Antonie van Leeuwenhoek: Delft, czyli wszechświat

W XVII wieku podróże po Europie stały się modne, choć mieszkając w kraju takim, jak Holandia, można było wiedzieć sporo o świecie, nawet nie ruszając się z domu. Antonie van Leeuwenhoek, kupiec bławatny i pasmanteryjny, terminował w Amsterdamie, podróżował do Anglii, większość jednak swego długiego, dziewięćdziesięcioletniego życia spędził w rodzinnym Delft. Nauką zajął się późno, bo grubo po trzydziestce, kiedy porzucił już handel i został urzędnikiem miejskim, służąc na wielu stanowiskach, m.in. geodety i kontrolera sprowadzanych win i innych trunków. Liczące przeszło dwadzieścia tysięcy mieszkańców Delft nigdy nie było tak dużym ośrodkiem, jak pobliska Haga (barki do stolicy odpływały co pół godziny), słynęło jednak ze swych niebieskich, ręcznie malowanych fajansów, miało też własną gildię malarzy. W Delft pracował przez całe życie, znany wówczas jedynie znawcom, Johannes Vermeer, rówieśnik Leeuwenhoeka. Wpis chrztu malarza datowany pięć dni wcześniej od chrztu uczonego znajduje się na tej samej stronie księgi parafialnej z roku 1632. Z pewnością znali się jako wybitni obywatele tego samego miasta, tak niezrównanie przedstawionego przez malarza.

view_of_delft

To o tym obrazie pisał Marcel Proust: „Odkąd w haskim muzeum zobaczyłem Widok Delft, wiem, że widziałem obraz najpiękniejszy na świecie”Niezrównany i subtelny kolorysta, cyzelował długo każdy szczegół swoich płócien. Namalował ich w rezultacie niewiele i mimo bogatego ożenku zmarł pogrążony w długach. Leeuwenhoeka wyznaczono na kuratora spadku po artyście. Nie przyjaźnili się zapewne i fakt ten dowodzi raczej tylko wysokiego mniemania władz miasta o uczciwości Leeuwenhoeka. Zadanie było delikatne i niewdzięczne, zostało jednak pomyślnie przeprowadzone do końca. Francuski szlachcic, Balthasar de Monconys, dziwił się bardzo, znajdując później u piekarza z Delft pewien obraz Vermeera, za który zapłacono sześćset liwrów, a za który podróżnik nie dałby więcej niż sześć pistoli. Mistrz piekarski z Delft znał się więc dużo lepiej na sztuce niż francuski szlachcic.

f1-large

Nie znamy upodobań Leeuwenhoeka, był człowiekiem niewykształconym, nie znał żadnego języka prócz własnego i sam przyznawał, że niechętnie pisze. Jeśli coś mogło zbliżyć tych dwóch ludzi, to upodobanie do wnikliwej obserwacji i mistyczna niemal adoracja światła. Tkaniny u Vermeera oddane są z niezwykłym pietyzmem, a być może właśnie od przyglądania się detalom tkanin za pomocą szkła powiększającego zaczęła się pasja Leeuwenhoeka. Musiał być człowiekiem niezwykle sumiennym i cierpliwym, gdyż wytrwale doskonalił kunszt szlifowania szkieł i zdołał zbudować mikroskopy lepsze niż ktokolwiek inny.

Używane przez niego mikroskopy miały tylko jedną kulistą soczewkę. Kula taka jest soczewką skupiającą i przy typowym współczynniku załamania szkła jej ognisko leży o pół promienia za powierzchnią (a więc w odległości \frac{3}{2}r od jej środka, patrz poniżej). Używając soczewki możemy przedmiot przybliżyć do oka znacznie bliżej niż wynosi odległość dobrego widzenia, równa zwykle D=25 \mbox{ cm}. Dzięki temu widzimy szczegóły pod większym kątem.

oko

Powiększenie kątowe równe jest

\dfrac{\beta}{\alpha}=\dfrac{h}{d}\dfrac{D}{h}=\dfrac{D}{d}.

Zastępujemy tu kąty (w radianach) ich tangensami, co stanowi dobre przybliżenie, gdy kąty są niewielkie. Odległość d w przypadku soczewki kulistej równa się \frac{3}{2}r. Należy więc używać jak najmniejszych kulek szklanych, powiększenia uzyskiwane przez Leeuwenhoeka sięgały kilkuset razy. Tak wygląda współczesna rekonstrukcja jego mikroskopu.

hl1

Strona Hansa Loncke

Holender prowadził dziennik obserwacji, jego fragmenty wysyłał do Towarzystwa Królewskiego do Londynu. Tłumaczone na angielski lub łacinę, ukazywały się przez wiele lat w „Philosophical Transactions”. Zrazu uczeni byli nieufni, z czasem jednak zaczęto Leewenhoeka i jego odkrycia traktować serio. Zaczęli go odwiedzać inni badacze, którzy mogli się naocznie przekonać, że Holender jest rzeczywiście wytrawnym obserwatorem i niczego nie zmyśla. Niektóre z jego odkryć zostały niezależnie powtórzone, ogólnie jednak był z tym kłopot: nikomu nie udawało się sporządzać tak małych kulek szklanych dobrej jakości optycznej. Angielski autorytet w dziedzinie optyki Robert Hooke, autor zdumiewających rysunków mikroskopowych, takich jak poniższa pchła, używał mikroskopu z dwóch soczewek i nie był przekonany do metody Leeuwenhoeka.

4879769

Odkrycia Holendra nie były aż tak spektakularne, gdyż dotyczyły żyjątek niezwykle drobnych, wręcz nieprawdopodobnie małych, o rozmiarach niewielu mikrometrów. Leeuwenhoek odkrył cały świat mikroflory bakteryjnej, obserwował przejawy życia w kroplach wody i w najróżniejszych płynach ustrojowych, jak krew i sperma. Tak wyglądały np. bakterie z jamy ustnej (specjaliści zidentyfikowali je później).

drawings-of-animalcules-form-leeuwenhoeks-letter-dr-jeremy-byrgess

Nasienie zwierząt i ludzi pełne było zadziwiających, żywo poruszających się stworów, przypominających kijanki. Leeuwenhoek odkrył w ten sposób plemniki. Badania tego rodzaju nieco go krępowały, tłumaczył, że spermę uzyskał bez grzechu jako skutek stosunku małżeńskiego. Sądził jednak, że odkrycie to jest w najwyższym stopniu godne uwagi.

lind006gesc01ill24

Ówcześni uczeni przypuszczali, że początkiem życia człowieka jest komórka jajowa (w istocie to, co brali za komórkę jajową było pęcherzykami jajnikowymi). Sądzono, że pramatka Ewa nosiła w sobie jajeczka wszystkich ludzi, którzy później przyszli na świat. Obserwacje Leeuwenhoeka wskazywały na coś zupełnie innego: to plemniki odgrywają decydującą rolę, podczas gdy komórka jajowa dostarcza jedynie pożywienia wzrastającemu organizmowi. Nicolas Hartsoeker, lekarz i rodak Leewuwenhoeka, przekonywał, że to plemnik zawiera całego człowieka w miniaturze (słówko homunculus pojawiło się dwa wieki później). Jak się zdaje, podobnego mniemania był także Leeuwenhoek.

human-sperm-17th-century-granger

Zapłodnienie zdaniem Hartsoekera nie polegało na tym, że najsilniejszy plemnik (powiedzmy Donald Trump) przebija się do środka komórki jajowej. Sądził on, że plemnik przyczepia się do jajeczka ogonkiem, przez który czerpie substancje odżywcze i który z czasem zamienia się w pępowinę łączącą zarodek z organizmem matki. Interpretując te poglądy w duchu tzw. obrońców życia: nie tylko zygota ludzka byłaby święta, ale należałoby jak osoby ludzkie traktować także wszystkie plemniki, które także byłyby święte. Oczywiście, wszystkie one powinny koniecznie mieć imiona, zanim umrą.

Leeuwenhoek był pionierem, jego badań nikt nie kontynuował. Częściowo sam sobie był winien, ponieważ nie ujawniał swojej metody wytwarzania soczewek i nikt inny tego nie potrafił. Nauka nie była przygotowana na cały ten zawrotny świat mikroorganizmów, kiedy nie można zrozumieć pewnych faktów, spycha się je po prostu na bok. Z czasem Leewenhoek spostrzegł, że młodzi ludzie nie są zainteresowani nauczeniem się jego sekretów i kontynuacją jego badań. Pisał: „Większość studentów idzie tam [na uniwersytet w Lejdzie], aby zarabiać pieniądze dzięki wiedzy albo zdobyć reputację w świecie uczonych. Lecz szlifowanie soczewek i odkrywanie rzeczy ukrytych przed wzrokiem nie ma z tym nic wspólnego”. Trzeba przyznać, że i dziś ten podział nie całkiem się zatarł: na tych, co odnoszą korzyści z nauki i tych, z których korzyść odnosi nauka.

kula
Kąt \beta, jak widać z rysunku, równy jest

\beta=\dfrac{h}{r+f}.

