej prawej zależne od odległości. Rozseparowaliśmy zmienne, oba wyrażenia muszą równać się wspólnej stałej \lambda. Mamy więc dwa prostsze równania:

\begin{array}{c} -\dfrac{\hbar^2}{2m}\,\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial R}{\partial r}\right)+\left(\dfrac{\lambda}{2m r^2}-\dfrac{e^2}{r}\right)R=ER \\[20pt] L^2 Y=\lambda Y. \end{array}

Drugie z tych równań nie zawiera potencjału i jest stałym punktem programu dla wszystkich sytuacji z symetrią sferyczną. Rozwiązaniami są tzw. harmoniki sferyczne Y_{lm}(\vartheta,\varphi), gdzie l=0,1,2,\ldots, a dla każdej wartości l mamy 2l+1 różnych wartości m=-l,-l+1,\ldots. l Dozwolone wartości własne równe są \lambda=\hbar^2 l(l+1). Kształt przestrzenny tych funkcji każdy widział jako obrazki orbitali s,p,d itd. Funkcje te przydają się zawsze, gdy mamy do czynienia z rozkładem jakiejś wielkości na sferze, np. mapy promieniowania tła w kosmologii albo szczegóły ziemskiego pola grawitacyjnego z uwzględnieniem niesferyczności Ziemi itp (Wtedy oczywiście nie pojawia się w tych wzorach stała Plancka, ale to szczegół techniczny).

Spójrzmy raz jeszcze na pierwsze równanie (radialne), w którym wprowadzamy nową funkcję radialną: u(r)\equiv rR(r):

-\dfrac{\hbar^2}{2m}\,\dfrac{\partial^2 u}{\partial r^2}+\left(\dfrac{\hbar^2 l(l+1)}{2m r^2}-\dfrac{e^2}{r}\right)u=Eu.

Jest to równanie Schrödingera jednowymiarowe. mamy teraz jeden wymiar: radialny, ale bardziej skomplikowany potencjał: do energii elektrostatycznej doszedł dodatni człon z l(l+1). Jego znaczenie fizyczne dość łatwo zidentyfikować przez analogię do mechaniki klasycznej. W ruchu w polu kulombowskim możemy w każdej chwili rozłożyć wektor pędu elektronu na składową radialną p_r i prostopadłą do niego składową styczną p_t. Zgodnie z tw. Pitagorasa energia kinetyczna ma postać

E_k=\dfrac{p_r^2}{2m}+\dfrac{p_t^2}{2m}=\dfrac{p_r^2}{2m}+\dfrac{L^2}{2mr^2},

w ostatniej równości skorzystaliśmy z faktu, że moment pędu elektronu L=rp_{t}. Gdybyśmy dla takiego radialnego problemu napisali równanie Schrödingera, byłoby to właśnie równanie, które uzyskaliśmy w wyniku separacji zmiennych. Zatem dozwolone kwantowe wartości kwadratu momentu pędu są równe L^2=\hbar^2 l(l+1). Nie jest to, rzecz jasna, dowód, lecz wskazanie prawdopodobnej (i prawdziwej) interpretacji fizycznej naszego równania. Mamy więc efektywne potencjały zależne od nieujemnej całkowitej liczby kwantowej l. Wyglądają one w przypadku atomu wodoru następująco:

tmp_iispvexy

Studnia potencjału tylko w przypadku l=0 jest nieskończenie głęboka, wraz z rosnącym l staje się ona coraz płytsza. Nie będziemy rozwiązywać do końca tego równania radialnego. Okazuje się, że aby uzyskać funkcje znikające w nieskończoności i nie wybuchające w pobliżu r=0, rozwiązania mają postać

R_{nl}(r)=W_{n-1 l}(r)e^{-r/na_0},

gdzie n jest tzw. główną liczbą kwantową, a_0 promieniem Bohra (promieniem pierwszej orbity w modelu Bohra), a W jest wielomianem stopnia n-1. Dozwolone wartości l=0,1,\ldots, n-1. Prawdopodobieństwa dane są kwadratami funkcji falowej. Np. dla stanu podstawowego wodoru wygląda to tak.

tmp_72yjso5t

Pionowa linia wskazuje granicę obszaru dozwolonego klasycznie, tzn. takiego, że energia całkowita jest większa od energii potencjalnej (poza tym obszarem energia kinetyczna powinna być ujemna). Falowy charakter równania przejawia się w tym, że nic nie dzieje się nagle, funkcja zanika płynnie w pewnym obszarze. Fizycznie oznacza to możliwość przenikania barier potencjału, czyli efekt tunelowy, odpowiedzialny m.in. za świecenie gwiazd.

Energie stanów równe są dokładnie temu, co obliczył Bohr. Zależą one tylko od n, a nie zależą od wartości l, mimo że potencjał efektywny jest zupełnie inny przy różnych l. Łącznie danej wartości n odpowiada n^2 różnych rozwiązań. Bezpośrednie rozwiązanie równania Schrödingera nie bardzo pozwala zrozumieć, skąd się bierze aż taka rozmaitość. Te same energie powinniśmy otrzymywać dla jednakowego l i różnych wartości m, bo oznaczają one różne wartości rzutu momentu pędu na oś z. Zatem symetria obrotowa wyjaśnia tylko część degeneracji stanów w atomie wodoru. Jeśli weźmiemy pod uwagę potencjał inny niż kulombowski, to ta dodatkowa degeneracja zniknie: stany o różnych l rozszczepią się energetycznie. Tak jest np. w atomie litu, gdzie elektron walencyjny porusza się w efektywnym polu jądra oraz dwóch pozostałych elektronów. Z daleka mamy więc tylko ładunek (3-2)q_e=q_e, tak jak w atomie wodoru, z bliska jednak potencjał jest inny, choć nadal sferycznie symetryczny.

lithlev

Nawet po rozwiązaniu zagadnienia atomu wodoru za pomocą równania Schrödingera nadal niezbyt dobrze rozumiemy, dlaczego stany są zdegenerowane: E_{2s}=E_{2p}, E_{3s}=E_{3p}=E_{3d}, itd. W przyszłości pokażemy, że stany związane atomu wodoru wykazują  dodatkową symetrię i że łącznie grupą symetrii jest tu grupa obrotów w przestrzeni czterowymiarowej. Dopiero ten fakt wyjaśnia głębiej wzór Balmera.

Poniżej przedstawiłem niektóre szczegóły matematyczne dla zainteresowanych.

Zasady mechaniki kwantowej w przypadku jednej cząstki

Stany cząstki

Stan elektronu w formalizmie Schrödingera opisujemy za pomocą pewnej funkcji (zespolonej) falowej \psi(x,y,z,t). Rozmaite dopuszczalne funkcje można traktować jak wektory: dodawanie funkcji i mnożenie przez liczbę (zespoloną) daje inną dopuszczalną funkcję. Zbiorem funkcji może być np. zbiór funkcji znikających dostatecznie szybko w nieskończoności:

{\displaystyle \int_{{\bf R}^3}}\; |\psi(x,y,z)|^2 \, dV<\infty.

Określamy także operację iloczynu skalarnego dwóch funkcji:

(\psi,\chi)={\displaystyle \int_{{\bf R}^3}}\; \psi^{\star}\chi\, dV.

Iloczyn wektora przez siebie jest kwadratem jego długości, czyli normy:

\lVert \psi \rVert^2=(\psi,\psi)={\displaystyle \int_{{\bf R}^3}}\; |\psi(x,y,z)|^2 \,dV.

Definiując odległość dwóch wektorów \psi, \chi jako \Vert \psi-\chi\rVert otrzymujemy przestrzeń Hilberta (do definicji należy jeszcze dodać warunek zupełności: żeby ciągi zbieżne w normie nie wyprowadzały poza naszą przestrzeń).

Wielkości fizyczne

Wielkościom fizycznym odpowiadają operatory, czyli przekształcenia liniowe określone na przestrzeni funkcji. Liniowość oparatora A oznacza, że dla dowolnych dwóch wektorów \psi,\chi i dowolnych dwóch liczb zespolonych \alpha,\beta, mamy

A(\alpha \psi+\beta\chi)=\alpha A\psi+\beta A\chi.

Łatwo to sprawdzić w poszczególnych przypadkach, np. dla składowej x pędu otrzymamy: p_x(\psi_1+\psi_2)=p_x\psi_1+p_x\psi_2, bo pochodna sumy funkcji, to suma pochodnych itd. Operatory odpowiadające wielkościom fizycznym muszą być hermitowskie, tzn. dla dowolnych wektorów mamy

(\chi, A\psi)=(A\chi,\psi).

Warunek ten zapewnia, że mierzone wartości wielkości fizycznych są rzeczywiste, mimo że cały formalizm oparty jest na liczbach zespolonych.

Operatory można składać, czyli mnożyć, wykonując po prostu jedną operację po drugiej. Składając więc operator B i następnie operator A otrzymujemy AB, który działa następująco na wektor:

(AB)\psi=A(B\psi).

Jasne jest, że tak określone mnożenie operatorów na ogół jest nieprzemienne, tzn. wynik zależy od kolejności. W fizyce kwantowej szczególne znaczenie mają tzw. komutatory operatorów, zdefiniowane jako różnica między pomnożeniem ich w odmiennej kolejności: [A,B]=AB-BA.

Komutatory tej samej składowej współrzędnej i pędu nie komutują i muszą spełniać warunek odkryty przez Heisenberga:

[x,p_x]=i\hbar,

ale [x,p_y]=[x,p_z]=0. Komutują też między sobą operatory różnych składowych współrzędnej albo pędu. Z operatorów pędu i współrzędnych budować możemy operatory innych wielkości fizycznych, np. momentu pędu badź energii (hamiltonian). Wszystkie one muszą być hermitowskie. Szczególną rolę odgrywa hamiltonian H({\bf x},{\bf p}), gdyż określa ewolucję czasową układu. Spełnione musi być w każdej chwili równanie Schrödingera

i\hbar\dfrac{\partial\psi}{\partial t}=H\psi.

Gdy hamiltonian nie zależy od czasu, możemy szukać funkcji spełniających równanie 

H\chi=E\chi,

tzw. równanie Schrödingera bez czasu. Wówczas 

\psi(t)= \exp{\left(-\dfrac{iEt}{\hbar}\right)}\chi,

jest rozwiązaniem ogólniejszego równania Schrödingera. Ewolucja w czasie polega wówczas tylko na zmianie fazy zespolonej, jest to stan kwantowy o ustalonej energii, stan stacjonarny.

Postulat interpretacyjny

Wartość oczekiwana wielkości fizycznej A w stanie \psi dana jest równaniem

\langle A\rangle=\dfrac{(\psi,A\psi)}{(\psi,\psi)}.

