Od Eulera do Feynmana: Po co nam liczba e?

Ilu matematyków potrzeba do wkręcenia żarówki? Odpowiedź: -e^{i\pi}.

feynman e i pi

Piętnastoletni Richard Feynman zapisał w swoim notatniku:

Najbardziej niezwykła równość w matematyce

e^{i\pi}+1=0.

Rzeczywiście, mamy tu trzy liczby: podstawę logarytmów naturalnych e, stosunek długości okręgu do średnicy \pi oraz jednostkę urojoną i. Pokażemy, co wyróżnia liczbę e, wprowadzoną w sposób systematyczny i nazwaną przez Leonharda Eulera. Przyjrzymy się funkcji wykładniczej e^{x} w dwóch przypadkach: dla x rzeczywistego oraz czysto urojonego – w tym drugim przypadku funkcja staje się okresowa, co jest na pierwszy rzut oka zaskakujące.

exponents

W dziedzinie rzeczywistej funkcja e^x jest „najprostszą” funkcją wykładniczą. Na wykresie zaznaczona jest linią niebieską. Na czym polega jej prostota (albo naturalność)? Po pierwsze można każdą inną funkcję wykładniczą zapisać za jej pomocą, zatem inne są nam właściwie niepotrzebne. Po drugie zachowuje się ona najprościej w okolicy x=0. Oczywiscie każda funkcja wykładnicza ma w tym punkcie wartość 1. Chodzi jednak o nachylenie, z jakim krzywa przecina oś Oy. Z wykresu widać, że to nachylenie względem osi Ox może być dowolne (oprócz 90º). Naturalna funkcja wykładnicza ma tangens nachylenia równy 1. Oznacza to, że dla małych wartości x mamy

e^x\approx 1+x. \mbox{ (*)}

Dla porównania, przy podstawie 10, otrzymamy:

10^x\approx 1+2,3026x.

Widzimy, czemu matematycy nie chcą używać innych podstaw funkcji wykładniczej niż e. Funkcję tę możemy zdefiniować jako szereg, czyli nieskończoną sumę:

e^x=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\ldots.

Nawet jeśli nie znamy analizy, wiadomo, jak używać takiego szeregu: gdy chcemy poznać wartość funkcji, musimy zsumować dostatecznie dużo jego wyrazów. Ile wyrazów – to zależy od wymaganej dokładności oraz od wartości x.

Tak wygląda obliczanie wartości liczby e.

Istnieje także inny, bardziej praktyczny sposób zdefiniowania liczby e. Wyobraźmy sobie, że oddajemy złotówkę na lokatę ze stopą oprocentowania 10% na 10 lat. Ile będziemy mieli na koncie po 10 latach? Naiwna odpowiedź brzmi 2 zł (bo 10% razy 10 lat daje 100%). W rzeczywistości musimy uwzględnić kapitalizację odsetek, tzn. fakt, że co pewien czas obliczana jest nowa wartość naszej lokaty i następne odsetki oblicza się już od tej nowej wartości. Jeśli kapitalizacja odsetek następuje co roku, wartość naszej lokaty po 10 latach równa będzie

\left(1+\dfrac{1}{10}\right)^{10}\approx 2,5937.

A gdyby kapitalizować odsetki 10 razy w roku (oczywiście za każdym razem stopa będzie 10 razy mniejsza)? Wówczas wartość naszej lokaty będzie równa

\left(1+\dfrac{1}{100}\right)^{100}\approx 2,7048.

W tym miejscu uważny Czytelnik zauważy, iż nasze zadanie prowadzi najwyraźniej do liczby e.

Bardziej rozbudowany przykład liczbowy.

Gdybyśmy kapitalizowali odsetki w sposób ciągły, pod koniec lokaty będziemy mieli na koncie e zł. Możemy uważać tę wartość za granicę następującego ciągu:

e=\lim_{n\rightarrow\infty} \left(1+\dfrac{1}{n}\right)^n \mbox{ (**)}.

Wynika stąd, że w przybliżeniu 1% wzrostu przez 100 lat albo 5% wzrostu przez 20 lat, albo 10% wzrostu przez 10 lat dadzą w przybliżeniu ten sam wynik końcowy: e. Błąd będzie tym mniejszy, im mniejsza jest stopa procentowa. Istnieje podobna reguła dla wzrostu dwukrotnego: iloczyn stopy procentowej i liczby okresów powinien równać się około 70%. Czyli np. wzrost gospodarczy 7% rocznie przez 10 lat daje podwojenie PKB. (Reguła 70% to naprawdę reguła 69,3%, chodzi o to, że e^{0,693}\approx 2).

Przejdźmy teraz do argumentów czysto urojonych. Funkcja e^{it} jest okresowa, czego na pierwszy rzut oka nie widać w jej definicji za pomocą szeregu (wstawiliśmy x=it):

z(t)=e^{it}=1+\dfrac{it}{1!}+\dfrac{(it)^2}{2!}+\dfrac{(it)^3}{3!}+\ldots.

Spróbujmy popatrzeć na tę funkcję okiem fizyka, traktując t jako czas, a wartość funkcji jako współrzędne punktu na płaszczyźnie zespolonej. Łatwo obliczyć moduł liczby z(t), tzn. odległość punktu od początku układu. Jeśli z(t)=a+bi, to mamy

|z(t)|^2=a^2+b^2=(a+bi)\cdot(a-bi)=zz^{\star},

gdzie w ostatniej równości skorzystaliśmy z definicji liczby zespolonej sprzężonej do danej liczby: różni się ona znakiem przy części urojonej. W naszym przypadku otrzymamy:

|z(t)|^2=zz^{\star}=e^{it}\cdot e^{-it}=e^{0}=1.

Zatem koniec wektora z(t) będzie leżał na okręgu jednostkowym. Obliczmy prędkość ruchu punktu z(t). Prędkość średnia w przedziale czasu (t, t+h) będzie równa

v(t)=\dfrac{z(t+h)-z(t)}{h}=\dfrac{e^{i(t+h)}-e^{it}}{h}=e^{it}\dfrac{e^{ih}-1}{h}.

Zauważmy, że działania takie jak dodawanie, odejmowanie liczb zespolonych oraz dzielenie przez liczbę rzeczywistą h odbywa się zgodnie z regułami działań na wektorach (w tym przypadku dwuwymiarowych). Jeśli czas h będzie krótki, to w ostatnim ułamku możemy zastosować (*) dla przypadku x=ih i otrzymamy ostatecznie

v(t)=iz(t).

Łatwo zauważyć, że mnożenie liczby zespolonej przez i oznacza obrót wektora o 90º w lewo na płaszczyźnie:

i(a+bi)=-b+ai.

