Kometa 1680-1681: Flamsteed i Newton

W listopadzie 1680 roku ukazała się w gwiazdozbiorze Panny jasna kometa. Widoczna była przed wschodem słońca, nie wszędzie można ją było bez przeszkód obserwować, ponieważ w wielu miejscach Europy niebo było zachmurzone o tej porze roku. W połowie grudnia pojawiła się następna kometa, tym razem łatwiejsza do obserwacji, gdyż świeciła wieczorem po zachodzie słońca i obserwowano ją aż do wczesnej wiosny – stopniowo słabła i pod koniec można ją było dostrzec jedynie przez teleskop.

Przedstawienia toru komety 1680/1681 na niebie wg Gottfrieda Kircha

Zjawisko budziło powszechne zainteresowanie i choć coraz mniej było tych, którzy traktowali je jako znak od Boga, oznajmienie śmierci jakiegoś władcy bądź zapowiedź nadchodzących nieszczęść, to publiczna ciekawość chętnie znajdowała ujście w spekulacjach wiążących kometę z osobliwymi zjawiskami na Ziemi. Oto w Rzymie kura zniosła jajo noszące na skorupce wyraźny znak komety, co miało znaczenie tym większe, że stało się w pałacu panów Maximi. Jajo to widział Jego Świątobliwość Innocenty XI, a także królowa Krystyna Wazówna oraz wiele znakomitych osób oraz naturalistów. Pisał o jaju nawet paryski „Journal des Savants”.

Isaac Newton pędził w Cambridge życie samotnicze, pogrążony w rozważaniach, które akurat przyciągnęły jego uwagę, wiele czasu spędzając nad teologią, alchemią i dość szczególnie pojmowaną historią. Na początku roku 1680 korespondował z Robertem Hookiem na temat hipotetycznego ruchu ciała, które mogłoby spaść aż do środka Ziemi. Jak się zdaje, pod wpływem tej korespondencji sprawdził, że jeśli ciało porusza się po elipsie zgodnie z prawem pól Keplera, to siła wywołująca ów ruch jest przyciąganiem odwrotnie proporcjonalnym do kwadratu odległości. Hooke sugerował, że tak właśnie być powinno, ale nie potrafił tego matematycznie udowodnić. Newton nie napisał mu o tym dowodzie, w ogóle przestał do niego pisać. Jak się zdaje, traktował ten dowód jako ćwiczenie matematyczne bez większego znaczenia. Na pewno nie myślał jeszcze o ciążeniu powszechnym.
Przez cały rok 1680 nie działo się w jego życiu nic dostrzegalnego na zewnątrz. Do Hooke’a napisał w grudniu, ale w zupełnie innej sprawie: chodziło o przybysza z Italii, który chciał przedstawić Towarzystwu Królewskiemu lecznicze działanie kory pewnego peruwiańskiej rośliny, drzewa chinowego (zawierającego chininę, stosowaną jeszcze czasem przeciw malarii, a także do produkcji toniku). W grudniu napisał do Newtona John Flamsteed, królewski astronom z informacjami na temat komety. Flamsteed utrzymywał, że komety z listopada i z grudnia są tym samym ciałem niebieskim. Wyobrażał sobie, że kometa była najpierw przyciągana, a następnie odpychana magnetycznie od Słońca, jednocześnie biorąc udział w wirowym ruchu materii wokół Słońca. Wiry takie miały zdaniem Kartezjusza odpowiadać za uporządkowane ruchy planet. Komety natomiast miały być planetami, które wypadły ze swego wiru i dość bezładnie wędrują między różnymi wirami.

Kometa wg Kartezjusza

Kometa wg Flamsteeda (linia przerywana okrąg wielkości orbity Ziemi, wiadomo było, że kometa nie porusza się w płaszczyźnie ekliptyki)

Magnetyczne przyciąganie i odpychanie przez Słońce zaproponował kiedyś Johannes Kepler jako przyczynę zbliżania i oddalania planet od ciała centralnego. Dodatkowo działać miała na nie pewnego rodzaju siła obrotowa, rodzaj pola siłowego, species immateriata. Kartezjusz wprowadził w miejsce niematerialnego pola wiry cieczy, jak w wannie. W podejściu Flamsteeda najbardziej oryginalny był pomysł, by obie komety: poranną i wieczorną uważać za jedno ciało.
Newton zainteresował się kometą, zaczął ją nawet sam obserwować i robił to tak długo, jak była ona widoczna, korzystając pod koniec z coraz lepszych teleskopów. Uprzejmie wypowiedział się na temat przedstawionych mu rozważań. Po pierwsze sądził, że są to dwie komety. Uważał, że poruszają się one ruchem prostoliniowym albo bliskim prostoliniowemu, starał się nawet wyznaczyć ich tor w przestrzeni. Nie wierzył w żadne przyciąganie magnetyczne w tym przypadku, bo Słońce jest zbyt gorące na magnetyzm (wiedział, że magnesy w wysokiej temperaturze tracą swe własności magnetyczne). Ponadto nie rozumiał, w jaki sposób kometa miałaby być najpierw przyciągana, a potem odpychana. Gdyby była ona jak igła magnetyczna, to obracałaby się zawsze tak do Słońca, że siła byłaby przyciągająca. Mógł sobie wyobrazić jakąś siłę przyciągającą kometę ku Słońcu, ale wówczas powinna się ona poruszać raczej w taki sposób, zataczając wokół niego łuk.

