Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Reklamy

Jak długo spadał Lucyfer?

Nie tylko Wielki Wybuch głosi chwałę Pana. Także i obecność szatanów, co wszędzie są czynni. Najlepszym dowodem ich siły jest dzisiejsze radosne zgromadzenie na Stadionie Narodowym w stolicy naszego kraju. Ojciec John Bashobora oraz arcypasterz Pragi wraz z setkami duchownych wypędzać tam będą diabły na oczach 40 000 wiernych (bilety po 60 zł). Może i tym razem o. Bashobora kogoś wskrzesi, co mu się już nieraz zdarzało. Z całą pewnością uzdrowi wielu, dzięki czemu poprawią się finanse NFZ.

W środku świata przebywa Lucyfer, dlatego świat nasz zwiemy diablocentrycznym. Jaki był jednak fizyczny sposób, by strącić tam Księcia Tego Świata? Ciężkość. Wyobraźmy sobie tunel przewiercony przez Ziemię na wskroś. Gdyby wrzucić doń Lucyfera, to jak długo bestia by spadał? I czy zatrzymałby się w środku Ziemi, czy też przeleciał dalej, aż na antypody? Zdania były tu podzielone. Bartolomeus Amicus SJ, rówieśnik Galileusza, sądził, że kamień wrzucony do takiego tunelu doleci do środka Ziemi i świata, gdzie się zatrzyma. Pogląd ten był wypowiadany i wcześniej, stąd zapewne u Dantego w Boskiej Komedii mamy obraz Lucyfera zarytego w środku świata, z trzema paszczami, w każdej po jednym słynnym zdrajcy. Inaczej uważał Nicole Oresme, zwolennik impetusu. Jego zdaniem kamień (albo Lucyfer) w środku Ziemi osiągnie największy impetus, dzięki czemu przeleci dalej aż do antypodów. I będzie tak sobie oscylować, aż mu się impetus całkiem wyczerpie. Ostatecznie zalegnie Lucyfer w środku Ziemi, lecz po iluś zabawnych oscylacjach.

Fizyka Newtona pozwala obliczyć, jak długo spadałby Lucyfer do środka Ziemi. Rozpatrzymy dwa skrajne przypadki: gdyby Ziemia wypełniona była materią jednorodnej gęstości oraz gdyby jej cała masa skupiona była w punkcie centralnym. Prawda zawiera się gdzieś pośrodku: gęstość rośnie ku centrum Ziemi, lecz stopniowo, nie skokowo, jak w drugim przypadku.

Przypadek jednorodnej Ziemi

Przyspieszenie grawitacyjne naszego Lucyfera w odległości r od środka Ziemi byłoby równe

g(r)=\dfrac{Gm(r)}{r^2},

gdzie m(r) to masa małej kuli o promieniu r. Przyjmujemy, że gęstość materii ziemskiej jest wszędzie taka sama, masa jest więc proporcjonalna do objętości i przyspieszenie grawitacyjne będzie ostatecznie proporcjonalne do r:

g(r)=\dfrac{GMr)}{R^3}=\dfrac{g}{R}r \Rightarrow T=2\pi\sqrt{\dfrac{R}{g}}.

Przez G, M, R oznaczyliśmy odpowiednio stałą grawitacji oraz masę i promień Ziemi; g to przyspieszenie ziemskie na powierzchni Ziemi. Przyspieszenie Lucyfera jest więc proporcjonalne do odległości i równanie to jest takie samo jak dla wahadła matematycznego, promień Ziemi odgrywa tu rolę długości. Zatem będzie nasz Lucyfer oscylował z okresem opisanym wzorem dla wahadła matematycznego. Do środka Ziemi będzie to ćwierć oscylacji, co zajmie niecałe dwadzieścia jeden minut.

Przypadek całej masy skupionej w centrum

W tym przypadku przyspieszenie ziemskie rośnie w miarę zbliżania się do środka:

g(r)=\dfrac{GM}{r^2},

Czas spadku znaleźć można, tak jak zrobił to Newton, wyobrażając sobie najpierw ruch po elipsie o długości dużej półosi a=\frac{1}{2}R. Jeśli elipsę tę będziemy stopniowo spłaszczać (zachowując długość dużej półosi) okres się nie zmieni (III prawo Keplera). Ognisko elipsy będzie się przybliżać do jej wierzchołka. Czas spadku będzie połową okresu obiegu takiej elipsy.

Korzystając z III prawa Keplera mamy

T^2=\dfrac{4\pi^2 a^3}{GM}\Rightarrow T=2\pi\sqrt{\dfrac{R3}{8GM}}=\pi\sqrt{\dfrac{R}{2g}}.

Połowa tego okresu jest szukanym czasem, a więc w tej wersji Lucyfer będzie spadał niecałe piętnaście minut.

Dla rzeczywistej zależności m(r) dla Ziemi przyspieszenie ziemskie najpierw nieco rośnie w głąb planety, a potem zaczyna spadać mniej więcej liniowo, kiedy znajdziemy się w żelazowo-niklowym jądrze.

Rozważania średniowiecznych filozofów w rodzaju takiego hipotetycznego kamienia w hipotetycznym tunelu przez Ziemię przyczyniały się do zrozumienia zagadnień ruchu i grawitacji, były to ówczesne Gedankenexperimente. Oresme w XIV wieku miał jednak nowocześniejszą teorię niż Amicus w XVII. Pojęcie impetus, choć dalekie jeszcze od dzisiejszego pędu, miało przed sobą przyszłość. Samo jednak wyostrzanie pojęć jest na nic, dopóki nic nie można obliczyć, przynajmniej w fizyce.

