Hermann Minkowski i czasoprzestrzeń (1908)

We wrześniu roku 1908 na Zjeździe Niemieckich Przyrodników i Lekarzy  w Kolonii odczyt wygłosił Hermann Minkowski, matematyk z Getyngi. Powiedział tam:

Poglądy na przestrzeń i czas, które zamierzam tu rozwinąć, wyrosły z gruntu doświadczalno-fizykalnego. Tendencja ich jest radykalna. Odtąd przestrzeń w sobie i czas w sobie mają całkowicie stać się cieniami i tylko pewien rodzaj ich unii utrzymać ma samodzielność. („Wiadomości matematyczne”, t. 13, z. 5-6 (1909), s. 231.)

Chodziło w istocie o usunięcie sprzeczności miedzy dwiema wielkimi teoriami fizyki: mechaniką Newtona i elektrodynamiką Maxwella i Lorentza. Elektrodynamika przewidywała istnienie fal elektromagnetycznych, które w próżni rozchodzić się miały z prędkością światła c. Zbieżność wynikającej z teorii wartości z mierzoną prędkością światła była silnym argumentem za teorią Maxwella. Aby jednak wyznaczyć prędkość czegokolwiek, w tym impulsu świetlnego, musimy sprecyzować układ odniesienia, np. układ współrzędnych kartezjańskich. W jakim układzie odniesienia prędkość światła i innych fal elektromagnetycznych równa się dokładnie c? Sądzono powszechnie, że istnieje pewien nieruchomy ośrodek, eter, w którym rozchodzą się fale elektromagnetyczne, podobnie jak fale dźwiękowe w powietrzu albo innym ośrodku sprężystym. Eter długo zresztą pokutował w mowie potocznej jako „fale eteru”. Ponieważ Ziemia porusza się wokół Słońca, więc nie może zawsze spoczywać względem eteru, a skoro tak to obserwowana na Ziemi prędkość światła nie może być zawsze i w każdym kierunku taka sama. Wektorowe składanie prędkości wynika jednoznacznie z mechaniki Newtona, która miała za sobą dwa wieki sukcesów. Eksperymenty prowadzone przez wiele lat, głównie przez Alberta Michelsona, nie wykazywały żadnych efektów ruchu Ziemi: ani o żadnej porze roku, ani w piwnicy, ani w górach. Hendrik Lorentz wykazał, że można ocalić spójność fizyki za cenę wprowadzenia dość osobliwego założenia o skracaniu się ciał wzdłuż kierunku ruchu. Wprowadził też dodatkowy czas t', pewną matematyczną fikcję, która sprawiała, że równania elektrodynamiki nie zmieniały się w poruszającym się układzie odniesienia. Dopiero Albert Einstein rozciął ów węzeł gordyjski, stwierdzając, że pojecie eteru jest „zbędne”, nie istnieje żaden uprzywilejowany układ odniesienia. W każdym układzie odniesienia prawa fizyki: zarówno mechaniki, jak i elektrodynamiki mają taką samą postać (dokładnie w układzie inercjalnym, tzn. takim, który nie porusza się ruchem przyspieszonym, jak hamujący autobus bądź karuzela w ruchu). Oznacza to w szczególności, że prędkość światła zmierzona przez każdego obserwatora będzie równa c. Ceną za usunięcie sprzeczności była fundamentalna zmiana w pojęciu czasu. Jak pisał Minkowski w dalszym ciągu swego wykładu:

Lecz dopiero zasługą jest A. Einsteina wykazanie ścisłe, że czas jednego elektronu jest tak dobry jak drugiego, tj. że t i t' należy traktować jednakowo.

Einstein był młody i nie pracował na uniwersytecie w Getyndze, lecz w Biurze Patentowym w Bernie. Obie te okoliczności pozwoliły mu na przyjęcie radykalnego rozwiązania, że wyniki pomiaru czasu mogą zależeć od ruchu układu odniesienia. Do tej pory czas miał być absolutną miarą zmian w świecie fizycznym. Pogląd Newtona, zakorzeniony w jego metafizyce i teologii, stał się niewzruszony dla następnych pokoleń uczonych. Młodość oznaczała w tym wypadku pewną bezwzględność w stosunku do szacownych poprzedników. W zasadzie klocki pojęciowe zostały już uformowane przez Lorentza i Henri Poincarégo, Einstein ustawił je tylko w pozornie paradoksalny sposób, nie troszcząc się o wrażliwość starego pokolenia. Ustawienie to przetrwało do dziś. Z Lorentzem zresztą się później zaprzyjaźnił, Poincaré, przyznając mu naukową rangę, mocno się dystansował od jego ujęcia. Dlaczego pomogło mu, że nie pracował w Getyndze? Młody Albert porzucił gimnazjum w Monachium, nie mając jeszcze szesnastu lat, i wyjechał z Niemiec, zrzekł się też wkrótce obywatelstwa Królestwa Wirtembergii, a tym samym Rzeszy Niemieckiej. Nie cierpiał niemieckiego ducha posłuszeństwa, uważał, że w gimnazjum jest jak w wojsku. W rezultacie studiował na Politechnice w Zurychu, która była uczelnią gorszą niż uniwersytety niemieckie albo Uniwersytet Wiedeński. Prawie nie miał tam fizyki teoretycznej oprócz jednego wykładu Minkowskiego, gdzie omawiane były kwestie takie jak włoskowatość, a więc zupełnie już przestarzałe z punktu widzenia fizyka. Einstein nauczył się wszystkiego sam. Po studiach, ponieważ był dość pyskaty, nie znalazł miejsca na uczelni. Nie chcieli go nawet do prowadzenia ćwiczeń ze studentami, których na politechnice było dużo i które były tak samo wtedy, jak i dziś, niezbyt rozwijające intelektualnie. Urząd patentowy był pracą zastępczą. Przedtem różne uniwersytety z całej niemal Europy zdążyły odrzucić podania młodego absolwenta. Gdyby miał szczęście i zaczął pracować w Getyndze, wśród wybitnych matematyków i fizyków, trudniej byłoby mu zachować niezależność. Tamtejsza szkoła wywierała silne piętno na pracujących tam uczonych. Minkowski, który z Zurychu przeniósł się do Getyngi, miał niezbyt wysokie pojęcie o Einsteinie, który niewiele zresztą chodził na wykłady czysto matematyczne (choć stopnie z egzaminów miał dobre, uczył się w ostatniej chwili). Ujmując rzecz ogólnie: Pan Bóg wiedział, co robi, tworząc odrębne profesje matematyków i fizyków. David Hilbert i Felix Klein interesowali się fizyką, ale osiągnięcia, zarówno ich własne, jak i młodszych kolegów w tej dziedzinie były wybitne, a jednocześnie jakoś chybione. Powstawały prace eleganckie, lecz puste z punktu widzenia fizyka. Toteż lepiej, że Einstein nie musiał walczyć z presją tamtejszego środowiska. Możliwe zresztą, że by sobie poradził, bo miał wyjątkowo silny charakter. Sam zresztą mówił, że charakter ważniejszy jest od talentu, chodziło mu o to, żeby robić swoje, nie myśląc, że to się może nie udać. Fizyka w jego wydaniu to były niemal zawsze prace, które mogły się udać albo okazać kompletnym nieporozumieniem. Charakter potrzebny był mu do podejmowania ryzyka i nieprzejmowania się porażkami, których zawsze jest więcej niż sukcesów.

