Josef Loschmidt i wielkość cząsteczek powietrza (1865)

Richard Feynman pisał, że gdyby cała obecna nauka miała ulec zniszczeniu w jakimś kataklizmie i można było ocalić tylko jedno zdanie, to powinno ono brzmieć: „Wszystko składa się z atomów – małych cząstek, poruszających się bezładnie, przyciągających się, gdy są od siebie nieco oddalone, odpychających się zaś, gdy je zbytnio ścieśnić”.

Pomysł istnienia takich cząstek, jak i ich nazwę: atomy, czyli „niepodzielne” (a to zaprzeczenie, tomos – cięty, tnący, dzielący się na części, stąd np. określenia anatomia i tomografia) zawdzięczamy starożytnym Grekom Leucypowi i Demokrytowi. Rzeczy zbudowane są z atomów jak słowa z liter. Pisma atomistów były już w starożytności atakowane za wizję świata bez bogów, poddanego tylko konieczności. Istniała w nim tylko materia, nawet dusze, czyli zasady ruchu, miały być bowiem materialne.

Żyjący w I w. p.n.e. Rzymianin Lukrecjusz opisał tę wizję w długim i dydaktycznym, i o dziwo poetycko wybitnym, poemacie heksametrem. Lukrecjusz był epikurejczykiem, a więc nie tylko atomistą, lecz także wyznawcą etyki opartej na wartościach doczesnych – bogowie nie zajmują się bowiem ludźmi, a ci powinni sami zadbać o swe szczęście, żyć tak, by o ile to możliwe szukać przyjemności i unikać cierpienia. Etyka epikurejska była rozsądna i wyważona, obce im było wszelkie zatracanie się w pogoni za szczęściem, jak i nadużycia zmysłowe. Ceniono natomiast proste przyjemności i czystą radość życia. Atomizm, objaśniając funkcjonowanie świata, miał dopomóc ludziom w uwolnieniu się od lęku przed śmiercią, zemstą bogów i wizją wiecznego cierpienia po śmierci. Z tego względu już w starożytności epikureizm uznawano za filozofię bezbożną.

Kanoniczny obraz atomizmu to drobinki pyłu wirujące w smudze światła słonecznego. W mikroskali tak miały wyglądać wszystkie zjawiska: wiecznie poruszające się i zderzające atomy. Niezmienność ukryta pod zmieniającą się powierzchnią zjawisk.

Bo spojrzyj jeno, gdy promienie słonecznego światła wedrą się i rozleją po mrocznym domostwie! Zobaczysz w tym promiennym snopie wiele maleńkich ciałek, mieszających się w próżni na wiele sposobów. Jakoby w wiekuistej wojnie staczają potyczki i bitwy, walczą całymi hufcami bez chwili spoczynku, w utrapieniu ustawicznych skupień i rozłączeń. Z tego więc możesz zmiarkować, jak wygląda wieczne miotanie się zarodków rzeczy w ogromie próżni, o ile mała rzecz może dać przykład i tropy poznania wielkich. A jeszcze z tego powodu winieneś zwrócić baczniejszą uwagę na owe ciałka, co wichrzą dostrzegalnie w promieniach słonecznych, że takie wichrzenia zdradzają nadto istnienie tajnych i niewidocznych ruchów materii. Zobaczysz tam bowiem, że wiele ciałek, podrażnionych niewidzialnymi ciosami, zmienia drogę i w tył zawraca po odepchnięciu, to tu to tam, na wszystkie zewsząd strony. (Lukrecjusz, ks. II, przeł. A. Krokiewicz) (*)

Po Rzymianach rzeczywiście wydarzył się kataklizm: starożytna cywilizacja upadła, o atomistach wiedziano niewiele więcej niż to, że Arystoteles ich zwalczał. Ich pisma przepadły. Półtora tysiąca lat później, w 1417 r., osobliwy poemat Lukrecjusza odnalazł humanista i „łowca rękopisów”, papieski sekretarz, Poggio Bracciolini, prawdopodobnie w alzackim klasztorze w Murbach, gdzie dobrzy mnisi nie bardzo rozumieli, co za tekst przechowują na półkach. Przez następne wieki poemat był wielokrotnie wydawany i tłumaczony na języki narodowe, w tym na język angielski po raz pierwszy w XVII wieku. Atomizm nadal wzbudzał lęk: zderzające się atomy trudno było pogodzić z Opatrznością, choć niektórzy uczeni, jak Isaac Newton, potrafili zbudować jakąś chwiejną syntezę obu koncepcji. Jego Bóg był jednak surowym Pantokratorem, Wszechwładnym Ojcem, nie znoszącym sprzeciwu.

Benjamin Franklin, bystry i zaradny drukarz z Filadelfii, jeden z ojców założycieli Stanów Zjednoczonych, nie był zawodowym uczonym, nigdy nie miał takich ambicji. Ze swoim sposobem uprawiania nauki mieścił się zresztą znakomicie w tradycji Towarzystwa Królewskiego, które od samego początku zrzeszało przede wszystkim hobbystów i amatorów: lekarzy, pastorów, wiejskich dżentelmenów, podróżników (co zresztą nie przeszkadzało niektórym z nich dokonać ważnych odkryć).

Interesował się on legendarnym zjawiskiem uśmierzania fal przez rozlewanie oleju i poczynił w związku z tym pewne obserwacje. Wyniki doświadczeń Franklina przedstawione zostały w listach wymienianych między nim a medykiem Williamem Brownriggiem oraz wielebnym Farishem, opublikowanych w „Philosophical Transactions”. Po opisaniu swych wcześniejszych obserwacji podczas podróży morskich Franklin relacjonuje:

Będąc w Clapham, gdzie na wspólnych gruntach znajduje się duży staw, i widząc pewnego dnia, iż jego powierzchnia jest bardzo wzburzona wiatrem, przyniosłem ampułkę oleju i wylałem go trochę na wodę. Widziałem, jak rozprzestrzenia się on ze zdumiewającą szybkością po powierzchni; lecz efekt uspokojenia fal nie powstał, gdyż zastosowałem go początkowo po nawietrznej stronie stawu, gdzie fale były największe i wiatr zwiewał mój olej z powrotem na brzeg. Następnie przeszedłem na stronę zawietrzną, gdzie [fale] się tworzyły, i tam olej, w ilości nie większej niż łyżeczka do herbaty, spowodował natychmiastowe uspokojenie na obszarze wielu jardów kwadratowych; poszerzało się ono stopniowo w zadziwiający sposób, aż dotarło do przeciwnego brzegu, czyniąc jedną czwartą stawu, jakieś pół akra, gładką jak zwierciadło.

Franklin zwrócił uwagę na zdumiewająco wielką powierzchnię plamy oleju na wodzie.

Jeśli upuścić kroplę oleju na gładki marmurowy stół czy na zwierciadło, kropla pozostanie na swoim miejscu, tylko nieznacznie się rozszerzając. Lecz gdy upuścić ją na wodę, rozprzestrzenia się na wiele stóp dookoła i staje się tak cienka, że na znacznym obszarze wytwarza barwy pryzmatyczne, a jeszcze dalej staje się tak cienka, że aż niewidoczna, prócz efektu wygładzania fal na znacznie większych odległościach. Wydaje się, że wzajemne odpychanie cząsteczek pojawia się, kiedy tylko dotkną one wody, i że jest ono tak silne, iż działa także na inne ciała znajdujące się na powierzchni, takie jak słomki, liście, wióry itp., zmuszając je do ustąpienia ze wszystkich stron wokół kropli niczym centrum i pozostawiając duży pusty obszar.

Te obserwacje z roku 1773 zostały podjęte po przeszło stu latach przez wybitnego fizyka brytyjskiego lorda Rayleigha, w celu oszacowania rozmiarów cząsteczek oleju. Jeśli przyjąć, że zgodnie z tym, co spostrzegł Franklin, 2 cm3 oleju rozprzestrzeniają się na powierzchni pół akra, czyli 2000 m2, otrzymujemy grubość warstwy równą 1 nm. Wiemy obecnie, że olej tworzy na wodzie warstwę o grubości jednej cząsteczki, więc dane te pozwalają oszacować jej rozmiary. Amerykanin nie wykonał jednak tego rachunku, zadowolił się samą obserwacją.