Wierutne głupstwa Roberta Jastrowa

Uprawianie żurnalistyki naukowej, polega na tym, aby spłycić i uprzystępnić oraz opatrzyć całość chwytliwym tytułem. W ostatni weekend w „Gazecie świątecznej” ukazał się wywiad Piotra Cieślińskiego z ks. prof. Michałem Hellerem. Zaczyna się tak:

Prof. Michał Heller: Teoria Wielkiego Wybuchu jest jak czarny sen racjonalistów

Wspięli się na najwyższy szczyt, zaraz odkryją tajemnicę narodzin Wszechświata. A na szczycie witają ich teologowie, którzy siedzieli tam od wieków.

Dopiero gdzieś głęboko w tekście dowiadujemy się, że to nie Ksiądz Profesor, ale amerykański astronom Robert Jastrow powiedział, i w dodatku czterdzieści lat temu. Było to głupstwo w 1978 roku i jest nadal głupstwem w 2017 roku.

Równie dobrze można powiedzieć, że, proszę, fizycy odkryli, iż kwarki mamy w trzech kolorach, których nie można wprost zaobserwować w eksperymencie, ponieważ Byt istnieje w trzech hipostazach, popularnie zwanych Osobami, i nie można tego eksperymentalnie zmierzyć. Teologowie czekali więc na szczycie, zanim uczeni stworzą chromodynamikę kwantową.

A gdzie siedzieli teologowie, kiedy Galileusz dowodził, że Ziemia jest ciałem niebieskim, jedną z planet, i się porusza, a wszechświat nie ma środka? Siedzieli po drugiej stronie stołu przesłuchań Galileusza, byli już tam wcześniej.

Gdzie teologowie byli i gdzie znaleźli w Piśmie, że człowiek pochodzi od małpy?

Dlaczego niby tekst Biblii miałby zawierać cokolwiek wartościowego na temat przyrody? A nie np. Wedy? Albo Kalevala? Czy Kubuś Puchatek? („Im bardziej Puchatek zaglądał do środka, tym bardziej Prosiaczka tam nie było” – myśl ta zapowiada niewątpliwie odkrycie ciemnej energii: wszechświat rozszerza się bowiem coraz prędzej.)

Galileusz cytował kardynała Cesare Baronia, iż Pismo nie mówi, jak rusza się niebo, lecz jak do niego trafić. Nie był to pogląd popularny w kręgach kościelnych i chyba nie jest do dziś, ale to zmartwienie wierzących.

Narzekał na to w roku 1822 ojciec Filippo Anfossi OP, Mistrz Świętego Pałacu Apostolskiego (czyli szef rzymskiej cenzury), który z żalem postawił takie oto pytanie: „Czy Duch Święty wiedział, jakie odkrycia zostaną dokonane w przyszłości? Jeśli wiedział, to czemu świątobliwe osoby z jego inspiracji mówiły nam przeszło osiemdziesiąt razy, że Słońce się porusza, a ani razu, że jest ono nieruchome?”

Wracając zaś do Wielkiego Wybuchu. Żadna teoria kosmologiczna i w ogóle naukowa nie ma związku z religią. Kropka. Nie ma najmniejszego znaczenia, czy uczeni są księżmi, czy ateistami, czy też jest im wszystko jedno. Inspirację czerpać mogą z Pisma równie dobrze, jak z baśni Andersena – nie ma to żadnego znaczenia. Jedyne, co liczy się w nauce, to wyprowadzenie z teorii obserwowalnych zjawisk i skonfrontowanie tego z pomiarami. Jeśli kogoś zainspiruje Królowa Śniegu to też dobrze. Nazywa się to kontekst odkrycia i kontekst uzasadnienia. Nie ma znaczenia, czy Einstein doszedł do ogólnej teorii względności drogą logicznie najprostszą i co go motywowało. Ważne, że równania są prawidłowe, co przez ostatnie sto lat wciąż się potwierdzało (teologów na tym szczycie nie było).

Teologia chrześcijańska odegrała pewną rolę w historii nauki: było to w średniowieczu i dotyczyło głównie kwestii czysto logicznych czy filozoficznych, zderzenia Jerozolimy z Atenami, mówiąc pokrótce. Jest to wkład poważny i można się na serio zastanawiać, czy bez tego przygotowania możliwy byłaby Rewolucja naukowa XVII wieku.

Podstawy rzeczowe do rozważań o teologach na szczycie są w tym tylko, że w latach sześćdziesiątych ubiegłego wieku modna była teoria stanu stacjonarnego, w której wszechświat nie ma początku. Potem odkryto mikrofalowe promieniowanie tła i jasne się stało, że nastąpił Wielki Wybuch. Nigdy nie był to spór kosmologów wierzących i niewierzących, bo większość kosmologów nie interesuje się w ogóle kwestią, jaki jest związek ich badań z teologią, domyślnie zakładając, że żaden.

Wielki Wybuch to nie to samo co creatio ex nihilo. Istnieją zupełnie porządne teorie, które sytuują go jako epizod w dziejach wszechświata. A więc (może) nie potrzeba żadnego początku. Możliwe, że nasz wszechświat jest jednym z odgałęzień multiświata. Wszystkie te dyskusje w żaden sposób nie wiążą się z Księgą Rodzaju.

Racjonaliści (Jastrow mówi, dokładnie biorąc, o uczonych żyjących wiarą w moc rozumu) nie mają powodów do złych snów. Wszechświat, który zaczyna się i kończy (przynajmniej w znanej formie) jest raczej łatwiejszy do przyjęcia niż taki, który trwa od zawsze. Nasze życie też zaczyna się kończy i nie ma niebiańskiego ciągu dalszego.

Kiedyś przemądrzali teologowie decydowali, co ma być prawdą, a co nie w naukach eksperymentalnych. Dziś starają się podłączyć do historycznego sukcesu nauki i wykazują, że nauka to nie wszystko, teologowie gdzieś wcześniej byli itd. itp.