Ogniskową f znajdujemy, rozpatrując dwukrotne załamanie promienia bliskiego środka kuli (w ten sposób wszystkie kąty są małe, zostały na rysunku powiększone dla przejrzystości). Odchylenie na pierwszej powierzchni równe jest \delta-\varepsilon; oba kąty spełniają prawo załamania

\dfrac{\delta}{\varepsilon}=n,

gdzie n jest współczynnikiem załamania.

leeuwenhoek

Odchylenie na drugiej powierzchni jest takie samo. Należy uwzględnić fakt, że nasza soczewka jest gruba, tzn. promień zbliża się do osi z odległości x na odległość y. Ostatecznie, wartość ogniskowej równa jest

f=\dfrac{r}{2}\cdot \dfrac{2-n}{n-1}.

Przy n=1,5 otrzymamy f=\dfrac{1}{2}r.

Evangelista Torricelli: nieskończona trąba i barometr (1643-1644)

Nauka powstająca w XVII wieku była iście rewolucyjna: podważono jednocześnie niemal cały tradycyjny system myślowy, wiedzę zgromadzoną od tysiącleci. Świat materialny zmienił się niewiele od średniowiecza, choć nauczono się żeglować po oceanach i korzystać z broni palnej. Jednak technika była wciąż prymitywna, energia trudno dostępna, a większość ludzi walczyła jedynie o przetrwanie. Zanim przeobraziła się cywilizacja, należało najpierw przebudować zawartość głów. Postęp pojęciowy jest zawsze niezmiernie trudny, trzeba pokonać własne nawyki myślowe, wyciągnąć wnioski z nowych założeń, niewielu ludzi potrafi żyć wśród tymczasowych koncepcji i bez żalu porzucać je na rzecz innych, nowych, lepiej opisujących wymykającą się rzeczywistość. M.in. dlatego niewielu jest einsteinów na świecie, mimo że nie brak ludzi bardzo inteligentnych i utalentowanych.

Evangelista Torricelli określany jest często jako uczeń Galileusza. W istocie był bardziej uczniem Benedetta Castellego, wiernego przyjaciela i okazjonalnie współpracownika mistrza z Florencji. Ze starym, niewidomym już uczonym spędził ledwie kilka miesięcy: od października 1641 r. do stycznia roku następnego, gdy Galileusz zmarł. Torricelli był już wtedy po trzydziestce i był ukształtowanym uczonym w duchu archimedesowym, gdzieś między matematyką a inżynierią i eksperymentem. Odziedziczył po Galileuszu stanowisko matematyka przy księciu Toskanii. Galileusz był także nadwornym filozofem, czyli fizykiem i astronomem, ale w owej chwili, dziesięć lat po wyroku inkwizycji, lepiej było nie kłuć w oczy władz kościelnych. Sławnego uczonego pochowano w nieoznaczonym grobie i musiało minąć sto lat, nim pozwolono na postawienie tablicy nagrobnej. Torricelli w roku 1643 stał się sławny w całej uczonej Europie dzięki rozważaniom na temat pewnej nieskończonej bryły, która miała skończoną objętość. Przypominała ona wnętrze trąby.

tromba

Bryła Torricellego powstaje z obrotu hiperboli (równobocznej) wokół jednej z asymptot. Wycinamy z niej tylko część zaznaczoną na rysunku: mamy zwężającą się, nieskończenie długą trąbę. Torricelli wykazał, że pole powierzchni takiej trąby jest nieskończone, lecz objętość jest skończona. Oszacujemy tę objętość. Dzielimy naszą bryłę na cylindryczne cienkie powłoki: leżą one jedna wewnątrz drugiej jak składany tubus. Pole podstawy takiej powłoki (wydrążonego walca) równe jest 2\pi r dr, co jest iloczynem długości okręgu i grubości naszej powłoki dr. Objętość wydrążonego walca o takiej podstawie  i wysokości h(r) możemy łatwo oszacować z góry:

dV=2\pi r dr h(r) < 2 \pi r dr \dfrac{a^2}{r}=2 \pi a^2 dr.

Zatem suma objętości wszystkich wydrążonych walców jest mniejsza niż 2\pi a^2 R, gdzie R to największy promień przekroju poprzecznego trąby. Torricelli obliczył tę objętość, stosując metodę Cavalieriego, a także przeprowadzając dowód w duchu Archimedesa. Paradoksalny wynik wzbudził zainteresowanie i komentowali go najwięksi matematycy epoki: jeśli był prawdziwy, granice matematyki matematyki zostały poszerzone.

W roku następnym został Torricelli odkrywcą barometru. Tak się zwykle mówi, bardzo upraszczając całą sprawę. On sam nie uznawał siebie za wynalazcę takiego przyrządu ani nad nim jakoś szczególnie nie pracował. Dopiero później urządzenie takie zaczęto nazywać barometrem i traktować jako przyrząd służący do pomiaru ciśnienia atmosferycznego. Torricelli niczego nie mierzył w sposób ciągły, lecz uważał swoje doświadczenie za rodzaj filozoficznego (tj. naukowego) pokazu. Chodziło w nim o istnienie próżni. Natura abhorret vacuum – natura nie znosi próżni – mawiali filozofowie scholastyczni, czerpiąc to twierdzenie od Arystotelesa. Wiadomo było z praktycznych doświadczeń inżynierów, iż nie można wciągnąć wody w rurze wyżej niż na 18 łokci. Galileusz objaśniał to siłami spoistości wody: gdy wysokość jej słupa przekracza owe 18 łokci, słup rozrywa się pod własnym ciężarem, tak jak rozerwałaby się pod własnym ciężarem dostatecznie długa kolumna z marmuru zawieszona od góry. Torricelli sądził inaczej, uważał, że słup cieczy równoważony jest ciśnieniem zewnętrznym. A skoro chodzi o równowagę, to zamiast 18 łokci wody wystarczy 5/4 łokcia i jeden cal żywego srebra (rtęci) – gdyż jego ciężar właściwy jest kilkanaście razy większy. Wystarczy wziąć szklaną rurkę długości, powiedzmy, dwóch łokci, zatopioną z jednej strony i nalać do niej rtęci. Następnie zatykamy rurkę palcem i odwracamy zatopioną częścią do góry, po czym wkładamy rurkę do naczynia z rtęcią (nikt w XVII wieku nie rozumiał, jak się zdaje, jak szkodliwe może być takie nieostrożne manipulowanie rtęcią, Newton żartował sobie, że posiwiał wcześnie z powodu używania rtęci w doświadczeniach alchemicznych, naprawdę chyba się tym jednak nie przejmował).

torr

Uczony sądził, że nad rtęcią tworzy się próżnia. A więc łatwo jest ją wytworzyć i natura się jej nie lęka. O swoich doświadczeniach napisał do Michelangela Ricciego w czerwcu 1644 roku. Pokazywał je też ojcu Marinowi Mersenne’owi, który spełniał w owych czasach rolę serwera pocztowego dla środowiska uczonych, gdy ten odwiedził go we Florencji. Nie słychać, aby Torricelli zamienił swoją odwróconą rurkę na stały przyrząd, który można z dnia na dzień obserwować. Spodziewał się chyba, że zmiany ciśnienia atmosferycznego będą większe, niż są w rzeczywistości. W tym samym liście pisał, iż żyjemy na dnie oceanu powietrza – coś podobnego sugerował kilkanaście lat wcześniej Giovanni Battista Baliani w liście do Galileusza. Torricelli mógł o takim poglądzie słyszeć. Tak czy owak nie zajmował się sprawą dłużej, dopiero kilka lat później stała się ona europejską sensacją, gdy doświadczenia podobne zaczęto powtarzać w różnych krajach, a przede wszystkim we Francji, a zagadnieniem ciśnienia atmosferycznego i istnienia próżni zajął się m.in. Blaise Pascal. Dla jego analitycznego i skłonnego do paradoksów umysłu pogląd, który przeczył jednocześnie scholastykom i „nowoczesnemu” Kartezjuszowi, musiał wydawać się wielce interesujący. Torricelli zmarł młodo, w roku 1649, i nie dożył czasów, w których uznano go za „odkrywcę barometru”. Zapewne byłby zdziwiony, że ten maleńki fragment jego naukowego dorobku doczekał się takiej sławy, podczas gdy o reszcie mało kto dziś pamięta.

