Johann Heinrich Lambert i Immanuel Kant: astronomia gwiazdowa po kolacji (1749, 1755)

Niegdyś młodzi uczeni zaczynali często życie zawodowe jako guwernerzy w bogatych domach. Tak było w przypadku Lamberta – syna krawca, zamieszkałego w Szwajcarii hugonockiego emigranta z Francji, i Kanta – syna siodlarza z Królewca. Obaj z czasem wyzwolili się z prostego nauczycielstwa i doszli do znacznej pozycji naukowej. Lambert został członkiem Pruskiej Akademii Nauk i wybitnym matematykiem. Kant, po wielu latach spędzonych na nauczaniu studentów, wyrósł na najważniejszego filozofa epoki, stając się nie tylko najsławniejszym profesorem w Królewcu, ale i w Niemczech, a z czasem w całej Europie.
Obaj wnieśli pewien wkład do poznania budowy Galaktyki. W tamtych czasach, pozbawionych silnych źródeł światła, wszyscy znali widok nocnego nieba. Wywierał on głębokie wrażenie na naturach skłonnych do kontemplacji. Z górą sześćdziesięcioletni Kant wciąż czerpał z tego widoku natchnienie do pracy: „Dwie rzeczy napełniają umysł coraz to nowym i rosnącym podziwem i pełnym pokory szacunkiem, im częściej i trwalej zastanawiamy się nad nimi: Gwiazdami okryte niebo nade mną i prawo moralne we mnie.” (przeł. K. Kierski). Dodawał jednak Kant w dalszym ciągu wywodu:

Atoli podziw i szacunek mogą wprawdzie pobudzić do badania, ale nie mogą zastąpić jego braku. (…) Zastanawianie się nad światem zaczęło się od najwspanialszego widoku, jaki tylko ludzkie zmysły przedstawić mogą i jaki tylko rozsądek nasz znieść może, by śledzić go w jego dalekim zakresie, a zakończyło się – astrologią. Etyka rozpoczęła od najszlachetniejszej własności ludzkiej natury, której rozwój i kultura niezmierną korzyść obiecuje, a zakończyła – fantastycznością albo zabobonem. (…) Kiedy zaś, chociaż późno, weszła w życie maksyma, aby poprzednio dobrze rozważyć wszystkie kroki, które rozum zamierza uczynić, i nie pozwolić mu postępować inaczej, jak torem przedtem dobrze obmyślanej metody, wówczas sąd o budowie świata uzyskał zupełnie inny kierunek, a z nim zarazem bez porównania pomyślniejszy wynik. Rozłożenie spadania kamienia, ruchu procy na ich pierwiastki i ujawniające się przy tym siły, tudzież matematyczne ich opracowanie, spowodowało w końcu to jasne i po wszystkie czasy niezmienne poznanie budowy świata, które przy postępującej obserwacji może spodziewać się zawsze tylko swego rozszerzenia, nigdy zaś nie potrzebuje obawiać się, że będzie musiało się cofać.

Krytyka praktycznego rozumu, z której Zakończenia pochodzą powyższe słowa, prowadzić miała do ustanowienia nauki o moralności godnej istot rozumnych. Moralność ta powinna stosować się wszędzie tam, gdzie występują takie stworzenia, Kant wierzył, że wszechświat, a nawet nasz Układ Słoneczny, pełen jest zamieszkałych planet. Wyobrażał sobie, że im dalej od Słońca, tym lotniejsze i z subtelniejszej materii zbudowane są owe istoty. Co do rasy ludzkiej nie miał wielkich złudzeń, oprócz tego jednego, że można ją nieco poprawić dzięki rozumnemu postępowaniu nauczycieli. Po dwóch wiekach możemy stwierdzić, że nawet to chyba jest niemożliwe. Nauka Kanta stosuje się jedynie do rozumnych kosmitów, jeśli gdzieś tacy istnieją.

Zostawmy więc z boku wiarę filozofa w ludzką moralność jako źródło ładu i zajmijmy się astronomią gwiazd, gdzie postęp jest niewątpliwy.

Od czasu Kopernika gwiazdy przestały jawić się jako światełka na dwuwymiarowej sferze. Przestrzeń kosmiczna zyskała trzeci wymiar. Bardzo prawdopodobne było, że odległości do gwiazd są rozmaite i otacza nas bezmiar, o jakim nie śniło się filozofom (tych, którym się to śniło, palono na wszelki wypadek na stosie). Przeżycie nowego spojrzenia na znany od dawna widok nieba było także udziałem Genezypa Kapena:

Szedł potykając się, zapatrzony w niebo, na którym odprawiało się codzienne (nie każdodzienne oczywiście) misterium gwiaździstej nocy. Astronomia taka, jaką nauczył się ją pojmować w szkole, nie przedstawiała dla niego wielkiego uroku. Horyzont i azymut, kąty i deklinacje, skomplikowane wyliczenia, precesje i nutacje nudziły go okropnie. Krótki zarys astrofizyki i kosmogonii, zagubiony w nawale innych przedmiotów, był jedyną sferą, wzbudzającą lekki niepokój, graniczący z bardzo pierwotnym wzburzeniem metafizycznym. Ale „niepokój astronomiczny”, tak bliski niekiedy wyższym stanom, wiodącym do filozoficznych rozmyślań, codzienny dzień usuwa w dzisiejszych czasach szybko, jako niepotrzebny nikomu zbytek. Idąc teraz, Genezyp miał wrażenie, że patrzy w nocne niebo po raz pierwszy w życiu. Dotąd było ono dlań, mimo wszelkich wiadomości, dwuwymiarową płaszczyzną, pokrytą mniej lub więcej świecącymi punktami. Mimo poznania teorii, uczuciowo nie wychodził nigdy poza tę prymitywną koncepcję. Teraz przestrzeń dostała nagle trzeciego wymiaru, ukazując różnice odległości i nieskończone perspektywy. Myśl rzucona z szaloną siłą okrążyła dalekie światy, starając się przeniknąć ich sens ostateczny. Wiadomości nabyte, leżące w pamięci jak bezwładna masa, zaczęły teraz wydobywać się na wierzch i grupować koło pytań postawionych w nowej formie, nie jako zagadnienia umysłu, ale jako krzyk przerażenia wszechtajemnicą, zawartą w nieskończoności czasu i przestrzeni i w tym pozornie prostym fakcie, że wszystko było właśnie takim, a nie innym.
(…)
Genezyp patrząc w gwiazdy doznawał zawrotu głowy. Góra i dół przestały istnieć — wisiał w straszliwej przepaści, amorficznej, bezjakościowej. Uświadomił sobie na chwilę aktualną nieskończoność przestrzeni: wszystko to istniało i trwało w tej właśnie sekundzie, którą przeżywał. Wieczność wydała mu się niczym wobec potworności istniejącej w nieskończonostce czasu całej nieskończonej przestrzeni i istniejących w niej światów. Jak tu pojąć tę rzecz? Coś niewyobrażalnego, co narzuca się z absolutną ontologiczną koniecznością. Ta sama tajemnica ukazała mu znowu swą twarz zamaskowaną, ale inaczej. [S.I. Witkiewicz, Nienasycenie, s. 22-23].

