Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.

 

 

Reklamy

Paul Dirac – drugi początek mechaniki kwantowej (1925)

Latem 1925 roku Werner Heisenberg wystąpił w Cambridge z odczytem w Klubie Kapicy. Było to nieformalne stowarzyszenie powołane do życia przez pełnego temperamentu rosyjskiego fizyka Piotra Kapicę, coś w rodzaju klubu naukowego doktorantów i studentów. Chwila była ważna: Heisenberg zaczął właśnie budować pierwsze zręby nowej mechaniki kwantowej. Sam jeszcze nie był pewny, co z tego wyjdzie, nikt pewnie nie przypuszczał, że chodzi o największe odkrycie XX wieku (obok teorii względności). W swoim wystąpieniu Heisenberg omówił swoją pracę na temat efektu Zeemana, a pod koniec wspomniał o nowych rewolucyjnych pomysłach.

Jednym ze słuchaczy był Paul Dirac. Wydawałoby się zatem, że wtedy właśnie dowiedział się, i to wprost od samego autora o koncepcji mechaniki kwantowej. Jeśli A mówił na temat X, a B tego słuchał, to zapewne B zapoznał się w ten sposób z X. Nie zawsze to prawda, podobnie jak z obecności na wykładzie niekoniecznie wynika, że student się czegoś dowiedział. W tym przypadku mamy świadectwo samego Diraca. Twierdził on, że zupełnie zapomniał o tej części wystąpienia Heisenberga i nawet był przekonany, że niemiecki uczony nic nie wpomniał o swej ostatniej pracy. Nie ma powodu nie wierzyć Diracowi, który był prawdomówny do bólu. Pracę Heisenberga otrzymał we wrześniu 1925 roku w postaci korekty drukarskiej. Heisenberg wysłał ją do Ralpha Fowlera, ten zaś napisał na odbitce: „Co o tym myślisz?” i przesłał ją swemu doktorantowi Diracowi do Bristolu. Nie był to przypadek, Fowler poznał się na zdolnościach swego milczącego i niezbyt towarzyskiego studenta. Jednak i we wrześniu Dirac nie zrozumiał od razu znaczenia pracy Heisenberga. Stało się tak dopiero po kilku tygodniach. Zaczął wówczas rozmyślać nad tym zagadnieniem i zaproponował własną wersję podejścia do problemu. Werner Heisenberg należał do wąskiej grupy uczonych zajmujących się zagadnieniem budowy atomu, orientował się nie tylko w opublikowanych osiągnięciach, ale brał udział w dyskusjach, wiedział, kto nad czym pracuje – słowem, korzystał w pełni z przynależności do czołówki ówczesnych fizyków. Dirac pracował sam, korzystając jedynie z tego, że Ralph Fowler był dobrze poinformowany w aktualnej sytuacji fizyki kwantowej na kontynencie. Zadziwiające, że potrafił w takich warunkach bardzo wiele osiągnąć w tej i w następnych pracach. Zresztą i później pracował sam, prawdopodobnie inaczej nie potrafił. Niektórzy twierdzą, że Paul Dirac był największym fizykiem XX wieku. Jego prace nigdy wszakże nie były popularne, nie mogły stać się nagłówkami w gazetach, był uczonym budzącym respekt wśród znających się na rzeczy, nie mógł też podobać się dziennikarzom – potrzebującym paru chwytliwych słów i nie mającym czasu, by zgłębić jakąkolwiek sprawę (*).

W pracy Heisenberga Dirac zwrócił przede wszystkim na fakt, że wielkości fizyczne, takie jak pęd czy współrzędna mogą nie być zwykłymi funkcjami czasu, lecz wielkościami, których mnożenie jest nieprzemienne: xy\neq yx. Fizycy wcześniej nie posługiwali się podobnymi pojęciami. Dirac miał naturalną łatwość operowania abstrakcyjnymi pojęciami, nie zaprzątał też sobie zbytnio głowy kwestią interpretacji formalizmu. Zaczął się zastanawiać nad sensem nieprzemienności, czym jest wyrażenie xy-yx? (Obecnie nazywa się ono komutatorem i oznaczane jest [x,y].)
Pewnej październikowej niedzieli, podczas cotygodniowej pieszej wycieczki, Dirac przypomniał sobie, że widział już wyrażenie podobne do komutatora w podręcznikach mechaniki klasycznej. Komutatory przypominały tzw. nawiasy Poissona. Nie był jednak pewien, czy dobrze pamięta. W żadnej z książek, które miał u siebie w pokoju, nie było definicji nawiasów Poissona. Ponieważ w niedzielę biblioteka była zamknięta, nie mógł od razu sprawdzić, czy skojarzenie jest prawidłowe. Wspominał później:

„Noc przeszła mi w męczącym oczekiwaniu, wciąż nie wiedziałem, czy mój pomysł ma jakąkolwiek wartość, ale stopniowo moje przekonanie rosło. Rankiem wybrałem się do biblioteki od razu po jej otwarciu i kiedy znalazłem w Mechanice analitycznej [E.T.] Whittakera definicję nawiasu Poissona, stwierdziłem, że jest dokładnie to, czego mi potrzeba. Był on całkowicie analogiczny do komutatora.

Nawiasy Poissona są zaawansowanym sposobem zapisu równań mechaniki w formalizmie Hamiltona. Stan układu określony jest przez podanie położenia q oraz pędu p (w razie potrzeby wprowadzamy większą liczbę współrzędnych i odpowiadających im pędów). Dynamikę układu, czyli jego ewolucję w czasie, określa funkcja zwana hamiltonianem H. W najprostszym przypadku cząstki o masie m w polu zewnętrznym V(q) hamiltonian jest po prostu sumą energii kinetycznej i potencjalnej:

H(q,p)=\dfrac{p^2}{2m}+V(q).

Znając hamiltonian, możemy napisać równania na pochodne czasowe położenia oraz pędu:

\dot{q}=-\dfrac{\partial H}{\partial q}, \: \dot{p}=\dfrac{\partial H}{\partial p}.

Łatwo zobaczyć, że w najprostszym przypadku równania te są równoważne II zasadzie dynamiki Newtona. Ich zaletą jest ogólność: możemy w rozmaity sposób definiować nowe współrzędne i pędy tak, by postać równań Hamiltona została zachowana. Hamiltonian będzie się przy tym zmieniać, w szczególnie prostych przypadkach może on się nawet redukować do jakiejś bardzo prostej funkcji, np. liniowej w pędzie i w ogóle nie zawierającej współrzędnych. Wtedy rozwiązanie układu równań jest trywialne (oczywiście, nie zawsze łatwo odgadnąć postać takich współrzędnych, które niejako wykonają pracę za nas).

Jeśli f(q,p), g(q,p) są dowolnymi funkcjami położeń i pędów, to ich nawias Poissona ma postać:

\left\{f,g\right\}=\dfrac{\partial f}{\partial q}\dfrac{\partial g}{\partial p}-\dfrac{\partial f}{\partial p}\dfrac{\partial g}{\partial q}.

Łatwo sprawdzić, że nawiasy Poissona są antysymetryczne (zmieniają znak przy przestawieniu funkcji), liniowe, spełniają dla dowolnych trzech funkcji f,g,h warunek Leibniza:

\left\{fg,h\right\}=f\left\{g,h\right\}+\left\{f,h\right\}g.

oraz tożsamość Jacobiego:

\left\{f,\left\{g,h\right\}\right\}+\left\{g,\left\{h,f\right\}\right\}+\left\{h,\left\{f,g\right\}\right\}.