Znacznie lepszym tytułem tej byłoby: WIELKI WYBUCH NIE MA NIC WSPÓLNEGO Z KSIĘGĄ RODZAJU i lepiej nie mącić w głowach ludziom, którzy czytają o nauce, lecz nie mają wykształcenia, aby ocenić samodzielnie to, co czytają.

Dosłowny cytat z Jastrowa wygląda tak:

For the scientist who has lived by his faith in the power of reason, the story ends like a bad dream. He has scaled the mountains of ignorance, he is about to conquer the highest peak; as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries.

God and the Astronomers, 1978

Isaac Newton i niektóre matematyczne sekrety Stwórcy

Pod koniec roku 1684 Isaac Newton zrozumiał, że ruchy planet wyjaśnić może siła przyciągania między nimi a Słońcem, która jest odwrotnie proporcjonalna do kwadratu odległości. Newton miał wówczas czterdzieści dwa lata i był bardzo mało aktywnym profesorem katedry Lucasa w Cambridge. Wbrew późniejszej legendzie nie odkrył tego prawa w młodości (choć niewiele mu brakowało). W poprzednich latach zajmował się głównie teologią i alchemią, nie szukając rozgłosu i niewiele kontaktując się ze światem zewnętrznym. Teraz spostrzegł, że rysuje się możliwość rozwiązania problemu nie dającego spokoju uczonym od czasów starożytnych. Aż do 1687 roku pracował gorączkowo nad wyprowadzaniem różnych konsekwencji prawa ciążenia powszechnego. Trudno dziwić się jego entuzjazmowi: jedno proste prawo matematyczne pozwalało zrozumieć wiele skomplikowanych zjawisk we wszechświecie.

Czemu siła ciążenia jest odwrotnie proporcjonalna do kwadratu odległości? Można przecież wyobrazić sobie inne możliwe prawa. Dla Newtona było to pytanie: czemu Stwórca zdecydował się na taki, a nie inny wszechświat? Wiele rozważań w Matematycznych zasadach filozofii naturalnej poświęconych jest ruchowi ciał pod działaniem sił zmieniających się w inny sposób z odległością: np. malejących jak trzecia czy piąta jej potęga. A także rosnących proporcjonalnie do odległości. Ten ostatni przypadek był interesujący, dawał bowiem ruchy eliptyczne. Wszystkie planety miałyby wówczas taki sam okres obiegu wokół Słońca.

Jak wygląda ruch planety pod działaniem siły przyciągania proporcjonalnej do odległości? Powszechnie znany jest jednowymiarowy przypadek takiego ruchu:

F=a=-\omega^2 x \Rightarrow x(t)=A\cos\omega t,

F, a, x, t są tu odpowiednio siłą, przyspieszeniem, wychyleniem z położenia równowagi (w którym siła jest równa zeru) i czasem, \omega wielkością stałą, tzw. częstością kołową, określoną przez wielkość siły i masę ciała, którą przyjmujemy za równą 1. Stała A jest dowolna. Jest to ruch harmoniczny, czyli najprostsze możliwe drgania.

W przypadku trójwymiarowym ruch nie jest dużo bardziej skomplikowany. Po pierwsze zachodzi w stałej płaszczyźnie, mamy więc tylko dwa wymiary. Po drugie można go potraktować jako dwa niezależne ruchy wzdłuż osi Ox oraz Oy:

\left\{ \begin{array}{l}  F_x=a_x=-\omega^2 x\\  \mbox{}\\  F_y=a_y=-\omega^2 y.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  a_x=A\cos\omega t\\  \mbox{}\\  a_y=B\sin\omega t.  \end{array}\right.

Wybraliśmy rozwiązania w taki sposób, aby planeta P zakreślała elipsę zorientowaną jak na rysunku.

Łatwo sprawdzić, że mamy do czynienia z elipsą, wyznaczając z powyższych równań funkcje trygonometryczne i korzystając z jedynki:

\cos^2\omega t+\sin^2 \omega t=1=\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}.

Każda elipsa jest rzutem jednostajnego ruchu po okręgu punktu Q (dokładnie tak, jak gdybyśmy patrzyli na ten ruch po okręgu z ukosa, pod pewnym kątem: okrąg skraca się wtedy w jednym kierunku). Częstość kołowa i okres są takie same dla wszystkich torów. Nazwijmy ten tor elipsą Hooke’a (od prawa Hooke’a), choć Newton bardzo by się zżymał na tę nazwę, także ten ruch zbadał bowiem sam, a Hooke’owi pamiętał do końca życia protekcjonalny i lekceważący sposób, w jaki ten go kiedyś potraktował w dyskusji na temat optyki. Z powodu tej animozji nie wiemy dziś na pewno, jak wyglądał Robert Hooke, Newton bowiem go przeżył i kazał usunąć jego portret z Towarzystwa Królewskiego.

Newton zadał sobie pytanie, jak te elipsy (w środku których byłoby Słońce) mają się do elips keplerowskich (w których ognisku jest Słońce)? Okazuje się, że można podać związek między siłami wywołującymi oba te ruchy.

Rozpatrzmy planetę P zakreślającą jakikolwiek tor pod wpływem siły \vec{F} skierowanej ku pewnemu stałemu punktowi S.

Na rysunku przedstawiona jest elipsa, ale kształt krzywej nie jest w tym punkcie istotny. Korzystamy ze wzoru na siłę  dośrodkową:

F_n=\dfrac{v^2}{\varrho},

gdzie \varrho jest promieniem krzywizny toru w danym punkcie. Wiemy także, iż moment pędu L naszej planety musi być stały:

L=rv\sin\varepsilon.

Wobec tego siła F równa jest

F=\dfrac{F_n}{\sin\varepsilon}=\dfrac{L^2}{\varrho r^2 \sin^3\varepsilon}.

