Oppenheimer o Einsteinie (1965 r.)

Robert Oppenheimer dziś znany jest głównie z kierowania Projektem Manhattan, czyli programem budowy pierwszych bomb atomowych. Wcześniej jednak, w latach trzydziestych, stworzył pierwszą amerykańską szkołę fizyki teoretycznej. Był charyzmatycznym wykładowcą, który zarażał entuzjazmem, nawet jeśli studenci nie byli pewni, czy się czegoś nauczyli – wykłady bardziej przypominały misteria niż systematyczne wprowadzanie materiału krok po kroku. Zgromadził wokół siebie grono studentów i doktorantów jeżdżących za nim między Caltechem a Berkeley. Znał świetnie i z pierwszej ręki osiągnięcia kwantowe: między 1925 a 1929 rokiem, a więc wtedy gdy powstawała mechanika kwantowa, pracował i dyskutował z Ralphem Fowlerem i Paulem Dirakiem w Cambridge, spędził jakiś czas w Lejdzie u Paula Ehrenfesta, potem w Getyndze zrobił doktorat u Maksa Borna, współpracował także z Wolfgangiem Paulim, poznał też wszystkich innych wielkich fizyków tego okresu. Gdy wracał do Stanów Zjednoczonych, miał już spory i interesujący dorobek. W latach trzydziestych raczej kierował pracą swoich młodych kolegów. Sam rzadko wykonywał jakieś obliczenia i w dodatku często się przy tym mylił. Miał wszakże nosa do wyszukiwania ważnych problemów, a intuicja pozwalała mu podążać w dobrym kierunku. Jego wadą było nietrzymanie się ziemi i brak zainteresowania systematycznymi rachunkami, lecz jako duchowy przewodnik grona młodych sprawdzał się znakomicie. Szerokie zainteresowania humanistyczne wzbudzały często w kolegach mieszane uczucia, lecz magnetyczna osobowość i neurotyczna wrażliwość przyciągała do niego kobiety. Historia jego związków erotycznych jest długa, powikłana i niezbyt nadaje się na przykład dla młodzieży.

Po wojnie i zakończeniu Projektu Manhattan Oppenheimer stał się sławny wśród szerokiej publiczności, uważano go za głównego autora bomby atomowej. Oczywiście, bomba była dziełem zbiorowym, ale też należy przyznać, że niestabilny emocjonalnie i przed wojną komunizujący fizyk przekształcił się w energicznego patriotę i inteligentnego przywódcę grona ludzi o wybujałych osobowościach, którzy niełatwo poddawali się czyimkolwiek poleceniom. W 1947 r. Oppenheimer został dyrektorem Institute for Advanced Study w Princeton i pełnił tę funkcję niemal dwadzieścia lat, najdłużej w dziejach Instytutu. Po raz pierwszy znalazł się tam jeszcze w 1935 r., donosił wtedy bratu w liście:

Princeton to dom wariatów: jego solipsystyczni luminarze błyszczą, każdy odobno, w nieuleczalnej pustce. Einstein jest zupełnie stuknięty.

Albert Einstein był pierwszą i największą gwiazdą IAS, placówki szczególnej, zatrudniających wyłącznie uczonych bardzo wybitnych, niemających żadnych obowiązków dydaktycznych i mogących za znaczne pieniądze w pełni poświęcić się pracy naukowej. Z początku oprócz Einsteina pracowali tam głównie matematycy. Do dziś zresztą fizyka teoretyczna i matematyka jest tam znakomita. Pracują tam Edward Witten, fizyk matematyczny o najwyższym indeksie Hirscha na świecie (158), Nima Arkani-Hamed czy Juan Maldacena, autor zasady holograficznej (najliczniej cytowana praca z fizyki, ponad 10 000 cytowań w niecałe dwadzieścia lat). Do tego mnóstwo medalistów Fieldsa, z których większość jakoś związana była z IAS w pewnym momencie.

Skąd więc negatywna opinia Oppenheimera? Z jego punktu widzenia – fizyka, dla którego w 1925 r. zaczął się najbardziej ekscytujący okres: stworzenie mechaniki kwantowej, ktoś taki jak Einstein, kto ignorując te najnowsze osiągnięcia, prowadził badania na swój własny sposób, mógł się wydawać dziwakiem. Prace Einsteina z tego okresu nie były zresztą całkowicie chybione, przyczyniły się bowiem do wyjaśnienia pewnych kwestii w ogólnej teorii względności. Sama jednak ta teoria była wówczas niezmiernie daleko od obserwacji i eksperymentów, przetestowano ją jedynie w przypadku dość słabych pól grawitacyjnych, a więc nie były to testy zbyt wymagające. Zastosowania kosmologiczne mogły wydawać się zbyt daleko idącą generalizacją: za pomocą mocno spekulatywnej teorii staramy się opisać wszechświat jako całość.

Chyba dopiero po wojnie Einstein zetknął się bliżej z Oppenheimerem, który starał się zdyskontować sławę starszego uczonego. Oto np. zdjęcie z tygodnika „Life”, gdzie ukazał się ilustrowany reportaż z IAS.

Podpis pod tym zdjęciem głosił: „Einstein opowiada Oppenheimerowi o swych najnowszych próbach objaśnienia materii w kategoriach przestrzeni”. Najprawdopodobniej obaj nie rozmawiali na tematy naukowe, dzieliło ich zbyt wiele. Zresztą Oppenheimer w zasadzie przestał już publikować i poświęcił się działalności administracyjnej oraz politycznej. Co ciekawe, choć Oppenheimer nie był jastrzębiem, jak np. Edward Teller, nie bardzo potrafili z Einsteinem uzgodnić poglądy na to, co należy robić w świecie, w którym wraz z bronią atomową pojawiło się niebezpieczeństwo zniszczenia cywilizacji. Anarchiczny Einstein nie potrafił zrozumieć słabości Oppenheimera do kuluarów waszyngtońskich i jego pragnienia odegrania roli w kształtowaniu polityki bezpieczeństwa. Z kolei Oppenheimer miał mu za złe publiczne wystąpienia, wzbudzające wielką wrzawę medialną. Einstein mógł sobie jednak pozwolić, by robić to, co uważał za słuszne, a nie to, co komuś się spodoba bądź nie spodoba.

W 1965 r. Oppenheimer wziął udział w dość dziwacznym międzynarodowym kolokwium w Paryżu poświęconym dziesięcioleciu śmierci Einsteina i Teilharda de Chardin, dziś już zapomnianego jezuity, filozofującego na temat ewolucji w duchu chrześcijańskim pod bożą opieką. Obu myślicieli nie łączyło nic prócz daty śmierci. Robert Oppenheimer postanowił przy tej okazji zdemitologizować postać Einsteina. Jego wystąpienie stało się znane, ukazało się bowiem w „The New York Review of Books” i odnotowała je prasa na całym świecie. Albert Einstein jawi się w nim jako uczony wyrastający z pewnej tradycji: teorii pola w fizyce i determinizmu w filozofii. I to właśnie owa tradycja stała się źródłem jego naukowej klęski w późniejszych latach.

Spędził te lata najpierw na próbach wykazania, że teoria kwantowa jest niekonsekwentna. Nikt nie potrafiłby obmyślić bardziej pomysłowych, nieoczekiwanych i sprytnych przykładów; okazało się jednak, że nie ma żadnych niekonsekwencji, a rozwiązania często można było znaleźć we wcześniejszych pracach samego Einsteina.

Historię piszą zwycięzcy, mechanika kwantowa okazała się niezwykle skuteczna, więc nie zwracano uwagi na trudności pojęciowe, jakie zawiera. Nurt głębokich wątpliwości odżył w ostatnich latach, nie wszystkie zastrzeżenia Einsteina były chybione. Oppenheimer patrzył jak szeregowy fizyk zaangażowany w bieżące osiągnięcia, Einsteina interesowały kwestie strategiczne: tworzenie teorii i szukanie pojęciowej jedności w naszej wiedzy o świecie.

Chociaż Einstein budził u wszystkich ciepłe uczucia, a nawet miłość za swą determinację w wypełnianiu własnego programu, stracił w dużym stopniu kontakt z profesją fizyka, ponieważ niektóre rzeczy przyszły w jego życiu zbyt późno, by mógł się nimi przejąć.

Znów: jest to część prawdy, lecz wypowiedziana w sposób cokolwiek arogancki jak na kogoś, kto od piętnastu lat sam nic nie opublikował. Einstein pracował do końca życia naukowo, nie zamienił się w działacza społecznego czy politycznego. Czy jego prace były świadectwem utraty kontaktu z profesją fizyka? Z pewnością nie były to prace nadzwyczajne czy przełomowe. Einstein przez jakieś dwadzieścia lat publikował prace wielkie. To bardzo długo, niektórzy wybitni uczeni są twórcami kilku ważnych prac. Żaden z twórców mechaniki kwantowej: ani Heisenberg, ani Schrödinger, ani nawet Dirac nie wpływali tak długo na rozwój fizyki. Zazwyczaj dziesięć twórczych lat to skala uczonego genialnego. Późne prace Einsteina nie miały wpływu na naukę, ale tak jest z ogromną większością prac – niech nas nie zwiodą ogromne liczby publikacji w dzisiejszym świecie, naprawdę ważnych prac ukazuje się niezbyt wiele, nawet w najlepszych czasopismach. Najlepszą pracą Oppenheimera okazała się paradoksalnie jego analiza (ze Snyderem) kolapsu grawitacyjnego gwiazdy z punktu widzenia ogólnej teorii względności. Sam chyba nie wierzył w jej prawdziwość. Można by więc orzec, że Oppenheimer stracił kontakt z profesją fizyka już po 1939 roku, a ostatnie ćwierć wieku był jedynie organizatorem i mówcą na konferencjach niewiążących się ściśle z fizyką.

Chyba tylko kompleksami uzasadnić można inne stwierdzenie Oppenheimera, że wczesne prace Einsteina były „olśniewająco piękne, ale z licznymi błędami”.

