Sen Wolfganga Pauliego (1938)

Pauli urodził się w tym samym roku, gdy Max Planck zapoczątkował niechcący fizykę kwantową. Z racji późnego urodzenia niezbyt przejmował się dylematami uczonych pierwszego pokolenia zmagającego się z pojęciami kwantowymi. Jego pokolenie – do którego należeli Heisenberg, Jordan, Dirac – stworzyło mechanikę kwantową i jej relatywistyczną wersję, czyli elektrodynamikę kwantową, dziedzinę w pełni rozwiniętą już po drugiej wojnie światowej (Schwinger, Tomonaga, Feynman, Bethe i in.). Pauli nie tylko obserwował z bliska rozwój fizyki kwantowej, ale także sam się do niego mocno przyczynił. M.in. sformułowaniem zakazu Pauliego: w danym stanie orbitalnym mogą znajdować się maksymalnie dwa elektrony. Zasada ta wyjaśnia ułożenie powłok i podpowłok elektronowych, czyli w konsekwencji układ okresowy pierwiastków i chemię. Pauli także zrozumiał, czemu cząstki kwantowe dzielą się na dwie grupy: fermionów (jak elektrony) i bozonów (jak bozon Higgsa). Zależy to od spinu cząstki. Spin połówkowy mają fermiony, całkowity – bozony. Podział ten określa w znacznej mierze zachowanie się cząstek kwantowych. Fermiony unikają się wzajemnie, jak elektrony w atomie albo białym karle. Bozony chętnie przebywają w tym samym stanie, dzięki czemu możliwy jest laser albo kondensacja Bosego-Einsteina. Twierdzenie o związku spinu ze statystyką stało się jednym z kamieni węgielnych kwantowej teorii pola.

Wiedeńczyk, syn profesora chemii, który przyjął katolicyzm dla ułatwienia kariery, miał za ojca chrzestnego wybitnego filozofa Ernsta Macha. Pisał o tym do Carla Junga:

Wśród moich książek znajduje się nieco zakurzona skrzyneczka zawierająca secesyjny srebrny kielich z kartą wizytową w środku. Z kielicha zdaje się unosić spokojny, dobroczynny i radosny duch z niegdysiejszej epoki. Wyobrażam sobie, jak przyjaźnie ściska on pańską dłoń, zadowolony z pańskiej osobistej definicji fizyki jako sympatycznej oznaki nieco może spóźnionego zrozumienia. (…) Wyraża on satysfakcję z faktu, iż sądy metafizyczne w  ogólności, zostały, jak zwykł był mówić, „zesłane do królestwa cieni prymitywnej postaci animizmu”. Kielich ów służył do chrztu i na karcie wpisano z ozdobnymi zakrętasami: „Dr E. Mach, profesor Uniwersytetu Wiedeńskiego”. Tak się zdarzyło, że ojciec mój bardzo był zaprzyjaźniony z jego rodziną i znajdował się w tamtym czasie całkowicie pod jego wpływem umysłowym, a on (Mach) zgodził się uprzejmie przyjąć rolę mego ojca chrzestnego. Musiał mieć znacznie silniejszą osobowość od księdza katolickiego, z takim namacalnym skutkiem, że byłem ochrzczony bardziej w obrządku antymetafizycznym niż katolickim. Jakkolwiek zresztą było, karta pozostała w kielichu i mimo wielkich przemian umysłowych, jakie potem przeszedłem, pozostaje nadal etykietką, którą noszę, a mianowicie „antymetafizycznego pochodzenia”. I w gruncie rzeczy, upraszczając to może zbytnio, Mach uważał metafizykę za korzeń zła na tym świecie – czyli w języku psychologicznym samego Diabła – i kielich wraz z kartą pozostają symbolem aqua permanens [termin alchemiczny, dosł. trwała woda], która chroni od złych metafizycznych duchów.

Nie potrzebuję opisywać bardziej szczegółowo Macha. Aby go poznać, wystarczy, by odczytał pan swój własny opis typu ekstrawertycznego. Był mistrzem eksperymentu i w jego mieszkaniu pełno było przeróżnych pryzmatów, spektroskopów, stroboskopów, generatorów elektrostatycznych i innych urządzeń. Zawsze gdy przychodziłem z wizytą, pokazywał jakieś ładne doświadczenie pomyślane tak, by weyeliminować bądź poprawić jakiś błąd w myśleniu. Uważając swoje własne nastawienie psychologiczne za coś powszechnego, radził każdemu praktykować ekonomię myślenia, stosując tę niższą dodatkową zdolność tak, oszczędnie, jak można. Jego własne myślenie ściśle i z bliska podążało za obserwacjami zmysłów i odczytami przyrządów laboratoryjnych. (…)

