Powstawanie kontynentów i oceanów (1922) – Alfred Wegener

Książka została napisana w okresie rekonwalescencji autora, dwukrotnie rannego na froncie zachodnim zaraz na początku wojny światowej (wrócił później do służby jako meteorolog). Ukazała się po raz pierwszy w roku 1915 nakładem wydawnictwa Vieweg & Sohn. Kolejne trzy wydania ukazały się już po wojnie. Z początkowych niecałych stu stron książka rozrosła się do ponad dwustu w czwartym wydaniu. Najważniesze historycznie okazało się wydanie trzecie z roku 1922, które stało się podstawą przekładów m.in. na angielski, francuski, hiszpański i rosyjski, wywołując ożywioną dyskusję nie tylko w kręgach naukowych.

Wysunięta przez Wegenera teoria dryfu kontynentów, przyjęta zrazu ze sceptycyzmem, niedowierzaniem, a nawet szyderstwem, w okresie międzywojennym zyskała niewielu zwolenników. Idee przesuwania się kontynentów wróciły triumfalnie dopiero w latach sześćdziesiątych ubiegłego wieku jako teoria płyt tektonicznych, która zrewolucjonizowała nauki o Ziemi.

Alfred Lothar Wegener z wykształcenia był astronomem, lecz po doktoracie dotyczącym Tablic Alfonsyńskich w roku 1905 postanowił zająć się meteorologią. Zapalony wędrowiec, alpinista i narciarz szukał dziedziny mniej obciążonej tradycją, dającej ponadto możliwość pracy w terenie, a nawet przygody. Wraz ze starszym bratem Kurtem ustanowił w roku 1906 światowy rekord czasu lotu balonem (52,5 godziny). W tym samym roku wyruszył na Grenlandię jako meteorolog duńskiej wyprawy. Spędził tam dwie zimy, tworząc pierwszą stację meteorologiczną i dokonując pomiarów atmosfery przy użyciu latawców oraz balonów. Po powrocie pracował na uniwersytecie w Marburgu, opracowywał wyniki obserwacji polarnych, napisał także podręcznik Termodynamika atmosfery (1911). Przygotowując go, Wegener zwrócił się o opinię do uznanego specjalisty profesora Wladimira Köppena z Hamburga, który przychylnie przyjął rękopis młodszego kolegi. Wegener poznał też córkę profesora Else i niebawem się z nią zaręczył. Na następną wyprawę na Grenlandię wyruszył w 1912 roku, Else spędziła ten czas w domu norweskiego meteorologa Vihelma Bjerknesa, ucząc jego dzieci niemieckiego, a sama ucząc się norweskiego oraz duńskiego (przełożyła potem na niemiecki dwie prace Bjerknesa). Latem 1913 roku wyprawa z udziałem Wegenera przebyła drogę w poprzek Grenlandii mniej na szerokości geograficznej 75°. Tego samego roku młody polarnik i Else wzięli ślub. Po wojnie światowej Wegener objął po przejściu teścia na emeryturę jego stanowisko w Morskim Obserwatorium Meteorologicznym w Hamburgu, przeniósł także swoje prawo nauczania na tamtejszy nowopowstały uniwersytet. We współpracy z Köppenem napisał książkę na temat paleoklimatologii, w której rozwinięte zostały pewne argumenty na rzecz dryftu kontynentalnego. Napisał też książkę na temat kraterów księżycowych, uznając je – zgodnie z prawdą, a wbrew ówczesnym poglądom – za skutek impaktów meteorytów. Mimo ożywionej aktywności Wegenerowi nie udawało się uzyskać katedry uniwersyteckiej, można przypuszczać, że pewną rolę odgrywała tu niechęć wobec jego śmiałych teorii. W 1924 roku został profesorem na katedrze meteorologii i geofizyki w prowincjonalnym Grazu w Austrii (stanowisko stworzono specjalnie dla niego, łącząc obie dziedziny, którymi się zajmował). Wegenerowie przeprowadzili się tam wraz ze swymi trzema córkami i teściem. Jak wspominała Else: „W pięknym Grazu niemal całkiem zatopiliśmy się w mieszczańskiej stabilizacji”. Wegener pracował naukowo, wszyscy troje odbywali liczne wycieczki, regularnie jeździli na narty w Alpy, wojna i ciężkie przejścia w Grenlandii wydawały się daleko poza nimi. Jednak w roku 1929 Alfred Wegener nie umiał się oprzeć okazji ponownej wyprawy na Grenlandię. Zmarł tam niespodziewanie w listopadzie 1930 roku, prawdopodobnie na atak serca z nadmiernego wysiłku, niedługo po swoich pięćdziesiątych urodzinach.

Alfred Wegener i jego towarzysz Rasmus Villumsen na kilka dni przed śmiercią (obaj zginęli w drodze między obozem w głębi Grenlandii a wybrzeżem)

Idea ruchu kontynentów przyszła Wegenerowi po raz pierwszy do głowy w roku 1910, gdy zwrócił uwagę na przystawanie linii brzegowych Ameryki Południowej i Afryki na mapie. Nie był pierwszym, który zauważył owo dopasowanie – jednak nauka instytucjonalna nauczyła się ten fakt ignorować. W roku 1911 Wegener zetknął się po raz pierwszy z danymi geologicznymi i paleontologicznymi, które wskazywały na podobieństwo obu kontynentów. Fakty te znane były specjalistom, interpretowano je jako świadectwo istnienia niegdyś pomostów lądowych między Afryką i Ameryką, uznając za pewnik, że kontynenty te zawsze były położone tak jak dziś (nieco słabsza wersja tego poglądu zakładała istnienie łańcucha wysp łączących oba kontynenty). Wegener postanowił zakwestionować ten pewnik i sprawdzić, czy koncepcja przesuwania się kontynentów może się obronić. W styczniu 1912 roku po raz pierwszy przedstawił swe pomysły publicznie na zjeździe Towarzystwa Geologicznego we Frankfurcie, a trzy lata później rozwinął je w książce. Jak się zdaje, koncepcja pomostów lądowych od początku nie trafiała mu do przekonania. Podstawowym jego argumentem była tu izostazja, obserwowane przez geologów dążenie do równowagi hydrostatycznej. Wiadomo było np., że lądy podnosiły się po ustąpieniu zlodowacenia. Góry mają niższy ciężar właściwy niż dno oceanów. Jeśli tak, to zbudowane z lżejszego materiału pomosty lądowe nie mogły zatonąć w gęstszym podłożu, gdyż przeczyłoby to prawu Archimedesa. Wegener zaczął na kontynenty patrzeć jak na dobrze mu znaną z Arktyki pokrywę lodową: tworzy ona względnie trwałe pływające struktury, które mogą łączyć się albo pękać na mniejsze części, przy czym większa część ich objętości zanurzona jest w wodzie. Podobne zjawiska – oczywiście w nieporównanie większej skali czasowej – mogły zachodzić w przypadku kontynentów na Ziemi.