Teraz zastosujemy uzyskane wyrażenie do porównania siły grawitacji z siłą Hooke’a. Wyobraźmy sobie, że taką samą elipsę zatacza planeta pod wpływem siły skierowanej ku ognisku elipsy S oraz pod wpływem siły skierowanej ku środkowi elipsy C. Przyjmujemy, że moment pędu planety jest w obu przypadkach taki sam. Wobec tego

\dfrac{F_S}{F_C}=\dfrac{r_C^2 \sin^3\varepsilon_C}{r_S^2 \sin^3\varepsilon_S}.

Odcinek EC jest równoległy do wektora prędkości. Stosując twierdzenie sinusów do trójkąta ECP , mamy:

\dfrac{\sin\varepsilon_C}{\sin\varepsilon_S}=\dfrac{EP}{r_C}.

Ostatnim potrzebnym elementem jest tzw. lemat Newtona: odległość EP=A, tzn. dużej półosi elipsy. Jest to własność elipsy, którą udowadniamy poniżej. Wobec tego siła grawitacji równa jest

F_S=\dfrac{F_C}{r_C}\dfrac{A^3}{r_S^2}=\omega^2 \cdot \dfrac{ A^3}{r_S^2}\sim \dfrac{1}{r_S^2}.

Otrzymaliśmy więc z elipsy Hooke’a elipsę keplerowską oraz z prawa Hooke’a prawo grawitacji. Oba te rodzaje ruchu okazują się matematycznie powiązane. Można pokazać, że tylko te dwa rodzaje sił prowadzą do torów zamkniętych, których peryhelia się nie obracają.

Lemat Newtona

Odcinek S'F jest równoległy do EC oraz \vec{v}. Trójkąt FPS' jest równoramienny, ponieważ promień światła wysłany z S i odbijający się w punkcie P przejdzie przez S'. Mamy zatem FP=PS'. Odcinki EC oraz S'F są równoległe i przepoławiają odcinek SS', a więc także i odcinek SF. Zatem SE=EF. Mamy więc

EP=EF+FP=\frac{1}{2}SF+\frac{1}{2}(FP+PS')=\dfrac{SP+PS'}{2}=A.

W ostatniej równości skorzystaliśmy z faktu, że suma odległości punktu elipsy od obu ognisk jest stała.

 

 

 

 

Tory planet i komet: wielkie odkrycie Isaaca Newtona

Johannes Kepler w roku 1609 ogłosił odkrycie, że planety poruszają się wokół Słońca po elipsach, a Słońce jest wspólnym ogniskiem tym wszystkich elips (I prawo Keplera). Nie bardzo mu wówczas chciano wierzyć, wprowadził bowiem nowe rodzaje sił, jedna miała ciągnąć planetę wokół Słońca, a druga, magnetyczna, miała na przemian, to przyciągać ją, to odpychać. Prędkość planety miała zależeć od jej odległości od Słońca: bliżej niego planeta poruszała się szybciej i na odwrót, kiedy była dalej, poruszała się wolniej (II prawo Keplera).

Z czasem astronomowie stwierdzili, że opisane przez Keplera prawa dobrze odzwierciedlają zjawiska na niebie: dokładność tablic wzrosła wielokrotnie. W 1687 roku ukazały się Matematyczne zasady filozofii przyrody, w których Isaac Newton wyjaśnił ruchy planet i szereg innych zjawisk, jak przypływy i odpływy mórz albo precesję ziemskiej osi obrotu za pomocą jednej jedynej siły: grawitacji. Wszystkie ciała we wszechświecie miały się przyciągać siłami odwrotnie proporcjonalnymi do ich odległości i proporcjonalnymi do mas. Jedno proste matematycznie prawo pozwalało zrozumieć dynamikę układu planetarnego. Problem postawiony jeszcze przez starożytnych Greków i Babilończyków został w ten sposób rozwiązany. Najważniejszą częścią tego rozwiązania było udowodnienie, że z prawa grawitacji wynikają Keplerowskie elipsy. Poniżej pokażemy współczesne sformułowanie tego rozwiązania.

Wyobraźmy sobie planetę P poruszającą się wokół nieruchomego Słońca (nie jest trudno pójść o krok dalej i uwzględnić także ruch Słońca).

Każda z orbit ma punkt najbliższy Słońca: perihelium P_0. Wybierzmy oś Ox tak, żeby przechodziła ona przez perihelium i następnie poruszała się w kierunku P. Równanie ruchu planety zgodnie z II zasadą dynamiki oraz prawem powszechnego ciążenia ma postać:

\dfrac{d\vec{v}}{dt}=-\dfrac{k}{r^2}\vec{e}_r.

Wektory \vec{e}_r, \vec{e}_\varphi mają odpowiednio kierunek promienia i kierunek do niego prostopadły (transwersalny) oraz długość jednostkową, k=GM jest iloczynem stałej grawitacyjnej i masy Słońca (masa planety nie wchodzi do zagadnienia). Znak minus pochodzi stąd, że grawitacja jest siłą przyciągającą.

W ruchu planety nie zmienia się wielkość jej momentu pędu (przyjmujemy tu masę planety równą 1):

L=rv_{\varphi}=r^2 \omega=const.

Jest to współczesne sformułowanie II prawa Keplera. Wchodzi do niego składowa \vec{v}_\varphi prędkości prostopadła do promienia. W ostatniej równości użyliśmy prędkości kątowej \omega=v_\varphi/r. Więcej szczegółów dotyczących tego wyrażenia można znaleźć niżej (*).

Pokażemy, że torem planety musi być krzywa stożkowa ze Słońcem w ognisku. W tym celu udowodnimy, że odległość planety od Słońca spełnia równanie stożkowej:

r=\dfrac{p}{1+e\cos\varphi},

gdzie p, e zwane są odpowiednio parametrem i mimośrodem stożkowej, a kąt \varphi jest kątem z osią Ox na rysunku. Wyprowadzenie tego równania można znaleźć poniżej (**).

