Einstein dadaista (1919-1920)

Przyjmowanie nowej prawdy naukowej to proces dramatyczny. Grają w nim rolę emocje, ambicje, przesądy, ale na szczęście także racjonalne przesłanki – na dłuższą metę nie da się utrzymać teorii, która nie ma eksperymentalnych potwierdzeń i dzięki której nie udało się zrozumieć niczego nowego. Teoria względności zyskała efektowne potwierdzenie w roku 1919 i Albert Einstein nagle stał się sławny na cały świat.

Artystka awangardowa Hannah Höch umieściła go na sławnym kolażu Cięcie dadaistycznym nożem kuchennym przez piwny brzuch najnowszej epoki weimarskiej w kulturze Niemiec (1919).

Hannah Höch, Cut with the Kitchen Knife Dada Through the Last Weimar Beer-Belly Cultural Epoch of Germany, 1919-20

Obrazek na flickr zawiera identyfikację niektórych postaci kolażu. A tu jest jego większa wersja:

https://www.artsy.net/artwork/hannah-hoch-cut-with-the-dada-kitchen-knife-through-the-last-weimar-beer-belly-cultural-epoch-in-germanyc

Na prawo od Einsteina mamy nieco pokiereszowaną twarz cesarza Wilhelma II, który abdykował po przegranej wojnie i uciekł do Holandii, pod nim fragment fotografii z manifestacji bezrobotnych. Są także Karol Marks i Lenin, niemieccy komuniści i artyści. Obok Einsteina głowa prezydenta Republiki Weimarskiej Friedricha Eberta doklejona do torsu tancerki topless. W prawym dolnym rogu znajduje się główka autorki na tle mapy Europy z zaznaczonymi krajami, w których kobiety nie mają jeszcze prawa głosu (Francja, Portugalia, Bałkany; Polska znalazła się tu chyba przez pomyłkę). Einstein – Żyd i naukowy rewolucjonista – niemal automatycznie łączony był z lewicą społeczną i artystycznym undergroundem. Wciąż zapowiadano jego wyjazd do Moskwy, gdzie nigdy nie był ani się też nigdy nie wybierał. Jeszcze po drugiej wojnie światowej FBI usiłowało ustalić, czy uczony był członkiem partii komunistycznej w Niemczech (nie był, nie był też żadnym sympatykiem komunizmu), przeszukiwano jego śmieci i podsłuchiwano telefon.

W roku 1919 fizyk nieoczekiwanie znalazł się w centrum zainteresowania mediów. Jego teoria zaczęła ściągać na siebie entuzjazm albo oburzenie, które trudno dziś zrozumieć. Jako element kultury masowej zaczęła być krytykowana, objaśniana bądź zwalczana przez ludzi, którzy nie mieli pojęcia o fizyce. Z jakiegoś powodu wszyscy zapragnęli mieć na jej temat własny pogląd. Szczególnie bulwersowała względność czasu: oto nie płynie on jednakowo dla wszystkich i zamiast być solidną podstawą rzeczywistości sam staje się jeszcze jednym zjawiskiem, kolejną zmienną fizyczną, podlegającą pomiarowi. Czas własny mierzony przez dwóch obserwatorów, którzy rozdzielili się i potem ponownie spotykają, zależy od ich historii, od tego, co im się po drodze przydarzyło, obaj na ogół zmierzą inny odstęp czasu pomiędzy spotkaniami. Jest to paradoks bliźniąt – w istocie żaden paradoks, lecz własność naszego świata sprawdzana tysiące razy eksperymentalnie, choć nie na bliźniakach.

W Niemczech publiczna dyskusja na temat teorii względności od początku zatruta była oparami nacjonalizmu: Żyd Einstein dla niektórych nie był dość narodowoniemiecki, toteż nie mógł mieć racji. Intelekt żydowski różni się bowiem od germańskiego: jest powierzchowny, nie zgłębia istoty rzeczy, tworzy sztuczne uogólnienia, lubuje się w abstrakcjach. Żydzi w Niemczech stanowili zaledwie 1% ludności, lecz spośród nich wywodziła się wielka część wybitnych uczonych, w miastach takich jak Berlin większość prawników i lekarzy było pochodzenia żydowskiego, do Żydów należały wielkie domy towarowe i koncerny prasowe. Konstytucję Republiki Weimarskiej napisał Żyd. Z punktu widzenia nacjonalistów to Żydzi stali za przegraną wojną (teoria noża w plecy) i to oni teraz bogacili się w kapitalistycznej gospodarce. Nawet komunistami, buntującymi się przeciwko kapitalizmowi, też często byli Żydzi.