Łatwo sprawdzić, że komutator dwóch wielkości będzie także spełniał powyższe warunki, jeśli tylko mnożenie jest łączne oraz rozdzielne względem dodawania. Analogię tę zauważył Dirac. A więc komutator w mechanice kwantowej odgrywałby rolę analogiczną do nawiasów Poissona.

Definicja Poissona nie była przypadkowa, pochodną każdej funkcji f położenia i pędu po czasie możemy zapisać jako

\dot{f}=\left\{f,H\right\}.

W szczególności, wstawiając f=q oraz f=p, dostaniemy równania ruchu w postaci Hamiltona. Najbardziej podstawowe nawiasy Poissona mają postać:

\left\{ q,q\right\}=\left\{ p,p\right\}=0, \; \left\{q,p\right\}=1.

Znając te podstawowe nawiasy oraz zakładając wyliczone wyżej własności ogólne nawiasów, można łatwo znaleźć nawiasy dla wielomianów zmiennych q,p, a stąd w zasadzie dla każdej rozsądnej funkcji tych zmiennych.

Praca Diraca była czymś więcej niż tylko trafnym zgadywaniem. Obliczył on, że w granicy dużych liczb kwantowych komutator powinien przechodzić w nawias Poissona pomnożony przez stałą:

[f,g] \approx i\hbar \left\{f,g\right\}.

Przyjmując więc odpowiednie wartości komutatorów, mamy pewność, że formalizm kwantowy redukuje się do klasycznej mechaniki. Dirac otrzymał w ten sposób reguły komutacyjne, które stanowią podstawę nowej teorii. W tym samym czasie w Getyndze Born i Jordan otrzymali je także, o czym jednak Dirac nie wiedział. Odpowiedniość nie jest do końca automatyczna, ponieważ gdy zmienne q,p nie komutują, ich kolejność ma znaczenie i temu samemu wyrażeniu klasycznemu odpowiadają rozmaite wyrażenia kwantowe.

Był to debiut Diraca w dziedzinie mechaniki kwantowej. To ta praca wprawiła w osłupienie Maxa Borna: nikomu nieznany student zrobił to samo, co najznakomitsi uczeni z Getyngi i wykazał przy tym samodzielność i dojrzałość. Dopiero w czerwcu następnego roku miał zrobić doktorat.

(*) Ostatnim przykładem takiej dziennikarskiej hucpy jest doniesienie o udowodnieniu hipotezy Riemanna przez sir Michaela Atiyaha. Pisałem o hipotezie Riemanna, jest to największy otwarty problem matematyki. Atiyah był genialnym matematykiem, który zdobył w swoim czasie wszelkie możliwe nagrody, ale obecnie ma 90 lat i od paru lat zasypuje świat niepotwierdzonymi rewelacjami. W dodatku hipoteza Riemanna miałaby być udowodniona wraz z rozważaniami na temat stałej struktury subtelnej – problem w tym, że stała ta bynajmniej nie jest stałą i nic sensownego na jej temat chyba się nie da powiedzieć. Niegdyś Arthur Eddington twierdził, że zna fundamentalne powody, dla których stała ta równa jest dokładnie 1/137. Jednak w rzeczywistości nie jest ona dokładnie równa tej wartości, więc całe to wyjaśnienie nie ma sensu. Obawiam się, że podobnie jest z dowodem Atiyah. Dziennikarze obwieszczają teraz wiadomość o dowodzie, potem będą mieli drugą okazję, aby to sprostować. Jest skrajnie nieprawdopodobne, aby hipotezę Riemanna udowodnić w paru linijkach – jak twierdzi Atiyah. To tak nie działa.

 

 

P.A.M. Dirac i jego równanie (1927-1928)

Paul Dirac znany był z powściągliwej małomówności i z tego, że nie wdaje się w grzecznościowe pogaduszki. Richard Feynman opowiadał, że kiedy spotkał po raz pierwszy Paula Diraca na jakiejś konferencji, to po długiej chwili milczenia starszy uczony rzekł: „Mam równanie. Czy pan także?”

Rozmaite wypowiedzi Diraca cytowane są często jako żarty, gdyż brzmią z pozoru absurdalnie. Paul Adrien Maurice Dirac sprawiał wrażenie postaci beckettowskiej: chudy, z długimi kończynami i wielkimi stopami, nie okazujący emocji, porozumiewający się pełnymi zdaniami (ponieważ nie wolno zacząć zdania, jeśli się nie wie, jak je zakończyć), myślący w kategoriach logicznych i matematycznych, a nie emocjonalnych czy etycznych. Jego przyjaciel Charles Galton Darwin, fizyk, wnuk twórcy teorii ewolucji, dopiero po kilku latach znajomości z Dirakiem odważył się zapytać, co właściwie znaczą inicjały P.A.M. przed jego nazwiskiem. Po przeczytaniu Zbrodni i kary Dostojewskiego Dirac miał tylko jedną uwagę, i to raczej techniczną niż etyczną czy psychologiczną: otóż w książce słońce wschodzi dwukrotnie tego samego dnia.

Anegdota z równaniem mówi sporo o obu rozmówcach. Dirac cenił konkrety, lubił np. słuchać wielogodzinnych monologów Nielsa Bohra, ale wątpił, czy coś z nich wyniósł, ponieważ prawie wcale nie było w nich równań. Toteż cenił sobie niewątpliwie fakt, iż odkrył jedno z fundamentalnych równań przyrody, które stosuje się do wszystkich cząstek o spinie ½: a więc elektronów, protonów, nieodkrytych jeszcze wtedy neutronów oraz kwarków, z których nukleony się składają. Feynman pozostawił po sobie wprawdzie całki Feynmana, diagramy Feynmana i wiele innych osiągnięć, nie odkrył jednak nigdy żadnego fundamentalnego prawa przyrody i jak się zdaje jego ambicja cierpiała z tego powodu.

Jesienią 1927 roku Paul Dirac, młodzieniec zaledwie dwudziestopięcioletni, zaproszony został na Kongres Solvaya do Brukseli. Była to konferencja bardzo elitarna, gromadząca obecne i przyszłe znakomitości naukowe. Na pamiątkowym zdjęciu siedzi w samym środku za Einsteinem, wiemy, że bardzo był dumny z tej fotografii i posłał ją na swój macierzysty uniwersytet w Bristolu. Niewykluczone, że specjalnie usiadł za Einsteinem, jego teorię względności podziwiał bowiem od lat i poznał, zanim jeszcze zajął się fizyką atomową – jak to wtedy mówiono, czyli fizyką mikroświata. Najważniejsze postacie na tym zdjęciu to Niels Bohr i Max Born, przywódcy i patroni całego ruchu kwantowej odnowy w fizyce. W Kopenhadze i Getyndze tworzyły się zasady nowej mechaniki. Zaczęła ją praca Wernera Heisenberga z 1925 roku. Niedługo później dołączyli Born i Pascual Jordan.