Moduł obliczonej przez nas prędkości równy jest 1. Sytuację przedstawia rysunek.

euler

Okres ruchu to długość okręgu podzielona przez prędkość, czyli 2\pi. Promień wodzący punktu o współrzędnych z(t) tworzy kąt proporcjonalny do czasu. Ponieważ z(0)=1, więc kąt ten po prostu równy jest t. W zapisie zespolonym punkt na okręgu jednostkowym ma przy takim kącie t postać (stosujemy definicje funkcji sinus i cosinus na okręgu jednostkowym):

\cos t+i\sin t=z(t)=e^{it}.

Wzór ten zwany jest wzorem Eulera. Wstawiając t=i\pi, otrzymujemy równość, od której zaczęliśmy i która tak zachwyciła młodego Feynmana. Wzór Eulera jest niezwykle użyteczny w rozpatrywaniu fal, drgań, a także w trygonometrii, funkcje wykładnicze są bowiem bardzo proste w użyciu. Powiedzmy, że potrzebujemy wyrażenia na \sin 2\alpha. Wystarczy podnieść do kwadratu wzór Eulera, a dostaniemy szukane wyrażenie oraz przy okazji wyrażenie na \cos 2\alpha:

e^{i2\alpha}=\cos 2\alpha+ i\sin 2\alpha.

(e^{i\alpha})^2=(\cos \alpha+i\sin \alpha)^2=\cos^2 \alpha-\sin^2 \alpha+i 2\sin \alpha\cos \alpha.

Porównując prawe strony obu wyrażeń otrzymujemy dwie tożsamości trygonometryczne. Wzór Eulera musiał szczególnie podobać się Feynmanowi, bo przydaje się w praktycznych zastosowaniach. Feynman już wtedy starał się rozumieć, „jak działa” matematyka, to znaczy, jak można obliczyć najróżniejsze rzeczy. Nieprzypadkowo w Los Alamos kierował zespołem wykonującym obliczenia numeryczne, wiadomo było, że jest w tej dziedzinie pomysłowy, stosował np. równoległe przetwarzanie danych, żeby było szybciej (za procesory służyli ludzie z kalkulatorami elektrycznymi). Gdyby wysadzić go na bezludnej wyspie, odtworzyłby bez trudu sporą część różnych tablic funkcji i całek. Można zresztą założyć, że w wersji skróconej miał je wszystkie w głowie: zakładał się, że obliczy dowolne wyrażenie z dokładnością 10% w ciągu minuty, jeśli tylko samo zadanie można sformułować w dziesięć sekund. I niemal zawsze wygrywał.

Nieco więcej ścisłości.

Łatwo sprawdzić, że definicja e^z za pomocą szeregu jest prawidłowa, tzn. szereg jest zbieżny absolutnie dla wszystkich wartości z. Tak zdefiniowana funkcja spełnia też prawo mnożenia funkcji wykładniczych:

e^{z+u}=e^{z}e^{u}.

Mamy bowiem

e^{z+u}=\sum_{n=0}^{\infty}\dfrac{(z+u)^n}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n-k} \dfrac{z^{k}u^{n-k}}{k!(n-k)!}  =\sum_{k=0}^{\infty}\sum_{m=0}^{\infty}\dfrac{z^k u^{m}}{k!m!} .

Korzystając z dwumianu Newtona możemy też uzasadnić granicę (**). Rozwijając dwumian, otrzymamy jako k-ty wyraz

\dfrac{n!}{k!(n-k)!n^k}=\dfrac{n(n-1)\ldots (n-k+1)}{n^k}\dfrac{1}{k!}.

Pierwszy ułamek dąży do 1, przy n dążącym do nieskończoności, zostaje więc suma wynikająca z rozwinięcia w szereg e^1.

 

Czy 1+2+3+…=-1/12? Ramanujan, Euler i Tao o szeregach rozbieżnych


Szeregi stosowane są powszechnie do obliczania wartości funkcji (np. w kalkulatorze czy językach programowania). Najprostszy jest szereg geometryczny, np.

1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\ldots=\dfrac{1}{1-\frac{1}{2}}=2.

Można to zilustrować obrazkiem z Wikipedii:

geometric_series

W lutym 1913 roku Srinivasa Ramanujan w swoim drugim liście do matematyka z Cambridge Godfreya Harolda Hardy’ego pisał: „Drogi Panie, z ulgą przejrzałem pański list z 8 lutego 1913 roku. Spodziewałem się od pana odpowiedzi podobnej do tej, jakiej udzielił mi pewien profesor matematyki z Londynu, prosząc, bym przestudiował porządnie Szeregi nieskończone Bromwicha i unikał pułapek szeregów rozbieżnych. (…) Napisałem mu, że według mojej teorii suma nieskończonej liczby wyrazów szeregu

1+2+3+4+\ldots=-\dfrac{1}{12}

 Jeśli to panu powiem, uzna pan, że nadaję się do domu wariatów. Rozwodzę się nad tą sprawą jedynie po to, aby pana przekonać, że nie zrozumie pan moich metod dowodu, jeśli opis mego sposobu postępowania ograniczony będzie tylko do jednego listu”.

W notatniku Ramanujana znajduje się następujące wyprowadzenie równości z listu:

Ramanujan_Notebook_1_Chapter_8_on_1234_series

c=1+2+3+4+5+\ldots

4c=0+4+0+8+0+12+\ldots.

Wobec tego, odejmując stronami, otrzymamy

-3c=1-2+3-4+5+\ldots.

Sumę tego ostatniego szeregu można obliczyć, korzystając z równania

\dfrac{1}{(1+x)^2}=1-2x+3x^2-4x^3+\ldots \mbox{ (*)}

Podstawiając x=1, otrzymamy

-3c=\dfrac{1}{(1+1)^2}=\dfrac{1}{4} \mbox{, zatem } c\equiv s_1=\boxed{-\dfrac{1}{12}}.

Ramanujan miał bardzo niekonwencjonalne wykształcenie matematyczne, lecz z pewnością nie był szaleńcem. Nie wiedział wtedy, że już w XVIII wieku jego wielki poprzednik Leonard Euler uważał takie rozumowanie za uprawnione. Oczywiście, dodając kolejne liczby naturalne, nie otrzymamy żadnej granicznej wartości – szereg jest rozbieżny. Euler sądził jednak, że skoro równanie (*) słuszne jest dla |x| <1, to rozsądnie jest przedłużyć jego ważność także na przypadek x=1. Suma taka nie istnieje w sensie zwykle przyjmowanym w dzisiejszych podręcznikach matematyki, ale w końcu w matematyce wolno robić wszystko, co nie prowadzi do sprzeczności, więc może być sensowne także operowanie szeregami takimi jak szereg liczb naturalnych. Euler znał wiele takich równań, otrzymanych w podobny sposób, np.

s_0=1^0+2^0+3^0+\ldots=1+1+1+1+\ldots=\boxed{\dfrac{1}{2}}

s_2=1^2+2^2+3^3+\ldots=\boxed{0}.