Przyrodnik zwracał uwagę, że większą część powierzchni Ziemi stanowią albo głębie oceaniczne, albo niezby wysokie lądy.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 27)

Rozkład wysokości dla całej powierzchni Ziemi ma dwa wyraźne maksima, odpowiadające lądom oraz dnu oceanów. Przeczy to zdaniem Wegenera panującej w tym okresie teorii Eduarda Suessa kurczenia się (kontrakcji) Ziemi. Wyobrażano sobie, iż Ziemia stygnie z fazy ciekłej i stale się w związku z tym kurczy. Wywoływałoby to na jej powierzchni efekt podobny do marszczenia się skórki na wysychającym jabłku. Owo „marszczenie się” zewnętrznych warstw skorupy ziemskiej objawiać się miało m.in. fałdowaniem i wypiętrzaniem gór. Ponieważ kurczenie zachodzi stopniowo, więc w różnych jego fazach ta sama część powierzchni mogła znajdować się nad albo pod powierzchnią morza. Odkrycie pierwiastków promieniotwórczych, które stale wydzielają ciepło, stawiało teorię kontrakcji pod znakiem zapytania. W dodatku skały osadowe znajdowane na kontynentach wskazują na to, że tereny te mogły się znajdować jedynie płytko pod powierzchnią morza, nie stanowiły więc nigdy dna oceanicznego. Wegener sądził także, że gdyby to kurczenie się Ziemi odpowiadało za rzeźbę jej powierzchni, rozkład wysokości powinien mieć jedno tylko maksimum, takie jak przerywana linia na rycinie powyżej.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 35; dziś wiemy, że dno oceanów także należy do litosfery, która jednak jest tam znacznie cieńsza niż pod kontynentami)

Jego zdaniem lżejsza masa kontynentu, sial (od zawartości krzemu i aluminium: Si-Al) pływa w cięższej simie (od zawartości krzemu i magnezu: Si-Ma), która ma pewne cechy cieczy, przynajmniej w długiej skali czasowej. Toteż poziome przemieszczanie się kontynentów przypominałoby pływanie kier lodowych w morzu. Według oszacowania Wegenera grubość kontynentów (oznaczona M na rycinie) była rzędu 100 km (rycina jest schematyczna i nie oddaje prawidłowo skali).

Mapy Wegenera (Entstehung der Kontinente und Ozeane, 1929, s. 19, 20)

Teoria dryftu kontynentów nie tylko tłumaczyła dopasowanie kształtów różnych lądów, ale także w naturalny sposób objaśniała podobieństwa geologiczne: góry po jednej stronie Atlantyku znajdowały swe naturalne przedłużenie po drugiej jego stronie. Podobieństwa zachodziły także między kopalnymi gatunkami roślin i zwierząt z części świata oddzielonych barierą oceanu. Bez pomostów lądowych trudno było zrozumieć, w jaki sposób te same gatunki mogły wyewoluować w sposób niezależny od siebie.

(J.S. Monroe, S. Wicander, The Changing Earth, 4th edition, s. 33)

Wegener przyjął, że w erze paleozoicznej wszystkie kontynenty stanowiły jeden ląd, nazwany Pangea, który następnie popękał na oddzielne fragmenty, odsuwające się stopniowo od siebie. Jedna z krawędzi Pangei znajdowała się blisko bieguna południowego – gdyż kontynenty przesuwały się nie tylko względem siebie, ale także w stosunku do osi obrotu Ziemi. Dzięki temu można było wyjaśnić geologiczne ślady zlodowaceń paleozoicznych w miejscach położonych obecnie tak daleko od siebie, jak Argentyna, Afryka Południowa, Indie i Australia – wszystkie te lądy znajdowały się kiedyś blisko siebie, a także blisko bieguna ziemskiego.

Dane Wegenera wg współczesnego podręcznika (W. Frisch et al., Plate Tectonics, Springer 2011, s. 3)

Ciągłość pasm górskich oraz zlodowacenia i lasy karbońskie (E.J. Tarbuk, F.K. Lutgens, D. Tasa, Earth: An Introduction to Physical Geology, 11th edition, s. 46,47)

W oczach większości geologów hipoteza Wegenera zakrawała na szaleństwo. Jak zauważył jeden z geologów, przeciwnik dryftu: gdyby to była prawda, to należałoby napisać na nowo podręczniki z ostatnich trzydziestu lat – rzeczywiście, trzeba było to w końcu zrobić. Podobnie reagowali wykształceni ludzie XVI wieku, słysząc o koncepcji Kopernika. Obie teorie usuwały niejako metafizyczny grunt pod nogami, głosząc zmienność i ruch tam, gdzie pragnęlibyśmy stabilności i niezmienności. Obie brały początek ze stosunkowo prostego i nienowego pomysłu, który był po wielokroć odrzucany jako absurdalny. Sformułowane zostały dzięki innemu spojrzeniu na znane fakty, a nie dzięki jakimś nowym, nieznanym dotąd obserwacjom. Obie teorie przekraczały także granice między różnymi naukami. Kopernik „niedopuszczalnie” mieszał astronomię i fizykę. W sprofesjonalizowanym i wyspecjalizowanym dwudziestym wieku czyniono zarzut z tego, że teorię wysunął nie geolog, który strawił lata na badaniach terenowych, lecz autsajder: astronom zajmujący się głównie meteorologią. Warmia Kopernika i Marburg oraz Graz Wegenera, leżąc na uboczu, ułatwiały niezależne myślenie, wolne od presji poglądów środowiska. Obaj autorzy zdawali sobie do pewnego stopnia sprawę z kontrowersyjnosci swoich hipotez, choć żaden z nich nie spodziewał się chyba aż tak zażartego oporu. Oczywiście, każdy rewolucyjny pogląd rodzi nowe trudności i niełatwo z góry przesądzić, czy ostanie się wobec zarzutów. Obie teorie wykazywały też dość podobny brak: nie zawierały bowiem konkretnego mechanizmu, który tłumaczyłby zakładane ruchy. Mechanika arystotelesowska z trudem dawała się pogodzić z heliocentryzmem, w przypadku Wegenera trudność była może jeszcze większa, gdyż potrzebne prawa fizyki były wprawdzie znane, lecz nie było jasne, w jaki sposób miałyby z nich wynikać przemieszczenia kontynentów. Świadom tej trudności, uczony zaproponował dwa mechanizmy, choć podkreślał także, że jest zbyt wcześnie na tego rodzaju szczegóły. Mówił o sile odśrodkowej, która wywołać miała ucieczkę od biegunów – Polflucht, a także o siłach przypływowych Księżyca i Słońca, które wywołać miały przesuwanie kontynentów ku zachodowi. Wyjaśnienia te zostały bardzo ostro skrytykowane przez ekspertów.
Niektóre argumenty Wegenera były błędne, co nie powinno nas szczególnie dziwić w przypadku pracy tak pionierskiej (podobnie było z większoscią szczegółowych poglądów Kopernika oprócz samego heliocentryzmu). Stosunkowo największym błędem było bardzo późne oddzielenie się Grenlandii, która zdaniem Wegenera przesuwać się miała z szybkością rzędu 30 m rocznie. Wegener nadmiernie zawierzył pomiarom astronomicznym długości geograficznej, które nie miały dostatecznej dokładności. Dziś szybkości przesuwania się płyt tektonicznych można mierzyć bezpośrednio za pomocą systemu GPS i wiadomo, że są one rzędu kilku cm rocznie.