W życiu politycznym jest mniej przypadków, niż się sądzi. Osoba Einsteina była wygodnym celem ataków: żeby wzbudzić wrogość, trzeba najpierw stworzyć postać wroga, wykazać, jak przebiegłe są jego knowania. Paul Weyland, zawodowy hochsztapler i mąciciel, umyślił sobie, że przeprowadzi całą kampanię przeciwko teorii względności i jej autorowi. Założył coś, co nazywało się Grupą Roboczą Niemieckich Przyrodników dla Zachowania Czystej Nauki (Arbeitgemeinschaft
deutscher Naturforscher zur Erhaltung reiner Wissenschaft). Naprawdę istniał chyba tylko ten szyld oraz pieniądze, które Weyland obiecywał różnym uczonym za wzięcie udziału w zwalczaniu teorii względności – 10 do 15 tys. marek – nie wiadomo, czy ktoś ostatecznie otrzymał taką sumę, czy też Weyland dopiero zamierzał ją zarobić. Jak się zdaje, Weyland zachęcany był przez dwóch noblistów, antysemitów i nacjonalistów: Philippa Lenarda i Johannesa Starka. W sierpniu 1920 roku w wielkiej sali Filharmonii Berlińskiej odbył się pierwszy z zapowiadanej serii antyeinsteinowskich sabatów. Wystąpili na nim sam Weyland oraz profesor eksperymentator z Berlina, Ernst Gehrcke, od lat zwalczający teorię względności. Weyland, określający Einsteina jako naukowego dadaistę, następująco przedstawił sytuację Niemiec:

Teraz, gdy zubożeliśmy pod względem finansowym, prowadzi się działania mające nam odebrać naszą własność  intelektualną; od dziś mamy przestać myśleć w sposób niezależny. W polityce to się im udało. Widzicie to każdego dnia i każdej godziny we wszystkich wiadomościach, jak oszalała grupa bezkrytycznych ludzi pod wodzą pozbawionych  skrupułów i egoistycznych przywódców zmierza do bolszewizmu. Etyka i moralność stały się pustymi słowami, ludzie, którzy starają się zabić w Niemcach wszystko, co czyniło ich wielkimi, teraz chcą im odebrać także naukę. (…) Bo konsekwencje i intencje teorii względności i zasady względności Einsteina i jego zwolenników sięgają dalej i głębiej, niż uświadamia to sobie opinia publiczna.

Niewykluczone, że Weyland starał się po prostu zarobić na biletach wstępu na owo przedstawienie. Zjawiło się sporo publiczności, w tym sam Einstein. Gehrcke przedstawił główne tezy swej broszury: Teoria względności – naukowa sugestia masowa, wydanej nakładem Grupy Roboczej jako pierwszy zeszyt serii. Gehrcke starał się ograniczać do argumentacji naukowej i żywo zaprzeczał, że kierują nim jakieś pozanaukowe względy. Przeświadczony był jednak, że zdemaskował rozmaite szalbierstwa Einsteina. Jego zdaniem Einstein sprytnie wykorzystywał fakt, że naukowcy ograniczeni są swoją specjalnością i stworzył teorię, która zawiera elementy filozofii, fizyki i matematyki tak pomieszane, że nikt nie czuje się dostatecznie kompetentny, aby ją zanegować.

Ernst Gehrcke. Einstein powiedział o nim: „ Gdyby miał tyle inteligencji co arogancji, to dyskusja z nim byłaby nawet przyjemna”.