Tor komety zaproponowany przez Newtona w dyskusji z Flamsteedem jako nieco bardziej prawdopodobny (1681 r.)

Ruch radialny (wzdłuż promienia) byłby wówczas opisany za pomocą dwóch sił: przyciągania oraz siły odśrodkowej. W perihelium siła odśrodkowa przeważa nad przyciąganiem i dlatego kometa zaczyna się oddalać od Słońca. Widzimy, że nie tylko nie myślał jeszcze o przyciąganiu komety przez Słońce, ale także opisywał ruch za pomocą siły odśrodkowej, tak jak kartezjaniści (choć w tym przypadku mogło mu też chodzić o to, by Flamsteed rozumiał o czym mowa – Newton miał swoje głębokie przemyślenia na temat mechaniki i był pod tym względem, by tak rzec, w innym punkcie niż jego współcześni). Flamsteed przysłał mu jeszcze proponowany przez siebie tor komety (na rysunku widzimy jego rzut na płaszczyznę orbity Ziemi, kometa poruszała się bowiem płaszczyźnie tworzącej z nią kąt 65º).

Tor komety wg Flamsteeda, z niepewnością w pobliżu Słońca (nie był on obliczony, lecz po prostu narysowany mniej więcej w zgodzie z obserwacjami).

Newton pozostał przy swoim zdaniu, że komety były dwie i poruszały się mniej więcej prostoliniowo, nieprawdopodobna mu się wydawała tak szybka i znaczna zmiana prędkości komety – na niemal przeciwną po minięciu Słońca. Zajął się innymi tematami, do sprawy komet wrócił cztery lata później, kiedy wpadł na pomysł ciążenia powszechnego. Wymyślił też wtedy metodę pozwalającą obliczyć paraboliczny tor komety z trzech obserwacji. Po zastosowaniu tej metody do komety z lat 1680/81 otrzymał następujący tor.

Komety miały stać się jednym z najlepszych przykładów działania siły powszechnego ciążenia. Okazało się, że podlegają ścisłemu matematycznemu prawu. Niemal automatycznie przestano je wiązać z cudami i astrologicznymi przepowiedniami. Nauka czasem wypiera zabobon.

Reklamy

James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

John Maynard Keynes, Isaac Newton i Pitagoras z Samos (1694)

W roku 1936 na aukcji w domu Sotheby’s sprzedano dużą kolekcję rękopisów alchemicznych i religijnych Isaaca Newtona. Ani uniwersytet w Cambridge, ani British Museum nie były zainteresowane kupnem. Znaczną część papierów nabyli dwaj zapaleni kolekcjonerzy bibliofile: ekonomista John Maynard Keynes i filolog arabista i biblista Abraham Shalom Yahuda. Keynes przeżywa dziś renesans jako pierwszy ekonomista zalecający zwiększenie wydatków w celu pobudzenia gospodarki w kryzysie i uruchomienia mocy produkcyjnych. Współczesna wersja tego podejścia to quantitative easing – stosowane w ciągu ostatniej dekady praktyki skupowania obligacji przez bank centralny, dzięki czemu zamieniane są one na gotówkę, wpływającą do gospodarki. Keynes był postacią skomplikowaną i niełatwą do zaszufladkowania. Studiował matematykę w Cambridge, zajmował się filozofią, trochę chodził na wykłady z ekonomii, obracał się wśród artystów i pisarzy, znanych jako grupa z Bloomsbury (m.in. Virginia Woolf, E.M. Forster, Lytton Strachey), był wysokim urzędnikiem, dyrektorem Banku Anglii, prywatnym inwestorem, mecenasem sztuki, doradcą rządowym. Brał udział w wypracowywaniu traktatu wersalskiego po I wojnie światowej i był przeciwny nakładaniu na Niemcy wysokich reparacji (jak wiemy, Niemców upokorzono, co znacznie się przyczyniło do sukcesów nazizmu i następnej wojny). Bertrand Russell, logik matematyczny i filozof, pisał o nim:

Keynes miał najbystrzejszy i najklarowniejszy umysł, z jakim się zetknąłem. Kiedy się z nim spierałem, miałem uczucie, że walczę o życie i rzadko kiedy nie miałem potem wrażenia, iż okazałem się po trosze głupcem. Czasami sobie myślałem, że taka błyskotliwość jest nie do pogodzenia z głębią, lecz nie sądzę, żeby ten pogląd był uzasadniony. [Autobiography 1872-1914, koniec rozdz. 3]

Bertrand Russell, John Maynard Keynes, Lytton Strachey w roku 1915, National Portrait Gallery

Keynes już jako młody człowiek interesował się postacią Newtona i kupił pierwsze wydanie Principiów. W latach czterdziestych napisał, jak wyobraża sobie wielkiego uczonego.