Dwudziestojednoletni Lambert od dzieciństwa lubił wieczorem przesiadywać przy oknie otwartym na rozgwieżdżone niebo. Widział w nim świątynię Boga, po której rozświetlonym wnętrzu może błądzić wzrokiem. Nie poprzestał na zachwycie. Zwrócił uwagę na gwiazdy widoczne na tle pasa Drogi Mlecznej. Najwyraźniej są one bliżej Słońca niż te, których światło zlewa się w naszych oczach w mglistą poświatę owego pasa. Znaczy to, że układ gwiazd jest płaskim dyskiem, wewnątrz którego się znajdujemy. Był, wedle jego własnych słów, rok 1749.

Kilka lat później, w roku 1755, Immanuel Kant, starający się o posadę na uniwersytecie, ogłosił książkę zatytułowaną ambitnie: Powszechna historia naturalna i teoria nieba i zadedykowaną królowi Fryderykowi II. Podtytuł dzieła wyjaśniał, że oparte jest ono na „prawach Newtona”. Nie wiemy, czy dziełko to dotarło do króla, niebawem drukarz zbankrutował i książka nigdy nie stała się znana. Zaczęto o niej mówić dopiero kilkadziesiąt lat później, gdy Kant zdobył sławę jako filozof i wszelkie jego pisma zaczęły zwracać uwagę.

Punktem wyjścia Kanta była myśl wyczytana w gazecie: chodziło o recenzję dzieła Thomasa Wrighta. Kant uznał, że system gwiezdny, w którym znajduje się Słońce musi być płaski i że gwiazdy poruszają się, podobnie do planet, po orbitach wokół jednego lub większej liczby centrów. Ponieważ wyczytał (u Derhama), że obserwuje się mgławice o kształcie eliptycznym, uznał, iż są to inne systemy gwiezdne widziane z ukosa: dysk wyglądać powinien wówczas jak elipsa. Słyszał też o wykryciu ruchu niektórych gwiazd: porównując dawne i nowe obserwacje astronomowie wykryli zmiany położenia kilku jasnych gwiazd.

Reszta u Kanta jest czystą spekulacją. Stara się on wykazać, że prawa mechaniki muszą prowadzić do takiego właśnie świata, jaki widzimy. W ten sposób z pierwotnego chaosu wyłonić się miał kosmos, czyli porządek. Krążenie ciał zapewnić miała druga, obok ciążenia, siła działająca we wszechświecie, a mianowicie odpychanie. Newton nie mówi wiele o siłach odpychających, choć uznawał, że działają one między cząsteczkami gazów – dzięki temu gazy rozprężają się, wypełniając całą dostępną objętość. Odpychająca siła Kanta nie jest jednak tym samym co u Newtona. Jego fizyka jest bliższa poglądom Leibniza: ruch po okręgu jest w niej stanem równowagi między siłą grawitacyjną i odśrodkową (podobnie widzą to czasem dzisiejsi studenci, co jednak nie znaczy, że studiowali Leibniza). W istocie chodzi tu nie tyle o siłę odpychającą, co o moment pędu, czyli ilość ruchu obrotowego, która musi być zachowana.

Spekulacje Kanta dość przypadkowo najbliższe były rzeczywistości i jego teoria nazwana została teorią wszechświatów wyspowych (czyli galaktyk poprzedzielanych pustą przestrzenią). Był to zbieg okoliczności: filozof z Królewca powoływał się np. na dane Williama Derhama nt. mgławic. Spośród 21 wymienionych przez niego mgławic, pięć miało być eliptycznych (naprawdę tylko jedna z nich ma kształt eliptyczny). Kant niezbyt troszczył się o fakty obserwacyjne, były one dla niego raczej punktem wyjścia do rozważań spekulatywnych.

W XVIII wieku zawodowi astronomowie nie zajmowali się ruchem gwiazd, wiedziano tylko o nieznacznych przesunięciach paru gwiazd, nie znano ich odległości, niewiele można było w tej sytuacji zrobić. Jednak Newtonowskie prawo ciążenia pozwalało na pewne wnioski. Siła przyciągająca działa między dowolnymi rodzajami materii i maleje jak odwrotność kwadratu odległości, a więc nigdy nie staje się równa zeru. Oznacza to, że niemożliwy jest wszechświat statyczny. Ciała we wszechświecie muszą się poruszać.