Atomy zaczęły odgrywać bardziej konkretną rolę dzięki chemii Johna Daltona. W drugiej połowie XIX wieku fizycy tacy, jak James Clerk Maxwell i Rudolf Clausius, zauważyli, że obraz zderzających się molekuł można rozwinąć w teorię kinetyczną gazów. Ciśnienie gazu było objaśniane bombardowaniem ścianek naczynia przez jego cząsteczki poruszające się z ogromnymi prędkościami (rzędu prędkości dźwięku w danym gazie). Teoria ta dawała też zaskakujący wynik: otóż lepkość gazu miała być niezależna od jego gęstości. Maxwell z pomocą żony przeprowadził odpowiednie pomiary, które potwierdziły teorię. Znając lepkość, można było obliczyć średnią drogę swobodną cząsteczek. W powietrzu w warunkach normalnych wynosiła ona wg Maxwella \lambda=620 \mbox{ nm} .

Pierwszym fizykiem, który wyznaczył wielkość cząsteczek powietrza, był Josef Loschmidt. Urodzony w 1821 r. niedaleko Karlsbadu (dziś Karlovy Vary) w rodzinie chłopskiej, przeszedł długą i nieoczywistą drogę do działalności naukowej, pracował nad zagadnieniami z pogranicza matematyki i psychologii, skończył studia politechniczne w Wiedniu, założył własną firmę, zbankrutował, potem był nauczycielem i dopiero w 1866 r., a więc dobrze po czterdziestce, zaczął uczyć na Uniwersytecie Wiedeńskim, zrobił doktorat i został profesorem. Z młodym Ludwigiem Boltzmannem chodzili na koncerty i spierali się o Eroikę Beethovena.

Praca dotycząca wielkości cząsteczek była pionierska, do dziś mówi się czasem o liczbie Loschmidta (liczba cząsteczek gazu w 1 cm3 w warunkach normalnych), choć sam uczony nie podał jej wartości w swej pracy. Znany był związek między koncentracją n, drogą swobodną \lambda oraz przekrojem czynnym cząsteczek \sigma:

n\sigma \lambda=\dfrac{1}{\sqrt{2}}. \mbox{ (**)}

Zakładając, że cząsteczki są kuliste o średnicy s, przekrój czynny zapisać można jako pole powierzchni koła o  średnicy 2s (cząsteczki zderzają się, gdy ich środki są w odległości s od siebie). Nie znamy koncentracji ani promienia, potrzebne jest więc jeszcze jedno równanie. Loschmidt przyjął, że w stanie ciekłym cząsteczki upakowane są ciasno, a więc porównując objętość grama cieczy do objętości gazu, możemy określić, jaką część \varepsilon objętości gazu zajmują cząsteczki. Mamy więc

\varepsilon=n \dfrac{\pi s^3}{6}.

Wyznaczając z obu równań s, otrzymujemy

s=6\sqrt{2}\varepsilon \lambda.

W przypadku powietrza, które nie było jeszcze wtedy skroplone (Wróblewski, Olszewski 1883 r.), Loschmidt wyznaczył wartość \varepsilon pośrednio, uzyskując 0,000866 zamiast 0,0014. Wyznaczona przez niego średnica cząsteczki równa była około 1 nm, a więc nieco za dużo. Drugą nieznaną wielkością w tym układzie równań jest koncentracja powietrza w warunkach normalnych, czyli właśnie liczba Loschmidta.

Ludwig Boltzmann po śmierci przyjaciela wygłosił wspomnienie o nim. Znalazły się w nim słowa:

Ciało Loschmidta rozpadło się już na atomy: na ile konkretnie atomów – możemy obliczyć, korzystając z ustanowionych przez niego zasad. I aby w przemówieniu dotyczącym fizyka eksperymentatora, nie obyło się bez pokazu, poprosiłem, by napisano tę liczbę na tablicy: 10^{25}. (***)

Sprawa istnienia atomów nie była wszakże wtedy przesądzona. Boltzmann wierzył w ich istnienie, ale Ernst Mach, fizyk i filozof z tego samego uniwersytetu w nie nie wierzył. Dopiero doświadczenia Jeana Perrina przypieczętowały tę kwestię już w XX wieku.

(*) W przekładzie wierszowanym fragment ten brzmi następująco:

Przypatrz się bowiem promieniom słonecznym, kiedy wtargnęły

Do domu i rozlewają światło po ciemnych zakątkach:

Zobaczysz w strumieniu światła bez liku drobniutkich pyłków,

Które mieszają się z sobą w próżni na wiele sposobów;

I jakby ścierał się zastęp z zastępem w wieczystej wojnie,

Wiodąc potyczki i bitwy bez jednej chwili wytchnienia,

Tak one na przemian ciągle to schodzą się, to rozchodzą;

Gdyś widział to, możesz sobie przedstawić, jak w wielkiej próżni

Miotają się bez żadnego przestanku zarodki rzeczy –

O ile rzecz drobna może wystarczyć za podobiznę

Rzeczy ogromnych i wskazać drogę do ich zrozumienia.

Z jednego jeszcze powodu winieneś zwrócić uwagę

Na pyłki, które widomie się kłębią w promieniach słońca:

Ich pomieszanie oznacza, że również wewnątrz materii

Istnieją ruchy, tajemne dla oczu, niedostrzegalne.

Zobaczysz, że wiele pyłków, niedostrzegalnie rażonych,

Odmienia drogę, że wiele pchniętych do tyłu zawraca,

Pędzą to w jedną, to w drugą stronę, we wszystkich kierunkach.

(przeł. G. Żurek, T. Lucretius Carus, O naturze rzeczy, ks. II, w. 113-141)

(**) Sens tego równania jest bardzo prosty: cząsteczka poruszając się, zakreśla w ruchu miedzy zderzeniami walec o objętości \sigma\lambda , średnia liczba cząsteczke w takim walcu równa jest n\sigma\lambda i powinna być rzędu jedności, dokładny współczynnik dają ściślejsze rozważania, nb. Loschmidt użył w tym miejscu współczynnika \frac{3}{4} wynikającego z pracy Clausiusa.

(***) Ciało ludzkie liczy jakieś 7\cdot 10^{27} atomów. Boltzmann nie był tu zbyt precyzyjny.

 

Najbardziej rewolucyjna praca Einsteina (1905)

Wiosną 1905 roku Einstein pisał do swego przyjaciela matematyka, Conrada Habichta:

Kochany Habichcie!

Panuje między nami tak świętobliwe milczenie, że wydaje się niemal grzeszną profanacją naruszać je mało istotną paplaniną. Ale czyż na tym świecie nie dzieje się tak zawsze z rzeczami wzniosłymi? Cóż pan porabiasz, mrożony wielorybie, ty, połciu wędzonej, suszonej i zapuszkowanej duszy? I cóż jeszcze, nadzianego w siedemdziesięciu procentach gniewem, a w trzydziestu litością, mógłbym panu cisnąć w głowę?
(…)
Dlaczegóż nie przysłałeś mi pan jeszcze swojej dysertacji? Czyżbyś pan nie wiedział, o nędzniku, że będę jednym z tych półtora osobników, którzy przeczytają ją z zadowoleniem i zainteresowaniem? Obiecuję panu za to cztery prace, przy czym pierwszą z nich przyślę już wkrótce, ponieważ oczekuję egzemplarzy autorskich. Jest ona poświęcona promieniowaniu oraz energii światła i jest niezmiernie rewolucyjna, jak to sam pan zobaczy,
jeśli n a j p i e r w przyśle mi swoją pracę. Praca druga zawiera określenie rzeczywistych rozmiarów atomów na podstawie dyfuzji oraz lepkości w rozcieńczonych roztworach substancji obojętnych. Trzecia natomiast
dowodzi, iż z założeń molekularnej [kinetycznej – J.K.] teorii ciepła wynika, że cząstki o średnicy rzędu 1/1000 mm, tworzące zawiesinę w cieczy, muszą wykonywać dostrzegalne, chaotyczne ruchy, spowodowane ruchami cieplnymi [cząsteczek cieczy – J.K.]; w rzeczy samej, fzjologowie zaobserwowali niewyjaśnione [słowo skreślone przez autora listu – J.K.] ruchy małych nieożywionych cząstek w zawiesinach, które nazwano molekularnymi ruchami Browna. Czwarta praca istnieje na razie tylko w brudnopisie i dotyczy elektrodynamiki ciał w ruchu przy wykorzystaniu zmodyfkowanej teorii przestrzeni i czasu; czysto kinematyczna część pracy z pewnością
pana zaciekawi.

Rzeczywiście, praca dotycząca światła okazała się najbardziej rewolucyjna z całej tej historycznej serii artykułów dwudziestosześcioletniego urzędnika Biura Patentowego w Bernie. Einstein wysunął w tej pracy hipotezę kwantów światła: promieniowanie elektromagnetyczne ma według niego naturę cząstkową. Był to pogląd niezmiernie heretycki, który fizycy odrzucali przez następnych dwadzieścia lat, nawet wbrew wynikom eksperymentalnym.