Z rzeczy pozytywnych Gehrcke wierzył w istnienie eteru i wypowiedzi Einsteina na ten temat uważał za sprytne kluczenie oraz mylenie tropów. Rzeczywiście, był tu Einstein niekonsekwentny: najpierw, w szczególnej teorii, z młodzieńczą dezynwolturą stwierdził, że eter jest zbędny, później, w teorii ogólnej, obdarzył czasoprzestrzeń strukturą geometryczną, która w pewnym stopniu mogła przypominać eter. Nie była to jednak zmiana poglądów filozoficznych, lecz raczej podążanie za fizyką: fizyk nie może sobie zadekretować, że zawsze będzie trzymać się jakichś ram pojęciowych, bo przyroda może nie zechcieć z nim współpracować w tej kwestii. W każdym razie to, co dla kogoś innego byłoby naukowym namysłem, ewolucją poglądów wskutek wieloletniej pracy, w oczach Gehrckego stało się po prostu próbą oszustwa. Szczególnie upodobał sobie Gehrcke następujący argument przeciwko paradoksowi bliźniąt: skoro Einstein twierdzi, że wszystkie ruchy są względne, to obaj bliźniacy znajdują się w symetrycznej sytuacji, bo z każdym z nich można związać układ odniesienia (co jest prawdą, ale nie oznacza, że historie obu stają się dzięki temu symetryczne). Wiele też mówił Gehrcke o grawitacyjnym przesunięciu linii widmowych ku czerwieni, które było przewidziane przez Einsteina, lecz nie zostało zaobserwowane. Pomijał przy tym trudności obserwacyjne: przewidywany efekt był niewielki w porównaniu z szerokością typowych linii widmowych ciał niebieskich. Jako specjalista od optyki musiał to świetnie rozumieć, wolał jednak udawać, że obserwacje wyraźnie przeczą teorii względności. Także obserwacje Eddingtona – ugięcia promieni świetlnych w pobliżu Słońca – zbył pobieżnym omówieniem, jakby już fakt potwierdzenia niemieckiej teorii przez Anglika tuż po wojnie nie stanowił dodatkowego argumentu na rzecz Einsteina. Nikt nigdy nie kwestionował zresztą absolutnej uczciwości i prawdomówności kwakra Eddingtona. Milczał też Gehrcke na temat berlińskich zwolenników teorii względności: przede wszystkim Maksa Plancka, uchodzącego za największy autorytet nie tylko naukowy, ale i moralny, a także Maksa von Laue, noblisty i niewątpliwie „prawdziwego” Niemca. Postawa Gehrckego charakteryzowała się nienaukowymi uprzedzeniami, nawet jeśli pozornie prowadził on debatę ściśle naukową.

Ostatecznie z serii wykładów i wydawnictw nic nie wyszło. Inni naukowcy wycofali się z przedsięwzięcia, widząc, że nie przyniesie im ono chluby. Wycofał się też chyłkiem Philipp Lenard, który nawet poczuł się urażony tym, że jest wymieniany w kontekście tej sprawy – najwyraźniej wydawało mu się, że hipokryzja warta jest tyle samo co cnota.

Epizody tego rodzaju nie były na szczęście całą prawdą o nauce niemieckiej, ale też stanowiły coś więcej niż nieprzyjemne incydenty. Życie publiczne Niemiec przesiąknięte było nienawiścią i żądzą odwetu. W roku 1920 Niemcy nie były jeszcze skazane na powtórną wojnę i jej złowieszcze konsekwencje. Były jednak krajem wewnętrznie bardzo podzielonym. Podziały te z upływem lat rosły i po wieloletnim podżeganiu do nienawiści, po zimnej wojnie domowej z elementami przemocy, wykoleiły kraj zupełnie. Stało się to w latach trzydziestych, gdy gospodarka zaczęła już wychodzić z kryzysu. To najlepszy dowód, że Marks się mylił: ekonomia nie determinuje historii. Jeśli na nią wpływa, to w sposób pośredni, poprzez społeczne nastroje, a one zależą od wielu czynników, także irracjonalnych i trudnych do zmierzenia. W przypadku Niemiec wielką rolę odegrało poczucie upokorzenia przegraną wojną i jej wersalskimi następstwami. Hitler obiecywał lepszą przyszłość i jednocześnie wpędził Niemcy w wojnę, która musiała być przegrana – wystarczyło spojrzeć na mapę. Ale społeczeństwo powodowane resentymentem łatwo dało sobie wyperswadować, że w taki właśnie sposób uda się stworzyć potęgę kraju i zapewnić trwały pokój. Gdyby Niemcy nie cierpieli na ten chorobliwy, pełen kompleksów nacjonalizm, ich kraj stałby się mocarstwem dwadzieścia lat wcześniej w sposób pokojowy. Nacjonalizm nigdy nie jest lekarstwem, zawsze jest chorobą.