Dziś wiemy, że także wszechświat jako całość nie może znajdować się w spoczynku, bo byłaby to sytuacja nietrwała. Na skalę kosmiczną działa jedynie grawitacja. Inne siły, np. elektromagnetyczne, są w praktyce krótkozasięgowe (ponieważ mamy tyle samo ładunków dodatnich i ujemnych). Tym, co chroni świat od zapadnięcia się, kolapsu grawitacyjnego albo elektromagnetycznego, jest w ostatecznym rachunku nie jakiś nowy rodzaj sił, lecz inna mechanika: kwantowa. Zasada nieoznaczoności nie pozwala cząstkom zajmować dowolnie małego obszaru przestrzeni, a zakaz Pauliego sprawia, że stany kwantowe cząstek takich, jak elektrony, zajmowane są po kolei (co wyjaśnia układ okresowy pierwiastków). Możliwe są też sytuacje, kiedy grawitacja przeważa i ciało zapada się, tworząc czarna dziurę, czyli obiekt, w którym materia traci jakąkolwiek tożsamość i swoje indywidualne charakterystyki. Zostaje czysta czasoprzestrzeń ukryta za horyzontem zdarzeń. O takiej możliwości także zresztą spekulowano już w wieku XVIII.

Reklamy

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Isaac Newton i niektóre matematyczne sekrety Stwórcy

Pod koniec roku 1684 Isaac Newton zrozumiał, że ruchy planet wyjaśnić może siła przyciągania między nimi a Słońcem, która jest odwrotnie proporcjonalna do kwadratu odległości. Newton miał wówczas czterdzieści dwa lata i był bardzo mało aktywnym profesorem katedry Lucasa w Cambridge. Wbrew późniejszej legendzie nie odkrył tego prawa w młodości (choć niewiele mu brakowało). W poprzednich latach zajmował się głównie teologią i alchemią, nie szukając rozgłosu i niewiele kontaktując się ze światem zewnętrznym. Teraz spostrzegł, że rysuje się możliwość rozwiązania problemu nie dającego spokoju uczonym od czasów starożytnych. Aż do 1687 roku pracował gorączkowo nad wyprowadzaniem różnych konsekwencji prawa ciążenia powszechnego. Trudno dziwić się jego entuzjazmowi: jedno proste prawo matematyczne pozwalało zrozumieć wiele skomplikowanych zjawisk we wszechświecie.

Czemu siła ciążenia jest odwrotnie proporcjonalna do kwadratu odległości? Można przecież wyobrazić sobie inne możliwe prawa. Dla Newtona było to pytanie: czemu Stwórca zdecydował się na taki, a nie inny wszechświat? Wiele rozważań w Matematycznych zasadach filozofii naturalnej poświęconych jest ruchowi ciał pod działaniem sił zmieniających się w inny sposób z odległością: np. malejących jak trzecia czy piąta jej potęga. A także rosnących proporcjonalnie do odległości. Ten ostatni przypadek był interesujący, dawał bowiem ruchy eliptyczne. Wszystkie planety miałyby wówczas taki sam okres obiegu wokół Słońca.

Jak wygląda ruch planety pod działaniem siły przyciągania proporcjonalnej do odległości? Powszechnie znany jest jednowymiarowy przypadek takiego ruchu:

F=a=-\omega^2 x \Rightarrow x(t)=A\cos\omega t,

F, a, x, t są tu odpowiednio siłą, przyspieszeniem, wychyleniem z położenia równowagi (w którym siła jest równa zeru) i czasem, \omega wielkością stałą, tzw. częstością kołową, określoną przez wielkość siły i masę ciała, którą przyjmujemy za równą 1. Stała A jest dowolna. Jest to ruch harmoniczny, czyli najprostsze możliwe drgania.

W przypadku trójwymiarowym ruch nie jest dużo bardziej skomplikowany. Po pierwsze zachodzi w stałej płaszczyźnie, mamy więc tylko dwa wymiary. Po drugie można go potraktować jako dwa niezależne ruchy wzdłuż osi Ox oraz Oy:

\left\{ \begin{array}{l}  F_x=a_x=-\omega^2 x\\  \mbox{}\\  F_y=a_y=-\omega^2 y.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  a_x=A\cos\omega t\\  \mbox{}\\  a_y=B\sin\omega t.  \end{array}\right.

Wybraliśmy rozwiązania w taki sposób, aby planeta P zakreślała elipsę zorientowaną jak na rysunku.

Łatwo sprawdzić, że mamy do czynienia z elipsą, wyznaczając z powyższych równań funkcje trygonometryczne i korzystając z jedynki:

\cos^2\omega t+\sin^2 \omega t=1=\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}.

Każda elipsa jest rzutem jednostajnego ruchu po okręgu punktu Q (dokładnie tak, jak gdybyśmy patrzyli na ten ruch po okręgu z ukosa, pod pewnym kątem: okrąg skraca się wtedy w jednym kierunku). Częstość kołowa i okres są takie same dla wszystkich torów. Nazwijmy ten tor elipsą Hooke’a (od prawa Hooke’a), choć Newton bardzo by się zżymał na tę nazwę, także ten ruch zbadał bowiem sam, a Hooke’owi pamiętał do końca życia protekcjonalny i lekceważący sposób, w jaki ten go kiedyś potraktował w dyskusji na temat optyki. Z powodu tej animozji nie wiemy dziś na pewno, jak wyglądał Robert Hooke, Newton bowiem go przeżył i kazał usunąć jego portret z Towarzystwa Królewskiego.

Newton zadał sobie pytanie, jak te elipsy (w środku których byłoby Słońce) mają się do elips keplerowskich (w których ognisku jest Słońce)? Okazuje się, że można podać związek między siłami wywołującymi oba te ruchy.

Rozpatrzmy planetę P zakreślającą jakikolwiek tor pod wpływem siły \vec{F} skierowanej ku pewnemu stałemu punktowi S.

Na rysunku przedstawiona jest elipsa, ale kształt krzywej nie jest w tym punkcie istotny. Korzystamy ze wzoru na siłę  dośrodkową:

F_n=\dfrac{v^2}{\varrho},

gdzie \varrho jest promieniem krzywizny toru w danym punkcie. Wiemy także, iż moment pędu L naszej planety musi być stały:

L=rv\sin\varepsilon.

Wobec tego siła F równa jest

F=\dfrac{F_n}{\sin\varepsilon}=\dfrac{L^2}{\varrho r^2 \sin^3\varepsilon}.