Gdyby o naturę światła spytać Isaaca Newtona, odrzekłby, że naturalnie są to cząstki, choć dosyć osobliwe, gdyż można je polaryzować, a przy odbiciu od cienkiej warstewki np. miki cząstki te w jakiś sposób „wiedzą”, jaka jest grubość warstwy pod powierzchnią i stosownie do jej wartości odbijają się albo wnikają w głąb. Na początku XIX wieku zrozumiano dzięki pracom Thomasa Younga i Augustina Fresnela, że światło jest falą. James Clerk Maxwell pokazał, że są to fale elektromagnetyczne, można więc za pomocą urządzeń elektrycznych takie fale generować, co dało początek radiu, telewizji, a także różnym systemom łączności aż do telefonii komórkowej i GPS. Nie ma nic bardziej praktycznego niż dobra teoria: dzięki teorii Maxwella elektryczność, magnetyzm i optyka stały się jedną dziedziną, opisywaną tymi samymi równaniami, a to, co umiemy opisać matematycznie, możemy też zrozumieć albo przynajmniej modelować. Niezliczone doświadczenia pokazywały i wciąż pokazują, że teoria Maxwella znakomicie opisuje zjawiska. W tej sytuacji powiedzenie, że może jednak światło nie jest falą, wyglądało na szaleństwo, zwłaszcza gdy proponował to nikomu nieznany urzędnik, ekspert trzeciej klasy w Biurze Patentowym.

W różnych poradnikach typu „Naucz się przez weekend myśleć jak Einstein” roi się od porad w rodzaju: należy odrzucać przyjęte zasady i myśleć twórczo. Gdyby było to takie proste, każdy dziwak mógłby zostać Einsteinem. Ziemia nie jest płaska, a Słońce nie krąży wokół naszego podwórka. Czemu więc Einstein wysunął taką hipotezę i jak wyjaśniał sukces teorii Maxwella? Jego rozmyślania nad podstawami fizyki trwały już dobre kilka lat i zdążył on przemyśleć rozmaite za i przeciw. Wysuwał hipotezę, za którą przemawiały pewne argumenty.

Albert Einstein miał silne poczucie jedności całego wszechświata. Sądził, że muszą w nim obowiązywać prawa i koncepcje uniwersalne. Tymczasem ówczesna fizyka z jednej strony uznawała istnienie atomów i ich lekkich naładowanych składników elektronów, z drugiej zaś posługiwała się pojęciem pola elektromagnetycznego, a więc czegoś określonego w każdym punkcie przestrzeni i z natury ciągłego. Dyskretne cząstki i ciągłe pola, taka dychotomia niezbyt mu przypadała do gustu. I nie był to jakiś młodzieńczy wybryk, o którym wkrótce się zapomina. Wręcz przeciwnie: aż do końca swego życia naukowego, przez następne pięćdziesiąt lat, zastanawiał się Einstein nad pojęciem cząstki i starał się tę dychotomię zlikwidować, uznając później cząstki za ruchome obszary zwiększonego pola.

We wstępie do pracy z 1905 roku pisze, że wprawdzie doświadczenia optyczne pokazują falowe własności światła, lecz mierzymy zawsze wielkości uśrednione w czasie, więc niekoniecznie świadczy to o falowej naturze światła. Miał rację, rzeczywiście obrazy interferencyjne i dyfrakcyjne są skutkiem nałożenia się dużej liczby cząstek. Jak na poniższych rysunkach (odnoszą się one wprawdzie do elektronów, ale z fotonami jest tak samo).

Co miałoby jednak przemawiać za cząstkowym charakterem światła? Główny argument Einsteina jest subtelny i nie był doceniony przez kolegów. Wyobraźmy sobie naczynie o objętości V_0 wypełnione gazem doskonałym.

Jeśli wydzielimy w nim myślowo pewien obszar o objętości V, to prawdopodobieństwo znalezienia konkretnej cząstki w tej wydzielonej objętości, będzie równe

p=\dfrac{V}{V_0},

ponieważ cząstki poruszają się w sposób chaotyczny. Jeśli liczba cząstek wnaczyniu równa jest n, to prawdopodobieństwo, że wszystkie zgromadzą się w danej chwili w naszej wydzielonej objętości jest równe

p=\left(\dfrac{V}{V_0}\right)^n.

Cząstki poruszają się niezależnie, więc prawdopodobieństwo iloczynu (koniunkcji) zdarzeń jest równe iloczynowi wszystkich prawdopodobieństw jednocząstkowych.

W jaki sposób możemy się przekonać, że powyższe rozumowanie jest prawidłowe? Ludwig Boltzmann powiązał prawdopodobieństwo z wielkością zwaną entropią S, którą można mierzyć na podstawie pomiarów cieplnych. Związek ten ma postać:

S=k\ln p,

gdzie k jest stałą fizyczną (stałą Boltzmanna). W przypadku gazu doskonałego wiadomo, że zmiana entropii odpowiadająca zmianie objętości od V_0 do V jest równa

\Delta S=nk\ln\dfrac{V}{V_0}.

Możemy więc z wielkości zmiany entropii, możliwej do zmierzenia w laboratorium, otrzymać liczbę cząstek gazu. Biorąc jeden mol gazu, wyznaczylibyśmy w ten sposób liczbę Avogadro – sam Einstein, jak też inni fizycy stosowali wówczas szeroko rozumowania tego rodzaju do wyznaczania własności atomów. Był to jakiś sposób przeskoczenia z poziomu makroskopowego, laboratoryjnego, do poziomu atomów i cząsteczek, których wówczas nie można było obserwować bezpośrednio.

Przypadek promieniowania jest bardziej subtelny. Jeśli wyobrazimy sobie zamknięte naczynie o pewnej temperaturze, to będzie ono wypełnione promieniowaniem termicznym. Można w naczyniu zrobić niewielki otwór i badać uciekające promieniowanie – mamy wtedy do czynienia z tzw. promieniowaniem ciała doskonale czarnego, które ma charakterystyki zależne jedynie od częstości i temperatury (a nie np. rodzaju ścianek naczynia albo ich składu chemicznego). Promieniowanie zamknięte w naczyniu jest gazem fotonów, podobnym pod pewnymi względami do zwykłego gazu jak np. powietrze w zwykłych warunkach. Przed rokiem 1905 Einstein opublikował kilka prac dotyczących fizyki statystycznej i stał się jednym z najlepszych znawców jej metod, kontynuatorem Plancka i Boltzmanna. Teraz, w 1905 roku, wykazał, że jeśli promieniowanie z dowolnego niewielkiego przedziału częstości (\nu, \nu+\Delta \nu) zmieni objętość z V_0 do V, to zmiana entropii będzie przy tym równa

\Delta S=k\dfrac{E}{h\nu}\ln\dfrac{V}{V_0},

gdzie E jest energią promieniowania, a h stałą wprowadzoną przez Plancka. Jeśli porównamy oba wyrażenia na zmianę entropii, widzimy, że

n=\dfrac{E}{h\nu}.

Gaz promieniowania zachowuje się więc jak gaz niezależnych cząstek o energii h\nu każda, przynajmniej pod względem termodynamicznym. Zarysowała się w ten sposób daleka perspektywa usunięcia dualizmu cząstek i pól. Wynikały z tych rozważań rozmaite konsekwencje możliwe do sprawdzenia. Np. w zjawisku fotoelektrycznym padające światło wybija elektrony z metalu. Jeśli światło występuje w porcjach o energii h\nu, to energia kinetyczna wybijanych elektronów E_k powinna być równa

E_k=h\nu-W,

gdzie W jest pracą potrzebną na ucieczkę elektronu z metalu, zależną od rodzaju metalu. Z równania tego wynika szereg istotnych wniosków: istnieje pewna progowa częstość światła poniżej której zjawisko nie występuje. Zależność energii kinetycznej od częstości jest linią prostą o takim samym nachyleniu dla wszystkich materiałów itd. Równanie Einsteina zostało doświadczalnie zweryfikowane przez Roberta Millikana. Einstein otrzymał Nagrodę Nobla za rok 1921 właśnie za to równanie – nie za teorię względności i nie za koncepcję kwantów światła. Komitet Noblowski wybrał bezpieczne osiągnięcie dobrze sprawdzone eksperymentalnie (Millikan za te pomiary, jak i za wyznaczenie ładunku elektronu otrzymał Nagrodę Nobla za rok 1923).