 

 

Reklamy

Kosmologia relatywistyczna w kwadrans II

  • Metryka czasoprzestrzeni

Dla naszego jednorodnego i izotropowego modelu z płaską 3-przestrzenią metryka wszechświata przyjmuje prostą postać:

ds^2=c^2 dt^2-R^2 d\vec{x}\,^2=c^2 dt^2-R^2 (dr^2+r^2 d\vartheta^2+r^2 \sin^2\vartheta d\varphi^2).

Druga postać zapisana jest przez współrzędne sferyczne r, \vartheta, \varphi. Współrzędne x,y,z oraz r, \vartheta, \varphi dla danej galaktyki pozostają stałe (o ile nie ma ona ruchu własnego, a tylko bierze udział w rozszerzaniu wszechświata: przepływie Hubble’a). Jedyny parametr, czynnik skali R(t) opisuje ewolucję wszechświata, czyli jego rozszerzanie (choć równie dopuszczalne teoretycznie byłoby kurczenie się). Czasoprzestrzeń ta nie jest płaska, mimo że płaska jest 3-przestrzeń. Ogólna teoria względności dopuszcza dowolne układy współrzędnych, ten nasz wyróżniony jest fizycznie: w tym układzie współrzędnych mamy wspólny kosmiczny czas oraz współrzędne współporuszające się. Odległość danej galaktyki od nas (r=0) równa jest

D=R(t)r,

oznacza to, że szybkość oddalania się danej galaktyki równa jest (przyjmujemy, że galaktyka nie ma ruchu własnego):

\dot{D}=\dot{R}r =\dfrac{\dot{R}}{R}Rr\equiv H(t) D.

Jest to prawo Hubble’a. Zauważmy, że ta odległość mierzona jest w danej chwili kosmicznego czasu, a więc i prędkość powinna być obecną prędkością galaktyki. W rzeczywistości nie możemy obserwować całej przestrzeni w żadnej chwili – jedyne, co widzimy, to stożek przeszłości: dalsze obiekty w chwilach odpowiednio wcześniejszych itd. W napisanym powyżej prawie Hubble’a prędkość nie musi być mniejsza niż c. Nie musimy się tym przejmować, ponieważ startujemy z metryki, która automatycznie zapewnia lokalną stałość prędkości, a jedynie to się liczy.

  • Mikrofalowe promieniowanie tła (CMB)

Do tej pory mówiliśmy tylko o grawitacji, nie interesowaliśmy się zjawiskami opisanymi przez inne dziedziny fizyki. Jeśli wszechświat był kiedyś gęsty, to musiał także być gorący. Rozpatrzmy, co się dzieje z gęstością energii promieniowania u (w dżulach na metr sześcienny), gdy objętość V się zmienia. Z I zasady termodynamiki mamy (rozszerzanie jest adiabatyczne):

dE=d(uV)=V du+u dV=-p dV,

gdzie p jest ciśnieniem promieniowania. Jest ono równe p=\frac{1}{3}u. Wstawiając to do I zasady termodynamiki i korzystając z faktu, że V=\frac{4}{3}\pi R^3, a dV=4\pi R^2 dR, dostaniemy

\dfrac{du}{u}+4\dfrac{dR}{R}=0\Rightarrow u\sim R^{-4}.

Gęstość energii podzielona przez c^2 daje wkład promieniowania do całkowitej gęstości materii – wielkość, którą należy traktować jako źródło grawitacji w równaniu (*) z pierwszej części. Patrząc nieco inaczej, długość fali promieniowania powinna skalować się, jak R^{-1}, a liczba fotonów w jednostce objętości jak R^{-3}.

Ponieważ energia atomów zależy od współczynnika skali jak R^{-3}, więc dla małych R energia promieniowania wszystko zdominuje. Wiadomo też, że gęstość energii promieniowania jest proporcjonalna do czwartej potęgi temperatury T^4, otrzymujemy więc

T\sim\dfrac{1}{R}.