W latach dwudziestych ubiegłego wieku krytykowano jednak nie tylko słabe punkty teorii Wegenera, ale także i jej mocne strony. Wysuwano np. twierdzenie (H.S. Washington, 1923), że skały po obu stronach Atlantyku nie wykazują podobieństw. Nie zgadzał się z tym poglądem A.L. Du Toit, wybitny południowoafrykański geolog, który specjalnie w tym celu udał się do Ameryki Południowej i stwierdził, że podobieństwa geologiczne „są wręcz zdumiewające”. Du Toit stał się zwolennikiem teorii Wegenera. Szczególnie niechętne przyjęcie spotkało teorię Wegenera w Stanach Zjednoczonych i Wielkiej Brytanii, a więc w krajach w geologii przodujących. Przewodniczący Londyńskiego Towarzystwa Geologicznego J.W. Gregory stwierdził, że jeśli izostazja sprzeczna jest z zanurzaniem się dna oceanów, to tym gorzej dla izostazji. Zgadzał się z tym zdaniem także Harold Jeffreys, wybitny geofizyk, który na podstawie danych sejsmicznych wierzył w częściowo płynne jądro Ziemi, sądził jednak, że zewnętrzne jej warstwy są sztywne. Naomi Oreskes upatruje źródeł reakcji amerykańskich geologów na teorię Wegenera w ich niechęci do ogólnych, zbyt spekulatywnych teorii. Niewątpliwie pewna dyscyplina myślowa jest w naukach empirycznych niezbędna, nie należy budować pochopnych uogólnień i uczeni zdobywają pozycję w swoim cechu na podstawie rzeczowych i beznamiętnych obserwacji. Jednak żaden podręcznik metodologii nie nauczy nas, które uogólnienia są „pochopne”, a które – „śmiałe i nowatorskie”. Niemal zawsze prace rewolucyjne przekraczają granice uznanych dziedzin i dopuszczalnych metod. Idee Wegenera podjął Arthur Holmes, twórca datowania radiometrycznego, był w tym jednak niemal całkowicie odosobniony. Przypuszczał on, że ciepło wydzielane przez pierwiastki promieniotwórcze może przenosić się za pomocą prądów konwekcyjnych w płaszczu Ziemi. Prądy takie odpowiedzialne byłyby za przesuwanie kontynentów.

Przesuwanie się kontynentów wróciło do łask w latach sześćdziesiątych ubiegłego wieku dzięki wielu nowym obserwacjom i metodom. Postęp osiągnięty został przede wszystkim dzięki badaniom dna oceanów. Dopiero po drugiej wojnie światowej można było zastosować echosondy do precyzyjnego zbadania topografii dna morskiego. Dzięki badaniom magnetyzmu występujących tam skał można było stwierdzić, że podmorski Grzbiet Śródatlantycki jest strefą spredingu – miejscem, gdzie na powierzchnię wydobywa się nowy materiał z wnętrza Ziemi i tworzą płyty tektoniczne. Kontynenty są częścią płyt tektonicznych, nie torują sobie drogi w płynnym podłożu, lecz raczej są przesuwane wraz z całością płyty, do której należą (symetryczne zjawisko niszczenia płyt następuje w obszarach subdukcji, gdzie jedna płyta wsuwa się pod drugą). W marcu 1964 roku Towarzystwo Królewskie w Londynie zorganizowało konferencję poświęconą przesuwaniu się kontynentów. Zaprezentowano na niej pracę przedstawiającą komputerowe dopasowanie kształtu kontynentów po obu stronach Atlantyku (E. Bullard, J.E. Everett, A.G. Smith, The fit of the continents around the Atlantic, Phil. Trans. Roy. Soc. London A, 258: 41-51).

Okazało się ostatecznie, że Wegener miał rację: średni kwadratowy błąd dopasowania jest rzędu 50 km (co ciekawe, w latach dwudziestych jeden z geologów sporządził model, z którego wynikało, że takiego dopasowania wcale nie ma i luki między kontynentami sięgają 1200 km!). Płyty kontynentalne zachowują się jak sztywne dwuwymiarowe obiekty przesuwające się po powierzchni Ziemi. Oznacza to, że mają one krzywiznę Ziemi i ich ruchy są obrotami – zgodnie z twierdzeniem Eulera, mówiącym, iż dowolne złożenie obrotów przedstawić można jako obrót wokół pewnej ustalonej osi o pewien kąt. Swoistą ironią losu jest fakt, że trwają wciąż dyskusje na temat sił wywołujących przesuwanie się płyt tektonicznych, prądy konwekcyjne rozpatrywane przez Holmesa są raczej skutkiem niż przyczyną tych ruchów. Najczęściej uważa się, że dominuje jakiś mechanizm grawitacyjny.

Jedna ze współczesnych rekonstrukcji Pangei (za: A. Schettino, Quantitative Plate Tectonics, Springer 2015, s. 60)

 

Reklamy

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Od Eulera do Feynmana: Po co nam liczba e?

Ilu matematyków potrzeba do wkręcenia żarówki? Odpowiedź: -e^{i\pi}.

feynman e i pi

Piętnastoletni Richard Feynman zapisał w swoim notatniku:

Najbardziej niezwykła równość w matematyce

e^{i\pi}+1=0.

Rzeczywiście, mamy tu trzy liczby: podstawę logarytmów naturalnych e, stosunek długości okręgu do średnicy \pi oraz jednostkę urojoną i. Pokażemy, co wyróżnia liczbę e, wprowadzoną w sposób systematyczny i nazwaną przez Leonharda Eulera. Przyjrzymy się funkcji wykładniczej e^{x} w dwóch przypadkach: dla x rzeczywistego oraz czysto urojonego – w tym drugim przypadku funkcja staje się okresowa, co jest na pierwszy rzut oka zaskakujące.

exponents

W dziedzinie rzeczywistej funkcja e^x jest „najprostszą” funkcją wykładniczą. Na wykresie zaznaczona jest linią niebieską. Na czym polega jej prostota (albo naturalność)? Po pierwsze można każdą inną funkcję wykładniczą zapisać za jej pomocą, zatem inne są nam właściwie niepotrzebne. Po drugie zachowuje się ona najprościej w okolicy x=0. Oczywiscie każda funkcja wykładnicza ma w tym punkcie wartość 1. Chodzi jednak o nachylenie, z jakim krzywa przecina oś Oy. Z wykresu widać, że to nachylenie względem osi Ox może być dowolne (oprócz 90º). Naturalna funkcja wykładnicza ma tangens nachylenia równy 1. Oznacza to, że dla małych wartości x mamy

e^x\approx 1+x. \mbox{ (*)}

Dla porównania, przy podstawie 10, otrzymamy:

10^x\approx 1+2,3026x.

Widzimy, czemu matematycy nie chcą używać innych podstaw funkcji wykładniczej niż e. Funkcję tę możemy zdefiniować jako szereg, czyli nieskończoną sumę:

e^x=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\ldots.

Nawet jeśli nie znamy analizy, wiadomo, jak używać takiego szeregu: gdy chcemy poznać wartość funkcji, musimy zsumować dostatecznie dużo jego wyrazów. Ile wyrazów – to zależy od wymaganej dokładności oraz od wartości x.

Tak wygląda obliczanie wartości liczby e.

Istnieje także inny, bardziej praktyczny sposób zdefiniowania liczby e. Wyobraźmy sobie, że oddajemy złotówkę na lokatę ze stopą oprocentowania 10% na 10 lat. Ile będziemy mieli na koncie po 10 latach? Naiwna odpowiedź brzmi 2 zł (bo 10% razy 10 lat daje 100%). W rzeczywistości musimy uwzględnić kapitalizację odsetek, tzn. fakt, że co pewien czas obliczana jest nowa wartość naszej lokaty i następne odsetki oblicza się już od tej nowej wartości. Jeśli kapitalizacja odsetek następuje co roku, wartość naszej lokaty po 10 latach równa będzie

\left(1+\dfrac{1}{10}\right)^{10}\approx 2,5937.

A gdyby kapitalizować odsetki 10 razy w roku (oczywiście za każdym razem stopa będzie 10 razy mniejsza)? Wówczas wartość naszej lokaty będzie równa

\left(1+\dfrac{1}{100}\right)^{100}\approx 2,7048.

W tym miejscu uważny Czytelnik zauważy, iż nasze zadanie prowadzi najwyraźniej do liczby e.