Wprowadzona przez Minkowskiego czasoprzestrzeń stała się trwałą częścią fizyki. Teoria względności, naruszając niezmienność czasu, wciąga go niejako do gry, pozwalając mu mieszać się z przestrzenią. Ze współczesnego punktu widzenia prędkość światła jest jedynie przelicznikiem między czasem a odległością. Stała c ma obecnie pewną wartość zadekretowaną przez międzynarodowe porozumienia. Żeby mieć te same jednostki na osiach możemy umieszczać ct oraz współrzędne x,y,z (będziemy też czasem pisać po prostu t zamiast $ct$). W czasoprzestrzeni punktami są zdarzenia o określonych współrzędnych (x, y, z, ct). Wygląda to tak dla czasoprzestrzeni (2+1)-wymiarowej:

Powiedzmy, że O jest zdarzeniem, które nas szczególnie interesuje. Zdarzenia, które mogły wywrzeć wpływ na O albo leżą na stożku przeszłości, jak Y – sygnał świetlny mógł dotrzeć do O. Stożek przeszłości, to wszystko, co widzimy: galaktykę w Andromedzie widzimy taką, jaka była dwa miliony lat temu, bo tyle czasu potrzebuje światło, aby do nas dotrzeć. Wszystkie zjawiska, które mogłyby wpłynąć na O leżą na stożku przeszłości albo wewnątrz niego, jak X. Analogiczną rolę pełni stożek przyszłości: leżą na nim albo wewnątrz niego wszystkie zdarzenia, na które O może (w zasadzie) mieć wpływ. Natomiast zdarzenia takie, jak A nie są w żadnym związku przyczynowym ani skutkowym z O. Struktura taka pozostaje niezmienna dla każdego obserwatora, choć inaczej on umiejscowi poszczególne punkty obrazka. To, co pozostaje nienaruszone, to wyżej opisane relacje: jeśli np. X było w stożku przeszłości względem O, to zawsze tak będzie, choć położenie X wewnątrz stożka może się różnym obserwatorom wydać różne.

Pokażemy teraz, jakie wartości różni obserwatorzy przypisują tym samym zdarzeniom. Fizyka powinna być niezależna od układu współrzędnych. Możemy np. obrócić układ współrzędnych w płaszczyźnie xy. Każdy punkt P=(x,y) w nowym układzie osi będzie miał nowe współrzędne (x',y').

\begin{cases}x'=x\cos\varphi-y\sin\varphi \\y'=y\cos\varphi+x\sin\varphi.\end{cases}

Transformacja ta nie zmienia odległości punktu P od początku układu współrzędnych, zatem:

x^2+y^2=x'^2+y'^2.

Łatwo sprawdzić, że wypisane wyżej równania spełniają ten warunek, po drodze musimy skorzystać z jedynki trygonometrycznej \sin^2\varphi+\cos^2\varphi=1.

Możemy też zmienić układ współrzędnych nieprimowany na poruszający się ruchem jednostajnym układ primowany.

Klasyczny i „zdroworozsądkowy” związek między współrzędnymi przyjmie teraz postać:

\begin{cases}x'=x-vt\\y'=y\\t'=t.\end{cases}

Jest to tzw. transformacja Galileusza. Prawidłową transformacją jest jednak tzw. transformacja Lorentza. Minkowski spojrzał na nią w sposób geometryczny, jak na przekształcenie, które zachowuje następującą wielkość (odtąd zachowujemy tylko x,t, współrzędne y,z nie zmieniają się, gdy ruch zachodzi w kierunku osi x):

x^2-t^2=x'^2-t'^2.

Widzimy tu analogię do obrotów, różny jest tylko znak. Wielkość ta zwana jest interwałem czasoprzestrzennym i tym się różni od kwadratu odległości, że może przyjmować znaki zarówno dodatnie, jak i ujemne. Nowe i stare współrzędne muszą leżeć na jednej gałęzi hiperboli albo na jednej linii prostej (stożek). Narysowaliśmy jeden z możliwych przypadków:

Możemy wprowadzić nowe współrzędne:

\begin{cases}x_{-}=x-t\\x_{+}=x+t.\end{cases}

Zgadujemy następującą postać transformacji Lorentza:

\begin{cases}x'_{-}=e^{\varphi}x_{-}\\x'_{+}=e^{-\varphi}x_{+}.\end{cases}

Łatwo zauważyć, że wielkość interwału czasoprzestrzennego jest zachowana (wzory skróconego mnożenia). Przy okazji widać też, że transformacji odwrotnej odpowiadać będzie parametr -\varphi, a przy złożeniu dwóch ruchów parametry się dodadzą. Nie wiemy tylko jeszcze, jaki jest sens parametru \varphi, powinien on być jakoś związany z prędkością jednego układu względem drugiego. Wracając do zwykłych współrzędnych x,t, otrzymamy

\begin{cases}x'=x\cosh\varphi-t\sin\varphi\\t'=t\cosh\varphi-x\sinh\varphi.\end{cases}

Prędkość układu primowanego, to prędkość ruchu punktu x'=0. Korzystając z tego, dostajemy

v=\dfrac{x}{t}=\dfrac{\sinh\varphi}{\cosh\varphi}=\mbox{tgh }\varphi.

Przy małych wartościach \varphi jest równe prędkości. Widzimy też, że prędkość mieści się w przedziale (-c,c). Dla tangensów hiperbolicznych istnieje wzór podobny, jak w zwykłej trygonometrii:

u=\mbox{tgh }(\varphi_1+\varphi_2)=\dfrac{\mbox{tgh }\varphi_1+\mbox{tgh }\varphi_2}{1+\mbox{tgh }\varphi_1 \mbox{tgh }\varphi_1}=\dfrac{v_1+v_2}{1+v_1 v_2}.