Można te szeregi traktować jako szczególne przypadki szeregu definiującego funkcję zeta Riemanna:

\zeta(s)=\sum\limits_{n=1}^{\infty}\dfrac{1}{n^s}

Jeśli s traktujemy jako rzeczywiste, to musi zachodzić s>1, aby tak zdefiniowana funkcja istniała. Można jednak rozszerzyć dziedzinę na liczby zespolone i okazuje się, że jedynym punktem, w którym zeta nie jest określona, jest s=1. W ten sposób nasze szeregi można powiązać z wartościami funkcji zeta, które można obliczyć innymi metodami. Dostaje się wówczas

s_n=\zeta(-n).

Można też do tych dziwnych szeregów podejść w sposób bardziej elementarny. Nie są one zbieżne, bo wyraz ogólny rośnie, zamiast odpowiednio szybko maleć do zera. Można by temu zaradzić zmieniając nieco definicję naszych szeregów, np. mnożąc ich wyrazy przez odpowiednio szybko malejącą funkcję, tak dobraną, aby szereg uzbieżnić. Mówi się w takich przypadkach, że regularyzujemy wyrażenie. Weźmy funkcję wykładniczą, która maleje dla dużych n: \eta(n)=\exp(-n/N), gdzie N jest stałym parametrem.

ekxponenty

Przedstawiliśmy dwie takie funkcje dla N=1 oraz N=10. (Wartości na osi pionowej są w zapisie wykładniczym, liczba po E to wykładnik potęgi do jakiej należy podnieść 10.) Teraz dla każdego dodatniego N szeregi są zbieżne. Im większa wartość N, tym dłużej funkcja jest bliska jedynki, a więc tym lepiej przybliża wyjściowe sumy s_n.

Zregularyzowane sumy można obliczyć ściśle (**), dostaniemy wówczas odpowiednio:

\tilde{s}_0=\sum\limits_{k=0}^{\infty}\eta(n/N)=N+\boxed{\dfrac{1}{2}}+\dfrac{1}{12N}-\dfrac{1}{720N^3}+\ldots,

\tilde{s}_1=\sum\limits_{k=0}^{\infty}n\eta(n/N)=N^2\boxed{-\dfrac{1}{12}}+\dfrac{1}{240N^2}+\ldots,

\tilde{s}_2=\sum\limits_{k=0}^{\infty}n^2 \eta(n/N)=2N^3+\boxed{0}-\dfrac{1}{120N}+\ldots.

Pierwszy wyraz po prawej stronie zachowuje się tak, jak można tego oczekiwać: gdy sumujemy dużo jedynek, to wynik jest proporcjonalny do N. Przy wyższych potęgach dostajemy wyższy wykładnik przy N. Ostatnie wypisane wyrazy po prawej stronie maleją wraz z N, a więc stają się coraz mniej istotne, jeszcze szybciej maleją następne wyrazy, których nie wypisaliśmy. Wyniki Eulera i Ramanujana odnajdujemy natomiast w wyrazie od N niezależnym, który równy jest odpowiednio \frac{1}{2}, -\frac{1}{12}, 0. (W szczególności widzimy, że znak tego wyrazu może być dowolny, stanowi on poprawkę do dominującego wyrazu rosnącego z N; sumując dodatnie wartości dostajemy główny wyraz dodatni, a poprawki już niekoniecznie.)

Procedura ta jest uproszczoną wersją podejścia z bloga Terence’a Tao, znakomitego matematyka, medalisty Fieldsa. W istocie jest ona ogólniejsza, niż się może wydawać na pierwszy rzut oka. Można bowiem wziąć jakąkolwiek gładką funkcję regularyzującą (o zwartym nośniku), która dla x=0 przyjmuje wartość 1 i wyniki będą podobne. Zmienią się jedynie współczynniki przy dodatnich oraz ujemnych potęgach N. Natomiast wyrazy nie zawierające N , pozostaną niezmienione. A więc w pewnym dobrze określonym sensie nasze rozbieżne szeregi mają coś wspólnego z wartościami Eulera i Ramanujana, choć nie są to ich sumy, chyba że umówimy się je tak nazywać. Nasze pojęcie jest ogólniejsze, bo można pokazać, że taka regularyzacja nic nie szkodzi prawdziwym szeregom zbieżnym, nie mają one po prostu wyrazu rosnącego z N.

Co więcej, okazuje się, że tak „akademickie” rozważania mają zastosowanie fizyczne. Fizycy bardzo często mają do czynienia z szeregami rozbieżnymi. Przykładem jest tzw. efekt Casimira: gdy dwa kawałki nienaładowanego przewodnika przyciągają się wzajemnie. Napiszę o nim wkrótce.

(*) Równość tę można uzyskać różniczkując równanie

\dfrac{1}{1+x}=1-x+x^2-x^3+\ldots,

słuszne dla |x|<1.

(**) Oznaczmy x=\frac{1}{N}. W przypadku \tilde{s}_0 otrzymamy wówczas szereg geometryczny:

1+e^{-x}+e^{-2x}+e^{-3x}+\ldots=\dfrac{1}{1-e^{-x}}=\dfrac{1}{x}+\dfrac{1}{2}+\dfrac{x}{12}-\dfrac{x^3}{720}+\ldots

Różniczkując obie strony tej równości po -x, otrzymujemy wyrażenia na zregularyzowane sumy dla kolejnych potęg. Jeśli się komuś nie chce liczyć, może wpisać do Wolfram alpha „series 1/(1-exp(-x))”, a następnie kazać mu kilka razy zróżniczkować wynik. Współczynniki rozwinięcia wyrażają się przez liczby Bernoulliego.