Temperatura promieniowania jest tym wyższa, im bliżej Wielkiego Wybuchu jesteśmy i energia promieniowania dominuje nad innymi postaciami energii. Mamy więc gorący Wielki Wybuch. W 1965 roku zaobserwowano promieniowanie, które pozostało z wczesnego etapu wszechświata i które z tego powodu zwane jest też reliktowym, jest bowiem czymś w rodzaju skamieliny. Od tamtej pory badane jest ono z coraz większą dokładnością przez różne misje, ostatnią był satelita Planck.

To, co dociera do nas z każdego kierunku wszechświata jest promieniowaniem cieplnym, rozkładem Plancka, o temperaturze niecałe 3K, a więc głównie mikrofalowym. Promieniowanie to jest obrazem wszechświata w chwili t=380 \,000 lat po Wielkim Wybuchu. Zostało wyemitowane gdy czynnik skali był 1000 razy mniejszy niż dziś, miało więc ono wówczas temperaturę 3000 K i przypadało na obszar widzialny i podczerwień. Co więcej, okazuje się, że z bardzo dużą dokładnością (10^{-5}) temperatura owego promieniowania jest taka sama w każdym kierunku. Kolejne misje satelitarne badały właśnie owe fluktuacje: ich rozkład i wielkość zawierają najróżniejsze informacje na temat wszechświata w tamtym momencie. Z niejednorodności tych wyewoluował dzisiejszy wszechświat.

Skąd wzięło się promieniowanie tła? Wszechświat przed t=380\, 000 lat składał się głównie z protonów i elektronów, które miały na tyle dużą energię kinetyczną (temperaturę), że nie łączyły się w atomy wodoru. Taka plazma silnie rozprasza promieniowanie elektromagnetyczne, ponieważ naładowane cząstki wprawiane są przez nie w drgania, a to z kolei oznacza wysyłanie nowej fali elektromagnetycznej (jak w antenie) kosztem energii fali pierwotnej. W rezultacie energia wysyłana jest na wszystkie strony, ośrodek nie przepuszcza promieniowania. Sytuacja zmieniła się, gdy temperatura spadła na tyle, by elektrony mogły utworzyć z protonami atomy wodoru. Powstał wtedy zwykły atomowy gaz, tak samo przezroczysty jak np. powietrze. Od tamtej pory termodynamiczne losy atomów i promieniowania rozprzęgły się. Z atomów powstało wszystko, co dziś widzimy: gwiazdy, planety, galaktyki itp., natomiast promieniowanie stygło w miarę rozszerzania, aż dotarło do nas.

Mała dygresja. Przy okazji promieniowania zauważmy, że statyczny wszechświat Einsteina, omawiany poprzednio, byłby niestabilny także z powodów astrofizycznych. Gdyby nawet dobrać odpowiednio jego gęstość i stałą grawitacyjną, to po pewnym czasie zmieniłaby się jego zawartość: gwiazdy syntetyzują hel z wodoru i cięższe pierwiastki z lżejszych, zamieniając różnicę energii na promieniowanie. Z czasem więc mniej będzie materii atomowej, a więcej promieniowania. Gdyby to było wszystko, pole grawitacyjne by się nie zmieniło, ponieważ obie zmiany są równe za sprawą zasady zachowania energii. Jednak źródłem pola grawitacyjnego jest nie sama gęstość materii \varrho, lecz wielkość \varrho+3p/c^2. Oznacza to, że pole grawitacyjne stanie się silniejsze po zamianie materii atomowej na promieniowanie, gdyż dla promieniowania (po uwzględnieniu, że p=u/3c^2\equiv \varrho/3) mamy: \varrho +3p/c^2=2\varrho. W einsteinowskiej grawitacji ciśnienie światła też jest źródłem pola grawitacyjnego.

  • Odległości

W rozszerzającym się wszechświecie należy być ostrożnym, kiedy mówi się o odległościach. Jedną z możliwych definicji wymieniliśmy wyżej: to odległość mierzona w danym momencie kosmicznego czasu. Do innej miary odległości prowadzi chwila wyemitowania światła t_e, które obserwujemy dziś w t_0. Światło to biegło więc t_0-t_e lat. Jak daleko znajdowało się owe źródło w chwili emisji? Inaczej mówiąc, jak daleko dotrze światło wysłane w chwili t_e z punktu r=0 i odebrane w chwili t_0? Światło biegnie po linii świata, dla której ds=0, a więc jego współrzędna r w chwili t_0 będzie równa

c dt=R(t) dr \Rightarrow r={\displaystyle \int_{t_e}^{t_0}}\dfrac{c dt}{R(t)}.