Chciałbym przytoczyć anegdotę, które może rozbawić szczególnie pana. Otóż Mach, daleki od pruderii i interesujący się zawsze wszelkimi prądami umysłowymi, wygłosił kiedyś opinię na temat psychoanalizy Freuda i jego szkoły. „Ludzie ci – stwierdził – chcą użyć waginy jako teleskopu, przez który ogląda się świat; nie jest to jednak jej funkcja naturalna, jest ona na to zbyt ciasna”. Przez jakiś czas słowa te powtarzali wszyscy na Uniwersytecie Wiedeńskim. To bardzo charakterystyczne dla instrumentalistycznego sposobu myślenia Macha. Psychoanaliza wywołała u niego natychmiast żywy konkretny obraz niewłaściwie użytego instrumentu – owego kobiecego narządu zestawionego w niewłaściwy sposób z okiem. [List z 31 marca 1953 roku]

Filozofia Macha odegrała sporą rolę w rozwoju Alberta Einsteina, zachęcając go do krytycznego spojrzenia na pojęcia czasu i przestrzeni w fizyce Newtonowskiej. Mach był nieprzejednanym krytykiem atomów w fizyce, uważając je za konstrukt metafizyczny i spierając się na ten temat z Ludwigiem Boltzmannem. Pozytywistyczne nastawienie Pauliego wyrażało się zupełnie inaczej. Słynął on wśród kolegów jako „bicz boży”, bezwględny krytyk nie dość umotywowanych koncepcji. Nie oszczędzał także wielkich uczonych, np. Einsteina, który go niezwykle cenił i przyczynił się do przyznania mu Nagrody Nobla. Czasem krytyki Pauliego tłumiły także dobrze rokujące pomysły, jak stało się w przypadku spinu elektronu. Hans Kronig pod wpływem Pauliego i Bohra wycofał się z publikacji pomysłu, co sprawiło, że to Samuel Goudsmit i Georg Uhlenbeck zapisali się jako ci, którzy wprowadzili pojęcie spinu. Można sądzić, że samemu Pauliemu nie służył jego własny hiperkrytycyzm, choć szczycił się tym, iż nie ogłosił nigdy błędnej pracy.

Niezwykle wcześnie rozwinięty intelektualnie Pauli miał przez większość życia kłopoty natury psychicznej. W latach dwudziestych prowadził właściwie podwójne życie. W dzień (zaczynający się raczej dość późno) był znakomitym uczonym, istotą racjonalną aż do szpiku kości. Jego ataki na prace kolegów traktowane były raczej wyrozumiale, choć mniej odporni psychicznie znosili taką agresję źle. Ale Pauli dzienny był jak dr Jekyll w zestawieniu ze swym nocnym wcieleniem Mr. Hyde’em. Ulubionym jego sposobem spędzania czasu było picie w rozmaitych lokalach nienajwyższej reputacji. W swej wersji nocnej Pauli wszczynał burdy, popełniał występki, których wstydził się w dzień.

Nie panując nad własnym życiem, zdecydował się spróbować psychoanalizy pod kierunkiem Carla Junga. Zajęli się m.in. interpretacją snów, które Pauli zaczął notować z dużą skrupulatnością. Dla Junga materiał około tysiąca snów jednego z najwybitniejszych uczonych był znakomitą okazją do studiów. Powoływał się na nie wielokrotnie bez podania nazwiska pacjenta.

Jung cieszył się, gdy jego pacjent śnił koliste struktury, mandale, uznając to za krok w kierunku zintegrowania nieświadomej i świadomej części psychiki pacjenta. Przytoczymy jeden z takich snów, z roku 1938. Był to kosmiczny zegar unoszony przez wielkiego ptaka. Pionowa tarcza, podzielona na 32 części, zaopatrzona była we wskazówkę. Po jednym obrocie wskazówki, koło środkowe obracało się o 1/32 obrotu. Złoty pierścień obracał się z kolei 32 razy wolniej niż koło środkowe. Na środkowym kole znajdowały się cztery postacie z wahadłami. Sen ten przyniósł Pauliemu poczucie „najbardziej wzniosłej harmonii”, towarzyszyły temu szczęście i spokój.

Rysunek ze strony poświęconej książce Arthura Millera, Deciphering the Cosmic Numbers.