List Torricellego do Ricciego.

Jego angielski przekład

 

Pierre Fermat: zasada najmniejszego działania dla światła (1657-1662)

Greccy geometrzy zauważyli, że światło biegnie po najkrótszej drodze, i to zarówno wtedy, gdy porusza się prostoliniowo między dwoma punktami (np. A i C), jak i wówczas, gdy po drodze odbija się od zwierciadła, biegnąc po łamanej ABC. Najkrótszej drodze odpowiada prawo odbicia: kąt odbicia równy jest kątowi padania.

fermat-heron

Rozumowanie z rysunku znajdujemy u Herona z Aleksandrii w jego Katoptryce (czyli optyce zwierciadeł). Jeśli punkt A odbijemy symetrycznie w płaszczyźnie zwierciadła (prostopadłej do rysunku), otrzymujemy A’. Drogi A’B i AB są więc równe. Zamiast ABC możemy rozpatrywać A’BC. Dowolna łamana AXC ma taką samą długość, jak A’XC. Ponieważ każda łamana biegnąca od A’ do C jest dłuższa niż odcinek prostej, więc najkrótsza droga równa jest ABC i punkt B leży wówczas na odcinku A’C. Łatwo widać, że dla takiej drogi kąt odbicia równa się kątowi padania.

W roku 1657 Pierre Fermat, radca parlamentu (czyli sądu) w Tuluzie, otrzymał w prezencie książkę poświęconą światłu.

la_lumiere_cureau_de_la-chambre

Jej autorem był Marin Cureau de La Chambre, lekarz, do którego nastoletni Ludwik XIV, przyszły Król-Słońce miał ogromne zaufanie. Fermat, urzędnik królewski, czuł się w obowiązku zajrzeć do książki doradcy tak uczonego i ustosunkowanego na dworze (zręczność dyplomatyczną autora widać i w tym, że na karcie tytułowej jego własne nazwisko złożone jest znacznie mniejszą czcionką niż nazwisko potężnego kardynała Mazarin). Książka zawierała dowód Herona. Cureau de La Chambre zwracał też uwagę, że gdy światło się załamuje, przebywana przez nie droga już nie jest najkrótsza.

fermat0

Droga ABC jest oczywiście dłuższa niż ADC na rysunku. Fermat znał, jak wszyscy, prawo załamania (prawo Snella), opublikowane przez Kartezjusza w 1637 roku. Nie zgadzał się jednak z fizycznym wyprowadzeniem tego prawa, niezbyt wierzył chyba w te wszystkie niewidzialne cząstki rozmaitych kształtów i wielkości, które miały się ze sobą zderzać i na siebie napierać, tłumacząc absolutnie wszystko: od ruchu planet i optyki, po magnetyzm i ciężkość ciał. Jako matematyk szukał wyjaśnienia elegantszego i mniej uwikłanego w trudne do sprawdzenia przesłanki. Gdyby przyjąć, że w gęstszym ośrodku światło napotyka większy opór, to należałoby drogę w ośrodku liczyć np. podwójnie. A więc nadal można podejrzewać, że światło wybiera najłatwiejszą drogę. Należałoby jednak minimalizować nie sumę dróg, lecz pewną ich kombinację, np. AB+2BC. Gęstszemu ośrodkowi odpowiadałby większy współczynnik: wyglądało to rozsądnie, gdyż u Kartezjusza światło miało „większą siłę” w ośrodku gęstszym, co nie jest zbyt intuicyjne (ani zrozumiałe). Nie chcąc wdawać się w spory na temat natury światła, Fermat unikał mówienia o jego prędkości – bowiem zdaniem kartezjan oraz Cureau de La Chambre światło rozchodzi się momentalnie. Sporów z kartezjanami, uczniami mistrza, nie uniknął, podobnie jak dwadzieścia lat wcześniej z ojcem-założycielem tej sekty filozoficznej. Fermat znany był z wysuwania twierdzeń, których nie chciało mu się albo których nie potrafił dowieść, słynnym przykładem jest jego Wielkie Twierdzenie udowodnione pod koniec XX wieku. Także i tym razem niezbyt chętnie brał się do sprawdzenia, czy rzeczywiście światło podlega zasadzie najmniejszego działania. Miał własną metodę szukania ekstremum, dość toporną z dzisiejszego punktu widzenia, zastąpioną później przez obliczanie pochodnych. W wersji Fermata prowadziła ona do długich rachunków, ale w pierwszym dniu nowego roku 1662 zakomunikował Cureau de La Chambre, że obliczenia się udały i prowadzą do znanego prawa załamania. Niemal pięcioletnie opóźnienie między wysunięciem twierdzenia a zbadaniem jego konsekwencji tłumaczył Fermat dwiema przeszkodami: po pierwsze, nie był całkiem pewien, jak należy sformułować zasadę minimum i czy prawo Snella jest ściśle słuszne. Drugą przeszkodą była, typowa dla matematyków, niechęć do długich rachunków. W tym przypadku w grę wchodziły cztery odcinki, a więc cztery pierwiastki z sumy kwadratów współrzędnych. „Obawa, że po długich i trudnych rachunkach dojdę do jakiejś fantastycznej i nieregularnej proporcji oraz moja naturalna skłonność do lenistwa pozostawiły rzecz w tym stanie aż do ostatniego napomnienia, którego udzielił mi w pańskim imieniu pan przewodniczący de Miremont. (…) Nagroda za tę pracę okazała się zupełnie nadzwyczajna, niespodziewana i szczęśliwa. Kiedy bowiem przebrnąłem przez wszystkie równania, mnożenia, antytezy i inne operacje, jakich wymaga moja metoda (…) stwierdziłem, że moja zasada daje dokładnie tę samą proporcję załamania, jaką ustalił pan Descartes. Tak bardzo zaskoczył mnie ten niespodziewany wynik, że z trudem mogłem dojść do siebie. Wiele razy powtórzyłem różne operacje algebraiczne, otrzymując stale ten sam wynik, choć moje rozumowanie zakłada, iż przejście światła przez gęste ciała jest trudniejsze niż przez rzadkie, co uważam za prawdziwe oraz niewątpliwe, niemniej jednak pan Descartes zakłada coś przeciwnego”.

Fermat zakłada więc, że nie suma dróg s_1+s_2 musi być minimalna, lecz suma ich kombinacji liniowych s_1+ns_2, gdzie n jest współczynnikiem załamania drugiego ośrodka (względem pierwszego). Łatwo widać, że jeśli przyjmiemy za prędkość światła w drugim ośrodku wielkość v=c/n (gdzie c jest prędkością w ośrodku pierwszym), to można tę zasadę sformułować jako zasadę najkrótszego czasu:

t=\dfrac{s_1}{c}+\dfrac{s_2}{v}=\dfrac{s_1+n s_2}{c}.

Fermat dumny był z otrzymania eleganckiego wyniku, lecz kartezjanie uważali go za ciekawostkę matematyczną, a nie zasadę odnoszącą się do światła. Zasada Fermata nabrała sensu dopiero dla Christiaana Huygensa, który światło uznawał za rozchodzące się zaburzenie eteru, coś w rodzaju fali nieokresowej, jak np. fala uderzeniowa. Wiedział on już, że prędkość światła jest skończona. Huygens przedstawił też elegancki dowód, że zasada Fermata prowadzi do prawa załamania Snella. Jest on wyraźnie prostszy niż obliczenie Fermata – zwykle udaje się uprościć rozumowanie, kiedy już wiadomo, dokąd prowadzi.

fermat-a-la-huygens

Porównujemy rzeczywisty bieg promienia światła ABC z fikcyjnym AFC. Budujemy prostokąt AOHB, mamy w ten sposób pewność, że AB=OH. Na BC opuszczamy prostopadłą GF z punktu G. Z prawa załamania mamy

\dfrac{\mbox{HF}}{\mbox{BG}}=\dfrac{\sin\alpha}{\sin\beta}=n.

Zachodzą też nierówności

\mbox{AF}>\mbox{OH}+\mbox{HF}=\mbox{AB}+n\mbox{BG},

n\mbox{FC}>n\mbox{GC}.

Dodając te nierówności stronami, otrzymujemy:

\mbox{AF}+n\mbox{FC}>\mbox{AB}+n\mbox{BC}.

Zmieniając nieco nasz rysunek, możemy zrozumieć przyczynę prawa załamania dla fal. Linie AA’ oraz BH to czoła fali w pierwszym ośrodku, GF oraz CC’ to czoła fali w drugim ośrodku. W czasie potrzebnym na przejście odległości HF w pierwszym ośrodku, w drugim fala przejdzie odległość BG.

fermat-huygens2

Zatem stosunek obu odległości równy jest

\dfrac{\sin\alpha}{\sin\beta}=\dfrac{c}{v}=n.

