W roku 1676 dobiegł końca czteroletni pobyt Gottfrieda Wilhelma Leibniza w Paryżu. Teologiczno-dyplomatyczne cele jego misji nie zostały osiągnięte, Leibniz zetknął się jednak w Paryżu z najnowszymi naukami ścisłymi, w szczególności zajął się bliżej matematyką. Były to najświetniejsze lata paryskiej działalności Christiaana Huygensa, którego traktat o zegarze wahadłowym wtedy właśnie ujrzał światło dzienne. Leibniz chłonął nowości i robił szybkie postępy. Już w roku 1673 udało mu się znaleźć słynne przedstawienie liczby pi za pomocą szeregu. Odkrycie to zrobiło spore wrażenie zarówno na paryskich uczonych, jak i na samym odkrywcy, zachęcając go do dalszej pracy w dziedzinie matematyki (w przypadku uczonego tak wszechstronnie uzdolnionego, jak Leibniz, wybór dziedziny nie był bynajmniej czymś oczywistym). Dwa lata później odkrył Leibniz rachunek różniczkowy i całkowy. Ale szereg stanowił wciąż jego powód do dumy. Toteż pochwalił się nim, pisząc w roku 1676 do Henry’ego Oldenburga, sekretarza londyńskiego Royal Society. Z pewnym niedowierzaniem dowiedział się, że „jego” szereg znany jest na Wyspach. Było to trochę tak, jakby ktoś wracając z Princeton z wynikiem, który wszystkich zachwycił, usłyszał, że w Rosji na prowincji dawno już o tym wiedzą.
Szereg to uogólnienie sumy na przypadek nieskończonej liczby wyrazów. Znanym przykładem jest szereg geometryczny. Np.
Co można zilustrować dzieleniem pola kwadratu jednostkowego na kolejne połowy.
Oczywiście, nie zawsze suma taka jest dobrze określona. Jednym z najprostszych nieoczywistych szeregów jest szereg harmoniczny, odwrotności kolejnych liczb naturalnych:
Można łatwo pokazać, że szereg ten jest rozbieżny, tzn. jego sumy częściowe przekraczają dowolną z góry zadaną liczbę – należy tylko zsumować odpowiednio wiele składników. Podobnie rozbieżny jest szereg odwrotności liczb nieparzystych (mimo że z poprzedniego szeregu wybraliśmy jedynie co drugi wyraz):
Nawet gdy ograniczymy się jedynie do odwrotności liczb pierwszych, szereg pozostanie rozbieżny, ten ostatni fakt udowodnił Leonhard Euler.
Szereg Leibniza ma następującą postać:
Jest on naprzemienny, tzn. znaki kolejnych wyrazów się przeplatają. Szereg taki na pewno jest zbieżny, jeśli tylko jego wyraz ogólny dąży do zera. Nie zawsze jednak łatwo jest znaleźć wartość takiej sumy. Leibnizowi udało się odkryć powiązanie z liczbą , znaną z geometrii. Na pierwszy rzut oka nie ma żadnych powodów, aby taki szereg, zbudowany za pomocą prostej arytmetyki, doprowadzić miał do liczby
. Stąd wrażenie, jakie to odkrycie wywarło. Jak ujął to dwudziestowieczny matematyk K.H.D. Knopp: „Dzięki temu rozwinięciu opadła jakby zasłona spowijająca tę dziwną liczbę [
]”.