Wyniki Millikana z roku 1916 (z nachylenia prostej wyznaczył wielkość stałej Plancka h)

Nie należy sądzić, że te i inne wyniki eksperymentalne oznaczały przyjęcie poglądów Einsteina. Sam Millikan wspominał w roku 1949:

Spędziłem dziesięć lat życia na sprawdzaniu równania Einsteina i  wbrew wszystkim moim oczekiwaniom w 1915 roku musiałem uznać, że zostało jednoznacznie potwierdzone, mimo iż wydaje się zupełnie absurdalne, ponieważ pozornie przeczy wszystkiemu, co wiemy na temat interferencji światła.

Einstein i Millikan w 1932 w Caltechu. Public Domain

Millikan był eksperymentatorem, mógł zatem być sceptyczny wobec zbyt nowatorskich teorii, jednak nawet koledzy Einsteina Max Planck czy Niels Bohr długo nie chcieli uwierzyć w istnienie cząstek światła. Dopiero zjawisko Comptona w roku 1923 uznano za przekonujący dowód cząstkowej natury światła. Fotony znalazły swe miejsce w logicznej strukturze fizyki w drugim etapie tworzenia fizyki kwantowej, gdy od mechaniki nierelatywistycznej fizycy przeszli do konstruowania kwantowej teorii pola. Elektrodynamika kwantowa jest precyzyjną teorią fotonów i cząstek naładowanych, lecz jej rozwój nastąpił dopiero pod koniec lat czterdziestych. Einstein pozostał przy swoich próbach zbudowania klasycznej jednolitej teorii pola, ignorując te osiągnięcia.

 

Obywatelstwa Einsteina

Pierwsze było obywatelstwo Królestwa Wirtembergii, gdzie się urodził. Einsteinowie pochodzili z Buchau, lecz ojciec przyszłego uczonego, Hermann, przeniósł się do Ulm. Kiedy w 1877 r. obchodzono pięćsetlecie tamtejszej katedry oraz kończono jej budowę (wiele gotyckich katedr w Niemczech i we Francji zostało w tamtych czasach dokończonych i „upiększonych” różnymi ozdobami, które niewiele mają wspólnego ze średniowieczem), miejscowi Żydzi ufundowali dla niej posąg proroka Jeremiasza. Wśród darczyńców jest sześciu różnych Einsteinów, w tym Hermann. Albert urodził się w Ulm, lecz rodzina niebawem przeniosła się do Monachium, a więc do Królestwa Bawarii. Wirtembergia została więc jedynie metrykalną ojczyzną uczonego, choć szwabskie pochodzenie rodziców naznaczyło swoim kolorytem język, jakim posługiwano się na co dzień w domu. Był więc Einstein Szwabem z językowego pochodzenia.

Monachium i Bawaria nie stały się scenerią utraconego raju dzieciństwa. We wspomnieniach Einstein wyraźnie unika stolicy Bawarii, gdzie spędził dzieciństwo i wczesną młodość, okres niezwykle ważny w życiu. Uciekł stamtąd, niespełna szesnastoletni, rzucając gimnazjum w połowie roku szkolnego. Był zdesperowany i zbuntowany. Decyzję ułatwił mu fakt, że rodzice przeprowadzili się niedawno do Włoch. Toteż zjawił się u nich w domu w Mediolanie bez zapowiedzi, lecz z gotowymi planami na przyszłość. Będzie studiował na Politechnice w Zurychu, gdzie po zdaniu egzaminów przyjmują bez matury. Zrzeknie się obywatelstwa Wirtembergii, a więc i Rzeszy, by nie podlegać obowiązkowi wojskowemu. Rok później był już bezpaństwowcem i mieszkał w Aarau w Szwajcarii – oblał egzaminy na Politechnikę i musiał jednak zdać maturę. Jego plany opóźniły się o rok, ale studia przebiegły planowo i ukończył je w roku 1900. Miał wtedy zaledwie dwadzieścia jeden lat. Wystąpił wtedy o obywatelstwo szwajcarskie, na które odkładał od kilku lat pieniądze. Po wniesieniu opłaty, sprawdzeniu przez policję i z poręczeniem dwóch szanowanych obywateli został Albert Einstein przyjęty w poczet członków wspólnoty miejskiej w Zurychu. Szwajcarskie obywatelstwo zachował do śmierci, choć czasem dawało mu ono tylko iluzoryczną ochronę. Z obowiązku wojskowego w nowej ojczyźnie został zwolniony z powodów zdrowotnych.

W roku 1914 Einstein przeniósł się do Berlina na specjalnie dla niego skrojone stanowisko dyrektora Instytutu Fizyki Cesarza Wilhelma oraz członka Pruskiej Królewskiej Akademii Nauk pobierającego z tego tytułu pensję, co było wyjątkiem (zwykle członkostwo było wyłącznie honorowe). Zastrzegł wtedy, że nie chce zmieniać obywatelstwa na niemieckie. Jako Szwajcar odwiedzał podczas I wojny światowej synów mieszkających w Zurychu, choć nie bez biurokratycznych przeszkód.

Kiedy w roku 1922 ogłoszono decyzję o Nagrodzie Nobla z fizyki za rok 1921 dla Einsteina, uczony płynął do Japonii. Dyplom i medal w grudniu pod jego nieobecność odebrał ambasador Niemiec, których MSZ, działając metodą faktów dokonanych orzekł, że będąc członkiem korpusu służby cywilnej Einstein posiada tym samym obywatelstwo Niemiec. Sam uczony nie bardzo był przekonany do tego rozstrzygnięcia i zażyczył sobie po powrocie do domu, aby insygnia nagrody przekazał mu ambasador Szwajcarii. Kilka lat później Einstein skorzystał z niemieckiego paszportu, który mu chętnie wydano – był jednym z najsławniejszych Niemców na świecie, choć sam dystansował się wobec niemieckości w wydaniu nacjonalistycznym.

Oczywiście, w roku 1933 uczony nie mógł pozostać obywatelem Niemiec. Zrzekł się zarówno paszportu, jak i członkostwa Pruskiej Akademii Nauk, zanim jeszcze zdążono go wyrzucić. Zarzucano mu działanie na szkodę narodu niemieckiego za granicą. Na co Einstein odpowiadał, że „Niemcy dotknięte są obecnie zbiorową chorobą psychiczną” i nie można obronić tego, co się tam wyprawia. Wywołało to zresztą wyraźną wściekłość władz nazistowskich, które zarządziły konfiskatę majątku oraz przeprowadziły rewizję w jego domu letniskowym w Caputh pod Berlinem pod pretekstem szukania broni oraz materiałów wywrotowych. Einstein, jego żona i dwie pasierbice stracili w ten sposób większość swego majątku. Przebywając w Princeton, uczony nie bez dodatkowej gimnastyki finansowej kupił niewielki domek przy Mercer St. 112, w którym spędził resztę życia.

Dopiero w 1940 roku uczony, jego sekretarka Helen Dukas i pasierbica Margot Einstein uzyskali obywatelstwo amerykańskie. Sędzia Phillip Forman, który odbierał od niego przysięgę, brał też nieco później udział w podobnej ceremonii nadania obywatelstwa Kurtowi Gödelowi, wybitnemu logikowi austriackiemu.

Zaprzyjaźniony z nim Einstein pojechał na uroczystość, która o mały włos nie skończyła się katastrofą. Matematyk potraktował bowiem bardzo serio obowiązek zapoznania się z konstytucją amerykańską i znalazł w niej furtkę prawną, której można by użyć do zaprowadzenia w Stanach Zjednoczonych dyktatury. Zamierzał przedyskutować tę kwestię z sędzią Formanem, co Einstein jakoś mu w ostatniej chwili wyperswadował.

 

Einstein, gildia cór Koryntu i Friedrich Adler (1909)

Albert Einstein był wprawdzie zdolnym i inteligentnym młodzieńcem, ale miał dość niewyparzony język i nie zawsze zachowywał się z uniżoną pokorą, jakiej oczekiwano od studenta. Toteż po skończeniu studiów na Politechnice w Zurychu w roku 1900 nie mógł nigdzie znaleźć pracy, choć skierował w tej sprawie listy do wszystkich niemal profesorów fizyki w krajach niemieckojęzycznych. Podejrzewał, że stoi za tym Heinrich Weber, jego profesor z Politechniki. Najprawdopodobniej nikt jednak nie był zainteresowany zatrudnieniem nieznanego i nigdy niewidzianego kandydata bez żadnych rekomendacji. Także praca nauczycielska w Szwajcarii była trudno osiągalna, udawało mu się jedynie zaczepić na jakieś czasowe zastępstwa. Dopiero po dwóch latach, dzięki pomocy kolegi ze studiów, Marcela Grossmanna, znalazł Einstein stałą posadę w Urzędzie Patentowym w Bernie. Pracując tam, zaczął badania naukowe i w roku 1905 zrobił doktorat u Alfreda Kleinera, profesora uniwersytetu w Zurychu. Doktorat był nieistotny naukowo, znacznie bardziej liczyła się seria prac z tego roku i lat następnych, zasługujących na trzy niezależne Nagrody Nobla (za jedną z tych prac rzeczywiście mu ją potem przyznano). Rewolucyjne prace teoretyczne okazały się w przyszłości ważne, lecz na krótką metę zmieniły niewiele. Einstein chwilami wątpił, by kiedykolwiek udało mu się zostać jednym z członków akademickiego cechu. Po latach dostrzegał zalety tego stanu rzeczy: posada uniwersytecka zmusza do obfitego publikowania, skłaniając do podejmowania tematów mało ambitnych, ale i niezbyt ryzykownych. Sam nigdy nie zajmował się taką nauką pozbawioną ryzyka. Jak mówił: „Irytują mnie naukowcy, którzy biorą deskę, patrzą, w którym miejscu jest ona najcieńsza, a następnie wiercą dużą liczbę dziur tam, gdzie nie sprawia to szczególnych trudności”.