Itd. itp. Łatwo można dalej wyprowadzać wnioski z postaci transformacji Lorentza.

 

Reklamy

Emmy Noether i jej twierdzenie, część II (1918) Albo: Formalizm Lagrange’a w kwadrans

Podamy tu uproszczoną postać twierdzenia Noether, słuszną w mechanice punktów materialnych. Najważniejsze zastosowania tego twierdzenia dotyczą sytuacji ogólniejszej, to znaczy pól, czyli pewnych funkcji zależnych od położenia i czasu. Uogólnienie jest zresztą dość oczywiste. Jeszcze jedna rzecz: Noether udowodniła dwa twierdzenia, nas interesuje tu tylko pierwsze z nich.

Zaczniemy od mechaniki w sformułowaniu Lagrange’a. Zamiast mówić o siłach, możemy użyć energii potencjalnej V i zbudować lagranżian {\cal L}=E_k-V. Dwa przykłady, które nam się w dalszym ciągu przydadzą:

Przykład 1 Jednowymiarowy ruch dwóch punktów materialnych o współrzędnych x_1, x_2 oraz masach m_1, m_2. Energia potencjalna zależy tylko od względnego położenia obu punktów (co oznacza, że oddziałują one tylko na siebie nawzajem, nie ma żadnych sił zewnętrznych). Lagranżian ma postać:

{\cal L}=\dfrac{m_1\dot{x_1}^2}{2}+\dfrac{m_2\dot{x_1}^2}{2}-V(x_1-x_2).

Kropki oznaczają pochodne po czasie: pochodna współrzędnej po czasie to oczywiście prędkość.

Przykład 2 Punkt na płaszczyźnie poruszający się w potencjale zależnym tylko od odległości od pewnego punktu centralnego (jak planety wokół Słońca). Lagranżian ma w tym przypadku postać:

{\cal L}=\dfrac{m\dot{x}^2}{2}+\dfrac{m\dot{y}^2}{2}-V(\sqrt{x^2+y^2}).

Zauważmy, że te lagranżiany są dość podobne: w obu mamy do czynienia z dwoma stopniami swobody. Z formalnego punktu widzenia to liczba stopni swobody jest ważna, a nie liczba cząstek. Będziemy pisać lagranżian w postaci ogólnej jako {\cal L}={\cal L}(q,\dot{q}), co znaczy, że współrzędnymi są q. Lagranżian będzie też zależał od prędkości \dot{q}. Gdyby liczba stopni swobody była n to powinniśmy te współrzędne ponumerować jakimś wskaźnikiem i=1\ldots n. Wolimy nie wypisywać tych wskaźników, żeby nie gmatwać zapisu.

Następny krok to równania ruchu. Zamiast praw Newtona stosujemy zasadę najmniejszego działania i otrzymujemy równania Lagrange’a. Konkretnie wygląda to tak, tworzymy działanie S,

\displaystyle{S=\int_{0}^{\tau}{\cal L} (q, \dot{q}) dt.}

Szukamy minimum działania (dokładnie: ekstremum), wyobrażając sobie, że do ruchu q=q(t) dodajemy niewielką funkcję \delta q(t). Żądamy teraz, aby zmiana (wariacja) działania znikała. Rozpatrujemy przy tym z założenia tylko takie ruchy, które zaczynają się kończą w ustalonych punktach. Sytuację tę ilustruje rysunek poniżej. Oczywiście do \dot{q} musimy dodać pochodną \dot{\delta q}=\delta\dot{q}.

Łatwo teraz pokazać (co robimy na końcu), że

\delta S=0\iff \dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}=0.

Otrzymaliśmy równania Lagrange’a, które zastępują teraz równania Newtona. W gruncie rzeczy przypominają one równania Newtona: pochodna po czasie z pewnej wielkości p\equiv \frac{\partial {\cal L}}{\partial \dot{q}} nazywanej pędem uogólnionym jest równe sile (uogólnionej). Sprawdźmy to na przykładzie pierwszym. Mamy w istocie dwa równania dla obu naszych zmiennych:

\begin{array}{l}-V'(x_1-x_2)=\dfrac{d}{dt}(m_1 \dot{x_1})\\  \\  V'(x_1-x_2)=\dfrac{d}{dt}(m_2 \dot{x_2}).\end{array}

W równaniach tych V' oznacza pochodną, dostajemy parę sił o przeciwnych znakach, czyli spełniona jest III zasada dynamiki, jak być powinno. Na razie wygląda to wszystko na zawiły sposób sformułowania prostych równań Newtona. Lagrange wiedział jednak, co robi i czemu ogólniejsze podejście jest lepsze. Sformułowanie Lagrange’a łatwo pozwala zastosować inne zmienne niż kartezjańskie. Nasz przykład 2 ma symetrię radialną. Możemy użyć zamiast współrzędnych kartezjańskich współrzędnych biegunowych r, \varphi. Lagranżian przyjmuje wówczas postać:

{\cal L}=\dfrac{m\dot{r}^2}{2}+\dfrac{mr^2\dot{\varphi}^2}{2}-V(r).

Teraz lagranżian nie zależy od jednej ze zmiennych (\varphi), mamy więc dla niej proste równanie:

\dfrac{d}{dt}(mr^2 \dot{\varphi})=0

Inaczej mówiąc, wielkość p_{\varphi}=J=mr^2\dot{\varphi} jest stała. Okazuje się, że pędem uogólnionym sprzężonym z \varphi jest moment pędu J, jak powinno być, gdyż energia potencjalna nie zależy od kierunku, a więc siły są centralne (skierowane do albo od początku układu współrzędnych). Widzimy, że zastosowanie sprytnie dobranych współrzędnych upraszcza nam od razu problem. Jeśli tylko znajdziemy odpowiednie współrzędne, to niektóre pędy uogólnione będą stałe podczas ruchu.

Twierdzenie Noether pozwala nam od symetrii lagranżianu przejść od razu do pewnej wielkości, która musi być zachowana podczas ruchu. Nie musimy przy tym wymyślać jakichś szczególnych współrzędnych. Każdej symetrii odpowiada pewna wielkość, która nie zmienia się z czasem.

Zaczniemy od określenia, czym jest symetria. Żądamy, aby podstawienie (gdzie \delta q jest niewielkie):

\begin{array}{l} q(t) \rightarrow  q(t)+\delta q(t)\\  \\  \dot{q}(t) \rightarrow  \dot{q}(t)+\delta \dot{q}(t).\end{array}

nie zmieniało lagranżianu:

{\cal L}(q,\dot{q})={\cal L}(q+\delta q, \dot{q}+\delta\dot{q}).