Bardziej rozbudowany przykład liczbowy.

Gdybyśmy kapitalizowali odsetki w sposób ciągły, pod koniec lokaty będziemy mieli na koncie e zł. Możemy uważać tę wartość za granicę następującego ciągu:

e=\lim_{n\rightarrow\infty} \left(1+\dfrac{1}{n}\right)^n \mbox{ (**)}.

Wynika stąd, że w przybliżeniu 1% wzrostu przez 100 lat albo 5% wzrostu przez 20 lat, albo 10% wzrostu przez 10 lat dadzą w przybliżeniu ten sam wynik końcowy: e. Błąd będzie tym mniejszy, im mniejsza jest stopa procentowa. Istnieje podobna reguła dla wzrostu dwukrotnego: iloczyn stopy procentowej i liczby okresów powinien równać się około 70%. Czyli np. wzrost gospodarczy 7% rocznie przez 10 lat daje podwojenie PKB. (Reguła 70% to naprawdę reguła 69,3%, chodzi o to, że e^{0,693}\approx 2).

Przejdźmy teraz do argumentów czysto urojonych. Funkcja e^{it} jest okresowa, czego na pierwszy rzut oka nie widać w jej definicji za pomocą szeregu (wstawiliśmy x=it):

z(t)=e^{it}=1+\dfrac{it}{1!}+\dfrac{(it)^2}{2!}+\dfrac{(it)^3}{3!}+\ldots.

Spróbujmy popatrzeć na tę funkcję okiem fizyka, traktując t jako czas, a wartość funkcji jako współrzędne punktu na płaszczyźnie zespolonej. Łatwo obliczyć moduł liczby z(t), tzn. odległość punktu od początku układu. Jeśli z(t)=a+bi, to mamy

|z(t)|^2=a^2+b^2=(a+bi)\cdot(a-bi)=zz^{\star},

gdzie w ostatniej równości skorzystaliśmy z definicji liczby zespolonej sprzężonej do danej liczby: różni się ona znakiem przy części urojonej. W naszym przypadku otrzymamy:

|z(t)|^2=zz^{\star}=e^{it}\cdot e^{-it}=e^{0}=1.

Zatem koniec wektora z(t) będzie leżał na okręgu jednostkowym. Obliczmy prędkość ruchu punktu z(t). Prędkość średnia w przedziale czasu (t, t+h) będzie równa

v(t)=\dfrac{z(t+h)-z(t)}{h}=\dfrac{e^{i(t+h)}-e^{it}}{h}=e^{it}\dfrac{e^{ih}-1}{h}.

Zauważmy, że działania takie jak dodawanie, odejmowanie liczb zespolonych oraz dzielenie przez liczbę rzeczywistą h odbywa się zgodnie z regułami działań na wektorach (w tym przypadku dwuwymiarowych). Jeśli czas h będzie krótki, to w ostatnim ułamku możemy zastosować (*) dla przypadku x=ih i otrzymamy ostatecznie

v(t)=iz(t).

Łatwo zauważyć, że mnożenie liczby zespolonej przez i oznacza obrót wektora o 90º w lewo na płaszczyźnie:

i(a+bi)=-b+ai.

Moduł obliczonej przez nas prędkości równy jest 1. Sytuację przedstawia rysunek.

euler

Okres ruchu to długość okręgu podzielona przez prędkość, czyli 2\pi. Promień wodzący punktu o współrzędnych z(t) tworzy kąt proporcjonalny do czasu. Ponieważ z(0)=1, więc kąt ten po prostu równy jest t. W zapisie zespolonym punkt na okręgu jednostkowym ma przy takim kącie t postać (stosujemy definicje funkcji sinus i cosinus na okręgu jednostkowym):

\cos t+i\sin t=z(t)=e^{it}.

Wzór ten zwany jest wzorem Eulera. Wstawiając t=i\pi, otrzymujemy równość, od której zaczęliśmy i która tak zachwyciła młodego Feynmana. Wzór Eulera jest niezwykle użyteczny w rozpatrywaniu fal, drgań, a także w trygonometrii, funkcje wykładnicze są bowiem bardzo proste w użyciu. Powiedzmy, że potrzebujemy wyrażenia na \sin 2\alpha. Wystarczy podnieść do kwadratu wzór Eulera, a dostaniemy szukane wyrażenie oraz przy okazji wyrażenie na \cos 2\alpha:

e^{i2\alpha}=\cos 2\alpha+ i\sin 2\alpha.

(e^{i\alpha})^2=(\cos \alpha+i\sin \alpha)^2=\cos^2 \alpha-\sin^2 \alpha+i 2\sin \alpha\cos \alpha.

Porównując prawe strony obu wyrażeń otrzymujemy dwie tożsamości trygonometryczne. Wzór Eulera musiał szczególnie podobać się Feynmanowi, bo przydaje się w praktycznych zastosowaniach. Feynman już wtedy starał się rozumieć, „jak działa” matematyka, to znaczy, jak można obliczyć najróżniejsze rzeczy. Nieprzypadkowo w Los Alamos kierował zespołem wykonującym obliczenia numeryczne, wiadomo było, że jest w tej dziedzinie pomysłowy, stosował np. równoległe przetwarzanie danych, żeby było szybciej (za procesory służyli ludzie z kalkulatorami elektrycznymi). Gdyby wysadzić go na bezludnej wyspie, odtworzyłby bez trudu sporą część różnych tablic funkcji i całek. Można zresztą założyć, że w wersji skróconej miał je wszystkie w głowie: zakładał się, że obliczy dowolne wyrażenie z dokładnością 10% w ciągu minuty, jeśli tylko samo zadanie można sformułować w dziesięć sekund. I niemal zawsze wygrywał.

Nieco więcej ścisłości.

Łatwo sprawdzić, że definicja e^z za pomocą szeregu jest prawidłowa, tzn. szereg jest zbieżny absolutnie dla wszystkich wartości z. Tak zdefiniowana funkcja spełnia też prawo mnożenia funkcji wykładniczych:

e^{z+u}=e^{z}e^{u}.

Mamy bowiem

e^{z+u}=\sum_{n=0}^{\infty}\dfrac{(z+u)^n}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n-k} \dfrac{z^{k}u^{n-k}}{k!(n-k)!}  =\sum_{k=0}^{\infty}\sum_{m=0}^{\infty}\dfrac{z^k u^{m}}{k!m!} .

Korzystając z dwumianu Newtona możemy też uzasadnić granicę (**). Rozwijając dwumian, otrzymamy jako k-ty wyraz

\dfrac{n!}{k!(n-k)!n^k}=\dfrac{n(n-1)\ldots (n-k+1)}{n^k}\dfrac{1}{k!}.

Pierwszy ułamek dąży do 1, przy n dążącym do nieskończoności, zostaje więc suma wynikająca z rozwinięcia w szereg e^1.

 

Czy 1+2+3+…=-1/12? Ramanujan, Euler i Tao o szeregach rozbieżnych


Szeregi stosowane są powszechnie do obliczania wartości funkcji (np. w kalkulatorze czy językach programowania). Najprostszy jest szereg geometryczny, np.

1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\ldots=\dfrac{1}{1-\frac{1}{2}}=2.