Bezpośrednie wyjaśnienie zasady Fermata daje nam mechanika kwantowa albo falowa teoria światła: faza światła zależy od czasu. W sąsiedztwie ekstremum fazy zmieniają się bardzo powoli i rezultatem jest silna fala wypadkowa.

Warto może przytoczyć dzisiejszą wersję obliczeń Fermata. Jest ona banalna, co nie oznacza, że jesteśmy mądrzejsi od Fermata, ale że mamy lepsze techniki rachunkowe. Pojawiły się one już kilka lat później w rękopisach Isaaca Newtona, które niewielu widziało, a później w 1684 roku w pierwszej publikacji Leibniza na temat rachunku różniczkowego. Metoda Fermata przekształciła się w algorytmy, do których stosowania wcale nie potrzeba inteligencji, z powodzeniem robią to dziś programy w rodzaju WolframAlpha itp.

fermat

Wielkość, którą mamy zminimalizować, ma postać:

s(x)=\sqrt{(x-x_a)^2+y_a^2}+n\sqrt{((x-x_b)^2+y_b^2}.

Szukamy ekstremum tej funkcji, przyrównując jej pochodną do zera:

s'(x)=\dfrac{2(x-x_a)}{2\sqrt{(x-x_a)^2+y_a^2}}+n\dfrac{2(x-x_b)}{2\sqrt{((x-x_b)^2+y_b^2}}=0.

Łatwo spostrzec, patrząc na rysunek, że pierwszy składnik równy jest \sin\alpha, a drugi -n\sin\beta, skąd otrzymujemy prawo Snella.

Spirala logarytmiczna

Ponieważ pisałem o spiralach u van Gogha, więc może warto napisać trochę więcej o ich matematyce. Zdefiniujmy spiralę jako krzywą, która zawsze tworzy kąt \alpha z promieniem wodzącym z początku układu.

logarithmic_spiral

Najłatwiej równanie spirali zaleźć we współrzędnych biegunowych: położenie punktu określamy przez odległość od początku układu r oraz kąt \varphi, jaki tworzy promień wodzący z ustaloną półosią. Kąty liczymy przeciwnie do wskazówek zegara. Wielkim odkryciem XVII wieku w matematyce było zauważenie, że krzywe gładkie można traktować jak złożone z bardzo krótkich odcinków linii prostych, najlepiej nieskończenie małych odcinków (ale zawsze można sobie wyobrażać coraz mniejsze odcinki skończone). Narysujmy sobie taki nieskończenie mały odcinek spirali. Oczywiście, musimy narysować odcinek skończony (niebieski na rysunku), nieskończenie małe wielkości nie nadają się do rysowania.

logarithmic-spiral

Stałość kąta \alpha oznacza, że stały, tj. niezależny od punktu jest także jego cotangens:

\mbox{ctg}\alpha=k=\dfrac{dr}{rd\varphi}\Rightarrow \dfrac{dr}{r}=k d\varphi.

Oznaczyliśmy cotangens kąta \alpha literą k, żeby mniej pisać. Wielkość ta nie zależy od punktu spirali. Znaczy to, że gdy obracamy wektor wodzący o d\varphi, to jego nowa długość równa się

r+dr=r(1+kd\varphi).

Po dwóch obrotach o d\varphi dostaniemy r(1+kd\varphi)^2. Gdyby kąt był czasem, a k stopą procentową, to mielibyśmy procent składany: po każdym okresie d\varphi nasz kapitał rośnie o stały czynnik (1+kd\varphi). Sens geometryczny tej spirali jest więc łatwy do uchwycenia: każdy obrót o ustalony kąt oznacza wzrost promienia o ustalony procent, czyli o ustalony czynnik. Wzrost jest więc wykładniczy. Zaczynając od promienia r_0 przy kącie \varphi=0, mamy po n obrotach

r=r_0(1+kd\varphi)^n.

Skończony kąt \varphi możemy uzyskać jako złożenie bardzo wielu obrotów o mały kąt d\varphi. Będzie wówczas spełniony warunek \varphi=nd\varphi. Promień r będzie równy

r=r_0\left(1+\dfrac{k\varphi}{n}\right)^n \Rightarrow r=r_0  e^{k\varphi},

gdzie e oznacza podstawę logarytmu naturalnego (*). Wykładnicza zależność r(\varphi) oznacza, że obracając się w kierunku ujemnym, nigdy nie otrzymamy zera, a więc nasza spirala nie tylko rozwija się nieskończenie, ale i zwija w pobliżu zera nieskończenie wiele razy. Wynika to po prostu z faktu, że \varphi może przyjmować dowolne wartości rzeczywiste, dodatnie, ujemne (albo zero), a r zawsze będzie dodatnie. Nie można narysować otoczenia początku układu, bo tam spirala zwija się nieskończenie wiele razy.

logarithmicspiral

Łatwo jest też obliczyć długość spirali od punktu początkowego do danego kąta \varphi. Patrząc jeszcze raz na nasz nieskończenie mały odcinek spirali, widzimy, że całkowita jej długość jest proporcjonalna do r, a więc skończona:

ds=\dfrac{dr}{\cos\alpha}\Rightarrow s=\dfrac{r}{\cos\alpha}.

(*) Możemy sobie wyobrażać, że liczba n staje się coraz większa, ale tak aby nd\varphi=\varphi . Korzystamy z z granicy przy n\rightarrow\infty:

\lim_{n\rightarrow\infty}\left(1+\dfrac{x}{n}\right)^n=e^x.

Jak Ptolemeusz nie odkrył prawa Snella

Klaudiusz Ptolemeusz był astronomem i astrologiem, wierzył zapewne w boskość ciał niebieskich i studiowanie ich ruchów traktował jako udział w pewnym misterium. Bo też zrozumienie każdej, nawet drobnej tajemnicy świata ma w sobie coś z misterium i z obrzędu wtajemniczenia. Nie trzeba do tego mieszać ludzi w szatach rytualnych, profesjonalistów, którzy zazwyczaj niczego nie rozumieją. Nie potrzeba pleść o Bogu, o którym wszyscy wiemy bardzo niewiele.

Wyjaśnienie ruchu planet musiało Ptolemeuszowi przynieść wielką satysfakcję: dokończył dzieła wielu pokoleń. My dzisiaj patrzymy na jego teorię jak na wstęp do Kopernika i Keplera, lecz przez czternaście wieków uważano ją za niedościgniony wzór. Geocentryzm nikomu właściwie nie przeszkadzał, był oczywisty, tak jak my uważamy za oczywistość, że Ziemia się porusza, choć nie każdy potrafiłby wskazać doświadczalne dowody tego faktu. Ptolemeusz zresztą doskonale sobie zdawał sprawę z możliwości ruchu Ziemi, odrzucał ją przedstawiając pewne argumenty, a więc nie z braku wyobraźni.

Był zawodowym uczonym, zajmował się całością nauk matematycznych, a więc także geografią i skalami muzycznymi oraz optyką. Pierwszy opisał ilościowo i doświadczalnie zbadał zjawisko załamania światła. Używał do tego następującego przyrządu.

ptolemy_refraction

Światło biegnie po łamanej ZEH, DEB jest linią rozdziału dwóch ośrodków, np. na dole mamy wodę albo szkło (w kształcie połowy walca), a u góry powietrze. Koło zaopatrzone jest w podziałkę w stopniach. Uczony mierzył kąty padania i oraz załamania r. Oto jego wyniki dla granicy powietrze-woda.