Odległość tego punktu w chwili emisji jest dana równaniem

D=R(t_e)r,

a dzisiejsza odległość tego punktu równa jest

D_{now}=R(t_0)r.

Odległość D jako funkcja chwili emisji jest to stożek przeszłości zbudowany na zdarzeniu tu i teraz. Ponieważ wszechświat kurczy się, gdy cofamy się w czasie, więc odległości D osiągają maksimum dla pewnej chwili emisji. Oznacza to, że wszystko, co widzimy, znajduje się w odległościach nie większych od owego maksimum. W ten sposób kątowe rozmiary galaktyk osiągają pewne minimum, a te, które wysłały światło jeszcze wcześniej, będą widziane jako większe na niebie (choć słabsze).

Na rysunku widzimy kształt stożka przeszłości i dwie linie świata galaktyk. Każdą z nich mogliśmy zobaczyć w chwili przecięcia jej linii świata ze stożkiem przeszłości. Obie były wtedy w podobnej odległości, powinny więc być jednakowej wielkości kątowej. Światło odpowiadające czerwonej galaktyce biegło do nas dłużej, a  jego długość fali rozciągnęła się bardziej, uległa większemu przesunięciu ku czerwieni w języku astronomów. Dziś obie znajdują się znacznie dalej od nas, ale już tego nie zobaczymy.

  • Trudności kosmologii Wielkiego Wybuchu: płaskość i horyzonty

Obserwowana 3-przestrzeń jest płaska. Oznacza to, że całkowita gęstość wszystkich form energii równa się dokładnie wartości krytycznej. Inaczej mówiąc nasz wszechświat ma dokładnie prędkość ucieczki: ani mniej, ani więcej. Oznacza to, że np. w jedną nanosekundę po Wielkim Wybuchu gęstość musiała być dopasowana bardzo ściśle, inaczej nasz wszechświat zachowywałby się całkiem inaczej. To tak, jakbyśmy wystrzelili z Ziemi pocisk z prędkością idealnie równą 11,2 km/s, ani trochę więcej, ani trochę mniej. Nie jest to niemożliwe, nie wygląda jednak na sytuację zbyt „naturalną” – postawiłem cudzysłów, ponieważ nie wiemy, co jest, a co nie jest naturalne dla wszechświata. Fizycy woleliby jakiś mechanizm, który faworyzuje płaski wszechświat.

Źródło: Ned Wright Cosmological Tutorial

Innym problemem jest stałość temperatury promieniowania tła docierającego z każdej strony. Na pierwszy rzut oka stałość ta wygląda zdroworozsądkowo: gaz był w równowadze termicznej, więc wysyłał promieniowanie o jednej temperaturze. Żeby zobaczyć, dlaczego jest to problem, wprowadźmy tzw. czas konforemny, spełniający warunek dt =R d\tau. Mamy wówczas

ds^2=R^2(c^2 d\tau^2-d\vec{x}\,^2).

Nasza metryka jest taka jak przestrzeni Minkowskiego, choć niezupełnie, gdyż przemnożona jest przez pewien wspólny czynnik skali. Nie ma sztuczki sprowadzającej zakrzywioną przestrzeń do płaskiej, ponieważ są one geometrycznie różne. Nasza czasoprzestrzeń nadal jest zakrzywiona, czego oznaką jest funkcja R(t). Jednak takie współrzędne są wygodne, gdyż zapewniają, że światło na wykresie czasoprzestrzennym biegnie pod kątem \pm 45^{\circ} (przyjmujemy c=1). Galaktyki w tym układzie współrzędnych mają stałe położenia, czyli ich linie świata biegną pionowo w górę. Sytuacja wygląda wówczas następująco. W chwili rozprzęgnięcia promieniowania z atomami stożki przeszłości różnych punktów CMB były rozłączne.