Dopiero w 1908 roku pojawiła się możliwość zatrudnienia na uniwersytecie w Zurychu, gdzie miała być utworzona katedra fizyki teoretycznej. Alfred Kleiner wahał się między kandydaturą Einsteina i Fritza Adlera. Pierwszy miał za sobą błyskotliwe, lecz mocno spekulatywne artykuły i kiepsko prowadził wykłady, drugi miał doktorat i pewien niewielki dorobek oraz zdecydowanie większe doświadczenie dydaktyczne. Władze przychylały się raczej do nominacji Adlera.
Fritz Adler, wiedeńczyk, rówieśnik i kolega Einsteina ze studiów, był socjalistą i synem Victora Adlera, przewodniczącego austriackiej Socjaldemokratycznej Partii Robotniczej (Sozialdemokratische Arbeiterpartei). Utalentowany, pryncypialny i namiętny, Adler wahał się między polityką, filozofią a fizyką. On także zrobił doktorat u Kleinera, a teraz został w Zurychu Privatdozentem, fizyczką była też jego żona. Fritz uważał Alberta za lepszego kandydata, pisał do ojca:

To człowiek o nazwisku Einstein, który studiował w tym samym czasie co ja. Nasze drogi są z pozoru podobne: ożenił się ze studentką mniej więcej w tym samym czasie co ja i ma dzieci. Nie miał jednak żadnej pomocy i przez pewien czas niemal głodował. Jako student był traktowany pogardliwie przez profesorów, zamykano często przed nim bibliotekę itd. Nie potrafi on układać sobie stosunków z ważnymi osobistościami. (…) W końcu znalazł posadę w Urzędzie Patentowym w Bernie i przez cały ten czas pomimo wszystkich przeciwieństw kontynuuje pracę w dziedzinie fizyki teoretycznej.

Adler sądził, że to skandal, iż Einstein musi pracować w biurze, i chciał, by stanowisko profesora przypadło mniej uprzywilejowanemu koledze. Co więcej, napisał w tej sprawie do Zarządu Edukacji kantonu zuryskiego:

Jeśli można pozyskać dla naszego uniwersytetu kogoś takiego jak Einstein, to absurdem byłoby zatrudnianie mnie. Muszę szczerze przyznać, iż moje zdolności do uprawiania oryginalnych badań z dziedziny fizyki nie wytrzymują żadnego porównania z Einsteinem. Nie powinniśmy z powodów politycznych tracić takiej okazji zatrudnienia osoby, dzięki której podniesie się ogólny poziom uniwersytetu, na czym wszyscy skorzystamy.

Jest to jedyny, jaki przychodzi mi na myśl, przypadek dobrowolnej rezygnacji w uznaniu intelektualnej wyższości konkurenta. Adler był fanatycznie uczciwy, a do tego żywił obawy, iż decyzja zdominowanego przez socjalistów Zarządu mogłaby mieć podłoże polityczne.

Obaj się później zaprzyjaźnili, mieszkali w Zurychu w tej samej kamienicy i prowadzili ze sobą długie rozmowy na różne tematy – chodzili w tym celu na strych, żeby nikomu nie przeszkadzać. Łączyła ich zapewne filozofia Macha, którego zwolennikami byli obaj, choć Einstein nie trzymał się niewolniczo poglądów mistrza. Adler natomiast był bardzo ścisłym machistą. Włodzimierz Lenin, który także bywał w Zurychu, skierował przeciwko tej filozofii toporny pamflet pt. Materializm a empiriokrytycyzm – zanudzano później tym dziełem także na polskich uczelniach. Leninowi chodziło o rząd dusz (i ciał) w obrębie lewicy rosyjskiej, która w Zurychu miała swoją nieformalną stolicę. W szczególności mogły tu studiować kobiety, co w Rosji było niemożliwe (żona Adlera Katia, była Rosjanką i oczywiście socjalistką). Ciążący coraz bardziej ku polityce Adler uważał, że poglądy polityczne Einsteina są naiwne, co prawdopodobnie znaczyło: „zbyt liberalne”.

Ostatecznie pomyłka historii w odniesieniu do Alberta Einsteina została wkrótce naprawiona: 7 maja 1909 roku objął on stanowisko profesora nadzwyczajnego fizyki teoretycznej na uniwersytecie w Zurychu. Nowo mianowany profesor wykłady miał zacząć jesienią, otrzymał pensję równą ostatniej pensji w biurze patentowym: 4500 franków rocznie, dzięki czemu mógł złożyć rezygnację z posady Urzędzie Patentowym w Bernie. Kończył się jego czas naukowej izolacji. Miał w tym momencie trzydzieści lat. „A więc i ja zostałem oficjalnie członkiem gildii k… (Gilde der Huren)” – napisał do Jakoba Lauba, jednego ze swych pierwszych współpracowników.

Einstein wkrótce otrzymał lepszą propozycję posady, a ponieważ po trudnych początkach nie czuł długu wdzięczności wobec żadnej uczelni, więc przyjął ją bez oporów. Kiedy opuszczał Zurych, polecił na swoje miejsce Adlera, z czego jednak nic nie wyszło.

Friedrich Adler przed sądem w roku 1917

Osobiste kontakty z Adlerem ustały po roku 1911. Kilka lat później, już podczas Wielkiej Wojny, Einstein usłyszał znów o swym koledze. 21 października 1916 roku Fritz Adler podszedł do siedzącego w restauracji hotelu „Meissl & Schadn” w Wiedniu hrabiego Karla von Stürgkha, premiera Austrii, i zabił go trzema strzałami z pistoletu. Nie uciekał, jego motyw był polityczny: uważał, iż Stürgkh odpowiedzialny jest za wciągnięcie Austro-Węgier do wojny. Zrozpaczony ojciec Fritza starał się uchronić go przed karą śmierci, dowodząc jego niepoczytalności. Także Einstein proszony był o pomoc. Sprawa była delikatna. Jednym z dowodów na niepoczytalność Fritza miały być napisane w więzieniu prace atakujące teorię względności. Rozważania te nie były dziełem szaleńca, po prostu Fritz Adler dołączył do długiego szeregu przeciwników teorii względności. Był fanatykiem politycznym i sąd wyjątkowy skazał go na karę śmierci. Zanim jednak została ona wykonana, skończyła się wojna, upadło Cesarstwo Austro-Węgier i w listopadzie 1918 roku Adler wyszedł na wolność, witany jak bohater przez lewicowych robotników.

Le Verrier, Adams, Galle i d’Arrest: wspólne odkrycie Neptuna (1846)

W październiku 1846 roku Zygmunt Krasiński pisał do Delfiny Potockiej:

…w tych dniach odkryto i na oczy zobaczono tego planetę tak idealnie obrachowanego, tak matematycznie przepowiedzianego (…) przez pana du Verrier, młodego astronoma, który ze zboczeń Uranusa wyciągnął konieczność bytu takiego planety i obliczył jego wielkość i przestrzeń, gdzie go szukać, wskazał. (…) Niegdyś Kolumb tak Amerykę odkrył, wprzód wyproroczywszy ją.