Twierdzenie Noether głosi, że wielkość A określona równaniem

A=\delta q_i\dfrac{\partial {\cal L}}{\partial \dot{q_i}}\equiv \delta q_i \cdot p_i

nie zmienia się podczas ruchu. Wprowadziliśmy tu wskaźniki numerujące stopnie swobody, należy po nich wysumować. Dowód można znaleźć na końcu tekstu.

Najłatwiej wyjaśnić sens twierdzenia na naszych przykładach. W pierwszym z nich operacja przesunięcia jednocześnie obu punktów materialnych o wspólną niezależną od czasu wielkość \delta a, tzn.:

\begin{array}{l} x_1(t) \rightarrow  x_1(t)+\delta a\\  \\  x_2(t) \rightarrow  x_2(t) + \delta a.\end{array}

nie zmienia energii potencjalnej. Energia kinetyczna też się nie zmienia, ponieważ pochodna funkcji stałej jest równa zeru. Zatem jednoczesne przesunięcie obu punktów materialnych nie wpływa na ich ruch względny, co z fizycznego punktu widzenia brzmi rozsądnie. W myśl tw. Noether zachowana powinna być tu wielkość

A=\delta a m_1\dot{x}_1+\delta a m_2\dot{x}_2=\delta a(m_1\dot{x}_1+m_2\dot{x}_2).

Jest to oczywiście pęd całkowity.

Zobaczmy, jak opisać symetrię w przykładzie drugim. Operacją nie zmieniającą lagranżianu będzie oczywiście obrót w płaszczyźnie xy (najprostsze obroty zmieniają dwie współrzędne, dlatego mamy jeden taki obrót na płaszczyźnie, trzy w przestrzeni trójwymiarowej: xy, xz, yz i sześć w przestrzeni czterowymiarowej). Niewielki obrót o kąt \delta\varphi   w płaszczyźnie dany jest równaniami:

\begin{array}{l}x\rightarrow x-y\delta\varphi\\ \\ y\rightarrow y+x\delta\varphi.\end{array}

Szczegóły można znaleźć poniżej. Wielkością zachowaną jest teraz oczywiście moment pędu:

A=\delta\varphi (xp_y-yp_x)=\delta\varphi J.

Widać, skąd tak naprawdę pochodzi ta dziwaczna kombinacja pędów i współrzędnych: bierze się ona z rozpatrzenia obrotów w płaszczyźnie. W przestrzeni trójwymiarowej mielibyśmy trzy składowe momentu pędu, w przestrzeni czterowymiarowej sześć. Moment pędu można uważać za wektor tylko w przypadku trójwymiarowym, tak się składa, że jest to przypadek ważny dla nas, ale z matematycznego punktu widzenia liczba składowych momentu pędu zazwyczaj nie jest równa wymiarowi przestrzeni.

Jeszcze jedna uwaga: nasze transformacje symetrii są niewielkie. Co to dokładnie znaczy, widać intuicyjnie w przypadku translacji czy obrotów. Rzecz w tym, że np. do symetrii zwierciadlanej tw. Noether się nie stosuje.

Tak to wygląda w najprostszej wersji, możliwe są rozmaite uogólnienia. Jednym z najważniejszych są operacje symetrii zawierające czas. Nasze lagranżiany nie zależą jawnie od czasu. W takim przypadku translacja w czasie jest operacją symetrii. Wielkością zachowywaną w tym przypadku jest A=\dot{q_i}p_i-{\cal L}=E_k+V, czyli całkowita energia układu. Poza symetriami fundamentalnymi możliwe są oczywiście rozmaite symetrie obowiązujące dla konkretnego zagadnienia, każda z nich prowadzi do zachowywanej podczas ruchu wielkości.

(*) Łatwo uzyskać można wyrażenie dla wariacji działania.

\displaystyle{\delta S=\int_{0}^{\tau}\left(\delta q \dfrac{\partial {\cal L}}{\partial q}+\delta\dot{q}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt}

Nie zakładamy tu żadnego szczególnego zachowania \delta q(t) na końcach przedziału czasu. Sytuację przedstawia rysunek.

Całkując drugi wyraz przez części, otrzymujemy następującą postać wariacji;

\displaystyle{\delta S=\int_{0}^{\tau}\delta q \left(\dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt+\left. \delta q\dfrac{\partial {\cal L}}{\partial\dot{q}}\right|^{\tau}_{0}}.

Wynikają stąd zarówno równania Lagrange’a, jak i tw. Noether.

W przypadku zasady najmniejszego działania żądamy, aby \delta S=0. Ponieważ na początku i końcu wariacja \delta q(0)=\delta q(\tau)=0, więc znika też ostatni, scałkowany, wyraz w powyższym wyrażeniu. A to z kolei oznacza, że wyrażenie w nawiasie znika (gdyż \delta q(t) poza tym, że jest niewielkie, może być dowolne i gdyby nawias w jakimś przedziale był różny od zera, to moglibyśmy tak dobrać \delta q(t), żeby całka była różna od zera).

W przypadku tw. Noether wiemy, że działanie się nie zmienia, ponieważ nie zmienia się lagranżian i przedział całkowania, czyli przy tych założeniach \delta S=0. Zakładamy też, że ruch odbywa się zgodnie z równaniami Lagrange’a, co oznacza, że nawias pod całką jest równy zeru, całka też musi być równa zeru. Zostaje nam warunek A(\tau)-A(0)=0. Zatem A(t) od czasu nie zależy.

Wyrażenia dla współrzędnych przy niewielkim obrocie otrzymujemy, przyjmując \cos\delta\varphi=1 oraz \sin\delta\varphi=\delta\varphi. Pokazuje to, co znaczą małe obroty: zostawiamy wyrazy liniowe w \delta\varphi, pomijamy natomiast wyrazy wyższych rzędów.

Emmy Noether i jej twierdzenie, część I (1918)

W fizyce XX wieku ogromną rolę odegrały zasady zachowania oraz symetrie. Zasady zachowania energii, pędu, momentu pędu itd. uważa się dziś za podstawowe prawa przyrody. Zarówno na gruncie fizyki klasycznej, jak i kwantowej, zasady zachowania związane są z symetriami układów fizycznych. Np. niezmienność w czasie praw fizycznych wiąże się z zasadą zachowania energii, symetria translacyjna wiąże się z zasadą zachowania pędu itp. Związek między symetriami a zasadami zachowania określa jedno z twierdzeń udowodnionych przez Emmy Noether. Najpierw powiemy trochę o postaci Emmy Noether, której ranga naukowa daleko wykracza poza twierdzenia znane każdemu fizykowi. W drugiej części przedstawimy szczególny przypadek twierdzenia Noether, obowiązujący w mechanice punktów materialnych. Pamiętać jednak trzeba, że twierdzenie Noether stało się ważną częścią współczesnej fizyki w ogóle, a nie wyłącznie mechaniki.