Gdy używamy funkcji unormowanej (\psi,\psi)=1 z wyrażenia tego zostaje tylko licznik. Widzimy, że zawsze można funkcję falową pomnożyć przez dowolny niezerowy czynnik, nie zmieniając wyników doświadczenia. Jeśli interesuje nas pytanie, czy cząstka znajduje się w obszarze V możemy za operator A_V wziąć mnożenie przez funkcję charakterystyczną tego obszaru (równą 1 dla {\bf x}\in V oraz 0 poza obszarem), wtedy prawdopodobieństwo znalezienia cząstki wenątrz V dane jest

Pr(V)={\displaystyle \int_V}|\psi|^2\, dV.

(Zakładamy unormowanie funkcji \psi.)

Widać też szczególną rolę wektorów i stanów własnych. Jeśli spełnione jest równanie 

A\psi=a\psi,

to mówimy, że funkcja \psi jest wektorem własnym, a wartość a wartością własną. Z postulatu interpretacyjnego wynika, że w wyniku pomiaru wielkości A otrzymamy wartość a. A więc w tym przypadku wielkość fizyczna przyjmuje ściśle określoną wartość, nie ma żadnego kwantowego rozmycia. Łatwo zauważyć, że tylko w takim przypadku możemy mówić o ściśle określonej wartości wielkości fizycznej. Tworząc operator (A-a)^2 widzimy, że

\langle (A-a)^2\rangle=0 \Leftrightarrow A\psi=a\psi.

W sytuacji takiej nie ma żadnego rozrzutu wyników, otrzymujemy zawsze tylko i wyłącznie wartość a.

Dwa fakty matematyczne

Gdy pewien stan \psi jest jednocześnie stanem własnym dwóch operatorów A\psi=a\psi oraz B\psi=b\psi, to operatory te komutują na tym stanie:

AB\psi=Ab\psi=ab\psi=ba\psi=BA\psi.

Z kolei stany należące do różnych wartości własnych danego operatora A są ortogonalne, tzn. gdy A\psi=a\psi oraz A\chi=b\chi, to mamy

a(\psi,\chi)=(A\psi,\chi)=(\psi, A\chi)=b(\psi,\chi) \Leftrightarrow (a-b)(\psi,\chi)=0.

Szczegóły matematyczne problemu atomu wodoru

Laplasjan

Dla laplasjanu mamy tożsamość:

\Delta\equiv \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}=\dfrac{1}{r^2}\dfrac{\partial}{\partial r}\left(r^2 \dfrac{\partial}{\partial r}\right)-\dfrac{({\bf x}\times {\bf \nabla})^2}{\hbar^2},

Najłatwiej sprawdzić to we współrzędnych kartezjańskich, licząc operator ({\bf x}\times {\bf \nabla})^2 i wyrażając operator r\frac{\partial}{\partial r} przez pochodne kartezjańskie:

r\dfrac{\partial }{\partial r}=x\dfrac{\partial }{\partial x}+y\dfrac{\partial }{\partial y}+z\dfrac{\partial }{\partial z},

gdzie korzystamy wielokrotnie z równości r^2=x^2+y^2+z^2. Podobnie możemy obliczyć kwadrat operatora po lewej stronie.

Moment pędu

Procedura przejścia do mechaniki kwantowej polega na zastąpieniu każdej zmiennej fizycznej odpowiednim operatorem. Każdą ze współrzędnych x,y,z zastępujemy mnożeniem przez odpowiednią współrzędną. Działając na funkcję \psi dają one nowe funkcję, x\psi,y\psi, z\psi. Podobnie operatory składowych pędu działając na funkcję, dają pochodne, \frac{\hbar}{i}\frac{\partial\psi}{\partial x} itd. 

W przypadku atomu wodoru z punktowym protonem w początku układu dowolny obrót wokół początku układu nie powinien zmieniać fizyki. W fizyce klasycznej oznacza to, że moment pędu układu jest stały. Jest on zdefiniowany jako

{\bf L}={\bf x} \times {\bf p}, \, \Leftrightarrow L_x=y p_z-z p_y, \, L_y=z p_x-x p_z, \, L_z=x p_y-y p_x,

w ostatnich trzech równaniach możemy cyklicznie przestawiać wskaźniki x\rightarrow y\rightarrow\ z\rightarrow x \ldots. Krócej zapisać można te związki w postaci:

L_i=\varepsilon_{ijk}x_jp_k,

gdzie zamiast x,y,z piszemy x_i, a symbol całkowicie antysymetryczny \varepsilon_{123}=1 i zmienia znak przy każdym przestawieniu dwóch wskaźników oraz \varepsilon_{ijk}=0, gdy jakieś wskaźniki się powtarzają. Zakładamy sumowanie po każdej parze powtarzających się wskaźników.

W mechanice kwantowej operatory L_i tworzymy dokładnie tak samo, tyle że teraz musimy pamiętać, że kolejność operatorów może być istotna. Operatory momentu pędu komutują z hamiltonianem atomu wodoru:

[H,L_i]=0,

Także operator kwadratu momentu pędu L^2=L_1^2+L_2^2+L_3^2 komutuje z hamiltonianem, a także z poszczególnymi składowymi momentu pędu:

[L^2,H]=0,\;\; [L^2,L_i]=0, \,\, i=1,2,3.

Jednakże operatory L_i nie komutują ze sobą:

[L_i,L_j]=i\hbar\varepsilon_{ijk} L_k.

Maksymalnym zbiorem komutujących operatorów jest więc H, L^2 oraz jedna z trzech składowych momentu pędu. Standardowo wybiera się tu L_3\equiv L_z. Możemy więc szukać funkcji własnych hamiltonianu, które będą zarazem funkcjami własnymi L^2 oraz L_3.

Wprowadzimy współrzędne sferyczne punktu,  Łatwo sprawdzić, że operatory momentu pędu zależą tylko od kątów, nie od r  Np.

L_3=\dfrac{\hbar}{i} \dfrac{\partial}{\partial \varphi}.

Możemy to sprawdzić, korzystając z wyrażeń na współrzędne kartezjańskie:

\left\{ \begin{array}{l} x=r\sin\vartheta\cos\varphi \\ y=r\sin\vartheta\sin\varphi \\ z=r\cos\vartheta. \end{array}\right.

Obliczamy, stosując wzór na pochodną funkcji złożonej:

\dfrac{\partial}{\partial \varphi}=\dfrac{\partial x}{\partial \varphi}\dfrac{\partial}{\partial x}+\dfrac{\partial y}{\partial \varphi}\dfrac{\partial}{\partial y}=-y\dfrac{\partial}{\partial x}+x\dfrac{\partial}{\partial y}.

W pozostałych składowych momentu pędy odległość r pojawia się raz w liczniku, a drugi raz w mianowniku przy różniczkowaniu, ostatecznie zostają wyrażenia zależne wyłącznie od kątów \vartheta, \varphi. Wracając do naszego równania z głównego tekstu:

L^2 \psi=\hbar^2\dfrac{\partial}{\partial r}\left(r^2\dfrac{\partial\psi}{\partial r}\right)+2mr^2\left(E+\dfrac{e^2}{r}\right)\psi.

Funkcja falowa \psi powinna być w pobliżu początku układu analityczna, tzn. zachowywać się jak wielomian stopnia l (może być stała, wtedy l=0) plus wyrazy wyższego stopnia. Można ją w pobliżu r=0 zapisać jako \psi=r^{l}Y(\frac{ {\bf x}}{r}) – wyłączyliśmy przed funkcję wszystkie potęgi r, pozostała część jest funkcją wektora jednostkowego, tzn. zależy tylko od kierunku. Drugi składnik po prawej stronie zawiera r w potęgach wyższych niż l-2, jest więc do pominięcia blisko początku układu. Obliczając pierwszy składnik po prawej stronie, dostaniemy

L^2 Y \rightarrow \hbar l(l+1) Y.

Funkcje własne kwadratu momentu pędu to wielomiany jednorodne (wszystkie składniki są tego samego stopnia  l) zmiennych x,y,z. Łatwo sprawdzić, że spełniają one warunek

\Delta(r^l Y)=0.

Funkcje Y_{lm} nazywane są harmonikami sferycznymi. Drugi wskaźnik informuje o wartości L_3\equiv L_z. Dla l=1 mamy funkcje (nie wypisujemy stałych normalizacyjnych), tzw. orbitale p:

\left\{ \begin{array}{l} Y_{1\pm 1} \sim\dfrac{x\pm iy}{r}= \sin\vartheta e^{\pm i\varphi}\\[5pt] Y_{10} \sim\dfrac{z}{r}=\cos\vartheta.\end{array}\right.

Dla l=2 otrzymujemy pięć orbitali d:

\left\{ \begin{array}{l} Y_{2\pm 2} \sim\dfrac{(x\pm iy)^2}{r^2}= \sin^2\vartheta e^{\pm i2\varphi}\\[8pt]Y_{2\pm 1} \sim\dfrac{(x\pm iy)z}{r^2}=\sin\theta\cos\vartheta e^{\pm i\varphi}\\[8pt] Y_{20}\sim \dfrac{2z^2-x^2-y^2}{r^2}=3\cos^2\vartheta-1.\end{array}\right.

Czynnik e^{im\varphi} określa wartość składowej z momentu pędu:

\dfrac{\hbar}{i}(e^{im\varphi})=m\hbar e^{im\varphi}.

Dla każdej wartości l mamy 2l+1 dopuszczalnych wartości L_z. Stany te powinny mieć taką samą energię.

 

 

Dlaczego atomy są trwałe?

Atomów nie można opisać za pomocą dziewiętnastowiecznej fizyki klasycznej. W doświadczeniach Hansa Geigera i Ernesta Marsdena, prowadzonych pod kierunkiem Ernesta Rutherforda w Manchesterze w latach 1909-1913, okazało się, że praktycznie cała masa atomu mieści się w bardzo małym obszarze o promieniu pojedynczych femtometrów (1 {\rm fm}=10^{-15} {\rm m}). Przedtem sądzono (model J.J. Thomsona), że atom zawiera rozmyty ładunek dodatni, w którym znadują się, niczym rodzynki w cieście, lekkie punktowe elektrony. Przy bombardowaniu cienkiej złotej folii za pomocą cząstek α (jąder helu) zdarzało się jednak, że cząstki te rozpraszały się pod wielkimi kątami, niemal zawracały. Byłoby to niemożliwe, gdyby dodatni ładunek rozmyty był na znacznym obszarze. Tak silne pole elektryczne wymagało niemal punktowego ładunku – atom musi więc zawierać niewielkie jądro. Tak narodził się model planetarny Ernesta Rutherforda.