Uważam, że Newton był inny, niż się zwykle wyobraża. Nie sądzę jednak, że był przez to mniej wielki. Był mniej zwyczajny, bardziej niezwykły, niż XIX wiek starał się go przedstawić. Geniusze są ludźmi wielce osobliwymi. (…) Od XVIII stulecia począwszy, zaczęto uznawać Newtona za pierwszego i największego uczonego nowożytnego, racjonalistę, kogoś, kto nauczył nas kierować się w myśleniu jedynie chłodnym i pozbawionym uprzedzeń rozumem. Ja nie patrzę na niego w taki sposób. Nie sądzę, by ktokolwiek, kto pochylił się nad zawartością tej skrzyni, którą Newton spakował, gdy ostatecznie opuszczał Cambridge w roku 1696, i której zawartość, choć częściowo rozproszona, dotarła do nas, mógł o nim myśleć w taki sposób. Newton nie był pierwszym przedstawicielem Wieku Rozumu. Był ostatnim z magów, ostatnim z Babilończyków i Sumerów, ostatnim z wielkich myślicieli patrzących na świat widzialny i duchowy tymi samymi oczyma, co ci, którzy zaczęli budować nasze intelektualne dziedzictwo niespełna 10 000 lat temu. Isaac Newton, pogrobowiec, dziecko bez ojca, urodzone w Boże Narodzenie 1642 roku, był ostatnim cudownym dzieckiem, któremu Trzej Magowie mogliby złożyć szczery i stosowny hołd. (…) Czemu nazywam go magiem? Ponieważ patrzył na cały wszechświat i na wszystko, co się w nim znajduje, jak na zagadkę, tajemnicę, która może zostać odczytana dzięki skupieniu czystej myśli na pewnych dowodach, pewnych mistycznych wskazówkach umieszczonych przez Boga w świecie, aby umożliwić ezoterycznemu bractwu coś w rodzaju polowania na filozoficzny skarb. Uważał, że owe wskazówki znaleźć można po części w świadectwach niebios i w budowie elementów (i to właśnie wywołuje fałszywą sugestię, jakoby był filozofem eksperymentalnym), ale po części także w pewnych dokumentach i tradycjach przekazywanych przez braci w jednym nieprzerwanym łańcuchu od pierwotnego zaszyfrowanego objawienia w Babilonii. Uważał wszechświat za kryptogram Wszechmogącego – podobnie jak sam zawarł odkrycie rachunku różniczkowego i całkowego w anagramie przekazanym Leibnizowi. Sądził, że dzięki czystej myśli, dzięki koncentracji umysłu, owa zagadka zostanie odsłonięta przed wtajemniczonymi. Udało mu się odczytać zagadkę niebios. I wierzył, że dzięki tym samym zdolnościom introspekcyjnej wyobraźni odczyta zagadkę Boskiej osoby, zagadkę przeszłych i przyszłych wydarzeń zapisanych u Boga, zagadkę elementów i ich utworzenia się z niezróżnicowanej pierwszej materii, zagadkę zdrowia i nieśmiertelności. Wszystko zostanie przed nim odsłonięte, jeśli tylko wytrwa aż do końca, będzie sam i nikt mu nie będzie przeszkadzał, nikt nie będzie wchodził do pokoju; jeśli będzie czytał, prze pisywał, sam wszystko sprawdzał, bez żadnych przerw, bez ujawniania czegokolwiek, bez ciągłego wtrącania się i obiekcji z zewnątrz, gdy z lękiem i dreszczem przypuszcza atak na owe rzeczy na poły nakazane, na poły zabronione, skrywając się w łonie Boga jak w łonie matki.

Kopia portretu Godfreya Knellera z 1689, uczony wcześnie posiwiał, mówił, że to skutek eksperymentów z rtęcią. (Wikipedia). Sam portret jest własnością prywatną i rzadko można go oglądać.

Keynes miał niewątpliwie rację, uważając Newtona raczej za epigona pewnej tradycji niż za prekursora nowej nauki (my patrzymy na niego jakby przez odwróconą lunetę, wiedząc, jak później eksplodowały nauki ścisłe). Bez wątpienia także był Newton postacią wymykającą się klasyfikacjom, zupełnie nieprzewidywalną i osobną, posiadającą swoją prywatną wizję wszechświata, którą rzadko i niechętnie dzielił się z innymi. Nie był ani zawodowym uczonym, ani nauczycielem, ani filozofem. Szukał wiedzy dla siebie i nie dzielił jej na naukową i nienaukową. Alchemia jako zagadka była dla niego nie mniej pasjonująca niż Apokalipsa św. Jana i zawarte w niej proroctwa. Dzięki katedrze Lucasa mógł robić, co chciał i niezbyt chętnie informował o tym świat zewnętrzny (czasem nawet nie mógł, bo np. jako członek Kolegium Św. Trójcy – Trinity College – nie mógł powiedzieć głośno, że Trójca św. jest fikcją wymyśloną przez Atanazego, niezgodną z tradycją i pismami wczesnego Kościoła). Nie potrzebował cudzych pochwał, niezbyt też chyba wierzył w to, że ktoś mógłby mu powiedzieć na temat matematyki czy fizyki coś istotnego, do czego sam już wcześniej nie doszedł. Rzadko ktoś go zaskakiwał w nauce, on wszystkich – niemal zawsze. Wszystkie właściwie prace trzeba było z niego wyduszać, niewiele go obchodziło, co inni sądzą na ich temat, rozmawiał niezdawkowo tylko z ludźmi zaprzyjaźnionymi, a i to dość rzadko.