Można to zilustrować obrazkiem z Wikipedii:

geometric_series

W lutym 1913 roku Srinivasa Ramanujan w swoim drugim liście do matematyka z Cambridge Godfreya Harolda Hardy’ego pisał: „Drogi Panie, z ulgą przejrzałem pański list z 8 lutego 1913 roku. Spodziewałem się od pana odpowiedzi podobnej do tej, jakiej udzielił mi pewien profesor matematyki z Londynu, prosząc, bym przestudiował porządnie Szeregi nieskończone Bromwicha i unikał pułapek szeregów rozbieżnych. (…) Napisałem mu, że według mojej teorii suma nieskończonej liczby wyrazów szeregu

1+2+3+4+\ldots=-\dfrac{1}{12}

 Jeśli to panu powiem, uzna pan, że nadaję się do domu wariatów. Rozwodzę się nad tą sprawą jedynie po to, aby pana przekonać, że nie zrozumie pan moich metod dowodu, jeśli opis mego sposobu postępowania ograniczony będzie tylko do jednego listu”.

W notatniku Ramanujana znajduje się następujące wyprowadzenie równości z listu:

Ramanujan_Notebook_1_Chapter_8_on_1234_series

c=1+2+3+4+5+\ldots

4c=0+4+0+8+0+12+\ldots.

Wobec tego, odejmując stronami, otrzymamy

-3c=1-2+3-4+5+\ldots.

Sumę tego ostatniego szeregu można obliczyć, korzystając z równania

\dfrac{1}{(1+x)^2}=1-2x+3x^2-4x^3+\ldots \mbox{ (*)}

Podstawiając x=1, otrzymamy

-3c=\dfrac{1}{(1+1)^2}=\dfrac{1}{4} \mbox{, zatem } c\equiv s_1=\boxed{-\dfrac{1}{12}}.

Ramanujan miał bardzo niekonwencjonalne wykształcenie matematyczne, lecz z pewnością nie był szaleńcem. Nie wiedział wtedy, że już w XVIII wieku jego wielki poprzednik Leonard Euler uważał takie rozumowanie za uprawnione. Oczywiście, dodając kolejne liczby naturalne, nie otrzymamy żadnej granicznej wartości – szereg jest rozbieżny. Euler sądził jednak, że skoro równanie (*) słuszne jest dla |x| <1, to rozsądnie jest przedłużyć jego ważność także na przypadek x=1. Suma taka nie istnieje w sensie zwykle przyjmowanym w dzisiejszych podręcznikach matematyki, ale w końcu w matematyce wolno robić wszystko, co nie prowadzi do sprzeczności, więc może być sensowne także operowanie szeregami takimi jak szereg liczb naturalnych. Euler znał wiele takich równań, otrzymanych w podobny sposób, np.

s_0=1^0+2^0+3^0+\ldots=1+1+1+1+\ldots=\boxed{\dfrac{1}{2}}

s_2=1^2+2^2+3^3+\ldots=\boxed{0}.

Można te szeregi traktować jako szczególne przypadki szeregu definiującego funkcję zeta Riemanna:

\zeta(s)=\sum\limits_{n=1}^{\infty}\dfrac{1}{n^s}

Jeśli s traktujemy jako rzeczywiste, to musi zachodzić s>1, aby tak zdefiniowana funkcja istniała. Można jednak rozszerzyć dziedzinę na liczby zespolone i okazuje się, że jedynym punktem, w którym zeta nie jest określona, jest s=1. W ten sposób nasze szeregi można powiązać z wartościami funkcji zeta, które można obliczyć innymi metodami. Dostaje się wówczas

s_n=\zeta(-n).

Można też do tych dziwnych szeregów podejść w sposób bardziej elementarny. Nie są one zbieżne, bo wyraz ogólny rośnie, zamiast odpowiednio szybko maleć do zera. Można by temu zaradzić zmieniając nieco definicję naszych szeregów, np. mnożąc ich wyrazy przez odpowiednio szybko malejącą funkcję, tak dobraną, aby szereg uzbieżnić. Mówi się w takich przypadkach, że regularyzujemy wyrażenie. Weźmy funkcję wykładniczą, która maleje dla dużych n: \eta(n)=\exp(-n/N), gdzie N jest stałym parametrem.

ekxponenty

Przedstawiliśmy dwie takie funkcje dla N=1 oraz N=10. (Wartości na osi pionowej są w zapisie wykładniczym, liczba po E to wykładnik potęgi do jakiej należy podnieść 10.) Teraz dla każdego dodatniego N szeregi są zbieżne. Im większa wartość N, tym dłużej funkcja jest bliska jedynki, a więc tym lepiej przybliża wyjściowe sumy s_n.

Zregularyzowane sumy można obliczyć ściśle (**), dostaniemy wówczas odpowiednio:

\tilde{s}_0=\sum\limits_{k=0}^{\infty}\eta(n/N)=N+\boxed{\dfrac{1}{2}}+\dfrac{1}{12N}-\dfrac{1}{720N^3}+\ldots,

\tilde{s}_1=\sum\limits_{k=0}^{\infty}n\eta(n/N)=N^2\boxed{-\dfrac{1}{12}}+\dfrac{1}{240N^2}+\ldots,

\tilde{s}_2=\sum\limits_{k=0}^{\infty}n^2 \eta(n/N)=2N^3+\boxed{0}-\dfrac{1}{120N}+\ldots.

Pierwszy wyraz po prawej stronie zachowuje się tak, jak można tego oczekiwać: gdy sumujemy dużo jedynek, to wynik jest proporcjonalny do N. Przy wyższych potęgach dostajemy wyższy wykładnik przy N. Ostatnie wypisane wyrazy po prawej stronie maleją wraz z N, a więc stają się coraz mniej istotne, jeszcze szybciej maleją następne wyrazy, których nie wypisaliśmy. Wyniki Eulera i Ramanujana odnajdujemy natomiast w wyrazie od N niezależnym, który równy jest odpowiednio \frac{1}{2}, -\frac{1}{12}, 0. (W szczególności widzimy, że znak tego wyrazu może być dowolny, stanowi on poprawkę do dominującego wyrazu rosnącego z N; sumując dodatnie wartości dostajemy główny wyraz dodatni, a poprawki już niekoniecznie.)

Procedura ta jest uproszczoną wersją podejścia z bloga Terence’a Tao, znakomitego matematyka, medalisty Fieldsa. W istocie jest ona ogólniejsza, niż się może wydawać na pierwszy rzut oka. Można bowiem wziąć jakąkolwiek gładką funkcję regularyzującą (o zwartym nośniku), która dla x=0 przyjmuje wartość 1 i wyniki będą podobne. Zmienią się jedynie współczynniki przy dodatnich oraz ujemnych potęgach N. Natomiast wyrazy nie zawierające N , pozostaną niezmienione. A więc w pewnym dobrze określonym sensie nasze rozbieżne szeregi mają coś wspólnego z wartościami Eulera i Ramanujana, choć nie są to ich sumy, chyba że umówimy się je tak nazywać. Nasze pojęcie jest ogólniejsze, bo można pokazać, że taka regularyzacja nic nie szkodzi prawdziwym szeregom zbieżnym, nie mają one po prostu wyrazu rosnącego z N.

Co więcej, okazuje się, że tak „akademickie” rozważania mają zastosowanie fizyczne. Fizycy bardzo często mają do czynienia z szeregami rozbieżnymi. Przykładem jest tzw. efekt Casimira: gdy dwa kawałki nienaładowanego przewodnika przyciągają się wzajemnie. Napiszę o nim wkrótce.

(*) Równość tę można uzyskać różniczkując równanie

\dfrac{1}{1+x}=1-x+x^2-x^3+\ldots,

słuszne dla |x|<1.