Teraz zastosujemy uzyskane wyrażenie do porównania siły grawitacji z siłą Hooke’a. Wyobraźmy sobie, że taką samą elipsę zatacza planeta pod wpływem siły skierowanej ku ognisku elipsy S oraz pod wpływem siły skierowanej ku środkowi elipsy C. Przyjmujemy, że moment pędu planety jest w obu przypadkach taki sam. Wobec tego

\dfrac{F_S}{F_C}=\dfrac{r_C^2 \sin^3\varepsilon_C}{r_S^2 \sin^3\varepsilon_S}.

Odcinek EC jest równoległy do wektora prędkości. Stosując twierdzenie sinusów do trójkąta ECP , mamy:

\dfrac{\sin\varepsilon_C}{\sin\varepsilon_S}=\dfrac{EP}{r_C}.

Ostatnim potrzebnym elementem jest tzw. lemat Newtona: odległość EP=A, tzn. dużej półosi elipsy. Jest to własność elipsy, którą udowadniamy poniżej. Wobec tego siła grawitacji równa jest

F_S=\dfrac{F_C}{r_C}\dfrac{A^3}{r_S^2}=\omega^2 \cdot \dfrac{ A^3}{r_S^2}\sim \dfrac{1}{r_S^2}.

Otrzymaliśmy więc z elipsy Hooke’a elipsę keplerowską oraz z prawa Hooke’a prawo grawitacji. Oba te rodzaje ruchu okazują się matematycznie powiązane. Można pokazać, że tylko te dwa rodzaje sił prowadzą do torów zamkniętych, których peryhelia się nie obracają.

Lemat Newtona

Odcinek S'F jest równoległy do EC oraz \vec{v}. Trójkąt FPS' jest równoramienny, ponieważ promień światła wysłany z S i odbijający się w punkcie P przejdzie przez S'. Mamy zatem FP=PS'. Odcinki EC oraz S'F są równoległe i przepoławiają odcinek SS', a więc także i odcinek SF. Zatem SE=EF. Mamy więc

EP=EF+FP=\frac{1}{2}SF+\frac{1}{2}(FP+PS')=\dfrac{SP+PS'}{2}=A.

W ostatniej równości skorzystaliśmy z faktu, że suma odległości punktu elipsy od obu ognisk jest stała.

 

 

 

 

Tory planet i komet: wielkie odkrycie Isaaca Newtona

Johannes Kepler w roku 1609 ogłosił odkrycie, że planety poruszają się wokół Słońca po elipsach, a Słońce jest wspólnym ogniskiem tym wszystkich elips (I prawo Keplera). Nie bardzo mu wówczas chciano wierzyć, wprowadził bowiem nowe rodzaje sił, jedna miała ciągnąć planetę wokół Słońca, a druga, magnetyczna, miała na przemian, to przyciągać ją, to odpychać. Prędkość planety miała zależeć od jej odległości od Słońca: bliżej niego planeta poruszała się szybciej i na odwrót, kiedy była dalej, poruszała się wolniej (II prawo Keplera).

Z czasem astronomowie stwierdzili, że opisane przez Keplera prawa dobrze odzwierciedlają zjawiska na niebie: dokładność tablic wzrosła wielokrotnie. W 1687 roku ukazały się Matematyczne zasady filozofii przyrody, w których Isaac Newton wyjaśnił ruchy planet i szereg innych zjawisk, jak przypływy i odpływy mórz albo precesję ziemskiej osi obrotu za pomocą jednej jedynej siły: grawitacji. Wszystkie ciała we wszechświecie miały się przyciągać siłami odwrotnie proporcjonalnymi do ich odległości i proporcjonalnymi do mas. Jedno proste matematycznie prawo pozwalało zrozumieć dynamikę układu planetarnego. Problem postawiony jeszcze przez starożytnych Greków i Babilończyków został w ten sposób rozwiązany. Najważniejszą częścią tego rozwiązania było udowodnienie, że z prawa grawitacji wynikają Keplerowskie elipsy. Poniżej pokażemy współczesne sformułowanie tego rozwiązania.

Wyobraźmy sobie planetę P poruszającą się wokół nieruchomego Słońca (nie jest trudno pójść o krok dalej i uwzględnić także ruch Słońca).

Każda z orbit ma punkt najbliższy Słońca: perihelium P_0. Wybierzmy oś Ox tak, żeby przechodziła ona przez perihelium i następnie poruszała się w kierunku P. Równanie ruchu planety zgodnie z II zasadą dynamiki oraz prawem powszechnego ciążenia ma postać:

\dfrac{d\vec{v}}{dt}=-\dfrac{k}{r^2}\vec{e}_r.

Wektory \vec{e}_r, \vec{e}_\varphi mają odpowiednio kierunek promienia i kierunek do niego prostopadły (transwersalny) oraz długość jednostkową, k=GM jest iloczynem stałej grawitacyjnej i masy Słońca (masa planety nie wchodzi do zagadnienia). Znak minus pochodzi stąd, że grawitacja jest siłą przyciągającą.

W ruchu planety nie zmienia się wielkość jej momentu pędu (przyjmujemy tu masę planety równą 1):

L=rv_{\varphi}=r^2 \omega=const.

Jest to współczesne sformułowanie II prawa Keplera. Wchodzi do niego składowa \vec{v}_\varphi prędkości prostopadła do promienia. W ostatniej równości użyliśmy prędkości kątowej \omega=v_\varphi/r. Więcej szczegółów dotyczących tego wyrażenia można znaleźć niżej (*).

Pokażemy, że torem planety musi być krzywa stożkowa ze Słońcem w ognisku. W tym celu udowodnimy, że odległość planety od Słońca spełnia równanie stożkowej:

r=\dfrac{p}{1+e\cos\varphi},

gdzie p, e zwane są odpowiednio parametrem i mimośrodem stożkowej, a kąt \varphi jest kątem z osią Ox na rysunku. Wyprowadzenie tego równania można znaleźć poniżej (**).