Poeta całkiem precyzyjnie opisał to wydarzenie. Odkrycie nowej planety stało się ogromną sensacją, przy czym najbardziej zdumiewał fakt, że najpierw położenie planety na niebie wyliczono, a później wystarczyło niejako tylko spojrzeć w niebo, by ją dostrzec. 23 września 1846 Johann Gottfried Galle, asystent w Obserwatorium astronomicznym w Berlinie otrzymał list od swego młodego jeszcze, lecz szybko wybijającego się francuskiego kolegi Le Verriera. Znalazło się w nim przewidywane położenie nowej planety, która powinna być widoczna jako dość słaba, lecz dostrzegalna bez trudu przez teleskop gwiazda. W sprzyjających okolicznościach można by nawet dostrzec niewielką tarczę planety (3″ wg Le Verriera). Przypadkiem tego właśnie dnia dyrektor obserwatorium Johann Franz Encke obchodził swe pięćdziesiąte piąte urodziny i wydawał przyjęcie dla osób stojących towarzysko wyżej niż Galle, tak więc asystent mógł skorzystać z najlepszego dziewięciocalowego teleskopu i zająć się słabo rokującą przepowiednią (Encke ponoć niechętnie zgodził się na te poszukiwania). Gallemu towarzyszył w tej pracy student Heinrich Louis d’Arrest. Szczęśliwym trafem mieli do dyspozycji najnowszą mapę tego obszaru nieba sporządzoną przez Carla Bremikera w ich obserwatorium. Była to część wielkiego zespołowego przedsięwzięcia sporządzenia map ułatwiających poszukiwania komet i planetoid. Całość została podzielona na dwadzieścia cztery części, z czego trzy sporządził Bremiker (później miał on opracować jeszcze dwie). Mapa ta nie została jeszcze rozesłana do innych obserwatoriów. Galle przy teleskopie i d’Arrest nad mapą sprawdzali kolejne gwiazdy w przeszukiwanym obszarze, zaledwie po godzinie pracy, kwadrans po północy Galle dostrzegł gwiazdę, której nie było na mapie Bremikera. Następnej nocy stwierdzili, że gwiazdka ta nieco się przemieściła. Odkrycie nowej planety stało się faktem. Znajdowała się ona niecały stopień od położenia przewidywanego przez Le Verriera.

Mapa z zaznaczonymi obserwowanym (beobachtet) i obliczonym (berechnet) położeniem Neptuna. Planeta zmieściła się szczęśliwie w lewym dolnym rogu mapy Bremikera.

Praca Le Verriera w pewnym sensie nie była zaskakująca dla astronomów. Wiedziano bowiem od dawna, że położenia Urana odbiegają od wartości obliczonych. Planety poruszają się w pierwszym przybliżeniu po elipsach ze Słońcem w ognisku, dokładne jednak obliczenia wymagają uwzględnienia przyciągania grawitacyjnego (owe „zboczenia” u Krasińskiego) pozostałych planet. Uran odkryty został przypadkowo w roku 1781, ponieważ jednak astronomowie dawno mieli zwyczaj pieczołowitego gromadzenia wszelkich danych, udało się później znaleźć także obserwacje planety sprzed oficjalnego odkrycia. Dawało to spory zasób obserwacji, których nie udawało się pogodzić z wynikami obliczeń. Te frustrujące wyniki, uzyskane przez Alexisa Bouvarda, znane były społeczności uczonych. Wysuwano też niejednokrotnie hipotezę, iż źródłem rozbieżności jest planeta położona dalej od Słońca, problem jednak uważano za zbyt trudny matematycznie i rachunkowo, by go zadowalająco rozwiązać.

Odchylenia Urana od położeń obliczonych przez Bouvarda. Warto zwrócić uwagę na skalę wykresu: chodzi o sekundy kątowe. Dokładność obserwacji rzędu pojedynczych sekund kątowych i podobna dokładność obliczeń teoretycznych były już standardem w tym czasie. Odchylenia (résidus, czyli reszty pozostające po porównaniu z teorią) zmieniają się w sposób systematyczny, nie wyglądają więc na błędy obserwacji.

Powszechnie sądzono, że zagadnienie jest zbyt trudne, dopóki nie zajęli się nim, niezależnie od siebie i nie wiedząc o sobie, Urbain Le Verrier i Henry Couch Adams. Pierwszy z nich, ekspansywny i ambitny trzydziestolatek, porzucił chemię i w krótkim czasie stał się ważnym astronomem teoretycznym. Dla drugiego, znacznie młodszego i jeszcze bez żadnego dorobku naukowego, była to pierwsza poważna praca po ukończaniu studiów w Cambridge, gdzie zdobywał wprawdzie wszystkie nagrody matematyczne, lecz teraz chodziło o rzecz znacznie poważniejszą. Obaj uczeni przyjęli założenie o zbyt dużej odległości planety od Słońca, udało im się jednak tak dobrać parametry orbity i masę poszukiwanej planety, że rozbieżności między obserwacjami a teorią znacznie się zmniejszyły i dla obserwacji z pierwszego półwiecza XIX wieku były rzędu kilku sekund kątowych.

W sprawdzeniu przewidywań znacznie bardziej powiodło się Le Verrierowi. Jego praca była też bardziej kompletna, do lata 1846 roku opublikował już trzy artykuły poświęcone nowej planecie. Adams nie miał kontaktów miedzynarodowych, nie publikował na bieżąco swych wyników, a u swoich rodaków też nie zyskał zaufania. Niektórzy twierdzą, że Brytyjczyk obarczony był syndromem Aspergera, pewne jest, że nie umiał nikogo przekonać do swojej pracy i nie zabiegał o to zbyt energicznie. Astronom Królewski George Bidell Airy zareagował dopiero na trzecią pracę Le Verriera, wcześniej Adamsowi nie udało się z nim spotkać. Zabawnym szczegółem jest fakt, że James Challis, który na polecenie Airy’ego zaczął poszukiwania planety, katalogował gwiazdy w „podejrzanej” okolicy i przy okazji dwa razy zaobserwował Neptuna, nie widząc o tym. Odkładał opracowanie obserwacji na później, aż w końcu dowiedział się o odkryciu Gallego.

Orbity wynikające z obliczeń obu uczonych były zbyt duże, w konsekwencji przecenil oni znacznie masę Neptuna. W rzeczywistości był on bliżej Urana i miał mniejszą masę.

Siła przyciągająca Urana ze strony Neptuna (strzałki pełne) i jej przybliżenie u Le Verriera (strzałki przerywane). Rysunki z artykułu rocznicowego na stulecie odkrycia autorstwa André Danjona, Le centenaire de la découverte de Neptune, „Ciel et Terre”, t. 62 (1946), s. 369-383.

Odkrycie to zapoczątkowało wielką karierę Le Verriera, który z czasem został dyrektorem Obserwatorium w Paryżu, rządzącym despotycznie przez wiele lat. Adams, choć ceniony, pozostawał w cieniu, mimo że obaj wykonywali dość podobną pracę polegającą na szczegółowych obliczeniach teoretycznych opartych na prawie ciążenia. Obaj też, niezależnie, dotarli do granicy dokładności takiego programu naukowego. Adams opublikował w 1854 roku pracę, z której wynikało nieznaczne przyspieszenie ruchu Księżyca po orbicie z czasem (tzw. przyspieszenie wiekowe albo sekularne). Le Verrier zaś obliczył, że orbita Merkurego obraca się nieco szybciej niż powinna po uwzględnieniu przyciągania pozostałych planet. Efekt był drobny, równy 38″ na stulecie, lecz realny. Żądny jeszcze większej sławy uczony francuski postulował tym razem istnienie planety bliższej Słońca niż Merkury. Nadano jej nazwę Wulkan, lecz choć szukano jej długo, ostatecznie wyjaśniono tylko tyle, że takiej planety na pewno nie ma.

Oba drobne efekty znalezione przez Adamsa i Le Verriera okazały się prawdziwe. W pierwszym przypadku przyczyną jest nie przyspieszanie Księżyca, ale zwalnianie obrotu Ziemi wokół osi. Dodatkowy obrót orbity Merkurego (dziś przyjmuje się jego wartość równą 43″ na stulecie) wynika natomiast z ogólnej teorii względności i obliczenie tej wartości w listopadzie 1915 roku stało się przełomowym momentem naukowego życia Alberta Einsteina.

Galileo Galilei odkrywa nowe planety (styczeń 1610 r.)

Miarą odkrycia – w nauce i poza nią – jest zawsze wielkość niespodzianki, jaką sprawiło.

I byłem jak astronom, gdy olśnionym okiem

Nową w swym gospodarstwie planetę dostrzeże;

Albo zuchwały Cortez, kiedy orlim wzrokiem

Dojrzał z dala Pacyfik, a jego rycerze

To na siebie patrzyli w zdumieniu głębokim,

To na widzialne z góry Darienu wybrzeże.

Obu tych porównań użył John Keats, chcąc opisać niezwykłe wrażenie, jakie zrobiła na nim lektura Homera w przekładzie Chapmana. Pisząc na początku XIX wieku, wiedział o odkryciu Urana, a także czterech planetoid, uczeni w piśmie spierają się aż do dziś o stosowność drugiego porównania, bowiem słynny awanturnik, Hernán Cortés, nie miał nic wspólnego z odkryciem Przesmyku Panamskiego. Nie pownniśmy jednak traktować poetów niczym Wikipedii.