Na rysunku nie można oddać różnicy skali między modelami Thomsona i Rutherforda. Elektrony krążą w znacznie większym obszarze kilkudziesięciu pikometrów (1 {\rm pm}=10^{-12} {\rm m}): w przypadku wodoru objętość atomu jest 2\cdot 10^{14} razy większa od objętości protonu w centrum. Znaczy to, że atom jest praktycznie pusty. Analogia z planetami krążącymi wokół Słońca niezbyt się tu jednak stosuje, ponieważ poruszający się z  przyspieszeniem elektron powinien emitować energię w postaci fal elektromagnetycznych. Z teorii Maxwella wynika, że w czasie rzędu 10^{-11} \,{\rm s} elektron powinien spaść na jądro. Atomy nie są stabilne – do takiego wniosku prowadzi Newtonowska mechanika w połączeniu z elektrodynamiką Maxwella.

Prowizorycznym wyjściem z sytuacji był model Nielsa Bohra: wprowadzał on dozwolone orbity elektronów i jakimś cudem przewidywał prawidłowo długości fal w widmie wodoru. Postulat kwantowania orbit jest nie do pogodzenia z fizyką klasyczną: trzeba bowiem założyć, że elektrodynamika czasem działa, a czasem nie. Jej prawa są z jakiegoś powodu zawieszone w przypadku orbit Bohra.

 Problem rozwiązała dopiero mechanika kwantowa. Przyjrzymy się, jak objaśnia ona stabilność atomu wodoru. Dla uproszczenia będziemy mówić o ruchu elektronu w polu elektrostatycznym nieruchomego jądra (wprowadzane w ten sposób przybliżenie łatwo zastąpić dokładniejszymi rachunkami). Mamy więc elektron o energii składającej się z energii kinetycznej oraz elektrostatycznej energii potencjalnej:

E=\dfrac{{\mathbf p}^2}{2m}-\dfrac{e^2}{r},

gdzie {\mathbf p} oraz m są odpowiednio pędem i masą elektronu, r jest jego odległością od punktowego jądra, a stała e^2\equiv\frac{q_e^2}{4\pi\varepsilon_0}. Nasz problem stabilności łatwiej zrozumieć, patrząc na wykres energii potencjalnej. 

Energia potencjalna w funkcji odległości elektronu od protonu (zaznaczone są dwa najniższe poziomy energetyczne atomu wodoru)

Zaznaczone są dozwolone wartości energii całkowitej. Energia krążącego elektronu jest stała tylko pod warunkiem pominięcia promieniowania. Inaczej będzie ona szybko się zmniejszać, a więc jak widać z wykresu nasz elektron będzie coraz ciaśniej okrążał proton. Studnia potencjału jest nieskończenie głęboka, bez dna (w przybliżeniu punktowego protonu). 

Mechanika kwantowa opisuje stany elektronu za pomocą funkcji falowej \psi(x,y,z)=\psi({\mathbf r}). Jej znaczenie jest statystyczne, pozwala ona obliczać rozmaite wartości średnie: np. średnią wartość energii kinetycznej, albo potencjalnej. Prawdopodobieństwo znalezienia elektronu w danym obszarze przestrzeni V jest równe

Pr(V)={\displaystyle \int_{V} |\psi|^2 dV}.

Oznacza to, że całka po całej przestrzeni musi być równa 1, mówimy wtedy, że funkcja falowa jest unormowana. Aby otrzymać rozmaite wartości średnie, musimy mieć przepis na ich tworzenie. Jest on następujący: każdej wielkości fizycznej przypisuje się operator. Np. operatorem składowej x położenia jest mnożenie przez x. Znaczy to, że pod działaniem tego operatora funkcja \psi przechodzi w x\psi. Bardziej skomplikowanym przypadkiem jest pęd. Składowa x pędu zastępowana jest braniem pochodnej po x:

\psi \mapsto \dfrac{\hbar}{i} \dfrac{\partial\psi}{\partial x}.

Pojawia się tutaj stała Plancka \hbar znak niechybny, że mamy do czynienia z fizyką kwantową, i jest tu jednostką urojoną – nasza funkcja \psi ma wartości zespolone. Z początku budziło to pewne zdumienie ojców mechaniki kwantowej, dziś wiemy, że liczby zespolone są tu nieodzowne. 

Mając pęd i położenie, możemy zbudować operator energii, czyli hamiltonian: zastępujemy po prostu pędy i położenia ich operatorami.  W jednym wymiarze wyglądałoby to następująco

H=-\dfrac{\hbar^2}{2m}\dfrac{\partial ^2}{\partial x^2}- \dfrac{e^2}{x}.

Pierwszy składnik oznacza, że należy dea razy wziąć pochodną po x i pomnożyć przez odpwoednią stałą, drugi składnik jest zwykłym mnożeniem funkcji. W trzech wymiarach mamy trzy składowe pędu, czyli trzy pochodne składające się w symbol zwany laplasjanem (czyli operatorem Laplace’a):

\Delta=\dfrac{\partial ^2}{\partial x^2}+\dfrac{\partial ^2}{\partial y^2}+\dfrac{\partial ^2}{\partial z^2}.

Zapisany w ten sposób hamiltonian ma postać:

H=-\dfrac{\hbar^2}{2m}\Delta-\dfrac{e^2}{r}.

Ostatni potrzebny nam składnik formalizmu to przepis na znajdowanie wartości średnich. Jeśli operator przypisany szukanej zmiennej nazwiemy A, to wartość średnia zmiennej jest równa

\langle A \rangle={\bf \int }\psi^{\star}A\psi dV.

Pojawia się tu funkcja zespolona sprzężona \psi^{\star}. Operatory odpowiadające wielkościom mierzalnym fizycznie (obserwablom) to tzw. operatory hermitowskie, które dają w powyższym przepisie wynik rzeczywisty, tak jak tego oczekujemy w eksperymencie. Hermitowskie są w szczególności operatory pędu, położenia i hamiltonian.

W zasadzie tyle formalizmu wystarczy, bez rozwiązywania równań różniczkowych, by pokazać, że dla dowolnej rozsądnej funkcji falowej (normowalnej) energia ograniczona jest z dołu. Czyli nie możemy uzyskać w żadnym eksperymencie mniej niż owo dolne ograniczenie. Co więcej, w każdym stanie związanym prawdopodobieństwo, że elektron znajdzie się bardzo blisko jądra jest znikome. Formalizm mechaniki kwantowej osiąga to dzięki wprowadzeniu funkcji \psi, która skoncentrowana w małym obszarze wymusza dużą energię kinetyczną. Jakościowo odpowiada to zasadzie nieoznaczoności: mała nieoznaczoność położenia oznacza dużą nieoznaczoność pędu, a więc i energii kinetycznej. Jednak zasady nieoznaczoności nie możemy tu zastosować wprost. 

Rozpatrzmy operator {\bf A} dany równaniem

{\bf A}={\bf p}-i\beta \dfrac{{\bf r}}{r},

gdzie \beta jest dowolną liczbą rzeczywistą. Ponieważ całka z kwadratu modułu {\bf A}\psi nie może być ujemna, otrzymujemy nierówność

\langle {\bf p}^2\rangle-2\beta\hbar\left\langle\dfrac{1}{r}\right\rangle+\beta^2\ge 0,\mbox{(*)}

słuszną dla każdego \beta. Bierzemy najpierw \beta=\hbar\langle\frac{1}{r}\rangle. Dostajemy nierówność

\langle {\bf p}^2\rangle\ge \hbar^2\left\langle \dfrac{1}{r}\right\rangle^2.

Dla dowolnej wartości r_0>0 możemy ograniczyć wartość całki do obszaru r<r_0, gdzie 1/r>1/r_0, otrzymujemy w ten sposób nierówność

\langle {\bf p}^2\rangle^{\frac{1}{2}}\ge \dfrac{\hbar}{r_0} Pr(r<r_0). 

Wrócimy do niej za chwilę. Raz jeszcze korzystamy z (*), tym razem dla \beta=\frac{me^2}{\hbar}. Porządkując wyrazy, otrzymujemy wartość oczekiwaną energii:

\boxed{ \left\langle \dfrac{{\mathbf p}^2}{2m}-\dfrac{e^2}{r}\right\rangle\ge -\dfrac{me^4}{2\hbar^2.}}

Mechanika kwantowa przewiduje zatem dolną wartość energii, równą -13,6\, \rm{eV}.

Aby oszacować \langle{\mathbf p}^2\rangle , założymy, że mamy elektron w stanie związanym, a więc całkowita energia jest ujemna – klasycznie znaczy to, że elektron nie może uciec z pola elektrostatycznego protonu. 

Mamy

\left\langle \dfrac{{\mathbf p}^2}{2m}-\dfrac{e^2}{r}\right\rangle<0,

co można przepisać w postaci

\left\langle \dfrac{{\mathbf p}^2}{4m}\right\rangle<-\left\langle \dfrac{{\mathbf p}^2}{4m}-\dfrac{e^2}{r}\right\rangle.

Do prawej strony możemy zastosować nierówność z ramki przy masie cząstki równej 2m. Otrzymujemy stąd szacowanie dla

\left\langle {\mathbf p}^2\right\rangle \le \dfrac{2me^2}{\hbar}.

Ostatecznie, prawdopodobieństwo znalezienia elektronu nie dalej niż r_0 od jądra spełnia nierówność

\boxed{Pr(r<r_0)<\dfrac{2 r_0}{a_0},}

gdzie a_0\equiv \frac{\hbar}{me^2}\approx 53 \,{\rm pm} zwane jest promieniem Bohra. Jest to promień pierwszej orbity w modelu Bohra.

Widzimy więc, że formalizm mechaniki kwantowej dostarcza wyjaśnienia, czemu atomy są trwałe, co jest niezmiernie ważnym faktem. Uwzględnienie poprawek relatywistycznych itd. niewiele tu zmienia. Można udowodnić więcej: także w układzie wielu jąder i wielu oddziałujących ze sobą elektronów kolaps jest niemożliwy. W tym przypadku ważną rolę odgrywa także fakt, iż elektrony są fermionami, tzn. żadne dwa z nich nie mogą zajmować tych samych stanów (wliczając spin). Podstawowe wyniki w tym obszarze należą do Elliotta Lieba i Waltera Thirringa. Rozważania takie są interesujące ze względów poznawczych, ale także pomagają zrozumieć zachowanie dużych układów, dla których bezpośrednie rachunki bez żadnych przybliżeń są niemożliwe.

