Fritz Haber, nieszczęśliwy kochanek ojczyzny

Urodził się we Wrocławiu, zmarł w Bazylei w 1934 roku, złamany i de facto wygnany z ojczyzny, która odebrała mu wszystko: jego Instytut, dom, większość pieniędzy, sens życia.

Pochodził z rodziny żydowskiej, ojciec, o wagnerowskim imieniu Siegfried, był kupcem obracającym barwnikami, farbami i lekarstwami. Matka zmarła wkrótce po jego urodzeniu, zrozpaczony ojciec długo nie potrafił dojść do siebie, niezbyt też kochał chłopca przypominającego mu o tragedii. Zajmowały się nim różne ciotki, potem macocha, Hedwig z domu Hamburger, która, choć bardzo młoda w chwili zamążpójścia, umiała zdobyć zaufanie i miłość Fritza. Jako dorosły mężczyzna nie rozumiał on jednak nigdy kobiet i ich emocji. Żył raczej w świecie męskich przyjaźni, ambicji, rozrywek. Lubił skupiać na sobie uwagę, łatwo się zaprzyjaźniał i potrafił przyjaźnie podtrzymywać. Później, kiedy został już wielkim człowiekiem nauki niemieckiej, interesował się losami współpracowników, patronował młodszym, pomagał, często także finansowo.

Mimo błyskotliwej inteligencji nie zapowiadał się na wybitnego uczonego, zrobił wprawdzie doktorat w Berlinie, ale potem jego kariera utknęła, wrócił nawet na jakiś czas pomagać ojcu w interesach, ale było to doświadczenie wybitnie nieudane. Na wiadomość o cholerze w Hamburgu Fritz sprowadził duże ilości wapna chlorowanego, które stosowano wówczas jako środek dezynfekcyjny. Ognisko cholery szybko jednak wygasło i spodziewana epidemia nie wybuchła. Zostali z dużymi zapasami wapna chlorowanego.

Fritz uciekł od ojca, uciekł też w pewnym sensie od swojego środowiska, postanawiając się ochrzcić w kościele luterańskim. Religia, zarówno żydowska, jak i chrześcijańska, nie odgrywała w jego życiu istotnej roli. Chodziło raczej o upodobnienie się do większości społeczeństwa niemieckiego. Był gorącym patriotą i pragnął się jakoś wykazać. Podczas służby wojskowej zabiegał o stopień oficerski. Zdał potrzebne egzaminy, decyzja była jednak odmowna, jak można sądzić, stały za nią przyczyny rasowe: korpus oficerski bardzo bronił się przed ludźmi z niższych klas, a także Żydami, którzy bywali co najwyżej lekarzami wojskowymi. Należy zdać sobie sprawę, jak ważna społecznie była w cesarskich Niemczech kasta oficerska. Stopień porucznika rezerwy otaczał posiadacza nimbem przez całe życie, bez względu na to, co ów człowiek w życiu osiągnął. Einstein zapamiętał na całe życie pewnego profesora z gimnazjum w Monachium, który obnosił się ze swym stopniem porucznika – przykłady tego rodzaju zniechęciły go na resztę życia do nacjonalizmu.

Fritz zdecydował się zrobić karierę naukową, na początek znaczyło to bezpłatną asystenturę na trzeciorzędnym uniwersytecie w Jenie. Opowiadał później anegdotkę, jak to wędrował kiedyś w upale po górach i szukał ochłody w wiejskim wodopoju. Zanurzył w nim głowę i dostrzegł w tym samym momencie wołu, który zrobił to samo co on. Gdy wynurzył głowę, spostrzegł, że zamienili się z wołem na głowy. I od tej chwili moja kariera naukowa nareszcie ruszyła z miejsca – dodawał. Naprawdę zaczęła się ona trzy lata po doktoracie, gdy w 1894 roku przeniósł się do Szkoły Technicznej w Karlsruhe i dostał pierwszą płatną posadę. Zaczął się zajmować chemią fizyczną, dziedziną młodą i stojącą wówczas w Niemczech na wysokim poziomie: działali tu Wilhelm Ostwald, a także o kilka lat starszy Walther Nernst, którego już niebawem stać było na kupienie posiadłości ziemskiej i jednego z pierwszych samochodów – wszystko to dzięki sprzedaży patentu na rodzaj żarówki. Haber wkrótce dał się poznać w środowisku jako niezwykle ambitny i asertywny młody człowiek, gotowy do upadłego spierać się o swoją rację nawet z największymi autorytetami (co niektórym, np. Ostwaldowi nawet się podobało). Haber napisał podręcznik, awansował na profesora nadzwyczajnego i ożenił się z Clarą Immerwahr z Wrocławia.

Żydzi wrocławscy często zawierali małżeństwa w swoim środowisku, wielu z nich było ze sobą spokrewnionych czy spowinowaconych. Clara nie mogła chodzić do gimnazjum, ponieważ nie przyjmowały one dziewcząt. Dzięki prywatnym lekcjom i własnej pracy osiągnęła poziom wiedzy maturalnej i zdała eksternistyczny egzamin, który to potwierdzał. Studiowała chemię na Uniwersytecie Wrocławskim (uczęszczanie kobiety na wykłady wymagało zgody każdego profesora z osobna). Obroniła też tam doktorat z jako pierwsza kobieta w dziejach uczelni. Jej promotorem i mentorem był Richard Abegg, kolega Habera z klasy. Małżeństwo z Haberem oznaczało nie tylko wyjazd z Wrocławia, ale także porzucenie pracy naukowej. Miała teraz być żoną profesora, która prowadzi mu dom na odpowiednim poziomie. Sytuacja ta stała się źródłem frustracji Clary, która nie była tak zdeterminowana jak starsza niecałe trzy lata Maria Skłodowska. Haber nie był też skłonny przejmować się uczuciami innych ludzi, był egocentrykiem dążącym do sukcesu.

Sukces nadszedł i u jego źródła leżała rywalizacja. Tym razem z Nernstem. Chodziło o reakcję łączenia azotu i wodoru w amoniak. Problemem tym interesowali się chemicy od dłuższego czasu: amoniak bowiem jest dobrym surowcem wyjściowym do uzyskiwania nawozów sztucznych (może być nawet wykorzystywany bezpośrednio jako nawóz, wymaga to wszakże odpowiedniego sprzętu), a także materiałów wybuchowych. Szybka urbanizacja i wzrost liczby ludności wywołały w XIX wieku coraz większe zapotrzebowanie na nawozy sztuczne, które zapobiegały wyjałowieniu gleby poddanej intensywnej uprawie. Importowano w tym celu saletrę z Chile, gdzie jej wydobycie stało się osobnym przemysłem. Synteza amoniaku z azotu atmosferycznego była bardzo kusząca, ale było też wiadomo, że nie jest to reakcja łatwa do przeprowadzenia. Spór Habera z Nernstem dotyczył punktu równowagi w reakcji syntezy amoniaku (gdy reakcja osiąga w danych warunkach punkt równowagi tyle samo cząsteczek amoniaku powstaje w jednostce czasu, ile samorzutnie się rozpada). Wiadomo było, że chcąc wytworzyć więcej amoniaku, należało zwiększyć ciśnienie, a także zastosować niezbyt wysoką temperaturę. Jednak w niewysokiej temperaturze zarówno reakcja syntezy, jak i reakcja przeciwna zachodzą powoli i w ten sposób nie uda się uzyskać znaczących ilości amoniaku. Nernst autorytatywnie orzekł, że dane Habera są nieścisłe i że naprawdę nie uda się wytworzyć znaczących ilości amoniaku, łącząc oba gazy nawet w obecności katalizatora.

Haber chciał wykazać, że to on ma rację. Współpracował z koncernem chemicznym BASF (Badische Anilin- & Soda-Fabrik), który finansował badania i zobowiązał się płacić pewną kwotę od każdego kilograma wyprodukowanego w ten sposób amoniaku. Razem z Robertem Le Rossignol, utalentowanym Anglikiem, który u niego pracował, skonstruowali aparaturę, w której udało się pod ciśnieniem 200 atmosfer uzyskać amoniak. Stało się to w rok po podpisaniu umowy. BASF z początku nie był przekonany, ale Carl Bosch, pracujący tam inżynier, przekonał zarząd do zajęcia się tym tematem. Z jednej strony należało pokonać duże przeszkody techniczne: aparatura pracująca pod takimi ciśnieniami mogła być niebezpieczna w eksploatacji, z drugiej strony rysowała się perspektywa ogromnych zarobków w razie powodzenia. Bosch poradził sobie z trudnościami przeskalowania procesu Habera na skalę przemysłową, z czasem został prezesem IG Farben, koncernu, który powstał z BASF, a także laureatem Nagrody Nobla w roku 1931. Po dojściu nazistów do władzy Bosch stopniowo wycofał się z działalności publicznej.

Fritz Haber stał się najbardziej znanym chemikiem Niemiec. Zaproszony został jako dyrektor nowo powstającego Instytutu Chemii Fizycznej im. Cesarza Wilhelma. Była to placówka pomyślana w stylu amerykańskim: chodziło o finansowanie działalności naukowej z prywatnej kiesy pod patronatem cesarza. Dyrektor opłacany był przez państwo, aby władze miały wpływ na obsadę tego stanowiska. Budowę i część kosztów utrzymania Instytutu pokrył żydowski bankier i przedsiębiorca Leopold Koppel. Postawił przy tym warunek, że dyrektorem zostanie Fritz Haber. Koppel wcześniej współpracował już z Haberem i był pod wrażeniem jego energii, zdolności organizacyjnych i inteligencji. Stworzono w ten sposób placówkę wybitną, skupiającą wielu uczonych z całego świata. Słynne były kolokwia co drugi poniedziałek. Błyszczał na nich w sposób naturalny Haber, który potrafił każde zagadnienie sprowadzić do istotnych punktów badź zadać pytania, odsłaniające problem. Bardzo przy tym dbał, aby mówiono prosto, unikając zbyt specjalistycznego żargonu. Jak to kiedyś ujął: w Berlinie odbywają się już inne, czwartkowe posiedzenia, na których nikt nikogo nie rozumie, lecz nie przenośmy tego zwyczaju na poniedziałki. Aluzja dotyczyła posiedzeń Pruskiej Akademii Nauk, w których Haber także zresztą uczestniczył.

Gdy Albert Einstein sprowadzony został do Berlina wiosną 1914 roku, jedną z jego funkcji było dyrektorowanie Instytutem Fizyki im. cesarza Wilhelma. Sam Instytut jeszcze nie powstał i Einstein urzędował w Instytucie Habera. Instytut Fizyki nie został zbudowany w czasie pobytu Einsteina w Berlinie, przypuszczalnie głównie dlatego, że uczony się tym zupełnie nie interesował. Polityka akademicka niezbyt go obchodziła i nawet nie próbował być organizatorem. Mimo to obaj się zaprzyjaźnili z Haberem, mieli do siebie nawzajem nie tylko respekt naukowy, Haber pomógł Einsteinowi w początkach jego pobytu w Berlinie. Działał nawet jako pośrednik między Albertem a Milevą – małżeństwo Einsteinów rozpadło się do lata i Mileva z synami wróciła do Zurychu. Clara Haber wykazywała chyba zrozumienie dla sytuacji Milevy, która przecież kiedyś także pragnęła być uczoną, a została sprowadzona do roli matki i gospodyni.

Przyjaźń obu uczonych wystawiona została wkrótce na dużą próbę. Wybuchła wojna światowa i Haber rzucił się w wir pracy dla armii. Był jednym z inicjatorów broni chemicznej, osobiście nadzorował nie tylko eksperymenty, ale także jej użycie na froncie. Został też kapitanem na osobisty rozkaz cesarza, co strasznie mu imponowało. Widać tu hierarchię społeczną Niemiec: sławny uczony, przyszły noblista, wpada w euforię, mogąc zostać kapitanem armii jak pierwszy lepszy junkier.

(Drugi od lewej Haber)

Broń chemiczna nie przechyliła szali zwycięstwa. Haber miał jednak wielki wpływ na decyzje o powiększeniu fabryk amoniaku zaraz na początku wojny. Armia niemiecka miała spore zapasy amunicji, ale przygotowana była na krótką, najwyżej kilkumiesięczną wojnę. Planowano szybko zdobyć Paryż dzięki atakowi przez neutralną Belgię. Po podpisaniu kapitulacji przez Francję Niemcy miały zwrócić swój wysiłek wojenny przeciw Rosji. Kiedy zaczęła się wojna pozycyjna, stało się jasne, że potrzeba będzie mnóstwo amunicji. W dodatku flota brytyjska kontrolowała transporty i nie było mowy o imporcie saletry z Chile. Jedynym rozwiązaniem było szybkie wybudowanie nowych urządzeń do produkcji amoniaku i przetwarzania go dalej na materiały wybuchowe. Haber i Bosch uzyskali decyzję o pospiesznej budowie odpowiednich zakładów. Haber podczas wojny rozkwitł, poswięcał się obowiązkom niemal bezgranicznie. Nawet samobójstwo Clary nie wytrąciło go z rytmu pracy: nazajutrz pojechał, tak jak było zaplanowane, na front doglądać przygotowań do kolejnych ataków gazowych. Nie mamy dziś pewności, co było motywem Clary. Była już wystarczająco nieszczęśliwa w tym małżeństwie, nawet zanim zaczęły się prace nad gazami trującymi. Być może z jej punktu widzenia życie obok Fritza obróciło się w koszmar, a on w potwora napędzanego szowinizmem. Clara nie ceniła tak wysoko społecznego uznania, tytułów, zaszczytów. Dla Habera uznanie było wszystkim, zwłaszcza uznanie najwyższych osób w państwie.

Jeszcze podczas wojny Haber ożenił się po raz drugi z niewiele starszą od swego syna Charlotte Nathan. Także to małżeństwo nie przetrwało, zakończył je rozwód. Wojna została przegrana. Haber otrzymał Nagrodę Nobla, choć obawiał się z początku, że może być ścigany za złamanie Konwencji Haskich o broni chemicznej.

https://www.nobelprize.org/mediaplayer/index.php?id=1100

(Nagranie z uroczystości wręczenie Nagród Nobla w roku 1920: od lewej Haber, Charles Glover Barkla, Max Planck, Richard Willstätter, Johannes Stark, Max von Laue, wszyscy oprócz wdowca Willstättera z żonami; trudno o bardziej wymowny przykład potęgi niemieckiej nauki w tamtym okresie)

Chcąc dopomóc krajowi, zaczął pracować nad wydobyciem złota z wody morskiej. Svante Arrhenius ocenił kiedyś zawartość złota na  6 mg w tonie wody morskiej. Gdyby znaleźć metodę na opłacalny proces wydobycia złota, Niemcy mogłyby myśleć o spłaceniu gigantycznych reparacji, jakie narzucił im Traktat Wersalski. Prace te nie prowadziły jednak donikąd, okazało się, że Arrhenius przecenił zawartość złota. Pomiary dawały zaledwie 0,01 mg w tonie wody. Żadną miarą nie można było tego wykorzystać. Okazało się, że przy tak małych ilościach trudno ustrzec się kontaminacji próbek złotem, np. z obrączki laboranta albo innego źródła tego rodzaju. Chemia nie mogła więc zbawić Niemców.

Nadal pracował naukowo, choć raczej jako organizator albo wścibski szef, który potrafił godzinami trzymać młodych pracowników w laboratorium, drążąc kolejne tematy, był bowiem niezwykle wszechstronny i znał się rzeczywiście na wszystkim. Instytut był jego całym życiem.

Dojście Hitlera do władzy było zapewne najgorszym koszmarem, jaki mógł sobie wyobrazić człowiek pokroju Habera. Choć mógłby zostać na stanowisku jako zasłużony podczas wojny, musiałby zwolnić wszystkich „niearyjskich” pracowników (mniej więcej jedną czwartą). Złożył rezygnację. Max Planck, który bez najmniejszej walki pozwolił usunąć Einsteina z Akademii Nauk, teraz usiłował zmienić decyzję władz. Zapewne sądził, że Haber ma zbyt duże zasługi dla Niemiec, a poza tym jego Instytut może się przydać w przyszłości. Rozmowy z „ministrem kultury” Wilhelmem Rustem, a nawet z samym Hitlerem, nic nie dały, oprócz ataku furii Führera, który wolał wcale nie mieć uczonych, niż mieć uczonych żydowskich. Haber wyjechał z Niemiec, ale wciąż bił się z myślami, czy wrócić i ratować jakąś część majątku (nie chodziło tylko o niego, lecz i o dzieci), czuł się coraz gorzej fizycznie i psychicznie. Nie wyobrażał sobie życia poza Niemcami. Zmarł na atak serca w przeddzień pierwszej rocznicy objęciu urzędu kanclerza przez Adolfa Hitlera.