 

Alexis Clairaut: Czy Newton się pomylił? (1747-1749)

15 listopada 1747 roku paryska Akademia Nauk zebrała się na dorocznym posiedzeniu inauguracyjnym. Różniło się ono od zwykłych obrad bardziej uroczystym charakterem, a także tym, że mogła w nim brać udział szersza publiczność. Trzydziestoczteroletni Alexis Clairaut wygłosił na nim sensacyjną tezę, że Newtonowskie prawo powszechnego ciążenia nie jest dokładnie spełnione. O co chodziło? Otóż według Newtona siła grawitacji między ciałami jest odwrotnie proporcjonalna do kwadratu odległości. Już sam Isaac Newton zastanawiał się nad tym, dlaczego wykładnik potęgi w tym prawie równy jest dokładnie 2:

F\propto \dfrac{1}{r^2},

gdzie F jest siłą grawitacji, a r odległością dwóch ciał niebieskich. Gdyby planety były przyciągane jedynie przez Słońce, ich orbity byłyby elipsami, zgodnie z tym, co odkrył wcześniej Johannes Kepler. Newtonowskie ciążenie jest jednak powszechne: każde dwa ciała przyciągają się według tego prawa. Oznacza to, że ściśle biorąc, gdy chcemy opisać np. ruch Ziemi wokół Słońca, musimy uwzględnić, że jest ona przyciągana także przez inne planety (w tym przez Księżyc). Te dodatkowe siły przyciągania nie są wielkie, ale sprawiają, że orbity przestają być krzywymi zamkniętymi. Astronomowie opisują to za pomocą elips, które się obracają. Największy efekt tego rodzaju wykazuje Księżyc: przyciąga go bowiem nie tylko Ziemia, ale także odległe, lecz bardzo masywne Słońce. W rezultacie orbita Księżyca dość szybko się obraca.

peryg

 

 

Isaac Newton usiłował znaleźć jakieś rozwiązanie tego problemu, odniósł jednak porażkę, co bardzo niechętnie i półgębkiem przyznał. Szybkość obrotu elipsy wychodziła dwa razy za mała. Gdyby do wykładnika 2 w prawie ciążenia dodać \frac{4}{243}, uzyskałoby się zgodność z obserwacjami Księżyca. Jednak prawo takie byłoby zdecydowanie nieeleganckie. Nie wiemy, czemu, ale matematyka rzeczywistego świata jest na ogół elegancka.

Alexis Clairaut przyjrzał się ponownie temu zagadnieniu w latach czterdziestych XVIII wieku przy użyciu udoskonalonych metod matematycznych. Jemu także prędkość obrotu elipsy Księżyca wychodziła dwa razy mniejsza, niż pokazują obserwacje. Dlatego w 1747 zaproponował poprawkę do prawa Newtona, siła przyciągania powinna być opisana wzorem

F\propto \dfrac{1}{r^2} + \dfrac{\alpha}{r^3},

gdzie \alpha jest jakąś stałą. Dodatkowy wyraz z trzecią potęgą odległości byłby nieistotny w przypadku dalekich planet, ale zmieniałby zachowanie Księżyca. Oczywiście, ponieważ mamy dodatkowy wyraz i dodatkową stałą \alpha, to można uzyskać zgodność z obserwacjami, dobierając odpowiednio \alpha.

Krok tego rodzaju: wprowadzenie poprawki ad hoc zapewniającej zgodność z obserwacjami jest właściwie aktem rozpaczy. Ale ostatecznie prawo ciążenia wywodzi się z obserwacji i obserwacje mogą je obalić albo zmodyfikować. Gdyby tezę taką wysunął ktoś inny niż Clairaut, nie byłaby może potraktowana poważnie. Chodziło jednak o najwybitniejszego fizyka matematycznego Francji – kogoś, kto pierwszą pracę naukową napisał w wieku dwunastu lat, a mając osiemnaście miał już dorobek upoważniający do przyjęcia do Akademii Nauk. Musiał zresztą jeszcze dwa lata zaczekać, ponieważ członek Akademii powinien mieć ukończone dwadzieścia lat. Kiedy Clairaut głośno przedstawił swoją tezę, okazało się, że nie on jeden o tym myślał. Leonhard Euler napisał mu z Berlina, że niezależnie doszedł do wniosku o niewystarczalności prawa Newtona w pracy, która nie została opublikowana. Sam proponował innego rodzaju poprawki niż Clairaut. Euler jeszcze łatwiej niż Clairaut zgadzał się na modyfikację prawa Newtona, które nigdy mu się nie podobało, ponieważ nie rozumiał skąd się bierze. Gdyby prawo Newtona było wynikiem działania jakiegoś kosmicznego eteru na planety, to jego postać matematyczna wynikałaby z czegoś bardziej fundamentalnego i wtedy zależność w rodzaju tej przyjętej przez Clairauta byłaby zapewne możliwa. Ostatecznie chodziło o gust filozoficzny: Newton był skłonny sądzić, że to Stwórca wprost zadekretował prawo ciążenia, a wtedy postać tego prawa powinna być elegancka, godna Autora. Niebawem także d’Alembert, młodszy kolega i bardzo zazdrosny konkurent Clairauta, ogłosił, że prawo Newtona daje dwa razy za wolny obrót elipsy.

504px-Alexis_Clairault

 Alexis Clairaut460px-Leonhard_Euler_by_Handmann_Leonhard Euler

I kiedy już najważniejsi uczeni wydawali się przekonani, że Newton nie miał racji, dokonał się nieoczekiwany zwrot akcji: wiosną 1749 roku Clairaut ogłosił, że udało mu się wyjaśnić obrót orbity Księżyca, nie uciekając się do żadnych poprawek. Wystarczy prawo Newtona w pierwotnej postaci. Problem leżał w matematyce i subtelnej sztuce stosowania przybliżeń w przypadku, gdy brak dokładnego rozwiązania. Nie prawo Newtona było błędne, ale metoda, którą wszyscy stosowali do tej pory.

Obaj jego konkurenci poczuli się nieco głupio. D’Alembert wycofał z Akademii swoją pracę na temat obrotu orbity Księżyca. Euler zaczął starania, aby dowiedzieć się, jak Clairaut uzyskał nowy wynik. Nie było to wcale łatwe, ponieważ Clairaut nie miał zamiaru publikować swego wyniku bez żadnych dodatkowych korzyści naukowych lub/i finansowych. Euler wykorzystał swoje wpływy w petersburskiej Akademii Nauk, żeby ta ogłosiła w roku 1750 konkurs właśnie na temat grawitacji i Księżyca. Liczył, że wezmą w nim udział d’Alembert, no i przede wszystkim Clairaut. Sam, jako członek Akademii petersburskiej, miał być w komisji konkursowej i dzięki temu poznałby pierwszy pracę Clairauta. Nie powodowała nim tylko ciekawość, pragnął bowiem jednocześnie, a najlepiej wcześniej, opublikować własną pracę na ten sam temat i zapewnić sobie priorytet, przynajmniej w druku. Konkurs wygrał oczywiście Clairaut, jego praca została też opublikowana jako pierwsza. Intryga Eulera się nie powiodła – nie dlatego jednak, aby Szwajcar poczuł w którymś momencie wyrzuty sumienia, lecz przez czysty zbieg okoliczności, którego nie mógł przewidzieć (najpierw chciał drukować swoją pracę w Petersburgu, potem sądził, że szybciej będzie w Berlinie, więc wycofał z Petersburga, tymczasem w Berlinie coś się popsuło w sprawie druku i musiał jeszcze raz posłać pracę do Petersburga). Oczywiście, Euler był fachowcem tak wysokiej klasy, że widząc pracę Clairauta, mógł ją powtórzyć po swojemu, tak czy owak postępowanie takie nie było zbyt uczciwe. Leonhard Euler nie był człowiekiem sympatycznym, choć matematykiem był genialnym.