Od jesieni 1925 roku mechanikę kwantową współtworzył też Paul Dirac. Był studentem Ralpha Fowlera w Cambridge. Fowler rozpoznał jego niebywały talent: młody inżynier elektryk i absolwent studiów drugiego stopnia z matematyki na uniwersytecie w Bristolu dostał stypendium do Cambridge i błyskawicznie uzupełnił braki z fizyki, nie tylko najnowszej, nie znał np. dotąd równań Maxwella. Fowler miał znakomite kontakty i chyba one przydały się Diracowi najbardziej. Młody uczony otrzymał od niego jeszcze przed drukiem korekty artykułu Heisenberga i zrozumiał ich znaczenie. Kiedy niedługo później opublikował swoją pierwszą pracę na temat mechaniki kwantowej, Max Born zdumiony był, że pojawił się ktoś spoza wąskiej grupy znanych mu ludzi pracujących w tej dziedzinie i w dodatku jego osiągnięcia są porównywalne do tego, co udało się stworzyć w Getyndze i Kopenhadze. Dirac, równieśnik Jordana, miał dwadzieścia trzy lata, pół roku mniej niż Heisenberg i dwa lata mniej niż Wolfgang Pauli. Pracował nad doktoratem. Dzięki Fowlerowi jego prace szybko się ukazywały w „Proceedings of the Royal Society”, a czas bardzo się wtedy liczył. Dirac zaczął korespondować z Hiesenbergiem, który od razu poczuł ogromny respekt do brytyjskiego kolegi. Po doktoracie wyjechał do Kopenhagi i Getyngi. Poznał wielu fizyków, ale nie zmienił swej metody pracy: przez sześć dni w tygodniu intensywne myślenie od rana do obiadu, w niedziele piesze wycieczki. Nie współpracował też z nikim, przez całe życie pracował sam, uważając, że tak jest najlepiej, bo ważne idee są zawsze dziełem konkretnego człowieka, nie zespołu.

Tak więc po dwóch latach swej naukowej kariery Dirac znalazł się w elitarnym gronie na Konferencji Solvaya. Przeszła ona do historii za sprawą dyskusji Bohra z Einsteinem, który nie potrafił się pogodzić z probabilistycznym charakterem nowej mechaniki – można w niej obliczać i przewidywać jedynie prawdopodobieństwa zdarzeń. To w trakcie jednej z takich dyskusji padły słynne słowa: „Bóg nie gra w kości”. W mechanice kwantowej zrezygnować trzeba także z pełnej wiedzy o zjawiskach w mikroświecie: im dokładniej zmierzymy położenie elektronu, tym mniej będziemy wiedzieli na temat jego pędu. Dirac zupełnie nie interesował się sporami filozoficznymi na temat podstaw mechaniki kwantowej. Dla niego była to piękna teoria, do której zbudowania się przyczynił, fascynowała go matematyczna elegancja całego obrazu, napisał zresztą niedługo później słynną książkę The Principles of Quantum Mechanics, przedstawiającą całą tę konstrukcję w niezrównany klarowny, choć też niezwykle zwięzły sposób.

Jesienią 1927 roku Paul Dirac pragnął odkryć swoje równanie. Chodziło o rozwiązanie zagadnienia elektronu w sposób zgodny z teorią względności Einsteina. Z problemem tym pierwszy zetknął się w roku 1925 Erwin Schrödinger, drugi outsider fizyki kwantowej, pracujący w Zurychu. Wiadomo było, że cząstki takie jak elektron związane są z pewnymi wielkościami falowymi. Schrödinger przyjął, że stan elektronu opisywany jest pewną funkcją położenia i czasu \psi(\vec{r},t). Funkcja ta spełniać musi równanie o postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi \mbox{ (*)},

gdzie H jest pewnym operatorem działającym na funkcję. Najłatwiej wyjaśnić to na przykładach. Operatorem takim jest np. mnożenie \psi przez którąś ze współrzędnych, np. x. Wynikiem działania tego operatora jest nowa funkcja równa x\psi. Innym operatorem jest różniczkowanie, np. po zmiennej x. Wynikiem działania tego operatora jest wówczas \frac{\partial \psi}{\partial x}. Innym przykładem operatora jest pochodna po czasie z lewej strony równania Schrödingera. Za każdym razem tworzymy z wyjściowej funkcji \psi jakąś nową funkcję. Operator H zwany hamiltonianem (albo operatorem Hamiltona) jest kwantową wersją wyrażenia na energię cząstki. Jeśli np. energia cząstki o masie m składa się z energii kinetycznej i potencjalnej V(\vec{x}), to możemy ją zapisać w postaci

E=\dfrac{{\vec{p}\,}^2}{2m}+V(\vec{x}).

Kwantowy operator Hamiltona będzie wówczas równy

H=-\dfrac{\hbar^2}{2m}\left(\dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}\right)+V(\vec{r})\equiv -\dfrac{\hbar^2}{2m}\Delta+V(\vec{r}).

Operator V(\vec{r}) jest po prostu operatorem mnożenia, energię kinetyczną konstruujemy z pędu za pomocą podstawienia

p_x\rightarrow -i\hbar\dfrac{\partial}{\partial x}

i analogicznie dla pozostałych współrzędnych. Równanie Schrödingera (*) jest podstawowym prawem mechaniki kwantowej. Rozwiązując je, dowiadujemy się, w jaki spośob zmienia się funkcja falowa, a więc stan naszego elektronu. Najprostszym możliwym rozwiązaniem tego równania w przypadku cząstki swobodnej (tzn. gdy V=0) jest funkcja opisującą falę:

\psi=A \exp{\frac{i}{\hbar}(\vec{p}\,\vec{r}-Et)}, \mbox{ (**)}

gdzie p_x, p_y, p_x oraz E są parametrami liczbowymi. Łatwo sprawdzić, że różniczkowanie tej funkcji sprowadza się do mnożenia przez odpowiedni czynnik i ostatecznie równanie Schrödingera da nam warunek:

E=\dfrac{\vec{p}\,^2}{2m},

jak powinno być dla cząstki swobodnej i parametry są składowymi pędu oraz energią cząstki. Zbudowaliśmy stan o określonej energii i jednocześnie określonym pędzie. Jasne jest, że przyjmujemy tu energię kinetyczną w postaci newtonowskiej, a więc nierelatywistycznej.

Erwin Schrödinger początkowo poszukiwał równania relatywistycznego dla swojej funkcji \psi i nawet takie równanie znalazł. Ma ono następującą postać w przypadku swobodnym:

\dfrac{1}{c^2}\dfrac{\partial^2 \psi}{\partial {t}^2}-\Delta \psi+\left(\dfrac{mc}{\hbar}\right)^2 \psi=0.

Podstawiając do niego funkcję (**), otrzymamy równanie

E^2-p^2c^2=m^2c^4,

a więc prawidłowy związek energii i pędu dla cząstki o masie m w teorii względności. Oczywiście równanie dla cząstki swobodnej niewiele znaczy, interesujące są przypadki, gdy mamy pewien potencjał V(\vec{r}), np. gdy elektron porusza się w polu elektrostatycznym nieruchomego protonu. Jest to prawie atom wodoru (prawie – ponieważ w prawdziwym atomie wodoru proton, choć znacznie masywniejszy, może też się poruszać). Nietrudno równanie Kleina-Gordona rozszerzyć tak, aby zawierało zewnętrzne pole elektromagnetyczne. Wiadomo było jednak, że elektron ma spin, co sprawia, że jego stany są podwojone i np. w polu magnetycznym ta różnica się ujawnia jako rozszczepienie linii widmowych (efekt Zeemana). Czemu więc Schrödinger nie opublikował tego równania, które dziś nazywa się równaniem Kleina-Gordona? Schrödinger uznał, że trzeba ograniczyć się na początek do równania nierelatywistycznego i opublikował równanie (*) zastosowane m.in. do atomu wodoru. Nie jest jasne, czy chodziło mu o brak spinu, czy może dostrzegł inne trudności z rozwiązaniami równania Kleina-Gordona.