Poniżej współczesne zdjęcia Instytutu Habera wykonane przez p. Macieja Drawsa w lipcu 2018 w Berlinie-Dahlem.

 

Po II wojnie światowej Keiser-Wilhelm-Gesellschaft i odpowiednie instytuty nazwane zostały imieniem Maksa Plancka.

 

Reklamy

Powstawanie kontynentów i oceanów (1922) – Alfred Wegener

Książka została napisana w okresie rekonwalescencji autora, dwukrotnie rannego na froncie zachodnim zaraz na początku wojny światowej (wrócił później do służby jako meteorolog). Ukazała się po raz pierwszy w roku 1915 nakładem wydawnictwa Vieweg & Sohn. Kolejne trzy wydania ukazały się już po wojnie. Z początkowych niecałych stu stron książka rozrosła się do ponad dwustu w czwartym wydaniu. Najważniesze historycznie okazało się wydanie trzecie z roku 1922, które stało się podstawą przekładów m.in. na angielski, francuski, hiszpański i rosyjski, wywołując ożywioną dyskusję nie tylko w kręgach naukowych.

Wysunięta przez Wegenera teoria dryfu kontynentów, przyjęta zrazu ze sceptycyzmem, niedowierzaniem, a nawet szyderstwem, w okresie międzywojennym zyskała niewielu zwolenników. Idee przesuwania się kontynentów wróciły triumfalnie dopiero w latach sześćdziesiątych ubiegłego wieku jako teoria płyt tektonicznych, która zrewolucjonizowała nauki o Ziemi.

Alfred Lothar Wegener z wykształcenia był astronomem, lecz po doktoracie dotyczącym Tablic Alfonsyńskich w roku 1905 postanowił zająć się meteorologią. Zapalony wędrowiec, alpinista i narciarz szukał dziedziny mniej obciążonej tradycją, dającej ponadto możliwość pracy w terenie, a nawet przygody. Wraz ze starszym bratem Kurtem ustanowił w roku 1906 światowy rekord czasu lotu balonem (52,5 godziny). W tym samym roku wyruszył na Grenlandię jako meteorolog duńskiej wyprawy. Spędził tam dwie zimy, tworząc pierwszą stację meteorologiczną i dokonując pomiarów atmosfery przy użyciu latawców oraz balonów. Po powrocie pracował na uniwersytecie w Marburgu, opracowywał wyniki obserwacji polarnych, napisał także podręcznik Termodynamika atmosfery (1911). Przygotowując go, Wegener zwrócił się o opinię do uznanego specjalisty profesora Wladimira Köppena z Hamburga, który przychylnie przyjął rękopis młodszego kolegi. Wegener poznał też córkę profesora Else i niebawem się z nią zaręczył. Na następną wyprawę na Grenlandię wyruszył w 1912 roku, Else spędziła ten czas w domu norweskiego meteorologa Vihelma Bjerknesa, ucząc jego dzieci niemieckiego, a sama ucząc się norweskiego oraz duńskiego (przełożyła potem na niemiecki dwie prace Bjerknesa). Latem 1913 roku wyprawa z udziałem Wegenera przebyła drogę w poprzek Grenlandii mniej na szerokości geograficznej 75°. Tego samego roku młody polarnik i Else wzięli ślub. Po wojnie światowej Wegener objął po przejściu teścia na emeryturę jego stanowisko w Morskim Obserwatorium Meteorologicznym w Hamburgu, przeniósł także swoje prawo nauczania na tamtejszy nowopowstały uniwersytet. We współpracy z Köppenem napisał książkę na temat paleoklimatologii, w której rozwinięte zostały pewne argumenty na rzecz dryftu kontynentalnego. Napisał też książkę na temat kraterów księżycowych, uznając je – zgodnie z prawdą, a wbrew ówczesnym poglądom – za skutek impaktów meteorytów. Mimo ożywionej aktywności Wegenerowi nie udawało się uzyskać katedry uniwersyteckiej, można przypuszczać, że pewną rolę odgrywała tu niechęć wobec jego śmiałych teorii. W 1924 roku został profesorem na katedrze meteorologii i geofizyki w prowincjonalnym Grazu w Austrii (stanowisko stworzono specjalnie dla niego, łącząc obie dziedziny, którymi się zajmował). Wegenerowie przeprowadzili się tam wraz ze swymi trzema córkami i teściem. Jak wspominała Else: „W pięknym Grazu niemal całkiem zatopiliśmy się w mieszczańskiej stabilizacji”. Wegener pracował naukowo, wszyscy troje odbywali liczne wycieczki, regularnie jeździli na narty w Alpy, wojna i ciężkie przejścia w Grenlandii wydawały się daleko poza nimi. Jednak w roku 1929 Alfred Wegener nie umiał się oprzeć okazji ponownej wyprawy na Grenlandię. Zmarł tam niespodziewanie w listopadzie 1930 roku, prawdopodobnie na atak serca z nadmiernego wysiłku, niedługo po swoich pięćdziesiątych urodzinach.

Alfred Wegener i jego towarzysz Rasmus Villumsen na kilka dni przed śmiercią (obaj zginęli w drodze między obozem w głębi Grenlandii a wybrzeżem)

Idea ruchu kontynentów przyszła Wegenerowi po raz pierwszy do głowy w roku 1910, gdy zwrócił uwagę na przystawanie linii brzegowych Ameryki Południowej i Afryki na mapie. Nie był pierwszym, który zauważył owo dopasowanie – jednak nauka instytucjonalna nauczyła się ten fakt ignorować. W roku 1911 Wegener zetknął się po raz pierwszy z danymi geologicznymi i paleontologicznymi, które wskazywały na podobieństwo obu kontynentów. Fakty te znane były specjalistom, interpretowano je jako świadectwo istnienia niegdyś pomostów lądowych między Afryką i Ameryką, uznając za pewnik, że kontynenty te zawsze były położone tak jak dziś (nieco słabsza wersja tego poglądu zakładała istnienie łańcucha wysp łączących oba kontynenty). Wegener postanowił zakwestionować ten pewnik i sprawdzić, czy koncepcja przesuwania się kontynentów może się obronić. W styczniu 1912 roku po raz pierwszy przedstawił swe pomysły publicznie na zjeździe Towarzystwa Geologicznego we Frankfurcie, a trzy lata później rozwinął je w książce. Jak się zdaje, koncepcja pomostów lądowych od początku nie trafiała mu do przekonania. Podstawowym jego argumentem była tu izostazja, obserwowane przez geologów dążenie do równowagi hydrostatycznej. Wiadomo było np., że lądy podnosiły się po ustąpieniu zlodowacenia. Góry mają niższy ciężar właściwy niż dno oceanów. Jeśli tak, to zbudowane z lżejszego materiału pomosty lądowe nie mogły zatonąć w gęstszym podłożu, gdyż przeczyłoby to prawu Archimedesa. Wegener zaczął na kontynenty patrzeć jak na dobrze mu znaną z Arktyki pokrywę lodową: tworzy ona względnie trwałe pływające struktury, które mogą łączyć się albo pękać na mniejsze części, przy czym większa część ich objętości zanurzona jest w wodzie. Podobne zjawiska – oczywiście w nieporównanie większej skali czasowej – mogły zachodzić w przypadku kontynentów na Ziemi.

Przyrodnik zwracał uwagę, że większą część powierzchni Ziemi stanowią albo głębie oceaniczne, albo niezby wysokie lądy.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 27)

Rozkład wysokości dla całej powierzchni Ziemi ma dwa wyraźne maksima, odpowiadające lądom oraz dnu oceanów. Przeczy to zdaniem Wegenera panującej w tym okresie teorii Eduarda Suessa kurczenia się (kontrakcji) Ziemi. Wyobrażano sobie, iż Ziemia stygnie z fazy ciekłej i stale się w związku z tym kurczy. Wywoływałoby to na jej powierzchni efekt podobny do marszczenia się skórki na wysychającym jabłku. Owo „marszczenie się” zewnętrznych warstw skorupy ziemskiej objawiać się miało m.in. fałdowaniem i wypiętrzaniem gór. Ponieważ kurczenie zachodzi stopniowo, więc w różnych jego fazach ta sama część powierzchni mogła znajdować się nad albo pod powierzchnią morza. Odkrycie pierwiastków promieniotwórczych, które stale wydzielają ciepło, stawiało teorię kontrakcji pod znakiem zapytania. W dodatku skały osadowe znajdowane na kontynentach wskazują na to, że tereny te mogły się znajdować jedynie płytko pod powierzchnią morza, nie stanowiły więc nigdy dna oceanicznego. Wegener sądził także, że gdyby to kurczenie się Ziemi odpowiadało za rzeźbę jej powierzchni, rozkład wysokości powinien mieć jedno tylko maksimum, takie jak przerywana linia na rycinie powyżej.

(Ryc. 4 z Entstehung der Kontinente und Ozeane, 1922, s. 35; dziś wiemy, że dno oceanów także należy do litosfery, która jednak jest tam znacznie cieńsza niż pod kontynentami)

Jego zdaniem lżejsza masa kontynentu, sial (od zawartości krzemu i aluminium: Si-Al) pływa w cięższej simie (od zawartości krzemu i magnezu: Si-Ma), która ma pewne cechy cieczy, przynajmniej w długiej skali czasowej. Toteż poziome przemieszczanie się kontynentów przypominałoby pływanie kier lodowych w morzu. Według oszacowania Wegenera grubość kontynentów (oznaczona M na rycinie) była rzędu 100 km (rycina jest schematyczna i nie oddaje prawidłowo skali).

Mapy Wegenera (Entstehung der Kontinente und Ozeane, 1929, s. 19, 20)

Teoria dryftu kontynentów nie tylko tłumaczyła dopasowanie kształtów różnych lądów, ale także w naturalny sposób objaśniała podobieństwa geologiczne: góry po jednej stronie Atlantyku znajdowały swe naturalne przedłużenie po drugiej jego stronie. Podobieństwa zachodziły także między kopalnymi gatunkami roślin i zwierząt z części świata oddzielonych barierą oceanu. Bez pomostów lądowych trudno było zrozumieć, w jaki sposób te same gatunki mogły wyewoluować w sposób niezależny od siebie.

(J.S. Monroe, S. Wicander, The Changing Earth, 4th edition, s. 33)

Wegener przyjął, że w erze paleozoicznej wszystkie kontynenty stanowiły jeden ląd, nazwany Pangea, który następnie popękał na oddzielne fragmenty, odsuwające się stopniowo od siebie. Jedna z krawędzi Pangei znajdowała się blisko bieguna południowego – gdyż kontynenty przesuwały się nie tylko względem siebie, ale także w stosunku do osi obrotu Ziemi. Dzięki temu można było wyjaśnić geologiczne ślady zlodowaceń paleozoicznych w miejscach położonych obecnie tak daleko od siebie, jak Argentyna, Afryka Południowa, Indie i Australia – wszystkie te lądy znajdowały się kiedyś blisko siebie, a także blisko bieguna ziemskiego.

Dane Wegenera wg współczesnego podręcznika (W. Frisch et al., Plate Tectonics, Springer 2011, s. 3)

Ciągłość pasm górskich oraz zlodowacenia i lasy karbońskie (E.J. Tarbuk, F.K. Lutgens, D. Tasa, Earth: An Introduction to Physical Geology, 11th edition, s. 46,47)

W oczach większości geologów hipoteza Wegenera zakrawała na szaleństwo. Jak zauważył jeden z geologów, przeciwnik dryftu: gdyby to była prawda, to należałoby napisać na nowo podręczniki z ostatnich trzydziestu lat – rzeczywiście, trzeba było to w końcu zrobić. Podobnie reagowali wykształceni ludzie XVI wieku, słysząc o koncepcji Kopernika. Obie teorie usuwały niejako metafizyczny grunt pod nogami, głosząc zmienność i ruch tam, gdzie pragnęlibyśmy stabilności i niezmienności. Obie brały początek ze stosunkowo prostego i nienowego pomysłu, który był po wielokroć odrzucany jako absurdalny. Sformułowane zostały dzięki innemu spojrzeniu na znane fakty, a nie dzięki jakimś nowym, nieznanym dotąd obserwacjom. Obie teorie przekraczały także granice między różnymi naukami. Kopernik „niedopuszczalnie” mieszał astronomię i fizykę. W sprofesjonalizowanym i wyspecjalizowanym dwudziestym wieku czyniono zarzut z tego, że teorię wysunął nie geolog, który strawił lata na badaniach terenowych, lecz autsajder: astronom zajmujący się głównie meteorologią. Warmia Kopernika i Marburg oraz Graz Wegenera, leżąc na uboczu, ułatwiały niezależne myślenie, wolne od presji poglądów środowiska. Obaj autorzy zdawali sobie do pewnego stopnia sprawę z kontrowersyjnosci swoich hipotez, choć żaden z nich nie spodziewał się chyba aż tak zażartego oporu. Oczywiście, każdy rewolucyjny pogląd rodzi nowe trudności i niełatwo z góry przesądzić, czy ostanie się wobec zarzutów. Obie teorie wykazywały też dość podobny brak: nie zawierały bowiem konkretnego mechanizmu, który tłumaczyłby zakładane ruchy. Mechanika arystotelesowska z trudem dawała się pogodzić z heliocentryzmem, w przypadku Wegenera trudność była może jeszcze większa, gdyż potrzebne prawa fizyki były wprawdzie znane, lecz nie było jasne, w jaki sposób miałyby z nich wynikać przemieszczenia kontynentów. Świadom tej trudności, uczony zaproponował dwa mechanizmy, choć podkreślał także, że jest zbyt wcześnie na tego rodzaju szczegóły. Mówił o sile odśrodkowej, która wywołać miała ucieczkę od biegunów – Polflucht, a także o siłach przypływowych Księżyca i Słońca, które wywołać miały przesuwanie kontynentów ku zachodowi. Wyjaśnienia te zostały bardzo ostro skrytykowane przez ekspertów.
Niektóre argumenty Wegenera były błędne, co nie powinno nas szczególnie dziwić w przypadku pracy tak pionierskiej (podobnie było z większoscią szczegółowych poglądów Kopernika oprócz samego heliocentryzmu). Stosunkowo największym błędem było bardzo późne oddzielenie się Grenlandii, która zdaniem Wegenera przesuwać się miała z szybkością rzędu 30 m rocznie. Wegener nadmiernie zawierzył pomiarom astronomicznym długości geograficznej, które nie miały dostatecznej dokładności. Dziś szybkości przesuwania się płyt tektonicznych można mierzyć bezpośrednio za pomocą systemu GPS i wiadomo, że są one rzędu kilku cm rocznie.