Po tym, co usłyszeliście, nie muszę dodawać jak błyskotliwa była jego inteligencja. Był niemal całkiem pozbawiony wyrafinowania i wyzbyty światowości. Myślę, że w Anglii określono by to jako brak wychowania, a w Ameryce jako brak edukacji.

Oppenheimer pochodził z rodziny bogatych Żydów nowojorskich, Einstein z żydowskiej drobnej burżuazji niemieckiej. Oczywiście, Einstein nie był jakimś prostaczkiem obdarzonym geniuszem naukowym. Jednak studiowanie Bhadgavadgity czy poezji T.S. Eliota niekoniecznie oznacza intelektualną rafinadę. Zdaniem Oppenheimera Einstein był dwudziestowiecznym Eklezjastesem, który z nieustępliwą i nieposkromioną radością powtarza: „Marność nad marnościami i wszystko marność”. Niewykluczone, że Oppenheimer nie potrafił uwolnić się od myśli o przemijalności własnych osiągnięć. Dowiedział się w tym czasie, że jest chory na raka krtani. Z pewnością jednak nie potrafił się zdobyć na spokojny obiektywizm, który był jedną z piękniejszych cech osobowości Einsteina.

Reklamy

Fizyka dla mieszkańców Syriusza: stałe fizyczne (Max Planck, 1899-Matvei Bronstein, 1935)

Max Planck, profesor fizyki w Berlinie, najwybitniejszy niemiecki fizyk teoretyczny przełomu wieku XIX i XX, przez lata badał własności promieniowania termicznego. Idealnym obiektem badań jest tu tzw. ciało doskonale czarne, czyli takie, które pochłania całe padające nań promieniowanie. Można wykazać, że każde ciało doskonale czarne emituje promieniowanie o rozkładzie widmowym zależnym wyłącznie od temperatury. Np. Słońce jest w dobrym przybliżeniu ciałem doskonale czarnym.

Widzimy tu (szary) teoretyczny rozkład widmowy promieniowania ciała doskonale czarnego o temperaturze T=5777 K zestawiony z rzeczywistym promieniowaniem docierającym ze Słońca. Ciało doskonale czarne nie jest czarne, jego barwa zależy od temperatury. (obrazek: Wikimedia)

Znalezienie postaci krzywej widmowej tego promieniowania stało się największym osiągnięciem Maksa Plancka. Otrzymana przez niego zależność ma następującą postać

I(\lambda)=\dfrac{2hc^2}{\lambda^5}\,\dfrac{1}{\exp{(\frac{hc}{\lambda kT})}-1},

gdzie stałe k,c, h oznaczają odpowiednio stałą Boltzmanna (nazwa wprowadzona przez Plancka), prędkość światła w próżni i stałą Plancka. Mamy tu trzy stałe fizyczne, które ze względu na uniwersalność promieniowania powinny mieć fundamentalne znaczenie.

Max Planck zauważył (w roku 1899, zanim jeszcze wyprowadził swój słynny wzór), że stałe k, c,h w połączeniu ze stałą grawitacyjną G pozwalają wprowadzić jednostki niezależne od zaszłości ludzkiej historii czy w ogóle niezależne od naszych ludzkich parametrów: „pojawia się możliwość ustanowienia jednostek długości, masy, czasu i temperatury niezależnych od szczególnych ciał czy substancji, których znaczenie dla wszystkich czasów i wszystkich kultur, także pozaziemskich i pozaludzkich, pozostanie w konieczny sposób takie same”.

Stała Plancka to h=6,7\cdot 10^{-34} kg\cdot m^2/s , stała grawitacyjna to G=6,7\cdot 10^{-11} m^3/(kg\cdot s^2). Mamy więc dla ich iloczynu i ilorazu jednostki:

[hG]=\dfrac{\mbox{kg}\cdot \mbox{m}^2}{\mbox{s}}\,\dfrac{\mbox{m}^3}{\mbox{kg}\cdot \mbox{s}^2}=\dfrac{\mbox{m}^3}{\mbox{s}^3}\mbox{m}^2=[c^3]\mbox{m}^2,

[h/G]=\dfrac{\mbox{kg}\cdot \mbox{m}^2}{\mbox{s}}\,\dfrac{\mbox{kg}\cdot \mbox{s}^2}{\mbox{m}^3}=\mbox{kg}^2\cdot \dfrac{\mbox{s}}{\mbox{m}}=\mbox{kg}^2 [c^{-1}].

Zatem wielkości l_P, m_P będą nowymi „pozaziemskimi” jednostkami długości oraz masy:

l_P=\sqrt{\dfrac{hG}{c^3}}=4\cdot 10^{-35}\mbox{ m} ,

m_P=\sqrt{\dfrac{hc}{G}}=5,5\cdot 10^{-8}\mbox{ kg}.

Jednostkę czasu otrzymamy, dzieląc odległość przez prędkość światła:

t_P=\sqrt{\dfrac{hG}{c^5}}=1,3\cdot 10^{-43}\mbox { s}.

Te „pozaziemskie” jednostki Planck nazwał naturalnymi, a my dziś nazywamy układem jednostek Plancka. Podstawowe stałe fizyki mają w nim wartości równe 1: h=c=G=1. W roku 1899 interesująca wydawała się sama możliwość wprowadzenia jednostek, umożliwiających porozumiewanie się z fizykiem z Syriusza, który ma – jak to dobrze wiemy – postać  świecącego zielono dodekahedronu zanurzonego w inteligentnym oceanie (oni tam szybciej weszli w fazę AI).

Jednostki długości i czasu w układzie Plancka są skrajnie małe: nie tylko w porównaniu z nami, ale nawet z protonem i czasem potrzebnym światłu na przebycie jego wnętrza. Sens fizyczny tych jednostek stał się jasny znacznie później.

Najpierw powiedzmy, jak interpretuje się dziś stałe użyte przez Plancka.

Stała Boltzmanna jest w zasadzie przelicznikiem temperatury w kelwinach T na wartości energii kT – byłoby logiczniej z punktu widzenia fizyki mierzyć temperatury w jednostkach energii, a skoro tego nie robimy, potrzebujemy stałej Boltzmanna. Według najnowszych ustaleń od roku 2019 stała Boltzmanna równa jest dokładnie k=1,380649\cdot 10^{-13} J/K. Jest to tym samym nowa definicja kelwina (bo dżul zdefiniowany jest na podstawie kilograma, metra i sekundy).

Prędkość światła, czy ogólniej: każdego promieniowania elektromagnetycznego, w próżni wydawała się już około roku 1900 wielkością bardzo ważną. Dzięki teorii względności z roku 1905 wiemy, że jest to coś więcej niż pewna charakterystyczna prędkość w przyrodzie. Jest to bowiem naturalna granica prędkości ciał. Z punktu widzenia teorii względności prędkość światła jest właściwie przelicznikiem między odległościami a czasem. W fizyce poeinsteinowskiej odległości i czas należałoby mierzyć tymi samymi jednostkami. Inaczej mówiąc, stała c wyraża stosunek jednostek odległości do jednostek czasu. Jej wartość w dzisiejszej fizyce jest na mocy konwencji równa dokładnie c=299\,792\, 458 m/s$. Ta dziwna wartość wynika z potrzeby ciągłości dawnych i nowych jednostek.

Trzecia stałą, pojawiającą się we wzorze Plancka, jest oznaczana przez niego literą h wielkość, dziś zwana stałą Plancka. Pojawia się ona wszędzie tam, gdzie występują zjawiska kwantowe. Podstawowe równanie fizyki kwantowej, równanie Schrödingera, można zawsze zapisać w postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi,

gdzie i to jednostka urojona, a \hbar\equiv \dfrac{h}{2\pi}, \psi jest funkcją falową, a H – hamiltonianem, czyli matematycznym zapisem energii układu. Planck z początku nie wiedział, jak ogromne znaczenie ma jego stała wprowadzona dla promieniowania. Obecnie (od roku 2019) wartość stałej Plancka jest określona raz na zawsze jako h=6,67607015\cdot 10^{-34} J·s. W istocie, jest to nowa definicja kilograma, słynny wzorzec z Sèvres jest już niepotrzebny (kilogram pojawia się w jednostce energii: 1\mbox{J}=1 \mbox{kg}\cdot \dfrac{\mbox{m}^2}{\mbox{s}^2}.).

Stałe h,c,G określają możliwe teorie fundamentalne fizyki. Sytuację tę można przedstawić za pomocą sześcianu Bronsteina (sam obrazek jest późniejszy):

 

W początku układu mamy mechanikę klasyczną bez grawitacji. Odpowiada to wartościom \hbar=G=1/c=0. Szczególna teoria względności odpowiada przyjęciu 1/c<\infty, mechanika kwantowa przyjęciu niezerowej stałej Plancka \hbar\neq 0. Kwantowa teoria pola, czyli Model Standardowy cząstek odpowiada \hbar\neq 0 oraz c<\infty. Ogólna teoria względności zawiera stałą grawitacji G oraz prędkość światła c. Kwantowa teoria grawitacji byłaby „teorią wszystkiego” w tym sensie, że zawierałaby zarówno efekty kwantowe, jak i grawitacyjne. Wszystkie trzy stałe byłyby w niej niezerowe.

Matvei Bronstein, dwudziestoparolatek, już w roku 1933 zaczął się zastanawiać nad kwantowaniem grawitacji. Pięć lat później już nie żył, aresztowany i skazany na śmierć podczas wielkiego terroru w Związku Sowieckim. Także Lew Landau, największy rosyjski teoretyk, był wówczas aresztowany. W jego przypadku pomogła interwencja Piotra Kapicy.