Dobrym przykładem jego postawy jest kontekst, w jakim widział prawo ciążenia. Dla nas jest jego odkrywcą, można spokojnie założyć, że gdyby mały Isaac zmarł zaraz po porodzie (a był słabiutkim wcześniakiem i nikt nie wierzył, że przeżyje), to prawa powszechnego ciążenia nie znano by jeszcze długo, gdzieś do połowy XVIII wieku. On sam czuł się wprawdzie jego odkrywcą, ale wierzył, że przed nim musiano już to prawo znać. Podejrzewał, że zapewne znał je już Pitagoras.

W roku 1694 Newton zastanawiał się nad drugim wydaniem swoich Matematycznych zasad filozofii przyrody. Myślał o tym, aby prowadzić pewne komentarze – scholia do sformułowania praw ciążenia. (Ponieważ nie stosowano jeszcze zapisu algebraicznego, Newton podawał kolejno różne własności grawitacji: że jest proporcjonalna do masy jednego ciała, a także masy drugiego ciała i odwrotnie proporcjonalna do kwadratu odległości między nimi – nie było jednego wyrażenia matematycznego). Ostatecznie nie zdecydował się na publikację tych Scholiów klasycznych. Dają nam one jednak wgląd w jego sposób myślenia o historii. Musimy pamiętać, że Newton znał praktycznie całą klasyczną literaturę i filozofię, nie dlatego że cenił poezję, lecz ze swoistej ostrożności poznawczej, ze względu na elementy wiedzy, którą być może znali starożytni. Znał też praktycznie na pamięć pisma kilkuset Ojców Kościoła, eksperci przypuszczają, że był ostatnim takim erudytą. Do tego dochodzi jeszcze tradycja hermetyczna i alchemiczna. Jak się zdaje, nigdy nie zapominał tego, co raz przeczytał. Newton szukał w tych różnych tekstach zapomnianej albo specjalnie ukrytej wiedzy.

Jego własne poglądy naukowe przypominały starożytny epikureizm, znany głównie z poematu Lukrecjusza O naturze rzeczy. Nieskończony wszechświat, czy może nawet nieskończone zbiorowisko wszechświatów, wypełnionych atomami, które działają na siebie siłami ciążenia. Kłopot z Lukrecjuszem i epikureizmem był taki, że ich filozofia powstała z wyraźnym przesłaniem etycznym: nie potrzebujemy obawiać się bogów, bo oni z pewnością się nami nie zajmują, jest tylko materia, która podlega w przyrodzie wiecznemu recyclingowi, jak we śnie ekologa. Newton był natomiast fundamentalistą biblijnym i religijnym fanatykiem, dla którego nawet Kartezjusz był bezbożnikiem, gdyż w jego systemie świata nie było miejsca na Boga. Toteż uznał, że system Lukrecjusza został źle zrozumiany i jest pozostałością po jeszcze starszej wiedzy, którą np. posiadał Pitagoras. Dotyczyć miała nie tylko atomów i ich budowy (chodziło o to, że materia ma stałą gęstość, a jeśli np. woda ma mniejszą gęstość niż złoto, to znaczy, że w cząstkach wody znajduje się więcej próżni). Także prawo powszechnego ciążenia znane było Pitagorasowi albo uczonym przed nim. Ukryte było w koncepcji harmonii świata. Gdyby wyobrazić sobie, że odległość Słońce-planeta to długość struny, to chcąc wszystkie te struny doprowadzić do unisono, należałoby do nich zastosować prawo, odkryte przez Vincenza Galilei, wiążące siłę naciągu i długość: zamiast skracać strunę x razy możemy zastosować x^2 razy większą siłę ciążenia. W ten sposób wszystkie kosmiczne „dźwięki” miałyby tę samą wysokość.