Prawo Newtona okazało się znacznie dokładniejsze, niż początkowo sądzili wszyscy trzej uczeni. Dopiero Albert Einstein wykazał, że prawo w postaci newtonowskiej jest nie do końca ścisłe: odchylenia są jednak bardzo niewielkie w przypadku Układu Słonecznego.

 

 

Alexis Clairaut i powrót komety Halleya (1759)

Co właściwie odkrył Isaac Newton? Przede wszystkim prawo powszechnego ciążenia: każde dwie masy przyciągają się siłami odwrotnie proporcjonalnymi do kwadratu odległości.

Newton wykazał, że jego prawo jest dość dokładnie spełnione. Pojawiło się pytanie: jak dokładnie. Większość uczonych kontynentalnych jeszcze sześćdziesiąt lat po ukazaniu się książki Isaaca Newtona spierało się o przyciąganie. Wielu nie mogło się pogodzić z przyciąganiem działającym na odległość poprzez pustą przestrzeń. Wątpliwości budziła też powszechność owego ciążenia: każde ciało jest przyciągane przez wszystkie inne, więc problem ruchu robi się trudny, jeśli nie beznadziejny matematycznie. Łatwo było się zgodzić, że Słońce oddziałuje na planety. Ale według Newtona planety oddziaływały także na Słońce (III zasada dynamiki), poza tym przyciągały się nawzajem. Było więc proste matematycznie prawo, które prowadziło do skomplikowanych zachowań.

No dobrze, ale może to prawo ciążenia jest też tylko jakimś przybliżeniem prawdziwej sytuacji. Czemu mielibyśmy wierzyć, że akurat Newtonowi udało się jednym strzałem utrafić w samo sedno?

Alexis Claude Clairaut przyczynił się chyba najbardziej do ugruntowania wiary w prawo ciążenia w takiej dokładnie postaci, jaką nadał mu Newton, bez żadnych poprawek. W roku 1749 udało mu się wyjaśnić pewien kłopotliwy szczegół w ruchu Księżyca. Uprzedził w tym dwóch swoich wielkich rywali: Jeana Le Rond d’Alemberta i Leonharda Eulera (przedtem na zagadnieniu tym poległ sam Isaac Newton).

504px-Alexis_Clairault

(źródło ilustracji: Wikipedia)

W roku 1757 zajął się kwestią komety. Edmond Halley obliczał kiedyś orbity komet w przestrzeni dla Newtona – było to żmudne, starszy uczony postanowił się wyręczyć młodszym kolegą. Metoda obliczeń zakładała, że orbita jest parabolą, a więc krzywą otwartą. Halley zauważył, że parabole dla komet z lat 1531, 1607, 1682 leżały bardzo blisko siebie w przestrzeni. Mogło więc chodzić o kometę poruszającą się po wydłużonej elipsie i powracającą w nasze okolice raz na 76 lat (na małym kawałku, który obserwujemy, wydłużona elipsa i parabola prawie się nie różnią). Jeśli tak, to kometa powinna wrócić około roku 1758.

Newton ani nawet Halley nie mieli szans dożyć tego momentu. Jeśli prawo ciążenia jest słuszne, to orbita komety mogła zostać trochę zaburzona wskutek przyciągania planet. Szczególnie ważne było tu przyciąganie dwóch największych planet Układu Słonecznego: Jowisza i Saturna (Urana i Neptuna jeszcze nie odkryto). Przyciąganie to mogło opóźnić albo przyspieszyć pojawienie się komety. Problem jednak w tym, że nie wystarczy wziąć pod uwagę przyciągania Jowisza, gdy kometa przelatuje w jego okolicy – trzeba uwzględnić jego wpływ w różnych odległościach i skutki tego przyciągania pododawać do siebie. Było to zagadnienie w sam raz dla komputera, tyle że komputerów nie było, a w dodatku obliczenie było pionierskie, bez gwarancji sukcesu.

halleyorb3Orbita komety Halleya (rysunek z książki J.D. Landstreet, Physical Processes in the Solar System), zwróćmy uwagę, że kometa obiega Słońce w przeciwnym kierunku do planet, świadczy to o jej burzliwej przeszłości wskutek której orbita przyjęła obecny kształt. Ale to dygresja.

Clairaut pracował z dwójką współpracowników: astronomem Josephem Jérôme’em de Lalande  oraz panią Nicole Reine Lepaute, żoną królewskiego zegarmistrza, konstruktora przyrządów wykorzystywanych w całej Europie. Pani Lepaute brała udział w konstruowaniu różnych wymyślnych zegarów, znała się też na astronomii.

491px-Jérôme_Lalande 465px-Nicole-Reine_Lepaute

(źródło ilustracji: Wikipedia)

Im bardziej wydłużały się rachunki, tym bardziej należało się spieszyć, aby zdążyć przed pojawieniem się komety na niebie. W ostatnim półroczu cała trójka pracowała bez wytchnienia, czasami nie przerywając obliczeń nawet podczas posiłków. Lalande twierdził, iż wskutek tej szalonej pracy, nabawił się choroby, która odmieniła jego temperament na resztę życia. Wreszcie na publicznym zebraniu Akademii Nauk 14 listopada 1758 roku Alexis Clairaut przedstawił wstępne wyniki pracy. Kometa miała przejść przez perihelium w połowie kwietnia następnego roku. Błąd tego przewidywania oszacował Clairaut na miesiąc. Pod koniec grudnia jako pierwszy kometę zaobserwował rolnik i astronom-amator Johan Georg Palitzsch. Wkrótce obserwowali ją wszyscy. Lalande wyznaczył z tych obserwacji moment przejścia komety przez perihelium: zdarzyło się to 13 marca 1759. Obliczenia trójki uczonych się potwierdziły.