Największym naukowym szokiem XVII stulecia było odkrycie nieba teleskopowego: rzeźby powierzchni Księżyca (wedle szkolarzy miała ona być gładka jak szlifowana przez jubilera kula), tysięcy gwiazdek niewidzialnych gołym okiem (po co właściwie Bóg je stworzył?), plam na Słońcu (przecież, uczynione z eteru, powinno być niezmienne i świetliste), a także czterech satelitów Jowisza. Odkrycia te uczyniły w niewiele miesięcy ze starzejącego się profesora uniwersytetu w Padwie, florentyńczyka Galileo Galilei, europejską sławę.

Zdumienie współczesnych było tym większe, że teleskop był pierwszym z serii naukowych instrumentów pozwalających dostrzec rzeczy dotąd ukryte i niewidzialne. Dziś dobrze wiemy, że pełno jest wokół nas rozmaitych rodzajów niewidzialnego promieniowania i że czułe przyrządy mogą rejestrować światło tak słabe, iż niewidoczne dla oka. Świat przedgalileuszowy był taki, jaki jawi się zmysłom: skoro śnieg jest biały, to znaczy, że przysługuje mu taka barwa. Dla nas jest to kwestia odbijania pewnych długości fal i pochłaniania innych. Przedmioty nie są same z siebie białe ani twarde, ani pachnące – wszystko to są reakcje naszych zmysłów na pewne sygnały ze świata zewnętrznego.

W 1609 roku Galileusz dowiedział się o przyrządzie zbudowanym z soczewek i przybliżającym obrazy dalekich przedmiotów. Pierwsze instrumenty tego rodzaju skonstruowali rzemieślnicy w Holandii i wkrótce różni przedsiębiorczy jegomoście krążyli po Europie, starając się sprzedać korzystnie owe wynalazki. Galileusz także potrafił szlifować soczewki, różnił się wszakże od rzemieślników systematycznością podejścia i rozległością horyzontów. Dzięki pierwszej szybko zaczął budować coraz lepsze przyrządy, powiększające dwadzieścia, a nawet trzydzieści razy. Dzięki drugiej znalazł naukowe zastosowanie nowego wynalazku, umiał go też lepiej sprzedać niż owi wędrowni przekupnie. To, że wynalazek nie był jego autorstwa, nie miało tu żadnego znaczenia.

Sprzedał go zresztą dwa razy. Pierwszy raz senatowi Wenecji (do której należał uniwersytet w Padwie). Republika żyjąca z handlu i piractwa była zainteresowana przyrządem z daleka pozwalającym ustalić, jaki okręt zbliża się do nas. Galileusz przeprowadził nawet dla dostojników pokaz działania swego przyrządu z dzwonnicy San Marco. Widzieli przez niego nie tylko Lizza Fusina i Chioggię, ale nawet wieżę i kopuły bazyliki Santa Giustina w Padwie, w Murano zaś – ludzi wchodzących i wychodzących z kościoła San Giacomo. Sukces ten zaowocował listem Galileusza do doży z prośbą o podwyżkę. Otrzymał podwyżkę pensji do 1000 dukatów rocznie i gwarancję dożywotniego zatrudnienia. Jak się zdaje, uczony nie był w pełni zadowolony, może dlatego że władze zastrzegły się, iż dalszych podwyżek już nie będzie. Galileusz zaczął myśleć o powrocie do Florencji i do tego przydały się odkrycia teleskopowe, a przede wszystkim odkrycie księżyców Jowisza. Uczony zaproponował bowiem nazwać je gwiazdami medycejskimi, od nazwiska rodu panującego w jego mieście. Cztery gwiazdy miały odpowiadać czterem braciom. Ewentualnie mogły być nazwane cosmici – od panującego Kosmy Medyceusza. Przyjęta została pierwsza propozycja, uczony otrzymał we Florencji także 1000 dukatów rocznie, ale że dukaty florenckie zawierały siedem lirów, a nie pięć, jak weneckie, była to podwyżka o 40%. Co więcej, uwolnić się miał na zawsze od nauczania. Ceną było przyjęcie roli dworzanina, kogoś w rodzaju szczególnie cenionego błazna.

Rękopis Galileusza znajdujący się w Ann Arbor. U góry znajduje się szkic listu do doży z sierpnia 1609 roku, na dole kartki mamy zapis pierwszych obserwacji księżyców Jowisza w styczniu (gennaio) 1610, a także (w prawym dolnym rogu) szkice układu księżyców z góry.

W liście pisanym 7 stycznia 1610 roku uczony informuje, że planety wyglądają jak małe tarczki, gwiazdy natomiast nie zmieniają swego wyglądu. Ponieważ Jowisz widoczny był już w grudniu, kiedy Galileusz obserwował zmieniający się z nocy na noc, wraz z przesuwaniem cienia, krajobraz Księżyca, więc przypuszcza się, że tej nocy przyrząd Galileusza sprawował się lepiej – on sam pisze, że aby uzyskać ostrzejszy obraz, trzeba obiektyw przysłonić. Soczewki ówczesne były marnej jakości, zresztą gdyby nawet ich powierzchnie były idealnie sferyczne, wady optyczne takie, jak aberracja sferyczna i chromatyczna, ograniczały jakość obrazów. Ograniczenie się do promieni przyosiowych poprawiało sytuację, kosztem wielkości pola widzenia i jasności obrazu.

W tym samym liście uczony odnotowuje pewną osobliwość w pobliżu Jowisza znajdowały się trzy gwiazdki ułożone w jednej linii.

* * O *

(tutaj i poniżej rysunki z książki Galileusza zestawione są ze współczesnymi obliczeniami położeń czterech księżyców wg Jovian Moons Applet)

Nazajutrz sytuacja się zmieniła:

O * * *
Galileusz wywnioskował, że Jowisz przesunął się na wschód (na rysunku na lewo) względem gwiazdek. Było to o tyle dziwne, że powinien w tym okresie poruszać się na zachód. Uczony zapisał nawet, że planeta porusza się w przeciwnym kierunku, „niż przyjmują kalkulatorzy”. Może zdał sobie sprawę, że wyjaśnienie takie raczej jest niemożliwe: widoczne ruchy planet były w ogólnych zarysach prawidłowo opisane przez takich „kalkulatorów”, jak Ptolemusz czy Kopernik, i raczej nie należało tu oczekiwać niespodzianek. Następny wieczór był pochmurny, 10 stycznia natomiast sytuacja przedstawiała się następująco:

* * O
Uczony uznał, że najbardziej na zachód wysunięta gwiazdka została zasłonięta przez tarczę Jowisza. Nazajutrz, 11 stycznia, nadal było widać dwie gwiazdki na wschód od Jowisza:

* * O
Były one teraz bardzo blisko siebie, a bliższa planety była znacznie słabsza od drugiej, podczas gdy w poprzednie wieczory wszystkie trzy miały mniej więcej taką samą jasność. „Wydaje się stąd, że wokół Jowisza są trzy inne gwiazdy błędne, niewidziane przez nikogo aż do tej pory” (gwiazdy błędne, czyli ruchome – było to określenie planet, które przesuwają się na tle gwiazd). Dwa dni później Galileusz zaobserwował cztery gwiazdki obok Jowisza:

* O * * *


Stało się jasne, że odkrył coś naprawdę nowego: cztery planety krążące wokół Jowisza niczym Jowisz i reszta planet wokół Słońca. Postanowił swoje obserwacje jak najprędzej ogłosić drukiem, zdając sobie sprawę, że
odkrycie satelitów przez innych obserwatorów jest tylko kwestią czasu.

Książka, Sidereus Nuncius („Nuncjusz gwiezdny”), ukazała się w marcu, przynosząc Galileuszowi sławę i posadę we Florencji. Oznaczało to także zerwanie z Wenecjanami urażonymi takim traktowaniem. Niektórzy sądzą, że Galileusz zaczął już wtedy myśleć o propagowaniu kopernikanizmu. W każdym razie miniatura Układu Słonecznego: Jowisz i jego księżyce była dla niego silnym argumentem psychologicznym za heliocentryzmem.

