Max Born: Nagroda Nobla za przypis (1926, 1954)

Max Born w roku 1954 otrzymał Nagrodę Nobla za „fundamentalne badania w dziedzinie mechaniki kwantowej, a szczególnie za statystyczną interpretację funkcji falowej”. Nagrodę tę dzielił po połowie z Waltherem Bothe, którego eksperymenty pozwoliły wyjaśnić, że światło ma naturę cząstkową. Była to jedna z tych nagród, które przyznawane są jakby dla wyrównania dawnej niesprawiedliwości. Z perspektywy trzydziestu lat widać było, jak niezwykłym epizodem w dziejach fizyki były lata 1925-1927: ani wcześniej, ani później nie dokonano tak fundamentalnego przełomu w tak krótkim czasie. Fizycy wciąż zajmują się badaniem konsekwencji zasad wtedy sformułowanych, po drodze zrozumiano budowę atomów, cząsteczek chemicznych, ciał stałych, jąder atomowych i samych cząstek elementarnych, zbudowano tranzystory, lasery itd. Współczesna nanotechnologia to nic innego niż praktyczne zastosowania mechaniki kwantowej – coraz częściej uczy się tego przedmiotu inżynierów.

Max_Born

Zdjęcie: Wikimedia

W roku 1925 Max Born miał czterdzieści trzy lata i był profesorem fizyki w Getyndze. Umiał on przyciągać talenty: siedmiu jego studentów i doktorantów otrzymało Nagrody Nobla. To głównie dzięki niemu Getynga stała się w tamtych czasach głównym ośrodkiem fizyki, obok Kopenhagi, gdzie podobną rolę odgrywał Niels Bohr. Born zwierzał się w lipcu Einsteinowi:

Moi młodzi ludzie, Heisenberg, Jordan, Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów. [Chodzi o szczegółową wiedzę dotyczącą widm różnych pierwiastków] Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka.

Heisenberg radził się Borna, co zrobić z tą pracą, czy ma ją już opublikować, nie umiał się bowiem w tamtej chwili dalej posunąć. Max Born też jeszcze zapewne nie rozumiał, jak głęboki przewrót się szykuje. W drugiej połowie roku razem z Jordanem i Heisenbergiem rozwinęli pomysły Heisenberga w systematyczną teorię. Można było w jej ramach obliczać pewne wielkości, np. skwantowane energie oscylatora albo atomu wodoru. Nie bardzo jednak rozumiano, jak należy interpretować matematyczny formalizm, który dostarczał tych wyników.
W czerwcu 1926 roku Max Born zajął się zagadnieniem zderzeń cząstek w nowej teorii. Jeśli początkowo cząstka znajdowała się w stanie opisanym falą \psi^{0}_{n} (np. poruszając się w określonym kierunku z określonym pędem), to po zderzeniu jej stan był sumą wielu różnych stanów m (odpowiadających np. różnym kierunkom rozproszenia).

\psi^{1}_{n}=\sum_{m}\Phi_{nm}\psi^{0}_{m}

Wartości \Phi_{nm} informują o zawartości fal danego rodzaju w stanie końcowym. Jeśli\Phi_{nm} dla jakiegoś m jest równe zeru, to stan m w ogóle się nie pojawi. Born pisze: „Jeśli chce się ten wynik zrozumieć w sposób korpuskularny, to możliwa jest tylko jedna interpretacja: \Phi_{nm} określa prawdopodobieństwo” rozproszenia do stanu m. Do zdania tego została dołączona uwaga na etapie korekty pracy: „Dokładniejsze rozważania pokazują, że prawdopodobieństwo jest proporcjonalne do kwadratu \Phi_{nm}”. To jest właśnie ten przypis wart Nagrody Nobla. Ściśle biorąc, chodzi o kwadrat modułu zespolonego, bo \Phi_{nm} jest zespolone.