Sześcian Bronsteina jest tylko prostą ilustracją jednego z aspektów poszukiwanej kwantowej teorii grawitacji: wszystkie trzy fundamentalne stałe miałyby w niej skończoną wartość. Wszystkie te stałe (wraz ze stałą Boltzmanna) pojawiają się w we wzorze Hawkinga na temperaturę czarnej dziury. Układ Plancka byłby w kwantowej grawitacji naturalnym układem jednostek. Znaczy to, że zjawisk kwantowych związanych z grawitacją należy oczekiwać w skali długości Plancka, czyli znacznie poniżej dostępnych dziś w badaniach. Masa Plancka jest niemal porównywalna z naszymi jednostkami. Znaczy to jednak, że odpowiadająca jej energia równa będzie E_P=m_P c^2=4,9\cdot 10^{9} J. W teorii fundamentalnej jest to energia olbrzymia, widać to, gdy wyrazimy ją w elektronowoltach:  E_P=3,07\cdot 10^{28} eV. Dla porównania najdroższy akcelerator w dziejach fizyki, LHC w CERN-ie, może maksymalnie osiągnąć energię 14 TeV, czyli 14\cdot 10^{12} eV – jest to piętnaście rzędów wielkości poniżej energii Plancka.

Wartości stałych fundamentalnych stanowią rodzaj przelicznika pomiędzy naszymi zwykłymi jednostkami, jak metry, sekundy, kilogramy, a jednostkami, jakich używa przyroda, zrozumiałymi dla kolegi z Syriusza. Nb. matematyka jest zapewne jedynym językiem, w którym moglibyśmy się z owym dodekaedrem porozumieć. Może należy zwrócić na to uwagę w dyskusji dotyczącej matury z matematyki: matematyka to jedyny język, w którym możemy się porozumiewać z mieszkańcami Syriusza czy szerzej: ze wszechświatem. Zastosowania są chyba oczywiste.

Niezależne od jednostek są stałe bezwymiarowe. Np. kwadrat ładunku elektronu można wyrazić następująco:

\alpha=\dfrac{q_e^2}{4\pi\varepsilon_0 \hbar c}=\dfrac{1}{137,036}.

Mając jeszcze do dyspozycji masę elektronu m_e, można wyrazić wszystkie wielkości atomowe. Energia wiązania elektronu w atomie wodoru to

E_j=\alpha^2 m_e c^2=13,6 \mbox{ eV},

a promień atomu (tzw. promień Bohra):

r=\dfrac{\hbar}{\alpha m_e c}=0,5\cdot 10^{-10}\mbox{ m}.

Wielkości te określają skalę zjawisk atomowych i cząsteczkowych. W  fundamentalnej teorii wszystkiego powinniśmy masę elektronu wyrazić w masach Plancka, a promień Bohra w długościach Plancka.

Ilu różnych bezwymiarowych stałych potrzebujemy do opisu świata? Używamy jednostek Plancka. Zatem grawitacja kwantowa nie zawiera żadnych dowolnych stałych. Model Standardowy potrzebuje trzech stałych określających siłę oddziaływań: oprócz \alpha dla oddziaływań elektromagnetycznych, potrzeba jeszcze stałych dla oddziaływań słabych i silnych. W sumie mamy 3 stałe. Dalej, potrzebujemy mas: sześciu kwarków, trzech leptonów i trzech neutrin oraz bozonu Higgsa (wszystko wyrażamy w masach Plancka, więc są to wielkości bezwymiarowe). Dotąd mamy 16 stałych. Potrzebna jest jeszcze wartość oczekiwana pola Higgsa: stała nr 17. Kolejnych 8 stałych bierze się z różnych macierzy mieszania. Daje to 25 parametrów, przy czym większość wynika z Modelu Standardowego. Wielkość ciemnej energii jest parametrem nr 26 (jeśli ciemna energia to stała kosmologiczna). Z jednej strony jest tych stałych za wiele jak na fundamentalną teorię, z drugiej strony jednak od czterdziestu lat nikt nie potrafi wskazać teorii bardziej ekonomicznej, a te stałe nie są jakimiś kaprysami teoretyków, lecz potwierdzane są w eksperymentach (tutaj LHC ma jak najbardziej zastosowanie).

Więcej szczegółów nt. stałych w artykule Johna Baeza.

 

Richarda Feynmana droga do równania Schrödingera (1941)

Jeszcze w trakcie swoich studiów pierwszego stopnia w MIT (ukończył je w 1939 r.) Feynman dowiedział się o trudnościach elektrodynamiki kwantowej. Teoria taka była niezbędna do opisania oddziaływań przy większych energiach: kiedy mogą tworzyć się albo anihilować pary elektron-pozyton. Obliczenia prowadziły jednak do całek rozbieżnych, teoria wymagała nowego podejścia.

W swoim wykładzie noblowskim Richard Feynman opowiada o kilku ideach, które starał się rozwijać w trakcie swoich dalszych studiów w Princeton (na egzaminach wstępnych z fizyki uzyskał tam komplet punktów, co zdarzyło się po raz pierwszy). W roku 1942 r uzyskał doktorat pod kierunkiem Johna Archibalda Wheelera i niebawem zaczął pracę w Projekcie Manhattan.

Jednym z pomysłów Feynmana było nowe sformułowanie mechaniki kwantowej. Poszukiwał podejścia, w którym można by opisać, co dzieje się z cząstkami w czasoprzestrzeni. Chodziło mu o teorię relatywistyczną, w której opis taki wydaje się naturalny. Należało się spodziewać, że zamiast hamiltonianu pojawi się tu lagranżian cząstek (sformułowanie Lagrange’a mechaniki daje się łatwo zapisać w postaci jawnie kowariantnej, w której zgodność z teorią względności jest punktem wyjścia, a nie dodatkowym założeniem). Na początek udało mu się sformułować w nowy sposób „starą” mechanikę kwantową, która liczyła wprawdzie dopiero piętnaście lat, lecz dla młodego człowieka była to już prehistoria. Właśnie to sformułowanie znalazło się w doktoracie.

Punktem wyjścia była rozmowa z Herbertem Jehle w „Nassau Inn” w Princeton któregoś wieczoru. Jehle, Niemiec, syn generała, był kwakrem i pacyfistą, wyemigrował z nazistowskiej ojczyzny, pracował w Brukseli, w końcu trafił do obozu internowania w Gurs w Pirenejach w republice Vichy, skąd trafił do Stanów Zjednoczonych. Jehle znał pewną pracę Paula Diraca, w której pojawiał się lagranżian. Nazajutrz wybrali się obaj do biblioteki, aby odszukać tę pracę z 1933 roku. Była ona opublikowana w dość nieprawdopodobnym miejscu, bo w rosyjskim czasopiśmie „Physikalische Zeitschrift der Sowjetunion”.

Dirac pisze, jak znaleźć funkcję falową w chwili późniejszej t+\varepsilon z funkcji falowej w chwili t, korzystając z zasady Huygensa:

\psi(x,t+\varepsilon)={\displaystyle \int G(x,y)\psi(y,t)dy}.

Funkcja G(x,y) jest dziś zwana propagatorem cząstki. Funkcja falowa w późniejszym czasie jest więc sumą funkcji falowych w czasie wcześniejszym wziętą z odpowiednimi wagami – wagi te opisuje propagator. Angielski uczony stwierdził też, że propagator dla krótkich czasów „odpowiada” (corresponds to) wyrażeniu

e^{iL \varepsilon /\hbar},

gdzie L jest lagranżianem, \hbar – stałą Plancka. W wykładniku mamy tu działanie dla bardzo krótkiego czasu \varepsilon. Feynman spróbował natychmiast ustalić, co oznacza owa odpowiedniość. Jeśli wziąć dwa punkty x i y, to średnia prędkość cząstki powinna się równać

v=\frac{x-y}{\varepsilon},

a energia potencjalna powinna być także jakąś wartością średnią:

V=V(\frac{x+y}{2}).

Lagranżian to różnica energii kinetycznej i potencjalnej, a więc wyrażenie wykładnicze Diraca jest równe:

\exp\left(\frac{im(x-y)^2}{2\hbar\varepsilon}-\frac{i}{\hbar}V(\frac{x+y}{2})\varepsilon\right).

Dla niewielkich \varepsilon pierwszy składnik wykładnika będzie gwałtownie oscylował, drugi natomiast staje się coraz mniejszy i może być zastąpiony przybliżeniem liniowym. Oznaczając x-y=\xi i przyjmując, że „odpowiada” u Diraca znaczy „jest proporcjonalny”, mielibyśmy

\psi(x,t+\varepsilon) =A(\varepsilon) {\displaystyle \int \exp\left(\dfrac{im\xi^2}{2\varepsilon\hbar}\right)\left\{ 1-\dfrac{i\varepsilon}{\hbar}V(x-{\xi}/{2})\right\}\psi(x-\xi)d\xi}.

Ponieważ pierwszy czynnik pod całką gwałtownie oscyluje, więc możemy funkcję falową pod całką przybliżyć jej rozwinięciem Taylora wokół x:

\psi(x-\xi)\approx \psi(x)-\xi \dfrac{\partial \psi}{\partial x}+\dfrac{\xi^2}{2}\dfrac{\partial^2\psi}{\partial x^2}.

Także energię potencjalną możemy zamienić jej wartością w punkcie x. Całki po prawej stronie dają się w tym przybliżeniu bez trudu obliczyć i otrzymujemy:

\psi(x,t+\varepsilon)=\psi(x,t)-\dfrac{i\varepsilon }{\hbar}V(x)\psi(x,t)+\dfrac{i\hbar \varepsilon}{2m}\,\dfrac{\partial^2\psi}{\partial x^2}.

Możemy to równanie przekształcić do postaci

i\hbar \dfrac{\psi(x,t+\varepsilon)-\psi(x,t)}{\varepsilon}=-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi}{\partial x^2}+V(x)\psi(x,t),

co w granicy \varepsilon\rightarrow 0 przechodzi w równanie Schrödingera.

Jak opowiada Feynman, obliczenie to wykonał od razu w obecności Jehlego, który pilnie notował kolejne kroki.
Był to punkt wyjścia do całek Feynmana po trajektoriach (albo po historiach cząstki – jak nazwał to John Wheeler). Wyobraźmy sobie bowiem, że dany przedział czasu (0,T) dzielimy na N+1 podprzedziałów o długości \varepsilon każdy.

Propagator cząstki przyjmuje postać:

G(x,y)=A^{N+1}{\displaystyle \int\ldots\int \exp(\frac{i\varepsilon}{\hbar}(L(y,x_1)+L(x_1,x_2)+\ldots+L(x_N,x))dx_1\ldots dx_N}\mbox{(*)}.