W latach dwudziestych ubiegłego wieku krytykowano jednak nie tylko słabe punkty teorii Wegenera, ale także i jej mocne strony. Wysuwano np. twierdzenie (H.S. Washington, 1923), że skały po obu stronach Atlantyku nie wykazują podobieństw. Nie zgadzał się z tym poglądem A.L. Du Toit, wybitny południowoafrykański geolog, który specjalnie w tym celu udał się do Ameryki Południowej i stwierdził, że podobieństwa geologiczne „są wręcz zdumiewające”. Du Toit stał się zwolennikiem teorii Wegenera. Szczególnie niechętne przyjęcie spotkało teorię Wegenera w Stanach Zjednoczonych i Wielkiej Brytanii, a więc w krajach w geologii przodujących. Przewodniczący Londyńskiego Towarzystwa Geologicznego J.W. Gregory stwierdził, że jeśli izostazja sprzeczna jest z zanurzaniem się dna oceanów, to tym gorzej dla izostazji. Zgadzał się z tym zdaniem także Harold Jeffreys, wybitny geofizyk, który na podstawie danych sejsmicznych wierzył w częściowo płynne jądro Ziemi, sądził jednak, że zewnętrzne jej warstwy są sztywne. Naomi Oreskes upatruje źródeł reakcji amerykańskich geologów na teorię Wegenera w ich niechęci do ogólnych, zbyt spekulatywnych teorii. Niewątpliwie pewna dyscyplina myślowa jest w naukach empirycznych niezbędna, nie należy budować pochopnych uogólnień i uczeni zdobywają pozycję w swoim cechu na podstawie rzeczowych i beznamiętnych obserwacji. Jednak żaden podręcznik metodologii nie nauczy nas, które uogólnienia są „pochopne”, a które – „śmiałe i nowatorskie”. Niemal zawsze prace rewolucyjne przekraczają granice uznanych dziedzin i dopuszczalnych metod. Idee Wegenera podjął Arthur Holmes, twórca datowania radiometrycznego, był w tym jednak niemal całkowicie odosobniony. Przypuszczał on, że ciepło wydzielane przez pierwiastki promieniotwórcze może przenosić się za pomocą prądów konwekcyjnych w płaszczu Ziemi. Prądy takie odpowiedzialne byłyby za przesuwanie kontynentów.

Przesuwanie się kontynentów wróciło do łask w latach sześćdziesiątych ubiegłego wieku dzięki wielu nowym obserwacjom i metodom. Postęp osiągnięty został przede wszystkim dzięki badaniom dna oceanów. Dopiero po drugiej wojnie światowej można było zastosować echosondy do precyzyjnego zbadania topografii dna morskiego. Dzięki badaniom magnetyzmu występujących tam skał można było stwierdzić, że podmorski Grzbiet Śródatlantycki jest strefą spredingu – miejscem, gdzie na powierzchnię wydobywa się nowy materiał z wnętrza Ziemi i tworzą płyty tektoniczne. Kontynenty są częścią płyt tektonicznych, nie torują sobie drogi w płynnym podłożu, lecz raczej są przesuwane wraz z całością płyty, do której należą (symetryczne zjawisko niszczenia płyt następuje w obszarach subdukcji, gdzie jedna płyta wsuwa się pod drugą). W marcu 1964 roku Towarzystwo Królewskie w Londynie zorganizowało konferencję poświęconą przesuwaniu się kontynentów. Zaprezentowano na niej pracę przedstawiającą komputerowe dopasowanie kształtu kontynentów po obu stronach Atlantyku (E. Bullard, J.E. Everett, A.G. Smith, The fit of the continents around the Atlantic, Phil. Trans. Roy. Soc. London A, 258: 41-51).

Okazało się ostatecznie, że Wegener miał rację: średni kwadratowy błąd dopasowania jest rzędu 50 km (co ciekawe, w latach dwudziestych jeden z geologów sporządził model, z którego wynikało, że takiego dopasowania wcale nie ma i luki między kontynentami sięgają 1200 km!). Płyty kontynentalne zachowują się jak sztywne dwuwymiarowe obiekty przesuwające się po powierzchni Ziemi. Oznacza to, że mają one krzywiznę Ziemi i ich ruchy są obrotami – zgodnie z twierdzeniem Eulera, mówiącym, iż dowolne złożenie obrotów przedstawić można jako obrót wokół pewnej ustalonej osi o pewien kąt. Swoistą ironią losu jest fakt, że trwają wciąż dyskusje na temat sił wywołujących przesuwanie się płyt tektonicznych, prądy konwekcyjne rozpatrywane przez Holmesa są raczej skutkiem niż przyczyną tych ruchów. Najczęściej uważa się, że dominuje jakiś mechanizm grawitacyjny.

Jedna ze współczesnych rekonstrukcji Pangei (za: A. Schettino, Quantitative Plate Tectonics, Springer 2015, s. 60)

 

François Arago i prędkość światła (1810)

W roku 1809 dwudziestotrzyletni Arago został przyjęty do Akademii Nauk (przejściowo zwanej Instytutem Francji, uczeni należeli do jego pierwszego wydziału). Młody człowiek zdążył już przepracować kilka lat w Obserwatorium Paryskim i wziąć udział w trzyletniej podróży naukowej, której celem był dokładniejszy pomiar długości południka – czyli obwodu Ziemi. Rewolucja Francuska oprócz zmian politycznych przyniosła też system dziesiętny, nawet w kalendarzu: należało pracować dziewięć dni, by wypoczywać w dziesiątym, a kąt pełny miał mieć odtąd 400°, a nie 360°. Planowano też wprowadzić podział doby na dziesięć godzin po sto minut, lecz zapał rewolucyjny minął zbyt szybko. Zdążono natomiast wprowadzić jako jednostkę długości metr, równy jednej czterdziestomilionowej długości południka paryskiego. Pomiar południka oznaczał zatem dokładniejsze wyznaczenie metra. Ponieważ czasie pomiarów wojska francuskie dokonały inwazji Hiszpanii, więc ludność Balearów, widząc, jak Arago każe rozpalać ogniska na szczytach gór i w ogóle zachowuje się podejrzanie, uznała go za szpiega. Uwięziony w fortecy Bellver w Palma de Mallorca, zdołał z niej zbiec w łódce rybackiej, zabierając wyniki pomiarów, a nawet przyrządy geodezyjne. Trafił do Algieru, skąd popłynął do Marsylii, lecz niedaleko celu podróży hiszpańscy korsarze napadli na statek, co spowodowało dalsze uwięzienie, tym razem na wybrzeżu Katalonii, skąd trafił znowu do Algieru, w następnej przeprawie do Marsylii przeszkodziły wiatry północne. Wreszcie po kolejnych kilku miesiącach uczony dotarł tam wreszcie i musiał odbyć jeszcze długą kwarantannę w lazarecie. Mógł jednak zawiadomić bliskich, że żyje, w co nikt już nie wierzył. Otrzymał też niebawem list od poruszonego tymi przygodami sławnego przyrodnika Alexandra von Humboldta. Tak zaczęła się ich przyjaźń (choć starszy i homoseksualny Humboldt miał ochotę na coś więcej).

Niewątpliwie młody człowiek wykazał, że ma głowę na karku, choć można się zastanawiać, czy to wystarczy, by zostać członkiem Instytutu. Przeciwny kandydaturze Arago był wielce wpływowy Pierre Simon Laplace, który miał własnego kandydata, nieco starszego Siméona Poissona (tego od równania Poissona). Laplace wysuwał argument, że Arago niczego wielkiego jeszcze nie dokonał i jest za wcześnie, by go przyjmować do tego elitarnego grona. Odpowiedział mu podobno Joseph Lagrange, jedyna osoba, która mogła z Laplace’em mówić jak równy z równym: „Pan także, Laplace, przed wejściem do Akademii nie dokonał niczego godnego uwagi, można było jedynie pokładać w panu nadzieję. Pańskie wielkie odkrycia przyszły dopiero później” [Arago, Oeuvres complètes, t. 1, Histoire de ma jeunesse] Rzeczywiście, Laplace przyjęty został w wieku dwudziestu czterech lat, będąc dopiero u progu ważnych odkryć z mechaniki niebios. To odwieczny dylemat: czy stabilizacja finansowa powinna ułatwiać osiągnięcia, czy być za nie nagrodą. Francja miała silny państwowy system popierania nauki, który w tamtych czasach funkcjonował znakomicie, wystarczy popatrzeć na nazwiska członków Akademii z początku XIX wieku. Cesarz Napoleon I był autokratą, ale nie był idiotą i zatwierdził nominację Arago, zaprzysięgłego republikanina, a pod koniec życia chronił go przed represjami także następny cesarz, Napoleon III. Arago był przez wiele lat deputowanym do parlamentu, gdzie zajmował się popieraniem nowych wynalazków w rodzaju kolei żelaznych czy fotografii.

W grudniu 1810 roku jako świeżo upieczony członek Instytutu Arago przedstawił pracę poświęconą prędkości światła. Przyjmował w niej założenie, że światło ma naturę cząstkową. Francuz czytał pracę Michella i znał jego przewidywania, że prędkość światła emitowanego przez masywne gwiazdy może być znacznie mniejsza niż obserwowana w pobliżu Ziemi. Także Laplace przeprowadził podobne rachunki, wyszło mu, że ciało gęstości Słońca stałoby się ciemną gwiazdą, gdyby jego promień przekraczał 250 promieni Słońca. Prawdopodobnie także on zasugerował astronomowi sprawdzenie, czy różnice prędkości światła odbijają się jakoś na zjawisku aberracji światła gwiazd. Maksymalny kąt aberracji równy jest v/c, gdzie v – jest prędkością orbitalną Ziemi, a c – prędkością światła. Kąt ten jest mały i równy mniej więcej 10^{-4} \mbox{ rd} \approx 20'' , jak odkrył na początku XVIII w. James Bradley. Jeśli światło gwiazd dociera do nas z różną prędkością, to kąty aberracji powinny się indywidualnie różnić w zależności od gwiazdy. Efekty te powinny także zależeć od kierunku ruchu Ziemi, a więc zmieniać się w rytmie rocznym. Ponieważ najmniejsze kąty możliwe do zmierzenia były rzędu kilku sekund, więc tą drogą można by wykryć tylko bardzo znaczne zmiany prędkości światła.

Bardziej obiecujące wydawało się zjawisko załamania światła, którego wielkość także zależy od prędkości promieni w próżni. Światło różnych gwiazd powinno się więc załamywać w różnym stopniu. Arago starał się wykryć te różnice, umieszczając przed obiektywem teleskopu pryzmat. Aby obrazy gwiazd nie rozmyły się wskutek rozszczepienia światła w pryzmacie, używał dwóch sklejonych ze sobą pryzmatów ze szkła ołowiowego i zwykłego, które tworzyły układ achromatyczny – odchylający światło (w przybliżeniu) niezależnie od jego barwy. Astronom mierzył różnicę kąta między promieniem światła przepuszczonym obok pryzmatu i załamanym przez pryzmat dla szeregu gwiazd. Kąty odchylenia promienia były jednak praktycznie takie same, różniąc się najwyżej o kilka sekund, najwyraźniej w sposób przypadkowy – należało zatem przypisać je błędom pomiaru. Według obliczeń Arago zmiana prędkości światła o 1/10000 powinna skutkować różnicą kierunku promienia nawet o 14’’ – a więc znacznie więcej niż jego błędy pomiarowe. Ponieważ Ziemia porusza się z prędkością 1/10000 prędkości światła, więc obserwacje Arago powinny być wrażliwe na kąt między kierunkiem prędkości Ziemi a kierunkiem ku gwieździe. Żadnej tego typu zależności nie udało mu się wykryć. Jak napisał w swoim wystąpieniu przed Instytutem: „Na pierwszy rzut oka wynik ten wydaje się być w jawnej sprzeczności z Newtonowską teorią załamania [światła], ponieważ rzeczywiste nierówności między prędkościami promieni nie wywołują żadnych nierówności w ich odchyleniu”. Jeśli wierzyć Popperowi, teoria Newtona została tym samym obalona: jeśli z teorii wynika wniosek niezgodny z obserwacjami, to tym samym założenia teorii są nieprawdziwe. Obserwacje Arago były kłopotliwe, zwłaszcza dla ludzi takich, jak Laplace czy patronujący młodemu astronomowi Jean Baptiste Biot – zaprzysięgłych zwolenników teorii korpuskularnej światła. Obaj uczeni nie dali się przekonać nie tylko wynikom Arago, ale także i falowej teorii światła.

Arago zaproponował dziwaczne i dość desperackie wyjście z sytuacji: może promienie świetlne różnią się prędkościami, ale oko ludzkie reaguje tylko na wąski przedział prędkości. Wiedziano już od niedawna, że istnieje promieniowanie podczerwone, które przenosi ciepło, a także nadfioletowe, które zaczernia chlorek srebra (ten ostatni fakt otworzył drogę do wynalezienia fotografii). Może więc to prędkość decyduje o tym, czy widzimy dane cząstki światła, czy nie. Praca Arago nie została opublikowana, uczony poprzestał na jej odczytaniu. Można przypuszczać, że astronom sam nie wiedział, jak wytłumaczyć uzyskane wyniki. Choć na jego rezultaty powoływali się inni uczeni, to praca ukazała się drukiem dopiero czterdzieści lat później.

Wtedy kontekst był już inny. Pojawił się bowiem w nauce francuskiej Augustin Fresnel i jego wersja teorii falowej (wcześniejsza teoria falowa Thomasa Younga we Francji zrobiła jeszcze mniejsze wrażenie niż w Anglii). Arago należał do wczesnych zwolenników teorii falowej. Nic jednak nie jest proste na tym świecie: także w teorii falowej wyjaśnienie obserwacji Arago nie było zbyt naturalne: trzeba założyć, że eter świetlny jest wleczony, ale tylko częściowo, przez poruszający się ośrodek. Dopiero teoria względności wyjaśniła w roku 1905 rezultaty Arago w sposób naturalny: prędkość światła padającego na pryzmat z próżni równa jest zawsze c, bez względu na ruch pryzmatu, gwiazdy i Ziemi. Arago nie wykrył zmian odchylenia, bo ich po prostu nie ma.

Istota teorii względności (1923) – Albert Einstein

Ślepy żuk pełznący po powierzchni globusa nie wie, że tor, po którym się porusza, jest zakrzywiony. Ja miałem szczęście to zauważyć [A. Einstein]

Ta niewielka książeczka jest jedynym kompletnym przedstawieniem teorii przez jej twórcę, adresowanym do zawodowych uczonych, stanowiąc coś pośredniego między monografią a podręcznikiem. Ukazała się najpierw w 1923 roku w wersji angielskiej nakładem Princeton University Press oraz w wersji niemieckiej w wydawnictwie Vieweg & Sohn (z datą roczną 1922). Od tamtej pory doczekała się niezliczonych wydań w wielu językach. Uczony nie zmieniał głównego tekstu, choć z czasem dołączył kilka dodatków traktujących o późniejszych osiągnięciach.

Podstawą książki były wykłady wygłoszone w maju 1921 roku na uniwersytecie w Princeton. Czterdziestodwuletni Einstein wybrał się w swą pierwszą podróż za ocean, towarzysząc Chaimowi Weizmannowi i delegacji syjonistów. Ich celem było zebranie funduszy na założenie uniwersytetu w Jerozolimie. Uczony, który w kilku poprzednich latach z odrazą obserwował antysemityzm narastający w społeczeństwie niemieckim i który sam stał się ofiarą niewybrednych ataków z rasistowskimi podtekstami, zgodził się na ten wyjazd, rezygnując z udziału w pierwszym po wojnie Kongresie Solvaya, konferencji gromadzącej szczupłe grono najwybitniejszych fizyków świata. Po raz pierwszy wystąpił więc Einstein w roli działacza społecznego, wykorzystując autorytet naukowy do propagowania bliskich mu poglądów. Uczony witany był w Ameryce owacyjnie, zwłaszcza przez społeczność żydowską w Nowym Jorku, Bostonie, Cleveland. Niektórzy koledzy Einsteina, jak Fritz Haber, wybitny chemik, Żyd i niemiecki szowinista, mieli mu za złe podróż do Stanów Zjednoczonych, kraju niedawnego wroga. Rany wojenne nie zdążyły się jeszcze zabliźnić, zwłaszcza w Niemczech dźwigających ciężar przegranej wojny. Wielu niemieckich Żydów sądziło też, iż nie należy prowokować antysemityzmu i lepiej siedzieć cicho. Einstein, czy to dlatego, że spędził wiele lat w Szwajcarii, czy też z racji swego charakteru, nie podzielał takiego nastawienia, przeciwnie, to właśnie antysemityzm przyspieszył dojrzewanie jego żydowskiej tożsamości.