Oczywiście, to nie jest cały wkład Borna do mechaniki kwantowej. Podobne myśli chodziły wówczas po głowie co najmniej paru osobom, Born zdecydował się je rozwinąć. Miał też świadomość wagi tego kroku: w tej samej pracy pisze, że osobiście skłonny jest porzucić determinizm w świecie atomowym. A więc jeśli elektron w danym stanie zderzy się z drugą cząstką, to wynik za każdym razem może być inny. Nie dlatego, że nie potrafimy dokładnie powtórzyć warunków doświadczenia, ale dlatego że sama przyroda działa losowo. Był to niezmiernie ważny krok. Wszelka fizyka kwantowa jest właściwie sztuką obliczania takich wielkości zespolonych, zwanych dziś amplitudami prawdopodobieństwa. Chcąc otrzymać wielkość mierzalną doświadczalnie, należy amplitudę podnieść do kwadratu i otrzymujemy wówczas prawdopodobieństwo zajścia danego zdarzenia. Tylko tyle i aż tyle.

Nowa fizyka wciągnęła niemal wszystkich. Wyjątkiem był Albert Einstein, tylko kilka lat starszy od Borna, uważany w tamtym momencie za najwybitniejszego żyjącego fizyka. W grudniu 1926 roku Einstein napisał do Borna: „Mechanika kwantowa jest bardzo imponująca. Ale mój głos wewnętrzny mówi, że to nie jest sedno sprawy. Teoria ta wiele daje, ale niewiele nas przybliża do tajemnic Starego. Ja przynajmniej jestem przekonany, że On nie gra w kości”. Pozostał wierny temu przekonaniu aż do śmierci. Po niemal wieku widać, że niezmiernie trudno byłoby jakoś obejść fizykę kwantową, choć niektórzy zastanawiają się nad taką możliwością (np. Gerard t Hooft).

 Max Born był zawiedziony, kiedy kilka lat później jako jedyny z Getyngi Nagrodę Nobla otrzymał Werner Heisenberg. Także Heisenbergowi było głupio, napisał nawet przepraszający list do Borna. Kiedy w latach pięćdziesiątych zdecydowano się naprawić dawny błąd, pominięto Pascuala Jordana, trzeciego ważnego uczonego z Getyngi. To ostatnie było jednak zapewne celowe: Jordan, potomek napoleońskiego żołnierza, został w latach trzydziestych gorącym nazistą. Niecałe dziesięć lat po tym, jak Niemcy zniszczyli pół Europy, przyznawanie mu Nagrody Nobla wywołałoby z pewnością gorące protesty. Jordan został zrehabilitowany i niebawem zajął się znowu polityką, popierając rozmieszczenie broni jądrowej na terenie Niemiec.

Werner Heisenberg i nazistowska bomba: dylematy dobrego Niemca w złych czasach (1933-1945)

Heisenberg uosabiał wszystko, co najlepsze w niemieckiej tradycji i kulturze. Te same cechy sprawiły, że był zupełnie bezbronny w czasach dyktatury kiczowatego malarza z Austrii, który nie potrafił nawet mówić czystą niemczyzną.

Heisenberg był nacjonalistą, romantykiem, skautem, miłośnikiem wędrówek po górach, poezji i znakomitym pianistą. Za prace dotyczące mechaniki kwantowej otrzymał Nagrodę Nobla, dowiedział się o niej na miesiąc przed swymi trzydziestymi drugimi urodzinami. Był więc młody, genialny i już sławny. Niestety, był to rok 1933 – rok dojścia do władzy Adolfa Hitlera i rok rasistowskich czystek we wszystkich instytucjach państwowych, w tym na uczelniach. Wielu kolegów Heisenberga musiało emigrować, inni opowiedzieli się za nazizmem, jak Pascual Jordan, kilka lat wcześniej nominowany do Nagrody Nobla razem z Heisenbergiem (jak na ironię ten zaciekły zwolennik Hitlera miał francuskie korzenie – stąd nazwisko) czy Martin Heidegger, słynny filozof.