Zakładamy, że moment pędu jest różny od zera: znaczy to, iż planeta nie porusza się po prostej przechodzącej przez Słońce. Oczywiście takie tory są matematycznie i fizycznie dopuszczalne, eliminujemy je jednak z dalszych rozważań.

Równanie ruchu planety można uprościć, jeśli zamiast czasu wprowadzić do niego kąt \varphi. Wyznaczając prędkość kątową z zasady zachowania momentu pędu, otrzymujemy

\omega=\dfrac{d\varphi}{dt}=\dfrac{L}{r^2}.

W obu równaniach występuje r^2 w mianowniku, wobec tego, dzieląc je stronami i korzystając ze wzorów na pochodną funkcji złożonej i odwrotnej, możemy się tej zależności pozbyć:

\dfrac{d\vec{v}}{d\varphi}=\dfrac{d\vec{v}}{dt}\cdot \dfrac{dt}{d\varphi}=-\dfrac{k}{L}\vec{e}_r.

Równanie wektorowe to para równań dla składowych wektora prędkości:

\left\{ \begin{array}{l} \dfrac{dv_x}{d\varphi}=-\dfrac{k}{L}\cos\varphi \\  \mbox{}\\  \dfrac{dv_y}{d\varphi}=-\dfrac{k}{L}\sin\varphi.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  v_x=-\dfrac{k}{L}\sin\varphi+A_x \\  \mbox{}\\  v_y=\dfrac{k}{L}\cos\varphi+A_y.  \end{array}\right.

Ostatnią parę równań możemy zapisać w postaci wektorowej

\vec{v}=\dfrac{k}{L}\vec{e}_\varphi+\vec{A}.

Wynik ma prostą interpretację geometryczną: pierwszy wektor po prawej stronie zakreśla okrąg o promieniu k/L, a promień wodzący tego okręgu tworzy z osią Ox kąt równy 90^{\circ}+\varphi, obracając się razem z promieniem wodzącym planety. W zależności od długości wektora \vec{A} możliwe są następujące cztery sytuacje:

Punkt P_0 odpowiada kątowi \varphi=0, wektor prędkości jest wtedy równoległy do osi Oy (w chwili gdy odległość osiąga minimum, składowa x prędkości musi znikać). Oznacza to, że A_x=0. W każdym przypadku koniec wektora prędkości zakreśla okrąg albo jego łuk. Krzywą taką nazywa się hodografem. Zatem hodograf ruchu keplerowskiego jest łukiem okręgu (w trzecim przypadku to okrąg bez dolnego punktu, w czwartym dozwolone są tylko te wartości \varphi, dla których wektor \vec{v} ma z okręgiem dwa punkty wspólne; pewien zakres kątów jest niedozwolony, ruch zachodzi tu po gałęzi hiperboli i ograniczony jest jej asymptotami.) Kształt hodografu ruchu keplerowskiego odkrył William Rowan Hamilton w XIX wieku i opublikował w pracy zawierającej wyłącznie słowny opis, bez żadnego rysunku i bez wzorów. Brytyjczycy (Hamilton był Irlandczykiem) po Newtonie specjalizowali się w takiej matematyce bez rachunków, co nie zawsze da się z sensem przeprowadzić. Nieco mniej formalne podejście do hodografu tego ruchu.

albo tutaj

Równanie hodografu daje nam prędkości, łatwo z nich przejść do równania toru. Wystarczy znaleźć składową v_\varphi prędkości. Otrzymamy ją przez rzutowanie wektora prędkości na kierunek promienia okręgu zaznaczonego na rysunkach. Otrzymujemy z nich

v_\varphi=\dfrac{k}{L}+A\cos\varphi \quad\Rightarrow\quad r=\dfrac{L}{k/L+A\cos\varphi}=\dfrac{\frac{L^2}{k}}{1+\frac{LA}{k}\cos\varphi}.

Ostatnie równanie jest biegunowym równaniem stożkowej o mimośrodzie e=\frac{LA}{k}, odległości liczone są od ogniska owej stożkowej. Otrzymaliśmy uogólnioną wersję I prawa Keplera.

Na rysunku oba tory: w przestrzeni prędkości oraz w przestrzeni położeń, czyli w zwykłej przestrzeni. A to paraboliczna orbita komety z roku 1680 wyznaczona przez Newtona (obliczenia robił Edmond Halley).

(*) Prędkość kątowa to

\omega=\dfrac{\Delta \varphi}{\Delta t}=\dfrac{v_\varphi \Delta t}{r \Delta t}=\dfrac{v_\varphi }{r }.

Zastępujemy tu dla małych kątów tangens wartością kąta w radianach.

(**) Stożkową definiuje się zadając pewien punkt, zwany ogniskiem oraz prostą, zwaną kierownicą (na rysunku czerwone) oraz wartość mimośrodu e.

Stożkową będzie zbiór takich punktów P, że ich odległość od ogniska jest e razy większa od ich odległości od kierownicy:

OP=ePP'.

Łatwo stąd znaleźć równanie stożkowej. Mamy bowiem

r\cos\varphi+PP'=QQ' \Rightarrow  r\cos\varphi+\dfrac{r}{e}=\dfrac{p}{e}.

Mnożąc ostatnie równanie obustronnie przez e i wyznaczając z niego r, otrzymujemy

r=\dfrac{p}{1+e\cos\varphi}.