Podróż po Stanach Zjednoczonych miała też ważną część naukową. Einstein miał wykłady na Columbia University i w City College w Nowym Jorku, na uniwersytecie w Chicago oraz uniwersytecie Harvarda. W Princeton otrzymał stopień honorowy i wygłosił sławne zdanie, które później wyryto nad kominkiem w sali Wydziału Matematyki: „Pan Bóg jest wyrafinowany, lecz nie jest złośliwy” (odnosiło się ono do pewnych wyników eksperymentalnych zaprzeczających jego teorii). Bezpośrednio po uroczystościach rozpoczął się cykl pięciu wykładów odbywających się w kolejne dni tygodnia. Dwa pierwsze były popularne, następne bardziej techniczne. Wykładu inauguracyjnego słuchało około czterystu osób, podczas drugiego audytorium znacznie się przerzedziło, a kolejne odbywały się już w mniejszej sali dla niewielkiego grona słuchaczy. Na początku pobytu w Princeton uczony podpisał umowę z wydawnictwem uniwersytetu na publikację tekstu jego wystąpień. Ponieważ odbywały się one po niemiecku, wydawnictwo wynajęło niemiecką stenografkę, która notowała na żywo. Każdy z wykładów był na koniec podsumowywany po angielsku przez profesora fizyki Edwina Plimptona Adamsa, który został też tłumaczem wersji książkowej. Dopiero w styczniu 1922 roku uczony przesłał niemiecki tekst książki do wydawnictwa Vieweg & Sohn, wydrukowane przez nie korekty stały się podstawą angielskiego przekładu. Prace te wraz z poprawkami autorskimi zajęły cały rok 1922. Pod jego koniec wydrukowano wydanie niemieckie, a w styczniu ukończono druk wydania angielskiego. W trakcie tych prac ogłoszono wiadomość, że Albert Einstein został laureatem Nagrody Nobla za rok 1921. Laureat przebywał w tym czasie w Azji w drodze do Japonii.

Uczony spodziewał się otrzymać Nagrodę Nobla, w istocie przyszła ona dość późno i z istotnym zastrzeżeniem. Jak pisał Christopher Aurivillius, sekretarz Królewskiej Szwedzkiej Akademii Nauk, w liście do laureata: „Akademia (…) postanowiła przyznać panu Nagrodę Nobla w dziedzinie fizyki za ubiegły rok w uznaniu Pana dokonań w fizyce teoretycznej, w szczególności odkrycia teoretycznych podstaw zjawiska fotoelektrycznego, lecz z pominięciem zasług, które staną się Pana udziałem, gdy potwierdzą się sformułowane przez Pana teorie względności i grawitacji”. Teoria względności była więc w oczach szwedzkich akademików osiągnięciem kontrowersyjnym, podobnie myślało wielu uczonych.

Niewykluczone, że Einstein pragnął swoją książką przekonać część kolegów po fachu. Na początku lat dwudziestych obie teorie względności: szczególną z roku 1905 oraz ogólną z roku 1915 można było uznać za zakończony etap. Dzięki pracy Einsteina, ale także szeregu innych fizyków i matematyków, jak Max Planck, Max von Laue, David Hilbert, Felix Klein, Emmy Noether, Max Born, Hermann Weyl, Tullio Levi-Civita, Karl Schwarzschild, Hans Thirring, Josef Lense, Willem de Sitter, Hendrik Lorentz, Gunnar Nordström, Erich Kretschmann, Arthur Eddington, Paul Ehrenfest, Johannes Droste, Paul Langevin udało się wyjaśnić wiele aspektów nowej teorii – już sama lista nazwisk wskazuje, że praca Einsteina nie przebiegała w próżni, a ranga tych uczonych świadczy o poważnym traktowaniu osiągnięć Einsteina. Miał on jednak także sporo przeciwników, którzy z rozmaitych powodów odmawiali jego teorii naukowej wartości, a często także kwestionowali intelektualną uczciwość jej twórcy. Berliński profesor optyki Ernst Gehrcke uznawał teorię Einsteina za skutek zbiorowej sugestii, wybitni eksperymentatorzy (i laureaci Nagrody Nobla) Philipp Lenard i Johannes Stark nie potrafili się pogodzić ze światem nowych pojęć i widzieli w teorii względności produkt reklamy oraz sprytne pomieszanie elementów filozofii, matematyki i fizyki tak, by trudno było znaleźć uczonego zdolnego ją krytykować bez wykraczania poza ramy swej specjalności. Obaj ostatni nie ukrywali też swego antysemityzmu i stali się zwolennikami Adolfa Hitlera jeszcze we wczesnych latach dwudziestych, na długo przed rządami nazistów. Niektórzy, jak szwedzki oftalmolog i laureat Nagrody Nobla Allvar Gullstrand, sądzili, że teoria względności jest pusta wewnętrznie i może prowadzić do różnych wyników w tej samej sytuacji. Dochodziły do tego ostre podziały wśród filozofów, niektórzy jak Hans Reichenbach i Moritz Schlick mocno ją popierali, wielu jednak, jak Oskar Kraus czy Henri Bergson, wyrażało sceptycyzm, jeśli nie wrogość, wobec nowej teorii.
Większość uczonych była na ogół wciąż zdezorientowana, nie wiedząc, co sądzić. Toteż książka Einsteina skupiła się na podkreślaniu ciągłości w rozwoju fizyki, uwydatnieniu pewnej linii rozwoju, w której teoria względności stawała się naturalnym ogniwem. Nie sposób jednak ukryć, że teorie Einsteina zrywały z pojęciami absolutnej przestrzeni i absolutnego czasu, stanowiącymi fundament mechaniki, a z nią całej fizyki od czasów Isaaca Newtona. Kwestionowanie uświęconych tradycją zdobyczy nauki w oczach wielu było gestem obrazoburczym i świętokradczym. To, co starszych przejmowało zgrozą i oburzeniem, w oczach ówczesnych ludzi młodych stawało się fascynującą rewolucją. Karl Popper wspominał, jak wielką rolę w jego myśleniu o nauce odegrała teoria Einsteina, już sam fakt, że można było stworzyć realną alternatywę wobec królującej mechaniki Newtona miał dla niego rangę intelektualnego objawienia.

Zacząć wypada od samej nazwy: teoria względności. Z początku mówiło się o zasadzie względności, potem określać tak zaczęto teorię Einsteina z roku 1905 (szczególną teorię względności), a później Einstein zaczął mówić o uogólnionej bądź ogólnej teorii względności. W dyskursie potocznym zaczęto nazwy tę wiązać z zanegowaniem absolutnego czasu, a nawet szerzej z zanegowaniem dotychczasowej fizyki czy wręcz obowiązującej logiki albo etyki. Oczywiście, teoria względności, tak jak żadna udana teoria fizyczna, nie zmienia świata doświadczenia, ponieważ musi być zgodna z dotychczasowymi danymi eksperymentalnymi. Zmienia jedynie nasz sposób widzenia świata, przewidując nowe zjawiska i rozszerzając tym samym granice wiedzy. Mechanika newtonowska nadal obowiązuje, znamy tylko dokładniej jej ograniczenia. Max Planck, jeden z najwcześniejszych zwolenników teorii Einsteina, przekonuje w swej autobiografii naukowej, że jego zainteresowanie teorią względności wynikło właśnie z szukania w fizyce absolutu, ponieważ w świecie teorii względności są także wielkości oraz pojęcia niezmienne i absolutne. Dlatego nazwa ta bywa myląca.

W czerwcu 1905 roku redakcja „Annalen der Physik” otrzymała pracę nikomu nieznanego urzędnika Biura Patentowego w Bernie zatytułowaną O elektrodynamice ciał w ruchu. Rzecz dotyczyła jednego z najważniejszych zagadnień fizyki teoretycznej, którym w poprzednim dziesięcioleciu zajmowali się dwaj uznani luminarze Henri Poincaré i Hendrik Lorentz. Chodziło o eter – hipotetyczny ośrodek wypełniający świat. Na początku XIX stulecia Thomas Young i Augustin Fresnel wykazali, że światło jest falą. Wyobrażano sobie, że musi ono być falą sprężystą w eterze, czyli drganiem, które propaguje się na wszystkie strony podobnie jak fale akustyczne w powietrzu bądź innych ośrodkach sprężystych. Eter ów charakteryzować się musiał dość osobliwymi własnościami, gdyż z jednej strony był na tyle rzadki, by nie hamować ruchów planet, z drugiej zaś musiał być niezmiernie sprężysty, gdyż prędkość światła jest niewyobrażalnie duża w porównaniu np. z prędkością dźwięku. W przypadku dźwięku wiemy, że jego prędkość dodaje się wektorowo do prędkości powietrza: zmierzona prędkość będzie więc zależeć od prędkości ruchu powietrza. Podobne zjawisko zachodzić powinno także w przypadku światła. Ruch roczny Ziemi po orbicie wokół Słońca zachodzi z prędkością około 30 km/s, co stanowi 1/10 000 prędkości światła. Precyzyjne pomiary powinny wykryć zmiany obserwowanej prędkości światła. Przez cały wiek XIX szereg eksperymentatorów od François Arago w roku 1810 aż do Alberta Michelsona i Edwarda Morleya w roku 1887 starało się za pomocą różnych metod optycznych wykryć ruch Ziemi w eterze. Wyniki wszystkich tych doświadczeń były negatywne. Wyglądało to tak, jakby eter poruszał się razem z Ziemią, ale taka hipoteza rodziła sprzeczności z innymi obserwacjami.

Obok optyki innym wielkim tematem dziewiętnastowiecznej fizyki były elektryczność i magnetyzm. W latach sześćdziesiątych XIX wieku James Clerk Maxwell podsumował te wszystkie badania, podając jednolitą matematyczną teorię zjawisk elektrycznych, magnetycznych oraz optycznych – okazało się bowiem, że powinny istnieć fale elektromagnetyczne. Ich prędkość wynikająca z teorii Maxwella była bliska prędkości światła w próżni. Maxwell wysnuł więc wniosek, że światło jest rodzajem fal elektromagnetycznych. W latach 1887-1888 Heinrich Hertz wykazał, że można w laboratorium wytworzyć fale elektromagnetyczne o długości kilku metrów, które także rozchodzą się z prędkością światła. Teoria Maxwella została potwierdzona, stając się praktycznym narzędziem pracy inżynierów. Niemal równocześnie rozwijały się bowiem techniczne zastosowania elektromagnetyzmu: oświetlenie elektryczne, telefon i pierwsze elektrownie. Ojciec i stryj Einsteina, bracia Rudolf i Jakob, prowadzili najpierw w Monachium, później w północnych Włoszech firmę elektryczną i Albert niemal od dziecka miał do czynienia z techniką elektryczną. Elektrodynamika była także ważnym tematem zajęć laboratoryjnych i wykładów na Politechnice w Zurychu. Einstein jednak od początku nie chciał zostać inżynierem i narzekał, że program studiów nie obejmuje teorii Maxwella.

Teoria Maxwella pozwalała w jednolity sposób opisać ogromny obszar zjawisk. Czyniła to za pomocą pojęć pola elektrycznego oraz magnetycznego. W każdym punkcie przestrzeni i w każdej chwili można było za pomocą dwóch wektorów scharakteryzować stan pola. Wydawało się, że eter z początku wieku zyskał teraz nową funkcję, nośnika pola. Ważną cechą nowego podejścia była lokalność: to, co dzieje się z polem elektrycznym i magnetycznym w danym punkcie zależy od ładunków i prądów w tym samym punkcie. Zaburzenia pola rozchodzą się jako fale elektromagnetyczne. Była to więc fizyka pojęciowo odmienna od Newtonowskiej grawitacji, w której dwie masy oddziałują na siebie na odległość w sposób natychmiastowy. W teorii Maxwella ładunek jest źródłem pola w otaczającej go przestrzeni i pole to z kolei oddziałuje na inne ładunki. Prędkość rozchodzenia się zmian pola jest wielka, ale nie nieskończona. Choć Maxwell dokonał najważniejszej pracy, formułując teorię w sposób logicznie zamknięty, to dopiero jego następcy, m.in. Oliver Heaviside i Hendrik Lorentz, znaleźli prostsze i bardziej eleganckie jej wersje. Okazało się np., że każdy prąd elektryczny jest jedynie ruchem ładunków. Mamy więc dwa rodzaje ładunków, których położenia i prędkości określają stan pola w różnych miejscach – są to równania pola, czyli równania Maxwella. Znając zaś wartość pola elektrycznego i magnetycznego, możemy obliczyć siłę działającą na ładunek – są to równania ruchu (siła Lorentza).

Teoria Maxwella wyrastała z modelu pewnego ośrodka sprężystego i uczony, podobnie jak większość współczesnych, uważał, że jego rolą jest sprowadzenie zjawisk elektrycznych i magnetycznych do zjawisk mechanicznych. W odróżnieniu od teorii Newtona, w której mamy pojedyncze punkty materialne, tutaj substratem jest eter, który wyobrażano sobie jako pewien sprężysty materiał. Paradoksalny status eteru opisał na zjeździe Brytyjskiego Towarzystwa Krzewienia Nauk w Oksfordzie w roku 1894 markiz Salisbury, stwierdzając, że „główną, jeśli nie wyłączną, własnością słowa eter było dostarczanie rzeczownika do czasownika falować”.

Problem wykrycia ruchu Ziemi w eterze stał się tym bardziej palący. Wiadomo było wprawdzie, że inżynier stosować może równania Maxwella, nie przejmując się takimi subtelnościami, ale należało wyjaśnić negatywne wyniki doświadczeń. Hendrik Lorentz spróbował podejść do tego problemu w sposób systematyczny i wykazał, że każdemu stanowi pól w nieruchomym eterze odpowiada pewien stan pól w eterze ruchomym. Chciał w ten sposób podać ogólny dowód, że wszelkie zjawiska elektromagnetyczne przebiegają w taki sposób, aby nie można było ruchu Ziemi wykryć. Wprowadził przy tym dość szczególną konstrukcję matematyczną: w poruszającym się układzie należało zdefiniować czas w taki sposób, że zależał on od współrzędnej przestrzennej. Był to zdaniem Lorentza czas fikcyjny, potrzebny do dowodu niemożliwości wykrycia ruchu przez eter. Okazało się też, że należy założyć coś osobliwego na temat długości obiektów poruszających się: powinny one ulec nieznacznemu skróceniu o czynnik \sqrt{1-v^2/c^2}, gdzie v jest prędkością ruchu obiektu, a c – prędkością światła.

Praca Alberta Einsteina, eksperta technicznego III klasy z Berna, proponowała już we wstępie krok decydujący: pojęcie eteru świetlnego jest w fizyce „zbyteczne”. W ten sposób cała dziedzina badań nad zjawiskami w poruszającym się eterze przechodziła do historii, rozpoczynała się natomiast era szczególnej teorii względności.

Fizycy znali wcześniej zasadę względności. Dotyczyła ona mechaniki. I zasada dynamiki, czyli zasada bezwładności, mówi, że gdy żadne siły nie działają na ciało, to porusza się ono ruchem jednostajnym i prostoliniowym bądź spoczywa. Zasada ta nie dotyczy każdego układu współrzędnych (in. układu odniesienia). Obserwator w hamującym pociągu widzi, jak przewracają się przedmioty, które dotąd spokojnie sobie tkwiły w bezruchu. Hamujący pociąg nie jest więc układem odniesienia, w którym zasada bezwładności ma zastosowanie. Fizycy mówią: nie jest układem inercjalnym (tzn. takim, w którym obowiązuje zasada bezwładności). Pociąg jadący ruchem jednostajnym jest dobrym przybliżeniem układu inercjalnego, podobnie jak powierzchnia Ziemi. Wiemy jednak, że także powierzchnia Ziemi nie jest idealnym układem inercjalnym, ponieważ Ziemia wiruje wokół osi, a także porusza się ruchem rocznym wokół Słońca. Układ inercjalny jest więc pewnym ideałem teoretycznym. Zasady dynamiki mają w takim układzie szczególnie prostą postać i zazwyczaj tak są domyślnie sformułowane.

Ważną cechą układów inercjalnych jest to, że każdy układ odniesienia poruszający się ruchem jednostajnym i prostoliniowym względem jednego z nich jest także układem inercjalnym. mamy więc do czynienia z klasą równoważnych fizycznie układów odniesienia. W każdym z nich obowiązują zasady dynamiki w zwykłej postaci. Nie znaczy to, że nie możemy opisywać ruchu np. w odniesieniu do hamującego pociągu, musimy jednak wtedy uwzględnić dodatkowe siły, które nie wynikają z żadnych oddziaływań, lecz są skutkiem ruchu układu: w hamującym pociągu pasażerowie odczuwają siłę zwróconą ku jego przodowi, która znika, gdy pociąg się zatrzyma.