Jeśli wyobrazimy sobie, że N\rightarrow\infty, to wykładnik w funkcji wykładniczej będzie dążył do całki działania pomnożonej przez czynnik i/\hbar:

\dfrac{i}{\hbar}S={\displaystyle \frac{i}{\hbar}\int_0^T L\left(x,\frac{dx}{dt}\right)dt}.

Mamy więc procedurę obliczania wartości G(x,y) za pomocą sumy po różnych możliwych trajektoriach. G można zinterpretować fizycznie: kwadrat modułu tej zespolonej wartości jest prawdopodobieństwem, że cząstka z punktu czasoprzestrzeni (y,0) przemieści się do punktu (x,T). Po drodze „próbuje” ona niejako wszelkich możliwych trajektorii i każda z nich daje wkład proporcjonalny do wartości działania:

G(x,T|y,0) \sim {\displaystyle \sum_{trajektorie}e^{iS[trajektoria]/\hbar}}.

Zapisujemy to następująco:

G(x,T|y,0)= {\displaystyle \int e^{iS[x(t)]/\hbar}{\mathcal D}[x(t)]}.

Całka Feynmana jest w istocie granicą wyrażeń (*) i w celu obliczenia jej wartości musimy wracać do tej definicji. Okazuje się jednak, że sformułowanie to pozwala nie tylko spojrzeć inaczej na znaną fizykę, ale także umożliwia konkretne numeryczne obliczenia metodą Monte Carlo. Pozwala też łatwo zrozumieć, czemu przechodząc od fizyki kwantowej do klasycznej, otrzymujemy zasadę najmniejszego działania.

Wartości potrzebnych całek wynikają ze znanego wzoru:

{\displaystyle \int_{-\infty}^{\infty}e^{-\alpha x^2}dx=\sqrt{\dfrac{\pi}{\alpha}} }.

Jest on słuszny także dla czysto urojonych wartości \alpha. Różniczkowanie tego wzoru po \alpha generuje nam także całkę \int x^2 e^{-\alpha x^2} dx. Stała A równa jest

A=\sqrt{\dfrac{m}{2\pi i\hbar \varepsilon}}.

Kiedyś napiszę może trochę więcej na temat obliczania całek przez Feynmana, nieprzypadkowo zajmował się on w Los Alamos nadzorowaniem praktycznych obliczeń numerycznych – jak mało kto potrafił bowiem szybko obliczyć niemal wszystko, co daje się obliczyć metodami klasycznej analizy.

 

Szczęśliwy rok Erwina Schrödingera (1926)

W listopadzie 1926 roku seria sześciu ostatnich prac Schrödingera ukazała się w wydaniu książkowym. Jak sam pisał we wstępie do tego przedruku:

Młoda przyjaciółka powiedziała o nich niedawno: „Popatrz, kiedy je zaczynałeś, nie myślałeś w ogóle pojęcia, że wyjdzie z nich tak wiele sensownych rzeczy”. Powiedzenie to, z którym (prócz pochlebnego przymiotnika) w pełni się zgadzam, podkreśla fakt, że prace zebrane w tym tomie powstawały jedna po drugiej. Ich autor, pisząc wcześniejsze części, nie znał jeszcze części późniejszych.

Erwin Schrödinger stał się dzięki nim sławny i choć także wcześniej i później tworzył prace interesujące bądź nawet wybitne, żadna z nich nie dorównywała tej złotej serii.

Ową przyjaciółką była czternastoletnia Itha Junger („Ithi”). Ich dziadek Georg Junger był bogatym obywatelem Salzburga, właścicielem firmy zajmującej się handlem hurtowym. Interes prowadzili nadal jego dwaj synowie, to jeden z nich, Hans, był ojcem dwóch niejednakowych bliźniaczek: Ithy i Roswithy, uczęszczających do szkoły klasztornej. Mówiło się, że matka żony Schrödingera Anny była nieślubną córką Georga Jungera. W każdym razie obie rodziny były blisko i żona Hansa była matką chrzestną Anny. Itha miała kłopoty z matematyki, Anny zaproponowała, że Erwin mógłby pomóc, bliźniaczki przeniesiono do klasztoru blisko Zurychu, żeby mogły korzystać z korepetycji. Erwin bardzo się z nimi zaprzyjaźnił, a wkrótce i zakochał w Ithi. Ich osobliwy, nawet w tych swobodnych czasach, romans trwał wiele lat, związek został skonsumowany wkrótce po siedemnastych urodzinach Ithi.

Mechanika kwantowa Heisenberga i jego kolegów z Getyngi przyjmowana była z mieszanymi uczuciami przez środowisko fizyków. Przeskoki kwantowe, abstrakcyjny formalizm macierzowy, filozofia ograniczenia się tylko do wielkości bezpośrednio obserwowalnych i porzucenia raz na zawsze poglądowych wyobrażeń atomu – wszystko to traktowane było z rezerwą. Podejście Schrödingera wydawało się nie tylko bardziej zrozumiałe matematycznie, ale także umożliwiało wyobrażenie sobie, co właściwie dzieje się wewnątrz układów o skali atomowej. Schrödinger wykazał także, że przynajmniej w prostych sytuacjach oba podejścia są równoważne. Mimo to, Heisenberg wykazywał wobec „mechaniki falowej” postawę wrogą i nieprzejednaną. Jego mentor, Niels Bohr, zaprosił Schrödingera do Kopenhagi, gdzie zadręczał wręcz swojego gościa, atakując jego sposób myślenia.

Dla zwolenników Bohra elektron był punktową cząstką, a prawa kwantowe dotyczyły tylko prawdopodobieństw. Historia przyznała im rację, choć pewne problemy interpretacyjne mechaniki kwantowej pozostały do dziś. Trzeba jednak wyraźnie powiedzieć, że jak dotąd żaden eksperyment nie zaprzeczył prawom mechaniki kwantowej, „szara strefa” dotyczy raczej filozoficznego samopoczucia. Wciąż nie znamy wszystkich szczegółów przejścia z poziomu mikroświata do makroświata, w którym żyjemy i w którym powstała fizyka klasyczna.

Błyskawiczna kariera Schrödingera wiązała się z tym, że dla konserwatywnie nastawionych fizyków, jego podejście wydawało się łatwiejszą do przyjęcia wersją teorii kwantowej. Schrödinger został zasypany listami i zaproszeniami od luminarzy ówczesnej fizyki: od sędziwego Hednrika Lorentza, przez Maksa Plancka, Alberta Einsteina aż do Wilhelma Wiena i Arnolda Sommerfelda. Został członkiem bardzo elitarnego grona: Planck gościł go w swoim domu podczas wizyty w Berlinie. Dobiegający siedemdziesiątki i wieku emerytalnego Planck niewątpliwie myślał przy tym o przyszłości swojej katedry w Berlinie, najbardziej prestiżowego stanowiska w dziedzinie fizyki teoretycznej na świecie. Niedługo później Schrödinger trafił na krótką listę kandydatów i uzyskał to stanowisko. Uznano przy tym, że Werner Heisenberg, choć niewątpliwie genialny, jest po prostu jeszcze za młody na katedrę. Schrödinger odbył też podróż do Stanów Zjednoczonych, stając się jednym z długiego szeregu wizytujących sław europejskich. Amerykanie nie byli jeszcze potęgą w fizyce teoretycznej, ale starali się kusić wysokimi honorariami, uzyskując przynajmniej tyle, że odwiedzali Stany Zjednoczone wszyscy właściwie wybitni fizycy i matematycy. Schrödinger też dostał oferty pracy w USA, ale nie rozpatrywał ich poważnie. Ameryka mu się nie podobała, duch purytański, przejawiający się w owych latach, m.in. w prohibicji, wydawał mu się barbarzyństwem. Na widok Statui Wolności miał powiedzieć, że brakuje jej tylko zegarka na ręku.

William F. Meggers Gallery of Nobel Laureates

Erwin Schrödinger bronił w roku 1926 i później stanowiska, że elektron nie jest punktową cząstką, lecz raczej pewnym rozmytym obiektem. Stanowisko to nie dało się obronić. Przedstawimy jeden z argumentów Schrödingera. Jest on prawdziwy, lecz sytuacja, której dotyczy, okazała się nietypowa. Nie można było tego jednak wiedzieć latem 1926 roku.

Rozpatrzmy oscylator harmoniczny, czyli cząstkę oscylującą wokół minimum energii potencjalnej. Ponieważ każdą funkcję wokół minimum można w przybliżeniu uważać za parabolę, więc jest sens rozważać przypadek kwadratowej, czyli parabolicznej, energii potencjalnej. Rozwiązanie równania Schrödingera daje nam wówczas następujące funkcje falowe.

skrypt Sagemath do generowania obrazka

Są to drgania o różnych dopuszczalnych energiach (nieparzyste wielokrotności wielkości \frac{1}{2}\hbar \omega, gdzie \omega jest częstością kołową naszego oscylatora). Klasycznie biorąc, obszar położony poza przecięciem potencjału z poziomą prostą danej energii całkowitej jest niedostępny; cząstka nie może się tam znaleźć, ponieważ musiałaby mieć ujemną energię kinetyczną. W fizyce kwantowej funkcja falowa rozlewa się poza ten klasycznie dostępny obszar, co jest tzw. zjawiskiem tunelowym. Każdy z tych stanów stacjonarnych ma bardzo prostą zależność od czasu. Należy funkcję z wykresu pomnożyć przez czynnik

\exp(-i\frac{Et}{\hbar})=\exp(-i\omega(n+\frac{1}{2})t).

Znaczy to, że zależność od czasu jest trywialna, nic się w naszej funkcji falowej nie porusza, opisane stany są falami stojącymi. Schrödinger zauważył, jak ze stanów o ustalonej energii zbudować rozwiązanie równania, które opisuje drgania w czasie. W gruncie rzeczy jest to bardzo proste. Chcąc zapoczątkować drgania oscylatora, wystarczy wychylić jego masę z położenia równowagi, a następnie puścić ciężarek, który zacznie wykonywać oscylacje.