(**) Oznaczmy x=\frac{1}{N}. W przypadku \tilde{s}_0 otrzymamy wówczas szereg geometryczny:

1+e^{-x}+e^{-2x}+e^{-3x}+\ldots=\dfrac{1}{1-e^{-x}}=\dfrac{1}{x}+\dfrac{1}{2}+\dfrac{x}{12}-\dfrac{x^3}{720}+\ldots

Różniczkując obie strony tej równości po -x, otrzymujemy wyrażenia na zregularyzowane sumy dla kolejnych potęg. Jeśli się komuś nie chce liczyć, może wpisać do Wolfram alpha „series 1/(1-exp(-x))”, a następnie kazać mu kilka razy zróżniczkować wynik. Współczynniki rozwinięcia wyrażają się przez liczby Bernoulliego.

 

Alexis Clairaut: Czy Newton się pomylił? (1747-1749)

15 listopada 1747 roku paryska Akademia Nauk zebrała się na dorocznym posiedzeniu inauguracyjnym. Różniło się ono od zwykłych obrad bardziej uroczystym charakterem, a także tym, że mogła w nim brać udział szersza publiczność. Trzydziestoczteroletni Alexis Clairaut wygłosił na nim sensacyjną tezę, że Newtonowskie prawo powszechnego ciążenia nie jest dokładnie spełnione. O co chodziło? Otóż według Newtona siła grawitacji między ciałami jest odwrotnie proporcjonalna do kwadratu odległości. Już sam Isaac Newton zastanawiał się nad tym, dlaczego wykładnik potęgi w tym prawie równy jest dokładnie 2:

F\propto \dfrac{1}{r^2},

gdzie F jest siłą grawitacji, a r odległością dwóch ciał niebieskich. Gdyby planety były przyciągane jedynie przez Słońce, ich orbity byłyby elipsami, zgodnie z tym, co odkrył wcześniej Johannes Kepler. Newtonowskie ciążenie jest jednak powszechne: każde dwa ciała przyciągają się według tego prawa. Oznacza to, że ściśle biorąc, gdy chcemy opisać np. ruch Ziemi wokół Słońca, musimy uwzględnić, że jest ona przyciągana także przez inne planety (w tym przez Księżyc). Te dodatkowe siły przyciągania nie są wielkie, ale sprawiają, że orbity przestają być krzywymi zamkniętymi. Astronomowie opisują to za pomocą elips, które się obracają. Największy efekt tego rodzaju wykazuje Księżyc: przyciąga go bowiem nie tylko Ziemia, ale także odległe, lecz bardzo masywne Słońce. W rezultacie orbita Księżyca dość szybko się obraca.

peryg

 

 

Isaac Newton usiłował znaleźć jakieś rozwiązanie tego problemu, odniósł jednak porażkę, co bardzo niechętnie i półgębkiem przyznał. Szybkość obrotu elipsy wychodziła dwa razy za mała. Gdyby do wykładnika 2 w prawie ciążenia dodać \frac{4}{243}, uzyskałoby się zgodność z obserwacjami Księżyca. Jednak prawo takie byłoby zdecydowanie nieeleganckie. Nie wiemy, czemu, ale matematyka rzeczywistego świata jest na ogół elegancka.

Alexis Clairaut przyjrzał się ponownie temu zagadnieniu w latach czterdziestych XVIII wieku przy użyciu udoskonalonych metod matematycznych. Jemu także prędkość obrotu elipsy Księżyca wychodziła dwa razy mniejsza, niż pokazują obserwacje. Dlatego w 1747 zaproponował poprawkę do prawa Newtona, siła przyciągania powinna być opisana wzorem

F\propto \dfrac{1}{r^2} + \dfrac{\alpha}{r^3},

gdzie \alpha jest jakąś stałą. Dodatkowy wyraz z trzecią potęgą odległości byłby nieistotny w przypadku dalekich planet, ale zmieniałby zachowanie Księżyca. Oczywiście, ponieważ mamy dodatkowy wyraz i dodatkową stałą \alpha, to można uzyskać zgodność z obserwacjami, dobierając odpowiednio \alpha.

Krok tego rodzaju: wprowadzenie poprawki ad hoc zapewniającej zgodność z obserwacjami jest właściwie aktem rozpaczy. Ale ostatecznie prawo ciążenia wywodzi się z obserwacji i obserwacje mogą je obalić albo zmodyfikować. Gdyby tezę taką wysunął ktoś inny niż Clairaut, nie byłaby może potraktowana poważnie. Chodziło jednak o najwybitniejszego fizyka matematycznego Francji – kogoś, kto pierwszą pracę naukową napisał w wieku dwunastu lat, a mając osiemnaście miał już dorobek upoważniający do przyjęcia do Akademii Nauk. Musiał zresztą jeszcze dwa lata zaczekać, ponieważ członek Akademii powinien mieć ukończone dwadzieścia lat. Kiedy Clairaut głośno przedstawił swoją tezę, okazało się, że nie on jeden o tym myślał. Leonhard Euler napisał mu z Berlina, że niezależnie doszedł do wniosku o niewystarczalności prawa Newtona w pracy, która nie została opublikowana. Sam proponował innego rodzaju poprawki niż Clairaut. Euler jeszcze łatwiej niż Clairaut zgadzał się na modyfikację prawa Newtona, które nigdy mu się nie podobało, ponieważ nie rozumiał skąd się bierze. Gdyby prawo Newtona było wynikiem działania jakiegoś kosmicznego eteru na planety, to jego postać matematyczna wynikałaby z czegoś bardziej fundamentalnego i wtedy zależność w rodzaju tej przyjętej przez Clairauta byłaby zapewne możliwa. Ostatecznie chodziło o gust filozoficzny: Newton był skłonny sądzić, że to Stwórca wprost zadekretował prawo ciążenia, a wtedy postać tego prawa powinna być elegancka, godna Autora. Niebawem także d’Alembert, młodszy kolega i bardzo zazdrosny konkurent Clairauta, ogłosił, że prawo Newtona daje dwa razy za wolny obrót elipsy.

504px-Alexis_Clairault

 Alexis Clairaut460px-Leonhard_Euler_by_Handmann_Leonhard Euler

I kiedy już najważniejsi uczeni wydawali się przekonani, że Newton nie miał racji, dokonał się nieoczekiwany zwrot akcji: wiosną 1749 roku Clairaut ogłosił, że udało mu się wyjaśnić obrót orbity Księżyca, nie uciekając się do żadnych poprawek. Wystarczy prawo Newtona w pierwotnej postaci. Problem leżał w matematyce i subtelnej sztuce stosowania przybliżeń w przypadku, gdy brak dokładnego rozwiązania. Nie prawo Newtona było błędne, ale metoda, którą wszyscy stosowali do tej pory.

Obaj jego konkurenci poczuli się nieco głupio. D’Alembert wycofał z Akademii swoją pracę na temat obrotu orbity Księżyca. Euler zaczął starania, aby dowiedzieć się, jak Clairaut uzyskał nowy wynik. Nie było to wcale łatwe, ponieważ Clairaut nie miał zamiaru publikować swego wyniku bez żadnych dodatkowych korzyści naukowych lub/i finansowych. Euler wykorzystał swoje wpływy w petersburskiej Akademii Nauk, żeby ta ogłosiła w roku 1750 konkurs właśnie na temat grawitacji i Księżyca. Liczył, że wezmą w nim udział d’Alembert, no i przede wszystkim Clairaut. Sam, jako członek Akademii petersburskiej, miał być w komisji konkursowej i dzięki temu poznałby pierwszy pracę Clairauta. Nie powodowała nim tylko ciekawość, pragnął bowiem jednocześnie, a najlepiej wcześniej, opublikować własną pracę na ten sam temat i zapewnić sobie priorytet, przynajmniej w druku. Konkurs wygrał oczywiście Clairaut, jego praca została też opublikowana jako pierwsza. Intryga Eulera się nie powiodła – nie dlatego jednak, aby Szwajcar poczuł w którymś momencie wyrzuty sumienia, lecz przez czysty zbieg okoliczności, którego nie mógł przewidzieć (najpierw chciał drukować swoją pracę w Petersburgu, potem sądził, że szybciej będzie w Berlinie, więc wycofał z Petersburga, tymczasem w Berlinie coś się popsuło w sprawie druku i musiał jeszcze raz posłać pracę do Petersburga). Oczywiście, Euler był fachowcem tak wysokiej klasy, że widząc pracę Clairauta, mógł ją powtórzyć po swojemu, tak czy owak postępowanie takie nie było zbyt uczciwe. Leonhard Euler nie był człowiekiem sympatycznym, choć matematykiem był genialnym.