Korzystałem z książki E. B. Manoukian, 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand.
Integrated Technical Treatment, Springer Nature 2020.

Stanisław Ulam (2/2)

Wciąż jest dla mnie źródłem nieustającego zdziwienia, że kilka znaków nagryzmolonych na tablicy lub na kartce papieru może zmienić bieg ludzkich spraw. [S. Ulam]

Każdego roku, od 1936 aż do 1939, Stanisław Ulam spędzał lato w Polsce. Spotykał się ze swoimi matematycznymi przyjaciółmi, w tym Banachem i Mazurem, we Lwowie albo gdzieś w okolicach, gdzie spędzali wakacje. Jego dorobek matematyczny obejmował szereg dziedzin: teorię mnogości, teorię miary i rachunek prawdopodobieństwa, teorię transformacji, teorię grup. Były to na ogół niewielkie prace rozwiązujące lub stawiające jakiś problem. Na uniwersytecie Harvarda we współpracy z Johnem Oxtobym Ulam napisał swoją najdłuższą pracę, opublikowaną następnie w „Annals of Mathematics”, wysoko cenionym piśmie wydawanym w Princeton. Praca dotyczyła teorii ergodycznej. W mechanice klasycznej każdy nietrywialny układ fizyczny wędruje po swojej przestrzeni stanów (in. przestrzeni fazowej) w taki sposób, że wraca kiedyś w sąsiedztwo każdego punktu już odwiedzonego. Fakt ten jest podstawą fizyki statystycznej, w której zakłada się, że wszystkie stany o określonej energii są jednakowo prawdopodobne. Praca Ulama i Oxtoby’ego dowodziła, że przekształcenia spełniające warunek ergodyczności są w pewnym sensie typowe. Uzyskany przez nich wynik nie mógł być wprost zastosowany do fizyki, ale tak jest bardzo często: ścisłe potwierdzenie intuicji fizyków zazwyczaj nie jest łatwe.

Stanisław Ulam łatwo przywykł do amerykańskiego życia i z przyjemnością wracał do niego po wakacjach. Latem 1939 roku zabrał ze sobą młodszego brata, Adama. Na statek w Gdyni odprowadzili ich ojciec i stryj. Widmo wojny wisiało nad Polską, choć, jak zauważył Ulam, zagrożenie to wyraźniej dostrzegano w Stanach Zjednoczonych niż w Polsce, gdzie do ostatniej chwili łudzono się nadziejami na jakiś zwrot dyplomatyczny w zaostrzającym się napięciu. Różnice w sposobie oceny wynikały zapewne nie tylko z dystansu Amerykanów. Do Stanów Zjednoczonych dotarło w ostatnich latach wielu uchodźców z Niemiec, którzy lepiej niż inni rozumieli istotę nazistowskiego reżimu. W Polsce prasa, koła wojskowe i politycy zgodnie uprawiali propagandę w stylu „nie oddamy ani guzika”, co skończyło się klęską nie tylko militarną i polityczną, ale także klęską moralną – kraj był bowiem zupełnie nieprzygotowany do wojny i tysiące, może miliony ludzi, rzuciły się do panicznej i bezładnej ucieczki: jedni na wschód, inni na zachód. Dowódcy niemieccy zdumieni byli łatwością tego zwycięstwa, które po dwu tygodniach było już w zasadzie zupełne.

Dla Stanisława Ulama wojna oznaczała nie tylko lęk o najbliższych i przyjaciół pozostawionych w kraju, ale i obowiązek utrzymywania młodszego brata, który zaczął jesienią studia (z czasem został znanym sowietologiem). Znalezienie płatnej pracy akademickiej nie było łatwe, Ulam musiał zadowolić się uniwersytetem stanu Wisconsin w Madison. Po Harvardzie i Princeton nie było to wymarzonym rozwiązaniem, jednak uczelnia okazała się całkiem przyzwoita, Ulam zaprzyjaźnił się tam z wieloma wykładowcami, nie tylko zresztą z matematykami, ale i z fizykami, ekonomistami. Wygłosił kiedyś zaimprowizowany wykład na zjeździe astronomów (na temat wyboru układu odniesienia, w którym ruch ciał wygląda prościej – była to topologiczna wersja problemu kopernikańskiego). W tym okresie wielu wybitnych uczonych, zwłaszcza pochodzących z Europy, pracowało na mniejszych uczelniach, fala emigracji wywołała bowiem nadmiar szukających pracy akademików. W Madison pracował Eugene Wigner, fizyk i szkolny kolega von Neumanna, przyszły noblista. Na seminaria prowadzone przez Ulama przyjeżdżali do Madison matematycy tej klasy co André Weil, urodzony w Warszawie Samuel Eilenberg czy Paul Erdös, wszyscy oni stali się sławami światowego formatu. Erdös zaprzyjaźnił się z Ulamem i odwiedzał go czasami, rozmowy były jego ulubioną formą pracy matematycznej, z czasem opublikował wspólne prace z kilkuset innymi badaczami. Matematycy obliczają liczbę Erdösa: on sam ma liczbę zero; ci, którzy z nim pracowali, mają liczbę jeden; ci, którzy pracowali z posiadającymi liczbę jeden, mają liczbę dwa itd. Oczywiście, Ulam miał liczbę Erdösa równą jeden. Zabawa ta unaocznia, jak silną rolę odgrywa współpraca nawet w dziedzinie tak z pozoru indywidualnej jak matematyka (choć trzeba też dodać, że Erdös, podobnie jak Ulam, wyjątkowo lubił pracę w towarzystwie innych).

W 1941 roku Ulam otrzymał obywatelstwo amerykańskie i kiedy Stany Zjednoczone przystąpiły do wojny, chciał pracować na rzecz wojska. Dzięki rekomendacji von Neumanna trafił do Los Alamos i Projektu Manhattan jako jeden z niewielu matematyków. Spotkał tam i poznał osobiście wielu fizyków i chemików o głośnych nazwiskach, nigdy chyba w historii nie zgromadzono w jednym miejscu w pracy nad wspólnym projektem tak wielu wybitnych specjalistów. Wielu z nich było emigrantami, których dotychczasowe życie zburzył mniej lub bardziej nazizm. Wśród kierujących projektem byli dwaj znakomici fizycy jądrowi: Hans Bethe i Enrico Fermi. Pierwszy miał babkę Żydówkę, przez co stracił profesurę w Tybindze, drugi miał za żonę Żydówkę i w roku 1938 zmuszony był opuścić Włochy. Ulam obu uczonych bardzo szanował, lecz szczególny respekt budził w nim Fermi – ostatni chyba fizyk będący zarazem eksperymentatorem i teoretykiem. Nie rozstający się z suwakiem logarytmicznym Fermi, który umiał szybko obliczyć każdą potrzebną wielkość, miał też solidne przygotowanie matematyczne i okazało się, że zna np. pracę Oxtoby’ego i Ulama. Dzięki Projektowi Manhattan Stanisław Ulam zaczął pracować z fizykami i tak już miało zostać przez długie lata. Jego talent matematyczny niespodziewanie okazał się przydatny w zagadnieniach z pogranicza inżynierii. Taki przeskok z podstaw matematyki do zagadnień praktycznych byłby niewyobrażalny dla większości matematyków. Ulam trafił do grupy kierowanej przez Edwarda Tellera, jeszcze jednego emigranta z Węgier. Pierwszym zagadnieniem, którym się tam zajął, było oddziaływanie gazu elektronowego z promieniowaniem. Teller uzyskał z rozważań wymiarowych postać równania, chciał aby te rozważania uściślić. Ulam zaproponował własne dość elementarne rozwiązanie, z którego wynikało, że wzór Tellera trzeba uzupełnić współczynnikiem cztery. Niezadowolony Teller zlecił to samo zadanie komuś innemu, kto posługując się znacznie bardziej rozbudowanym aparatem matematycznym, uzyskał dla owego współczynnika liczbowego także wartość zbliżoną do czterech.

Ulam, Richard Feynman i John von Neumann w Los Alamos

Rodzaj talentu matematycznego Stanisława Ulama był nietypowy, jedyny w swoim rodzaju. Posiadał on dar formułowania problemów w sposób jak najprostszy, zachowując jedynie najistotniejsze ich cechy. Wyobrażał sobie przy tym zjawiska, a nie tylko równania, które je opisują. Łatwo też przychodziły mu oszacowania liczbowe, co w Los Alamos było niezwykle ważne – nie chodziło tam przecież o zrozumienie idealnej sytuacji laboratoryjnej, ale o skonstruowanie jak najefektywniejszej bomby. Należało więc wejść w świat rzeczywistych obiektów, kształtów, własności różnych materiałów, współwystępowania rozmaitych zjawisk. Zazwyczaj praca fizyków polega na czymś odwrotnym: szuka się najprostszych i „najczystszych” sytuacji, w których można zmierzyć dane zjawisko.

Po zakończeniu wojny i Projektu Manhattan Stanisław Ulam wrócił do pracy akademickiej. Został profesorem nadzwyczajnym na Uniwersytecie Południowej Kalifornii (USC). Uczelnia okazała się słaba, Los Angeles było miastem trudnym do mieszkania i poruszania się z powodu korków ulicznych. Pewnego dnia Ulam poważnie zachorował, zaczął mieć problemy z mówieniem. Przeprowadzono operację, otwierając czaszkę. Znaleziono ostry stan zapalny, który leczono nowymi wówczas antybiotykami, podawanymi bezpośrednio do wnętrza czaszki. Uczony po pewnym czasie doszedł do siebie, jednak z obawą myślał, czy po tym wszystkim jego umysł wróci do dawnej sprawności. Przekonał się o tym, kiedy odwiedził go Paul Erdös. Zagrali w szachy i Ulam wygrał. Zaczął podejrzewać, że może przyjaciel pozwolił mu wygrać dla podtrzymania go na duchu. Zagrali więc jeszcze raz. Uspokoił się dopiero, kiedy wygrał po raz drugi, a Erdös wyraźnie się tym zirytował.