Zakładamy, że moment pędu jest różny od zera: znaczy to, iż planeta nie porusza się po prostej przechodzącej przez Słońce. Oczywiście takie tory są matematycznie i fizycznie dopuszczalne, eliminujemy je jednak z dalszych rozważań.

Równanie ruchu planety można uprościć, jeśli zamiast czasu wprowadzić do niego kąt \varphi. Wyznaczając prędkość kątową z zasady zachowania momentu pędu, otrzymujemy

\omega=\dfrac{d\varphi}{dt}=\dfrac{L}{r^2}.

W obu równaniach występuje r^2 w mianowniku, wobec tego, dzieląc je stronami i korzystając ze wzorów na pochodną funkcji złożonej i odwrotnej, możemy się tej zależności pozbyć:

\dfrac{d\vec{v}}{d\varphi}=\dfrac{d\vec{v}}{dt}\cdot \dfrac{dt}{d\varphi}=-\dfrac{k}{L}\vec{e}_r.

Równanie wektorowe to para równań dla składowych wektora prędkości:

\left\{ \begin{array}{l} \dfrac{dv_x}{d\varphi}=-\dfrac{k}{L}\cos\varphi \\  \mbox{}\\  \dfrac{dv_y}{d\varphi}=-\dfrac{k}{L}\sin\varphi.  \end{array}\right.\quad \Rightarrow \quad \left\{  \begin{array}{l}  v_x=-\dfrac{k}{L}\sin\varphi+A_x \\  \mbox{}\\  v_y=\dfrac{k}{L}\cos\varphi+A_y.  \end{array}\right.

Ostatnią parę równań możemy zapisać w postaci wektorowej

\vec{v}=\dfrac{k}{L}\vec{e}_\varphi+\vec{A}.

Wynik ma prostą interpretację geometryczną: pierwszy wektor po prawej stronie zakreśla okrąg o promieniu k/L, a promień wodzący tego okręgu tworzy z osią Ox kąt równy 90^{\circ}+\varphi, obracając się razem z promieniem wodzącym planety. W zależności od długości wektora \vec{A} możliwe są następujące cztery sytuacje:

Punkt P_0 odpowiada kątowi \varphi=0, wektor prędkości jest wtedy równoległy do osi Oy (w chwili gdy odległość osiąga minimum, składowa x prędkości musi znikać). Oznacza to, że A_x=0. W każdym przypadku koniec wektora prędkości zakreśla okrąg albo jego łuk. Krzywą taką nazywa się hodografem. Zatem hodograf ruchu keplerowskiego jest łukiem okręgu (w trzecim przypadku to okrąg bez dolnego punktu, w czwartym dozwolone są tylko te wartości \varphi, dla których wektor \vec{v} ma z okręgiem dwa punkty wspólne; pewien zakres kątów jest niedozwolony, ruch zachodzi tu po gałęzi hiperboli i ograniczony jest jej asymptotami.) Kształt hodografu ruchu keplerowskiego odkrył William Rowan Hamilton w XIX wieku i opublikował w pracy zawierającej wyłącznie słowny opis, bez żadnego rysunku i bez wzorów. Brytyjczycy (Hamilton był Irlandczykiem) po Newtonie specjalizowali się w takiej matematyce bez rachunków, co nie zawsze da się z sensem przeprowadzić. Nieco mniej formalne podejście do hodografu tego ruchu.

albo tutaj

Równanie hodografu daje nam prędkości, łatwo z nich przejść do równania toru. Wystarczy znaleźć składową v_\varphi prędkości. Otrzymamy ją przez rzutowanie wektora prędkości na kierunek promienia okręgu zaznaczonego na rysunkach. Otrzymujemy z nich

v_\varphi=\dfrac{k}{L}+A\cos\varphi \quad\Rightarrow\quad r=\dfrac{L}{k/L+A\cos\varphi}=\dfrac{\frac{L^2}{k}}{1+\frac{LA}{k}\cos\varphi}.

Ostatnie równanie jest biegunowym równaniem stożkowej o mimośrodzie e=\frac{LA}{k}, odległości liczone są od ogniska owej stożkowej. Otrzymaliśmy uogólnioną wersję I prawa Keplera.

Na rysunku oba tory: w przestrzeni prędkości oraz w przestrzeni położeń, czyli w zwykłej przestrzeni. A to paraboliczna orbita komety z roku 1680 wyznaczona przez Newtona (obliczenia robił Edmond Halley).

(*) Prędkość kątowa to

\omega=\dfrac{\Delta \varphi}{\Delta t}=\dfrac{v_\varphi \Delta t}{r \Delta t}=\dfrac{v_\varphi }{r }.

Zastępujemy tu dla małych kątów tangens wartością kąta w radianach.

(**) Stożkową definiuje się zadając pewien punkt, zwany ogniskiem oraz prostą, zwaną kierownicą (na rysunku czerwone) oraz wartość mimośrodu e.

Stożkową będzie zbiór takich punktów P, że ich odległość od ogniska jest e razy większa od ich odległości od kierownicy:

OP=ePP'.

Łatwo stąd znaleźć równanie stożkowej. Mamy bowiem

r\cos\varphi+PP'=QQ' \Rightarrow  r\cos\varphi+\dfrac{r}{e}=\dfrac{p}{e}.

Mnożąc ostatnie równanie obustronnie przez e i wyznaczając z niego r, otrzymujemy

r=\dfrac{p}{1+e\cos\varphi}.