Czy Newton naprawdę wierzył w ten pomysł? Zdawał sobie sprawę, że ściśle biorąc, nie ma w tekstach starożytnych nic o prawie wiążącym naciąg struny i kwadrat jej długości. Ale dopuszczał możliwość, że taka wiedza została z czasem zagubiona bądź zniekształcona, ponieważ przekazywano ją w postaci symboli zrozumiałych dla wtajemniczonych, aby trzymać tajniki nauki z dala od profanów. Tak działali pitagorejczycy, a w czasach nowożytnych – alchemicy. Sam Newton przypuszczał, że geometryczne ujęcie rachunku różniczkowego i całkowego, które odkrył, było w zasadzie wiedzą starożytnych. Czuł się więc bardziej kontynuatorem starożytnych niż swoich współczesnych. Nie należy uważać, że jest w tym jedynie dziwactwo wielkiego uczonego. To znaczy jest tu element osobistego dziwactwa, ale także i obce nam podejście do historii. Dla Newtona wiedza naukowa nie była konstrukcją historyczną, lecz zbiorem sekretów, które posiąść mogą wybrani (z wyraźną pomocą Bożą). Mity i podania uznawał za zaszyfrowane informacje, które można odkodować, jeśli złamie się klucz. Nie występuje w jego świecie coś takiego jak licentia poetica, jeśli nie wszystko da się zrozumieć i odczytać, to jest to skutek błędów w przekazie.

Drgania struny: najprostsza teoria pola

Drgania struny, badane jeszcze przez Pitagorasa, są rzeczywiście archetypem fizyki matematycznej.

Przyjrzyjmy się im z punktu widzenia zasady najmniejszego działania. W problemie liny mieliśmy już do czynienia z energią sprężystą liny albo struny. Jeśli w punkcie x wychylenie równe jest y(x), to energia potencjalna całej struny jest równa

{\displaystyle V=\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2 dx.}

Oznaczyliśmy napięcie struny T, pochodną zapisujemy jako cząstkową, bo chcemy, by nasza zmienna y mogła zależeć także od czasu t, co opisuje poprzeczne drgania struny. Zachowujemy tylko energię sprężystości, w przypadku drgań struny grawitacja nie gra roli. Sens fizyczny tego wyrażenia jest dość oczywisty: im bardziej kierunek struny odbiega od kierunku poziomego, tym większa jest energia sprężystości. Odkształcając strunę zmieniamy lokalnie jej kierunek.

Potrzebujemy także energii kinetycznej struny. Jeśli jej liniowa gęstość masy wynosi \varrho, to całkowita energia kinetyczna jest równa:

{\displaystyle E_k=\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2 dx.}

Działanie, tak jak poprzednio, równa się

{\displaystyle S=\int_{0}^{\tau} (E_k-V)dt= \int_{0}^{\tau}\left[\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2\right] dx dt. }

 

Działanie jest teraz całką po czasie i przestrzeni z funkcji w nawiasie kwadratowym, którą nazywa się gęstością lagranżianu albo lagranżianem, jeśli ktoś nie przejmuje się bardzo precyzją języka.

{\displaystyle S=\int_{0}^{\tau} {\cal L}dx dt, \mbox{ gdzie }  {\cal L}=\dfrac{\varrho}{2}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\left(\dfrac{\partial y}{\partial x}\right)^2 }

 

Podobnie jak przedtem, możemy z zasady najmniejszego działania otrzymać równania ruchu. W tym celu wyobrażamy sobie, że zamiast y(x,t) wstawiamy pod całkę y(x,t)+\delta y(x,t), gdzie wariacja \delta y jest dowolną, lecz niewielką funkcją położenia i czasu, która znika na końcach struny, dla x=0 oraz x=L i na końcach przedziału czasu: t=0 oraz t=\tau. Liniowa część przyrostu działania to wariacja działania (wyrazy kwadratowe w \delta y odrzucamy, podobnie jak przy obliczaniu pochodnej z definicji):

{\displaystyle \delta S=\int \rho \dfrac{\partial y}{\partial t}\cdot \dfrac{\partial \delta y}{\partial t} dx dt-\int T \dfrac{\partial y}{\partial x}\cdot \dfrac{\partial \delta y}{\partial x} dx dt.}

Całkując oba składniki przez części i korzystając ze znikania wariacji na brzegach naszego obszaru w czasoprzestrzeni (dwuwymiarowej: jeden wymiar przestrzenny i jeden czasowy), dostajemy

{\displaystyle \delta S=0=\int \left[-\rho \dfrac{\partial^2 y}{\partial t^2}{\partial t} + T \dfrac{\partial^2 y}{\partial x^2}\right] \delta y dx dt}.

Wyrażenie w nawiasie kwadratowym musi być wobec tego równe zeru dla dowolnych wartości x i t. Otrzymujemy tzw. równanie falowe:

\dfrac{\partial^2 y}{\partial x^2}=\dfrac{\varrho}{T}\dfrac{\partial^2 y}{\partial t^2}.

Równanie to zależy od jednego parametru, nazwijmy go c:

c=\sqrt{\dfrac{T}{\varrho}}.

Łatwo sprawdzić, że rozwiązaniem naszego równania są dowolne funkcje postaci y=f(x-ct) oraz y=g(x+ct), gdzie funkcje f, g mogą być w zasadzie dowolne (różniczkowalne dwa razy). Opisują one fale poruszające się z prędkością c w prawo albo w lewo. W dwuwymiarowej czasoprzestrzeni są to wszystkie możliwe rozwiązania. Równanie falowe jest liniowe: suma dwóch rozwiązań stanowi także dopuszczalne rozwiązanie.