Nie pozostał na USC długo, tym bardziej że po chorobie wpadł w długi. Otrzymał propozycję pracy w Los Alamos dla armii amerykańskiej. Wprawdzie sławni i wielcy po zakończeniu Projektu Manhattan rozjechali się po różnych ośrodkach, ale laboratorium w Los Alamos zostało i nieoczekiwanie dawało Ulamowi możliwość ciekawej i względnie niezależnej pracy. Problemy, nad którymi tam pracowano, były konkretne, co zdaniem Ulama bardzo się liczyło. Sądził on bowiem, że naprawdę ważne problemy wywodzą się z praktyki, a nie filozoficznych rozważań. Mógł dobierać sobie współpracowników, co było szczególnie ważne wobec jego metody pracy. Polegała ona na tym, że Ulam szkicował możliwości rozwiązania danego zagadnienia, a współpracownicy starali się te pomysły zrealizować. Niewykluczone, że przebyta choroba odebrała Ulamowi czysto techniczną sprawność dokonywania obliczeń czy prowadzenia jakiegoś długiego dowodu. Starał się tego po sobie nie pokazywać. Pozostała mu jednak wyobraźnia i umiejętność dostrzegania bez dowodu, czy twierdzenie jest prawdziwe, czy nie, i w jaki sposób można dążyć do wytyczonego celu. Toteż pracował przede wszystkim nad wytyczaniem kierunków i formułowaniem problemów – co w sumie jest może ważniejsze niż szczegółowe rozwiązania. Przypominał swoim stylem pracy pracującego po przeciwnej stronie Atlantyku Jakowa Zeldowicza.

Dzięki pracy dla armii Ulam należał do pionierów stosowania komputerów. Układając pewien trudny pasjans w okresie rekonwalescencji, zdał sobie sprawę, że bardzo trudno byłoby obliczyć, jakie jest prawdopodobieństwo ułożenia tego pasjansa, łatwo natomiast można by go było modelować za pomocą komputera, który mógłby przeprowadzić wiele prób, dzięki czemu można by empirycznie stwierdzić, jakie jest szukane prawdopodobieństwo. Rozwinięciem tej idei opracowanym we współpracy z von Neumannem i Nickiem Metropolisem są metody Monte Carlo (nazwa zaczerpnięta ze skojarzenia z wujem Ulama, który pożyczał od krewnych pieniądze i następnie przepuszczał je w Monte Carlo). Zamiast np. rozwiązywać równanie różniczkowe, opisujące dyfuzję neutronów z pewnego stanu początkowego, możemy prześledzić losy wielu neutronów i zobaczyć, jakie są charakterystyczne cechy ich rozkładu. Dla pięćdziesięciu cząstek startujących z punktu x=0 tory w błądzeniu przypadkowym mogą być np. takie jak na wykresie.

Po zebraniu pewnej statystyki można znaleźć kształt rozkładu końcowego. Im więcej wykonamy losowań, tym dokładniej będziemy znali rozkład cząstek po danym czasie.

Rozkład uzyskany w tym przypadku jest łatwy do obliczenia analitycznego (jest rozkładem normalnym). Wystarczy jednak nieco zmodyfikować zagadnienie: dodać dwa wymiary, różne kształty i materiały, a problem dyfuzji stanie się bardzo trudny do rozwiązania metodami analitycznymi, choć symulacja komputerowa nadal będzie stosunkowo prosta. Pionierzy tej metody musieli zaczynać kompletnie od zera, rozwiązując np. zagadnienie, jak komputer, który prowadzi obliczenia arytmetyczne na liczbach – a więc otrzymując zawsze ściśle określony i jednoznaczny wynik, może generować liczby losowe. Jak sprawić, aby liczby te podlegały określonemu prawu statystycznemu? Jak sprawdzać uzyskane wyniki itd itp. Metoda Monte Carlo używana jest dziś w wielu dziedzinach od fizyki do finansów i stała się zespołem wyspecjalizowanych praktyk.

Stanisław Ulam odegrał istotną rolę w projekcie bomby wodorowej. Była to idée fixe Tellera: zbudować bombę opartą na procesie syntezy lekkich pierwiastków w cięższe. W przyrodzie procesy takie odbywają się we wnętrzu gwiazd, gdzie panują ogromne temperatury i materia jest bardzo gęsta. Warunki tak ekstremalne potrzebne są do tego, by dodatnio naładowane jądra mogły zbliżyć się do siebie, pokonując odpychanie elektrostatyczne. Dopiero bowiem w odległościach rzędu 10^{-15} m możliwe jest przegrupowanie nukleonów, wskutek czego wyzwala się energia.

Synteza helu z dwóch izotopów wodoru: deuteru i trytu; bomby wykorzystują głównie deuter (rys. Wikipedia)

Warunki takie można by wytworzyć za pomocą wstępnego wybuchu zwykłej bomby atomowej. Edward Teller (jeszcze jeden żydowski emigrant z Węgier) pracował nad pomysłem „superbomby” już w trakcie Projektu Manhattan. Nie zrezygnował z niego także i później. W roku 1950 prezydent Harry Truman podjął decyzję o pracach nad superbombą. Okazało się jednak szybko, że początkowy pomysł Tellera nie nadaje się do realizacji. Udowodnił to Stanisław Ulam ze współpracownikami, potwierdziły zaś obliczenia Ulama i Enrico Fermiego. Także obliczenia komputerowe von Neumanna dawały ten sam wynik. Sytuacja stała się trudna dla Tellera, którego oskarżano, że nakłonił władze polityczne do decyzji, nie mając w ręku żadnej rozsądnej teorii działania superbomby. Koszt przedsięwzięcia był ogromny, rywalizacja z Rosją zawzięta, a więc i stawka projektu bardzo wysoka. Impas przełamał Stanisław Ulam, który zaproponował implozyjny mechanizm działania superbomby. Razem z Tellerem napisali raport, który stał się podstawą amerykańskiego projektu. Bomba została zbudowana, lecz stosunki miedzy Tellerem a Ulamem gwałtownie się oziębiły. Teller nie potrafił prawdopodobnie wybaczyć Ulamowi dwukrotnej porażki prestiżowej. Ulam natomiast uważał, że zainteresowani i tak wiedzą, ile kto jest wart.

Raport Tellera i Ulama został po latach odtajniony, lecz większość z kilkunastu jego stron jest kompletnie pusta. Armia amerykańska najwyraźniej uznała, że wciąż jest za wcześnie na publiczne informowanie o technologii bomb wodorowych. Może to być zresztą także przykład nadmiernej ostrożności wojskowych w kwestiach tajemnic, militarne znaczenie bomb wodorowych nie jest bowiem aż tak wielkie, jak sądzono na początku. Dalsze prace szły raczej nad zmniejszaniem siły rażenia, bo co po wygranej wojnie, skoro zwycięzcy zostaną w niej zabici powiedzmy dziesięć razy, a pokonani – dwadzieścia. Angielszczyzna ma na to zgrabne słówko: overkill (*).

Gian-Carlo Rota charakteryzuje Ulama następująco:

Dopiero po kilku latach zdałem sobie sprawę z tego, co jest prawdziwą profesją Stana Ulama. Wielu z nas, pracujących w Laboratorium i mających z nim styczność, wiedziało, jak bardzo nie lubi on zostawać sam, że wzywa nas o zaskakujących porach, by wybawić go od samotności hotelowego pokoju albo czterech ścian swego gabinetu, kiedy już skończył codzienną rundę rozmów międzymiastowych.

Pewnego dnia zebrałem się na odwagę i zapytałem, czemu stale potrzebuje towarzystwa; odpowiedź, jakiej udzielił była wielce znamienna. „Kiedy jestem sam – zwierzył się – zmuszony jestem przemyśleć różne rzeczy i widzę ich tak wiele, że wolę nie myśleć”. Ujrzałem go wtedy w prawdziwym świetle: ten człowiek, mający na koncie największą liczbę trafnych przypuszczeń w matematyce, który potrafi pokonać inżynierów na ich własnym polu, który w jednej chwili ocenia zdarzenia i ludzi, należy do niemal już doszczętnie wymarłej profesji proroków.

Z mężami Starego Testamentu i wyrocznią delficką dźwigał on ciężkie brzemię natychmiastowego widzenia. I jak wszyscy zawodowi prorocy cierpiał na coś, co Sigmund Freud nazwałby „kompleksem Proteusza”. Wielka szkoda, że wśród pacjentów Freuda nie było żadnych proroków.

W dawnych czasach ciemne orzeczenia Sybilli interpretowane były przez wyszkolonych specjalistów, tak zwanych hermeneutów, których zadaniem było przełożenie kryptycznych fraz na greckie zdania. W przypadku Ulama laboratorium w Los Alamos wynajmowało konsultantów, których zadaniem było wyrażenie jego kryptycznych komunikatów w popsutym żargonie współczesnej matematyki.

Stanisław Ulam zmarł niespodziewanie w wieku 75 lat na atak serca. Jak pisze Françoise Ulam:

mawiał, że „najlepszym rodzajem śmierci jest nagły atak serca lub zastrzelenie przez zazdrosnego męża”. Miał szczęście umrzeć w ten pierwszy sposób, choć myślę, że chyba wolałby ten drugi.

(*) Ulam komentował w roku 1965: „Mam wrażenie, iż to interesujące pojęcie, jakim jest overkill, przez lewicę atakowane jest z powodu marnotrawstwa – jako nieekonomiczne, podczas gdy skrajna prawica popiera je z przyczyn psychologicznych: gdyż daje im poczucie męskości, której brak odczuwają.”

Toczyła się wówczas debata, czy Stany Zjednoczone powinny zgodzić się na zakaz prób jądrowych. Ulam i Teller stali na odmiennych stanowiskach, ilustruje to rysunek Herblocka: „Mądry ojciec zna swoje dziecko”.

Stanisław Ulam (1/2)

Wyraz jego twarzy jest zazwyczaj ironiczny i kpiący. W istocie porusza go bardzo wszystko, co jest komiczne. Być może posiada pewien dar rozpoznawania i natychmiastowego wychwytywania śmieszności, nic więc dziwnego, że maluje się to na jego twarzy.
Jego wypowiedzi są bardzo nierówne, czasem poważne, czasem wesołe, ale nigdy nudne. Stara się bawić i rozweselać ludzi, których lubi. Nic, z wyjątkiem nauk ścisłych, nie wydaje mi się aż tak pewne czy oczywiste, by nie dopuszczał możliwości istnienia różnych opinii: sądzi, że na niemal każdy temat można powiedzieć niemal wszystko.
Posiada pewien talent matematyczny i zręczność, które pozwoliły mu zdobyć rozgłos w młodym wieku. Pracując w samotności aż do ukończenia dwudziestu pięciu lat, raczej późno stał się człowiekiem bardziej światowym. Jednak nigdy nie bywa nieuprzejmy, gdyż nie jest szorstki ani surowy. Jeżeli czasem kogoś obrazi, to przez nieuwagę lub niewiedzę.
Jego mowa nie jest gładka ani pełna wdzięku. Kiedy mówi coś miłego, to dlatego, że tak myśli. Cechuje go szczerość i prawdomówność, czasem nieco zbyt wielka, ale nigdy brutalna.
Niecierpliwy i choleryczny, czasami bywa gwałtowny. Bardzo bierze sobie do serca wszystko, co go rani, ale uraza zazwyczaj mija, kiedy da ujście swoim uczuciom. Łatwo na niego wpływać i nim kierować, pod warunkiem, że nie zdaje sobie z tego sprawy.
Niektórzy sądzą, że jest złośliwy, ponieważ bezlitośnie naśmiewa się z pretensjonalnych głupców. W rzeczywistości ma wrażliwe usposobienie, co sprawia, że jego nastrój często się zmienia. Może być jednocześnie wesoły i smutny.
Pan U. zachowuje się zgodnie z następującą zasadą: mówi mnóstwo głupich rzeczy, rzadko je zapisuje i nigdy żadnej z nich nie robi. (przeł. A. Górnicka, przekład nieco poprawiony za oryginałem d’Alemberta)

Autocharakterystykę tę przedstawił (oczywiście po francusku) Stanisław Ulam swojej przyszłej żonie Françoise, dopiero na końcu dodając, że napisał ją Jean Le Rond d’Alembert, jeden ze sławnych fizyków matematycznych XVIII stulecia i autor większości artykułów na temat nauk ścisłych w Wielkiej Encyklopedii Francuskiej.