Można analogicznie, wziąć funkcję falową stanu podstawowego oscylatora

\Psi_0(x)=C\exp(-\frac{x^2}{2}),

a następnie przesunąć ją do jakiegoś nowego położenia x_0:

\Psi(x)=C\exp(-\frac{(x-x_0)^2}{2}),

Jeśli tę ostatnią funkcję potraktujemy jako warunek początkowy w równaniu Schrödingera, to otrzymamy funkcje opisujące paczkę falową poruszającą się oscylacyjnie wokół położenia równowagi. W pracy Schrödingera („Naturwissenschaften”, 1926) przedstawiona została jej część rzeczywista:

Jest to zdjęcie migawkowe, paczka falowa będzie bowiem oscylować wokół położenia równowagi. Zdaniem Schrödingera ta właśnie fala jest elektronem. Ponieważ ciągle traktował on liczby zespolone jako wypadek przy pracy, więc wziął cząść rzeczywistą rozwiązania.

Wiemy jednak, że rację miał tu Max Born: należy obliczyć kwadrat zespolonego modułu funkcji falowej i jego wielkość określa rozkład prawdopodobieństwa. Otrzymamy wówczas klasyczne drgania rozmytej funkcji falowej.

Wikimedia Commons

Nie jest to jednak elektron, lecz prawdopodobieństwo jego znalezienia w danym miejscu i czasie. Dziś stany takie znane są jako stany koherentne. Przypadek oscylatora jest wyjątkowy: na ogół taka zlokalizowana funkcja falowa rozmywa się w czasie, choć w niektórych przypadkach może się później odbudowywać, jak na poniższym obrazku (chodzi tu o wysokowzbudzone stany atomu wodoru: mogą one przez chwilę przypominać klasyczny elektron na orbicie Bohra, potem ten obraz się rozmywa.

Mamy tu trzydzieści keplerowskich obiegów elektronu zbudowanych ze stanów wokół n=180

Erwin Schrödinger nie pogodził się z kopenhaską interpretacją mechaniki kwantowej, stał się jednym z jej krytyków, podobnie jak Einstein poszukujących innej drogi. Romans z Ithi kontyuowany był w latach berlińskich, w jakimś momencie uczony chciał się nawet z nią ożenić, ale do tego nie doszło. Po roku 1933 nie chciał zostać w nazistowskich Niemczech (co było dość wyjątkowe, ponieważ nie był Żydem i nie musiał rezygnować), wrócił na trochę do Austrii, ale wskutek Anschlussu także Austria stała się brunatna. Jego późniejsze afery uczuciowo-erotyczne stanowiły przeszkodę w objęciu katedr w Oxfordzie i Princeton, ostatecznie znalazł sobie miejsce w katolickiej Irlandii.

Erwin Schrödinger: trzeci początek mechaniki kwantowej (1926)

Równanie Schrödingera zasługuje na swoją sławę: dzięki niemu znamy nie tylko budowę atomów, ale i cząsteczek chemicznych czy ciał skondensowanych. Wynikają z niego najprzeróżniejsze własności materii, która nas otacza, a także materii we wszechświecie. Jest więc równaniem niezwykle istotnym tak dla fundamentów fizyki, jak i dla zastosowań.

Autor najsłynniejszego równania dwudziestowiecznej fizyki aż do roku 1926 nie należał do ścisłej czołówki fizyków teoretycznych. Zaledwie osiem lat młodszy od Einsteina, dopiero od 1921 roku zajmował katedrę na uniwersytecie w Zurychu. Studiował w Wiedniu, zbyt późno by zetknąć się osobiście z Ludwigiem Boltzmannem czy Ernstem Machem, choć wpływ obu tych uczonych wciąż dawał się tam odczuć. Fizyki teoretycznej uczył się u Friedricha Hasenöhrla, bliskiego przyjaciela Mariana Smoluchowskiego. Do tej pory niewiele zajmował się teorią kwantową, ponieważ opierała się ona wciąż na bardzo grząskich podstawach, korzystając po trosze z fizyki klasycznej, a po trosze z postulatów kwantowania, wyraźnie z nią sprzecznych. Zwrócił jednak uwagę na pracę Louisa de Broglie na temat fal materii. Postulowała ona, że zarówno fotony, jak i inne cząstki mikroświata mają dualną naturę: zachowują się czasem jak cząstki, a czasem jak fale. Obowiązywał przy tym jeden uniwersalny przelicznik własności cząstkowych: energii E i pędu p na wielkości falowe: częstość (kołową) \omega i liczbę falową k\equiv\frac{2\pi}{\lambda} (\lambda jest długością fali). Współczynnikiem proporcjonalności w obu przypadakch miała być stała Plancka \hbar:

E=\hbar\omega,\,p=\hbar k.

Felix Bloch, wówczas początkujący fizyk, tak wspomina wspólne kolokwia (dziś powiedzielibyśmy raczej seminaria) fizyków z uniwersytetu w Zurychu i z ETH, gdzie najważniejszą postacią był Peter Debye.

Pewnego razu pod koniec kolokwium Debye powiedział coś w tym rodzaju: „Schrödinger nie zajmujesz się teraz żadnym ważnym tematem. Może opowiedziałbyś nam któregoś dnia o tym doktoracie de Broglie’a, który, zdaje się, przyciągnął sporo uwagi”. Więc na jednym z następnych kolokwiów Schrödinger przedstawił cudownie przejrzysty wykład o tym, jak de Broglie wiąże fale z cząstkami i w jaki sposób zdołał on uzyskać reguły kwantyzacji Bohra i Sommerfelda (…) Kiedy skończył, Debye stwierdził od niechcenia, że taki sposób ujęcia jest raczej dziecinny. Jako student Sommerfelda nauczył się, że właściwy sposób podejścia do fal wiedzie przez równanie falowe. Brzmiało to dość trywialnie i na pozór nie zrobiło głębszego wrażenia, ale Schrödinger najwyraźniej wrócił później do tego pomysłu. Zaledwie kilka tygodni później dał następne kolokwium, zaczynając od słów: „Kolega Debye zasugerował, że należy mieć równanie falowe, toteż je znalazłem”. [„Physics Today”, t. 29 (1976), nr 12, s. 23-24]

Najwyraźniej w pierwszej chwili obaj nie zdawali sobie sprawy z wagi tych badań. Erwin Schrödinger dzięki pracom z końca roku 1925 i roku 1926 stał się błyskawicznie jednym z najgłośniejszych fizyków świata. Seria jego artykułów natychmiast zyskała uznanie. Chwalili je Albert Einstein i Arnold Sommerfeld, który wraz ze swymi uczniami rozwijał od lat fizykę kwantową. Napisał do niego sędziwy Hendrik Lorentz, który uważnie śledził nowości i miał parę istotnych uwag. Surowy i poważny Max Planck, profesor najbardziej prestiżowej katedry w Niemczech (co wtedy znaczyło: najbardziej prestiżowej na świecie) – na uniwersytecie w Berlinie, pisał entuzjastycznie do Schrödingera:

Czytam pański artykuł tak, jak ciekawe dziecko, słuchające w napięciu rozwiązania zagadki, nad którą się długo głowiło, i cieszę się bardzo wszystkimi pięknościami, jakie tam dostrzegam, choć muszę go jeszcze dokładniej przestudiować, by wszystko z niego pojąć.

Kiedy w grudniu 1925 roku Schrödinger znalazł swe równanie, był to trzeci początek mechaniki kwantowej albo – jak wolał o tym mówić autor odkrycia – mechaniki falowej. Na pierwszy rzut oka nie miało to nic wspólnego z teorią Heisenberga, Borna, Jordana i Diraca. U Schrödingera nie było żadnych skoków kwantowych, żadnych wielkości macierzowych, nieprzemiennych iloczynów. Język był całkowicie klasyczny – była to matematyka drgań, dobrze już wówczas opracowana. W roku 1924 wyszła dwutomowa monografia Methoden der mathematischen Physik („Metody fizyki matematycznej”) zredagowana przez Richarda Couranta i innych matematyków z Getyngi na podstawie wykładów Davida Hilberta. Zawierała ona wiele materiału, który miał się okazać potrzebny fizykom za kilka lat. Jak na ironię metody Hilberta zastosowali pierwsi nie fizycy z grupy Maksa Borna, pracujący przecież głównie pod bokiem Hilberta w Getyndze, ale Erwin Schrödinger, outsider i naukowy samotnik. Fizycy z Getyngi zlekceważyli nawet wyraźną sugestię Hilberta w jednej z rozmów, że powinni poszukać równania różniczkowego, które opisuje skwantowane wartości energii. Nie próbowali iść tym tropem, przekonani, że ich mechanika kwantowa jest czymś całkowicie nowym i nie może się zawierać w książce sprzed paru lat. Źle przyjęli też pracę Schrödingera, która wydawała się recydywą fizyki klasycznej, odwrotem od kwantowej rewolucji spod sztandaru Heisenberga.

Fizycy klasyczni znali wiele przypadków drgań układów rozciągłych, czyli fal stojących. Są one np. podstawą wytwarzania dźwięku w instrumentach muzycznych takich, jak organy, flet, trąbka czy skrzypce. Wiadomo, że zamocowana na końcach struna drgać może tylko z określonymi ściśle częstościami: podstawową oraz jej wielokrotnościami. Rozważano różne bardziej skomplikowane możliwości, pisaliśmy tu o rówieśniku Einsteina, fizyku z Getyngi, Waltherze Ritzu. Idea Schrödingera polegała na tym, by wartości energii w atomie potraktować analogicznie do częstości dźwięku w pudle rezonansowym, stosując równanie falowe. Ma ono w przypadku trójwymiarowym postać:

\dfrac{\partial^2\psi}{\partial x^2}+\dfrac{\partial^2\psi}{\partial y^2}+\dfrac{\partial^2\psi}{\partial z^2}-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}\equiv \Delta\psi-\dfrac{1}{v^2}\dfrac{\partial^2 \psi}{\partial t^2}=0,

gdzie v jest prędkością fal. Jeśli przyjmiemy, że nasze fale są okresowe i mają częstość \omega, możemy rozwiązania zapisać jako

\psi(x,y,z, t)=\psi(x,y,z)e^{\pm i\omega t}.