Z punktu widzenia Diraca równanie Kleina-Gordona nie było rozwiązaniem problemu elektronu. Owszem, relatywistyczny związek między energią i pędem cząstki był spełniony, ale równanie zawierało drugą pochodną czasową, a nie pierwszą jak równanie Schrödingera. Zdaniem Diraca równanie podstawowe powinno być pierwszego rzędu w czasie, tak aby wartości funkcji falowej w danej chwili determinowały jej wartości w przyszłości (w przypadku równania drugiego rzędu należy znać jeszcze wartości pochodnych czasowych). Jak pogodzić to z relatywistyczną postacią energii? Hamiltonian powinien mieć postać:

H=\sqrt{-c^2\hbar^2 \Delta+m^2c^4},

Oczywiście, wyciąganie pierwiastka kwadratowego z laplasjanu nie jest operacją standardową. Inżyniersko nastawiony do matematyki Paul Dirac, nieodrodny spadkobierca Olivera Heaviside’a, nie zamierzał się poddawać z tak trywialnego powodu. Równanie dla cząstki swobodnej powinno być pierwszego rzędu w czasie, w teorii względności znaczy to, że powinno być także pierwszego rzędu w pochodnych przestrzennych – poniważ przestrzeń i czas są symetryczne u Einsteina. Należy więc szukać równania postaci

i\hbar \gamma^{\mu}\dfrac{\partial \psi}{\partial x^{\mu}}=mc\psi, \mbox{ (***)}

gdzie sumujemy po wskaźnikach czasoprzestrzennych \mu=0,1,2,3 oraz x^0=ct. Żądamy, aby \gamma^{\mu} nie zależały od czasu ani współrzędnych przestrzennych, a także aby dwukrotne zastosowanie operatora po lewej stronie dało nam m^2, jak w równaniu Kleina-Gordona – wtedy relatywistyczny związek energii i pędu będzie spełniony. Łatwo zauważyć, że stanie się tak, jeśli

\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}=2\cdot diag(1,-1-1-1),

gdzie g^{\mu\nu} jest metryką czasoprzestrzeni Minkowskiego. Jakimi obiektami muszą być owe cztery \gamma^{\mu}? Mają one antykomutować ze sobą, czyli ich iloczyn zmienia znak przy przestawieniu, a kwadraty mają być równe \pm 1. Dirac odkrył, że \gamma^{\mu} muszą być macierzami 4×4, a więc funkcja \psi musi zawierać cztery składowe:

\psi=\begin{pmatrix} \psi_1\\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}.

Inaczej mówiąc, równanie (***) jest układem czterech równań liniowych o stałych współczynnikach. Zaraz po Nowym Roku 1928 Ralph Fowler przekazał pracę do druku i miesiąc później się ukazała. Po miesiącu Dirac uzupełnił ją o drugą część. Mógł być teraz pewien: miał swoje równanie.

Dirac zaczął sprawdzać konsekwencje odkrytego równania. Okazało się, że zawiera ono informację o stanach spinowych elektronu. Co więcej, spinowy moment pędu okazywał się równy \hbar/2, a moment magnetyczny równy dokładnie magnetonowi Bohra. Znaczyło to, że w tym przypadku stosunek momentu magnetycznego do momentu pędu jest dwukrotnie większy niż dla orbitalnego momentu pędu, co potwierdzały eksperymenty (Nb. w roku 1915 Albert Einstein i Wander de Haas, zięć Hendrika Lorentza, przegapili okazję do pierwszorzędnego odkrycia doświadczalnego, zmierzyli bowiem ten stosunek i wyszedł im taki, jak oczekiwali, ale dwa razy mniejszy niż w rzeczywistości). Równanie elektronu Diraca w polu kulombowskim odtwarzało znane wyniki dla energii uzyskane wcześniej przez Arnolda Sommerfelda za pomocą relatywistycznej wersji modelu Bohra (model Bohra-Sommerfelda).

Co z czterema składowymi funkcji falowej? Potrzebne były dwie składowe do opisania spinu, ale cztery? Równanie Diraca zawiera rozwiązania zarówno dla energii dodatniej +\sqrt{p^2c^2+m^2c^4}, jak i -\sqrt{p^2c^2+m^2c^4}. Paul Dirac zauważył też, że rozwiązania te stwarzają realny problem: energia elektronu nie jest bowiem ograniczona z dołu, a to w przypadku układu kwantowego znaczy, że prędzej czy później powinien on przejść do stanu o niższej energii. W mechanice kwantowej panuje skrajny liberalizm: wszystko, co nie jest zabronione, jest dozwolone i się kiedyś zdarzy. Jedynym wyjściem wydawało się znaleźć jakiś zakaz, który musiałby być naruszany podczas takiego przejścia. Dwa lata później Dirac zaproponował, że stany o ujemnej energii są zajęte, więc ponieważ elektrony podlegają zakazowi Pauliego, zwykle nie ma takich przejść. Możliwe jest wzbudzenie elektronu z ujemną energią do stanu z energią dodatnią, pozostawi on dziurę, która będzie się zachowywać jak cząstka o takiej samej masie, lecz dodatnia. Otrzymujemy w ten sposób parę elektron i antyelektron. W 1932 roku cząstka taka została odkryta i nazwana pozytonem. Nic więc dziwnego, że już w roku następnym P.A.M. Dirac otrzymał Nagrodę Nobla (po połowie ze Schrödingerem). Inne wyjaśnienie dla rozwiązań o energii ujemnej podał później Richard Feynman: u niego pozytony są elektronami, które poruszają się wstecz w czasie, zamiast energii zmienia się znak czasu. Współczesna kwantowa teoria pola nie potrzebuje takich obrazów, wprowadza się w niej przestrzeń stanów bogatszą niż w mechanice kwantowej, gdyż pojawia się możliwość procesów kreacji oraz anihliacji par. Równanie Diraca obowiązuje nadal, lecz zamiast funkcji falowej mamy operator pola, obiekt jeszcze nieco bardziej abstrakcyjny.

Znakomitą biografię Diraca napisał Graham Farmelo, została ona jednak całkiem popsuta w polskim przekładzie, który językowo jest poniżej wszelkiej krytyki. Szkoda, bo pewnie nieprędko pojawi się drugie wydanie.

Kopenhaga 1941: spotkanie Wernera Heisenberga z Nielsem Bohrem

Czy obłąkańcze ideologie zawsze są samoniszczące? I jakie są ich koszty społeczne? Gdzie kończy się patriotyzm, a zaczyna oportunizm i łajdactwo? Czy uczonym wolno zamykać się w wieży z kości słoniowej? Jacy naprawdę są ludzie, których znamy? Czy historia jest w ogóle możliwa inaczej niż jako rozmowa duchów na Polach Elizejskich?
Sztuka Michaela Frayna Copenhagen jest dialogiem trzech duchów: Wernera Heisenberga, Nielsa Bohra i jego żony Margharete. Chyba nie wystawiona nigdy w Polsce, odniosła wielki sukces w Londynie, Nowym Jorku i w innych miejscach świata.