W roku 1935, gdy Emmy Noether niespodziewanie zmarła w Stanach Zjednoczonych wskutek powikłań pooperacyjnych, wspomnienie pośmiertne o jej osiągnięciach znalazło się w liście Alberta Einsteina do „New York Timesa”. Najwybitniejszy z naukowych uchodźców niemieckich uhonorował w ten sposób pierwszą tej rangi matematyczkę w historii. Mimo że w latach 1915-1933 pracowała ona w Getyndze, najlepszym wówczas ośrodku matematycznym świata, była znana wśród kolegów, miała uczniów, doktorantów itd., nie udało się jej nigdy uzyskać pełnej profesury, i to pomimo wsparcia Feliksa Kleina oraz Davida Hilberta. Opór przed powołaniem kobiety na katedrę był zbyt silny. W tym czasie w Niemczech profesurę z fizyki eksperymentalnej przyznano tylko jednej kobiecie: Lise Meitner w Berlinie, który uchodził za bardziej postępowy. Pierwszą katedrę matematyki objęła w Niemczech w 1957 r., a więc w zupełnie innych czasach, Ruth Moufang. Noether pracowała przez większą część życia za darmo albo otrzymując niewielkie pieniądze za prowadzenie zajęć na uczelni. Żyła skromnie, nie była zamożna, ale i nie biedna, jej ojciec Max był profesorem matematyki w Erlangen. Emmy miała także braci utalentowanych w kierunkach ścisłych, choć ostatecznie okazało się, że to ona była najwybitniejszym uczonym w rodzinie. Emmy nie uczyła się nigdy w szkole średniej, maturę zdała eksternistycznie. Także na uniwersytecie, w Erlangen i w Getyndze, miała jedynie prawo słuchania wykładów, bez możliwości formalnego ukończenia studiów. Co ciekawe, jej talent matematyczny rozwinął się dość późno. Swój przyzwoity i bardzo pracochłonny doktorat uważała później za nieistotny (obliczyła w nim postać 331 kowariantnych form czwartego stopnia trzech zmiennych). Było to rozszerzenie pracy opiekuna jej doktoratu Paula Gordana. Ówczesna algebra sprawiała na postronnych widzach wrażenie dziedziny zupełnie oderwanej od zastosowań, choć prawie nigdy nie da się tego uczciwie stwierdzić o żadnym dziale matematyki. Prace Gordana i jeszcze starszego Alfreda Clebscha zawierają np. znane w fizyce kwantowej współczynniki Clebscha-Gordana. Współczynniki te są więc kilkadziesiąt lat starsze niż sama mechanika kwantowa.

Fotografia ok. 1915 r. (http://physikerinnen.de)

Już po trzydziestce trafiła do Getyngi z inicjatywy Kleina i Hilberta. Zajęła się tam kwestią symetrii oraz zasad zachowania. Udowodniła dwa słynne dziś twierdzenia na ten temat. Wówczas nie były one tak znane, choć ich udowodnienie miało spore znaczenie dla ogólnej teorii względności. Hilbert zajmował się tą teorią równolegle do Einsteina, wyraźnie z się z nim ścigając. Był to skutek wykładów Einsteina w Getyndze w połowie roku 1915. David Hilbert zapalił się do tego podejścia, jednak jego cel był inny niż Einsteina: pragnął bowiem zaproponować teorię wszystkiego, obejmującą także materię. Ten ambitny zamysł był zdecydowanie przedwczesny, lecz jesienią roku 1915 Hilbert deptał Einsteinowi po piętach. Stanowiło to przykład szeroko wtedy znanego zwyczaju matematyków z Getyngi, że bez większych skrupułów wchodzili w tematykę prac innych kolegów. Nazywano to złośliwie „nostryfikacją”. Einstein o mały włos nie padł ofiarą takiej nostryfikacji. Wielu historyków sądziło zresztą, że to Hilbert pierwszy napisał równania pola ogólnej teorii względności. Tak jednak nie było i sam Hilbert nigdy nie zgłaszał w tej kwestii żadnych roszczeń. Dziś wiemy zresztą, że nie miałby do tego podstaw. Równania pola ogólnej teorii względności sformułował Einstein w listopadzie 1915 roku. Stosunki obu uczonych, przez chwilę dość napięte, wróciły potem do poprzedniego przyjaznego tonu. Hilbert, a później i Klein, interesowali się dość żywo teorią Einsteina, szczególnie kwestią zasady zachowania energii-pędu. Z pracy Noether wynikało, że tensor Einsteina G oraz tensor energii-pędu T muszą spełniać związek {G^{\mu\nu}}_{;\nu}=0={T^{\mu\nu}}_{;\nu}. Dopiero później zauważono, iż włoski geometra Luigi Bianchi już w 1902 ogłosił tożsamości nazwane dziś jego imieniem (nb. tożsamości te znał już Gregorio Ricci dwie dekady wcześniej), z których fakt powyższy wynika. Pokazuje to spory zamęt, jaki istniał nie tylko w samej nowej fizyce, ale także i w stosowanej do niej nienowej matematyce, która jednak nie była znana nawet największym ówczesnym matematykom (wyjątkiem był tu Tullio Levi-Civita).

Największe osiągnięcia Emmy Noether przypadają na lata dwudzieste. Stała się ona ważną postacią w rozwoju nowoczesnej algebry abstrakcyjnej, w której bada się struktury określone za pomocą aksjomatów, niezależnie od konkretnej reprezentacji. Prace te prowadzone były w duchu Hilberta, który od dawna zabiegał o ścisłą aksjomatyzację zarówno matematyki, jak i fizyki. W fizyce podejście tego rodzaju niezbyt się przyjęło, w matematyce szukanie ogólniejszych struktur jest często skuteczną metodą atakowania szczegółowych problemów, tak np. udowodniono wielkie twierdzenie Fermata. Emmy Noether prowadziła w Getyndze słynne z czasem wykłady. Początkowo miały one formę stałego zastępstwa za Davida Hilberta. Chodziło o ominięcie formalnej trudności: Noether nie miała prawa nauczania. Wykłady te przyciągały niezbyt liczne, lecz ważne grono młodych badaczy. W formie przypominały raczej głośne myślenie na temat matematyki niż uporządkowane rozdziały podręcznika. Jednak drugi tom znanej wówczas monografii Moderne Algebra Bartela van der Waerdena w znacznym stopniu był opracowaniem idei z wykładów Noether w Getyndze. W wieku pięćdziesięciu lat osiągnęła niemal wszystko, czego może sobie życzyć uczony: miała liczne publikacje, wielu uczniów, którzy rozwijali jej idee (chętnie się nimi dzieliła i nie zgłaszała roszczeń do pierwszeństwa, nawet gdy się jej ono należało), dwa razy zaproszona była do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała „Mathematische Annalen”. Nie była tylko wciąż profesorem, choć jej młodszy i nie tak wybitny brat, Fritz, uzyskał katedrę na Politechnice Wrocławskiej (wówczas Technische Hochschule) już w 1922 roku.