W problemie drgającej struny występują tzw. fale stojące, będące złożeniem takich fal poruszających się w lewo i w prawo. Można je zapisać jako

y(x,t)=A \sin 2\pi \dfrac{x}{\lambda}\cdot \sin 2\pi \nu t.

Pierwszy sinus automatycznie znika w x=0, warunek aby funkcja znikała też w x=L daje nam równanie

2\pi \dfrac{L}{\lambda}=n\pi\Rightarrow \lambda=\dfrac{2L}{n},

gdzie n jest liczbą całkowitą. Geometrycznie oznacza to, że całkowita liczba połówek sinusoidy musi zmieścić się na odcinku (0,L):

Łatwo sprawdzić, podstawiając nasze rozwiązanie do równania falowego, że dopuszczalne częstości drgań są równe

\nu=\dfrac{nc}{2L}.

Mamy tu uzasadnienie zależności odkrytej przez Vincenza Galilei. Częstości dozwolone są wielokrotnościami częstości podstawowej. W instrumentach muzycznych wzbudzane są nie tylko drgania o wartości n=1, ale także jej wielokrotności, tzw. składowe harmoniczne. Matematycznie oznacza to, że dźwięk opisać trzeba jako sumę drgań o wielu częstościach. Częstość podstawowa decyduje o wysokości dźwięku. Obecność wyższych składowych harmonicznych słyszymy jako barwę dźwięku: w ten sposób odróżniamy tę samą nutę zagraną np. na skrzypcach i fortepianie.

Piękną cechą matematyki (a przez to i fizyki) jest możliwość zmiany problemu na inny równoważny. Zamiast struny możemy wziąć działanie postaci jak wyżej i zawsze otrzymamy z niego równanie falowe. Okazuje się, że np. drgania pola elektromagnetycznego miedzy dwiema płaszczyznami odległymi o L będą także miały tę postać. Oczywiście stała c będzie wówczas prędkością światła. Teraz nie ma już struny, drga pole elektromagnetyczne, czyli byt zupełnie pitagorejski: coś, czego nie można dotknąć, ale mimo to jest bardzo realne. Można się spodziewać, że działanie dla pola elektromagnetycznego powinno przypominać nasze wyrażenie dla struny. To, co tu opisaliśmy to jednowymiarowa (przestrzennie) teoria pola tzw. skalarnego (opisywanego jedną liczbą). Pole elektromagnetyczne jest nieco bogatsze, ponieważ możliwe są różne polaryzacje fal.

Nasza jednowymiarowa teoria pola traktuje w równoprawny sposób zmienne czasowe i przestrzenne. Jeśli c jest prędkością światła, teoria jest relatywistyczna, tzn. zgodna ze szczególną teorią względności, w której czas i przestrzeń są nierozerwalnie związane ze sobą, choć nietożsame. Był to w istocie problem rozwiązany przez Einsteina: teoria elektromagnetyzmu, która prowadzi do równania falowego, jest nie do pogodzenia z mechaniką Newtona. W elektromagnetyzmie zawsze otrzymujemy fale biegnące z prędkością c w próżni. W mechanice Newtona ich mierzona prędkość powinna zależeć od ruchu obserwatora. Można np. dogonić falę akustyczną, nie ma jednak sposobu, aby dogonić falę elektromagnetyczną – zawsze będzie ona od nas uciekała z prędkością światła. Taki prosty eksperyment myślowy przyciągnął uwagę Einsteina, kiedy uczył się on w Aarau do matury po oblanych (ale nie z fizyki) egzaminach na Politechnikę w Zurychu.

 

Pitagoras i Vincenzo Galilei: początek i koniec tradycji pitagorejskiej (VI w. p.n.e., 1588)

Pitagoras pierwszy nazwał się filozofem, lecz stał się założycielem sekty na poły religijnej, która przekazywała sobie wierzenia, obyczaje, obrządki i nie dopuszczała nikogo bez długiego procesu formowania charakteru i umysłu. Pitagorejczycy wierzyli w wędrówkę dusz, obejmującą także dusze zwierzęce, więc nie składali ofiar ze zwierząt i starali się nie jeść mięsa, zazwyczaj zadowalali się warzywami, kaszą i przyprawami. Mieli też osobliwą na tle ówczesnej Grecji koncepcję piękna:

Piękny jest więc widok całego nieba i poruszających się po nim gwiazd, jeśli ktoś potrafi dostrzec ich porządek; a piękne jest to wszystko przez uczestniczenie w tym, co pierwsze i dostrzegalne umysłem. Pierwsza zaś jest dla Pitagorasa natura liczb i stosunków liczbowych, ogarniająca całość rzeczywistości, zgodnie z nimi bowiem wszechświat jest mądrze zbudowany i prawidłowo uporządkowany; mądrość zaś jest wiedzą o tym, co piękne i pierwsze, boskie i niezniszczalne, zawsze takie samo i podlegające takiemu samemu porządkowi (…) filozofia natomiast to umiłowanie takiej kontemplacji [Jamblich, O życiu pitagorejskim, przeł. J. Gajda-Krynicka].