Czy jest to tylko zabawny zbieg okoliczności, czy też obu uczonych łączy jakieś głębsze powinowactwo? Z pewnością obaj starali się przez całe życie uparcie zachować wolność, d′Alembert przytacza określenie jednego ze swych przyjaciół, że stał się „niewolnikiem swej wolności” – określenie to dobrze pasuje także do Ulama. Wbrew pozorom zachowanie takiej suwerenności poczynań jest w dzisiejszej nauce równie trudne co w XVIII wieku. Stanisław Ulam starał się pracować tak, żeby sprawiało mu to przyjemność, nie lubił presji. Cenił pomysłowość, szybkość rozumowań, nie był z tych, którzy latami rozwijają jakąś jedną metodę czy teorię, choć oczywiście miał swoje ulubione tematy czy sposoby podejścia. W najlepszym sensie tego słowa (pochodzącego od łacińskiego „kochać”) był raczej amatorem niż profesjonalnym uczonym akademickim – co w XX wieku było znacznie rzadsze niż w XVIII.
Już Galileusz pisał przy okazji pewnej uczonej polemiki:

Jeśliby roztrząsanie trudnych problemów było tym samym co przenoszenie ciężarów, czynność, przy której wiele koni przenosi więcej worków ziarna niż jeden koń, zgodziłbym się z tym, że wiele dysput wartych jest więcej niż jedna; ale dysputowanie (discorrere) przypomina bieganie (correre), a nie dźwiganie, toteż jeden koń berberyjski pobiegnie dalej niż sto koni fryzyjskich. (przeł. A. Wasilewska)

W osiemnastowiecznym Paryżu grzechem było mówić głupstwa, a jeszcze większym mówić głupstwa z wysiłkiem. Coś z tej atmosfery przetrwało może w środkowoeuropejskich kawiarniach, w których na początku XX wieku tak chętnie spotykali się artyści i uczeni. Ulam starał się trzymać rzeczy istotnych. Nie słuchał np. dłużej niż dziesięć minut wykładów zaproszonych uczonych, ponieważ jeśli ktoś w ciągu dziesięciu minut nie powiedział nic ciekawego, to zapewne nie będzie miał nic do powiedzenia i potem.

Cechą, która zdecydowanie różni d’Alemberta i Ulama jest stosunek do priorytetu własnych odkryć. Pierwszy zaciekle walczył o pierwszeństwo, drugi natomiast zupełnie się nie wdawał w spory tego rodzaju, uważając je za uwłaczające godności. Paradoksalnie w obu przypadkach – d’Alemberta i Ulama – przyczyną mogła być duma zraniona postępowaniem ludzi, których niezbyt się ceni.

Stanisław Ulam początkowo nie zamierzał zostać matematykiem. W rodzinnym Lwowie uczęszczał do gimnazjum klasycznego. Program nauczania takich szkół, podobny w większości Europy: daleki od problemów świata współczesnego, z naciskiem na historię i naukę martwych języków. Te abstrakcyjne zajęcia kształtować miały przyszłą elitę: urzędników, lekarzy, prawników, uczonych. Były czymś w rodzaju wieloletniej próby i budowały wspólną kulturę absolwentów. Wiemy, że Albert Einstein nie zniósł bezdusznej dyscypliny panującej w gimnazjum monachijskim i rzucił szkołę dwa lata przed maturą. Utalentowanemu językowo Ulamowi nauka przychodziła z łatwością, maturę zdał znakomicie, a greka i łacina towarzyszyły mu przez resztę życia, stanowiąc rodzaj kodu, jakim mógł się porozumiewać z kolegami, którzy przeszli podobną edukację. Uważał zresztą gramatykę łacińską za dobre wprowadzenie do myślenia logicznego.

Jako uczeń interesował się astronomią i fizyką. Ojciec, prawnik, dumny był, że jego nastoletni syn „rozumie” teorię względności, która w latach dwudziestych ubiegłego wieku stała się sensacją daleko wykraczającą poza kręgi naukowe. Młody Ulam zafascynowany też był niektórymi zagadnieniami matematycznymi, np. czy istnieją nieparzyste liczby doskonałe (liczby doskonałe są sumą swoich dzielników właściwych, jak 6=1+2+3. Rozwiązanie nie jest znane do dziś). Nie chciał zostać prawnikiem, w ówczesnej Polsce Żydzi niełatwo zostawali profesorami, więc i kariera naukowa wydawała się utrudniona. Postanowił zapisać się na miejscową politechnikę, z jakichś powodów był to Wydział Ogólny, a nie Elektryczny, który dawał konkretny zawód. Ponieważ młody człowiek nieco nudził się na wykładach dla pierwszego roku, zaczął chodzić na wykłady Kazimierza Kuratowskiego z teorii mnogości. Młody profesor chętnie rozmawiał ze swym studentem, Ulam odprowadzał go do domu i gawędzili o matematyce. Kuratowski, widząc inteligencję swego studenta, podsunął mu do rozwiązania pewne zagadnienie z teorii mnogości. Ulamowi udało się rozwiązać problem i praca została opublikowana w „Fundamenta Mathematicae”, polskim piśmie poświęconym głównie teorii mnogości i będącym czymś w rodzaju organu polskiej szkoły matematycznej. Dopiero jednak po rozwiązaniu drugiego problemu zasugerowanego przez Kuratowskiego Ulam zdecydował się zostać matematykiem, stało się to przed końcem jego pierwszego roku studiów.

Wkrótce poznał też innych matematyków lwowskich i wiele czasu spędzał w ich pokojach na dyskusjach. Później rozmowy te przenosiły się często do kawiarni. Jedna z takich sesji w kawiarni „Szkockiej” ze Stanisławem Mazurem i Stefanem Banachem trwała, jak wspomina Ulam, siedemnaście godzin z przerwami na posiłki. Z rozmów tych pochodził materiał do jego prac, jak też znaczna część jego wiedzy matematycznej. Ulam nigdy nie należał do uczonych, którzy pilnie śledzą postępy w wybranych dziedzinach i wiedzą na ten temat wszystko. Lubił rozpoczynać od zera, nawet gdy przy okazji odkrywał po raz drugi pojęcia czy fakty znane już w literaturze.

Nieformalny sposób uprawiania nauki bardzo odpowiadał towarzyskiemu Ulamowi, który z trudem naginał się do formalnych wymagań i zdawania egzaminów. W 1932 roku jako student został zaproszony do wygłoszenia komunikatu na Kongresie Matematycznym w Zurychu, gdzie spotkał wielu sławnych uczonych, potem jesienią w ciągu kilku tygodni napisał pracę magisterską, w roku następnym doktorat. Miał wtedy dwadzieścia cztery lata i coraz mniejsze szanse na karierę w Polsce. W sąsiednich Niemczech do władzy doszedł Adolf Hitler, bardzo wielu uczonych żydowskiego pochodzenia, w tym matematyków, musiało opuścić Niemcy. Odbywając w 1934 roku podróż po ośrodkach matematycznych Europy, pochłonięty matematyką Stanisław Ulam ledwie zdawał sobie jednak sprawę z tego, co się dzieje w świecie polityki. W roku następnym poznał Johna von Neumanna, który choć tylko kilka lat od niego starszy, był już sławny. Von Neumann, syn budapeszteńskiego bankiera żydowskiego pochodzenia, nie miał złudzeń co do sytuacji w Europie, toteż wyemigrował do Stanów Zjednoczonych, stary kontynent odwiedzając tylko z okazji jakichś konferencji czy spotkań. Obaj uczeni zaprzyjaźnili się. Poza matematyką łączyło ich sporo: dawne Austro-Węgry, kultura żydowska, klasyczne wykształcenie, pewna kosmopolityczna ogłada i dobre wychowanie. Von Neumann cenił ogromną pewność siebie Ulama, a także jego trudny do przewidzenia tok myślenia. Coś podobnego stwierdził też kiedyś na temat Ulama Stefan Banach: że formułuje on problemy w sposób „dziwny” i proponuje też „dziwne” rozwiązania, które często są skuteczne.

Von Neumann sprawił, że zaproszono Stanisława Ulama do Instytutu Badań Zaawansowanych w Princeton, gdzie tworzono coś w rodzaju ziemskiego raju dla uczonych, zaczynając od matematyków i fizyków teoretycznych. Jedną z pierwszych gwiazd tego Instytutu stał się Albert Einstein. Najmłodszym profesorem był tam von Neumann. Ulam należał do grupy młodych badaczy zapraszanych, by mieli okazję popracować wśród uznanych kolegów. Semestr w Princeton zaowocował trzyletnim stypendium na uniwersytecie Harvarda w Society of Fellows, organizacji finansującej dobrze zapowiadających się młodych uczonych.

Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Dante Alighieri i 3-sfera

Zaczniemy od Dantego. Jak Rembrandt czy Michał Anioł, jest Dante jednym z tych artystów, których pamiętamy z imienia. W XIV wieku, gdy opisał swą podróż po zaświatach, kosmologia spleciona była ściśle z teologią. Arystotelesowski system sfer (wywodzący się od Eudoksosa) został schrystianizowany przez Tomasza z Akwinu. Świat z boskiego zwierzęcia, które porusza się samo, stał się areną dramatu moralnego. U Dantego dokładnie w środku Ziemi znajduje się głowa upadłego Lucyfera. Humanista Antonio Manetti przedstawił je w roku 1506 następująco:

Młody Galileusz wygłosił w Accademia Fiorentina dwa wykłady, poświęcone topografii dantejskiego piekła. Wykłady te pomyślane były jako sposób kultywowania „czystej mowy toskańskiej”, co należało do celów działalności Akademii. W grę wchodził także patriotyzm: młody uczony bronił poglądów swego rodaka, Antonia Manettiego, przed niezasłużoną krytyką Alessandra Velutella z Lukki. Piekło bowiem, jak wiadomo, znajduje się dokładnie pod Jerozolimą i ma kształt stożka o kącie rozwarcia 60º i wierzchołku w środku Ziemi. Poszczególne jego kręgi tworzą coś w rodzaju amfiteatru – infernal teatro – na którego samym dole znajduje się Lucyfer, a w jego trzech paszczach trzej najwięksi zdrajcy:
Judasz oraz Brutus i Kasjusz, organizatorzy zamachu na Juliusza Cezara.


Galileusz, podobnie jak jego poprzednicy, starał się wyczytać z tekstu Dantego matematyczne szczegóły. Fragment opisu Lucyfera w Pieśni XXIV można było potraktować jako proporcję.

Cesarz, władnący nad krainą nędzy,
Z lodu wysterczał do połowy łona,
A olbrzym ze mną porówna się prędzej
Niż z olbrzymami jego dwa ramiona.

Wynika stąd, że wzrost Dantego ma się do wzrostu olbrzyma tak, jak wzrost olbrzyma do długości ramion Lucyfera. Wzrost Dantego znamy: wynosił on 3 braccia. Potrzebny jest jeszcze wzrost olbrzyma. Informację tę daje Pieśń XXXI:

Jako Piotrowa szyszka, tej wielkości
Była ogromna głowa wielkoluda.

Chodziło o szyszkę z brązu znajdującą się w Rzymie i mającą wielkość 5½ braccia, taką samą wielkość ma zatem głowa olbrzyma. Ponieważ wysokość człowieka równa jest ośmiu rozmiarom głowy, więc wysokość olbrzyma równa jest 44 braccia. Korzystając z tej wielkości obliczamy wielkość ramienia Lucyfera: będzie ona równa 645 braccia. Wzrost człowieka jest trzykrotnie większy niż długość ramienia, stosując tę proporcję otrzymujemy 1935 braccia. Jako prawdziwy humanista, młody uczony także do olbrzyma i Lucyfera przykłada ludzką miarę; po latach udowodni, że proporcje ciała muszą zmieniać się z rozmiarami każdego stworzenia, inaczej kości nie wytrzymałyby ciężaru. Po uwzględnieniu uwagi poety, że Lucyfer jest jeszcze nieco większy („olbrzym ze mną porówna się prędzej…”), dostajemy na wzrost Lucyfera okrągło 2000 braccia. W podobny sposób oblicza Galileusz inne wielkości charakteryzujące Dantejskie Piekło.

Jak traktować tego typu rozważania? Zapewne podobnie jak dzisiejsze doktoraty: nie wszystko musi być tu prawdą, chodzi raczej o pewne ćwiczenie formalne, w którym startując z określonych założeń, adept stara się wykazać swobodą w posługiwaniu się metodami naukowymi: tym razem warsztatem humanisty z matematyczną ogładą. W dużo mniejszym stopniu chodziło zapewne o samo Piekło, choć bowiem Dante miał status wizjonera, to Boska Komedia nie była nigdy oficjalnym stanowiskiem Kościoła. W samo istnienie Piekła, gdzieś pod ziemią, wierzono chyba dość
powszechnie i zapewne wierzyć w nie mógł także młody Galileusz. Nie zetknął się jeszcze z kopernikanizmem i nie zdążył przemyśleć zagadnień kosmologii. W dojrzałym wieku uzna argument o centralnym miejscu Piekła we wszechświecie za śmiechu warty.

Ziemia i jej na ogół nieszczęśni mieszkańcy była w środku, lecz moralnie najniżej. Doskonalsze, bo zbudowane z niezniszczalnego tworzywa – eteru – były sfery planetarne. Doskonalszy także, bo kołowy, był ich ruch. Całość przedstawił Peter Apian, już po śmierci Kopernika, na znanym drzeworycie.

Jest to wersja wszechświata przeznaczona dla filozofów i poetów, astronomowie korzystali z innej. Ponad siódmą sferą Saturna mamy ósmą zawierającą gwiazdy, a także dziewiątą, kryształową, oraz dziesiątą: Primum Mobile. Owa dziesiąta (u Dantego – dziewiąta) sfera wprawiała w ruch wszystko poniżej, a poruszała się siłą intelektualnej miłości do Boga, który oczywiście u Arystotelesa znaczył zupełnie co innego niż u Dantego.

Świat jest więc skończony, a nawet zdaje się mieć brzeg, poza który wychynąć nie można. Otóż w XXVIII Pieśni Raju Dante dociera do owej największej sfery i opisuje nam to, co zobaczył i co objaśnia mu niezawodna przewodniczka, Beatrycze (w życiu ziemskim była mężatką, a on miał czworo dzieci z żoną, w zaświatach jednak stosunki ich przybrały inny obrót). Spoglądając, wydawałoby się z brzegu wszechświata, widzi Dante cały nowy świat wirujący wokół centralnego boskiego ognia. Jest tam też dziewięć sfer, ale zamieszkałych przez istoty wyższe, całą hierarchię anielską.

Poeta znajduje się gdzieś w punkcie P.

Interpretatorzy mieli zazwyczaj kłopot z tym drugim światem. Tymczasem z matematycznego punktu widzenia oba te kuliste światy mogłyby być połówkami 3-sfery, czyli sfery trójwymiarowej, S^3. Sferę taką stanowił świat Einsteina, pierwszy nowoczesny model kosmologiczny. Przestrzeń ma ograniczoną objętość, lecz nie ma brzegu, podobnie jak powierzchnia kuli. Przyjrzyjmy się temu bliżej.

Kula (jednostkowa) to zbiór punktów leżących bliżej niż 1 od pewnego punktu środkowego. W jednym wymiarze K^1 to po prostu odcinek otwarty (-1,1). Jego brzeg, czyli 0-sferę stanowią dwa punkty (-1),(1). W dwóch wymiarach kula K^2 to wnętrze koła, jej brzeg to 1-sfera S^1, czyli okrąg.

Zauważmy, że okrąg stanowią punkty spełniające równanie x^2+y^2=1. Możemy okrąg uważać za złożony z dwóch części: dodatniej S^1_{+} (y>0) i ujemnej S^1_{-} (y<0). Każdą z tych części możemy w sposób ciągły i wzajemnie jednoznaczny zrzutować na kulę K^1, czyli odcinek: (x,y)\mapsto (x), gdzie y=\sqrt{1-x^2}. Aby uzyskać cały okrąg (1-sferę), musimy dodać jeszcze dwa brakujące punkty (-1,0),(1,0), czyli 0-sferę.

Można zatem 1-sferę uważać za sumę dwóch oddzielnych egzemplarzy K^1 oraz 0-sfery. Taki podział daje się też przeprowadzić dla 2-sfery.

Każą z dwóch półsfer: dodatnią i ujemną można zrzutować w sposób ciągły i wzajemnie jednoznaczny na kulę K^2. Jeśli dodamy do tego 1-sferę S^1, otrzymamy całą 2-sferę, czyli brzeg kuli K^3. W przypadku 3-sfery, czyli brzegu kuli czterowymiarowej nie możemy sporządzić wprawdzie rysunku, ale postępowanie da się łatwo uogólnić. 3-sfera jest zbiorem punktów w przestrzeni czterowymiarowej x,y,z, w spełniających równanie x^2+y^2+z^2+w^2=1, skąd w=\pm\sqrt{1-x^2-y^2-z^2}. Możemy więc każdemu punktowi K^3 przypisać dokładnie dwa punkty na 3-sferze:

(x,y,z)\mapsto (x,y,z, \pm w).

Otrzymamy w ten sposób dwie połsfery S^3, które należy jeszcze uzupełnić o sferę „równikową” S^2. Przecinając sferę S^3 rozmaitymi płaszczyznami w=const począwszy od „bieguna północnego” (x,y,z,1), otrzymywać bedziemy coraz większe 2-sfery odgrywające rolę równoleżników. Największą 2-sferą jest równik: przecięcie płaszczyzną w=0, następnie dla ujemnych wartości w przecięcia będą 2-sferami o coraz mniejszym promieniu aż zbiegną się w „biegun południowy”. 

Dante znajdując się w punkcie równika 3-sfery miał więc przed sobą dwie połówki owej 3-sfery, z których każda równoważna jest kuli K^3 – inaczej mówiąc miał przed oczami dwa zbiory koncentrycznych 2-sfer: środek jednej stanowiła Ziemia, a dokładniej Lucyfer, środek drugiej – Bóg widziany jako gorejący świetlisty punkt. Można 3-sferę przedstawić jako złożenie dwóch (np. jednakowych, ale różnych) kul, w których odpowiadające sobie, „tak samo położone” punkty brzegu zostały utożsamione. Idąc więc od Ziemi, w punkcie P znajdujemy się na wspólnym brzegu obu kul i podziwiać możemy oba światy. Poeta wykazał się tu znakomitą intuicją topologiczną. Całość tej konstrukcji, 3-sfera, nie ma brzegu, tak jak świat Dantego.

Wykorzystałem artykuł Marka Petersona Dante and 3-sphere, „American Journal of Physics”, t. 47(12), (1979), s. 1031-1035.

Andrew Wiles: wielkie twierdzenie Fermata i matematyka czysta (1986-1995)

„Moje doświadczenia z uprawianiem matematyki najlepiej można chyba opisać, porównując je do wędrówki po ciemnym niezbadanym domu. Wchodzę do pierwszego pokoju: panuje w nim zupełny mrok. Błądzę po omacku i wpadam na meble, ale stopniowo uczę się, gdzie stoi każdy z nich. Po jakichś sześciu miesiącach znajduję wyłącznik i naraz wszystko staje się jasne, widzę dokładnie, gdzie jestem. A potem wchodzę do następnego ciemnego pokoju i spędzam tam następne sześć miesięcy. I każde z tych olśnień – czasem trwają one tylko chwilę, a czasem dzień albo dwa – jest tylko kulminacją owych wielu miesięcy błądzenia po omacku i bez nich byłoby niemożliwe” (Andrew Wiles on Solving Fermat).