James Clerk Maxwell: O liniach sił Faradaya (1855-1856)

Jesienią 1855 roku dwudziestoczteroletni Szkot został wybrany na członka (Fellow) Trinity College, w tym samym mniej więcej wieku co niegdyś Isaac Newton. Kolegium nie wymagało już przyjęcia święceń, choć pobożny Maxwell pewnie nie odrzucałby z góry takiej możliwości (Newton, także pobożny, ale nieortodoksyjny, wykręcił się specjalną dyspensą królewską). Maxwell miał talent matematyczny, należał do wychowanków sławnego tutora Williama Hopkinsa, znanego z kształcenia tzw. wranglers – studentów wyróżniających się na końcowych egzaminach z tego przedmiotu. Hopkins miał ich na koncie dwie setki, zarabiał zresztą w ten sposób całkiem spore pieniądze. Do jego uczniów należeli Arthur Cayley, lord Kelvin, George Gabriel Stokes, a także w roku 1854 Edward Routh jako Senior Wrangler i Maxwell jako Second Wrangler. Ten ostatni zdążył już zająć się w sposób twórczy kilkoma tematami z dziedziny fizyki oraz fizyki matematycznej, teraz próbował swych sił na polu elektryczności i magnetyzmu.
Na przełomie lat 1855 i 1856 Maxwell ogłosił pracę O liniach sił Faradaya. Nawiązywał w niej do badań eksperymentalnych Michaela Faradaya, bodaj największego eksperymentatora w historii fizyki. Prosty chłopak, oddany jako czternastolatek do terminu u introligatora, sam zdobył wykształcenie naukowe i zaczynając od pomocnika w laboratorium, doszedł do pozycji wyroczni w kwestiach eksperymentalnych. W roku 1855 zjawiska elektryczne i magnetyczne znane były całkiem dobrze, brakowało jednak wciąż zadowalającej teorii, która obejmowałaby ich całość. Próbowano sprawdzonego wcześniej podejścia za pomocą oddziaływania na odległość. A więc ładunki elektryczne oraz bieguny magnetyczne przyciągają się albo odpychają, a siła jest odwrotnie proporcjonalna do kwadratu odległości. Prawo takie sprawdził eksperymentalnie Charles Augustin Coulomb jeszcze w poprzednim wieku. Także prądy elektryczne oddziałują ze sobą na odległość, choć prawo w tym przypadku okazało się dość skomplikowane, ponieważ uwzględniać musiało kierunki obu prądów. Faraday odkrył, że zmienne pole magnetyczne generuje prąd – to zjawisko indukcji elektromagnetycznej wykorzystywane jest np. w elektrowniach, trudno wyobrazić sobie naszą cywilizację bez wszelkiego rodzaju generatorów prądu.
Idea oddziaływania na odległość była niezbyt chętnie akceptowanym spadkiem po Isaacu Newtonie. Jego prawo powszechnego ciążenia mówi o przyciąganiu na odległość odwrotnie proporcjonalnym do kwadratu odległości. Jak jakieś ciało może działać tam, gdzie go nie ma? Czemu siła maleje jak kwadrat odległości, a nie jakaś inna jej potęga? Nie znano odpowiedzi na pierwsze pytanie, co do drugiego istniały pewne wskazówki, Układ Słoneczny, jaki znamy wymaga takiego właśnie prawa z wykładnikiem równym dwa. Można więc było podejrzewać, że odpowiadało on zamiarom Stwórcy. Do czasów Maxwella nie dowiedziano się niczego nowego na temat grawitacji, uczeni, nie mogąc odpowiedzieć na te pytania, przestali je zadawać i zajęli się, jak to zawsze bywa, kwestiami rokującymi szybszą odpowiedź.
Faraday, geniusz eksperymentu, nie miał wyrafinowanego wykształcenia matematycznego. Starał się więc wizualizować obserwowane zjawiska. Przykładem były linie sił pola magnetycznego z jednej z jego prac.

faraday29_1-x

Na lewym rysunku mamy linie sił bieguna magnetycznego, na drugim dwóch różnych biegunów magnetycznych. Są to wyniki eksperymentu: na papierze rozsypywane były opiłki żelaza, a później obraz ten utrwalano za pomocą kleju. Czym były linie sił? Maxwell definiował je jako linie wskazujące w każdym punkcie kierunek siły działającej na biegun magnetyczny (albo ładunek w przypadku elektrycznym). Dalej skupimy się na polu elektrycznym, ponieważ istnieją pojedyncze ładunki elektryczne i jest to nieco łatwiejsze do omówienia. Podobne rozumowania stosują się także do przypadku magnetycznego, trzeba tylko pamiętać, że nie istnieją osobne bieguny magnetyczne. Nb. szukano wielokrotnie cząstek elementarnych, które byłyby takimi biegunami, tzw. monopoli magnetycznych, czasami nawet komunikowano o ich odkryciu, ale żadne z tych doniesień się nie potwierdziło.

y

x

Te same linie sił obliczone dla przypadku pojedynczego ładunku oraz pary przeciwnych ładunków. Linie przerywane są wszędzie prostopadłe (ortogonalne) do linii sił i odpowiadają stałemu potencjałowi.

Maxwell zwrócił uwagę, że linie sił pola tworzą taki sam obraz jak linie przepływu idealnej nieściśliwej cieczy. Moglibyśmy sobie wyobrazić, że te linie sił to w istocie rurki cieczy. W rurce takiej iloczyn szybkości przepływu oraz pola przekroju jest stały. Tam, gdzie przekrój jest mniejszy, ciecz płynie szybciej. Gdyby prędkość była odpowiednikiem natężenia pola, należałoby sobie wyobrażać rurkę jako węższą tam, gdzie pole jest silniejsze, i odwrotnie.

maxwell tube

Pole elektryczne wokół ładunku punktowego składałoby się ze stożkowych rurek o wierzchołku w ładunku. Pole przekroju rośnie jak kwadrat promienia, natomiast prędkość przepływu (a także pole elektryczne) maleje w takim samym stosunku – co zgodne jest z obserwacjami.

maxwell1

maxwell fluid

Ładunek punktowy odpowiada więc źródłu naszej dziwnej cieczy. Z tego punktu, niczym z wywierzyska, wypływa nieściśliwa ciecz na wszystkie strony. Całkowita objętość tej cieczy przepływająca przez powłokę sferyczną nie zależy od promienia powłoki:

v\sim \dfrac{1}{r^2}\Rightarrow vS\sim \dfrac{1}{r^2}4\pi r^2=4\pi=const

Przez każdą powierzchnię sferyczną przepływa tyle samo cieczy w ciągu sekundy. W przeciwnym wypadku ciecz musiałaby się gdzieś gromadzić albo wypływać po drodze między dwiema takimi tymi powierzchniami otaczającymi źródło. Nie musimy wcale ograniczać się do powierzchni kulistych: przez każdą powierzchnię zamkniętą otaczającą źródło w jednostce czasu przepłynie taka sama objętość cieczy.