Na dworcu w Getyndze jesienią 1933 r. (http://physikerinnen.de)

Aż nadeszła katastrofa roku 1933. Oczywiście, większość Niemców uznawała ją w tamtej chwili za zwycięstwo albo przynajmniej za krok w dobrym kierunku. Społeczeństwo, karmione od dziesiątków lat rasistowskimi bredniami o wyższości Niemców nad Żydami, nie protestowało, gdy władze polityczne wyciągnęły wnioski z tych nauk i na początek wyrzuciły wszystkich Żydów ze stanowisk państwowych, w tym z uniwersytetów. Emmy Noether nie interesowała się polityką. Nie reagowała nawet, gdy któryś z jej studentów przyszedł na wykład w brunatnej koszuli. Teraz jednak straciła swą i tak mało znaczącą posadę i nie mogła uczyć. Jak wielu rozsądnych ludzi, miała nadzieję, że to szaleństwo skończy się jak zły sen. Znalazła pracę w Stanach Zjednoczonych, w roku 1934 odwiedziła Niemcy jako uczona z zagranicy. Żona jej współpracownika, profesora z Hamburga, Emila Artina wspominała:

Rzeczą, która najbardziej zapadła mi w pamięci, była jazda metrem w Hamburgu. Zabraliśmy Emmy spod Instytutu i natychmiast oboje z Artinem zaczęli rozmawiać o matematyce. Chodziło wtedy o teorię ideałów (Idealtheorie) i mówili o pojęciach takich, jak Ideal, Führer, Gruppe i Untergruppe, po chwili cały wagon zaczął nadstawiać uszu. Byłam śmiertelnie przerażona, myślałam, Boże, za chwilę ktoś nas aresztuje. Był to już rok 1934, a Emmy, nie zwracając na nic uwagi, mówiła bardzo głośno i w podnieceniu coraz głośniej i głośniej, i co chwila pojawiały się słowa Führer oraz Ideal. Była pełna temperamentu i zawsze mówiła bardzo szybko i bardzo głośno.

Terminologia matematyczna nałożyła się tu na partyjną nowomowę, której Emmy zapewne nie znała albo nie zwracała na nią uwagi jako na bełkot. Żona Artina była Żydówką i miała wszelkie powody, by się bać. Rok rządów nazistów pogłębił różnice miedzy wolnym światem a narodowo-socjalistycznym obłędem, przy czym rewolucja dopiero się rozkręcała. Trzy lata później także Artin musiał wyjechać, bo już nawet żona Żydówka nie mogła być tolerowana w czystym rasowo państwie. Emmy zlikwidowała tamtego lata swoje mieszkanie w Getyndze i zrozumiała, że nie wróci szybko do Niemiec. Najbardziej gorzkim aspektem rasistowskiego obłędu było to, że ludzie tacy jak Noether czuli się zawsze Niemcami, nie byli w żaden sposób ludnością napływową, od wieków mieszkali w Niemczech, od XIX wieku tworzyli w coraz większym stopniu ich naukę i kulturę. Żeby nie kończyć myślami o zniszczeniu i nienawiści, przytoczmy słowa Einsteina ze wspomnianego listu do NYT:

Istnieje, na szczęście, mniejszość złożona z tych, którzy wcześnie zdali sobie sprawę, że najpiękniejsze i przynoszące najwięcej satysfakcji przeżycia dostępne człowiekowi nie pochodzą ze świata zewnętrznego, lecz z rozwoju indywidualnych uczuć, myśli i działań. Prawdziwi artyści, badacze i myśliciele zawsze byli osobami tego rodzaju. I choćby życie takich jednostek upłynęło całkiem niepozornie, to jednak owoce ich wysiłków są najcenniejszym dziedzictwem każdego pokolenia dla swych następców.

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

Einstein nie pisał takich tekstów bez zastanowienia. Zawsze przemawiał do niego ideał życia odosobnionego, niemal klasztornego, i poświęconego spokojnemu namysłowi nad światem. Niezbyt lubił błyszczeć, a przynajmniej szybko go to nudziło. Wielki rozgłos, jaki go otaczał, przyjmował raczej z rozbawieniem, jako coś w istocie niepoważnego i nieco wstydliwego. Przyjaźnił się zresztą nie tylko z wybitnymi uczonymi, ale także z różnego rodzaju dziwakami i oryginałami, cenił osobowość, nie lubił ludzi nijakich. O skali osiągnięć Emmy Noether wiedział zapewne od Hermanna Weyla, który mógł to kompetentnie ocenić. Jego podziw dla matematyki narastał z czasem; w latach trzydziestych w jego pracy nie odgrywało już żadnej roli eksperyment, musiał więc kierować się względami formalnymi, czysto matematycznymi. I rzeczywiście, każdy niemal rodzaj matematyki, prędzej czy później znajduje zastosowanie w naukach o przyrodzie czy świecie społecznym.

 

Albert Einstein: Czy Europa okazała się sukcesem? (1934)

Żyjemy w dziwnych czasach. Być może przyszły historyk Polski napisze: „W latach 2015-2025 Polska stała się jednym z państw buforowych między Rosją a Europą, politycznie zależnym od Rosji przy pozorach niezawisłości i antyrosyjskiej retoryce mediów rządowych. Praktyka rządzenia zbliżyła kraj do innych państw buforowych: Ukrainy, Mołdawii, Białorusi”.