 

i r
10 8
20 15,5
30 22,5
40 29
50 35
60 40,5
70 45,5
80 50

Jest to rzadki przypadek starożytnej pracy eksperymentalnej poza astronomią. Optyka była przedłużeniem astronomii, więc dość naturalne było zainteresowanie zjawiskami świetlnymi. Tabelka Ptolemeusza nie jest jednak do końca wynikiem doświadczalnym, zauważymy to, analizując dokładniej wartości kątów załamania i ich różnice.

i r pierwsze różnice drugie różnice
10 8 8
20 15,5 7,5 -0,5
30 22,5 7 -0,5
40 29 6,5 -0,5
50 35 6 -0,5
60 40,5 5,5 -0,5
70 45,5 5 -0,5
80 50 4,5 -0,5

Uczony najwyraźniej „poprawiał” surowe dane eksperymentalne, być może nawet nie wykonał wszystkich pomiarów, zachował się jak niesumienny student podczas zajęć laboratoryjnych: i tak przecież wiadomo, co ma wyjść. Nie należy z tego powodu wszczynać larum, że przyłapaliśmy Ptolemeusza na oszustwie: w jego czasach i jeszcze bardzo długo potem starano się raczej uzyskać pewną formułę, jakiś rodzaj matematycznego zrozumienia zamiast relacjonować listę wyników obarczonych błędami. Teoria i eksperyment spotykały się w nieco innym miejscu niż dziś. Ptolemeusz zapewne chciał po inżyniersku rozumieć, skąd się biorą liczby w jego tabelce. Funkcja liniowa tu nie pasuje, bo wówczas różnice byłyby stałe. Jeśli drugie różnice (czyli różnice kolejnych różnic) są stałe, to znaczy, że opisujemy obserwowaną zależność funkcją kwadratową (*). Jej wykresem będzie parabola.

woda

Czerwone kropki są prawidłowymi wynikami dla kątów załamania w wodzie. Błędy nie są wielkie, choć znacznie przewyższają niedokładności tolerowane wówczas w astronomii. Podobne dane przedstawia Ptolemeusz dla szkła, także i one są dopasowane do paraboli.

szklo

W istocie Ptolemeusz stracił okazję do odkrycia prawa bardziej zadowalającego pod względem matematycznym. Podał on bowiem także wyniki dla załamania z wody do szkła. Także i tym razem dopasował je do funkcji kwadratowej, choć z pewnymi anomaliami. Nie zauważył jednak, że skoro ma dane dla granic ośrodków powietrze-woda oraz szkło-woda, to kąty dla załamania z wody do szkła powinny już wynikać z poprzednich danych. Wystarczy bowiem wyobrazić sobie następującą sekwencję ośrodków: woda-powietrze-szkło. Dla obu granic znamy zależności miedzy kątami po obu stronach (Ptolemeusz wiedział, że kierunek biegu promieni nie ma znaczenia w załamaniu, wyobrażał sobie zresztą nie promienie świetlne, lecz promienie wzrokowe, które wybiegają z oka). Możemy sobie następnie wyobrazić, że warstwa powietrza staje się coraz cieńsza: kąty w wodzie i w szkle cały czas są takie same, logicznie jest więc przypuścić, że pierwsze dwie zależności dają nam tę trzecią (woda-szkło). Ptolemeusz nie poszedł tą drogą i chyba nie zauważył, że przybliżenie kwadratowe jest nie do utrzymania dla trzeciej pary ośrodków. W gruncie rzeczy prawo Snella, choć takie proste, wymaga spojrzenia na zjawisko załamania w odpowiedni sposób, mieści w sobie od razu pewną teorię. Nie miejmy za złe Ptolemeuszowi w II w.n.e., że nie poradził sobie z problemem, który jeszcze na początku wieku XVII okazał się za trudny dla samego Johannesa Keplera. Ostatecznie prawo załamania odkrył Ibn Sahl, żyjący w X wieku, kiedy nasi przodkowie kryli się po lasach, a w XVII wieku niezależnie od siebie Thomas Harriot, Willebrord Snell i René Descartes. Tylko ten trzeci opublikował to prawo, a także jego mechaniczne uzasadnienie, zresztą fałszywe.

(*) Łatwo zauważyć, że różnice dla funkcji kwadratowej są liniową funkcją argumentu. W przypadku biegu promieni z powietrza do wody Ptolemeusz stosuje (niejawnie) funkcję

r=\dfrac{33}{40}i-\dfrac{1}{400}i^2.

Funkcja odwrotna nie jest już kwadratowa (musimy rozwiązać ostatnią równość względem i). Zatem złożenie tej funkcji odwrotnej z funkcją kwadratową nie może nam dać funkcji kwadratowej dla trzeciej pary ośrodków.

Dane Ptolemeusza

 

Sny Kartezjusza (10/11 listopada 1619)

Ludzie, a także i całe społeczeństwa robią sobie czasem wakacje od rozumu i popełniają błędy, mimo iż wiedzą, że postępują źle i nierozsądnie. Przedkładają jednak chwilowe upojenie bliskością innych, podobnie czujących, nad ustawiczny wysiłek chłodnego namysłu. Nie pomagają wówczas żadne argumenty ani statystyki. Na ekspertów patrzy się jak na błaznów bądź płatnych zdrajców. Ludzi mądrych uważa się za głupców albo sklerotyków. Największe głupstwa, a nawet szaleństwa prowadzące do zbrodni, zaczynały się wśród powszechnego entuzjazmu. Pod koniec czerwca 1914 roku serbski nacjonalista zastrzelił arcyksięcia Franciszka Ferdynanda i jego żonę Zofię. Uchroniło to być może Puszczę Białowieską przed wytrzebieniem zwierzyny (arcyksiążę był fanatykiem myślistwa), lecz incydent ten uruchomił międzynarodowe domino: wszyscy wszystkim zaczęli stawiać jakieś ultymatywne żądania i wypowiadać wojnę. Latem 1914 roku w całej Europie żegnano na dworcach kolejowych radosnych młodzieńców udających się na krótką – tak się wszystkim zdawało – męską przygodę wojenną. Jesienią roku 1918 wracało ich o siedemnaście milionów mniej i nikt się już nie cieszył: ani zwycięzcy, ani pokonani. W roku 1933 entuzjazm milionów Niemców zagłuszył wszelkie wątpliwości i skrupuły, jakie powinien wzbudzić sposób rządzenia nazistów, jak i sama osoba ich paranoicznego Führera. Cierpieli zresztą „jedynie” Żydzi, komuniści, homoseksualiści i liberałowie – nie było się więc czym przejmować. Dumny naród niemiecki mógł wreszcie wziąć odwet na pogardzanej Europie. Nastrój udzielał się zresztą wszystkim, nawet w biednej, słabej i pełnej analfabetów Polsce wykrzykiwano, że nie oddamy ani guzika – i też bijano Żydów, bo byli bezbronni.
Być może znowu wchodzimy w okres „historii spuszczonej z łańcucha” i tańca na wulkanie. Ostatecznie okresy spokoju i choćby względnego dostatku nigdy nie były dniem powszednim historii, częstsze były plagi, wojny, choroby, zamieszki i głód. Niektórzy próbowali wśród powszechnego zamętu robić coś pożytecznego. Na przełomie roku 1916 i 1917 przebywający na froncie wschodnim astronom Karl Schwarzschild napisał dwie niezmiernie ważne prace na temat Einsteinowskiej teorii grawitacji. Rozwiązanie Schwarzschilda dotyczyło pola grawitacyjnego sferycznej masy, np. gwiazdy. Ani Einstein, ani Schwarzschild, który kilka miesięcy później umarł, nie rozumieli wówczas, jak wielkie znaczenie ma owo rozwiązanie – opisuje ono bowiem czarną dziurę, jeden z najosobliwszych obiektów w przyrodzie. Młody lekarz Tadeusz Żeleński, zajmował się w roku 1917 przekładaniem Kartezjusza na polski, starając się zaszczepić rodakom coś z francuskiej klarowności myślenia i prostej elegancji stylu.

Nie zapomnę tego wrażenia… Było to rok temu, w lecie, z początkiem czwartego roku wojny. Siedziałem w mojej izdebce dyżurnego lekarza wojskowej stacji opatrunkowej, i korzystając z chwilowej bezczynności, pracowałem nad pierwszymi rozdziałami tej książki. Tuż prawie pod oknami ochoczo rżnęła orkiestra, odprowadzając kilka marszkompanii, jadących, w ślicznych nowych butach, na „włoski front”. Na fali trywialnej melodii, myśl Descartes’a pędziła wartko, skocznie, radośnie, tak iż ledwo piórem mogłem jej nadążyć. Doznawałem szczególnego uczucia. Nigdy nie mam zbyt mocnego przeświadczenia o rzeczywistości zewnętrznego świata – w tej chwili miałem go mniej niż kiedykolwiek…

Rozprawa o metodzie ukazała się wraz z końcem wojny, pod opaską: „Tylko dla dorosłych”. Był to żarcik tłumacza, który chciał w ten sposób dotrzeć do niefilozoficznych czytelników. Rozmyślania swe Kartezjusz rozpoczął w roku 1619, podczas zupełnie innej wojny. Także i tamta wojna rozpoczęła się od zdarzenia dość małej wagi: oto z zamku na Hradczanach w Pradze rozeźleni protestanci wyrzucili przez okno dwóch przedstawicieli cesarza, którzy nie chcieli się zgodzić na budowanie kościołów, mimo że formalnie zagwarantowana była swoboda wyznania. Nieszczęśni wysłannicy przeżyli upadek z wysokości kilkunastu metrów – wedle katolików stało się to dzięki aniołom, które działając w czasie rzeczywistym, złagodziły skutki grawitacji, natomiast nieokrzesani protestanci przypisywali ten efekt kupie gnijących odpadków, nagromadzonych pod oknami wielkiej sali jadalnej zamku. Wojna nie zakończyła się żadnym miękkim lądowaniem, toczyła się przez trzydzieści lat, pustosząc znaczną część środkowej Europy. W zasadzie było to starcie dwóch głównych odmian chrześcijaństwa walczących o to, która z nich bliższa jest nauce Jezusa Chrystusa: czy katolicy przechowujący tradycję, w której niezmienność święcie wierzyli, czy protestanci, starający się samodzielnie zgłębiać tekst Pisma św. i odrzucający takie magiczne atrybuty religii, jak święte obrazy, relikwie, czy kult świętych. Kiedy obie strony wierzą niezachwianie we własne racje, tylko wyczerpanie zasobów może położyć kres konfliktowi.
O początkach swoich rozmyślań pisał Kartezjusz następująco:

Byłem wówczas w Niemczech, dokąd powołały mnie wojny, które ciągną się tam jeszcze. Kiedy wracałem z koronacji cesarza [Ferdynanda II we Frankfurcie we wrześniu 1619 r.] do armii, początek zimy zatrzymał mnie na kwaterze, gdzie, nie znajdując żadnego towarzystwa, które by mi odpowiadało, i nie mając zresztą, na szczęście, trosk ani namiętności, które by mnie mąciły, siedziałem przez cały dzień zamknięty sam w ciepłej izbie, za jedyną rozrywkę zabawiając się z własnymi myślami. Jedną z pierwszych myśli było spostrzeżenie, że często dzieła złożone z rozmaitych części i wykonane ręką rozmaitych mistrzów mniej są doskonałe niż te, nad którymi pracował tylko jeden człowiek. Tak widzimy, że budowle, które jeden architekt podjął i wykonał, są zazwyczaj piękniejsze i lepiej rozmieszczone niż te, które wielu ludzi starało się skleić, posługując się starymi murami zbudowanymi w innych celach. (przeł. T. Żeleński-Boy)

Kartezjuszowi marzyła się więc nauka będąca dziełem jednego autora, jak poemat albo dzieło historyczne. Po części wynikało to chyba z jego temperamentu, trochę może ze swoistej wielkopańskiej wyniosłości w sferze intelektu – nie dopuszczał bowiem myśli, by ktokolwiek inny mógł dokonać czegoś ważnego w obszarze, który jego samego zajmował. Dlatego np. lekceważył dokonania Galileusza na polu mechaniki ani nie uważał za stosowne wspomnieć o tym, co zawdzięczał Willebrordowi Snellowi (prawo załamania światła) albo Isaakowi Beeckmanowi. Francis Bacon wyobrażał sobie naukę jako wielkie biuro patentowe użytecznych wynalazków, Kartezjusz sądził, że liczą się wybitne jednostki i ich myśli, a więc raczej konstrukcja niż detale. Znalazł naśladowców, pycha filozofów tworzących systemy osłabnąć miała dopiero w XX wieku. Podział na naukę i humanistykę przebiega zresztą do dziś w tym samym miejscu: jeśli ważniejszy jest indywidualny styl autora niż to, co mówi, i jeśli może on wybierać z tradycji dowolne elementy, które samodzielnie interpretuje, to mamy do czynienia z humanistyką. W nauce rządzą znacznie surowsze reguły: musimy znać ściśle określony kanon uznanej wiedzy (zazwyczaj z drugiej ręki), liczą się natomiast bezosobowe dokonania, dowód matematyczny czy eksperyment geniusza powtórzyć może każdy wykształcony specjalista i stanowi to wręcz warunek, aby praca była akceptowalna. Zapewne dlatego w nauce tak zażarcie toczą się spory o priorytet: inne cechy indywidualne roztapiają się w podręcznikach i z czasem coraz trudniej odróżnić wkład konkretnych uczonych. Kartezjusz miał nadzieję połączyć oba rodzaje działalności i stworzyć gmach wiedzy, którego żaden sceptycyzm nie mógłby zburzyć. Prawda jest tylko jedna, zatem i jej odkrywca w zasadzie musi być jeden, inni skazani są na pisanie gloss i uzupełnień.
W listopadzie 1619 roku dwudziestotrzyletni uczony kwaterował w Neuburgu. Był żołnierzem zaciężnym księcia Bawarii, nie bardzo mu zależało na wygranej jednej albo drugiej strony, przedtem służył w Holandii. Czekano na cieplejszą porę roku, by na nowo podjąć działania zbrojne.
Na kwaterze unikał rozmów i pijatyk, którym oddawali się jego kompani, mało wychodził, całymi dniami rozmyślał nad nową podstawą wiedzy. Nie stworzył jej od razu, zapamiętał jednak i zapisał trzy sny, jakie miał w nocy z 10 na 11 listopada 1619 roku. Zarys racjonalnej filozofii objawił się więc w sposób zgoła nieracjonalny, uczony wierzył, że sny mogą być zsyłane przez Boga albo demony, to Stwórca w ostatecznym rachunku miał gwarantować, że wszystko to, co tu widzimy i przeżywamy nie jest tylko jakimś uporczywym sennym majakiem.
W pierwszym śnie pojawiły się jakieś zjawy tak straszne, że zmuszony był kroczyć mocno przechylony na lewą stronę, gdyż z prawej strony czuł niezmierną słabość. Zawstydzony sytuacją, młodzieniec spróbował się wyprostować, wtedy jednak zawiał potężny wiatr w formie wiru i okręcił go kilkakroć na lewej nodze. Na swej drodze spostrzegł kolegium (może La Flèche, gdzie się uczył?) i zapragnął się w nim schronić. Miał zamiar dotrzeć do kościoła, aby się pomodlić. Minął znajomą osobę, lecz jej nie pozdrowił; kiedy chciał naprawić ten lapsus, nie mógł się cofnąć, ponieważ znowu zaczął wiać silny wiatr w kierunku kościoła. Spotkał też innego znajomego, który przekazał mu dla pana N. zamorski owoc, przypominający melona. Wszyscy inni widziani we śnie poruszali się i zachowywali normalnie, jedynie on jeden doświadczał trudności w utrzymaniu równowagi. Niebawem się ocknął i spostrzegł, że leży na lewym boku. Sądząc, że sen może być dziełem złego demona, uczony obrócił się na prawy bok i jął się modlić, pamiętając, iż w oczach Boga winny jest wielu grzechów, które popełniał w skrytości, tak aby ludzie ich nie widzieli. Po mniej więcej dwóch godzinach rozmyślań nad dobrem i złem zasnął znowu. We śnie usłyszał wielki huk, który wziął za grzmot pioruna. Natychmiast obudził się ze strachu i dostrzegł mrowie drobnych iskierek ognia wypełniających pokój. Zdarzało mu się już wcześniej doświadczać takiego zjawiska, teraz jednak zdecydowany był zaobserwować jego przyczyny i zamykając oraz otwierając oczy, śledził swoje wrażenia. Filozoficzny namysł rozproszył lęk i uczony zasnął po raz trzeci. Tym razem nie było się czego bać. Znalazł na stole książkę, o której nie pamiętał, by ją wcześniej tam położył. Otworzył ją, stwierdzając zaś, że to słownik, ucieszył się, ponieważ książka mogła się przydać. W tej samej chwili odkrył też obok inną książkę, także dla niego nową, nie mając pojęcia, skąd się wzięła. Była to antologia Corpus poetarum, otwarła mu się na wierszu zawierającym słowa: Quod vitae sectabor iter? (Jaką drogę życia wybiorę?). W tej samej chwili spostrzegł nieznanego mu męża, który wręczył mu, zachwalając jako znakomity, wiersz zaczynający się od słów Est et Non (Tak i nie). Zaczęli rozmawiać o tym wierszu, w którym Kartezjusz rozpoznał jedną z idylli Auzoniusza. Po chwili książki i dziwny interlokutor rozpłynęli się, a uczony, wciąż się nie budząc, uznał, że śni; ów słownik oznacza wszelką wiedzę zgromadzoną w jednym miejscu, antologia poezji, Corpus poetarum zaś – filozofię oraz mądrość złączone w jedno.

Wierzył bowiem, że wcale nie należy się dziwić, iż poeci, nawet bawiąc się płochymi rzeczami, wypowiadają wiele zdań poważniejszych, bardziej sensownych i lepiej wyrażonych niż to, co mówią filozofowie. Przypisywał to boskiemu natchnieniu oraz sile wyobraźni, która wydobywa zarodki mądrości (zawarte w umyśle każdego człowieka niczym iskry w krzemieniu) z większą łatwością i błyskotliwiej, niż czyni to rozum filozofów.