Spotkanie owych trzech duchów poprzedzone było wieloma latami ziemskiej znajomości. Bohr pierwszy raz zetknął się z Heisenbergiem, gdy wygłaszał w Getyndze w czerwcu 1922 roku swe słynne wykłady, zwane potem Festiwalem Bohra. Dwudziestolatek o chłopięcym wyglądzie zwrócił publicznie uwagę na pomyłkę Bohra i tym go zaintrygował. Trzeba rozumieć kontekst: Niels Bohr był wtedy najbardziej znanym fizykiem atomowym, w listopadzie miano ogłosić, że otrzymuje Nagrodę Nobla. Tak się złożyło, że Bohr otrzymał ją jednocześnie z Albertem Einsteinem, który został laureatem za rok 1921. W grudniu 1922 Svante Arrhenius, przewodniczący Komitetu Noblowskiego z fizyki zaprezentował osiągnięcia obu uczonych: w ten sposób Einstein, najwybitniejszy fizyk pierwszej ćwierci wieku XX, został symbolicznie złączony z Bohrem, patronem intelektualnym nurtu, który za kilka lat miał przynieść mechanikę kwantową. Sytuacja niecodzienna nawet jak na uroczystości noblowskie (nie spotkali się jednak przy tej okazji, ponieważ Einstein był w Japonii). Teoria względności i mechanika kwantowa do dziś są dwoma najważniejszymi osiągnięciami ostatniego stulecia. Rok 1922 stanowił też początek powojennego przełamywania lodów w nauce: wizyta Bohra w Getyndze i Einsteina w Paryżu były pierwszymi zapowiedziami powrotu do międzynarodowej współpracy po latach pierwszej wojny światowej, o której dziś rzadko mówimy, bo niebawem wybuchła następna wojna, jeszcze bardziej brutalna i bezwzględna.

Heisenberg był asystentem Maksa Borna i okazał się najzdolniejszym spośród tamtych chłopaków, ich fizykę nazywano czasem Knabenphysik – fizyką chłopców. Rewolucje robią ludzie młodzi: zarówno Einstein, jak i twórcy mechaniki kwantowej, zaczynali jako dwudziestoparolatkowie, a po trzydziestce już raczej kontynuowali poprzednie osiągnięcia (czasem tak wielkie jak teoria grawitacji). Bohr zaczął wkrótce współpracować z Heisenbergiem, i to podczas stażu w Danii wiosną roku 1925 powstała pierwsza przełomowa praca z mechaniki kwantowej. Max Born, pełen wątpliwości, pisał do Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów [chodzi o termy atomowe, pojęcie z dziedziny spektroskopii, widma pierwiastków są skomplikowane, lecz ich szczegółowa znajomość okazała się kluczem do fizyki mikroświata]. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Praca Heisenberga była zupełnie samodzielna, miał on silną osobowość i umiał się przeciwstawić apodyktycznemu Bohrowi. Duński uczony był wprawdzie kimś w rodzaju duchowego ojca mechaniki kwantowej, ale jego wpływ na młodszych bywał szkodliwy: kilku naukowców miało za złe Bohrowi, że odwiódł ich od słusznych myśli, przez co przeszło im koło nosa jakieś odkrycie. Jednocześnie jednak Bohr troszczył się o wszystkich swoich pupilów i z nimi przyjaźnił, wspólnie pływali żaglówką, jeździli na nartach albo odbywali długie, nawet kilkudniowe spacery.

Gdy Hitler został kanclerzem Niemiec, Werner Heisenberg był już sławny. W grudniu tego roku otrzymał Nagrodę Nobla za rok 1932 razem ze swoimi dwoma konkurentami w tworzeniu mechaniki kwantowej: Erwinem Schrödingerem i Paulem Dirakiem, którzy podzieli się Nagrodą za rok 1933. Trzydziestodwuletni profesor był wielką nadzieją nauki niemieckiej, nie miał Żydów w rodzinie i czuł się gorącym patriotą, choć może z lekka brzydził go NSDAP-owski sztafaż. Orszak studentów z pochodniami przeszedł ulicami Lipska pod dom laureata. Heisenberg zdecydowany był nie wyjeżdżać z Niemiec, chciał też pracować dla ojczyzny, kultywując swoją dziedzinę, czyli fizykę teoretyczną. Okazało się to nieproste. W 1937 roku został publicznie zaatakowany w organie prasowym SS jako „biały Żyd”, tzn. ktoś, kto głosi idee fizyki żydowskiej wśród niemieckiej młodzieży. Porównano go nawet do Carla von Ossietzky’ego, działacza pokojowego i laureata pokojowej Nagrody Nobla, niebawem zamęczonego w Dachau. Do fizyki żydowskiej zaliczano oczywiście teorię względności, ale także mechanikę kwantową. W tym drugim przypadku kryterium było całkowicie polityczne (to ja decyduję, kto jest Żydem): akurat ani Heisenberg, ani Schrödinger, ani Dirac nie byli Żydami. Pół-Żydem był Niels Bohr, co wkrótce zaczęło mieć znaczenie. Przez następny rok Heisenberg starał się „oczyścić” z zarzutów, jego list dotarł do samego Heinricha Himmlera, który zarządził śledztwo. Badano w nim życie fizyka, sprawdzano m.in. czy aby nie jest homoseksualistą (ożenił się bowiem niedawno i dotąd miał raczej przyjaciół mężczyzn, choć homoseksualistą nie był) i dlaczego nie wykazywał entuzjazmu wobec nazistów. Przesłuchiwano go też w podziemiach SS w Berlinie naprzeciwko napisu: „Oddychaj głęboko i spokojnie”. W końcu dano mu spokój i uznano, że jest nieszkodliwym profesorem, trzymającym się swojej dziedziny i być może przydatnym reżimowi. Zaczęto go potrzebować szybciej, niż ktokolwiek sądził. Podjęto bowiem w Niemczech prace nad projektem uranowym, który miał prowadzić do zbudowania reaktora, a może także bomby nuklearnej. Najważniejszym uczonym pracującym nad tym projektem został w naturalny sposób Werner Heisenberg.

Niels Bohr między Elisabeth i Wernerem Heisenbergiem, z tyłu Victor Weisskopf (1937, pewnie przy okazji ślubu Heisenberga)

I właśnie jako szef prac nad uzyskaniem energii z uranu Heisenberg pojawił się w Kopenhadze. W zasadzie pracowano nad reaktorem, który mógłby wytwarzać w dalekiej przyszłości pluton. Ale możliwość bomby rysowała się nad horyzontem i, jak się zdaje, Heisenberg ciężko pracował, aby wykazać swoją przydatność dla ojczyzny. Nie przejawiał zbyt wiele inteligencji emocjonalnej: pojawił się w Kopenhadze jako przedstawiciel nauki niemieckiej, miał wygłosić wykład w Instytucie Kulturalnym Niemiec. Duńczycy, poddani okupacji (wprawdzie stosunkowo łagodnej) dużego sąsiada, niezbyt garnęli się do kontaktów z Niemcami, zwłaszcza że w praktyce chodziło o propagandę III Rzeszy. Na wykładzie nie pojawili się najważniejsi naukowcy duńscy. Heisenberg spotkał się natomiast z Bohrem prywatnie, odbyli też wspólny spacer, aby porozmawiać (obaj, słusznie, obawiali się podsłuchów). O swojej wizycie Heisenberg pisał do swej żony, Elisabeth:

Moja droga Li,
oto znowu jestem w tym tak dobrze mi znanym mieście, gdzie pozostała cząstka mego serca od tamtego czasu sprzed piętnastu lat. Kiedy usłyszałem znowu kuranty z wieży ratuszowej, zamknąłem okno mego hotelowego pokoju i coś ścisnęło mnie mocno w środku: wszystko było tak samo, jakby nic się na świecie nie zmieniło. To takie dziwne, napotkać własną przeszłość, to tak jakby spotkało się samego siebie. (…) Późnym wieczorem poszedłem pieszo pod jasnym rozgwieżdżonym niebem przez zaciemnione miasto do Bohra.
Bohr i jego rodzina mają się dobrze; on sam się trochę postarzał, jego synowie są już całkiem dorośli. Rozmowa szybko zeszła na ludzkie zmartwienia i nieszczęsne wypadki ostatnich czasów; w sprawach ludzkich konsensus jest oczywisty; w kwestiach politycznych stwierdziłem, że nawet tak wielki człowiek jak Bohr nie potrafi całkowicie rozdzielić myślenia, odczuwania oraz nienawiści. Ale może nie powinno się ich nigdy rozdzielać. (…)
Wczoraj znowu spędziłem cały wieczór z Bohrem; oprócz pani Bohr i dzieci była też młoda Angielka, która mieszka u nich, ponieważ nie może wrócić do Anglii. Trochę dziwnie jest rozmawiać teraz z Angielką. Podczas nieuniknionych rozmów politycznych, podczas których ja broniłem naturalnie i automatycznie naszego systemu, wyszła i pomyślałem, że w sumie to całkiem miłe z jej strony. – Dziś rano byłem na molo z [Carlem Friedrichem] Weizsäckerem, wiesz, tam przy porcie, gdzie znajduje się Langelinie. Teraz stoją tam na kotwicy niemieckie okręty wojenne, kutry torpedowe, krążowniki pomocnicze i tym podobne. Był pierwszy ciepły dzień, port i niebo ponad nim zabarwione bardzo jasnym lekkim błękitem. Dwa duże frachtowce odpłynęły w stronę Elsynoru; przypłynął węglowiec, prawdopodobnie z Niemiec, dwie łodzie żaglowe, pewnie takiej wielkości, jak ta, którą pływaliśmy dawniej wypływały z portu, pewnie na popołudniową wycieczkę. W pawilonie na Langelinie zjedliśmy obiad, wszędzie dokoła byli sami szczęśliwi i radośni ludzie, a przynajmniej takie robili na nas wrażenie. W ogóle ludzie tu wyglądają na szczęśliwych. Wieczorem na ulicach widzi się promieniejące szczęściem młode pary, idące na dancing, nie myślące o niczym innym. Trudno o coś bardziej odmiennego niż życie na ulicach tutaj i w Lipsku.
(…) Pierwszy oficjalny wykład jest mój, jutro wieczorem. Niestety, członkowie Instytutu Bohra nie przyjdą z powodów politycznych. Jeśli wziąć pod uwagę, że Duńczycy żyją bez jakichkolwiek restrykcji i żyją wyjątkowo dobrze, to zadziwiające jest, że wzbudzone tu zostało tak wiele nienawiści i strachu, iż nawet współpraca w dziedzinie kultury, kiedyś tak oczywista, teraz stała się prawie niemożliwa. (list z końca września 1941 roku)

Bohra doszły słuchy, jak Heisenberg opowiada, że okupacja Danii i Norwegii to przykra konieczność, w odróżnieniu od okupacji wschodniej Europy, która jest niezbędna, gdyż kraje te nie potrafią same się rządzić (było to przed Stalingradem). Z perspektywy Danii wyglądało to oczywiście inaczej, tym bardziej że należało się spodziewać dalszych kroków niemieckich władz okupacyjnych. Dotąd aresztowali oni komunistów, dwa lata później przyszła kolej na Żydów i Bohr sam musiał się ratować przeprawą przez Bałtyk (na szczęście znalazł się w niemieckiej ambasadzie przyzwoity człowiek, Georg Ferdinand Duckwitz, który uprzedził o zamiarach nazistów i praktycznie wszyscy Żydzi duńscy zostali w porę przetransportowani łodziami rybackimi do Szwecji). Heisenberg wspomniał Bohrowi, że pracuje nad energią z uranu i nawet spytał go, co należy zrobić z moralnego punktu widzenia. Nie chciał chyba jednak słuchać odpowiedzi. Elisabeth Heisenberg opowiadała, że mąż bardzo się bał, iż alianci zbudują broń nuklearną wcześniej niż Niemcy. Oczywiście reszta świata obawiała się czegoś dokładnie odwrotnego. Rozmowa zostawiła nieprzyjemny osad w pamięci Bohra. Ich dawna przyjaźń z Heisenbergiem nigdy już się nie odrodziła, choć po wojnie spotykali się czasem.

„Był tu Werner Heisenberg, fizyk teoretyczny z Niemiec, kiedyś wielki nazista. Z niego jest wielki uczony, lecz niezbyt przyjemny człowiek” – stwierdził Einstein w 1954 roku. Einstein najprawdopodobniej uważał za nazistów tych, którzy pracowali dla reżimu Hitlera bez względu na to, czy należeli do NSDAP albo innych organizacji nazistowskich.

Po wojnie uczeni niemieccy starali się przekuć swoje niepowodzenie w sukces moralny, lecz wydaje się, że po prostu (i na całe szczęście) zabrakło im wizji i możliwości technicznych.
David C. Cassidy wyliczył techniczne powody niepowodzenia ekipy Heisenberga:

  • Nie obliczyli masy krytycznej uranu 235: nie sądzili, że wystarczą kilogramy, nie tony
  • Nie umieli przeprowadzić separacji izotopów: metodę separacji gazów znał w Niemczech Gustav Hertz, ale jako nieczysty rasowo pracował w prywatnym laboratorium
  • Moderator: ekipa Heisenberga nie wiedziała, że nadaje się do tego grafit, ale musi zostać oczyszczony z domieszek boru, co zauważył Leo Szilard, Żyd oczywiście i emigrant. Z kolei ciężka woda z Norwegii nie docierała dzięki sabotażowi.
  • Reaktor Heisenberga składał się z płaskich płyt uranu w zbiorniku z ciężką wodą, co było wygodne do obliczeń teoretycznych, lecz marne jako rozwiązanie inżynierskie.
  • Projekt wymagał połączonej wiedzy i znakomitej organizacji: amerykańskie zasoby i poziom techniki oraz europejscy uczeni, przeważnie Żydzi albo ofiary antysemityzmu: Bohr, Oppenheimer, Feynman, Bethe, Wigner, von Neumann, Fermi, Peierls, Compton, Ulam, praktycznie jest to słownik wielkich fizyków
  • Przebieg wojny: po początkowych sukcesach zaczęły się niemieckie porażki i coraz trudniej było zmobilizować zasoby na projekt nierokujący natychmiastowych sukcesów

W sumie po stronie naukowo-inżynierskiej zemściła się na nazistach ich obłąkańcza ideologia antysemicka, rządy idiotów, którzy przez rok sprawdzali, czy Heisenberg się nadaje na profesora w ich Rzeszy.

Max Born: Nagroda Nobla za przypis (1926, 1954)

Max Born w roku 1954 otrzymał Nagrodę Nobla za „fundamentalne badania w dziedzinie mechaniki kwantowej, a szczególnie za statystyczną interpretację funkcji falowej”. Nagrodę tę dzielił po połowie z Waltherem Bothe, którego eksperymenty pozwoliły wyjaśnić, że światło ma naturę cząstkową. Była to jedna z tych nagród, które przyznawane są jakby dla wyrównania dawnej niesprawiedliwości. Z perspektywy trzydziestu lat widać było, jak niezwykłym epizodem w dziejach fizyki były lata 1925-1927: ani wcześniej, ani później nie dokonano tak fundamentalnego przełomu w tak krótkim czasie. Fizycy wciąż zajmują się badaniem konsekwencji zasad wtedy sformułowanych, po drodze zrozumiano budowę atomów, cząsteczek chemicznych, ciał stałych, jąder atomowych i samych cząstek elementarnych, zbudowano tranzystory, lasery itd. Współczesna nanotechnologia to nic innego niż praktyczne zastosowania mechaniki kwantowej – coraz częściej uczy się tego przedmiotu inżynierów.