Jung starał się odczytać w snach Pauliego archetypiczne postaci i symbole znane z alchemii, rozmaitych religii, astrologii. Wizja wspólnego dziedzictwa ludzkości, do którego mamy nieświadomy dostęp, jest niewątpliwie fascynująca. Każdej nocy śniąc, doświadczamy innej rzeczywistości, osobnej dla każdego, ale przecież niepokojąco wspólnej. Czy kryje się w tym coś więcej niż tylko kaprysy mózgu zmęczonego nieustannym uładzaniem i próbami zrozumienia dookolnej rzeczywistości? Teleskop Junga, obejmujący całą ezoteryczną tradycję ludzkości, jest niewątpliwie szerszy niż Freudowskie dostrzeganie seksualności na każdym kroku, choć nie bardzo wiemy, co tu jest szersze, a co węższe. Pojawia się też pytanie, czy te wszystkie biblioteki zapełnione setkami dzieł alchemicznych, teologicznych, astrologicznych są jedynie umysłowym folklorem, czy też mają jakąś wartość poznawczą? Owe tysiące profesorów od Trójcy Świętej, jak też i mniej licznych przeciwników tej doktryny, trudziły się nadaremnie? Sam Isaac Newton był ukrytym antytrynitarzem (w Trinity College!), gromadzącym argumenty przeciwko tej doktrynie, którą uważał za skażenie pierwotnego chrześcijaństwa. Na każde naukowe dzieło Newtona przypadała setka albo i tysiąc rozmaitych spekulacji platońskich, rozważań moralnych i teologicznych, objaśnień Pisma, nauk dla mędrców, alchemicznych przepisów. Zresztą sam Isaac Newton studiował Apokalipsę, konstrukcję świątyni Salomona, zajmował się czynnie alchemią. Czy cała ta nocna część ludzkości powinna się co najwyżej, z braku lepszych pomysłów, pomieścić w rubryce osobliwości?

Swoją drogą wizja zegara ze wskazówkami jest niezmiernie konserwatywna dla fizyka kwantowego. Matematyczne abstrakcje marnie przenoszą się do świata snów. Choć może są matematycy, którym śnią się funktory i kategorie, całe  skąpane w błękicie. Ciekawe, co śniło się Grothendieckowi.

Einstein, gildia cór Koryntu i Friedrich Adler (1909)

Albert Einstein był wprawdzie zdolnym i inteligentnym młodzieńcem, ale miał dość niewyparzony język i nie zawsze zachowywał się z uniżoną pokorą, jakiej oczekiwano od studenta. Toteż po skończeniu studiów na Politechnice w Zurychu w roku 1900 nie mógł nigdzie znaleźć pracy, choć skierował w tej sprawie listy do wszystkich niemal profesorów fizyki w krajach niemieckojęzycznych. Podejrzewał, że stoi za tym Heinrich Weber, jego profesor z Politechniki. Najprawdopodobniej nikt jednak nie był zainteresowany zatrudnieniem nieznanego i nigdy niewidzianego kandydata bez żadnych rekomendacji. Także praca nauczycielska w Szwajcarii była trudno osiągalna, udawało mu się jedynie zaczepić na jakieś czasowe zastępstwa. Dopiero po dwóch latach, dzięki pomocy kolegi ze studiów, Marcela Grossmanna, znalazł Einstein stałą posadę w Urzędzie Patentowym w Bernie. Pracując tam, zaczął badania naukowe i w roku 1905 zrobił doktorat u Alfreda Kleinera, profesora uniwersytetu w Zurychu. Doktorat był nieistotny naukowo, znacznie bardziej liczyła się seria prac z tego roku i lat następnych, zasługujących na trzy niezależne Nagrody Nobla (za jedną z tych prac rzeczywiście mu ją potem przyznano). Rewolucyjne prace teoretyczne okazały się w przyszłości ważne, lecz na krótką metę zmieniły niewiele. Einstein chwilami wątpił, by kiedykolwiek udało mu się zostać jednym z członków akademickiego cechu. Po latach dostrzegał zalety tego stanu rzeczy: posada uniwersytecka zmusza do obfitego publikowania, skłaniając do podejmowania tematów mało ambitnych, ale i niezbyt ryzykownych. Sam nigdy nie zajmował się taką nauką pozbawioną ryzyka. Jak mówił: „Irytują mnie naukowcy, którzy biorą deskę, patrzą, w którym miejscu jest ona najcieńsza, a następnie wiercą dużą liczbę dziur tam, gdzie nie sprawia to szczególnych trudności”.

Dopiero w 1908 roku pojawiła się możliwość zatrudnienia na uniwersytecie w Zurychu, gdzie miała być utworzona katedra fizyki teoretycznej. Alfred Kleiner wahał się między kandydaturą Einsteina i Fritza Adlera. Pierwszy miał za sobą błyskotliwe, lecz mocno spekulatywne artykuły i kiepsko prowadził wykłady, drugi miał doktorat i pewien niewielki dorobek oraz zdecydowanie większe doświadczenie dydaktyczne. Władze przychylały się raczej do nominacji Adlera.
Fritz Adler, wiedeńczyk, rówieśnik i kolega Einsteina ze studiów, był socjalistą i synem Victora Adlera, przewodniczącego austriackiej Socjaldemokratycznej Partii Robotniczej (Sozialdemokratische Arbeiterpartei). Utalentowany, pryncypialny i namiętny, Adler wahał się między polityką, filozofią a fizyką. On także zrobił doktorat u Kleinera, a teraz został w Zurychu Privatdozentem, fizyczką była też jego żona. Fritz uważał Alberta za lepszego kandydata, pisał do ojca:

To człowiek o nazwisku Einstein, który studiował w tym samym czasie co ja. Nasze drogi są z pozoru podobne: ożenił się ze studentką mniej więcej w tym samym czasie co ja i ma dzieci. Nie miał jednak żadnej pomocy i przez pewien czas niemal głodował. Jako student był traktowany pogardliwie przez profesorów, zamykano często przed nim bibliotekę itd. Nie potrafi on układać sobie stosunków z ważnymi osobistościami. (…) W końcu znalazł posadę w Urzędzie Patentowym w Bernie i przez cały ten czas pomimo wszystkich przeciwieństw kontynuuje pracę w dziedzinie fizyki teoretycznej.

Adler sądził, że to skandal, iż Einstein musi pracować w biurze, i chciał, by stanowisko profesora przypadło mniej uprzywilejowanemu koledze. Co więcej, napisał w tej sprawie do Zarządu Edukacji kantonu zuryskiego:

Jeśli można pozyskać dla naszego uniwersytetu kogoś takiego jak Einstein, to absurdem byłoby zatrudnianie mnie. Muszę szczerze przyznać, iż moje zdolności do uprawiania oryginalnych badań z dziedziny fizyki nie wytrzymują żadnego porównania z Einsteinem. Nie powinniśmy z powodów politycznych tracić takiej okazji zatrudnienia osoby, dzięki której podniesie się ogólny poziom uniwersytetu, na czym wszyscy skorzystamy.

Jest to jedyny, jaki przychodzi mi na myśl, przypadek dobrowolnej rezygnacji w uznaniu intelektualnej wyższości konkurenta. Adler był fanatycznie uczciwy, a do tego żywił obawy, iż decyzja zdominowanego przez socjalistów Zarządu mogłaby mieć podłoże polityczne.

Obaj się później zaprzyjaźnili, mieszkali w Zurychu w tej samej kamienicy i prowadzili ze sobą długie rozmowy na różne tematy – chodzili w tym celu na strych, żeby nikomu nie przeszkadzać. Łączyła ich zapewne filozofia Macha, którego zwolennikami byli obaj, choć Einstein nie trzymał się niewolniczo poglądów mistrza. Adler natomiast był bardzo ścisłym machistą. Włodzimierz Lenin, który także bywał w Zurychu, skierował przeciwko tej filozofii toporny pamflet pt. Materializm a empiriokrytycyzm – zanudzano później tym dziełem także na polskich uczelniach. Leninowi chodziło o rząd dusz (i ciał) w obrębie lewicy rosyjskiej, która w Zurychu miała swoją nieformalną stolicę. W szczególności mogły tu studiować kobiety, co w Rosji było niemożliwe (żona Adlera Katia, była Rosjanką i oczywiście socjalistką). Ciążący coraz bardziej ku polityce Adler uważał, że poglądy polityczne Einsteina są naiwne, co prawdopodobnie znaczyło: „zbyt liberalne”.

Ostatecznie pomyłka historii w odniesieniu do Alberta Einsteina została wkrótce naprawiona: 7 maja 1909 roku objął on stanowisko profesora nadzwyczajnego fizyki teoretycznej na uniwersytecie w Zurychu. Nowo mianowany profesor wykłady miał zacząć jesienią, otrzymał pensję równą ostatniej pensji w biurze patentowym: 4500 franków rocznie, dzięki czemu mógł złożyć rezygnację z posady Urzędzie Patentowym w Bernie. Kończył się jego czas naukowej izolacji. Miał w tym momencie trzydzieści lat. „A więc i ja zostałem oficjalnie członkiem gildii k… (Gilde der Huren)” – napisał do Jakoba Lauba, jednego ze swych pierwszych współpracowników.

Einstein wkrótce otrzymał lepszą propozycję posady, a ponieważ po trudnych początkach nie czuł długu wdzięczności wobec żadnej uczelni, więc przyjął ją bez oporów. Kiedy opuszczał Zurych, polecił na swoje miejsce Adlera, z czego jednak nic nie wyszło.