Drugą pochodna po czasie jest ta sama funkcja wykładnicza pomnożona przez stałą. Wstawiając to do równania falowego, otrzymujemy tzw. równanie Helmholtza (który pod koniec XIX wieku był profesorem w Berlinie):

\Delta \psi+k^2 \psi=0.

W równaniu tym skorzystaliśmy z tego, że \dfrac{\omega}{v}=k. Droga Schrödingera do odkrycia była dość zawikłana. Związki de Broglie’a są relatywistyczne, naturalne wydawało się więc zapisanie równania relatywistycznego. Jednak kiedy spróbujemy je rozwiązać w najprostszym przypadku atomu wodoru, okazuje się, że dopuszczalne energie nie zgadzają się z tym, co wcześniej, w starej teorii kwantów obliczył Sommerfeld i co zgadzało się z doświadczeniem (szczegóły można znaleźć u L. Schiffa, Mechanika kwantowa, s. 409 i n.). Dwa lata później sytuacja się wyjaśniła: potrzebne tu jest równanie Diraca. Dwa lata w tamtej chwili rozwoju fizyki to było więcej niż epoka, Schrödinger znajdował się dopiero u początków tej drogi i nie mógł wiedzieć, co stanie się dalej. Rozsądnie zdecydował się więc na przybliżenie nierelatywistyczne, robiąc niejako krok wstecz w porównaniu do de Broglie’a. Nie pójdziemy tu jego drogą, a właściwie kilkoma różnymi drogami, jakimi próbował uzasadnić swe równanie. Wybierzemy podejście najprostsze zaproponowane pół roku później przez Maksa Borna – musimy jednak pamiętać, że nie jest to wyprowadzenie. Nie można bowiem wyprowadzić praw mechaniki kwantowej z praw klasycznych. Dla cząstki o masie m i całkowitej energii E możemy napisać równanie zachowania energii:

E=\dfrac{\hbar^2 k^2}{2m}+V(x,y,z),

gdzie V jest energią potencjalną (pierwszy składnik to zwykła energia kinetyczna). Jeśli wyznaczymy k^2 z ostatniego równania i wstawimy do równania Helmholtza, otrzymamy tzw. równanie Schrödingera bez czasu:

-\dfrac{\hbar^2}{2m}\Delta\psi+V\psi=E\psi.

Chcąc np. opisać ruch elektronu wokół nieruchomego jądra atomowego o ładunku Ze, należy wstawić do równania Schrödingera energię potencjalną postaci

V(r)=-\dfrac{Ze^2}{4\pi \epsilon_0 r},

czyli zwykłą energię potencjalną przyciągania elektrostatycznego dwóch ładunków Ze oraz -e w odległości r. Szukamy takich funkcji \psi(x,y,z), które daleko od jądra zanikają. Okazuje się, że rozwiązania takie są możliwe tylko dla dyskretnych wartości energii równych

E_n=-\dfrac{me^4}{2(4\pi\epsilon_0)^2 \hbar^2}\dfrac{1}{n^2}, \mbox{ gdzie } n=1,2, 3, \ldots.

 Jest to wynik uzyskany w roku 1913 przez Bohra z założeń, które od początku wydawały się aktem rozpaczy, a nie solidną nauką. Równanie Schrödingera miało więc sens, choć nadal brakowało pewnych elementów do kompletnej teorii. Jednym z najważniejszych było znaczenie samej funkcji \psi. Kiedy w piszczałce organowej czy w rurce fletu wytwarzany jest dźwięk, wiemy, co drga – jest to powietrze, które ściśnięte się rozpręża, a rozprężone wraca do początkowej gęstości. Co drga w atomie wodoru? Jakie jest znaczenie funkcji \psi? Co gorsza, okazało się, że powinna ona mieć wartości zespolone, z pewnością nie było to żadne proste drganie klasyczne. Geniusz Schrödingera ujawnił się i w tym, że nie próbował odpowiedzieć na wszystkie pytania naraz i pozwolił swoim ideom rozwijać się w czasie. Publikacje uczonego z pierwszego półrocza 1926 roku wystarczyły na Nagrodę Nobla i objęcie w roku 1927 katedry w Berlinie po odchodzącym na emeryturę Maksie Plancku.

Erwin Schrödinger, człowiek wszechstronnie wykształcony, o szerokich zainteresowaniach, całkowicie zaprzecza ascetycznej wizji uczonego, który nie ma czasu na nic oprócz nauki. Wydaje się wręcz, że jego pomysłowość przy stworzeniu słynnego równania szła w parze z gorączką miłosną. Praca ta powstała w uzdrowisku Arosa, gdzie wybrał się w towarzystwie do dziś nie znanej flamy. Jego małżeństwo należało do nowoczesnych i partnerzy pozostawiali sobie bardzo wielką swobodę. Były przecież lata dwudzieste: kobiety odsłoniły nogi, tańczono charlestona, wszyscy chcieli zapomnieć o koszmarze niedawnej wielkiej wojny.

 

 

 

 

 

Oscylator kwantowy: Paul Dirac i inni (1929-1930)

Mechanika kwantowa wprowadziła rewolucyjnie nowe pojęcie stanu układu fizycznego. Klasycznie stan układu znamy, gdy dane są jego położenie i pęd w pewnej chwili. Na tej podstawie możemy obliczyć przyszłe położenia i pędy (albo i przeszłe – mechanika jest symetryczna wobec zmiany strzałki czasu). Np. znając dziesiejsze położenie i pęd planety, możemy obliczyć, gdzie znajdzie się ona za sto lat albo gdzie była, powiedzmy, w czasach Keplera. Stan układu to punkt w przestrzeni polożeń q i pędów p. Ewolucja w czasie to ruch tego punktu w owej przestrzeni fazowej.

Mechanika kwantowa zastępuje klasyczną na poziomie mikroświata. Zupełnie jednak zmienia się pojęcie stanu układu. Stanem jest teraz nie punkt, lecz wektor, a właściwie cały promień, to znaczy wektor pomnożony przez dowoloną liczbę. Przestrzeń stanów (wektorów) umożliwia dodawanie dwóch stanów. Operacja taka nie miałaby sensu w mechanice klasycznej: bo niby jak mamy dodać do siebie położenie Marsa i położenie Jowisza? Co taka suma miałaby oznaczać? W mechanice kwantowej obowiązuje zasada superpozycji, czyli dodawania stanów.

Wikipedia: Double-slit experiment

Kiedy np. przepuszczamy elektron przez przesłonę z dwiema szczelinami, jego stan kwantowy będzie sumą stanu elektronu, który przeszedł przez szczelinę nr 1 oraz stanu elektronu, który przeszedł przez szczelinę nr 2. Stosując zapis wprowadzony przez Paula Diraca w 1939 roku, możemy to zapisać jako

|\varphi\rangle=| \varphi_1\rangle+| \varphi_2\rangle.

Fizycznie znaczy to, że nasz elektron trochę przeszedł przez szczelinę nr 1, a trochę przez szczelinę nr 2. Jego stan jest superpozycją dwóch stanów. Gdybyśmy chcieli wyznaczyć prawdopodobieństwo, że w jakimś punkcie ekranu x zarejestrujemy nasz elektron, należałoby obliczyć iloczyn skalarny z wektorem przedstawiającym elektron w x:

\langle x | \varphi \rangle=\langle x| \varphi_1\rangle+ \langle x| \varphi_2\rangle.

Zapis Diraca wziął się z rozłożenia nawiasu kątowego na dwie części: nazywa się je wektorem bra i ket (od angielskiego: bracket). Z pomnożenia skalarnego dwóch wektorów otrzymujemy liczbę (prędzej czy później będziemy potrzebowali liczb, jeśli teoria ma coś przewidywać ilościowo). Powyższy zapis Diraca można też zastąpić bardziej konwencjonalnym sumowaniem funkcji:

\varphi(x)=\varphi_1(x)+\varphi_2(x).

Wartość funkcji falowej w danym punkcie x można traktować jako składową wektora \varphi. Zapis Diraca \langle a|b\rangle pozwala nam patrzeć na funkcję jako iloczyn skalarny dwóch wektorów, jeszcze wygodniej jest często operować samymi wektorami stanu: nie precyzujemy wówczas, co chcielibyśmy mierzyć (może np. zamiast położenia, wolelibyśmy pędy – pierwsza forma zapisu  tego nie przesądza.

Mamy zatem abstrakcyjne wektory stanu i iloczyn skalarny. Wartości tego iloczynu skalarnego są na ogół zespolone, inaczej mówiąc, funkcje falowe są zespolone (*). Nie mogą one mieć bezpośredniego sensu fizycznego. Sens taki mają natomiast kwadraty ich modułów: |\varphi(x)|^2 daje nam prawdopodobieństwo zarejestrowania elektronu w punkcie x (dokładniej: gęstość prawdopodobieństwa, bo współrzędna przyjmuje dowolne wartości rzeczywiste). Tam gdzie prawdopodobieństwo jest duże, elektrony będą częściej trafiały, gdy zbierze się dostateczna statystyka, będziemy mogli zaobserwować, że „trafienia” układają się w prążki interferencyjne. Wynik jest taki, jakby dwie fale nakładały się na siebie.

Obrazki powyżej pochodzą z rzeczywistego doświadczenia Akira Tonomury, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14952-14959. Liczba elektronów wzrasta od 10 do 140 000, widzimy, jak uwidaczniają się prążki interferencyjne. W doświadczeniu tym elektrony przepuszczane były pojedynczo, wiemy więc, że każdy elektron interferuje niejako sam z sobą, nie jest to skutek jakichś oddziaływań między nimi. Ze względów technicznych doświadczenie to przeprowadzone było stosunkowo niedawno, ale że wynik musi być właśnie taki, zdawali sobie sprawę już pierwsi badacze mechaniki kwantowej: Heisenberg, Born, Jordan, Dirac. W 1927 r. Lester Germer i Clinton Davisson oraz niezależnie George Paget Thomson zaobserwowali dyfrakcję elektronów, za co otrzymali Nagrodę Nobla (G.P. Thomson był synem J.J. Thomsona, który odkrył elektron, mówiono, że ojciec dostał Nagrodę Nobla za odkrycie, iż elektron jest cząstką, a syn – za odkrycie, że elektron jest falą). Oczywiście, elektron (podobnie jak np. foton) jest cząstką, do opisu której musimy stosować mechanikę kwantową.