Albert Einstein miał dystans do własnej osoby, z pewnością nie był jednak „dużym dzieckiem” ani w nauce, ani w polityce. W roku 1934 redakcja amerykańskiego pisma „The Nation” zwróciła się do niego z prośbą o wypowiedź na temat Europy. Uczony czuł się europejczykiem właściwie od początku, od czasów gimnazjalnych w Monachium. Już wtedy przeszkadzał mu niemiecki nacjonalizm, choć była to jego stosunkowo łagodna wersja z czasów Drugiej Rzeszy. Mieszkał we Włoszech, w Szwajcarii, w Austro-Węgrzech, potem znowu w Niemczech. Jeździł stale do Austrii, do Francji, do Belgii, do Holandii. Zawsze opowiadał się za tym, co stanowi najważniejszy wkład Europy do historii, tzn. za prawem do wolności wyrażania poglądów. Być może Chińczycy zbudują wielką cywilizację bez wolności indywidualnej i bez demokracji, ale na razie stworzyli jedynie bardzo opresyjne, choć skuteczne technologicznie państwo, w którym niewielu z nas miałoby chęć żyć. Europa i jej amerykańskie przedłużenia: Kanada i Stany Zjednoczone to wciąż miejsca, gdzie tworzy się najwięcej wszystkiego, co składa się na cywilizację i kulturę, i czego warto bronić.

Albert Einstein, nowojorski rabin Stephen Wise oraz Thomas Mann na premierze antywojennego filmu The Fight For Peace, 1938

W 1934 roku Europa była podzielona bardziej niż kiedykolwiek: we Włoszech panował faszyzm, Niemcy bezwolnie poddawały się kolejnym „reformom” narodowych socjalistów, w Polsce rozkwitały ruchy takie, jak ONR (choć władze sanacyjne potrafiły szybko ich zdelegalizować). Wielu oglądało się na wschód: z daleka mogło się wydawać, że w Związku Sowieckim kapitalizm został przezwyciężony. Einstein znał wady kapitalizmu, lecz nie podzielał takiego złudzenia, nigdy nie wierzył, aby siłą, odgórnie, bez współpracy i solidarności można było zbudować cokolwiek trwałego i wartego trwania.

Humanitarny ideał Europy wydaje się nierozerwalnie związany ze swobodą wyrażania poglądów, z wolną wolą jednostki, z dążeniem do obiektywizmu myśli, nie kierującym się jedynie względami użyteczności, i z popieraniem różnic w sferze umysłu i upodobań. Te wymagania i ideały należą do istoty europejskiego ducha. Nie można owych wartości i haseł dowieść na drodze rozumowej, gdyż dotyczą podstawowych kwestii w podejściu do życia i stanowią punkt wyjścia, który przyjmuje się bądź odrzuca z przyczyn emocjonalnych. Wiem tylko, że popieram je z całego serca i byłoby dla mnie czymś nie do zniesienia należeć do społeczeństwa, które je konsekwentnie odrzuca. Nie podzielam pesymizmu tych, co sądzą, iż pełnia intelektualnego rozwoju możliwa jest tylko na fundamencie otwartego czy skrywanego niewolnictwa. Mogło to być prawdą w czasach prymitywnej techniki, gdy wyprodukowanie tego, co niezbędne do życia, wymagało wyczerpującej fizycznej pracy większości ludzi. W naszej epoce wysokiego poziomu techniki, przy rozsądnie wyrównanym podziale pracy i odpowiednich świadczeniach dla wszystkich, jednostka powinna mieć zarówno czas, jak i siłę, aby biernie oraz czynnie uczestniczyć w najwyższych osiągnięciach umysłowych i artystycznych w takim stopniu, w jakim pozwalają na to jej skłonności i zdolności. Niestety, społeczeństwo nasze jest bardzo dalekie od spełnienia tych warunków. (…)

Czy uzasadnione jest zawieszenie na jakiś czas podstawowych wolności jednostek ze względu na wyższy cel poprawy organizacji ekonomicznej? Pewien znakomity i bystry uczony rosyjski bronił w dyskusji ze mną takiego poglądu, wskazując na powodzenie przymusu i terroru – przynajmniej na początku – w funkcjonowaniu komunizmu rosyjskiego i na klęskę niemieckiej socjaldemokracji po wojnie. Nie przekonał mnie. Żaden cel nie wydaje mi się tak wzniosły, by można nim było usprawiedliwiać tak niegodne metody. W niektórych wypadkach przemoc może szybko usuwać przeszkody, ale nigdy nie okazała się twórcza.

Drgania struny: najprostsza teoria pola

Drgania struny, badane jeszcze przez Pitagorasa, są rzeczywiście archetypem fizyki matematycznej.

Przyjrzyjmy się im z punktu widzenia zasady najmniejszego działania. W problemie liny mieliśmy już do czynienia z energią sprężystą liny albo struny. Jeśli w punkcie x wychylenie równe jest y(x), to energia potencjalna całej struny jest równa

{\displaystyle V=\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2 dx.}

Oznaczyliśmy napięcie struny T, pochodną zapisujemy jako cząstkową, bo chcemy, by nasza zmienna y mogła zależeć także od czasu t, co opisuje poprzeczne drgania struny. Zachowujemy tylko energię sprężystości, w przypadku drgań struny grawitacja nie gra roli. Sens fizyczny tego wyrażenia jest dość oczywisty: im bardziej kierunek struny odbiega od kierunku poziomego, tym większa jest energia sprężystości. Odkształcając strunę zmieniamy lokalnie jej kierunek.

Potrzebujemy także energii kinetycznej struny. Jeśli jej liniowa gęstość masy wynosi \varrho, to całkowita energia kinetyczna jest równa:

{\displaystyle E_k=\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2 dx.}

Działanie, tak jak poprzednio, równa się

{\displaystyle S=\int_{0}^{\tau} (E_k-V)dt= \int_{0}^{\tau}\left[\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2\right] dx dt. }

 

Działanie jest teraz całką po czasie i przestrzeni z funkcji w nawiasie kwadratowym, którą nazywa się gęstością lagranżianu albo lagranżianem, jeśli ktoś nie przejmuje się bardzo precyzją języka.

{\displaystyle S=\int_{0}^{\tau} {\cal L}dx dt, \mbox{ gdzie }  {\cal L}=\dfrac{\varrho}{2}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\left(\dfrac{\partial y}{\partial x}\right)^2 }

 

Podobnie jak przedtem, możemy z zasady najmniejszego działania otrzymać równania ruchu. W tym celu wyobrażamy sobie, że zamiast y(x,t) wstawiamy pod całkę y(x,t)+\delta y(x,t), gdzie wariacja \delta y jest dowolną, lecz niewielką funkcją położenia i czasu, która znika na końcach struny, dla x=0 oraz x=L i na końcach przedziału czasu: t=0 oraz t=\tau. Liniowa część przyrostu działania to wariacja działania (wyrazy kwadratowe w \delta y odrzucamy, podobnie jak przy obliczaniu pochodnej z definicji):

{\displaystyle \delta S=\int \rho \dfrac{\partial y}{\partial t}\cdot \dfrac{\partial \delta y}{\partial t} dx dt-\int T \dfrac{\partial y}{\partial x}\cdot \dfrac{\partial \delta y}{\partial x} dx dt.}

Całkując oba składniki przez części i korzystając ze znikania wariacji na brzegach naszego obszaru w czasoprzestrzeni (dwuwymiarowej: jeden wymiar przestrzenny i jeden czasowy), dostajemy

{\displaystyle \delta S=0=\int \left[-\rho \dfrac{\partial^2 y}{\partial t^2}{\partial t} + T \dfrac{\partial^2 y}{\partial x^2}\right] \delta y dx dt}.