Friedrich Adler przed sądem w roku 1917

Osobiste kontakty z Adlerem ustały po roku 1911. Kilka lat później, już podczas Wielkiej Wojny, Einstein usłyszał znów o swym koledze. 21 października 1916 roku Fritz Adler podszedł do siedzącego w restauracji hotelu „Meissl & Schadn” w Wiedniu hrabiego Karla von Stürgkha, premiera Austrii, i zabił go trzema strzałami z pistoletu. Nie uciekał, jego motyw był polityczny: uważał, iż Stürgkh odpowiedzialny jest za wciągnięcie Austro-Węgier do wojny. Zrozpaczony ojciec Fritza starał się uchronić go przed karą śmierci, dowodząc jego niepoczytalności. Także Einstein proszony był o pomoc. Sprawa była delikatna. Jednym z dowodów na niepoczytalność Fritza miały być napisane w więzieniu prace atakujące teorię względności. Rozważania te nie były dziełem szaleńca, po prostu Fritz Adler dołączył do długiego szeregu przeciwników teorii względności. Był fanatykiem politycznym i sąd wyjątkowy skazał go na karę śmierci. Zanim jednak została ona wykonana, skończyła się wojna, upadło Cesarstwo Austro-Węgier i w listopadzie 1918 roku Adler wyszedł na wolność, witany jak bohater przez lewicowych robotników.

Ludwig Boltzmann: Jak świat pogrąża się w chaosie (1877)

Atomizm był od starożytności doktryną szczególnie ostro zwalczaną. Wydawało się bowiem – i zapewne słusznie – że w świecie z atomów nie ma miejsca na duszę, która może przetrwać śmierć ciała. Jednak odkrycie w XV w. poematu Lukrecjusza O rzeczywistości (nb. przez papieskiego sekretarza, Gianfrancesco Braccioliniego) wywarło spory wpływ na dzieje idei. W Anglii Isaaca Newtona udało się pogodzić bożą wszechmoc z atomizmem, ale nie wszyscy zwolennicy nowej nauki byli przekonani do takich kompromisów. Do nieprzejednanych oponentów atomizmu należeli m.in. René Descartes i Gottfied Wilhelm Leibniz.

Naukowa kariera atomizmu złączona była z chemią oraz nauką o cieple. Od czasu Johna Daltona atomy okazały się niezwykle przydatnym narzędziem dla chemików. Fizycy dopiero w drugiej połowie XIX wieku zaczęli rozwijać teorię kinetyczną, czyli w gruncie rzeczy konsekwencje cząstkowego obrazu materii obdarzonej ruchem. Szczególnie prosta okazała się teoria kinetyczna gazów, ponieważ wystarczyło założyć, że cząsteczki gazów oddziałują tylko za pomocą zderzeń. Ten sposób myślenia przebijał się wszakże bardzo powoli, jak świadczy przykład Johna Waterstona. Kilkanaście lat później James Clerk Maxwell zapoczątkował nowoczesną teorię kinetyczną.

Teoria gazów stała się głównym tematem badań Ludwiga Boltzmanna, wiedeńczyka, który co kilka lat przenosił się niespokojnie z jednego uniwersytetu na drugi, pracując w Wiedniu, Grazu, potem znowu w Wiedniu, znowu w Grazu, w Monachium, jeszcze raz w Wiedniu, w Lipsku i ponownie w Wiedniu. Boltzmann stworzył całą nową dziedzinę wiedzy: fizykę statystyczną – czyli mikroskopowy statystyczny opis zjawisk cieplnych. Głównym zastosowaniem była dla niego teoria gazów, w istocie jednak teorię tę stosować można do wszelkich układów wielu cząstek. Wyjaśnia ona własności makroskopowe różnych ciał: kryształów, cieczy, metali, półprzewodników, magnetyków itd. Pokazuje, jak z poziomu oddziaływań między atomami i cząsteczkami przejść na poziom własności materii obserwowanej w laboratorium.

Zjawiska cieplne podlegają zasadom termodynamiki. Pierwsza z nich to po prostu zasada zachowania energii. Druga jest znacznie bardziej interesująca: mówi bowiem o kierunku możliwych przemian w świecie. Można zdefiniować wielkość zwaną entropią S, która jest funkcją stanu ciała, czyli np. w przypadku gazu zawartego w objętości V i mającego energię E: S=S(V,E). Otóż druga zasada termodynamiki mówi, że entropia układu izolowanego cieplnie nie może maleć, a zazwyczaj rośnie. Intuicyjnie wzrost entropii odpowiada temu, że większa część energii ciała ma postać chaotycznych ruchów cieplnych i trudniej ją wykorzystać do uporządkowanych zmian typu np. zmiany objętości (dlatego nie można zbudować np. silnika samochodowego, który wykorzystywałby w 100% energię uzyskaną ze spalania; samochody elektryczne przenoszą ten problem do elektrowni, które też zazwyczaj coś spalają, z nieco większą wydajnością, ale także daleką od 100%).

Entropia jest wielkością tzw. ekstensywną, to znaczy entropia układu złożonego z dwóch części będzie sumą entropii obu części:

S=S_1+S_2.