Antonie van Leeuwenhoek: Delft, czyli wszechświat

W XVII wieku podróże po Europie stały się modne, choć mieszkając w kraju takim, jak Holandia, można było wiedzieć sporo o świecie, nawet nie ruszając się z domu. Antonie van Leeuwenhoek, kupiec bławatny i pasmanteryjny, terminował w Amsterdamie, podróżował do Anglii, większość jednak swego długiego, dziewięćdziesięcioletniego życia spędził w rodzinnym Delft. Nauką zajął się późno, bo grubo po trzydziestce, kiedy porzucił już handel i został urzędnikiem miejskim, służąc na wielu stanowiskach, m.in. geodety i kontrolera sprowadzanych win i innych trunków. Liczące przeszło dwadzieścia tysięcy mieszkańców Delft nigdy nie było tak dużym ośrodkiem, jak pobliska Haga (barki do stolicy odpływały co pół godziny), słynęło jednak ze swych niebieskich, ręcznie malowanych fajansów, miało też własną gildię malarzy. W Delft pracował przez całe życie, znany wówczas jedynie znawcom, Johannes Vermeer, rówieśnik Leeuwenhoeka. Wpis chrztu malarza datowany pięć dni wcześniej od chrztu uczonego znajduje się na tej samej stronie księgi parafialnej z roku 1632. Z pewnością znali się jako wybitni obywatele tego samego miasta, tak niezrównanie przedstawionego przez malarza.

view_of_delft

To o tym obrazie pisał Marcel Proust: „Odkąd w haskim muzeum zobaczyłem Widok Delft, wiem, że widziałem obraz najpiękniejszy na świecie”Niezrównany i subtelny kolorysta, cyzelował długo każdy szczegół swoich płócien. Namalował ich w rezultacie niewiele i mimo bogatego ożenku zmarł pogrążony w długach. Leeuwenhoeka wyznaczono na kuratora spadku po artyście. Nie przyjaźnili się zapewne i fakt ten dowodzi raczej tylko wysokiego mniemania władz miasta o uczciwości Leeuwenhoeka. Zadanie było delikatne i niewdzięczne, zostało jednak pomyślnie przeprowadzone do końca. Francuski szlachcic, Balthasar de Monconys, dziwił się bardzo, znajdując później u piekarza z Delft pewien obraz Vermeera, za który zapłacono sześćset liwrów, a za który podróżnik nie dałby więcej niż sześć pistoli. Mistrz piekarski z Delft znał się więc dużo lepiej na sztuce niż francuski szlachcic.

f1-large

Nie znamy upodobań Leeuwenhoeka, był człowiekiem niewykształconym, nie znał żadnego języka prócz własnego i sam przyznawał, że niechętnie pisze. Jeśli coś mogło zbliżyć tych dwóch ludzi, to upodobanie do wnikliwej obserwacji i mistyczna niemal adoracja światła. Tkaniny u Vermeera oddane są z niezwykłym pietyzmem, a być może właśnie od przyglądania się detalom tkanin za pomocą szkła powiększającego zaczęła się pasja Leeuwenhoeka. Musiał być człowiekiem niezwykle sumiennym i cierpliwym, gdyż wytrwale doskonalił kunszt szlifowania szkieł i zdołał zbudować mikroskopy lepsze niż ktokolwiek inny.

Używane przez niego mikroskopy miały tylko jedną kulistą soczewkę. Kula taka jest soczewką skupiającą i przy typowym współczynniku załamania szkła jej ognisko leży o pół promienia za powierzchnią (a więc w odległości \frac{3}{2}r od jej środka, patrz poniżej). Używając soczewki możemy przedmiot przybliżyć do oka znacznie bliżej niż wynosi odległość dobrego widzenia, równa zwykle D=25 \mbox{ cm}. Dzięki temu widzimy szczegóły pod większym kątem.

oko

Powiększenie kątowe równe jest

\dfrac{\beta}{\alpha}=\dfrac{h}{d}\dfrac{D}{h}=\dfrac{D}{d}.

Zastępujemy tu kąty (w radianach) ich tangensami, co stanowi dobre przybliżenie, gdy kąty są niewielkie. Odległość d w przypadku soczewki kulistej równa się \frac{3}{2}r. Należy więc używać jak najmniejszych kulek szklanych, powiększenia uzyskiwane przez Leeuwenhoeka sięgały kilkuset razy. Tak wygląda współczesna rekonstrukcja jego mikroskopu.

hl1

Strona Hansa Loncke

Holender prowadził dziennik obserwacji, jego fragmenty wysyłał do Towarzystwa Królewskiego do Londynu. Tłumaczone na angielski lub łacinę, ukazywały się przez wiele lat w „Philosophical Transactions”. Zrazu uczeni byli nieufni, z czasem jednak zaczęto Leewenhoeka i jego odkrycia traktować serio. Zaczęli go odwiedzać inni badacze, którzy mogli się naocznie przekonać, że Holender jest rzeczywiście wytrawnym obserwatorem i niczego nie zmyśla. Niektóre z jego odkryć zostały niezależnie powtórzone, ogólnie jednak był z tym kłopot: nikomu nie udawało się sporządzać tak małych kulek szklanych dobrej jakości optycznej. Angielski autorytet w dziedzinie optyki Robert Hooke, autor zdumiewających rysunków mikroskopowych, takich jak poniższa pchła, używał mikroskopu z dwóch soczewek i nie był przekonany do metody Leeuwenhoeka.