Odkrycia teleskopowe mogły zostać dokonane przez każdego, ale to Galileusz potrafił szybko zbudować odpowiednie przyrządy. Jeszcze ważniejsze okazało się jego przygotowanie mentalne: już dawno sądził, że nauka arystotelesowska  nie odpowiada rzeczywistości, teraz dzięki swemu przyrządowi miał nowe i niespodziewane argumenty przeciwko tradycyjnemu obrazowi świata. Potrafił je elokwentnie przedstawić i opisać, patrzenie nie jest prostą i jednoznaczną czynnością. Dostrzegamy zawsze tylko to, do czego jesteśmy jakoś wcześniej przygotowani. Księżyce Jowisza w tym samym praktycznie czasie zaobserwował Simon Marius (proponował je nazwać „Gwiazdami Brandenburskimi” – miał innych patronów). Prawdopodobnie jednak dopiero po książce Galileusza zrozumiał on, co właściwie zobaczył, a mianowicie: księżyce krążące wokół innej planety. Marius nie interpretował swych obserwacji w duchu heliocentrycznym, po prostu uzupełnił tradycyjny ptolemeuszowy obraz świata o cztery nowe obiekty. W tym ujęciu zamiast wybuchu rewolucji mielibyśmy mokry kapiszon.

Newton na plaży, Einstein w bibliotece

Einstein miał w swoim gabinecie w Berlinie trzy portrety: Newtona, Faradaya i Maxwella. Była to, rzec można, historia fizyki w trzech portretach: ojca założyciela nowożytnej fizyki i dwóch uczonych, eksperymentatora i teoretyka, odpowiedzialnych za koncepcję pola elektromagnetycznego. Einstein zbudował na tej podstawie teorię pola grawitacyjnego jako krzywizny czasoprzestrzeni, a resztę życia poświęcił głównie na nieudane próby matematycznego ujednolicenia Maxwellowskiego elektromagnetyzmu z grawitacją – miała to być słynna Einheitliche Feldtheorie: jednolita teoria pola.

Nic dziwnego, że z perspektywy wieków pracę Newtona postrzegał Einstein jako swego rodzaju raj dzieciństwa. Pisał o nim:

Szczęśliwy Newton, szczęśliwe dzieciństwo nauki! Ten, kto znajdzie czas i spokój ducha, by przeczytać tę książkę [Optics], przeżyje jeszcze raz cudowne zdarzenia, których wielki Newton doświadczył w swych młodych latach. Natura była dla niego niczym otwarta księga, której litery odczytywał bez trudności. Koncepcje, których używał, by zredukować materię egzystencji do uporządkowanego ładu, zdawały się samorzutnie wypływać z samego doświadczenia, z pięknych eksperymentów, które ułożył po kolei jak zabawki i opisał z czułą dbałością o szczegóły. W jednej osobie złączył się tu eksperymentator, teoretyk, mechanik, a także, co nie najmniej ważne, artysta w sposobie wykładu.

Niewykluczone, że Einstein natrafił gdzieś na słynny cytat z Newtona:

Nie wiem, kim się wydaję dla świata, ale sam sobie wydawałem się jedynie chłopcem igrającym na brzegu morza, który zabawia się, znajdując od czasu do czasu gładszy kamyk albo muszlę ładniejszą od innych, podczas gdy wielki ocean prawdy leżał nieodkryty przede mną.

Ten obraz dziecka na plaży zupełnie nie pasuje do innych wypowiedzi Newtona. Nie mamy nawet pewności, czy uczony widział  kiedykolwiek morze. Jako dziecko żył od morza daleko, a potem mieszkając w Londynie, niewiele się poruszał i nigdy bez określonego celu. Zabawa na plaży nie mogła się więc odnosić do jego własnych wspomnień, jako stary kawaler nie brał też udziału w życiu wielopokoleniowej rodziny. Wypowiedź tę, pochodzącą ponoć z ostatnich lat życia uczonego, przekazał Andrew Michael Ramsey, który jednak przebywał w tym czasie we Francji, a do Anglii wrócił trzy lata po śmierci Newtona. Mógł ją oczywiście od kogoś usłyszeć i zapisać jako uderzającą, legenda Newtona była już wtedy bardzo żywa, więc z pewnością zwracano uwagę na wszystko, co mogło od niego pochodzić. Nie ma jednak żadnego innego źródła, które by przekazało taką bądź zbliżoną wypowiedź uczonego.

Nie sądzę też, aby Newton skłonny był porównywać swoją pracę do dziecinnej zabawy. Dla nas zabawa taka jest uczeniem się świata, przejawem kreatywności, którą dorośli często tracą z wiekiem, skłonni jesteśmy widzieć w dzieciństwie utracony raj. Inaczej w czasach Newtona, gdy starano się z dzieci uczynić miniaturowych dorosłych i do zachowania dzieci przykładano miary moralne i religijne dorosłego życia. Dzieciństwo służyło właściwie temu, by jak najszybciej z niego wyrosnąć, stając się świadomym i odpowiedzialnym członkiem wspólnoty społecznej i religijnej. Newton był człowiekiem surowo religijnym, purytaninem, który niechętnie patrzył na wszelkie marnowanie czasu i wszystko robił zawsze w jakimś „poważnym” celu. Porównanie do dziecięcej zabawy odbierałoby jego pracy naukowej znaczenie. Podobny obraz dziecka na plaży pojawia się u Johna Miltona, purytańskiego poety, w poemacie Raj odzyskany. Szatan jest w nim umysłem zgłębiającym książkowe mądrości i przeciwstawiony jest mu Jezus, który posiadł tę madrość, która jest najważniejsza. Jezus mówi tam do Szatana m.in.

Kto czyta nieustannie a w swoje czytania
Nie wprowadza rownego lub wyższego zdania
I nie ma DUCHA błądzi kto zaś z DUCHEM czyta
Nie potrzebuje Greka mieć za Erudyta
Słuchacz Pogańskich Nauk bez pomocy DUCHA
Musi grążnąć w ciemnościach choć Doktorów słucha
Niepewny zawsze traci prac swoich pożytki
Głęboko biegły w książkach a sam w sobie płytki
Dowcip otruty jadem lub niedowarzony
Co fraszki lub świecidła zbiera z każdey strony
Warte gębki on je ma za godne Krytyki
Jak dziecko zbierające na piaskach krzemyki.

[przeł. Jacek Przybylski, Kraków 1792]

Książkowe mądrości warte są gąbki – tzn. dziś byśmy powiedzieli warte są wciśnięcia klawisza Delete (na tabliczkach do pisania stosowano gąbkę do ścierania treści, stąd tabula rasa – czysta tabliczka u Johna Locke’a, współczesnego Newtonowi). Nie wiemy, czy Newton czytał Miltona, mógł go przeglądać z powodu bliskości religijnej, choć wiemy, że uczony za poezją nie przepadał, a może lepiej powiedzieć: nie miał do poezji słuchu i wyobraźni. Isaac Newton nie lubił metafor, starał się przekształcić symbole w jakieś konkrety, jak u czytanych przez siebie alchemików. Użycie takiego miltonowskiego porównania byłoby oznaką dystansu starego uczonego wobec zajęć swej młodości i wieku średniego, psychologicznie wydaje się jednak niewiarygodne.

Swe zajęcia traktował Newton raczej jako obcowanie ze Stwórcą niż igraszkę. W tym punkcie spotykał się z Einsteinem, którego stosunek do religii instytucjonalnych był niezbyt przychylny, choć nie uważał się także za ateistę. W roku 1929 na pytanie „Czy wierzy pan w Boga?” odpowiedział:

Nie jestem w każdym razie ateistą. Ale to kwestia nie na nasz ograniczony rozum. Jesteśmy w sytuacji małego dziecka, które znalazło się w olbrzymiej bibliotece wypełnionej książkami w wielu językach. Dziecko wie, że ktoś je musiał napisać. Ale nie wie, jak, i nie zna języków, w których zostały spisane. Przeczuwa, że wszystkie te tomy ustawiono w jakimś porządku, ale nie ma pojęcia, w jakim. Taka też jest moim zdaniem sytuacja nawet najinteligentniejszych ludzi w obliczu Boga. Widzimy cudownie urządzony wszechświat, działający wedle pewnych zasad – tyle że bardzo słabo rozumiemy te zasady. (przeł. J. Skowroński)

Także ten obraz dziecka w niezrozumiałej bibliotece pochodzi tylko z jednego niezbyt wiarygodnego źródła. Jest nim występujący w roli dziennikarza George Sylvester Viereck, który przeprowadził wywiady z wieloma sławnymi ludźmi, np. z Freudem i Hitlerem. Viereck [„Czworokąt”] – nazwisko jak najbardziej odpowiednie dla kogoś, kto rozmawia z odkrywcą geometrycznej natury grawitacji, był nieślubnym wnukiem cesarza Wilhelma II i choć wychowywał się w Stanach Zjednoczonych czuł zawsze słabość do niemieckiego militaryzmu, co zaowocowało nawet kilkuletnią odsiadką w amerykańskim więzieniu.