Mówi się czasem, że w każdej dziedzinie wiedzy tyle jest prawdy, ile jest w niej matematyki. Odkrycie, że świat fizyczny można opisać w języku matematyki i że właściwie tylko od nas zależy, z jak wielką dokładnością to zrobimy, uważam za największe osiągnięcie ludzkości. Nie chodzi o to, że pewne aspekty świata dają się ująć matematycznie, bo to wiedzieli już starożytni. Istotą nowożytnej nauki jest wiara, że w zasadzie każdy aspekt świata fizycznego (ale i chemicznego, a coraz częściej także biologicznego czy ekonomicznego) daje się opisać stosownym modelem matematycznym. Nie tylko planety czy dźwignie, ale spadanie liścia na wietrze, drogę cyklonu, atomy i cokolwiek nam przyjdzie do głowy.

Jednocześnie matematyka, choć tak potrzebna wszystkim, jest w zasadzie samowystarczalna i wielu matematyków niezbyt interesuje się innymi naukami, po cichu uważając je za stratę czasu. Wciąż istnieje platoński ideał matematyki czystej, przebywającej tam, gdzie idea Piękna, gdzieś w pobliżu idei Dobra. I niektórzy matematycy spędzają całe życie w swoim zaczarowanym pałacu nie z tego świata. W nagrodę omija ich nieco tak powszechna dziś komercjalizacja i pogoń za szybkimi wynikami (co najmniej dwa odkrycia rocznie).

Andrew Wiles jest niewątpliwie matematykiem czystym – w każdym sensie tego słowa. Jego dziedzina to teoria liczb, a więc badanie własności najprostszych liczb: 1, 2, 3, … – liczb naturalnych. Kiedy spostrzegł, że możliwe jest zaatakowanie wielkiego twierdzenia Fermata, zamknął się na siedem lat na strychu i nie mówiąc o tym nikomu, pracował. Nie publikował w tym czasie, musiał więc wtajemniczyć swojego dziekana. Nie chciał, aby koledzy wciąż go pytali, jak mu idzie. Być może obawiał się także, iż ktoś mógłby go ubiec. Nie ma powodu wstydzić się takich uczuć – nie mają przecież nic wspólnego z podkładaniem nogi konkurentom. Jest w tym duch sportowej walki: wszyscy mają równe szanse, oni też mogą położyć na szalę swoją reputację. Wygra najlepszy.

576px-Andrew_wiles1-3

Wygrał Andrew Wiles. Twierdzenie Fermata było słynną szklaną górą, na którą daremnie próbowali wspiąć się wciąż nowi śmiałkowie. Niemal każdy ambitniejszy matematyk próbował zmierzyć się z tym twierdzeniem. Nie każdy miał dość rozsądku, aby w porę przestać się nim zajmować.
Właściwie była to tylko błyskotliwa hipoteza. Pierre Fermat, jurysta w parlamencie Tuluzy, a w wolnych chwilach matematyk, jakby od niechcenia i dla rozrywki wytyczył wiele nowych dróg. W roku 1637 na marginesie czytanego przez siebie Diofantosa zanotował, że równanie

x^p+y^p=z^p

ma wprawdzie rozwiązania naturalne, gdy p=2, ale nie ma ich dla żadnej wyższej potęgi p. Stwierdził nawet, że ma dowód, ale nie zmieści mu się na wolnym miejscu na stronie, toteż go nie zamieścił. Luźne stwierdzenia tego rodzaju w wypadku Fermata należało traktować poważnie, rzadko bowiem zawodziła go intuicja.
Sam Fermat podał (w innym miejscu) dowód swego twierdzenia dla p=4, wynikała z tego także jego prawdziwość dla wykładników postaci p=4n. Łatwo też pokazać, że wystarczy dowieść twierdzenia Fermata dla wykładników będących nieparzystymi liczbami pierwszymi.
Następny krok wykonał pod koniec XVIII wieku Leonhard Euler, niestrudzony syn pastora z Bazylei, który umiał obrócić na swoją korzyść ambicje absolutnych władców swej epoki i pracował na zmianę pod rządami Fryderyka II w Prusach albo Katarzyny II w Rosji. Ani królowi, ani carycy nie zależało jakoś szczególnie na matematyce, ale obojgu bardzo zależało na splendorze. Euler wykazał słuszność twierdzenia w przypadku p=3 (nie do końca, dowód został później uzupełniony). Następne generacje matematyków przyniosły dowody wielu różnych szczególnych przypadków twierdzenia Fermata, wciąż nie było jednak dowodu ogólnego. Póki takiego dowodu nie ma, wszystko jest możliwe – bywały już przypadki hipotez, które wydawały się słuszne, lecz w końcu okazały się fałszywe. Euler wysunął np. hipotezę, że równanie

x^4+y^4+z^4=w^4

nie ma rozwiązań naturalnych. W 1988 roku Noam Elkies znalazł kontrprzykład:

2682440^4 + 15365639^4 + 18796760^4 = 20615673^4.

Wielu wybitnych matematyków unikało twierdzenia Fermata. David Hilbert, zapytany, czemu nigdy się nim nie zajmował, stwierdził, że musiałby stracić trzy lata na opanowanie tego wszystkiego, co mogłoby być potrzebne, a on nie ma trzech lat do stracenia. Andrew Wiles był w lepszej sytuacji: dzięki pracy poprzedników miał już do dyspozycji niezbędne elementy. Co więcej, twierdzenie Fermata przestało być interesującym faktem na uboczu rozwoju matematyki, lecz stało się tematem ważnym. W 1986 roku Gerhard Frey wykazał, że gdyby istniał kontrprzykład do twierdzenia Fermata, musiałaby istnieć pewna krzywa eliptyczna o szczególnych i niespotykanych własnościach. Krzywe eliptyczne to wykresy równania

y^2=x^3+ax^2+bx+c,

o ile wykres nie ma żadnych punktów osobliwych (przecięć ani załamań).

eliptyczne

Krzywe te mają wiele interesujących własności: można je wyrazić za pomocą tzw. funkcji eliptycznych (stąd nazwa), każda sieczna przecina je dokładnie w trzech punktach, co pozwala każdej parze punktów przyporządkować trzeci (można wprowadzić strukturę grupy). W teorii liczb bada się sytuacje, gdy a, b, c są całkowite albo wymierne. Istnienie krzywej Freya przeczyłoby tzw. hipotezie Shimury-Taniyamy dotyczącej pewnych własności krzywych eliptycznych. Wiles postanowił dowieść tej hipotezy, a właściwie jej słabszej wersji, wystarczającej do jego celów. Jeśli (słabsza) hipoteza Shimury-Taniyamy jest słuszna, to nie może istnieć krzywa Freya. a tym samym twierdzenie Fermata zostało udowodnione niewprost. Hipoteza Shimury-Taniyamy została zresztą później udowodniona w wersji silniejszej i z punktu widzenia specjalistów to właśnie osiągnięcie jest najważniejsze: łączy bowiem w nieoczekiwany sposób analizę matematyczną z geometrią. Zatem twierdzenie Fermata okazało się nie tylko trudną ciekawostką, lecz pozwoliło zrozumieć głębsze związki między różnymi dziedzinami matematyki. To właśnie było zawsze najciekawsze w teorii liczb: aby zrozumieć problemy dotyczące np. podzielności i liczb pierwszych, potrzebne są głębokie idee dotyczące funkcji zmiennej zespolonej.
Andrew Wiles wyszedł z ukrycia w czerwcu 1993 roku, gdy wygłosił serię wykładów w swoim rodzinnym Cambridge w Anglii. Choć ich tytuł nie zapowiadał sensacji, to bookmacher w Cambridge nie chciał przyjmować zakładów o to twierdzenie: nie znał się na matematyce, lecz kiedy kolejni studenci zaczęli zgłaszać się z propozycją takiego samego zakładu, zrozumiał, że zapewne coś się święci. Do historii przeszło zakończenie ostatniego wykładu: po wykazaniu, że twierdzenie Fermata zostało właśnie udowodnione, Wiles stwierdził: „Myślę, że na tym zakończę”.

Najtrudniejsze było jednak jeszcze przed nim. W dowodzie znaleziono istotną lukę, co nie dziwi w przypadku pracy tak długiej (ponad sto stron w „Annals of Mathematics”) i robionej samotnie. Wiles wraz ze swoim dawnym studentem Richardem Taylorem usiłowali dowód poprawić, lecz sprawa wyglądała coraz poważniej. Bez tego jednego elementu cała układanka byłaby na nic. Pracowali ponad rok bez rezultatu i Wiles bliski już był decyzji o rezygnacji z dalszych prób, kiedy nagle okazało się, że pewien jego stary pomysł z okresu samotnej pracy, zarzucony później, teraz nieoczekiwanie się przydał.
„Wierzę że, aby osiągnąć w życiu zadowolenie, musisz robić coś, co cię pasjonuje. (…) Tylko taka pasja pozwala się nie poddawać, kiedy utkniesz na jakimś trudnym problemie i poczujesz się sfrustrowany. Jako matematyk staniesz się częścią wspólnoty, która istnieje od tysięcy lat, i wniesiesz wkład do twórczego projektu, rozciągającego się na całe wieki i cywilizacje. Życie jest zbyt krótkie, aby marnować je na rzeczy, które cię nie obchodzą…” (wywiad z Claudio Bartoccim, 2004, w: C. Bartocci, R. Betti, A. Guerraggio, R. Lucchetti (red.), Mathematical Lives: Protagonists of the Twentieth Century From Hilbert to Wiles, Springer 2011).

Słowa Wilesa o wspólnocie badaczy stosują się także i do twierdzenia Fermata. Oto lista tych, którzy oprócz niego wnieśli do tego problemu swój ważny wkład tylko w XX wieku: Spencer Bloch (USA), Henri Carayol (Francja), John Coates (Australia), Pierre Deligne (Belgia), Ehud de Shalit (Izrael), Fred Diamond (USA), Gerd Faltings (Niemcy), Matthias Flach (Niemcy), Gerhard Frey (Niemcy), Alexander Grothendieck (Francja), Yves Hellegouarch (Francja), Haruzo Hida (Japonia), Kenkichi Iwasawa (Japonia), Kazuya Kato (Japonia), Nick Katz (USA), V.A. Kolyvagin (Rosja), Ernst Kunz (Niemcy), Robert Langlands (Kanada), Hendrik Lenstra (Holandia), Wen-Ch’ing Winnie Li (USA), Barry Mazur (USA), André Néron (Francja), Ravi Ramakrishna (USA), Michel Raynaud (Francja), Ken Ribet (USA), Karl Rubin (USA), Jean-Pierre Serre (Francja), Goro Shimura (Japonia), Yutaka Taniyama (Japonia), John Tate (USA), Richard Taylor (Wielka Brytania), Jacques Tilouine (Francja), Jerry Tunnell (USA), André Weil (Francja).