Jak na poziomie cząsteczkowym opisać wzrost entropii? Boltzmannowi udało się powiązać entropię z prawdopodobieństwem, a właściwie z liczbą mikrostanów odpowiadających danemu makrostanowi. Rozważmy naczynie z gazem, w którym znajduje się N cząstek o łącznej energii E. Tej samej wartości energii całkowitej odpowiada bardzo wiele różnych konfiguracji cząstek (mikrostanów). Gaz dąży spontanicznie do równowagi cieplnej, ponieważ jest to stan najbardziej prawdopodobny. Wzrost entropii nie jest więc tajemniczym prawem przyrody, lecz konsekwencją trywialnego faktu matematycznego, że zdarzenia bardziej prawdopodobne realizują się częściej niż wyjątkowe.

Jak można to opisać ilościowo? Stan ruchu jednej cząstki możemy opisać, podając jej położenie \vec{r} oraz pęd \vec{p}. Załóżmy, że całą przestrzeń dostępnych stanów podzieliliśmy na komórki o jednakowej objętości. Stan makroskopowy gazu znamy, gdy podana zostanie liczba cząstek gazu w każdej komórce. Wyobrażamy sobie przy tym, że liczby te są duże (w jednym molu mamy N_A=6\cdot 10^{23} cząstek, więc nawet po rozdzieleniu tych cząstek na bardzo wielką liczbę komórek, możemy wciąż mieć dużo cząstek w każdej komórce). Stan makroskopowy będzie więc listą liczb cząstek w kolejnych komórkach: (n_1, n_2,\ldots, n_r), gdzie r jest całkowitą liczbą komórek (jeśli całkowita energia gazu równa jest E, to żadna cząstka nie może mieć energii większej niż E, a więc obszar przestrzeni stanów potrzebny nam w rozważaniach jest ograniczony).

Schematyczny rysunek obszaru w przestrzeni stanów (jest on sześciowymiarowy, a więc trudny do narysowania). Zaznaczyliśmy jedną z komórek, na jakie dzielimy całą przestrzeń stanów wraz z liczbą cząstek w tej komórce.

Jeśli znamy poszczególne n_i, to możemy także obliczyć całkowitą liczbę cząstek N:

N=n_1+n_2+\ldots n_r

oraz całkowitą energię E:

E=\varepsilon_1 n_1+\varepsilon_2 n_2+\ldots+\varepsilon_r n_r,

gdzie \varepsilon_i oznacza energię w  i-tej komórce. Dalej zakładamy, że N oraz E (a także objętość gazu) są ustalone. Ilu konfuguracjom cząstek (mikrostanom) będzie odpowiadać dana lista (n_1, n_2,\ldots, n_r)? Zakładając, że cząstki są rozróżnialne, lecz jednakowe, liczba konfiguracji W prowadzących do tej samej listy równa jest

W=\dfrac{N!}{n_1! n_2!\ldots n_r!}.

Nietrudno zrozumieć sens tego wyrażenia: liczbę permutacji wszystkich cząstek dzielimy przez liczby permutacji wewnątrz kolejnych komórek, bo nie zmieniają one wartości n_i. Liczba konfiguracji jest proporcjonalna do prawdopodobieństwa. Możemy poszukać takiej listy (\bar{n}_1, \bar{n}_2, \ldots, \bar{n}_r), dla której W będzie maksymalne. Fizycznie powinno to odpowiadać stanowi równowagi termodynamicznej. Ów rozkład najbardziej prawdopodobny jest tzw. rozkładem Maxwella-Boltzmanna:

\bar{n}_i=C\exp(-\beta \varepsilon_i),

gdzie stałe C,\beta określone są warunkami stałości całkowitej liczby cząstek i energii. Boltzmann wcześniej uzyskał ten rozkład z innych rozważań. Można teraz zdefiniować entropię następującym wzorem:

S=k \ln W\equiv k \ln \dfrac{N!}{n_1! n_2!\ldots n_r!}.

Pojawienie się logarytmu jest tu całkiem oczekiwane, ponieważ gdy weźmiemy dwa układy o liczbach konfiguracji odpowiednio W_1, W_2, to całkowita liczba konfiguracji będzie równa

W=W_1W_2,

a chcemy żeby entropie w takiej sytuacji się sumowały: S=S_1+S_2. Zdefiniowaliśmy entropię nie tylko w stanach równowagowych, którym odpowiadają listy (\bar{n}_1, \bar{n}_2, \ldots, \bar{n}_r), ale także w dowolnych innych, którym odpowiadają listy (n_1, n_2,\ldots, n_r). Żeby nowa definicja miała sens, trzeba było oczywiście wykazać, że w sytuacjach równowagowych, otrzymuje się znane wcześniej wyrażenia. Wzór Boltzmanna