Za pośrednictwem Oldenburga Isaac Newton reprezentował wyspiarzy. Profesor z Cambridge (które było wtedy matematyczną pustynią) przesłał mu dwa obszerne listy z przeznaczeniem dla Leibniza. Newton znany był wtedy w Europie jedynie z prac optycznych. Był jednak, i może przede wszystkim, matematykiem, najwybitniejszym w tamtej epoce. Derek T. Whiteside poświęcił najlepsze lata życia na wydanie jego rękopisów matematycznych w ośmiu ogromnych tomach. Większość tego materiału z różnych powodów nie ukazała się drukiem za życia Newtona. W chwili gdy napisał Leibniz, Newton był – by tak rzec – w trakcie czwartego tomu swoich dzieł, dawno po odkryciu rachunku fluksji i fluent, czyli swojej wersji rachunku różniczkowego i całkowego (a jak zwykle u matematyków pierwsze tomy dzieł zebranych są najciekawsze). Obaj uczeni chwalili się wynikami, nie przedstawiając dowodów i tylko mgliście napomykając o rachunku. Tak się składa, że rozwinięcia w szereg stanowiły inny ulubiony temat Newtona. Odkrył np., że naprzemienny szereg harmoniczny związany jest z wartościami funkcji logarytmicznej:
Przemawiała do niego elegancja samych rozwinięć, a także ich aspekt praktyczny: pozwalały one obliczać wartości różnych funkcji albo stałych matematycznych, takich jak . Posługując się odkrytym przez siebie rozwinięciem w szereg funkcji logarytmicznej, młody Isaac Newton obliczył kiedyś dla zabawy wartość
.
Prócz ludycznego miało to też aspekt praktyczny. Tablice logarytmów stosowane były w geodezji, nawigacji, astronomii. Znając z dużą dokładnością jedną lub kilka wartości logarytmu, można zbudować tablice, już z mniejszą liczbą cyfr znaczących (ze względu na błędy zaokragleń). Newton znał oczywiście szereg Leibniza. Zrewanżował mu się innym szeregiem, łudząco podobnym:
Dokumenty Leibniza pokazują, że mimo wskazówki, jak można ten szereg otrzymać, sztuka ta nie udała się Leibnizowi.
Henry Oldenburg niedługo później zmarł i Newton stracił na długo kontakt z Royal Society i z szerszym światem. Zresztą w tamtych latach pochłaniała go raczej teologia niż matematyka. Żaden z nich nie opisał drugiemu rachunku różniczkowego i całkowego. Po latach obaj zaczęli podejrzewać tego drugiego o kradzież intelektualną. Był to objaw paranoi, o którą nietrudno było w sytuacji, gdy matematycy chętniej publikowali wyniki niż metody zastosowane do ich uzyskania.
Spójrzmy na koniec na szczegóły. Otóż Leibniz, czytając pewien artykuł Pascala, wpadł na pomysł, aby szukanie pola pod jedną krzywą przekształcić w szukanie pola pod inną krzywą. Nazwał to metodą transmutacji. Opierała się ona na następującej obserwacji.
Rysujemy styczną do krzywej w pewnym punkcie, przecina ona oś w pewnym punkcie. Rozpatrujemy następnie krzywoliniowy „trójkąt” złożony z małego odcinka krzywej i dwóch boków równoległych do osi. Gdy ów „trójkąt” staje się coraz mniejszy, zbliża się do prawdziwego trójkąta. Możemy napisać proporcję
Pola infinitezymalnego (=„nieskończenie małego”) trójkąta utworzonego z dwóch promieni wodzących (linie przerywane) i odcinka krzywej równe jest . Sumując takie pola, czyli całkując, możemy obliczyć pole skończonego wycinka krzywej. Korzystając zaś z powyższej proporcji pole to można zamienić polem pewnej innej krzywej
:
. Wynik ten może się przydać, jeśli zamiana jednej krzywej drugą prowadzi do uproszczenia problemu. Leibniz zastosował swoją metodę do okręgu.
Leibniz chciał obliczyć pole ćwiartki koła (, składającej się z wycinka kołowego i trójkąta. Pole wycinka znaleźć można obliczając pole pod krzywą
, która ma równanie zapisane na rysunku. Łatwiej jest obliczyć pole między osią
a krzywą:
Szczegóły rachunku znaleźć można tutaj. Ostatecznie otrzymujemy
Ułamek po prawej stronie zastępujemy szeregiem geometrycznym:
i całkujemy wyraz po wyrazie. Wynik Newtona uzyskuje się z całki
Całkę po prawej stronie rozwijamy w szereg jw. Leibniz nie znał, jak się wydaje, rozkładu na czynniki