Max_Born

Zdjęcie: Wikimedia

W roku 1925 Max Born miał czterdzieści trzy lata i był profesorem fizyki w Getyndze. Umiał on przyciągać talenty: siedmiu jego studentów i doktorantów otrzymało Nagrody Nobla. To głównie dzięki niemu Getynga stała się w tamtych czasach głównym ośrodkiem fizyki, obok Kopenhagi, gdzie podobną rolę odgrywał Niels Bohr. Born zwierzał się w lipcu Einsteinowi:

Moi młodzi ludzie, Heisenberg, Jordan, Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. [Chodzi o szczegółową wiedzę dotyczącą widm różnych pierwiastków] Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka.

Heisenberg radził się Borna, co zrobić z tą pracą, czy ma ją już opublikować, nie umiał się bowiem w tamtej chwili dalej posunąć. Max Born też jeszcze zapewne nie rozumiał, jak głęboki przewrót się szykuje. W drugiej połowie roku razem z Jordanem i Heisenbergiem rozwinęli pomysły Heisenberga w systematyczną teorię. Można było w jej ramach obliczać pewne wielkości, np. skwantowane energie oscylatora albo atomu wodoru. Nie bardzo jednak rozumiano, jak należy interpretować matematyczny formalizm, który dostarczał tych wyników.
W czerwcu 1926 roku Max Born zajął się zagadnieniem zderzeń cząstek w nowej teorii. Jeśli początkowo cząstka znajdowała się w stanie opisanym falą \psi^{0}_{n} (np. poruszając się w określonym kierunku z określonym pędem), to po zderzeniu jej stan był sumą wielu różnych stanów m (odpowiadających np. różnym kierunkom rozproszenia).

\psi^{1}_{n}=\sum_{m}\Phi_{nm}\psi^{0}_{m}

Wartości \Phi_{nm} informują o zawartości fal danego rodzaju w stanie końcowym. Jeśli\Phi_{nm} dla jakiegoś m jest równe zeru, to stan m w ogóle się nie pojawi. Born pisze: „Jeśli chce się ten wynik zrozumieć w sposób korpuskularny, to możliwa jest tylko jedna interpretacja: \Phi_{nm} określa prawdopodobieństwo” rozproszenia do stanu m. Do zdania tego została dołączona uwaga na etapie korekty pracy: „Dokładniejsze rozważania pokazują, że prawdopodobieństwo jest proporcjonalne do kwadratu \Phi_{nm}”. To jest właśnie ten przypis wart Nagrody Nobla. Ściśle biorąc, chodzi o kwadrat modułu zespolonego, bo \Phi_{nm} jest zespolone.

Oczywiście, to nie jest cały wkład Borna do mechaniki kwantowej. Podobne myśli chodziły wówczas po głowie co najmniej paru osobom, Born zdecydował się je rozwinąć. Miał też świadomość wagi tego kroku: w tej samej pracy pisze, że osobiście skłonny jest porzucić determinizm w świecie atomowym. A więc jeśli elektron w danym stanie zderzy się z drugą cząstką, to wynik za każdym razem może być inny. Nie dlatego, że nie potrafimy dokładnie powtórzyć warunków doświadczenia, ale dlatego że sama przyroda działa losowo. Był to niezmiernie ważny krok. Wszelka fizyka kwantowa jest właściwie sztuką obliczania takich wielkości zespolonych, zwanych dziś amplitudami prawdopodobieństwa. Chcąc otrzymać wielkość mierzalną doświadczalnie, należy amplitudę podnieść do kwadratu i otrzymujemy wówczas prawdopodobieństwo zajścia danego zdarzenia. Tylko tyle i aż tyle.

Nowa fizyka wciągnęła niemal wszystkich. Wyjątkiem był Albert Einstein, tylko kilka lat starszy od Borna, uważany w tamtym momencie za najwybitniejszego żyjącego fizyka. W grudniu 1926 roku Einstein napisał do Borna: „Mechanika kwantowa jest bardzo imponująca. Ale mój głos wewnętrzny mówi, że to nie jest sedno sprawy. Teoria ta wiele daje, ale niewiele nas przybliża do tajemnic Starego. Ja przynajmniej jestem przekonany, że On nie gra w kości”. Pozostał wierny temu przekonaniu aż do śmierci. Po niemal wieku widać, że niezmiernie trudno byłoby jakoś obejść fizykę kwantową, choć niektórzy zastanawiają się nad taką możliwością (np. Gerard t Hooft).

 Max Born był zawiedziony, kiedy kilka lat później jako jedyny z Getyngi Nagrodę Nobla otrzymał Werner Heisenberg. Także Heisenbergowi było głupio, napisał nawet przepraszający list do Borna. Kiedy w latach pięćdziesiątych zdecydowano się naprawić dawny błąd, pominięto Pascuala Jordana, trzeciego ważnego uczonego z Getyngi. To ostatnie było jednak zapewne celowe: Jordan, potomek napoleońskiego żołnierza, został w latach trzydziestych gorącym nazistą. Niecałe dziesięć lat po tym, jak Niemcy zniszczyli pół Europy, przyznawanie mu Nagrody Nobla wywołałoby z pewnością gorące protesty. Jordan został zrehabilitowany i niebawem zajął się znowu polityką, popierając rozmieszczenie broni jądrowej na terenie Niemiec.

Werner Heisenberg i nazistowska bomba: dylematy dobrego Niemca w złych czasach (1933-1945)

Heisenberg uosabiał wszystko, co najlepsze w niemieckiej tradycji i kulturze. Te same cechy sprawiły, że był zupełnie bezbronny w czasach dyktatury kiczowatego malarza z Austrii, który nie potrafił nawet mówić czystą niemczyzną.

Heisenberg był nacjonalistą, romantykiem, skautem, miłośnikiem wędrówek po górach, poezji i znakomitym pianistą. Za prace dotyczące mechaniki kwantowej otrzymał Nagrodę Nobla, dowiedział się o niej na miesiąc przed swymi trzydziestymi drugimi urodzinami. Był więc młody, genialny i już sławny. Niestety, był to rok 1933 – rok dojścia do władzy Adolfa Hitlera i rok rasistowskich czystek we wszystkich instytucjach państwowych, w tym na uczelniach. Wielu kolegów Heisenberga musiało emigrować, inni opowiedzieli się za nazizmem, jak Pascual Jordan, kilka lat wcześniej nominowany do Nagrody Nobla razem z Heisenbergiem (jak na ironię ten zaciekły zwolennik Hitlera miał francuskie korzenie – stąd nazwisko) czy Martin Heidegger, słynny filozof.

Heisenberg

Większość Niemców zachowała w obliczu tych czystek stoicki spokój, niektórzy się cieszyli, niemal nikt nie protestował. Sebastian Haffner opowiada, jak 31 marca 1933 roku w budynku Kammergericht w Berlinie prawnicy pracują w ciszy, aż pojawia się kilka brunatnych mundurów i ich dowódca w prostackich słowach ogłasza, że nie-Aryjczycy mają natychmiast wyjść. Sędziowie i adwokaci pakują aktówki i wychodzą.