Oczywiście Maxwell nie twierdził, że pole elektryczne jest przepływem jakiejś tajemniczej cieczy. Podkreślał jedynie analogię czysto matematyczną. W przypadku elektrycznym wielkość „przepływu” nazywamy strumieniem pola elektrycznego przez daną powierzchnię zamkniętą. Okazuje się, że ów strumień \Phi jest równy (w jednostkach SI):

\Phi=\dfrac{q}{4\pi\varepsilon_0 r^2}4\pi r^2=\dfrac{q}{\varepsilon_0}.

Ładunek wewnątrz powierzchni oznaczamy przez q. Znów kształt powierzchni jest obojętny. Prawo to, zwane prawem Gaussa, pozostaje słuszne także dla przypadku większej liczby ładunków. Wypadkowa prędkość przepływu w danym punkcie jest wówczas sumą osobnych prędkości. Podobnie z natężeniem pola elektrycznego: jest ono wektorową sumą pól wytwarzanych przez każdy z ładunków. Ładunki ujemne są „ujemnymi” źródłami, czyli takimi miejscami, w których nasza ciecz ucieka w jakieś matematyczne zaświaty. Prawo Gaussa w wersji elektrycznej stwierdza, że strumień przez dowolną powierzchnię zamkniętą jest proporcjonalny do algebraicznej sumy ładunków wewnątrz powierzchni.

Prawo Gaussa jest przydatne, pozwala bowiem obliczać pole elektryczne w niektórych sytuacjach, gdy układ jest symetryczny. Możemy np. stosować je do dowolnego kulistosymetrycznego rozkładu ładunków. Można je także przenieść na grawitację: wówczas polem jest przyspieszenie grawitacyjne a strumień jest zawsze ujemny i proporcjonalny do masy (*). Samo prawo Gaussa jednak nie wystarczy: na przepływy owej fikcyjnej cieczy należy jeszcze nałożyć dodatkowy warunek bezwirowości (w przypadku statycznym).

Dlaczego obraz nieściśliwej cieczy lepszy był od tradycyjnego oddziaływania na odległość? Pozwalał wyjaśnić obserwowane linie sił i sprowadzał zagadnienie do lokalnego: ciecz zachowuje się tak, a nie inaczej, tylko wskutek popychania przez inne jej części. Wszystkie zjawiska są więc lokalne. W gruncie rzeczy w takim podejściu nie potrzebujemy wcale sił działających na odległość. Wystarczą pola i ich lokalne zachowanie. Punkt widzenia tego rodzaju miał wielką przyszłość. Koncentrując się na lokalnych równaniach opisujących elektryczność i magnetyzm Maxwell odniósł sukces, budując najważniejszą teorię XIX stulecia. Stało się to jednak znacznie później, na razie była tylko pewna analogia matematyczna, ilustracja pojęć wprowadzonych przez Faradaya.

Charakterystyczna jest reakcja samego Faradaya, człowieka niezwykle skromnego. Sześćdziesięciopięcioletni luminarz nauki pisze do badacza młodszego o dwa pokolenia: „Z początku byłem nieomal przerażony, widząc tak wielką siłę matematyczną zastosowaną do tego przedmiotu, potem jednak zdumiało mnie, jak dobrze przedmiot zniósł to wszystko”.

(*) W szczególności prawo Gaussa pozwala natychmiast rozwiązać problem przyciągania przez kulę (w obu przypadkach: grawitacji oraz elektryczności). Jeśli rozkład ładunku ma symetrię kulistą, to możemy do niego zastosować prawo Gaussa tak, jak do punktowego ładunku w środku kuli. Przeprowadzając doświadczenia na zewnątrz kuli, będziemy obserwowali pole elektryczne takie, jak gdyby nasza kula ściągnięta była do punktu środkowego (z zachowaniem wartości ładunku). Dlatego np. kula ziemska przyciąga tak, jak punktowa masa w środku Ziemi. Wiemy, że nasza planeta w pierwszym przybliżeniu rzeczywiście składa się z koncentrycznych warstw kulistych. Nie musimy przy tym wiedzieć, jaka jest gęstość i grubość różnych warstw, ważna jest tylko całkowita masa Ziemi.

Rachunek różniczkowy i całkowy w kwadrans

  • Pochodna

Chcąc ustalić, jak szybko zmienia się jakaś wielkość, wygodnie jest rozważać bardzo niewielkie jej przyrosty. Można je uważać za wielkości nieskończenie małe, np. dodatnia nieskończenie mała jest różna od zera, ale mniejsza od każdej dodatniej liczby rzeczywistej. Zazwyczaj interesują nas pewne ilorazy owych nieskończenie małych, które mogą być nie tylko określone, ale i równe jakiejś zwykłej liczbie rzeczywistej. Rozpatrzmy przykład funkcji y=x^3. Biorąc dwie wartości argumentu x, x+\Delta x, możemy obliczyć przyrost tej funkcji:

\Delta y=(x+\Delta x)^3-x^3=3x^2\Delta x+3x\Delta x^2+\Delta x^3.

Wyobraźmy sobie teraz, że wartość \Delta x jest nieskończenie małą: przyrost funkcji też stanie się nieskończenie małą, jak widać jest sumą trzech wyrazów z różnymi potęgami \Delta x – każdy z nich też jest nieskończenie małą. Żeby ustalić, jak szybko rośnie nasza funkcja, dzielimy przyrost wartości przez przyrost argumentu:

\dfrac{\Delta y}{\Delta x}=3x^2+3x\Delta x+\Delta x^2.