Isaac Newton sformułował w Matematycznych zasadach filozofii przyrody pojęcia absolutnej przestrzeni – czegoś w rodzaju nieskończonego pojemnika na wszystkie obiekty w świecie oraz absolutnego czasu. Prawa dynamiki obowiązywać miały, gdy ruch odnosimy do owej przestrzeni absolutnej, ale także w każdym układzie odniesienia poruszającym się ruchem jednostajnym i prostoliniowym. W rezultacie w fizyce Newtona nie ma sposobu na ustalenie, który z nieskończonego zbioru układów inercjalnych jest absolutną przestrzenią albo w języku dziewiętnastego wieku: eterem. Nie możemy więc ustalić absolutnego położenia żadnego przedmiotu w sposób empiryczny: dwa zdarzenia zachodzące w odstępie jednej minuty w tym samym punkcie (inercjalnego) pociągu zachodzą w różnych miejscach przestrzeni zdaniem obserwatora na peronie. Fizycznie oba punkty widzenia są równoprawne, a także punkty widzenia wszelkich innych obserwatorów inercjalnych. Absolutna przestrzeń należy więc do założeń metafizycznych Newtona, żadne eksperymenty nie pozwalają jej zlokalizować. Inaczej można powiedzieć, że w fizyce Newtona obowiązuje zasada względności: prawa fizyki są takie same w każdym układzie inercjalnym.

Czas w fizyce Newtona jest rzeczywiście absolutny, to znaczy, można zawsze ustalić, czy zdarzenia są równoczesne, nawet gdy zachodzą one daleko od siebie (zresztą dla pewnego obserwatora inercjalnego będą one równoczesne i zarazem w tym samym punkcie przestrzeni).

Einstein uważał, iż zasadę względności należy rozciągnąć także na zjawiska elektromagnetyczne i zaproponował, aby obowiązywała ona jako nowe prawo fizyki: wszelkie prawa fizyki mają taką samą postać w każdym układzie inercjalnym. Drugim postulatem jego teorii było przyjecie, że prędkość światła w próżni jest dla każdego obserwatora inercjalnego równa tej samej wartości c (wynikającej z teorii Maxwella). Zamiast analizować szczegóły zaproponował więc dwie zasady ogólne, które jego współczesnym wydawały się przeczyć sobie wzajemnie. Rozszerzenie zasady względności na całą fizykę byłoby wprawdzie eleganckim wyjaśnieniem, dlaczego nie obserwujemy ruchu Ziemi w eterze (bo eteru nie ma), ale pojawia się trudność z drugim postulatem. Znaczy on bowiem, że nie tylko prędkość światła zawsze jest równa c, bez względu na ruch źródła światła, ale także równa jest c bez względu na to, czy obserwator goni falę świetlną, czy też porusza się jej naprzeciw. Przeczy to prawu składania prędkości, a przecież eksperymenty potwierdzają je na co dzień: gdy pasażer porusza się z prędkością u (względem pociągu) w kierunku do przodu pociągu jadącego z prędkością v (względem peronu), to jego prędkość względem peronu jest sumą u+v. Dlaczego prawo to nie działa, gdy jednym z obiektów jest światło?

Czyniono często zarzut Einsteinowi, że prędkość światła w próżni jest w jego teorii jakoś szczególnie wyróżniona. Rzeczywiście, istnieje w tej teorii graniczna prędkość poruszania się obiektów materialnych, np. przekazywania energii albo informacji, i to jest właśnie c. Można powiedzieć, że światło ma tę szczególną własność, iż porusza się z ową maksymalną prędkością. Nie ma jednak żadnych przeszkód, aby istniały inne obiekty poruszające się z prędkością c. Wiemy, że światło składa się z fotonów (było to treścią innej pracy Einsteina z tego samego roku, nie bez powodu nazywanego jego „cudownym rokiem”), cząstek poruszających się z prędkością c. Podobnie poruszają się inne cząstki, odkryte później, jak gluony, albo wciąż czekające na odkrycie, jak grawitony. Cząstki takie nie istnieją w stanie spoczynku, lecz zawsze poruszają się z prędkością c.

Istnienie maksymalnej prędkości, i to w dodatku zawsze jednakowej, pozwala na eksperymentalne badanie równoczesności dwóch zjawisk. Obserwator inercjalny może rozmieścić w swoim układzie odniesienia zegary w różnych punktach. Znając odległość tych puntów oraz prędkość światła, może te zegary zsynchronizować. Gdy jego zegar wskazuje czas t, wysyła sygnał do punktu odległego o r i umawia się z kolegą, który tam przebywa, że moment odebrania sygnału będzie czasem t+r/c. Dzięki temu przepisowi wszystkie zegary zostaną zsynchronizowane i można będzie ustalić zawsze czas danego zdarzenia, obserwując go na pobliskim zegarze. Metoda ta zastosowana w innym układzie inercjalnym może dać inne wyniki w odniesieniu do tej samej pary zdarzeń.

Przykład podany przez Einsteina pomaga to zrozumieć. Wyobraźmy sobie jadący pociąg i obserwatora na peronie. W chwili, gdy mija go środek pociągu, w jego początek i koniec uderzają równocześnie dwa pioruny. Ich uderzenia są równoczesne, ponieważ światło obu błyskawic dociera do naszego obserwatora w jednej chwili, a wiadomo, że odległość obu końców pociągu od obserwatora była w tym momencie taka sama. Inaczej opisze te zdarzenia obserwator siedzący w środku pociągu. Jego zdaniem piorun najpierw uderzył w przód pociągu, a dopiero później w jego tył (linia świata pasażera jest na rysunku zakreskowana, jest to zarazem jego oś czasu). Skoro równoczesność dwóch zdarzeń zależy od układu odniesienia, to znaczy, że czas absolutny nie istnieje. Wbrew pozorom nie burzy to jednak naszych koncepcji przyczyny i skutku. Musimy tylko precyzyjnie opisywać zdarzenia, podając ich położenie oraz czas. Zdarzenia takie, jak jednoczesne uderzenia dwóch piorunów w dwóch różnych punktach nie są z pewnością połączone związkiem przyczynowo-skutkowym, ponieważ wymagałoby to oddziaływania przenoszącego się natychmiastowo, z nieskończoną prędkością. Wszystkie zaś oddziaływania fizyczne mogą przenosić się co najwyżej z prędkością światła w próżni. Dlatego zmiana kolejności czasowej obu uderzeń pioruna nie burzy fizyki. Jeśli natomiast jakieś zdarzenie A może potencjalnie być przyczyną innego zdarzenia B, to dla każdego obserwatora ich kolejność czasowa będzie taka sama: t_A<t_B. Obalenie koncepcji absolutnego czasu nie oznacza zatem wprowadzenia anarchii w relacjach czasoprzestrzennych, lecz zaprowadzenie innego ładu niż dotąd.

Był to najważniejszy wniosek Einsteina. Oznaczał konieczność przebudowy samych podstaw fizyki: pojęć czasu i przestrzeni. Okazywało się, że teoria Maxwella zgodna jest z teorią względności, nie wymaga więc żadnej przebudowy. Przeciwnie, fikcyjny czas lokalny Lorentza należy interpretować jako czas rzeczywisty mierzony przez innego obserwatora. Póki znajdujemy się w jednym ustalonym układzie inercjalnym czas wydaje nam się absolutny. Rewolucja dotyczyła porównywania wyników pomiarów dokonywanych przez różnych obserwatorów. W przypadku elektrodynamiki oznaczało to względność pól elektrycznych i magnetycznych. Jeśli np. w jednym układzie odniesienia mamy spoczywający ładunek wytwarzający pole elektryczne, to w innym układzie ładunek ten będzie się poruszać – będziemy więc mieli do czynienia z prądem, i obserwować będziemy zarówno pole elektryczne, jak i magnetyczne. Oba wektory pola elektromagnetycznego stanowią więc z punktu widzenia teorii względności jedną całość, jeden obiekt matematyczny, którego składowe w różnych układach są różne, podobnie jak składowe zwykłego wektora w różnych układach współrzędnych.

Równania Maxwella są takie same w każdym układzie inercjalnym, więc i prędkość fali świetlnej będzie w każdym układzie taka sama. Większej przebudowy wymagała mechanika. Jej newtonowska wersja nadal pozostaje słuszna, gdy ciała poruszają się wolno w porównaniu do prędkości światła. Najważniejszą konsekwencją nowej mechaniki stało się słynne równanie E=mc^2, które pozwala zrozumieć m.in. reakcje, w których powstają albo giną cząstki, oraz skąd gwiazdy czerpią energię na świecenie przez miliardy lat.

Szczególna teoria względności rozwiązywała problemy, które od lat uciążliwie towarzyszyły fizykom, choć były one głównie natury pojęciowej. Można było na co dzień nie zaprzątać sobie głowy ruchem Ziemi w eterze i uprawiać fizykę tak, jakby Ziemia była nieruchoma. Także narzędzia do rozwiązania owych problemów zostały już wypracowane, głównie przez Lorentza i Poincarégo, Einstein je tylko radykalnie zreinterpretował. Pierwszy z fizyków pogodził się z sytuacją i zaprzyjaźnił z Einsteinem, drugi starał się ignorować prace młodszego kolegi (być może zresztą jego stosunek do Einsteina uległby z czasem zmianie, Poincaré zmarł w roku 1912, a więc przed stworzeniem ogólnej teorii względności). Ostatecznie elektrodynamika ciał w ruchu przeszła do historii, a podstawą fizyki stała się szczególna teoria względności.
Natomiast jej uogólnienie, czyli Einsteinowska teoria grawitacji, było praktycznie dziełem jednego tylko autora, stworzonym w latach 1907-1915.

Pojęciowym punktem wyjścia była prosty eksperyment myślowy: obserwator swobodnie spadający w polu grawitacyjnym nie będzie odczuwał grawitacji – będzie w stanie nieważkości, dziś dobrze znanym z lotów kosmicznych. Einstein uznał tę obserwację za „najszczęśliwsza myśl swego życia”. Z punktu widzenia fizyki Newtonowskiej istnieją dwa rodzaje masy: grawitacyjna i bezwładna. Pierwsza określa siłę, z jaką na ciało będzie oddziaływać grawitacja. Druga określa przyspieszenie ciała. Ponieważ obie te masy są jednakowe, więc przyspieszenie dowolnego ciała w danym polu grawitacyjnym jest takie same. Ilustruje to się czasem, demonstrując spadanie różnych ciał w rurze próżniowej. Obie masy skracają się zawsze, kiedy obliczamy przyspieszenie. Zdaniem Einsteina należało tę tożsamość wbudować w strukturę fizyki, zamiast ją tylko postulować jako dodatkowy warunek. Uczony sformułował zasadę równoważności pola grawitacyjnego i przyspieszenia. Znajdując się w zamkniętej kapsule, nie potrafilibyśmy odróżnić, czy nasza kapsuła porusza się ruchem przyspieszonym, czy spoczywa w polu grawitacyjnym (możliwe byłyby także kombinacje obu stanów). Grawitacja jest więc w fundamentalny sposób związana z bezwładnością. Einstein dążył do stworzenia teorii, która objaśniałaby jednocześnie grawitację oraz bezwładność. Argumentował przy tym, że układy inercjalne są sztucznym ograniczeniem dla fizyki, powinniśmy więc dopuścić także układy przyspieszone, nieinercjalne. Podobnie jak w szczególnej teorii względności każda prędkość ma zawsze charakter względny, w teorii uogólnionej także przyspieszenie miało stać się pojęciem względnym. Nawiązywał tu do rozważań Ernsta Macha, który sądził, że przyspieszenie jest względne. W swoim czasie Isaac Newton posłużył się przykładem wiadra z wodą wirującego na skręconym sznurze. Gdy wiadro przekaże ruch wirowy wodzie, jej powierzchnia staje się wklęsła, co jest skutkiem sił odśrodkowych. Możemy w ten sposób stwierdzić, czy woda wiruje względem absolutnej przestrzeni. Zdaniem Macha eksperyment ten dowodzi tylko tego, że woda obraca się względem dalekich gwiazd. Gdyby to owe gwiazdy zaczęły się obracać, skutek byłby ten sam, a przestrzeń absolutna nie istnieje.

Droga Einsteina do ogólnej teorii względności była zawikłana, lecz z perspektywy roku 1921 jej struktura matematyczna została już wyjaśniona. Rolę układów inercjalnych odgrywały teraz swobodnie spadające układy odniesienia. Obserwator znajdujący się w jednym z nich może stosować szczególną teorię względności. Różnica fizyczna między obiema teoriami polega jednak na tym, że szczególną teorię względności stosować można jedynie lokalnie. Nawet bowiem w spadającym swobodnie laboratorium można wykryć niewielkie zmiany przyspieszenia między różnymi jego punktami – są to siły przypływowe (poznane historycznie na przykładzie zjawiska przypływów i odpływów w oceanach, które są z różnymi siłami przyciągane grawitacyjnie przez Księżyc oraz Słońce). Oznacza to, że nie można wprowadzić jednego układu inercjalnego dla całego wszechświata, można tylko wprowadzać je lokalnie. Matematycznie rzecz biorąc, różnica między teorią ogólną i szczególną polega na geometrii: zakrzywionej w pierwszym przypadku, płaskiej w drugim. Einstein posłużył się czterowymiarowym sformułowaniem swej teorii szczególnej podanym przez Hermanna Minkowskiego. Czas i przestrzeń stanowią tu pewną całość, czasoprzestrzeń. W przypadku dwuwymiarowym w każdym punkcie powierzchni możemy zbudować płaszczyznę styczną. Jest ona zarazem dobrym przybliżeniem geometrii w otoczeniu danego punktu: w taki sposób posługujemy się planami miast, mimo że Ziemia nie jest płaska.

Teorię dwuwymiarowych powierzchni zawartych w trójwymiarowej przestrzeni zbudował Karl Friedrich Gauss. Zauważył przy tym, że wystarczy posługiwać się wielkościami dostępnymi bez wychodzenia poza powierzchnię. Można np. w ten sposób ustalić, czy jest ona zakrzywiona. Podejście Gaussa uogólnił później Bernhard Riemann, a inni matematycy rozwinęli je w systematyczne procedury dla powierzchni o dowolnej liczbie wymiarów.

W geometrii Riemanna współrzędne można wybrać w sposób dowolny, w przypadku zakrzywionych przestrzeni nie istnieje na ogół żaden szczególnie prosty układ współrzędnych, który mógłby odegrać taką rolę jak współrzędne kartezjańskie w przestrzeni euklidesowej. Nadal decydującą rolę odgrywa tu pojęcie odległości. Dla pary bliskich punktów możemy ją zawsze obliczyć w sposób euklidesowy, a długość dowolnej krzywej uzyskać przez sumowanie takich elementarnych odległości. Zamiast równania ds^2=dx^2+dy^2 na płaszczyźnie, mamy teraz równanie nieco bardziej skomplikowane

ds^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2.

Geometrię przestrzeni określa więc zbiór funkcji g_{\mu\nu} pozwalających obliczyć odległość punktów. Funkcje g_{\mu\nu} noszą nazwę tensora metrycznego (albo metryki). Można za ich pomocą wyrazić wszelkie własności geometryczne danej przestrzeni. W przypadku dwuwymiarowym wystarczą trzy takie funkcje, w przypadku czterowymiarowym należy znać ich dziesięć.