Wyrażenie w nawiasie kwadratowym musi być wobec tego równe zeru dla dowolnych wartości x i t. Otrzymujemy tzw. równanie falowe:

\dfrac{\partial^2 y}{\partial x^2}=\dfrac{\varrho}{T}\dfrac{\partial^2 y}{\partial t^2}.

Równanie to zależy od jednego parametru, nazwijmy go c:

c=\sqrt{\dfrac{T}{\varrho}}.

Łatwo sprawdzić, że rozwiązaniem naszego równania są dowolne funkcje postaci y=f(x-ct) oraz y=g(x+ct), gdzie funkcje f, g mogą być w zasadzie dowolne (różniczkowalne dwa razy). Opisują one fale poruszające się z prędkością c w prawo albo w lewo. W dwuwymiarowej czasoprzestrzeni są to wszystkie możliwe rozwiązania. Równanie falowe jest liniowe: suma dwóch rozwiązań stanowi także dopuszczalne rozwiązanie.

W problemie drgającej struny występują tzw. fale stojące, będące złożeniem takich fal poruszających się w lewo i w prawo. Można je zapisać jako

y(x,t)=A \sin 2\pi \dfrac{x}{\lambda}\cdot \sin 2\pi \nu t.

Pierwszy sinus automatycznie znika w x=0, warunek aby funkcja znikała też w x=L daje nam równanie

2\pi \dfrac{L}{\lambda}=n\pi\Rightarrow \lambda=\dfrac{2L}{n},

gdzie n jest liczbą całkowitą. Geometrycznie oznacza to, że całkowita liczba połówek sinusoidy musi zmieścić się na odcinku (0,L):

Łatwo sprawdzić, podstawiając nasze rozwiązanie do równania falowego, że dopuszczalne częstości drgań są równe

\nu=\dfrac{nc}{2L}.

Mamy tu uzasadnienie zależności odkrytej przez Vincenza Galilei. Częstości dozwolone są wielokrotnościami częstości podstawowej. W instrumentach muzycznych wzbudzane są nie tylko drgania o wartości n=1, ale także jej wielokrotności, tzw. składowe harmoniczne. Matematycznie oznacza to, że dźwięk opisać trzeba jako sumę drgań o wielu częstościach. Częstość podstawowa decyduje o wysokości dźwięku. Obecność wyższych składowych harmonicznych słyszymy jako barwę dźwięku: w ten sposób odróżniamy tę samą nutę zagraną np. na skrzypcach i fortepianie.

Piękną cechą matematyki (a przez to i fizyki) jest możliwość zmiany problemu na inny równoważny. Zamiast struny możemy wziąć działanie postaci jak wyżej i zawsze otrzymamy z niego równanie falowe. Okazuje się, że np. drgania pola elektromagnetycznego miedzy dwiema płaszczyznami odległymi o L będą także miały tę postać. Oczywiście stała c będzie wówczas prędkością światła. Teraz nie ma już struny, drga pole elektromagnetyczne, czyli byt zupełnie pitagorejski: coś, czego nie można dotknąć, ale mimo to jest bardzo realne. Można się spodziewać, że działanie dla pola elektromagnetycznego powinno przypominać nasze wyrażenie dla struny. To, co tu opisaliśmy to jednowymiarowa (przestrzennie) teoria pola tzw. skalarnego (opisywanego jedną liczbą). Pole elektromagnetyczne jest nieco bogatsze, ponieważ możliwe są różne polaryzacje fal.

Nasza jednowymiarowa teoria pola traktuje w równoprawny sposób zmienne czasowe i przestrzenne. Jeśli c jest prędkością światła, teoria jest relatywistyczna, tzn. zgodna ze szczególną teorią względności, w której czas i przestrzeń są nierozerwalnie związane ze sobą, choć nietożsame. Był to w istocie problem rozwiązany przez Einsteina: teoria elektromagnetyzmu, która prowadzi do równania falowego, jest nie do pogodzenia z mechaniką Newtona. W elektromagnetyzmie zawsze otrzymujemy fale biegnące z prędkością c w próżni. W mechanice Newtona ich mierzona prędkość powinna zależeć od ruchu obserwatora. Można np. dogonić falę akustyczną, nie ma jednak sposobu, aby dogonić falę elektromagnetyczną – zawsze będzie ona od nas uciekała z prędkością światła. Taki prosty eksperyment myślowy przyciągnął uwagę Einsteina, kiedy uczył się on w Aarau do matury po oblanych (ale nie z fizyki) egzaminach na Politechnikę w Zurychu.

 

Nobel z fizyki 2017

Już w zeszłym roku było wiadomo, że odkrycie fal grawitacyjnych to coś wybitnego nawet wśród prac zasługujących na Nagrodę Nobla. Po pierwszym zarejestrowaniu fal grawitacyjnych pojawiły się następne, teraz detektory pracują już w trzech miejscach na Ziemi, co pozwala wyznaczyć kierunek sygnału. Nie ma wątpliwości, że zjawisko zostało rzeczywiście wykryte. Nagrodzeni zostali dwaj pionierzy (nie wszyscy zresztą dożyli), którzy rozpoczynali te prace cztery dekady temu i jeden z obecnych liderów projektu. Przez cały ten czas poprawiano próg czułości aparatury, która mierzy niewiarygodnie małe zmiany odległości zwierciadeł wywołane odkształceniami samej przestrzeni. W końcu udało się osiągnąć czułość, przy której rejestruje się fale wyemitowane podczas wielkich katastrofalnych epizodów połączenia się dwóch czarnych dziur w jedną. Wszystkie one wydarzyły się miliardy lat temu. Obserwacje te potwierdzają teorię grawitacji Einsteina w nowym kontekście i zaczynają być nowym źródłem informacji dla astrofizyków. Tak to jest: jeśli nasze teorie działają, to można je wykorzystać do zbierania nowych informacji o świecie.

Więcej na temat fal grawitacyjnych

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.