4879769

Odkrycia Holendra nie były aż tak spektakularne, gdyż dotyczyły żyjątek niezwykle drobnych, wręcz nieprawdopodobnie małych, o rozmiarach niewielu mikrometrów. Leeuwenhoek odkrył cały świat mikroflory bakteryjnej, obserwował przejawy życia w kroplach wody i w najróżniejszych płynach ustrojowych, jak krew i sperma. Tak wyglądały np. bakterie z jamy ustnej (specjaliści zidentyfikowali je później).

drawings-of-animalcules-form-leeuwenhoeks-letter-dr-jeremy-byrgess

Nasienie zwierząt i ludzi pełne było zadziwiających, żywo poruszających się stworów, przypominających kijanki. Leeuwenhoek odkrył w ten sposób plemniki. Badania tego rodzaju nieco go krępowały, tłumaczył, że spermę uzyskał bez grzechu jako skutek stosunku małżeńskiego. Sądził jednak, że odkrycie to jest w najwyższym stopniu godne uwagi.

lind006gesc01ill24

Ówcześni uczeni przypuszczali, że początkiem życia człowieka jest komórka jajowa (w istocie to, co brali za komórkę jajową było pęcherzykami jajnikowymi). Sądzono, że pramatka Ewa nosiła w sobie jajeczka wszystkich ludzi, którzy później przyszli na świat. Obserwacje Leeuwenhoeka wskazywały na coś zupełnie innego: to plemniki odgrywają decydującą rolę, podczas gdy komórka jajowa dostarcza jedynie pożywienia wzrastającemu organizmowi. Nicolas Hartsoeker, lekarz i rodak Leewuwenhoeka, przekonywał, że to plemnik zawiera całego człowieka w miniaturze (słówko homunculus pojawiło się dwa wieki później). Jak się zdaje, podobnego mniemania był także Leeuwenhoek.

human-sperm-17th-century-granger

Zapłodnienie zdaniem Hartsoekera nie polegało na tym, że najsilniejszy plemnik (powiedzmy Donald Trump) przebija się do środka komórki jajowej. Sądził on, że plemnik przyczepia się do jajeczka ogonkiem, przez który czerpie substancje odżywcze i który z czasem zamienia się w pępowinę łączącą zarodek z organizmem matki. Interpretując te poglądy w duchu tzw. obrońców życia: nie tylko zygota ludzka byłaby święta, ale należałoby jak osoby ludzkie traktować także wszystkie plemniki, które także byłyby święte. Oczywiście, wszystkie one powinny koniecznie mieć imiona, zanim umrą.

Leeuwenhoek był pionierem, jego badań nikt nie kontynuował. Częściowo sam sobie był winien, ponieważ nie ujawniał swojej metody wytwarzania soczewek i nikt inny tego nie potrafił. Nauka nie była przygotowana na cały ten zawrotny świat mikroorganizmów, kiedy nie można zrozumieć pewnych faktów, spycha się je po prostu na bok. Z czasem Leewenhoek spostrzegł, że młodzi ludzie nie są zainteresowani nauczeniem się jego sekretów i kontynuacją jego badań. Pisał: „Większość studentów idzie tam [na uniwersytet w Lejdzie], aby zarabiać pieniądze dzięki wiedzy albo zdobyć reputację w świecie uczonych. Lecz szlifowanie soczewek i odkrywanie rzeczy ukrytych przed wzrokiem nie ma z tym nic wspólnego”. Trzeba przyznać, że i dziś ten podział nie całkiem się zatarł: na tych, co odnoszą korzyści z nauki i tych, z których korzyść odnosi nauka.

kula
Kąt \beta, jak widać z rysunku, równy jest

\beta=\dfrac{h}{r+f}.

Ogniskową f znajdujemy, rozpatrując dwukrotne załamanie promienia bliskiego środka kuli (w ten sposób wszystkie kąty są małe, zostały na rysunku powiększone dla przejrzystości). Odchylenie na pierwszej powierzchni równe jest \delta-\varepsilon; oba kąty spełniają prawo załamania

\dfrac{\delta}{\varepsilon}=n,

gdzie n jest współczynnikiem załamania.

leeuwenhoek

Odchylenie na drugiej powierzchni jest takie samo. Należy uwzględnić fakt, że nasza soczewka jest gruba, tzn. promień zbliża się do osi z odległości x na odległość y. Ostatecznie, wartość ogniskowej równa jest

f=\dfrac{r}{2}\cdot \dfrac{2-n}{n-1}.

Przy n=1,5 otrzymamy f=\dfrac{1}{2}r.

Evangelista Torricelli: nieskończona trąba i barometr (1643-1644)

Nauka powstająca w XVII wieku była iście rewolucyjna: podważono jednocześnie niemal cały tradycyjny system myślowy, wiedzę zgromadzoną od tysiącleci. Świat materialny zmienił się niewiele od średniowiecza, choć nauczono się żeglować po oceanach i korzystać z broni palnej. Jednak technika była wciąż prymitywna, energia trudno dostępna, a większość ludzi walczyła jedynie o przetrwanie. Zanim przeobraziła się cywilizacja, należało najpierw przebudować zawartość głów. Postęp pojęciowy jest zawsze niezmiernie trudny, trzeba pokonać własne nawyki myślowe, wyciągnąć wnioski z nowych założeń, niewielu ludzi potrafi żyć wśród tymczasowych koncepcji i bez żalu porzucać je na rzecz innych, nowych, lepiej opisujących wymykającą się rzeczywistość. M.in. dlatego niewielu jest einsteinów na świecie, mimo że nie brak ludzi bardzo inteligentnych i utalentowanych.