Nie ma jednak takiego sukcesu, który wybaczyliby koledzy: zaczęto pracę Clairauta krytykować jako bardziej żmudną niż pożyteczną. Zaczęła się dyskusja, czy miesiąc błędu to dużo, czy mało i z czym ten błąd porównywać. Za większością tych krytyk stał Jean Le Rond d’Alembert, uczony wybitny, ale zawistny (prowadził także spory z Eulerem, który sam też nie był bez grzechu). Clairaut obliczył właściwie dwa pojawienia się komety: jedno z przeszłości dla kontroli, a drugie z 1759 roku. Twierdził, całkiem rozsądnie, że oba te rachunki stanowiły potwierdzenie teorii Newtona. Fakt, że jedno zdarzenie już się odbyło, nie zmienia obliczeń. Prognoza jest tylko efektowniejsza i ma większe znaczenie psychologiczne. W pewnym momencie zirytowany Clairaut stwierdził, że „wartość matematyka nie zawsze polega na tym, by zapełnić wiele stronic całkami i urojonymi wykładnikami” – wskazał tu na specjalność d’Alemberta, któremu nie chciało się wykonywać szczegółowych obliczeń i poprzestawał na wyrażeniach ogólnych.

Była w tym jednak i sprawa poważniejsza: d’Alembert uważał, że fizyka matematyczna musi być z natury przybliżona i takie rachunki, jakie przeprowadziła trójka uczonych, nie mają większego sensu, bo i tak nie można bardzo precyzyjnie obliczyć ruchów ciał niebieskich. Mylił się zasadniczo. Uważamy dziś, tak jak Clairaut, że teorie fundamentalne mają dokładnie przylegać do obserwacji. Teoria grawitacji Newtona, jak się z czasem okazało, jest dokładna do siedmiu cyfr znaczących, czyli jak 1 do 10 milionów. Teoria względności jest dokładna do czternastu cyfr znaczących, czyli 1 jak do stu bilionów (milionów milionów). Pracochłonne rachunki trójki uczonych miały więc głęboki sens fundamentalny, zawsze trzeba sprawdzać, ile wiemy, a gdzie zaczyna się nasza niewiedza.

List Ramanujana (1913)

Godfrey Harold Hardy, znakomity matematyk, Fellow Trinity College w Cambridge, otrzymał na początku 1913 roku list z Indii od pewnego amatora. Był nim Srinivasa Ramanujan, dwudziestopięcioletni urzędnik biurowy z portu Madras bez wykształcenia akademickiego. Autor listu stwierdzał, że w matematyce wytyczył sobie własną ścieżkę i załączał długą listę uzyskanych wyników. Hardy przeglądał tę listę z mieszanymi uczuciami. Widać było, że autor ma spore luki w wykształceniu. W dodatku przedstawił same sformułowania różnych wyników, nic nie pisząc na temat ich dowodów. Kilka wzorów wyglądało na znane albo nietrudne do udowodnienia. Były tam także twierdzenia wyglądające co najmniej dziwnie:

1+2+3+4+\ldots=-\dfrac{1}{12}  (*)

Widać też było, że Ramanujan odkrył twierdzenie o rozmieszczeniu liczb pierwszych, co było niemałym osiągnięciem (choć w tym przypadku ważniejsze było przeprowadzenie ścisłego dowodu w 1896 roku). Niektóre wyrażenia, jak ułamek łańcuchowy:

\dfrac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\cfrac{e^{-2\pi}} {1+\cfrac{e^{-4\pi}} {1+\cfrac{e^{-6\pi}}{1+\frac{e^{-8\pi}} {1+\ldots} } }} ,

gdzie \phi jest stałą złotego podziału, „były zapewne prawdziwe, bo nikomu nie starczyłoby wyobraźni, aby je zmyślić”. Hardy zrozumiał, że ma do czynienia z pierwszorzędnym matematykiem, na pewno nie z żadnym dziwakiem czy szaleńcem. Ramanujan zwrócił się do niego, ponieważ chciał się poświęcić pracy matematycznej, a był w trudnej sytuacji finansowej, miał na utrzymaniu żonę (w momencie ślubu ona miała dziewięć lat, on – dwadzieścia jeden). W Indiach nie potrafiono ocenić, czy jego praca ma jakąkolwiek wartość. Dzięki staraniom angielskiego matematyka Ramanujan przyjechał do Cambridge.

Srinivasa_Ramanujan_-_OPC_-_1

Od początku było jasne, że jest matematycznym geniuszem, ale też widać było, że nie uda się z niego zrobić matematyka pracującego według normalnych reguł akademickich. Trzeba mu było dopiero wyjaśnić, na czym polega dowód i dlaczego w matematyce liczy się tylko to, co zostało dowiedzione w sposób dostatecznie precyzyjny. Do tej pory jednym z głównych źródeł wiedzy Ramanujana była książka G. S. Carra będąca po prostu spisem 5000 twierdzeń z matematyki elementarnej. Nauczył się później różnych rzeczy, inne sam odkrył, ale w momencie przyjazdu do Anglii był już uformowany jako uczony. Jego wszystkie prace nosiły piętno wysoce indywidualnego stylu, często przedstawiały wyniki bez dowodu.

Dzięki pobytowi w Anglii Ramanujan zyskał bardziej konwencjonalną wiedzę matematyczną, zdobył też uznanie w kręgach akademickich, został przyjęty do Towarzystwa Królewskiego. Nie było mu jednak łatwo. Z początku słabo znał angielski. Był wegetarianinem i sam sobie gotował, w latach pierwszej wojny światowej niełatwo było zdobyć potrzebne mu składniki. Nie potrafił przywyknąć do klimatu, po paru latach poważnie zachorował i wrócił do Indii, gdzie zmarł w wieku trzydziestu dwóch lat.

Publikacje stanowią zaledwie małą cząstkę spuścizny Ramanujana. Większość jego wyników zawarta jest w notatnikach, które zaczęły ukazywać się dopiero po jego śmierci.

Godfrey Hardy oceniał talent Ramanujana na 100, swój własny na 25. Wielki matematyk niemiecki David Hilbert miał w tej skali 80 punktów. Hardy uważał, że w pewnych dziedzinach: w rozumieniu skomplikowanych wyrażeń algebraicznych czy w umiejętności manipulowania szeregami nieskończonymi Ramanujan dorównywał Eulerowi i Jacobiemu. Wypadało tylko żałować, że zbyt długo zdany był na własne siły: samotny nastolatek z Indii odkrył znaczną część tego, co zbiorowym wysiłkiem stworzyli najlepsi matematycy Europy. Nie miał dostępu do porządnej literatury matematycznej, nie znał niemieckiego ani francuskiego – a w tych językach ukazywały się najważniejsze książki XIX wieku. O sile jego oryginalności świadczyć może fakt, że wydawnictwo Springer publikuje czasopismo matematyczne „The Ramanujan Journal”, gdzie ukazują się wyłącznie prace z dziedzin, na które wpływ miał hinduski uczony.