Heisenberg nie był zwolennikiem Hitlera, próbował pomagać ludziom, którzy mieli kłopoty. Sam też miał zresztą pewne trudności mimo Nagrody Nobla: fizyka atomowa oraz teoria względności uchodziły za niearyjskie i chciano usunąć je z programu studiów, opisano nawet kiedyś Heisenberga w prasie partyjnej jako „białego Żyda” – czyli Niemca współpracującego z ową rasą winną całego zła na świecie. Autorem nie był jakiś nazistowski bęcwał, lecz profesor Johannes Stark (Nagroda Nobla 1919). Heisenberg nie chciał wyjeżdżać, co zresztą jest charakterystyczne: emigrowali niemal wyłącznie ci, którzy musieli – z powodu komunizmu, żydowskości albo łączenia ich w propagandzie z tymi dwiema grupami.

StarkJohannes19301Cele i osobowość Adolfa Hitlera przez dra Johannesa Starka, laureata Nagrody Nobla i profesora uniwersytetu, Monachium 1930

StarkJohannes19300Obok strony tytułowej widzimy inne fascynujące pozycje wydawnicze: Protokoły mędrców Syjonu, Narodowy socjalizm, Międzynarodowa finansjera. (źródło: Internet Archive)

Nasz uczony nie popierał nazistów, ale też nie przeszkadzało mu specjalnie, gdy Niemcy zajęli większość Europy. Pracował podczas wojny w projekcie atomowym, który mógł doprowadzić do wyprodukowania bomby plutonowej. Wśród licznych podróży Heisenberga po okupowanej Europie – jeździł jako oficjalny przedstawiciel niemieckiej propagandy kulturalnej (!) do Budapesztu, Krakowa (gdzie gościł go kolega z ławy szkolnej Hans Frank), do Holandii itd. – szczególnie sławne są jego odwiedziny u Nielsa Bohra w Kopenhadze w roku 1941. Bohr był naukowym mentorem Heisenberga, kimś w rodzaju jego naukowego ojca. Dawniej spotykali się bardzo często, nawet po drodze do Sztokholmu na uroczystość noblowską Heisenberg wstąpił do Bohra, aby mu podziękować. Tym razem jednak rozmowy się nie kleiły. Uczony niemiecki uważał okupację krajów takich jak Dania za coś zrozumiałego samo przez się i nie widział w tym nic niestosownego. Poruszył też temat wojennych prac nad rozszczepieniem uranu. Bohr, który nie bardzo znał się wówczas na stronie technicznej przedsięwzięcia, był przerażony. Po pewnym czasie uciekł z Danii i w Los Alamos opowiedział o tych rozmowach z Heisenbergiem. Uczeni alianccy uznali, że tym bardziej należy się spieszyć.

Znamy ciąg dalszy: to Amerykanie, a właściwie międzynarodowa ekipa, w której było także wielu uciekinierów z Niemiec, zbudowali dwie pierwsze bomby: uranową i plutonową. Dopiero po wojnie okazało się, że Niemcy nie mieli szans na szybkie zbudowanie takiej broni. Heisenberg, jego bliski współpracownik Carl Friedrich von Weizsäcker i inni zaczęli owo niemieckie zapóźnienie przedstawiać jako swą moralną przewagę nad aliantami. Był to zresztą element powszechnej w powojennych Niemczech zmiany życiorysów tak, aby lepiej pasowały do nowych czasów. Nagle znalazło się mnóstwo przeciwników nazizmu tak głęboko zakamuflowanych, że przed 1945 rokiem nikt ich jakoś nie zauważył. Co ciekawe, w komunistycznej Polsce ukazała się książka Roberta Jungka, Jaśniej niż tysiąc słońc, w której prezentowano właśnie ten niemiecki punkt widzenia. Podejrzewam, iż chodziło o to, że źle w tym ujęciu wypadali Amerykanie, czyli imperialiści, jak wiadomo.

Jak naprawdę wyglądała sprawa nazistowskiej bomby atomowej?

Bombę atomową można zbudować albo wykorzystując izotop uranu 235U, albo stosując pluton, pierwiastek niewystępujący w przyrodzie, który trzeba wcześniej wytworzyć w reaktorze. Z 235U jest ten problem, że stanowi on zaledwie 0,7% naturalnego uranu, większość to 238U, który nie nadaje się na bombę. Ponieważ chemicznie atomy obu rodzajów się nie różnią, więc trzeba wykorzystywać do rozdzielenia jakieś procesy, w których odgrywa rolę różnica mas, np. dyfuzja, wirówki albo ruch w polu elektromagnetycznym. Między masą 235 i 238 różnica jest na tyle mała, że trzeba wielokrotnie powtarzać proces. Amerykanie zbudowali podczas wojny ogromne zakłady wzbogacania uranu w Oak Ridge w rekordowo krótkim tempie. Niemcy uważali tę drogę za nierealną mimo że Gustav Hertz (bratanek Heinricha Hertza, odkrywcy fal elektromagnetycznych i laureat Nagrody Nobla z 1925 roku) prowadził prace nad rozdzielaniem izotopów. Jednak w roku 1936 usunięto go z posady akademickiej jako tzw. „częściowego Żyda drugiego stopnia” i pracował odtąd w przemyśle prywatnym. Na szczęście, chciałoby się dodać.

Drugim sposobem budowy bomby jest produkcja plutonu w reaktorze. Trzeba mieć działający reaktor z kontrolowaną reakcją łańcuchową i odpowiednio dużo czasu. Wyzwalające się neutrony należy spowalniać. Najlepszym do tego materiałem okazał się grafit, czego na szczęście Niemcy nie wiedzieli – chodzi o to, że zwykły grafit przemysłowy był zanieczyszczony borem, silnie pochłaniającym neutrony. Należało więc używać specjalnie oczyszczonego grafitu, co zrobił Enrico Fermi (emigrant z Włoch) w Chicago. Ekipa Heisenberga najpierw próbowała niepraktycznej konstrukcji reaktora – wygodniejszej jednak do rachunków (szef był teoretykiem), a dopiero niedługo przed końcem wojny wpadli na lepsze rozwiązanie. Poza tym do spowalniania neutronów używali ciężkiej wody produkowanej w Norwegii i (znów na szczęście!) mieli jej za mało.

Uczeni niemieccy z wielkim zdumieniem przyjęli nowinę o Hiroszimie i Nagasaki. Ich program atomowy był znacznie mniej zaawansowany i to wcale nie wskutek jakiegoś sabotażu. Lepiej po prostu nie potrafili. Jedną z przyczyn tej naukowo-technicznej porażki, obok idiotyzmów politycznych i kurczących się możliwości niemieckiego przemysłu w czasie wojny, był znaczny ubytek uczonych najwyższej klasy. Heisenberg i jego koledzy nie zdawali sobie sprawy, że nie tylko przemysł amerykański jest lepszy od niemieckiego, ale że odtąd fizykę będzie się tworzyć za oceanem, a „The Physical Review” – amerykańskie pismo, którego przed wojną nikt w Niemczech nie czytał, stanie odtąd się najważniejszym forum prezentowania nowych odkryć.

Sebastian Haffner, Historia pewnego Niemca, Znak, Kraków 2007.
David C. Cassidy, New Light on Copenhagen and the German Nuclear Project, „Physics in perspective”, t. 4 (2002), s. 447–455.
David C. Cassidy, Beyond Uncertainty: Heisenberg, Quantum Physics, and the Bomb, Bellevue Literary Press, New York 2009.