Tak więc choć dodawanie stanów wydaje się abstrakcyjne, to w istocie jest obserwowane w eksperymentach. Skoro stany są wektorami i można je dodawać oraz mnożyć przez liczbę, to naturalnym rodzajem przekształceń takiej przestrzeni są operatory liniowe, czyli odwzorowania przypisujące każdemu wektorowi |\varphi \rangle jakiś inny wektor: A |\varphi \rangle, przy czym

A(\lambda_1 | \varphi_1\rangle+\lambda_2 |\varphi_2\rangle)=\lambda_1 A |\varphi_1\rangle+\lambda_2 A |\varphi_2\rangle,

gdzie \lambda_1,\lambda_2 są dowolnymi liczbami. Operatory takie w mechanice kwantowej zastępują wielkości fizyczne, które można mierzyć: mamy więc operatory pędu, położenia, energii itd. W jaki sposób formalizm ten pozwala otrzymywać w pewnych sytuacjach skwantowane wartości np. energii? Operator wielkości A działając na pewne odpowiednio wybrane wektory daje bardzo prosty wynik: mnoży wektor wyjściowy przez liczbę. Np.

A |\varphi_a\rangle=a|\varphi_a\rangle,

co zwykle zapisuje się krócej:

A|a\rangle =a|a\rangle.

Litera a oznacza wartość wielkości fizycznej, a więc powinna to być liczba rzeczywista, a przynależny jej stan |a\rangle jest wektorem. Mówi się, że jest to wektor własny, a wartość nazywamy wartością własną. Z doświadczalnego punktu widzenia, gdy układ jest w stanie własnym, to wynikiem pomiaru owej wielkości jest na pewno a. Przestrzeń stanów jest nieskończenie wymiarowa i może zawierać wiele różnych wektorów odpowiadających różnym wartościom własnym. Może się np. okazać, że tylko pewien dyskretny zbiór wartości jest dopuszczalny – i wtedy właśnie wielkość fizyczna się kwantuje.

Pokażemy, jak formalizm ten działa w przypadku oscylatora harmonicznego. Jest to najprostszy niecałkiem trywialny układ, mający zresztą liczne zastosowania: wszystko, co gdzieś drga, można w pierwszym przybliżeniu opisać jako oscylator harmoniczny albo ich zbiór – mogą to być drgania kryształów, atomów w cząsteczkach chemicznych, a nawet fale elektromagnetyczne, które matematycznie są podobne do oscylatorów.

W jednowymiarowym przypadku, gdy masa cząstki oraz częstość oscylatora są jednostkowe, energia ma postać:

E=\frac{1}{2}(p^2+x^2),

jest to więc suma kwadratów pędu i współrzędnej (kwadratowy potencjał odpowiada sile proporcjonalnej do wychylenia z położenia równowagi, jak w przypadku masy na sprężynie). W mechanice kwantowej zastępujemy tę funkcję operatorem Hamiltona (hamiltonianem), który ma postać taką samą, jak klasyczna:

H=\frac{1}{2}(p^2+x^2),

teraz jednak po prawej stronie mamy operatory pędu i położenia. Wiemy o nich od czasów Borna i Jordana oraz Diraca, że są nieprzemienne i spełniają regułę komutacji:

xp-px=i\hbar.

Okazuje się, że wystarczy to do znalezienia wartości energii oscylatora (dla uproszczenia przyjmiemy jednostki \hbar=1). Metoda, którą zastosujemy, przypisywana jest zwykle Paulowi Diracowi, choć w druku pojawiła się po raz pierwszy w książce Maksa Borna i Pascuala Jordana z roku 1930.

Hamiltonian jest sumą kwadratów, możemy więc spróbować rozłożyć go na czynniki. Wprowadzamy dwa nowe operatory:

a=\frac{1}{\sqrt{2}}(x+ip), \; a^{\dag}=\frac{1}{\sqrt{2}}(x-ip).

Gdyby x, p były liczbami rzeczywistymi, iloczyn obu naszych operatorów byłby równy hamiltonianowi. Musimy jednak uwzględnić nieprzemienność mnożenia operatorów:

a^{\dag}a=\frac{1}{2}(x^2+p^2+ixp-ipx)=H-\frac{1}{2}.

W podobny sposób możemy obliczyć iloczyn wzięty w odwrotnej kolejności:

aa^{\dag}=\frac{1}{2}(x^2+p^2-ixp+ipx)=H+\frac{1}{2}.

Odejmując ostatnie dwie równości stronami, otrzymamy

a^{\dag}a-aa^{\dag}=1.

Zbadajmy teraz wartości własne operatora N=a^{\dag}a – muszą one być o \frac{1}{2} mniejsze niż wartości własne operatora H. Jeśli |\lambda\rangle jest wektorem własnym N o wartości \lambda, to mamy

Na|\lambda \rangle=(a^{\dag}a)a|\lambda\rangle=(aa^{\dag}-1)a|\lambda\rangle=(\lambda-1)a|\lambda\rangle.

Oznacza to, że wektor a|\lambda\rangle też jest wektorem własnym N o wartości o 1 mniejszej. Działając kolejny raz operatorem a na tak uzyskany wektor, otrzymamy wektor o wartości własnej mniejszej o 2 itd. Procedura ta musi się jednak zakończyć po skończonej liczbie kroków, ponieważ operator N, tak jak i H, jest ograniczony od dołu. Hamiltonian jest sumą kwadratów i nie może mieć ujemnych wartości własnych, energia każdego układu ograniczona jest od dołu, gdyby tak nie było świat by się zapadł w stany o ujemnej energii. Znaczy to, że istnieje taki wektor |0\rangle, że

a  |0\rangle=0.

Po prawej stronie mamy wektor zerowy, czyli brak jakiegokolwiek stanu. Oczywiście, N |0\rangle=0, czyli wektorowi temu odpowiada zerowa wartość własna. Możemy teraz do tego wektora zastosować operator a^{\dag}, otrzymamy

Na^{\dag}|0\rangle=a^{\dag}aa^{\dag}|0\rangle=a^{\dag}(a^{\dag}a+1)|0\rangle=a^{\dag}|0\rangle,

czyli wektor a^{\dag}|0\rangle ma wartość własną 1. Powtarzając ten zabieg stosowania operatora a^{\dag} wykreujemy stany o wartościach własnych równych kolejnym liczbom naturalnym. Z tego powodu operator a^{\dag} nazywa się operatorem kreacji, a a – operatorem anihilacji. Generują one stany o większej bądź mniejszej wartości N. Zatem wartości własne naszego hamiltonianu równe są

E_n=n+\frac{1}{2}, \mbox{ gdzie  } n=0,1, 2,\ldots.

W zwykłych jednostkach energie wyrażają się przez częstość oscylatora \omega=\sqrt{\frac{k}{m}}:

E_n=\hbar\omega(n+\frac{1}{2}).

Wynik ten znany był od lat, po raz pierwszy jednak powstał w latach 1925-1926 spójny formalizm pozwalający otrzymać ten i wiele innych rezultatów.

Na obrazku widzimy rezultat zastosowania formalizmu: niebieska linia to kształt potencjału (parabola x^2), linie poziome oznaczają dozwolone wartości energii. Nawet najmniejsza energia musi być dodatnia: oznacza to, że kwantowy oscylator nigdy nie może spoczywać. Gdybyśmy zrobili kwantowe wahadło, musiałoby ono zawsze drgać. Z tego powodu nawet w temperaturze zera bezwględnego atomy w kryształach czy cząsteczkach chemicznych drgają – są to tzw. drgania zerowe.

Wynik dla oscylatora ma konsekwencje fizyczne: już w 1900 r. Max Planck zauważył, że energie te powinny przybierać skwantowane wartości, jeśli chcemy prawidłowo opisać promieniowanie ceieplne. Kilka lat później Albert Einstein wyjaśnił eksperymentalne wyniki dotyczące diamentu właśnie za pomocą tego kwantowania.

Prosty formalizm operatorów kreacji i anihilacji odegrał niezmiernie ważną rolę w rozwoju mechaniki kwantowej, pozwalając zbudować kwantową teorię pola. O jej początkach innym razem.

(*) Iloczyn skalarny dwóch wektorów przypisuje parze wektorów liczbę zespoloną i spełnia następujące aksjomaty:

\langle a| b\rangle=\langle b|a\rangle^{\star}.

\langle a| \lambda b+c\rangle=\langle a| b\rangle+\lambda\langle a| c\rangle.

Iloczyn wektora z samym sobą jest liczbą rzeczywistą nieujemną – kwadratem jego długości, zwanym też normą:

||{a}||^2:=\langle a|a\rangle.

 

 

Paul Dirac – drugi początek mechaniki kwantowej (1925)

Latem 1925 roku Werner Heisenberg wystąpił w Cambridge z odczytem w Klubie Kapicy. Było to nieformalne stowarzyszenie powołane do życia przez pełnego temperamentu rosyjskiego fizyka Piotra Kapicę, coś w rodzaju klubu naukowego doktorantów i studentów. Chwila była ważna: Heisenberg zaczął właśnie budować pierwsze zręby nowej mechaniki kwantowej. Sam jeszcze nie był pewny, co z tego wyjdzie, nikt pewnie nie przypuszczał, że chodzi o największe odkrycie XX wieku (obok teorii względności). W swoim wystąpieniu Heisenberg omówił swoją pracę na temat efektu Zeemana, a pod koniec wspomniał o nowych rewolucyjnych pomysłach.