Większość wyników Ramanujana dotyczy funkcji nieelementarnych. Dla przykładu przedstawimy tylko dwa. Wyrażenie stałych e oraz \pi jako sumy szeregu nieskończonego i ułamka łańcuchowego:

\sqrt{\dfrac{\pi e}{2}} =1+\dfrac{1}{1\cdot 3}+ \dfrac{1}{1\cdot 3 \cdot 5}+\ldots+ \cfrac{1}{1 + \cfrac{1}{1+ \cfrac{2}{1 + \cfrac{3}{1+\cfrac{4}{1+\ldots}} } }}

I jeszcze szereg pozwalający obliczyć liczbę \pi . Opublikowany został w 1914 roku bez dowodu.

\dfrac{1}{\pi}=\dfrac {\sqrt{8}} {9801}\displaystyle\sum\limits_{n=0}^{\infty} \dfrac{(4n)!(1103+26390n)}{(n!)^4 396^{4n}}

Ma on tę zaletę, że każdy następny wyraz daje kolejne osiem cyfr wyniku. W roku 1985 R. William Gosper Jr. obliczył za jego pomocą liczbę \pi z dokładnością ponad 17 milionów cyfr. Wkrótce też Jonathan i Peter Borweinowie udowodnili wzór Ramanujana, przy okazji znaleźli szeregi jeszcze szybciej zbieżne, których każdy wyraz daje kolejne pięćdziesiąt cyfr wyniku.

(*) Ten wzór wyglądający jak majaczenie szaleńca pierwszy uzyskał Leonard Euler w 1735 roku. Można mu nadać sens używając sumowania Abela albo wychodząc poza dziedzinę rzeczywistą i zauważając, że jest to funkcja zeta Riemanna \zeta(-1)

Andrew Wiles: wielkie twierdzenie Fermata i matematyka czysta (1986-1995)

„Moje doświadczenia z uprawianiem matematyki najlepiej można chyba opisać, porównując je do wędrówki po ciemnym niezbadanym domu. Wchodzę do pierwszego pokoju: panuje w nim zupełny mrok. Błądzę po omacku i wpadam na meble, ale stopniowo uczę się, gdzie stoi każdy z nich. Po jakichś sześciu miesiącach znajduję wyłącznik i naraz wszystko staje się jasne, widzę dokładnie, gdzie jestem. A potem wchodzę do następnego ciemnego pokoju i spędzam tam następne sześć miesięcy. I każde z tych olśnień – czasem trwają one tylko chwilę, a czasem dzień albo dwa – jest tylko kulminacją owych wielu miesięcy błądzenia po omacku i bez nich byłoby niemożliwe” (Andrew Wiles on Solving Fermat).

Mówi się czasem, że w każdej dziedzinie wiedzy tyle jest prawdy, ile jest w niej matematyki. Odkrycie, że świat fizyczny można opisać w języku matematyki i że właściwie tylko od nas zależy, z jak wielką dokładnością to zrobimy, uważam za największe osiągnięcie ludzkości. Nie chodzi o to, że pewne aspekty świata dają się ująć matematycznie, bo to wiedzieli już starożytni. Istotą nowożytnej nauki jest wiara, że w zasadzie każdy aspekt świata fizycznego (ale i chemicznego, a coraz częściej także biologicznego czy ekonomicznego) daje się opisać stosownym modelem matematycznym. Nie tylko planety czy dźwignie, ale spadanie liścia na wietrze, drogę cyklonu, atomy i cokolwiek nam przyjdzie do głowy.

Jednocześnie matematyka, choć tak potrzebna wszystkim, jest w zasadzie samowystarczalna i wielu matematyków niezbyt interesuje się innymi naukami, po cichu uważając je za stratę czasu. Wciąż istnieje platoński ideał matematyki czystej, przebywającej tam, gdzie idea Piękna, gdzieś w pobliżu idei Dobra. I niektórzy matematycy spędzają całe życie w swoim zaczarowanym pałacu nie z tego świata. W nagrodę omija ich nieco tak powszechna dziś komercjalizacja i pogoń za szybkimi wynikami (co najmniej dwa odkrycia rocznie).

Andrew Wiles jest niewątpliwie matematykiem czystym – w każdym sensie tego słowa. Jego dziedzina to teoria liczb, a więc badanie własności najprostszych liczb: 1, 2, 3, … – liczb naturalnych. Kiedy spostrzegł, że możliwe jest zaatakowanie wielkiego twierdzenia Fermata, zamknął się na siedem lat na strychu i nie mówiąc o tym nikomu, pracował. Nie publikował w tym czasie, musiał więc wtajemniczyć swojego dziekana. Nie chciał, aby koledzy wciąż go pytali, jak mu idzie. Być może obawiał się także, iż ktoś mógłby go ubiec. Nie ma powodu wstydzić się takich uczuć – nie mają przecież nic wspólnego z podkładaniem nogi konkurentom. Jest w tym duch sportowej walki: wszyscy mają równe szanse, oni też mogą położyć na szalę swoją reputację. Wygra najlepszy.

576px-Andrew_wiles1-3

Wygrał Andrew Wiles. Twierdzenie Fermata było słynną szklaną górą, na którą daremnie próbowali wspiąć się wciąż nowi śmiałkowie. Niemal każdy ambitniejszy matematyk próbował zmierzyć się z tym twierdzeniem. Nie każdy miał dość rozsądku, aby w porę przestać się nim zajmować.
Właściwie była to tylko błyskotliwa hipoteza. Pierre Fermat, jurysta w parlamencie Tuluzy, a w wolnych chwilach matematyk, jakby od niechcenia i dla rozrywki wytyczył wiele nowych dróg. W roku 1637 na marginesie czytanego przez siebie Diofantosa zanotował, że równanie

x^p+y^p=z^p

ma wprawdzie rozwiązania naturalne, gdy p=2, ale nie ma ich dla żadnej wyższej potęgi p. Stwierdził nawet, że ma dowód, ale nie zmieści mu się na wolnym miejscu na stronie, toteż go nie zamieścił. Luźne stwierdzenia tego rodzaju w wypadku Fermata należało traktować poważnie, rzadko bowiem zawodziła go intuicja.
Sam Fermat podał (w innym miejscu) dowód swego twierdzenia dla p=4, wynikała z tego także jego prawdziwość dla wykładników postaci p=4n. Łatwo też pokazać, że wystarczy dowieść twierdzenia Fermata dla wykładników będących nieparzystymi liczbami pierwszymi.
Następny krok wykonał pod koniec XVIII wieku Leonhard Euler, niestrudzony syn pastora z Bazylei, który umiał obrócić na swoją korzyść ambicje absolutnych władców swej epoki i pracował na zmianę pod rządami Fryderyka II w Prusach albo Katarzyny II w Rosji. Ani królowi, ani carycy nie zależało jakoś szczególnie na matematyce, ale obojgu bardzo zależało na splendorze. Euler wykazał słuszność twierdzenia w przypadku p=3 (nie do końca, dowód został później uzupełniony). Następne generacje matematyków przyniosły dowody wielu różnych szczególnych przypadków twierdzenia Fermata, wciąż nie było jednak dowodu ogólnego. Póki takiego dowodu nie ma, wszystko jest możliwe – bywały już przypadki hipotez, które wydawały się słuszne, lecz w końcu okazały się fałszywe. Euler wysunął np. hipotezę, że równanie

x^4+y^4+z^4=w^4

nie ma rozwiązań naturalnych. W 1988 roku Noam Elkies znalazł kontrprzykład:

2682440^4 + 15365639^4 + 18796760^4 = 20615673^4.