Heisenberg

Większość Niemców zachowała w obliczu tych czystek stoicki spokój, niektórzy się cieszyli, niemal nikt nie protestował. Sebastian Haffner opowiada, jak 31 marca 1933 roku w budynku Kammergericht w Berlinie prawnicy pracują w ciszy, aż pojawia się kilka brunatnych mundurów i ich dowódca w prostackich słowach ogłasza, że nie-Aryjczycy mają natychmiast wyjść. Sędziowie i adwokaci pakują aktówki i wychodzą.

Heisenberg nie był zwolennikiem Hitlera, próbował pomagać ludziom, którzy mieli kłopoty. Sam też miał zresztą pewne trudności mimo Nagrody Nobla: fizyka atomowa oraz teoria względności uchodziły za niearyjskie i chciano usunąć je z programu studiów, opisano nawet kiedyś Heisenberga w prasie partyjnej jako „białego Żyda” – czyli Niemca współpracującego z ową rasą winną całego zła na świecie. Autorem nie był jakiś nazistowski bęcwał, lecz profesor Johannes Stark (Nagroda Nobla 1919). Heisenberg nie chciał wyjeżdżać, co zresztą jest charakterystyczne: emigrowali niemal wyłącznie ci, którzy musieli – z powodu komunizmu, żydowskości albo łączenia ich w propagandzie z tymi dwiema grupami.

StarkJohannes19301Cele i osobowość Adolfa Hitlera przez dra Johannesa Starka, laureata Nagrody Nobla i profesora uniwersytetu, Monachium 1930

StarkJohannes19300Obok strony tytułowej widzimy inne fascynujące pozycje wydawnicze: Protokoły mędrców Syjonu, Narodowy socjalizm, Międzynarodowa finansjera. (źródło: Internet Archive)

Nasz uczony nie popierał nazistów, ale też nie przeszkadzało mu specjalnie, gdy Niemcy zajęli większość Europy. Pracował podczas wojny w projekcie atomowym, który mógł doprowadzić do wyprodukowania bomby plutonowej. Wśród licznych podróży Heisenberga po okupowanej Europie – jeździł jako oficjalny przedstawiciel niemieckiej propagandy kulturalnej (!) do Budapesztu, Krakowa (gdzie gościł go kolega z ławy szkolnej Hans Frank), do Holandii itd. – szczególnie sławne są jego odwiedziny u Nielsa Bohra w Kopenhadze w roku 1941. Bohr był naukowym mentorem Heisenberga, kimś w rodzaju jego naukowego ojca. Dawniej spotykali się bardzo często, nawet po drodze do Sztokholmu na uroczystość noblowską Heisenberg wstąpił do Bohra, aby mu podziękować. Tym razem jednak rozmowy się nie kleiły. Uczony niemiecki uważał okupację krajów takich jak Dania za coś zrozumiałego samo przez się i nie widział w tym nic niestosownego. Poruszył też temat wojennych prac nad rozszczepieniem uranu. Bohr, który nie bardzo znał się wówczas na stronie technicznej przedsięwzięcia, był przerażony. Po pewnym czasie uciekł z Danii i w Los Alamos opowiedział o tych rozmowach z Heisenbergiem. Uczeni alianccy uznali, że tym bardziej należy się spieszyć.

Znamy ciąg dalszy: to Amerykanie, a właściwie międzynarodowa ekipa, w której było także wielu uciekinierów z Niemiec, zbudowali dwie pierwsze bomby: uranową i plutonową. Dopiero po wojnie okazało się, że Niemcy nie mieli szans na szybkie zbudowanie takiej broni. Heisenberg, jego bliski współpracownik Carl Friedrich von Weizsäcker i inni zaczęli owo niemieckie zapóźnienie przedstawiać jako swą moralną przewagę nad aliantami. Był to zresztą element powszechnej w powojennych Niemczech zmiany życiorysów tak, aby lepiej pasowały do nowych czasów. Nagle znalazło się mnóstwo przeciwników nazizmu tak głęboko zakamuflowanych, że przed 1945 rokiem nikt ich jakoś nie zauważył. Co ciekawe, w komunistycznej Polsce ukazała się książka Roberta Jungka, Jaśniej niż tysiąc słońc, w której prezentowano właśnie ten niemiecki punkt widzenia. Podejrzewam, iż chodziło o to, że źle w tym ujęciu wypadali Amerykanie, czyli imperialiści, jak wiadomo.