W zakrzywionej przestrzeni nie ma linii prostych, można jednak znaleźć ich odpowiedniki. Są to linie geodezyjne (albo geodetyki). Mają one niektóre własności linii prostych w geometrii euklidesowej: są np. najkrótszą drogą łączącą dwa punkty. Krzywe geodezyjne w teorii Einsteina są liniami świata cząstek poruszających się pod wpływem grawitacji. Metryka określa więc, jak poruszają się cząstki – grawitacja nie jest z punktu widzenia Einsteina siłą, lecz własnością czasoprzestrzeni. Należy dodać, że inne rodzaje sił działających na dane ciało sprawią, że przestanie się ono poruszać po geodezyjnej. Jedynie grawitacja wiąże się tak ściśle z geometrią. Jest to zgodne z faktem, że grawitacja jest powszechna, tzn. dotyczy wszystkich cząstek, a także działa na wszystkie w taki sam sposób – dzięki czemu można ją opisać jako własność czasoprzestrzeni. W teorii Einsteina nie potrzeba osobnej masy grawitacyjnej i bezwładnej.

Znając metrykę czasoprzestrzeni, możemy wyznaczyć geodezyjne, czyli obliczyć, jak poruszają się ciała pod wpływem grawitacji. Są to równania ruchu, zastępujące zasady dynamiki Newtona. Aby jednak wyznaczyć metrykę, potrzebne są równania, które musi ona spełniać. Są to równania pola, największe osiągnięcie Einsteina jako fizyka. Przystępując do pracy nad ogólną teorią względności uczony wiedział jedynie, że powinna ona zawierać teorię szczególną a także Newtonowską teorię grawitacji. Równania pola powinny mieć postać znaną z teorii Maxwella: (pewne kombinacje pochodnych pól)=(źródła pola). W przypadku grawitacyjnym źródłem powinna być masa, ale to także znaczy: energia. W teorii szczególnej opisuje się energię i pęd zbioru cząstek jako tensor energii pędu T_{\mu\nu}, zbiór dziesięciu wielkości danych w każdym punkcie czasoprzestrzeni. Masy powinny decydować o krzywiźnie czasoprzestrzeni. Zatem po lewej stronie równań pola powinna znaleźć się wielkość informująca o krzywiźnie. Okazuje się, że praktycznie jedyną możliwością jest tu tzw. tensor Einsteina, G_{\mu\nu} zbiór dziesięciu pochodnych metryki. Równania muszą więc przybrać postać

G_{\mu\nu}=\kappa T_{\mu\nu}.

gdzie \kappa jest odpowiednio dobraną stałą związaną ze stałą grawitacyjną. Sama postać zapisu tych równań zapewnia, że możemy w dowolny sposób wybrać współrzędne, a równania nadal pozostaną słuszne. Znalezienie prawidłowych równań pola pod koniec listopada 1915 roku zakończyło odyseję Einsteina: ogólna teoria względności została zbudowana.

Jeszcze w listopadzie 1915 roku uzyskał Einstein dla swej teorii pierwsze potwierdzenie obserwacyjne. Obliczył bowiem wielkość obrotu orbity Merkurego wokół Słońca – niewielkiej rozbieżności między obserwacjami a teorią Newtona nie udawało się wyjaśnić od półwiecza. Teraz okazało się, że przyczyną rozbieżności było niedokładne prawo grawitacji. Przewidział też Einstein, że promienie gwiazd biegnące blisko powierzchni Słońca powinny uginać się o kąt 1,74’’. Efekt ten został w roku 1919 potwierdzony podczas całkowitego zaćmienia Słońca przez dwie ekspedycje brytyjskie. Teoria grawitacji Einsteina okazała się ogromnym sukcesem, jest powszechnie uważana za najpiękniejszą teorię w fizyce. Nie wszystko jednak poszło po myśli jej twórcy. Okazało się np., że choć wprawdzie grawitacja i bezwładność zostały ze sobą zespolone, to nie udało się jednak zrealizować idei Macha. W teorii Einsteina wirowanie całego wszechświata jest czym innym niż wirowanie wiadra Newtona. Einstein z pewnym uporem trzymał się zasady Macha nawet wówczas, gdy wykazano, że nie obowiązuje ona w jego teorii. Wbrew przewidywaniom twórcy grawitacja może prowadzić do zapadania się materii i tworzenia czarnych dziur, w których zamknięta jest osobliwość czasoprzestrzeni. Einstein zmieniał w ciągu swej późniejszej kariery zdanie na temat tego, czy istnieją fale grawitacyjne: początkowo je przewidywał, później nabrał wątpliwości. Jego początkowe przybliżone podejście okazało się słuszne i fale grawitacyjne zostały odkryte w roku 2015.

Pierwsze echa ogólnej teorii względności w Polsce (1920-1927)

Światowa opinia publiczna zetknęła się z postacią Alberta Einsteina jesienią 1919 roku, kiedy w Towarzystwie Królewskim w Londynie omawiano wyniki obserwacji światła w pobliżu tarczy słonecznej. Promienie świetlne biegnące od gwiazd miały zgodnie z teorią Einsteina odchylać się o kąt równy 1,7'' (d/R), gdzie d jest odległością kątową gwiazdy od środka tarczy słonecznej, a R – promieniem kątowym tarczy słonecznej. Elektromagnetyczna teoria światła nie dawała powodów do jakiegokolwiek odchylenia fali biegnącej w polu grawitacyjnym, zatem odchylenie powinno być równe zeru. Można było też wyobrazić sobie światło jako cząstki, wówczas ich odchylenie w polu grawitacyjnym byłoby naturalne i zgodnie z Newtonowskim prawem ciążenia powinno ono być dokładnie dwa razy mniejsze niż wynik Einsteina. Dwie ekspedycje brytyjskie uzyskały wyniki wskazujące dość zdecydowanie na wielkość Einsteinowską. Była to sensacja: po dwustu z górą latach teoria Newtona, bardzo solidnie do tej pory przetestowana obserwacyjnie, ukazała swoje ograniczenia.

Koncepcje Einsteina napotkały nieracjonalnie wielki opór. Jeden z powodów mógł być natury psychologicznej: oto podważone zostały dotychczasowe fundamenty wiedzy i to u samych podstaw: gdyż chodziło o czas i przestrzeń, które przestały grać rolę niezmiennej sceny wydarzeń i same stały się niejako aktorami. Zamiast absolutów pojawiły się płynne relacje, świat stawał się mniej bezpieczny. Byli i tacy, którym podobało się właśnie wzruszenie „bryły świata” i rewolucyjne zadekretowanie nowych praw. Uczony znalazł się w centrum społecznego imaginarium, postrzegany bądź jako egzystencjalne zagrożenie, bądź wyzwolenie z opresji. Na to wszystko nakładał się fakt, że Albert Einstein był Żydem, co przedtem nie miało dla niego znaczenia i co uświadomił sobie naprawdę dopiero po I wojnie światowej, kiedy zetknął się z niemieckim antysemityzmem, rozbudzonym przez pragnienie znalezienia winnych przegranej. Antysemici stworzyli w ten sposób wielu Żydów.

Dyskusja publiczna w Polsce, niezbyt zresztą żywa, obracała się w znacznej mierze wokół antysemickich stereotypów. Pozycja nauki w społeczeństwie nie była wysoka, podobnie jak dziś częste było o demonstrowanie nadąsanego prowincjonalizmu jako postawy krytycznej wobec tego, co docierało z Zachodu. Zabawnym przykładem jest artykuł ze „Słowa Polskiego” z października 1920 roku, a więc w chwili gdy Weyland i Gehrcke usiłowali zwalczać teorię Einsteina.

Jakie na to wszystko Einstein daje dowody? Tam są człony i kolumny matematyczne ciągnące się bez końca, mające niby dowieść czy uzupełnić słowny tekst. (…) Czy są tam jakieś konkretne przykłady wzięte z rzeczywistego świata? Nie ma. Z wyjątkiem jednego przykładu wozu wobec gościńca i pociągu wobec toru kolejowego z twierdzeniem, że ruch człowieka w wagonie wobec tego wagonu znajdującego się w biegu jest względny, jak w ogóle wszelki ruch na świecie. Poza tym są inne przykłady wzięte z fantazji, fikcje: jest jakaś teoretyczna spekulacja na temat równoczesności, z jaką dwa pioruny w dwie szyny żelazne strzelają, co z zegarkiem w ręku stojący człowiek przy tym torze bada czy ma badać; jest w przestrzeni jakaś skrzynia w kształcie pokoju, w której znajduje się jakiś człowiek; za sznur przyczepiony do tej skrzyni ciągnie bez ustanku jakaś istota tak, skrzynia w przyspieszonym tempie unosi się w górę; ten chłop zaś w skrzyni przekona się za jakiś czas, że jego skrzynia znajduje się w polu ciężkości czasowo stałym i że ona wisi w spoczynku, bo ruch jest względny, relatywny, ruchu nie ma. (…)

Ten, kto by twierdził, że jest zwolennikiem teorii Einsteina, że się z nią zgadza i ją akceptuje, uznaje ją za swoją, byłby podobny do człowieka, który stanąwszy przed pustą stajnią powiedział, że wszystkie konie, jakie tam się znajdują, należą do niego, chociaż w stajni nie ma ani jednego konia i oprócz gołych ścian i koni malowanych na nich nie ma tam nic. (…) Albert Einstein jest w odniesieniu do najwyższych zagadnień umysłu ludzkiego pseudofilozoficzny nihilista, który dla nauki, świata i jego przyszłości ma zgoła relatywne znaczenie

Androny te odbijają w krzywym polskim zwierciadle (te konie! ta stajnia! wóz na gościńcu!) zarzuty, które stawiano Einsteinowi także w bardziej oświecony sposób. Jednym z nich, powszechnym wśród filozofów, zwłaszcza kantowskiej proweniencji, było to, że jakaś teoria sformułowana w języku matematyki nie może określać, czym jest czas i jak on biegnie. Einstein rozszerzył bowiem wyraźnie zakres fizyki na badanie czasu i przestrzeni, tak jak bada się zjawiska. Zarzucano mu także, że jego teorie nie są poglądowe. Rzeczywiście, były one sformułowane matematycznie, w fizyce jednak nie ma znaczenia, czy łatwo nam sobie wyobrazić jakieś pojęcie, istotne jest jedynie, czy możemy wysnuć jakieś przewidywania, które zgodne są z obserwacjami. A także: czy rozumiemy więcej współzależności w świecie dzięki danej teorii.

Profesor Politechniki we Lwowie Maksymilian Tytus Huber próbował prostować dziennikarskie idiotyzmy w broszurze poświęconej teorii względności. On też przełożył na polski popularną książkę Einsteina poświęconą teorii względności.

Pełny tekst dostępny tutaj.

Pisał Huber:

Niestety, przyjęcie przez Einsteina odznaczenia od Royal Society w Londynie stało się niedawno w Niemczech hasłem do szowinistycznej nagonki na głośnego fizyka, niepozbawionej co najmniej dziwnego w tym wypadku antysemickiego zabarwienia. Do tej tylko na tle ogólnego zdziczenia wojennego możliwej akcji przyłączyła się pewna niewielka grupa uczonych, jak się zdaje, przeważnie filozofów, z tych, którzy widocznie nie mogli się wznieść na wyżyny myśli nowożytnego reformatora fizyki (…)

Na zakończenie jeszcze jedna uwaga, jaką nasuwa artykuł p. J.Z., ziejący jakoby zbożnym zachowawczym wstrętem do przedsięwziętej i dokonanej przez Einsteina rewolucji w nauce. Taki wstręt da się obiektywnie usprawiedliwić jedynie w odniesieniu do wielkich przewrotów społecznych w rodzaju ostatniej rosyjskiej rewolucji, te bowiem wyrządzają ludzkości niewątpliwie trudne do powetowania szkody, które dałyby się prawie zupełnie uniknąć przez postawienie hasła ewolucji w miejsce rewolucji. W imię dobra całej ludzkości jest przeto całkiem zrozumiałym zwalczanie idei, że tylko gwałtowny przewrót może usunąć tzw. zła w ustroju społecznym. Jak natomiast niepotrzebną i bezrozumną byłaby obawa przed przewrotem w nauce, tego chyba dowodzić nie potrzeba, prócz bowiem pewnej przykrości dla niektórych uczonych i uczących, niezdolnych do przyswojenia sobie nowych poglądów, oraz marnowania czasu i papieru przez niefortunnych oponentów, żadnej innej szkody ludzkość przez przewrót naukowy nie poniesie, nie mówiąc już o korzyściach.

Ataki w Niemczech na Einsteina były rzeczywiście w jakimś stopniu skutkiem wojennego zdziczenia obyczajów i szukania winnych klęski. Nie miały one nic wspólnego z jakimkolwiek zachowaniem uczonego. Arthur Eddington chciał przyznania mu złotego medalu Królewskiego Towarzystwa Astronomicznego i nawet napisał o tym do Einsteina. Jednak Rada Towarzystwa nie zgodziła się na medal dla Niemca, w rezultacie w roku 1920 nie nagrodzono nikogo. Nie mógł więc Einstein przyjąć angielskiej nagrody, ponieważ mu jej nie przyznano. Dopiero w 1925 r. dostał Medal Copleya Towarzystwa Królewskiego.

Uwagi Hubera o rewolucjach w ustroju państwa pozostały aktualne, a nawet nabrały w ciągu ostatnich dwóch lat nowej aktualności, niestety.

Wyśmiewane przez dziennikarza „Słowa Polskiego” rozważania o równoczesności uderzenia dwóch piorunów są jak najbardziej poważną ilustracją faktu, że chcąc ustalić, czy dwa zdarzenia w różnych miejscach zaszły równocześnie, musimy podać metodę eksperymentalnego ustalenia ich kolejności, a nie dysponujemy w tym celu niczym lepszym niż promienie świetlne. Z kolei zamknięty pokój na sznurku to winda Einsteina: naukowiec zamknięty w windzie nie może rozróżnić pola grawitacyjnego od skutków przyspieszenia windy (w szczególności w spadającej windzie znalazłby się w stanie nieważkości). Chodzi tu o zasadę równoważności – początek teorii grawitacji Einsteina.

Nawet w Niemczech, gdzie poziom fizyki był bez porównania wyższy niż w Polsce, do dyskusji czysto naukowych dołączało się rasistowskie zacietrzewienie. Żydzi z kolei siłą rzeczy często stawali się rzecznikami i popularyzatorami nowej teorii.

 

Józef Kramsztyk, fizyk z wykształcenia, jest tłumaczem – znakomitym zresztą – pierwszego tomu Czarodziejskiej Góry Thomasa Manna na polski. Przedwojenny przekład drugiego tomu (innych autorów) był nieudany i tom ten został po wojnie przełożony na nowo przez Władysława Tatarkiewicza, który akurat staraniem władzy ludowej miał kilka lat wolnych od pracy na uniwersytecie. Na karcie tytułowej filozof figuruje pod pseudonimem Jan Łukowski i nawet po upadku PRL-u nie wszyscy wydawcy wiedzieli, komu przypisać autorstwo przekładu do dziś wznawianego (Kramsztyk+Tatarkiewicz).

Innym popularyzatorem nauki w ogóle i teorii Einsteina w szczególności był Bruno Winawer, fizyk, dziennikarz, pisarz, popularyzator, a nawet aktor filmowy.

Wielu Żydów polskich interesowało się teorią względności w sposób naukowy. Na myśl przychodzą Jakob Laub, urodzony w 1872 r. w Rzeszowie pierwszy współpracownik naukowy Einsteina, Ludwik Silberstein, urodzony w tym samym roku w Warszawie wieloletni krytyk teorii grawitacji Einsteina, a z młodszego pokolenia, oczywiście Leopold Infeld (ur. 1898) oraz Myron Mathisson (ur. 1897 i zmarły na gruźlicę w 1940 r. w Cambridge), autor kilku wybitnych prac z teorii grawitacji Einsteina.

Atmosferę w latach dwudziestych obrazuje znakomicie primaaprilisowy tekst Juliana Tuwima (i Antoniego Słonimskiego) z roku 1921 poświęcony nauce Einsteina.