Jednym ze słuchaczy był Paul Dirac. Wydawałoby się zatem, że wtedy właśnie dowiedział się, i to wprost od samego autora o koncepcji mechaniki kwantowej. Jeśli A mówił na temat X, a B tego słuchał, to zapewne B zapoznał się w ten sposób z X. Nie zawsze to prawda, podobnie jak z obecności na wykładzie niekoniecznie wynika, że student się czegoś dowiedział. W tym przypadku mamy świadectwo samego Diraca. Twierdził on, że zupełnie zapomniał o tej części wystąpienia Heisenberga i nawet był przekonany, że niemiecki uczony nic nie wpomniał o swej ostatniej pracy. Nie ma powodu nie wierzyć Diracowi, który był prawdomówny do bólu. Pracę Heisenberga otrzymał we wrześniu 1925 roku w postaci korekty drukarskiej. Heisenberg wysłał ją do Ralpha Fowlera, ten zaś napisał na odbitce: „Co o tym myślisz?” i przesłał ją swemu doktorantowi Diracowi do Bristolu. Nie był to przypadek, Fowler poznał się na zdolnościach swego milczącego i niezbyt towarzyskiego studenta. Jednak i we wrześniu Dirac nie zrozumiał od razu znaczenia pracy Heisenberga. Stało się tak dopiero po kilku tygodniach. Zaczął wówczas rozmyślać nad tym zagadnieniem i zaproponował własną wersję podejścia do problemu. Werner Heisenberg należał do wąskiej grupy uczonych zajmujących się zagadnieniem budowy atomu, orientował się nie tylko w opublikowanych osiągnięciach, ale brał udział w dyskusjach, wiedział, kto nad czym pracuje – słowem, korzystał w pełni z przynależności do czołówki ówczesnych fizyków. Dirac pracował sam, korzystając jedynie z tego, że Ralph Fowler był dobrze poinformowany w aktualnej sytuacji fizyki kwantowej na kontynencie. Zadziwiające, że potrafił w takich warunkach bardzo wiele osiągnąć w tej i w następnych pracach. Zresztą i później pracował sam, prawdopodobnie inaczej nie potrafił. Niektórzy twierdzą, że Paul Dirac był największym fizykiem XX wieku. Jego prace nigdy wszakże nie były popularne, nie mogły stać się nagłówkami w gazetach, był uczonym budzącym respekt wśród znających się na rzeczy, nie mógł też podobać się dziennikarzom – potrzebującym paru chwytliwych słów i nie mającym czasu, by zgłębić jakąkolwiek sprawę (*).

W pracy Heisenberga Dirac zwrócił przede wszystkim na fakt, że wielkości fizyczne, takie jak pęd czy współrzędna mogą nie być zwykłymi funkcjami czasu, lecz wielkościami, których mnożenie jest nieprzemienne: xy\neq yx. Fizycy wcześniej nie posługiwali się podobnymi pojęciami. Dirac miał naturalną łatwość operowania abstrakcyjnymi pojęciami, nie zaprzątał też sobie zbytnio głowy kwestią interpretacji formalizmu. Zaczął się zastanawiać nad sensem nieprzemienności, czym jest wyrażenie xy-yx? (Obecnie nazywa się ono komutatorem i oznaczane jest [x,y].)
Pewnej październikowej niedzieli, podczas cotygodniowej pieszej wycieczki, Dirac przypomniał sobie, że widział już wyrażenie podobne do komutatora w podręcznikach mechaniki klasycznej. Komutatory przypominały tzw. nawiasy Poissona. Nie był jednak pewien, czy dobrze pamięta. W żadnej z książek, które miał u siebie w pokoju, nie było definicji nawiasów Poissona. Ponieważ w niedzielę biblioteka była zamknięta, nie mógł od razu sprawdzić, czy skojarzenie jest prawidłowe. Wspominał później:

„Noc przeszła mi w męczącym oczekiwaniu, wciąż nie wiedziałem, czy mój pomysł ma jakąkolwiek wartość, ale stopniowo moje przekonanie rosło. Rankiem wybrałem się do biblioteki od razu po jej otwarciu i kiedy znalazłem w Mechanice analitycznej [E.T.] Whittakera definicję nawiasu Poissona, stwierdziłem, że jest dokładnie to, czego mi potrzeba. Był on całkowicie analogiczny do komutatora.

Nawiasy Poissona są zaawansowanym sposobem zapisu równań mechaniki w formalizmie Hamiltona. Stan układu określony jest przez podanie położenia q oraz pędu p (w razie potrzeby wprowadzamy większą liczbę współrzędnych i odpowiadających im pędów). Dynamikę układu, czyli jego ewolucję w czasie, określa funkcja zwana hamiltonianem H. W najprostszym przypadku cząstki o masie m w polu zewnętrznym V(q) hamiltonian jest po prostu sumą energii kinetycznej i potencjalnej:

H(q,p)=\dfrac{p^2}{2m}+V(q).

Znając hamiltonian, możemy napisać równania na pochodne czasowe położenia oraz pędu:

\dot{q}=-\dfrac{\partial H}{\partial q}, \: \dot{p}=\dfrac{\partial H}{\partial p}.

Łatwo zobaczyć, że w najprostszym przypadku równania te są równoważne II zasadzie dynamiki Newtona. Ich zaletą jest ogólność: możemy w rozmaity sposób definiować nowe współrzędne i pędy tak, by postać równań Hamiltona została zachowana. Hamiltonian będzie się przy tym zmieniać, w szczególnie prostych przypadkach może on się nawet redukować do jakiejś bardzo prostej funkcji, np. liniowej w pędzie i w ogóle nie zawierającej współrzędnych. Wtedy rozwiązanie układu równań jest trywialne (oczywiście, nie zawsze łatwo odgadnąć postać takich współrzędnych, które niejako wykonają pracę za nas).

Jeśli f(q,p), g(q,p) są dowolnymi funkcjami położeń i pędów, to ich nawias Poissona ma postać:

\left\{f,g\right\}=\dfrac{\partial f}{\partial q}\dfrac{\partial g}{\partial p}-\dfrac{\partial f}{\partial p}\dfrac{\partial g}{\partial q}.

Łatwo sprawdzić, że nawiasy Poissona są antysymetryczne (zmieniają znak przy przestawieniu funkcji), liniowe, spełniają dla dowolnych trzech funkcji f,g,h warunek Leibniza:

\left\{fg,h\right\}=f\left\{g,h\right\}+\left\{f,h\right\}g.

oraz tożsamość Jacobiego:

\left\{f,\left\{g,h\right\}\right\}+\left\{g,\left\{h,f\right\}\right\}+\left\{h,\left\{f,g\right\}\right\}.

Łatwo sprawdzić, że komutator dwóch wielkości będzie także spełniał powyższe warunki, jeśli tylko mnożenie jest łączne oraz rozdzielne względem dodawania. Analogię tę zauważył Dirac. A więc komutator w mechanice kwantowej odgrywałby rolę analogiczną do nawiasów Poissona.

Definicja Poissona nie była przypadkowa, pochodną każdej funkcji f położenia i pędu po czasie możemy zapisać jako

\dot{f}=\left\{f,H\right\}.

W szczególności, wstawiając f=q oraz f=p, dostaniemy równania ruchu w postaci Hamiltona. Najbardziej podstawowe nawiasy Poissona mają postać:

\left\{ q,q\right\}=\left\{ p,p\right\}=0, \; \left\{q,p\right\}=1.

Znając te podstawowe nawiasy oraz zakładając wyliczone wyżej własności ogólne nawiasów, można łatwo znaleźć nawiasy dla wielomianów zmiennych q,p, a stąd w zasadzie dla każdej rozsądnej funkcji tych zmiennych.

Praca Diraca była czymś więcej niż tylko trafnym zgadywaniem. Obliczył on, że w granicy dużych liczb kwantowych komutator powinien przechodzić w nawias Poissona pomnożony przez stałą:

[f,g] \approx i\hbar \left\{f,g\right\}.

Przyjmując więc odpowiednie wartości komutatorów, mamy pewność, że formalizm kwantowy redukuje się do klasycznej mechaniki. Dirac otrzymał w ten sposób reguły komutacyjne, które stanowią podstawę nowej teorii. W tym samym czasie w Getyndze Born i Jordan otrzymali je także, o czym jednak Dirac nie wiedział. Odpowiedniość nie jest do końca automatyczna, ponieważ gdy zmienne q,p nie komutują, ich kolejność ma znaczenie i temu samemu wyrażeniu klasycznemu odpowiadają rozmaite wyrażenia kwantowe.

Był to debiut Diraca w dziedzinie mechaniki kwantowej. To ta praca wprawiła w osłupienie Maxa Borna: nikomu nieznany student zrobił to samo, co najznakomitsi uczeni z Getyngi i wykazał przy tym samodzielność i dojrzałość. Dopiero w czerwcu następnego roku miał zrobić doktorat.

(*) Ostatnim przykładem takiej dziennikarskiej hucpy jest doniesienie o udowodnieniu hipotezy Riemanna przez sir Michaela Atiyaha. Pisałem o hipotezie Riemanna, jest to największy otwarty problem matematyki. Atiyah był genialnym matematykiem, który zdobył w swoim czasie wszelkie możliwe nagrody, ale obecnie ma 90 lat i od paru lat zasypuje świat niepotwierdzonymi rewelacjami. W dodatku hipoteza Riemanna miałaby być udowodniona wraz z rozważaniami na temat stałej struktury subtelnej – problem w tym, że stała ta bynajmniej nie jest stałą i nic sensownego na jej temat chyba się nie da powiedzieć. Niegdyś Arthur Eddington twierdził, że zna fundamentalne powody, dla których stała ta równa jest dokładnie 1/137. Jednak w rzeczywistości nie jest ona dokładnie równa tej wartości, więc całe to wyjaśnienie nie ma sensu. Obawiam się, że podobnie jest z dowodem Atiyah. Dziennikarze obwieszczają teraz wiadomość o dowodzie, potem będą mieli drugą okazję, aby to sprostować. Jest skrajnie nieprawdopodobne, aby hipotezę Riemanna udowodnić w paru linijkach – jak twierdzi Atiyah. To tak nie działa.