Wielu wybitnych matematyków unikało twierdzenia Fermata. David Hilbert, zapytany, czemu nigdy się nim nie zajmował, stwierdził, że musiałby stracić trzy lata na opanowanie tego wszystkiego, co mogłoby być potrzebne, a on nie ma trzech lat do stracenia. Andrew Wiles był w lepszej sytuacji: dzięki pracy poprzedników miał już do dyspozycji niezbędne elementy. Co więcej, twierdzenie Fermata przestało być interesującym faktem na uboczu rozwoju matematyki, lecz stało się tematem ważnym. W 1986 roku Gerhard Frey wykazał, że gdyby istniał kontrprzykład do twierdzenia Fermata, musiałaby istnieć pewna krzywa eliptyczna o szczególnych i niespotykanych własnościach. Krzywe eliptyczne to wykresy równania

y^2=x^3+ax^2+bx+c,

o ile wykres nie ma żadnych punktów osobliwych (przecięć ani załamań).

eliptyczne

Krzywe te mają wiele interesujących własności: można je wyrazić za pomocą tzw. funkcji eliptycznych (stąd nazwa), każda sieczna przecina je dokładnie w trzech punktach, co pozwala każdej parze punktów przyporządkować trzeci (można wprowadzić strukturę grupy). W teorii liczb bada się sytuacje, gdy a, b, c są całkowite albo wymierne. Istnienie krzywej Freya przeczyłoby tzw. hipotezie Shimury-Taniyamy dotyczącej pewnych własności krzywych eliptycznych. Wiles postanowił dowieść tej hipotezy, a właściwie jej słabszej wersji, wystarczającej do jego celów. Jeśli (słabsza) hipoteza Shimury-Taniyamy jest słuszna, to nie może istnieć krzywa Freya. a tym samym twierdzenie Fermata zostało udowodnione niewprost. Hipoteza Shimury-Taniyamy została zresztą później udowodniona w wersji silniejszej i z punktu widzenia specjalistów to właśnie osiągnięcie jest najważniejsze: łączy bowiem w nieoczekiwany sposób analizę matematyczną z geometrią. Zatem twierdzenie Fermata okazało się nie tylko trudną ciekawostką, lecz pozwoliło zrozumieć głębsze związki między różnymi dziedzinami matematyki. To właśnie było zawsze najciekawsze w teorii liczb: aby zrozumieć problemy dotyczące np. podzielności i liczb pierwszych, potrzebne są głębokie idee dotyczące funkcji zmiennej zespolonej.
Andrew Wiles wyszedł z ukrycia w czerwcu 1993 roku, gdy wygłosił serię wykładów w swoim rodzinnym Cambridge w Anglii. Choć ich tytuł nie zapowiadał sensacji, to bookmacher w Cambridge nie chciał przyjmować zakładów o to twierdzenie: nie znał się na matematyce, lecz kiedy kolejni studenci zaczęli zgłaszać się z propozycją takiego samego zakładu, zrozumiał, że zapewne coś się święci. Do historii przeszło zakończenie ostatniego wykładu: po wykazaniu, że twierdzenie Fermata zostało właśnie udowodnione, Wiles stwierdził: „Myślę, że na tym zakończę”.

Najtrudniejsze było jednak jeszcze przed nim. W dowodzie znaleziono istotną lukę, co nie dziwi w przypadku pracy tak długiej (ponad sto stron w „Annals of Mathematics”) i robionej samotnie. Wiles wraz ze swoim dawnym studentem Richardem Taylorem usiłowali dowód poprawić, lecz sprawa wyglądała coraz poważniej. Bez tego jednego elementu cała układanka byłaby na nic. Pracowali ponad rok bez rezultatu i Wiles bliski już był decyzji o rezygnacji z dalszych prób, kiedy nagle okazało się, że pewien jego stary pomysł z okresu samotnej pracy, zarzucony później, teraz nieoczekiwanie się przydał.
„Wierzę że, aby osiągnąć w życiu zadowolenie, musisz robić coś, co cię pasjonuje. (…) Tylko taka pasja pozwala się nie poddawać, kiedy utkniesz na jakimś trudnym problemie i poczujesz się sfrustrowany. Jako matematyk staniesz się częścią wspólnoty, która istnieje od tysięcy lat, i wniesiesz wkład do twórczego projektu, rozciągającego się na całe wieki i cywilizacje. Życie jest zbyt krótkie, aby marnować je na rzeczy, które cię nie obchodzą…” (wywiad z Claudio Bartoccim, 2004, w: C. Bartocci, R. Betti, A. Guerraggio, R. Lucchetti (red.), Mathematical Lives: Protagonists of the Twentieth Century From Hilbert to Wiles, Springer 2011).

Słowa Wilesa o wspólnocie badaczy stosują się także i do twierdzenia Fermata. Oto lista tych, którzy oprócz niego wnieśli do tego problemu swój ważny wkład tylko w XX wieku: Spencer Bloch (USA), Henri Carayol (Francja), John Coates (Australia), Pierre Deligne (Belgia), Ehud de Shalit (Izrael), Fred Diamond (USA), Gerd Faltings (Niemcy), Matthias Flach (Niemcy), Gerhard Frey (Niemcy), Alexander Grothendieck (Francja), Yves Hellegouarch (Francja), Haruzo Hida (Japonia), Kenkichi Iwasawa (Japonia), Kazuya Kato (Japonia), Nick Katz (USA), V.A. Kolyvagin (Rosja), Ernst Kunz (Niemcy), Robert Langlands (Kanada), Hendrik Lenstra (Holandia), Wen-Ch’ing Winnie Li (USA), Barry Mazur (USA), André Néron (Francja), Ravi Ramakrishna (USA), Michel Raynaud (Francja), Ken Ribet (USA), Karl Rubin (USA), Jean-Pierre Serre (Francja), Goro Shimura (Japonia), Yutaka Taniyama (Japonia), John Tate (USA), Richard Taylor (Wielka Brytania), Jacques Tilouine (Francja), Jerry Tunnell (USA), André Weil (Francja).