Rozmyślał też (ciągle we śnie) nad słowami Quod vitae sectabor iter? Po czym zbudził się, nie przestając się zastanawiać nad symboliką swoich snów. Sen trzeci, przechodzący w jawę, zapowiadać miał życie filozofa, który przezwycięży pokusy płynące z różnych stron. Nazajutrz filozof modlił się gorąco do Boga, by zechciał mu odsłonić swoją wolę, oświecić go i prowadzić w poszukiwaniu prawdy. Potem zwrócił się do Matki Bożej, polecając jej tę sprawę, najważniejszą w swym życiu, złożył też ślub, że przy okazji podróży do Italii, którą planował w najbliższym czasie, odbędzie pielgrzymkę do Loreto. Później zobowiązał się nawet, że od Wenecji odbędzie tę pielgrzymkę pieszo. Religijno-filozoficzny entuzjazm po kilku dniach opadł. Ostatecznie filozof nie wybrał się tej zimy do Italii.
Nie znaczy to bynajmniej, że kiedy później ochłonął, przestał wierzyć w natchnienie płynące z owych snów. Epizod ten odegrał, jak się zdaje, ważną rolę w duchowym rozwoju Kartezjusza, choć trudno treść owych snów powiązać z jakimiś uchwytnymi etapami jego poglądów. Najprawdopodobniej rzecz dotyczy pewnych głębszych skojarzeń, poetyckiej strony filozofii, dopiero później umiał ją wyrazić w terminach jasnych, jak sądził, dla każdego człowieka obdarzonego rozsądkiem.

Wziąwszy pod rozwagę, iż zasady tych nauk winny być wszystkie zaczerpnięte z filozofii, w której nie znajdowałem jeszcze pewnych podstaw, pomyślałem, iż trzeba mi przede wszystkim starać się ustalić takowe, i że – wobec tego, iż jest to rzecz najważniejsza w świecie i w której najbardziej należało się obawiać pośpiechu i uprzedzenia – nie powinienem podejmować dzieła tego wprzódy, aż osiągnę wiek o wiele dojrzalszy niż dwadzieścia trzy lat, które wówczas liczyłem, i aż zużyję wiele czasu na przygotowanie się do tych zadań, tak wykorzeniając z umysłu wszystkie błędne mniemania, jakie przyjąłem weń przed tym czasem, jak też gromadząc rozmaite doświadczenia, aby zbierać materię dla moich rozumowań i ćwicząc się ciągle w metodzie, jaką obrałem, aby umocnić się w niej coraz więcej. (przeł. T. Żeleński-Boy)

Jeśli wierzyć wspomnieniom filozofa, rozpoczął on wtedy swego rodzaju eksperyment poznawczy, traktując życie i jego przypadki jako spektakl odbywający się na jego oczach i dostarczający materiału do przyszłej pracy filozoficznej. Ustalił sobie na okres przejściowy pewne reguły postępowania, ponieważ nie można zanegować wszystkiego jednocześnie. Sceptyczny po to, aby się ze sceptycyzmu raz na zawsze wydobyć, traktował te lata wędrówki jak prolog.

Upewniwszy się w ten sposób co do tych zasad i odłożywszy je na stronę wraz z prawdami wiary, które zawsze były na pierwszym miejscu w moich wierzeniach, osądziłem, iż, co do reszty mniemań, mogę swobodnie przystąpić do ich uprzątnięcia. Otóż, spodziewałem się lepiej z tym uporać, obcując z ludźmi, niż pozostając dłużej zamknięty w komorze, gdzie począłem wszystkie te myśli: zima tedy jeszcze niezupełnie dobiegła końca, a ja już puściłem się w drogę. I przez całe następne dziewięć lat czyniłem nie co innego, jak tylko tłukłem się tu i tam po świecie, starając się być raczej widzem niż aktorem we wszystkich komediach, jakie się na nim odgrywa. Rozważając w każdym przedmiocie szczególnie to, co mogłoby go uczynić podejrzanym i dać nam sposobność do omyłki, wykorzeniałem równocześnie z mego umysłu wszystkie błędy, jakie mogły się weń wprzódy wśliznąć. Nie iżbym w tym naśladował sceptyków, którzy wątpią, aby wątpić, i lubują się zawsze w niezdecydowaniu; przeciwnie, cały mój zamiar dążył tylko ku temu, aby się upewnić. Odrzucałem ruchomą ziemię i piasek, aby natrafić na skałę lub glinę. Udawało mi się to, jak sądzę, dość dobrze, ile że, starając się odkryć fałszywość lub niepewność twierdzeń, jakie rozpatrywałem, nie za pomocą słabych przypuszczeń, ale za pomocą jasnych i pewnych rozumowań, nie spotykałem wśród nich tak wątpliwego, z którego bym nie wyciągnął jakiejś dość pewnej konkluzji, choćby tej właśnie, iż nie zawiera ono nic pewnego. I jako burząc stare domostwo, zachowuje się zazwyczaj gruz, aby się nim posłużyć ku zbudowaniu nowego, tak niwecząc wszystkie mniemania, które osądziłem jako źle ugruntowane, czyniłem rozmaite spostrzeżenia i nabywałem mnogich doświadczeń, które posłużyły mi później ku zbudowaniu pewniejszych. Co więcej, ćwiczyłem się wciąż w metodzie, jaką sobie przepisałem; poza tym bowiem, iż starałem się na ogół prowadzić wszystkie moje myśli wedle reguł, zachowywałem sobie, od czasu do czasu, kilka godzin, które obracałem osobliwie na ćwiczenie się w trudnościach matematycznych lub nawet także w niektórych innych, które mogłem niejako upodobnić do matematycznych, odłączając je od zasad wszystkich nauk, które mi się nie zdawały dość pewne, jako ujrzycie, iż uczyniłem w wielu wyłożonych w tymże tomie. I tak, nie żyjąc na pozór w inny sposób niż ci, którzy, nie mając innego zadania, jak tylko pędzić życie lube a niewinne, starają się oddzielić przyjemności od błędów, i którzy, aby się cieszyć swoim wczasem nie nudząc się, zażywają wszystkich godziwych rozrywek, nie zaniedbywałem statecznego posuwania się w moim zamiarze i zapuszczania się w poznanie prawdy, być może więcej, niż gdybym był tylko czytał książki lub obcował z uczonymi. (przeł. T. Żeleński-Boy)

Niewiele wiemy o tych fascynujących Wanderjahre filozofa. Rok po nocy snów uczestniczył w oblężeniu i zdobyciu Pragi. Nie jest jasne, jaki był jego osobisty udział w walkach, ważnych dla losów Czech, wtedy to bowiem, w bitwie na Białej Górze, czescy protestanci ponieśli sromotną klęskę, która przesądziła o rządach Habsburgów na kilka wieków. Przywódcy powstania przeciw cesarzowi zostali ścięci, a ich głowy zatknięte na moście przez wiele lat stanowiły przestrogę dla potencjalnych buntowników. Palatyn reński, Fryderyk V, „zimowy król” Czech, uciekł, zabierając jedynie trochę klejnotów. Parę lat wcześniej na uroczystościach jego zaślubin z Anną Stuart odegrano Burzę Williama Shakespeare’a. Pochłonięty mocarstwowymi rojeniami młodzik, nie zwrócił zapewne żadnej uwagi na słowa Prospera:

Aktorzy moi, jak ci powiedziałem,
Były to duchy; na moje rozkazy
Na wiatr się lekki wszystkie rozpłynęły.
Jak bezpodstawna widzeń tych budowa,
Jasne pałace i wieże w chmur wieńcu,
Święte kościoły, wielka ziemi kula,
Tak wszystko kiedyś na nic się rozpłynie,
Jednego pyłku na ślad nie zostawi,
Jak moich duchów powietrzne zjawisko.
Sen i my z jednych złożeni pierwiastków;
Żywot nasz krótki w sen jest owinięty. —

Zabdiel Boylston, czarna ospa w Bostonie i siła charakteru (1721-1722)

W XX wieku czarna ospa zabiła 300 mln. ludzi – trzy razy więcej niż zginęło w obu wojnach światowych. I w tym samym XX wieku udało się tę chorobę wyeliminować. Można, oczywiście, buntować się przeciwko nowoczesnej cywilizacji, ale żadna z tych 300 mln. osób nie zrozumiałaby, o co nam właściwie chodzi. Nie ma jednak szczepionki przeciwko głupocie i w naszych światłych czasach dzieci chorują albo będą chorować na rozmaite groźne przypadłości jedynie dlatego, że ich rodzice albo rodzice ich kolegów są podejrzliwymi idiotami, którzy sądzą, że wiedzą lepiej niż eksperci.