Bolszewizujący żydek z Pragi czeskiej Albert (!) Einstein z właściwą tej rasie arogancją rzuca się oto na podwaliny nauk ścisłych i ogłasza drukiem teorię, z której wynika, że czas jest rzeczą względną, że energia ma masę (tak!), że geometria Euklidesa jest abstrakcją (Sic!), że promień świetlny załamuje się w pobliżu ciał ważkich, że wszechświat nie ma granic, a jednak nie jest nieskończony (sik–sik!) itd. Nie zajmowalibyśmy się tymi bzdurami, gdyby nie to, że jad filozofii Einsteinowskiej płynie już szeroką strugą i ku nam. Prasa krakowska zwłaszcza poświęca sążniste artykuły zasadom cadyka z Pragi, profesorowie wszechnicy jagiellońskiej wygłaszają o nim odczyty, a najszanowniejsza z naszych bas bleus utrzymuje w wieloszpaltowym felietonie, iż ekspedycja złożona z wybitnych uczonych angielskich stwierdziła jakieś wyniki, zaobserwowała jakieś odchylenia światła i że Akademia londyńska otrąbiła na cały świat, jakoby ów Albert (!!!) był godnym następcą Newtona. Jeżeli zważymy, że Newton miał na imię Izaak, to zrozumiemy dopiero, jak daleko sięga solidarność tej rasy i nie zdziwimy się wcale, gdyby nawet mocarstwo anonimowe domagać się miało nagrody Nobla dla swego prowodyra. Nagroda Nobla jest, jak wiadomo, funduszem gadzinowym, z którego od dawna już najciemniejsze typy międzynarodówki wszechświatowej czerpią środków w celach przeciwpaństwowych. Sam fundator (przekonałem się o tym naocznie w niedzielę) pochodzi przecież z ulicy Furmańskiej, gdzie do dziś dnia na kamienicy nr 8 widnieje jeszcze źle zamalowany szyld z napisem: „Kierosin bratjew Nobel”. Nie wiem, w jakich celach wywędrował ten człowiek do Europy, nie wiem zwłaszcza, kto przy ulicy Miodowej i kiedy ośmielił się wydać mu paszport zagraniczny? W każdym bądź razie jest chyba rzeczą jasną, że w interesie młodego, powstającego do życia państwa nie może leżeć obalenie geometrii Euklidesa. Nie może młody, konsolidujący się dopiero organizm zezwolić na to, aby w poważnej prasie zagranicznej utarło się zdanie, że czas jest względny i zależy od ruchu danego układu. Po tylu gorzkich doświadczeniach wiemy niestety aż nadto dobrze, komu dziś w Europie zależy na tym, aby energia miała masę, i dla kogo to będzie wodą na młyn, jeżeli promień świetlny załamie się w pobliżu słońca. Co zaś do obserwatora, zamkniętego w szczelnym pudle i podróżującego, bez żadnej łączności ze światem, po przestworzach,obserwatora, o którym często wspomina Einstein w swojej Relatywności (sic!), to wiemy dokładnie, o kim tu mowa i każdej chwili odnośne dokumenty złożyć możemy na ręce komisji międzysojuszniczej! Doprawdy czas już skończyć nareszcie z potworną hydrą, wyciągającą mace i macki swoje poza wszelkie granice cierpliwości aryjskiej! Czas ma dla was wartość względną, ale chociaż czas to pieniądz, pieniądz ma jednak wartość bezwzględną! Czyż nie tak, panie Einstein?

Na marginesie tego żartu dodajmy, że ową sawantką (bas bleu) była zapewne Maria Sułkowska, która pisała w „Czasie” z 8 lutego 1920 roku o uznaniu dla Einsteina w Londynie. Imię Newtona nie świadczy oczywiście o pochodzeniu żydowskim, wśród protestantów częste były imiona starotestamentowe, ponieważ czytali oni Biblię (w odróżnieniu od katolików). Imię Albert nadali uczonemu liberalni rodzice (zgodnie z tradycją powinni dać mu imię dziadka Abraham).

 

 

 

Jak gęsta może być materia? Białe karły, Stoner i Chandrasekhar (1930-1931)

31 lipca 1930 roku z Mumbaju odpłynął parowiec „Lloyd Triestino”. Wśród pasażerów znajdował się dziewiętnastoletni Subrahmanyan Chandrasekhar, udający się do Anglii stypendysta rządu indyjskiego. Zdążył on opublikować już pierwszą pracę na temat statystyk kwantowych, dwa lata wcześniej dowiedział się od przebywającego gościnnie w Indiach Arnolda Sommerfelda, że całej fizyki mikroświata należy nauczyć się na nowo i wszystkie podręczniki sprzed kilku lat są już nieaktualne. Zaczął więc z zapałem czytać artykuły dotyczące mechaniki kwantowej i pierwszą swą pracę wysłał do Anglii do Ralpha Fowlera z Cambridge. Wiedział o nim tylko tyle, że uczony ten zaproponował kwantowe wyjaśnienie problemu tzw. białych karłów – niewielkich gwiazd zbudowanych z niezwykle gęstej materii nawet 100 000 razy gęstszej od wody. Astronomowie, którzy uzyskiwali tak wysokie szacowania gęstości, nie potrafili zrazu w nie uwierzyć, sądząc, że w obliczenia musiał wkraść się jakiś niezidentyfikowany błąd. W astronomii dość często się zdarza, że trzeba rewidować dotychczasowe założenia i wyniki. Podczas podróży Chandrasekhar unikał balów i wieczorków organizowanych na statku, był zresztą wegetarianinem i nie brał do ust wielu podawanych potraw. Pracował. Jego obliczenia wskazywały, że białe karły nie mogą być zbyt masywne, gdyż nie będą stabilne. Wynik ten stał w sprzeczności z dotychczasową wiedzą i Chandrasekhar miał stoczyć trudną wieloletnią walkę o uznanie prawdziwości jego obliczeń. Białe karły są ostatnim stadium ewolucji gwiazd i nie mogą być bardziej masywne niż 1,4 masy Słońca. Co w takim razie dzieje się z gwiazdami pięcio-, dziesięcio- i dwudziestokrotnie bardziej masywnymi? Czy jest możliwe, że pozbywają się one w jakiś sposób niemal całej swej masy, aby osiągnąć w końcu stadium białego karła? Jeśli tak, to czy może się to odbywać w długim czasie w sposób spokojny, czy też należy spodziewać się eksplozji? Wynik Chandrasekhara miał przełomowe znaczenie, bo wskazywał, że grawitacja może stać się siłą, która dosłownie kruszy materię. O jego wadze świadczy fakt, iż pół wieku później za tę pracę indyjski uczony otrzymał Nagrodę Nobla. Spędził długie i twórcze życie naukowe, stając się jednym z najbardziej znanych astrofizyków dwudziestego wieku, a jednak właśnie to młodzieńcze osiągnięcie wydawało się godne uhonorowania najważniejszą nagrodą.

W Londynie pierwszą książką, którą kupił Chandrasekhar, były Principles of Quantum Mechanics, fundamentalne, pomnikowe dzieło dwudziestoośmioletniego Paula Diraca, który zdążył już stać się klasykiem tej młodej dziedziny. W istocie były to lata zupełnie wyjątkowe w dziejach fizyki: niemal każda nowa praca miała szanse przejść do historii. Odkrywano bowiem kolejne zastosowania nowego formalizmu: w fizyce, w chemii, w astrofizyce. Zasady wprowadzone dla wyjaśnienia zjawisk atomowych okazały się w zasadniczym zrębie słuszne także w fizyce jąder atomowych, cząstek elementarnych, pozwalały też zrozumieć, jak przebiegają zjawiska we wszechświecie: od źródeł energii gwiazd, przez ich budowę oraz rodzaje wysyłanego promieniowania. Był to okres pionierski, gdy wyznaczano dopiero granice nowego terytorium i wciąż przesuwały się one dalej. Coś takiego zdarza się niezwykle rzadko, a w życiu uczonego najwyżej raz. Chandrasekhar znalazł się też w znakomitym miejscu: Trinity College w Cambridge, gdzie pracowali Fowler i jego niedawny doktorant Dirac, a także Arthur Stanley Eddington, astrofizyk, autor książki The Internal Constitution of the Stars, którą starannie przestudiował i z której korzystał podczas pracy na statku.

Na czym polegał problem białych karłów? W dostępnych nam eksperymentalnie warunkach materii nie można zbyt mocno ścisnąć. Atomy zachowują się bowiem jak sztywne kulki i nawet pod wielkim ciśnieniem gęstość ciał stałych niemal się nie zmniejsza się, ledwie przekraczając – w przypadku najcięższych metali – dwudziestokrotność gęstości wody. Większą gęstość – ponad sto gęstości wody – osiąga materia blisko centrum Słońca. Składa się ona głównie z produktów jonizacji wodoru: protonów i elektronów o bardzo wysokiej temperaturze. Mimo tak wielkich gęstości plazmę tę wciąż można traktować jak gaz doskonały. Przeskok do gęstości milion razy większych od gęstości wody nie wydawał się fizycznie możliwy bez temperatur sięgających miliony stopni, powierzchnia białego karła świeciła w zakresie widzialnym jak gwiazda, musiała więc mieć temperaturę liczoną w tysiącach stopni.

Kwantowe wyjaśnienie zaproponował Ralph Fowler, pod którego patronatem, lecz zupełnie samodzielnie, pracował Paul Dirac. Elektrony są, jak dziś mówimy, fermionami, tzn. podlegają szczególnemu ograniczeniu: w jednym stanie kwantowym może znajdować się jeden elektron (a jeśli ignorujemy stany spinowe, to dwa różniące się rzutem spinu). Właśnie Paul Dirac obok Enrico Fermiego pierwszy zaproponował kwantowomechaniczny opis takich cząstek (nazwa fermiony, a nie np. dirakiony, nie ma głębszego uzasadnienia historycznego, a prawdopodobnie jedynie fonetyczne). Samą zasadę jeden stan – jeden elektron zaproponował zresztą nieco wcześniej Wolfgang Pauli, jeszcze jeden z dwudziestoparolatków wywracających wtedy fizykę do góry nogami. Zasada ta wyjaśnia sposób zapełniania się powłok i podpowłok w atomach. Fowler wyobraził sobie, że biały karzeł cały jest jedną wielką cząsteczką, w której elektrony tworzą coś w rodzaju gazu. Było to pierwsze zastosowanie tej idei, nieco później Arnold Sommerfeld zastosował ją do elektronów w metalach.

W atomie stan określają liczby kwantowe. W przypadku elektronów zamkniętych w gwieździe niczym w pudle skwantowane są ich wartości pędu. Dozwolone wartości tworzą sieć punktów kratowych w przestrzeni pędu (bez początku, ponieważ pęd całkowity równy zeru jest zabroniony przez zasadę nieoznaczoności). Rysunek przedstawia takie  pudło w 2D. Elektrony będą stopniowo zapełniać dozwolone stany aż do pewnej maksymalnej wartości pędu p_F, zwanej pędem Fermiego.

Jest to tzw. zdegenerowany gaz elektronowy. W pierwszym przybliżeniu można ograniczyć się do temperatury zerowej, ponieważ energia elektronów w tej sytuacji wynika nie z wysokiej temperatury, ale stąd, że wszystkie niższe stany energetyczne są zajęte. Objętość komórki w przestrzeni pędów przypadająca na dwa elektrony o różnym spinie równa jest

\Delta p_x\Delta p_y\Delta p_z=\dfrac{h^3}{V},

gdzie h jest stałą Plancka, a V objętością gwiazdy/pudła z elektronami. Widzimy, że gdy objętość pudła maleje, komórki w przestrzeni pędu rosną i przy tej samej liczbie elektronów pęd Fermiego wzrośnie. Oznacza to, że wraz z gęstością gwiazdy rośnie energia kinetyczna elektronów (równa \frac{mv^2}{2}=\frac{p^2}{2m}). Gwiazda utrzymywana jest siłami grawitacyjnymi. Energia grawitacyjna kuli o masie M i promieniu R równa jest

E_p=-\alpha \dfrac{GM^2}{R},

gdzie \alpha jest współczynnikiem zależnym od rozkładu gęstości i równym \frac{3}{5} dla kuli jednorodnej. Grawitacja jest siłą przyciągającą, więc energia rośnie tu, gdy zwiększa się promień: gdyby działała jedynie grawitacja, materia skurczyłaby się do punktu. Można znaleźć punkt równowagi, gdy suma energii kinetycznej elektronów oraz energii potencjalnej grawitacji jest najmniejsza. Promień gwiazdy jest wówczas równy

R\approx 1,15 a_B \lambda \dfrac{1}{N_n^{1/3}},

gdzie a_B=0,5\cdot 10^{-10} m jest promieniem Bohra, \lambda=1,25\cdot 10^{36} to stosunek sił elektrostatycznych do sił grawitacyjnych między protonami, a N_n jest łączną liczbą nukleonów w gwieździe. Widzimy, że im większa gwiazda, tym mniejszy promień, a więc gęstość gwiazdy rośnie jak kwadrat masy, co jest zachowaniem dość osobliwym. Promień obliczony z powyższego wzoru okazuje się dla gwiazdy o masie Słońca tego samego rzędu co promień Ziemi: a więc ogromna masa Słońca skupiłaby się w objętości zbliżonej do Ziemi. Znaczy to, że materia gwiazdy osiąga ogromne gęstości. Rzeczywiste gęstości są jeszcze większe, niż sądzono w latach trzydziestych i przekraczają milion gęstości wody. Gaz elektronowy pozwalał też objaśnić, czemu biały karzeł nie skurczy się już więcej: w istocie temperatura ma niewielki wpływ na konfigurację elektronów i struktura taka jest stabilna nawet w zerze absolutnym.

Praca Fowlera uchodzi za najwybitniejszą pozycję w jego dorobku: była w zasadzie rzuceniem idei, ale idei znakomitej, podjętej potem nie tylko w astrofizyce, ale i w fizyce ciała stałego. Jedna tak płodna idea i jeden doktorant tej klasy co Dirac, to zdecydowanie wystarczy na spełnioną karierę naukową.

Obliczenia takie, jak zarysowane powyżej, wykonał Edmund Stoner w 1929 roku. Interesowało go pytanie, czy istnieje maksymalna gęstość materii? Stoner także należał do ludzi Cambridge, jednak jego doktorat był eksperymentalny i nie odebrał on matematycznego wykształcenia, które zawsze było mocną stroną tamtejszych absolwentów. Mimo to zajął się teorią i to z powodzeniem. Jego praca The distribution of electrons among atomic energy levels z 1924 roku zainspirowała Wolfganga Pauliego do sformułowania słynnej zasady wykluczania. W reakcji na artykuł Stonera mało znany fizyk Wilhelm Anderson, pracujący w Tartu w Estonii, zwrócił uwagę, że przy dużych gęstościach, duży będzie pęd Fermiego i nie można używać newtonowskiego wyrażenia na energię kinetyczną (\frac{1}{2}mv^2), lecz należy zastosować wyrażenie relatywistyczne

E=\sqrt{(pc)^2+(mc^2)^2}\approx pc.

W przypadku skrajnie relatywistycznym obowiązuje przybliżenie zapisane powyżej. Okazuje się, że teraz nie dla każdej masy istnieje rozwiązanie i biały karzeł musi mieć masę nieprzekraczającą pewnej wartości granicznej. Anderson wyznaczył tę granicę, choć jego praca nie była całkowicie poprawna. Stoner w następnym artykule uwzględnił relatywistyczne wyrażenie na energię elektronów i prawidłowo wyznaczył maksymalną liczbę nukleonów, a więc i masę białego karła:

N_n =0,77 \left(\dfrac{c\hbar}{Gm_n^2}\right)^{\frac{3}{2}} \sim \left(\dfrac{m_{P}}{m_n}\right)^3.

Po prawej stronie wyraziliśmy tę wielkość przez masę Plancka m_P: jest to kombinacja trzech fundamentalnych stałych fizycznych – stałej Plancka, prędkości światła i stałej grawitacyjnej. Maksymalna masa zwana jest granicą Chandrasekhara i po uwzględnieniu współczynników liczbowych równa jest 1,4 masy Słońca. Przyjmujemy, że na każdy elektron przypadają dwa nukleony.