Prawo Newtona okazało się znacznie dokładniejsze, niż początkowo sądzili wszyscy trzej uczeni. Dopiero Albert Einstein wykazał, że prawo w postaci newtonowskiej jest nie do końca ścisłe: odchylenia są jednak bardzo niewielkie w przypadku Układu Słonecznego.

 

 

Alexis Clairaut i powrót komety Halleya (1759)

Co właściwie odkrył Isaac Newton? Przede wszystkim prawo powszechnego ciążenia: każde dwie masy przyciągają się siłami odwrotnie proporcjonalnymi do kwadratu odległości.

Newton wykazał, że jego prawo jest dość dokładnie spełnione. Pojawiło się pytanie: jak dokładnie. Większość uczonych kontynentalnych jeszcze sześćdziesiąt lat po ukazaniu się książki Isaaca Newtona spierało się o przyciąganie. Wielu nie mogło się pogodzić z przyciąganiem działającym na odległość poprzez pustą przestrzeń. Wątpliwości budziła też powszechność owego ciążenia: każde ciało jest przyciągane przez wszystkie inne, więc problem ruchu robi się trudny, jeśli nie beznadziejny matematycznie. Łatwo było się zgodzić, że Słońce oddziałuje na planety. Ale według Newtona planety oddziaływały także na Słońce (III zasada dynamiki), poza tym przyciągały się nawzajem. Było więc proste matematycznie prawo, które prowadziło do skomplikowanych zachowań.

No dobrze, ale może to prawo ciążenia jest też tylko jakimś przybliżeniem prawdziwej sytuacji. Czemu mielibyśmy wierzyć, że akurat Newtonowi udało się jednym strzałem utrafić w samo sedno?

Alexis Claude Clairaut przyczynił się chyba najbardziej do ugruntowania wiary w prawo ciążenia w takiej dokładnie postaci, jaką nadał mu Newton, bez żadnych poprawek. W roku 1749 udało mu się wyjaśnić pewien kłopotliwy szczegół w ruchu Księżyca. Uprzedził w tym dwóch swoich wielkich rywali: Jeana Le Rond d’Alemberta i Leonharda Eulera (przedtem na zagadnieniu tym poległ sam Isaac Newton).

504px-Alexis_Clairault

(źródło ilustracji: Wikipedia)

W roku 1757 zajął się kwestią komety. Edmond Halley obliczał kiedyś orbity komet w przestrzeni dla Newtona – było to żmudne, starszy uczony postanowił się wyręczyć młodszym kolegą. Metoda obliczeń zakładała, że orbita jest parabolą, a więc krzywą otwartą. Halley zauważył, że parabole dla komet z lat 1531, 1607, 1682 leżały bardzo blisko siebie w przestrzeni. Mogło więc chodzić o kometę poruszającą się po wydłużonej elipsie i powracającą w nasze okolice raz na 76 lat (na małym kawałku, który obserwujemy, wydłużona elipsa i parabola prawie się nie różnią). Jeśli tak, to kometa powinna wrócić około roku 1758.

Newton ani nawet Halley nie mieli szans dożyć tego momentu. Jeśli prawo ciążenia jest słuszne, to orbita komety mogła zostać trochę zaburzona wskutek przyciągania planet. Szczególnie ważne było tu przyciąganie dwóch największych planet Układu Słonecznego: Jowisza i Saturna (Urana i Neptuna jeszcze nie odkryto). Przyciąganie to mogło opóźnić albo przyspieszyć pojawienie się komety. Problem jednak w tym, że nie wystarczy wziąć pod uwagę przyciągania Jowisza, gdy kometa przelatuje w jego okolicy – trzeba uwzględnić jego wpływ w różnych odległościach i skutki tego przyciągania pododawać do siebie. Było to zagadnienie w sam raz dla komputera, tyle że komputerów nie było, a w dodatku obliczenie było pionierskie, bez gwarancji sukcesu.

halleyorb3Orbita komety Halleya (rysunek z książki J.D. Landstreet, Physical Processes in the Solar System), zwróćmy uwagę, że kometa obiega Słońce w przeciwnym kierunku do planet, świadczy to o jej burzliwej przeszłości wskutek której orbita przyjęła obecny kształt. Ale to dygresja.

Clairaut pracował z dwójką współpracowników: astronomem Josephem Jérôme’em de Lalande  oraz panią Nicole Reine Lepaute, żoną królewskiego zegarmistrza, konstruktora przyrządów wykorzystywanych w całej Europie. Pani Lepaute brała udział w konstruowaniu różnych wymyślnych zegarów, znała się też na astronomii.

491px-Jérôme_Lalande 465px-Nicole-Reine_Lepaute

(źródło ilustracji: Wikipedia)

Im bardziej wydłużały się rachunki, tym bardziej należało się spieszyć, aby zdążyć przed pojawieniem się komety na niebie. W ostatnim półroczu cała trójka pracowała bez wytchnienia, czasami nie przerywając obliczeń nawet podczas posiłków. Lalande twierdził, iż wskutek tej szalonej pracy, nabawił się choroby, która odmieniła jego temperament na resztę życia. Wreszcie na publicznym zebraniu Akademii Nauk 14 listopada 1758 roku Alexis Clairaut przedstawił wstępne wyniki pracy. Kometa miała przejść przez perihelium w połowie kwietnia następnego roku. Błąd tego przewidywania oszacował Clairaut na miesiąc. Pod koniec grudnia jako pierwszy kometę zaobserwował rolnik i astronom-amator Johan Georg Palitzsch. Wkrótce obserwowali ją wszyscy. Lalande wyznaczył z tych obserwacji moment przejścia komety przez perihelium: zdarzyło się to 13 marca 1759. Obliczenia trójki uczonych się potwierdziły.

Nie ma jednak takiego sukcesu, który wybaczyliby koledzy: zaczęto pracę Clairauta krytykować jako bardziej żmudną niż pożyteczną. Zaczęła się dyskusja, czy miesiąc błędu to dużo, czy mało i z czym ten błąd porównywać. Za większością tych krytyk stał Jean Le Rond d’Alembert, uczony wybitny, ale zawistny (prowadził także spory z Eulerem, który sam też nie był bez grzechu). Clairaut obliczył właściwie dwa pojawienia się komety: jedno z przeszłości dla kontroli, a drugie z 1759 roku. Twierdził, całkiem rozsądnie, że oba te rachunki stanowiły potwierdzenie teorii Newtona. Fakt, że jedno zdarzenie już się odbyło, nie zmienia obliczeń. Prognoza jest tylko efektowniejsza i ma większe znaczenie psychologiczne. W pewnym momencie zirytowany Clairaut stwierdził, że „wartość matematyka nie zawsze polega na tym, by zapełnić wiele stronic całkami i urojonymi wykładnikami” – wskazał tu na specjalność d’Alemberta, któremu nie chciało się wykonywać szczegółowych obliczeń i poprzestawał na wyrażeniach ogólnych.