W XVIII wieku nie znano przyczyn ani mechanizmu szerzenia się ospy, jasne było tylko, że jest to choroba zakaźna. Ponieważ objawy występują dopiero po 12 dniach, więc izolacja chorych była na ogół spóźniona i zdążyli oni już zarazić osoby, z którymi się stykali. Wiadomo też było z obserwacji, że ci, którzy przeszli chorobę i przeżyli, byli na nią później odporni. Ryzyko było tak duże, że w Anglii w XVII wieku był zwyczaj, by nie zapisywać majątku dzieciom, zanim nie przeszły ospy, ponieważ ich przyszłość była wciąż bardzo niepewna. Spośród tych, co przeżyli, wielu było oślepionych albo oszpeconych na całe życie. Jedną z takich osób, których urodę zniszczyła ospa, była Mary Wortley Montagu, arystokratka, pisarka (sama nauczyła się łaciny w ojcowskiej bibliotece) i żona ambasadora brytyjskiego w Konstantynopolu. Dowiedziała się ona o praktyce wariolizacji stosowanej w imperium osmańskim: pobierano płyn z pęcherzyków na skórze chorego i zaszczepiano go osobom zdrowym. Pacjenci chorowali wówczas na ogół w sposób łagodny, nabywając przy tym odporności. Nie zawsze wariolizacja przynosiła pożądane efekty, zdarzały się przy jej stosowaniu wypadki śmiertelne. Montagu propagowała tę metodę w Londynie, przekonując m.in. księżnę Walii Karolinę do zaszczepienia dzieci. Metoda była kontrowersyjna. Wyglądała na jakiś rodzaj zabobonu, w dodatku przychodziła do Europy z krajów niecieszących się zaufaniem w sprawach medycznych i naukowych: stosowano ją na Kaukazie, w Afryce. W Konstantynopolu szczepieniami zajmowały się zwykle stare kobiety, co też nie wyglądało wiarygodnie w oczach Zachodu. Z punktu widzenia dzisiejszej wiedzy wariolizacja stanowiła postęp, lecz była obarczona ryzykiem. Dopiero pod koniec XVIII wieku Edward Jenner wynalazł skuteczną odmianę tej metody szczepienia: należy zaszczepiać ospę krowią, pacjenci wówczas nie chorują i nabierają odporności na ospę ludzką. Także i wtedy nie rozumiano, dlaczego szczepienie jest skuteczne i jak działa, opierano się wyłącznie na obserwacjach.

W kwietniu 1721 roku do Bostonu, stolicy Massachusetts, zawinął okręt „Seahorse”, płynący z Barbadosu. Jeden z członków załogi zachorował na ospę i został odizolowany w domu z czerwoną ostrzegawczą flagą. Później zachorowali także inni marynarze z tej jednostki i stało się jasne, że kwarantanna nie wystarczy, ponieważ choroba zdążyła się już rozprzestrzenić. Ówczesny Boston był małym miastem, liczącym sobie około jedenastu tysięcy mieszkańców. Rządy duchowe sprawowała w nim dynastia purytańskich ministrów: wiekowy Increase Mather i jego dobiegający sześćdziesiątki syn, Cotton Mather. Obaj zapisali się poprzednio w annałach ścigania czarownic i czarowników: to za ich aprobatą toczyła się sprawa w Salem w roku 1692. Wszechstronnie wykształcony w Ameryce i w Anglii, Cotton Mather, członek Towarzystwa Królewskiego, był zarazem ciasnym bigotem, głęboko wierzącym w realność i szkodliwość czarów. W swym dziele Pamiętne zrządzenia opatrzności opisywał przypadek irlandzkiej praczki, niejakiej Glover, która jako czarownica nękała pobożną rodzinę Goodwinów, którzy podczas owych diabelskich ataków głuchli, niemieli, ślepli albo wszystko to na raz. Mather przyczynił się do prześladowań w Salem, choć zarazem podkreślał potrzebę niezbitych dowodów w każdym przypadku. Teraz, wobec zagrożenia ospą, także starał się interweniować i tym razem jego wpływ okazał się jednoznacznie korzystny. Mather przekonany był bowiem do wariolizacji: czytał o niej wcześniej w „Transactions of the Royal Society”, miał też w domu niewolnika z Afryki, który mu opowiadał o tej metodzie. Minister skierował do lekarzy bostońskich pismo przedstawiające zalety wariolizacji. Medycy zareagowali wrogo, obawiając się, że wskutek wariolizacji epidemia jeszcze bardziej się rozszerzy. Wrogo też reagowali niektórzy duchowni. Ich zdaniem człowiek nie powinien ingerować w naznaczony przez Boga bieg wypadków. Znaleziono nawet pierwowzór wariolizacji w Księdze Hioba: „Odszedł szatan sprzed oblicza Pańskiego i obsypał Hioba trądem złośliwym, od palca stopy aż do wierzchu głowy. [Hiob] wziął więc skorupę, by się nią drapać siedząc na gnoju” (Hi 2, 7-8). A więc także Pismo św. wskazywało więc wyraźnie, że nie należy nikogo szczepić. Pismo św, jak zawsze, wskazuje we wszystkich kierunkach jednocześnie.

Jedynie chirurg Zabdiel Boylston gotów był spróbować wariolizacji. Nie miał on wykształcenia akademickiego, uczył się medycyny od swego ojca i innego jeszcze lekarza, w Ameryce nie było zresztą żadnej szkoły medycznej. Boylston dał się poznać jako sprawny chirurg, który nie obawiał się przeprowadzać ryzykownych operacji, jak usuwanie kamieni żółciowych czy pierwsza mastektomia w Ameryce. Operacje przeprowadzało się bez znieczulenia, należało wszystko robić błyskawicznie, żeby pacjent nie zmarł wskutek szoku i upływu krwi. Później groziły mu oczywiście wszelkie infekcje, Boylston był ponoć pedantycznie czysty i zapewne pomagało to jego pacjentom (nikt wówczas nie kojarzył chirurgii z czystością). Pierwsze szczepienia ospy przeprowadził na własnym synu oraz parze swych niewolników: ojcu i synu. Wszyscy trzej przeżyli. Boylston zaczął więc stosować tę metodę, choć przyjmowano to wrogo i lekarz obawiał się o swe bezpieczeństwo. W pewnym momencie rada miejska oficjalnie zakazała mu tych praktyk. Nie ujął się też za nim Mather, nie do końca chyba przekonany do wariolizacji (nie zaszczepił np. własnego syna). Ostatecznie Boylston przeprowadzał szczepienia na niezbyt dużą skalę, tylko u pacjentów, którzy sami się z tym do niego zwracali. Był także ostro krytykowany w miejscowej prasie. W tygodniowej gazecie wydawanej przez Jamesa Franklina (terminował u niego wtedy młodszy brat, Benjamin, który z czasem miał zostać najsławniejszym uczonym Ameryki) szczepienia atakowano jako szkodliwy przesąd. W pewnym stopniu postawa gazety wynikała z jej opozycyjności: James Franklin był przeciwny rządom Mathera i atmosferze moralnego terroru wprowadzanej przez purytanów, nietrudno więc było go przekonać, że duchowny także i tym razem broni jakichś przesądów. Ostatecznie w ciągu niecałego roku zachorowało w Bostonie około 6000 osób – ponad połowa ludności (około tysiąca bogatszych wyjechało na wieś i tam przeczekali epidemię). Zmarły w tym czasie na ospę 844 osoby, czyli 14% zainfekowanych. Za Boylstonem przemawiały liczby: spośród 286 osób, jakie zaszczepił, zmarło jedynie sześć. W dodatku nie zawsze było jasne, czy osoby te były zdrowe w momencie wariolizacji, być może choroba już się u nich rozwijała, lecz nie dawała jeszcze widocznych objawów. Tak czy inaczej było to tylko 2,4% – statystycznie biorąc, wariolizacja działała.

smallpox account-x

Doświadczenia swe Boylston opisał w książce, przyjęto go też do Towarzystwa Królewskiego. Wariolizację zaczęto, choć z oporami, uznawać. Nabrał do niej przekonania także Benjamin Franklin, choć obawiał się związanego z nią ryzyka. Pisze w swej autobiografii:

W roku 1736 straciłem jednego z mych synów, pięknego czteroletniego chłopca. Umarł na ospę, którą się w zwykły sposób zaraził. Długo i gorzko żałowałem potem i nadal żałuję, że nie kazałem go szczepić. Wspominam o tym ku przestrodze rodziców, którzy nie szczepią swych dzieci z obawy, że mogłyby wskutek tego umrzeć, czego nigdy nie mogliby sobie wybaczyć. Mój przykład świadczy, że żałować trzeba nieraz i w przeciwnym wypadku, a wobec tego lepiej wybierać drogę bezpieczniejszą. (przeł. J. Stawiński)