Pierwszy wyraz po prawej stronie nie zawiera żadnych nieskończenie małych, jest zwykłą liczbą rzeczywistą, pozostałe dwa są nieskończenie małe. Definiujemy pochodną funkcji jako wartość rzeczywistą, która zostaje z prawej strony po odrzuceniu nieskończenie małych. Nazywamy ją wartością standardową liczby, mamy więc

\dfrac{dy}{dx}\equiv f'(x)\equiv y'=\mbox{st}\left(\dfrac{\Delta y}{\Delta x}\right)=3x^2.

W bardziej konwencjonalnym podejściu obliczamy granicę prawej strony, gdy \Delta x\rightarrow 0.

Uwaga: W XVII i XVIII wieku używano pojęcia nieskończenie małych, później wprowadzono ścisłe pojecie granicy, a jeszcze później, bo w drugiej połowie XX wieku, wykazano, że można rozszerzyć pojęcie liczb rzeczywistych tak, aby zawierało także liczby nieskończenie małe oraz nieskończenie wielkie. Każda standardowa liczba rzeczywista x otoczona jest nieskończenie bliskimi liczbami postaci x+dx, gdzie dx jest nieskończenie małe. Można jednak zrzutować taką liczbę hiperrzeczywistą na zwykłą prostą rzeczywistą i otrzymamy wówczas wartość standardową st(x+dx)=x. Podejście takie, zwane analizą niestandardową albo infinitezymalną, jest równie ścisłe jak dziewiętnastowieczne armaty z \epsilon ,\delta.

Pochodna mierzy nachylenie funkcji w danym punkcie, co jest znacznie wygodniejsze niż używanie średnich nachyleń w skończonym przedziale.

nachylenie stycznej

Można sobie wyobrażać, że każda porządna linia krzywa jest łamaną złożoną z nieskończenie wielu nieskończenie krótkich odcinków. Obliczanie pochodnych jest bardzo proste, mamy pewien zbiór reguł, które pozwalają to robić. Np. pochodna sumy funkcji jest sumą pochodnych itd. Jeśli nie chce się nam liczyć, wchodzimy na WolframAlpha i wpisujemy, w naszym przykładzie: derivative of x^3 (co po angielsku znaczy pochodna z).

  • Całka nieoznaczona

Obliczając pochodną funkcji w danym punkcie otrzymujemy jakąś wartość rzeczywistą. Jeśli potraktować x jako zmienną, otrzymujemy nową funkcję x\mapsto f'(x). Można więc traktować obliczanie pochodnej (zwane ze względów historycznych różniczkowaniem) jako pewne odwzorowanie przypisujące funkcji f pewną inną funkcję f'. Można też spojrzeć na sprawę odwrotnie i dla pochodnej równej g(x) szukać funkcji pierwotnej G(x), tzn. takiej, że G'(x)=g(x). Każda tablica pochodnych czytana od prawej do lewej strony jest tablicą funkcji pierwotnych, inaczej całek nieoznaczonych:

\int{ g(x)dx}\equiv G(x)\Leftrightarrow G'(x)=g(x).

Symbol dx pod całką wskazuje tylko nazwę zmiennej. Przykład z poprzedniego punktu dowodzi, że

\int{3x^2 dx}=x^3.

W WolframAlpha: integral of 3x^2. Do funkcji pierwotnej zawsze można dodać jakąś stałą, ponieważ nie zmienia to pochodnej (nachylenie funkcji stałej jest zawsze równe 0). W odróżnieniu od obliczania pochodnych znajdowanie całek nieoznaczonych bywa trudne, a niektóre funkcje elementarne nie mają elementarnych całek oznaczonych. Zawsze można natomiast bez trudności sprawdzić, czy całka znaleziona jest prawidłowo: wystarczy wynik zróżniczkować.

  • Całka oznaczona czyli pole pod wykresem

Mając pewną funkcję f(x), zdefiniujmy nową funkcję S(x), która jest polem zawartym między wykresem funkcji a osią Ox oraz między dwiema wartościami argumentu: stałym a oraz zmiennym x.

newton_leibniz

Pole takie to z definicji całka oznaczona z funkcji f:

S(x)\equiv\int_{a}^{x}f(x) dx.

Obowiązuje następujące twierdzenie Newtona-Leibniza (choć znali je wcześniej James Gregory oraz Isaac Barrow): Jeśli F(x) jest dowolną funkcją pierwotną (ciągłej) funkcji f(x), to zachodzi równość:

\int_{a}^{b}f(x)dx=F(b)-F(a).

Twierdzenie to wskazuje główną motywację obliczania całek nieoznaczonych: możemy za ich pomocą wyznaczyć całkę oznaczoną czyli pole, a to się często przydaje.

Dlaczego słuszne jest tw. Newtona-Leibniza? Jeśli rozpatrzyć dwie bliskie wartości argumentu x, x+\Delta x, to przyrost funkcji S(x) jest równy

\Delta S=S(x+\Delta x)-S(x)\approx f(x)\Delta x \Rightarrow \dfrac{\Delta S}{\Delta x}\approx f(x),

gdzie równość przybliżona bierze się stąd, że krzywoliniowy cienki pasek można w przybliżeniu zastąpić polem prostokąta. Równość staje się dokładna, gdy \Delta x dąży do zera. Zatem S'(x)=f(x). Łatwo zauważyć, że trzeba wybrać funkcję pierwotną F(x)-F(a), bo zapewnia ona, że dla x=a otrzymamy pole równe 0. .

Możemy zilustrować tw. Newtona-Leibniza na naszym przykładzie funkcji pierwotnej do 3x^2:

\int_{0}^{x}3t^2 dt=x^3-0^3=x^3\Leftrightarrow \int_{0}^{x}t^2 dt=\dfrac{x^3}{3}

Wynik ten znał już Archimedes: pole pod parabolą jest równe 1/3 pola prostokąta na rysunku.

pole_paraboli

Jeśli nasza funkcja nie jest stale dodatnia, to całka oznaczona jest polem zsumowanym ze znakiem + albo -, jak na rysunku. Oblicza się ją nadal za pomocą tw. Newtona-Leibniza.

pole_calka