S=k\ln W,

stał się nową definicją entropii, dziś uważaną za podstawową. W istocie wzór Boltzmanna ma znacznie szersze pole zastosowań niż fizyka klasyczna znana w jego czasach. Jeśli rozważymy np. cząstki nierozróżnialne, można z analogicznych rozważań otrzymać prawa obowiązujące dla gazu fermionów (np. elektrony w metalu albo w białym karle) albo gazu bozonów (z czego wynikają prawa promieniowania cieplnego oraz, w innej nieco sytuacji, kondensacja Bosego-Einsteina). Wzór Boltzmanna pozwala też wyprowadzić wniosek, że w niskich temperaturach, gdy układ znajduje się w stanie podstawowym, entropia powinna być równa zeru – jest to treścią trzeciej zasady termodynamiki sformułowanej przez Wilhelma Nernsta.

W czasach Boltzmanna teoria kinetyczna była wysoce spekulatywna. Nie było pewności, czy w ogóle istnieją cząstki składające się na gaz. A więc znajdowanie liczby ich konfiguracji mogło wydawać się liczeniem diabłów na łebku szpilki. Ludwig Boltzmann przez całe życie odpierać musiał rozmaite zarzuty i brać udział w polemikach. Część dotyczyła spraw istotnych: w jaki sposób z odwracalnej mechaniki dochodzi się do procesów nieodwracalnych jak stygnięcie herbaty w kubku albo przewidywane wówczas przez niektórych uczonych stygnięcie, śmierć cieplna całego wszechświata? Najbardziej zjadliwe były polemiki filozoficzne. Zaciętym wrogiem Boltzmanna był tu Ernst Mach, dziś znany głównie za sprawą liczby Macha w lotnictwie ponaddźwiękowym. Fotografował on kule w locie.

Chciał też rewizji całej fizyki. Sądził, że posługuje się ona mnóstwem pojęć nie wytrzymujących krytyki. Np. przestrzeń absolutna u Newtona. Rozważania Macha zainspirowały Alberta Einsteina, choć w sposób bardzo swoisty. Sam Mach nie chciał słyszeć o teorii względności. Filozofia Macha miała ambicję wyrugowania z nauki pojęć nieopartych na bezpośrednim doświadczeniu. Chciał on niejako spojrzeć na świat od nowa. Dostrzegał w nim jedynie swoje wrażenia i ich wiązki.

Rysunek Ernsta Macha: jego pokój widziany lewym okiem

Dlatego koncepcja atomów była przez niego uważana za fikcję. Boltzmanna traktował jak naiwnego materialistę, nieświadomego subtelności pojęciowych. Przyszłość należała do fizyki statystycznej i atomów. „Naiwne” koncepcje fizyków zadziwiająco często sprawdzały się w praktyce. Co oczywiście, zdaniem filozofów, niczego nie dowodzi.

Skłonny do zmian nastrojów, Boltzmann cierpiał na napady depresji. W 1906 roku, przebywając na wakacjach w Duino nieopodal Triestu, popełnił samobójstwo, w czasie gdy żona i córka pływały w morzu. Nie dowiemy się, ile zdołałby osiągnąć, gdyby znano wtedy leki antydepresyjne.

Zaprawdę, to osobliwe, nie przebywać już odtąd na ziemi,

wyuczone zaledwie porzucić zwyczaje,

różom i innym odrębnie obiecującym rzeczom

nie dawać znaczeń ludzkiej przyszłości, już nigdy.

Tym, czym się było w dłoniach tak nieskończenie trwożnych,

nie być już więcej i nawet własne swe imię

porzucić, jak się porzuca połamaną zabawkę.

To osobliwe, już nie mieć życzeń. To osobliwe,

wszystko, co było związane, ujrzeć w przestrzeni

rozpierzchłe…

(przeł. M. Jastrun)

Jean Perrin i atomy, 1913

Zeszłoroczne odkrycie bozonu Higgsa przez dwa niezależne zespoły w LHC w CERN-ie ożywiło debatę nad znaczeniem tego wyniku. Z punktu widzenia teoretyków pracujących w dziedzinie cząstek elementarnych sytuacja jest nieco frustrująca: oto potwierdza się model zbudowany jakieś 40 lat temu – mniej więcej tyle, ile trwa profesjonalne życie badacza. Teoretycy przez ten cały czas wciąż pracowali, głównie pod dwoma sztandarami: supersymetrii i teorii strun. Najwybitniejsi, a także najlepiej zabiegający o popularność, badacze stworzyli całe multiświaty różnych wersji tych idei. Oprócz niezliczonych artykułów i monografii napisano całe mnóstwo książek popularnonaukowych, nakręcono trochę filmów. I jest tylko jeden mały kłopot: ta góra nie urodziła nawet myszy. Nie ma jak dotąd żadnych śladów supersymetrii w przyrodzie. Nie ma też żadnych przewidywań teorii strun – to znaczy istnieje ona w tylu wersjach, że pozwala, jak się wydaje, przewidzieć wszystko, trzeba tylko wiedzieć, do jakich faktów należy ją dopasować. Stąd dość ostry czasami ton dyskusji ekspertów. Por. np. blog Not Even Wrong.