Była w tym jednak i sprawa poważniejsza: d’Alembert uważał, że fizyka matematyczna musi być z natury przybliżona i takie rachunki, jakie przeprowadziła trójka uczonych, nie mają większego sensu, bo i tak nie można bardzo precyzyjnie obliczyć ruchów ciał niebieskich. Mylił się zasadniczo. Uważamy dziś, tak jak Clairaut, że teorie fundamentalne mają dokładnie przylegać do obserwacji. Teoria grawitacji Newtona, jak się z czasem okazało, jest dokładna do siedmiu cyfr znaczących, czyli jak 1 do 10 milionów. Teoria względności jest dokładna do czternastu cyfr znaczących, czyli 1 jak do stu bilionów (milionów milionów). Pracochłonne rachunki trójki uczonych miały więc głęboki sens fundamentalny, zawsze trzeba sprawdzać, ile wiemy, a gdzie zaczyna się nasza niewiedza.

List Ramanujana (1913)

Godfrey Harold Hardy, znakomity matematyk, Fellow Trinity College w Cambridge, otrzymał na początku 1913 roku list z Indii od pewnego amatora. Był nim Srinivasa Ramanujan, dwudziestopięcioletni urzędnik biurowy z portu Madras bez wykształcenia akademickiego. Autor listu stwierdzał, że w matematyce wytyczył sobie własną ścieżkę i załączał długą listę uzyskanych wyników. Hardy przeglądał tę listę z mieszanymi uczuciami. Widać było, że autor ma spore luki w wykształceniu. W dodatku przedstawił same sformułowania różnych wyników, nic nie pisząc na temat ich dowodów. Kilka wzorów wyglądało na znane albo nietrudne do udowodnienia. Były tam także twierdzenia wyglądające co najmniej dziwnie:

1+2+3+4+\ldots=-\dfrac{1}{12}  (*)

Widać też było, że Ramanujan odkrył twierdzenie o rozmieszczeniu liczb pierwszych, co było niemałym osiągnięciem (choć w tym przypadku ważniejsze było przeprowadzenie ścisłego dowodu w 1896 roku). Niektóre wyrażenia, jak ułamek łańcuchowy:

\dfrac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\cfrac{e^{-2\pi}} {1+\cfrac{e^{-4\pi}} {1+\cfrac{e^{-6\pi}}{1+\frac{e^{-8\pi}} {1+\ldots} } }} ,

gdzie \phi jest stałą złotego podziału, „były zapewne prawdziwe, bo nikomu nie starczyłoby wyobraźni, aby je zmyślić”. Hardy zrozumiał, że ma do czynienia z pierwszorzędnym matematykiem, na pewno nie z żadnym dziwakiem czy szaleńcem. Ramanujan zwrócił się do niego, ponieważ chciał się poświęcić pracy matematycznej, a był w trudnej sytuacji finansowej, miał na utrzymaniu żonę (w momencie ślubu ona miała dziewięć lat, on – dwadzieścia jeden). W Indiach nie potrafiono ocenić, czy jego praca ma jakąkolwiek wartość. Dzięki staraniom angielskiego matematyka Ramanujan przyjechał do Cambridge.

Srinivasa_Ramanujan_-_OPC_-_1

Od początku było jasne, że jest matematycznym geniuszem, ale też widać było, że nie uda się z niego zrobić matematyka pracującego według normalnych reguł akademickich. Trzeba mu było dopiero wyjaśnić, na czym polega dowód i dlaczego w matematyce liczy się tylko to, co zostało dowiedzione w sposób dostatecznie precyzyjny. Do tej pory jednym z głównych źródeł wiedzy Ramanujana była książka G. S. Carra będąca po prostu spisem 5000 twierdzeń z matematyki elementarnej. Nauczył się później różnych rzeczy, inne sam odkrył, ale w momencie przyjazdu do Anglii był już uformowany jako uczony. Jego wszystkie prace nosiły piętno wysoce indywidualnego stylu, często przedstawiały wyniki bez dowodu.

Dzięki pobytowi w Anglii Ramanujan zyskał bardziej konwencjonalną wiedzę matematyczną, zdobył też uznanie w kręgach akademickich, został przyjęty do Towarzystwa Królewskiego. Nie było mu jednak łatwo. Z początku słabo znał angielski. Był wegetarianinem i sam sobie gotował, w latach pierwszej wojny światowej niełatwo było zdobyć potrzebne mu składniki. Nie potrafił przywyknąć do klimatu, po paru latach poważnie zachorował i wrócił do Indii, gdzie zmarł w wieku trzydziestu dwóch lat.

Publikacje stanowią zaledwie małą cząstkę spuścizny Ramanujana. Większość jego wyników zawarta jest w notatnikach, które zaczęły ukazywać się dopiero po jego śmierci.

Godfrey Hardy oceniał talent Ramanujana na 100, swój własny na 25. Wielki matematyk niemiecki David Hilbert miał w tej skali 80 punktów. Hardy uważał, że w pewnych dziedzinach: w rozumieniu skomplikowanych wyrażeń algebraicznych czy w umiejętności manipulowania szeregami nieskończonymi Ramanujan dorównywał Eulerowi i Jacobiemu. Wypadało tylko żałować, że zbyt długo zdany był na własne siły: samotny nastolatek z Indii odkrył znaczną część tego, co zbiorowym wysiłkiem stworzyli najlepsi matematycy Europy. Nie miał dostępu do porządnej literatury matematycznej, nie znał niemieckiego ani francuskiego – a w tych językach ukazywały się najważniejsze książki XIX wieku. O sile jego oryginalności świadczyć może fakt, że wydawnictwo Springer publikuje czasopismo matematyczne „The Ramanujan Journal”, gdzie ukazują się wyłącznie prace z dziedzin, na które wpływ miał hinduski uczony.

Większość wyników Ramanujana dotyczy funkcji nieelementarnych. Dla przykładu przedstawimy tylko dwa. Wyrażenie stałych e oraz \pi jako sumy szeregu nieskończonego i ułamka łańcuchowego:

\sqrt{\dfrac{\pi e}{2}} =1+\dfrac{1}{1\cdot 3}+ \dfrac{1}{1\cdot 3 \cdot 5}+\ldots+ \cfrac{1}{1 + \cfrac{1}{1+ \cfrac{2}{1 + \cfrac{3}{1+\cfrac{4}{1+\ldots}} } }}

I jeszcze szereg pozwalający obliczyć liczbę \pi . Opublikowany został w 1914 roku bez dowodu.

\dfrac{1}{\pi}=\dfrac {\sqrt{8}} {9801}\displaystyle\sum\limits_{n=0}^{\infty} \dfrac{(4n)!(1103+26390n)}{(n!)^4 396^{4n}}

Ma on tę zaletę, że każdy następny wyraz daje kolejne osiem cyfr wyniku. W roku 1985 R. William Gosper Jr. obliczył za jego pomocą liczbę \pi z dokładnością ponad 17 milionów cyfr. Wkrótce też Jonathan i Peter Borweinowie udowodnili wzór Ramanujana, przy okazji znaleźli szeregi jeszcze szybciej zbieżne, których każdy wyraz daje kolejne pięćdziesiąt cyfr wyniku.

(*) Ten wzór wyglądający jak majaczenie szaleńca pierwszy uzyskał Leonard Euler w 1735 roku. Można mu nadać sens używając sumowania Abela albo wychodząc poza dziedzinę rzeczywistą i zauważając, że jest to funkcja zeta Riemanna \zeta(-1)