Wszechświat postrzegali pitagorejczycy jako κόσμος – kosmos, czyli pięknie złożoną harmonijną całość. Pitagoras odkrył, że prostym proporcjom liczbowym, takim jak 2:1; 3:2 oraz 4:3 odpowiadają harmonijnie współbrzmiące interwały dźwięków: oktawa, kwinta i kwarta. Fakt ten stał się punktem wyjścia całej jego filozofii i kosmologii. Odgrywały w nich rolę muzyka i matematyka, ich związek był fundamentalny. Muzyka miała bowiem swe odbicie w strukturze wszechświata, nie była jedynie sztuką wydawania sugestywnych dźwięków. W ten sposób, po raz pierwszy, wszechświat stał się matematyczny.

Pitagorejczycy uzasadniali owe proporcje dźwięków w sposób numerologiczny. Ich zdaniem liczby 1, 2, 3, 4, były wieloznacznymi symbolami. Suma tych czterech liczb nazywana była tetraktys – arcyczwórką. Arytmetyka miała być także podstawą geometrii: przestrzeń wyobrażali sobie pitagorejczycy jako „skwantowaną”, złożoną z dyskretnych wielkości. Doprowadziło to do kryzysu: zgodnie bowiem z twierdzeniem Pitagorasa długość przekątnej kwadratu o boku równym 1 wynosi \sqrt{2}. Jeśli przyjąć, że można tę liczbę zapisać jako stosunek liczb całkowitych (jak powinno być w dyskretnej przestrzeni), dochodzi się do sprzeczności. Dziś mówimy, że \sqrt{2} jest liczbą niewymierną. Odkrycie tego faktu wstrząsnęło pitagorejczykami.

Wróćmy jednak do harmonii dźwięków. Mamy tu początek fizyki matematycznej – oto pewne stosunki w przyrodzie poddane są zasadom matematyki. Z czasem miało się okazać, że jest to prawda w odniesieniu do całej przyrody, choć uznanie tego faktu zajęło ludzkości ponad dwa tysiące lat. Dziś nie mamy wątpliwości co do nadzwyczajnej skuteczności matematyki w badaniu przyrody. Niektórzy uważają nawet, że w każdej nauce tyle jest prawdy, ile jest w niej matematyki.

W jakim sensie proporcje związane są z parami dźwięków?

Jamblich tak pisze o okolicznościach dokonania owego odkrycia przez Pitagorasa:

Rozmyślał kiedyś i zastanawiał się, czy da się wymyślić dla słuchu jakieś pomocnicze narzędzie, pewne i nieomylne, jakie ma wzrok w cyrklu, w miarce (…), dotyk zaś w wadze i w wynalazku miar; a przechadzając się w pobliżu warsztatu kowalskiego, jakimś boskim zrządzeniem losu usłyszał młoty kujące żelazo na kowadle i wydające dźwięki zgodne ze sobą, z wyjątkiem jednej kombinacji. Rozpoznał zaś w nich współbrzmienie oktawy, kwinty i kwarty. Dostrzegł natomiast, że dźwięk pośredni między oktawą a kwintą sam w sobie pozbawiony jest harmonii, lecz uzupełnia to, czego w innych jest w nadmiarze. Zadowolony zatem, ponieważ została mu zesłana pomoc od boga, poszedł do warsztatu i po wielu rozmaitych próbach odkrył, iż różnica dźwięków rodzi się z ciężaru młotów, nie z siły uderzających, nie z kształtu narzędzi ani też nie z przekształceń kutego żelaza; a zbadawszy dokładnie odpowiednie wagi i ciężary młotów, poszedł do domu i wbił między ściany, od kąta do kąta, jeden kołek, jeden by z wielości kołków albo też z różnej ich natury nie zrodziła się jakaś różnica; następnie przywiesił do kołka w równym od siebie oddaleniu cztery struny z jednakowej materii, jednakowej długości, grubości i jednakowo sporządzone, przywiązawszy do każdej z dołu ciężar i wyrównawszy całkowicie długość strun. Następnie uderzając jednocześnie w dwie struny na przemian, odnalazł wymienione wyżej współbrzmienia, inne w każdym ze związków. Odkrył bowiem, że ta, która obciążona była największym ciężarem wraz z tą, która miała ciężar najmniejszy, razem uderzone tworzą stosunek oktawy. Jedna bowiem miała dwanaście ciężarków, druga zaś sześć; w podwójnej proporcji ujawniła się oktawa, jak to wskazywały same ciężarki. [przeł. J. Gajda-Krynicka]

Jamblich był syryjskim pitagorejczykiem żyjącym w III/IV w. n.e., a więc niemal tysiąc lat po filozofie z Samos. Dlatego, jak to się zdarza zwolennikom bardziej entuzjastycznym niż rozumiejącym, poplątał to i owo w tej historii. Wiemy, że pragnął swymi opowieściami przewyższyć zdobywające sobie popularność historie o innym mistrzu, Jezusie Chrystusie.