Evangelista Torricelli określany jest często jako uczeń Galileusza. W istocie był bardziej uczniem Benedetta Castellego, wiernego przyjaciela i okazjonalnie współpracownika mistrza z Florencji. Ze starym, niewidomym już uczonym spędził ledwie kilka miesięcy: od października 1641 r. do stycznia roku następnego, gdy Galileusz zmarł. Torricelli był już wtedy po trzydziestce i był ukształtowanym uczonym w duchu archimedesowym, gdzieś między matematyką a inżynierią i eksperymentem. Odziedziczył po Galileuszu stanowisko matematyka przy księciu Toskanii. Galileusz był także nadwornym filozofem, czyli fizykiem i astronomem, ale w owej chwili, dziesięć lat po wyroku inkwizycji, lepiej było nie kłuć w oczy władz kościelnych. Sławnego uczonego pochowano w nieoznaczonym grobie i musiało minąć sto lat, nim pozwolono na postawienie tablicy nagrobnej. Torricelli w roku 1643 stał się sławny w całej uczonej Europie dzięki rozważaniom na temat pewnej nieskończonej bryły, która miała skończoną objętość. Przypominała ona wnętrze trąby.

tromba

Bryła Torricellego powstaje z obrotu hiperboli (równobocznej) wokół jednej z asymptot. Wycinamy z niej tylko część zaznaczoną na rysunku: mamy zwężającą się, nieskończenie długą trąbę. Torricelli wykazał, że pole powierzchni takiej trąby jest nieskończone, lecz objętość jest skończona. Oszacujemy tę objętość. Dzielimy naszą bryłę na cylindryczne cienkie powłoki: leżą one jedna wewnątrz drugiej jak składany tubus. Pole podstawy takiej powłoki (wydrążonego walca) równe jest 2\pi r dr, co jest iloczynem długości okręgu i grubości naszej powłoki dr. Objętość wydrążonego walca o takiej podstawie  i wysokości h(r) możemy łatwo oszacować z góry:

dV=2\pi r dr h(r) < 2 \pi r dr \dfrac{a^2}{r}=2 \pi a^2 dr.

Zatem suma objętości wszystkich wydrążonych walców jest mniejsza niż 2\pi a^2 R, gdzie R to największy promień przekroju poprzecznego trąby. Torricelli obliczył tę objętość, stosując metodę Cavalieriego, a także przeprowadzając dowód w duchu Archimedesa. Paradoksalny wynik wzbudził zainteresowanie i komentowali go najwięksi matematycy epoki: jeśli był prawdziwy, granice matematyki matematyki zostały poszerzone.

W roku następnym został Torricelli odkrywcą barometru. Tak się zwykle mówi, bardzo upraszczając całą sprawę. On sam nie uznawał siebie za wynalazcę takiego przyrządu ani nad nim jakoś szczególnie nie pracował. Dopiero później urządzenie takie zaczęto nazywać barometrem i traktować jako przyrząd służący do pomiaru ciśnienia atmosferycznego. Torricelli niczego nie mierzył w sposób ciągły, lecz uważał swoje doświadczenie za rodzaj filozoficznego (tj. naukowego) pokazu. Chodziło w nim o istnienie próżni. Natura abhorret vacuum – natura nie znosi próżni – mawiali filozofowie scholastyczni, czerpiąc to twierdzenie od Arystotelesa. Wiadomo było z praktycznych doświadczeń inżynierów, iż nie można wciągnąć wody w rurze wyżej niż na 18 łokci. Galileusz objaśniał to siłami spoistości wody: gdy wysokość jej słupa przekracza owe 18 łokci, słup rozrywa się pod własnym ciężarem, tak jak rozerwałaby się pod własnym ciężarem dostatecznie długa kolumna z marmuru zawieszona od góry. Torricelli sądził inaczej, uważał, że słup cieczy równoważony jest ciśnieniem zewnętrznym. A skoro chodzi o równowagę, to zamiast 18 łokci wody wystarczy 5/4 łokcia i jeden cal żywego srebra (rtęci) – gdyż jego ciężar właściwy jest kilkanaście razy większy. Wystarczy wziąć szklaną rurkę długości, powiedzmy, dwóch łokci, zatopioną z jednej strony i nalać do niej rtęci. Następnie zatykamy rurkę palcem i odwracamy zatopioną częścią do góry, po czym wkładamy rurkę do naczynia z rtęcią (nikt w XVII wieku nie rozumiał, jak się zdaje, jak szkodliwe może być takie nieostrożne manipulowanie rtęcią, Newton żartował sobie, że posiwiał wcześnie z powodu używania rtęci w doświadczeniach alchemicznych, naprawdę chyba się tym jednak nie przejmował).

torr

Uczony sądził, że nad rtęcią tworzy się próżnia. A więc łatwo jest ją wytworzyć i natura się jej nie lęka. O swoich doświadczeniach napisał do Michelangela Ricciego w czerwcu 1644 roku. Pokazywał je też ojcu Marinowi Mersenne’owi, który spełniał w owych czasach rolę serwera pocztowego dla środowiska uczonych, gdy ten odwiedził go we Florencji. Nie słychać, aby Torricelli zamienił swoją odwróconą rurkę na stały przyrząd, który można z dnia na dzień obserwować. Spodziewał się chyba, że zmiany ciśnienia atmosferycznego będą większe, niż są w rzeczywistości. W tym samym liście pisał, iż żyjemy na dnie oceanu powietrza – coś podobnego sugerował kilkanaście lat wcześniej Giovanni Battista Baliani w liście do Galileusza. Torricelli mógł o takim poglądzie słyszeć. Tak czy owak nie zajmował się sprawą dłużej, dopiero kilka lat później stała się ona europejską sensacją, gdy doświadczenia podobne zaczęto powtarzać w różnych krajach, a przede wszystkim we Francji, a zagadnieniem ciśnienia atmosferycznego i istnienia próżni zajął się m.in. Blaise Pascal. Dla jego analitycznego i skłonnego do paradoksów umysłu pogląd, który przeczył jednocześnie scholastykom i „nowoczesnemu” Kartezjuszowi, musiał wydawać się wielce interesujący. Torricelli zmarł młodo, w roku 1649, i nie dożył czasów, w których uznano go za „odkrywcę barometru”. Zapewne byłby zdziwiony, że ten maleńki fragment jego naukowego dorobku doczekał się takiej sławy, podczas gdy o reszcie mało kto dziś pamięta.

List Torricellego do Ricciego.

Jego angielski przekład