Zależność promienia białego karła od masy (https://en.wikipedia.org/wiki/Chandrasekhar_limit)

Naszkicowane przez nas podejście zakłada minimalizację energii w jednorodnym gazie elektronowym. Tak właśnie obliczył to Stoner. Subrahmanyan Chandrasekhar wybrał podejście bardziej szczegółowe, w którym analizuje się warunki równowagi w gwieździe. Jego pierwsza praca, pisana podczas podróży do Anglii, była tylko krótkim zarysem, szczegółowe rozwinięcie podał w następnych latach. Prowadzi ono do podobnych wniosków, nieco różniących się liczbowo. Czemu więc granica ta związana została w historii jedynie z nazwiskiem Chandrasekhara? Jak się zdaje, Edmund Stoner nie walczył zbytnio o priorytet. Być może tematyka astrofizyczna nie była mu tak bliska jak Chandrasekharowi, stopniowo zajął się bowiem fizyką ciała stałego.

Także Lew Landau otrzymał graniczną wartość masy w bardzo eleganckiej krótkiej pracy z 1931 roku. Jednak graniczna wartość masy wydawała mu się wnioskiem absurdalnym. Pisał: „Ponieważ w rzeczywistości masy takie spokojnie sobie istnieją jako gwiazdy, nie wykazując żadnych takich absurdalnych tendencji, musimy wywnioskować, że wszystkie gwiazdy o masie przekraczającej 1,5 masy Słońca zawierają z pewnością obszary, w których prawa mechaniki kwantowej (a więc także statystyki kwantowej) są naruszone” (Neutron Stars, Black Holes and Binary X-Ray Sources, ed. H. Gursky, R. Ruffini, D. Reidel 1975, s. 272). Musimy zdawać sobie sprawę, że zarówno teoria względności, jak i mechanika kwantowa były względnie nowymi dziedzinami i nie było jasne, czy nie pojawią się nowe idee, które zmienią zasadniczo punkt widzenia. Dopiero z perspektywy dziesięcioleci widać, że zarówno teoria względności, jak i fizyka kwantowa zostały w fizyce na dobre i są niezmiernie odporne na wszelkie „poprawianie” – to dlatego trudno jest w fizyce o nowe pomysły, muszą one bowiem stanowić uogólnienie tego, co już znamy, a co zostało bardzo dokładnie przetestowane teoretycznie i przede wszystkim eksperymentalnie.

Chandrasekhar bardzo zaciekle bronił wniosku o maksymalnej masie białego karła. Arthur Eddington – podobnie jak Landau – uważał go za absurd. W ciągu kilku lat spór między Eddingtonem, uznanym autorytetem, a młodym uczonym z Indii stał się na tyle gorący, że Chandrasekhar nie mógł pozostać w Trinity College i wyjechał do Stanów Zjednoczonych.

Rację miał Chandrasekhar (i Stoner). Gwiazdy o dużych masach nie mogą stać się białymi karłami. Mogą zostać gwiazdami neutronowymi, w których materia ma gęstość zbliżoną do materii jądrowej. Znów jednak pojawia się graniczna wartość masy, powyżej której niemożliwe jest stabilne istnienie gwiazdy neutronowej. Przy dużych masach grawitacja zwycięża i jedyną możliwością staje się utworzenie czarnej dziury. Granica Chandrasekhara była pierwszą wskazówką, że struktura materii nie jest odporna na grawitacyjne zapadanie się. Być może zaakceptowanie tej sytuacji było trudne także dlatego, że intuicyjnie chcemy wierzyć w stabilny świat, dający nam metafizyczne i psychologiczne oparcie. Dlatego kłopoty miał Galileusz, z tego samego powodu zwalczano teorię ewolucji, a także niechętnie uznano teorię Wielkiego Wybuchu. Uświadomienie sobie, że zamieszkujemy narażony na rozmaite kataklizmy kawałek skalnej skorupy pływający w ciekłym podłożu i krążący po niezbyt stabilnej orbicie w zmieniającym się ciągle i katastroficznym wszechświecie, nie poprawia, by tak rzec, filozoficznego samopoczucia.

Einstein dadaista (1919-1920)

Przyjmowanie nowej prawdy naukowej to proces dramatyczny. Grają w nim rolę emocje, ambicje, przesądy, ale na szczęście także racjonalne przesłanki – na dłuższą metę nie da się utrzymać teorii, która nie ma eksperymentalnych potwierdzeń i dzięki której nie udało się zrozumieć niczego nowego. Teoria względności zyskała efektowne potwierdzenie w roku 1919 i Albert Einstein nagle stał się sławny na cały świat.

Artystka awangardowa Hannah Höch umieściła go na sławnym kolażu Cięcie dadaistycznym nożem kuchennym przez piwny brzuch najnowszej epoki weimarskiej w kulturze Niemiec (1919).

Hannah Höch, Cut with the Kitchen Knife Dada Through the Last Weimar Beer-Belly Cultural Epoch of Germany, 1919-20

Obrazek na flickr zawiera identyfikację niektórych postaci kolażu. A tu jest jego większa wersja:

https://www.artsy.net/artwork/hannah-hoch-cut-with-the-dada-kitchen-knife-through-the-last-weimar-beer-belly-cultural-epoch-in-germanyc

Na prawo od Einsteina mamy nieco pokiereszowaną twarz cesarza Wilhelma II, który abdykował po przegranej wojnie i uciekł do Holandii, pod nim fragment fotografii z manifestacji bezrobotnych. Są także Karol Marks i Lenin, niemieccy komuniści i artyści. Obok Einsteina głowa prezydenta Republiki Weimarskiej Friedricha Eberta doklejona do torsu tancerki topless. W prawym dolnym rogu znajduje się główka autorki na tle mapy Europy z zaznaczonymi krajami, w których kobiety nie mają jeszcze prawa głosu (Francja, Portugalia, Bałkany; Polska znalazła się tu chyba przez pomyłkę). Einstein – Żyd i naukowy rewolucjonista – niemal automatycznie łączony był z lewicą społeczną i artystycznym undergroundem. Wciąż zapowiadano jego wyjazd do Moskwy, gdzie nigdy nie był ani się też nigdy nie wybierał. Jeszcze po drugiej wojnie światowej FBI usiłowało ustalić, czy uczony był członkiem partii komunistycznej w Niemczech (nie był, nie był też żadnym sympatykiem komunizmu), przeszukiwano jego śmieci i podsłuchiwano telefon.

W roku 1919 fizyk nieoczekiwanie znalazł się w centrum zainteresowania mediów. Jego teoria zaczęła ściągać na siebie entuzjazm albo oburzenie, które trudno dziś zrozumieć. Jako element kultury masowej zaczęła być krytykowana, objaśniana bądź zwalczana przez ludzi, którzy nie mieli pojęcia o fizyce. Z jakiegoś powodu wszyscy zapragnęli mieć na jej temat własny pogląd. Szczególnie bulwersowała względność czasu: oto nie płynie on jednakowo dla wszystkich i zamiast być solidną podstawą rzeczywistości sam staje się jeszcze jednym zjawiskiem, kolejną zmienną fizyczną, podlegającą pomiarowi. Czas własny mierzony przez dwóch obserwatorów, którzy rozdzielili się i potem ponownie spotykają, zależy od ich historii, od tego, co im się po drodze przydarzyło, obaj na ogół zmierzą inny odstęp czasu pomiędzy spotkaniami. Jest to paradoks bliźniąt – w istocie żaden paradoks, lecz własność naszego świata sprawdzana tysiące razy eksperymentalnie, choć nie na bliźniakach.

W Niemczech publiczna dyskusja na temat teorii względności od początku zatruta była oparami nacjonalizmu: Żyd Einstein dla niektórych nie był dość narodowoniemiecki, toteż nie mógł mieć racji. Intelekt żydowski różni się bowiem od germańskiego: jest powierzchowny, nie zgłębia istoty rzeczy, tworzy sztuczne uogólnienia, lubuje się w abstrakcjach. Żydzi w Niemczech stanowili zaledwie 1% ludności, lecz spośród nich wywodziła się wielka część wybitnych uczonych, w miastach takich jak Berlin większość prawników i lekarzy było pochodzenia żydowskiego, do Żydów należały wielkie domy towarowe i koncerny prasowe. Konstytucję Republiki Weimarskiej napisał Żyd. Z punktu widzenia nacjonalistów to Żydzi stali za przegraną wojną (teoria noża w plecy) i to oni teraz bogacili się w kapitalistycznej gospodarce. Nawet komunistami, buntującymi się przeciwko kapitalizmowi, też często byli Żydzi.

W życiu politycznym jest mniej przypadków, niż się sądzi. Osoba Einsteina była wygodnym celem ataków: żeby wzbudzić wrogość, trzeba najpierw stworzyć postać wroga, wykazać, jak przebiegłe są jego knowania. Paul Weyland, zawodowy hochsztapler i mąciciel, umyślił sobie, że przeprowadzi całą kampanię przeciwko teorii względności i jej autorowi. Założył coś, co nazywało się Grupą Roboczą Niemieckich Przyrodników dla Zachowania Czystej Nauki (Arbeitgemeinschaft
deutscher Naturforscher zur Erhaltung reiner Wissenschaft). Naprawdę istniał chyba tylko ten szyld oraz pieniądze, które Weyland obiecywał różnym uczonym za wzięcie udziału w zwalczaniu teorii względności – 10 do 15 tys. marek – nie wiadomo, czy ktoś ostatecznie otrzymał taką sumę, czy też Weyland dopiero zamierzał ją zarobić. Jak się zdaje, Weyland zachęcany był przez dwóch noblistów, antysemitów i nacjonalistów: Philippa Lenarda i Johannesa Starka. W sierpniu 1920 roku w wielkiej sali Filharmonii Berlińskiej odbył się pierwszy z zapowiadanej serii antyeinsteinowskich sabatów. Wystąpili na nim sam Weyland oraz profesor eksperymentator z Berlina, Ernst Gehrcke, od lat zwalczający teorię względności. Weyland, określający Einsteina jako naukowego dadaistę, następująco przedstawił sytuację Niemiec:

Teraz, gdy zubożeliśmy pod względem finansowym, prowadzi się działania mające nam odebrać naszą własność  intelektualną; od dziś mamy przestać myśleć w sposób niezależny. W polityce to się im udało. Widzicie to każdego dnia i każdej godziny we wszystkich wiadomościach, jak oszalała grupa bezkrytycznych ludzi pod wodzą pozbawionych  skrupułów i egoistycznych przywódców zmierza do bolszewizmu. Etyka i moralność stały się pustymi słowami, ludzie, którzy starają się zabić w Niemcach wszystko, co czyniło ich wielkimi, teraz chcą im odebrać także naukę. (…) Bo konsekwencje i intencje teorii względności i zasady względności Einsteina i jego zwolenników sięgają dalej i głębiej, niż uświadamia to sobie opinia publiczna.

Niewykluczone, że Weyland starał się po prostu zarobić na biletach wstępu na owo przedstawienie. Zjawiło się sporo publiczności, w tym sam Einstein. Gehrcke przedstawił główne tezy swej broszury: Teoria względności – naukowa sugestia masowa, wydanej nakładem Grupy Roboczej jako pierwszy zeszyt serii. Gehrcke starał się ograniczać do argumentacji naukowej i żywo zaprzeczał, że kierują nim jakieś pozanaukowe względy. Przeświadczony był jednak, że zdemaskował rozmaite szalbierstwa Einsteina. Jego zdaniem Einstein sprytnie wykorzystywał fakt, że naukowcy ograniczeni są swoją specjalnością i stworzył teorię, która zawiera elementy filozofii, fizyki i matematyki tak pomieszane, że nikt nie czuje się dostatecznie kompetentny, aby ją zanegować.

Ernst Gehrcke. Einstein powiedział o nim: „ Gdyby miał tyle inteligencji co arogancji, to dyskusja z nim byłaby nawet przyjemna”.

Z rzeczy pozytywnych Gehrcke wierzył w istnienie eteru i wypowiedzi Einsteina na ten temat uważał za sprytne kluczenie oraz mylenie tropów. Rzeczywiście, był tu Einstein niekonsekwentny: najpierw, w szczególnej teorii, z młodzieńczą dezynwolturą stwierdził, że eter jest zbędny, później, w teorii ogólnej, obdarzył czasoprzestrzeń strukturą geometryczną, która w pewnym stopniu mogła przypominać eter. Nie była to jednak zmiana poglądów filozoficznych, lecz raczej podążanie za fizyką: fizyk nie może sobie zadekretować, że zawsze będzie trzymać się jakichś ram pojęciowych, bo przyroda może nie zechcieć z nim współpracować w tej kwestii. W każdym razie to, co dla kogoś innego byłoby naukowym namysłem, ewolucją poglądów wskutek wieloletniej pracy, w oczach Gehrckego stało się po prostu próbą oszustwa. Szczególnie upodobał sobie Gehrcke następujący argument przeciwko paradoksowi bliźniąt: skoro Einstein twierdzi, że wszystkie ruchy są względne, to obaj bliźniacy znajdują się w symetrycznej sytuacji, bo z każdym z nich można związać układ odniesienia (co jest prawdą, ale nie oznacza, że historie obu stają się dzięki temu symetryczne). Wiele też mówił Gehrcke o grawitacyjnym przesunięciu linii widmowych ku czerwieni, które było przewidziane przez Einsteina, lecz nie zostało zaobserwowane. Pomijał przy tym trudności obserwacyjne: przewidywany efekt był niewielki w porównaniu z szerokością typowych linii widmowych ciał niebieskich. Jako specjalista od optyki musiał to świetnie rozumieć, wolał jednak udawać, że obserwacje wyraźnie przeczą teorii względności. Także obserwacje Eddingtona – ugięcia promieni świetlnych w pobliżu Słońca – zbył pobieżnym omówieniem, jakby już fakt potwierdzenia niemieckiej teorii przez Anglika tuż po wojnie nie stanowił dodatkowego argumentu na rzecz Einsteina. Nikt nigdy nie kwestionował zresztą absolutnej uczciwości i prawdomówności kwakra Eddingtona. Milczał też Gehrcke na temat berlińskich zwolenników teorii względności: przede wszystkim Maksa Plancka, uchodzącego za największy autorytet nie tylko naukowy, ale i moralny, a także Maksa von Laue, noblisty i niewątpliwie „prawdziwego” Niemca. Postawa Gehrckego charakteryzowała się nienaukowymi uprzedzeniami, nawet jeśli pozornie prowadził on debatę ściśle naukową.

Ostatecznie z serii wykładów i wydawnictw nic nie wyszło. Inni naukowcy wycofali się z przedsięwzięcia, widząc, że nie przyniesie im ono chluby. Wycofał się też chyłkiem Philipp Lenard, który nawet poczuł się urażony tym, że jest wymieniany w kontekście tej sprawy – najwyraźniej wydawało mu się, że hipokryzja warta jest tyle samo co cnota.

Epizody tego rodzaju nie były na szczęście całą prawdą o nauce niemieckiej, ale też stanowiły coś więcej niż nieprzyjemne incydenty. Życie publiczne Niemiec przesiąknięte było nienawiścią i żądzą odwetu. W roku 1920 Niemcy nie były jeszcze skazane na powtórną wojnę i jej złowieszcze konsekwencje. Były jednak krajem wewnętrznie bardzo podzielonym. Podziały te z upływem lat rosły i po wieloletnim podżeganiu do nienawiści, po zimnej wojnie domowej z elementami przemocy, wykoleiły kraj zupełnie. Stało się to w latach trzydziestych, gdy gospodarka zaczęła już wychodzić z kryzysu. To najlepszy dowód, że Marks się mylił: ekonomia nie determinuje historii. Jeśli na nią wpływa, to w sposób pośredni, poprzez społeczne nastroje, a one zależą od wielu czynników, także irracjonalnych i trudnych do zmierzenia. W przypadku Niemiec wielką rolę odegrało poczucie upokorzenia przegraną wojną i jej wersalskimi następstwami. Hitler obiecywał lepszą przyszłość i jednocześnie wpędził Niemcy w wojnę, która musiała być przegrana – wystarczyło spojrzeć na mapę. Ale społeczeństwo powodowane resentymentem łatwo dało sobie wyperswadować, że w taki właśnie sposób uda się stworzyć potęgę kraju i zapewnić trwały pokój. Gdyby Niemcy nie cierpieli na ten chorobliwy, pełen kompleksów nacjonalizm, ich kraj stałby się mocarstwem dwadzieścia lat wcześniej w sposób pokojowy. Nacjonalizm nigdy nie jest lekarstwem, zawsze jest chorobą.