Jean Perrin i atomy, 1913

Zeszłoroczne odkrycie bozonu Higgsa przez dwa niezależne zespoły w LHC w CERN-ie ożywiło debatę nad znaczeniem tego wyniku. Z punktu widzenia teoretyków pracujących w dziedzinie cząstek elementarnych sytuacja jest nieco frustrująca: oto potwierdza się model zbudowany jakieś 40 lat temu – mniej więcej tyle, ile trwa profesjonalne życie badacza. Teoretycy przez ten cały czas wciąż pracowali, głównie pod dwoma sztandarami: supersymetrii i teorii strun. Najwybitniejsi, a także najlepiej zabiegający o popularność, badacze stworzyli całe multiświaty różnych wersji tych idei. Oprócz niezliczonych artykułów i monografii napisano całe mnóstwo książek popularnonaukowych, nakręcono trochę filmów. I jest tylko jeden mały kłopot: ta góra nie urodziła nawet myszy. Nie ma jak dotąd żadnych śladów supersymetrii w przyrodzie. Nie ma też żadnych przewidywań teorii strun – to znaczy istnieje ona w tylu wersjach, że pozwala, jak się wydaje, przewidzieć wszystko, trzeba tylko wiedzieć, do jakich faktów należy ją dopasować. Stąd dość ostry czasami ton dyskusji ekspertów. Por. np. blog Not Even Wrong.

Niewykluczone, że mieliśmy w XX wieku niespotykane szczęście do fizyki: udało się bowiem w ciągu tego stulecia poznać elementarne składniki materii, przede wszystkim atomy, których budowa i zachowanie nie ma już przed nami tajemnic. To niesłychanie wiele, jeśli weźmiemy pod uwagę, że praktycznie cała materia wokół nas to właśnie atomy. To także niesłychanie wiele, jeśli pomyśleć, że od starożytności aż do początku wieku XX atomy były właściwie hipotezą, jak cząstka Higgsa do zeszłego roku. Np. radca dworu i profesor uniwersytetu w Wiedniu Ernest Mach uważał, że nauka powinna zajmować się jedynie ekonomicznym i jak najprostszym opisem faktów doświadczalnych. Wobec tego teorie wyjaśniające np. zachowanie gazów za pomocą ruchu niewidocznych atomów uważał za nienaukowe. Pytał szyderczo Ludwiga Boltzmanna, pioniera fizyki statystycznej: „Czy widział Pan może jakiś atom?” Mach był konserwatywny, ale na początku XX wieku nie był zupełnie odosobniony w swoich poglądach, przeciwnikiem atomów był także Wilhelm Ostwald, wybitny chemik.

Okazało się niebawem, że choć samych atomów i cząsteczek chemicznych nie można zobaczyć pod mikroskopem (optycznym), to można obserwować skutki ich chaotycznych, bezładnych ruchów termicznych. Są to ruchy Browna, ruchy cząstek różnych zawiesin (np. dymu). Cząstki te są na tyle wielkie w sensie atomowym, że można je bez trudu obserwować bezpośrednio, a zarazem na tyle małe, by reagować na bombardowanie przez otaczające cząsteczki. Statystyczne charakterystyki ruchów Browna zostały w roku 1905 objaśnione w niezależnych pracach Alberta Einsteina i Mariana Smoluchowskiego. Jean Perrin wykonał słynne doświadczenia, które rozwiały ostatnie wątpliwości co do istnienia atomów. Opisał je kilka lat później w książce Les atomes (1913). Pisze w niej, że w nauce można postępować dwojako. Niektórzy, jak Galileusz czy Sadi Carnot, potrafią wyabstrahować prawa z obserwowanych zjawisk, dostrzegając niewidoczne dla innych analogie czy powiązania. Inni starają się objaśnić skomplikowane zjawiska zakładając ukrytą prostotę na innym poziomie – jest to droga Daltona i Boltzmanna, pionierów atomizmu w XIX wieku.

PerrinPlot2.svg

Tory cząstek mastyksu obserwowanych przez Perrina co 30 s. Jedna podziałka skali równa jest 3,125 μm (Les atomes, s. 165)

Charakterystyczną cechą ruchów Browna jest ich skrajna nieregularność, Perrin pisze, że robiąc obserwacje 100 razy częściej, dostalibyśmy zamiast każdego z odcinków poszarpaną linię łamaną. Tory cząstek nie są regularne w żadnej obserwowanej skali. Zjawisko to ilustruje rysunek poniżej, gdzie różnymi kolorami zaznaczono tory uzyskiwane przy obserwacjach z różnym krokiem czasowym. Przypominają one np. linię brzegową przedstawianą na mapach o różnej skali: im dokładniejsza mapa, tym dłuższa linia brzegowa. Tor cząstki jest fraktalem.

Brownian_hierarchical

Źródło: Wikipedia

Pomiary Perrina przypieczętowały sukces teorii atomowej i pozwoliły wyznaczyć liczbę Avogadro, a tym samym masy atomów. Dwadzieścia lat później powstała mechanika kwantowa, która początkowo miała być tylko teorią atomów, słuszną dla zjawisk w skali energii pojedynczych elektronowoltów (eV), a ostatecznie okazała się skuteczna nawet w skali TeV, czyli 10^{12} razy większej.
W jakimś sensie dzisiejsi fizycy, narzekając na Model Standardowy cząstek, cierpią na zawrót głowy od sukcesów. Miejmy nadzieję, że LHC pozwoli jeszcze odkryć jakąś nową fizykę, inaczej trudno będzie przekonać polityków i podatników do następnych, jeszcze kosztowniejszych projektów tego typu i stagnacja może potrwać długo.

Reklamy

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj / Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj / Zmień )

Facebook photo

Komentujesz korzystając z konta Facebook. Wyloguj / Zmień )

Google+ photo

Komentujesz korzystając z konta Google+. Wyloguj / Zmień )

Connecting to %s