Jak naprawdę wyglądała sprawa nazistowskiej bomby atomowej?

Bombę atomową można zbudować albo wykorzystując izotop uranu 235U, albo stosując pluton, pierwiastek niewystępujący w przyrodzie, który trzeba wcześniej wytworzyć w reaktorze. Z 235U jest ten problem, że stanowi on zaledwie 0,7% naturalnego uranu, większość to 238U, który nie nadaje się na bombę. Ponieważ chemicznie atomy obu rodzajów się nie różnią, więc trzeba wykorzystywać do rozdzielenia jakieś procesy, w których odgrywa rolę różnica mas, np. dyfuzja, wirówki albo ruch w polu elektromagnetycznym. Między masą 235 i 238 różnica jest na tyle mała, że trzeba wielokrotnie powtarzać proces. Amerykanie zbudowali podczas wojny ogromne zakłady wzbogacania uranu w Oak Ridge w rekordowo krótkim tempie. Niemcy uważali tę drogę za nierealną mimo że Gustav Hertz (bratanek Heinricha Hertza, odkrywcy fal elektromagnetycznych i laureat Nagrody Nobla z 1925 roku) prowadził prace nad rozdzielaniem izotopów. Jednak w roku 1936 usunięto go z posady akademickiej jako tzw. „częściowego Żyda drugiego stopnia” i pracował odtąd w przemyśle prywatnym. Na szczęście, chciałoby się dodać.

Drugim sposobem budowy bomby jest produkcja plutonu w reaktorze. Trzeba mieć działający reaktor z kontrolowaną reakcją łańcuchową i odpowiednio dużo czasu. Wyzwalające się neutrony należy spowalniać. Najlepszym do tego materiałem okazał się grafit, czego na szczęście Niemcy nie wiedzieli – chodzi o to, że zwykły grafit przemysłowy był zanieczyszczony borem, silnie pochłaniającym neutrony. Należało więc używać specjalnie oczyszczonego grafitu, co zrobił Enrico Fermi (emigrant z Włoch) w Chicago. Ekipa Heisenberga najpierw próbowała niepraktycznej konstrukcji reaktora – wygodniejszej jednak do rachunków (szef był teoretykiem), a dopiero niedługo przed końcem wojny wpadli na lepsze rozwiązanie. Poza tym do spowalniania neutronów używali ciężkiej wody produkowanej w Norwegii i (znów na szczęście!) mieli jej za mało.

Uczeni niemieccy z wielkim zdumieniem przyjęli nowinę o Hiroszimie i Nagasaki. Ich program atomowy był znacznie mniej zaawansowany i to wcale nie wskutek jakiegoś sabotażu. Lepiej po prostu nie potrafili. Jedną z przyczyn tej naukowo-technicznej porażki, obok idiotyzmów politycznych i kurczących się możliwości niemieckiego przemysłu w czasie wojny, był znaczny ubytek uczonych najwyższej klasy. Heisenberg i jego koledzy nie zdawali sobie sprawy, że nie tylko przemysł amerykański jest lepszy od niemieckiego, ale że odtąd fizykę będzie się tworzyć za oceanem, a „The Physical Review” – amerykańskie pismo, którego przed wojną nikt w Niemczech nie czytał, stanie odtąd się najważniejszym forum prezentowania nowych odkryć.

Sebastian Haffner, Historia pewnego Niemca, Znak, Kraków 2007.
David C. Cassidy, New Light on Copenhagen and the German Nuclear Project, „Physics in perspective”, t. 4 (2002), s. 447–455.
David C. Cassidy, Beyond Uncertainty: Heisenberg, Quantum Physics, and the Bomb, Bellevue Literary Press, New York 2009.