Niewykluczone, że mieliśmy w XX wieku niespotykane szczęście do fizyki: udało się bowiem w ciągu tego stulecia poznać elementarne składniki materii, przede wszystkim atomy, których budowa i zachowanie nie ma już przed nami tajemnic. To niesłychanie wiele, jeśli weźmiemy pod uwagę, że praktycznie cała materia wokół nas to właśnie atomy. To także niesłychanie wiele, jeśli pomyśleć, że od starożytności aż do początku wieku XX atomy były właściwie hipotezą, jak cząstka Higgsa do zeszłego roku. Np. radca dworu i profesor uniwersytetu w Wiedniu Ernest Mach uważał, że nauka powinna zajmować się jedynie ekonomicznym i jak najprostszym opisem faktów doświadczalnych. Wobec tego teorie wyjaśniające np. zachowanie gazów za pomocą ruchu niewidocznych atomów uważał za nienaukowe. Pytał szyderczo Ludwiga Boltzmanna, pioniera fizyki statystycznej: „Czy widział Pan może jakiś atom?” Mach był konserwatywny, ale na początku XX wieku nie był zupełnie odosobniony w swoich poglądach, przeciwnikiem atomów był także Wilhelm Ostwald, wybitny chemik.

Okazało się niebawem, że choć samych atomów i cząsteczek chemicznych nie można zobaczyć pod mikroskopem (optycznym), to można obserwować skutki ich chaotycznych, bezładnych ruchów termicznych. Są to ruchy Browna, ruchy cząstek różnych zawiesin (np. dymu). Cząstki te są na tyle wielkie w sensie atomowym, że można je bez trudu obserwować bezpośrednio, a zarazem na tyle małe, by reagować na bombardowanie przez otaczające cząsteczki. Statystyczne charakterystyki ruchów Browna zostały w roku 1905 objaśnione w niezależnych pracach Alberta Einsteina i Mariana Smoluchowskiego. Jean Perrin wykonał słynne doświadczenia, które rozwiały ostatnie wątpliwości co do istnienia atomów. Opisał je kilka lat później w książce Les atomes (1913). Pisze w niej, że w nauce można postępować dwojako. Niektórzy, jak Galileusz czy Sadi Carnot, potrafią wyabstrahować prawa z obserwowanych zjawisk, dostrzegając niewidoczne dla innych analogie czy powiązania. Inni starają się objaśnić skomplikowane zjawiska zakładając ukrytą prostotę na innym poziomie – jest to droga Daltona i Boltzmanna, pionierów atomizmu w XIX wieku.

PerrinPlot2.svg

Tory cząstek mastyksu obserwowanych przez Perrina co 30 s. Jedna podziałka skali równa jest 3,125 μm (Les atomes, s. 165)

Charakterystyczną cechą ruchów Browna jest ich skrajna nieregularność, Perrin pisze, że robiąc obserwacje 100 razy częściej, dostalibyśmy zamiast każdego z odcinków poszarpaną linię łamaną. Tory cząstek nie są regularne w żadnej obserwowanej skali. Zjawisko to ilustruje rysunek poniżej, gdzie różnymi kolorami zaznaczono tory uzyskiwane przy obserwacjach z różnym krokiem czasowym. Przypominają one np. linię brzegową przedstawianą na mapach o różnej skali: im dokładniejsza mapa, tym dłuższa linia brzegowa. Tor cząstki jest fraktalem.

Brownian_hierarchical

Źródło: Wikipedia

Pomiary Perrina przypieczętowały sukces teorii atomowej i pozwoliły wyznaczyć liczbę Avogadro, a tym samym masy atomów. Dwadzieścia lat później powstała mechanika kwantowa, która początkowo miała być tylko teorią atomów, słuszną dla zjawisk w skali energii pojedynczych elektronowoltów (eV), a ostatecznie okazała się skuteczna nawet w skali TeV, czyli 10^{12} razy większej.
W jakimś sensie dzisiejsi fizycy, narzekając na Model Standardowy cząstek, cierpią na zawrót głowy od sukcesów. Miejmy nadzieję, że LHC pozwoli jeszcze odkryć jakąś nową fizykę, inaczej trudno będzie przekonać polityków i podatników do następnych, jeszcze kosztowniejszych projektów tego typu i stagnacja może potrwać długo.