Jamblich przedstawia nam etapy odkrycia: mamy więc problem (jak proporcje mogą być odwzorowane dźwiękami?), iluminację pod wpływem przypadkowego bodźca (młoty kowalskie), analizę i wyjaśnienie sensu owej iluminacji, a następnie przeprowadzenie eksperymentu, w którym początkowa sytuacja zostaje sprowadzona do najważniejszej istotnej zależności: chodzi nie młoty, lecz dźwięki; można je badać za pomocą jednakowych strun pod działaniem różnych sił naciągu.

Mamy właściwie przepis, jak należy odkrywać matematyczne prawa przyrody, oczywiście w stosownej chwili musimy otrzymać pomoc od boga, inaczej wkroczymy w jedną z tych niezliczonych ścieżek, które nigdy nie zawiodły do żadnego rozsądnego punktu. Bywa i tak, że ciąg dalszy odnajduje się po wielu latach – w tym sensie z oceną wartości pewnych prac naukowych należy poczekać.

Niestety, ciąg dalszy opowieści Jamblicha dowodzi, że nie zrozumiał on odkrycia mistrza. Nie chodzi bowiem o siły naciągu, lecz długości strun. To one muszą być w odpowiedniej proporcji. Np. kwintę otrzymamy, biorąc taką samą strunę z takim samym naciągiem, lecz o długości krótszej w proporcji 2:3. Przez wieki powtarzano błąd Jamblicha, nie zadając sobie trudu mierzenia czegokolwiek. Powszechnie sądzono, że owe proporcje zawarte są we wszystkich sposobach wydobywania dźwięków tak, jak to widzimy na ilustracji poniżej, pochodzącej z przełomu XV i XVI wieku.

W XVI wieku powiększono listę dźwięków współbrzmiących harmonijnie, uzasadniając to zresztą także na sposób pitagorejski. Gioseffo Zarlino, maestro di capella San Marco w Wenecji, proponował dołączenie 5 i 6 do starożytnego zestawu. Uzasadniał to rozmaitymi „nadzwyczajnymi” własnościami liczby sześć: jest liczbą doskonałą (równą sumie swych podzielników), sześć było dni Stworzenia itd.

Empiryczne podejście do tego zagadnienia zawdzięczamy sceptycyzmowi i jadowitemu charakterowi Vincenza Galilei, muzyka i teoretyka muzyki z Florencji. Był on uczniem Zarlina, lecz zaatakował go bezpardonowo w wydanym w roku 1589 traktacie. Uważał wszelką numerologię za nonsens i postanowił wykazać to doświadczalnie. Stosunki dźwięków nie są bowiem związane jednoznacznie ze stosunkami liczbowymi. Np. kwintę możemy uzyskać nie tylko skracając strunę w stosunku 3/2, ale także zwiększając siłę naciągu w proporcji (3/2)^2=9/4. Mamy więc następujące prawo: chcąc otrzymać dany wyższy dźwięk możemy albo skrócić strunę x razy, albo zwiększyć siłę naciągu x^2 razy. Było to pierwsze w ogóle nowożytne prawo fizyki matematycznej.
W ten sposób numerologia została pogrążona, gdyż widzimy, że równie dobrze można by wiązać kwintę z proporcją 9/4. Był to tylko jeden z wielu argumentów wysuwanych w traktacie przeciwko Zarlinowi. Vincenzo Galilei miał zdolnego syna o imieniu Galileo, któremu przekazał swój choleryczny temperament i namiętną pogardę dla umysłowej niższości. Niewykluczone, że eksperymenty nad tą kwestią prowadzili zresztą obaj razem, zapewne w roku 1588. W roku następnym Galileo uzyskał skromną posadę na uniwersytecie w Pizie. Napisał tam poemat na temat noszenia togi, w którym drwił z księży (wrogowie wszelkiej niewygody), uczonych kolegów (są jak flaszki wina: nieraz we wspaniale oplecionych butelkach zamiast bukietu czuje się wiatr albo perfumowaną wodę i nadają się tylko do tego, by do nich nasikać), a także twierdził, że chodzenie nago jest największym dobrem. Zajął się też poważnie mechaniką. Możliwe, że to ciężarki zawieszone na końcu struny w eksperymentach prowadzonych z ojcem, a nie kandelabr w katedrze, nasunęły mu myśl o wahadle.

Prawo odkryte przez Vincenza Galileo łatwo uzasadnić. Prędkość rozchodzenia się dźwięku v w strunie naciągniętej siłą T, która ma gęstość liniową (masa na jednostkę długości) \varrho równa się

v=\sqrt{\dfrac{T}{\varrho}}.

Jeśli końce struny są nieruchome, to długość powstającej fali \lambda jest dwa razy większa niż długość struny L: \lambda=2L. Zatem częstość drgań struny \nu jest równa

\nu=\dfrac{1}{2L}\sqrt{\dfrac{T}{\varrho}}.

Napięcie struny wchodzi więc w potędze 1/2, stąd wynik Vinzenza Galileo.

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.