Rozłączne stożki przeszłości oznaczają, że w przeszłości zdarzenia takie nie miały żadnych wspólnych zdarzeń, a więc i możliwości wyrównania temperatury, bo takie wyrównywanie następuje dzięki wymianie energii. Izotropia promieniowania tła staje się więc wynikiem jakiegoś bardzo szczególnego wyboru warunków początkowych. Znów: fizycy woleliby nie zakładać aż tak szczególnych warunków początkowych. Obliczenia pokazują, że promieniowanie docierające z kątów większych niż $1,5^{\circ}$ powinno być fizycznie niezależne. Cała sfera niebieska rozpada się na ok. 10 000 niezależnych kawałków. Z jakiegoś powodu wszystkie te kawałki mają taką samą temperaturę.

Standardowym sposobem uniknięcia tych paradoksów jest inflacja. W bardzo wczesnym etapie po Wielkim Wybuchu, np. t=10^{-35} s przez bardzo krótki czas mamy dużą stałą kosmologiczną i wszechświat rozszerza się wykładniczo zgodnie z modelem de Sittera. Potem wraca do zwykłego modelu, o którym mówiliśmy. W przypadku płaskości skutek inflacji jest taki, jakbyśmy niewiarygodnie mocno nadmuchali balon: jego powierzchnia stanie się automatycznie płaska, przynajmniej dla naszej dokładności pomiarów. Także problem horyzontu rozwiązuje się wtedy dość naturalnie. Inflacja trwa bardzo krótko, licząc w czasie kosmicznym, ale długo w czasie konforemnym. Wygląda to tak.

Skutek jest więc taki, jakbyśmy cofnęli chwilę Wielkiego Wybuchu i dzięki temu stożki przeszłości różnych punktów promieniowania tła zdążyły się zetknąć.

Inflacja przewiduje także właściwe zachowanie fluktuacji promieniowania tła, co jest ważne, bo przesądza o dalszej ewolucji wszechświata.

Jak to zwykle bywa, każde rozwiązanie rodzi dalsze pytania i trudności. Nie wiadomo nic o konkretnym fizycznym mechanizmie inflacji, to znaczy wiadomo tyle, ile wynika z ograniczeń kosmologicznych, nic nie wiemy natomiast o konkretnych polach, które miałyby inflację wywołać. Jest też problem łagodnego wyjścia z fazy inflacyjnej, tzw. graceful exit. Chodzi o to, że modele przewidujące inflację na ogół nie chcą się zatrzymać, lecz dalej wywołują zachowania budzące wątpliwości. Np. generują bąble czasoprzestrzeni, które byłyby oddzielnymi wszechświatami. Nie ma więc żadnego ogólnie przyjętego opisu tej fazy wszechświata. Niektórzy, np. Roger Penrose, sądzą, że idea ta więcej kłopotów rodzi niż rozwiązuje.

Kosmologia relatywistyczna w kwadrans I

Kosmologia, czyli nauka o wszechświecie jako jednym obiekcie fizycznym, została zapoczątkowana przez Einsteina w 1917 roku. Nauka ta ma więc zaledwie sto lat i niesamowite osiągnięcia: potrafimy dziś bardzo wiele powiedzieć na temat wszechświata, w którym się znajdujemy.

  • Sens równań Einsteina

Ponieważ nie chcemy wprowadzać aparatu matematycznego geometrii różniczkowej, skorzystamy ze sformułowania H.C. Baeza i E.F. Bunna, gdzie można znaleźć więcej szczegółów.

Wyobraźmy sobie niewielką kulę cząstek próbnych, które są względem siebie w spoczynku w chwili t=0 i spadają swobodnie w  polu grawitacyjnym. Jeśli chwilę odczekamy, kula ta pod działaniem grawitacji przekształci się w elipsoidę. Przesunięcia cząstek będą proporcjonalne do kwadratu czasu (mierzonego w środku naszej kuli). Objętość kuli także zmieni się proporcjonalnie do kwadratu czasu:

V(\delta t)=V(0)+\dfrac{1}{2}\ddot{V} \delta t^2,

gdzie \ddot{V} jest drugą pochodną objętości naszej kuli (pierwsza pochodna znika, ponieważ cząstki spoczywają w chwili początkowej). Jeśli w objętości naszej kuli znajduje się jakaś materia, to można ją opisać za pomocą gęstości \varrho oraz ciśnień, jakie ona wywiera: p_x, p_y, p_z. W teorii względności ciśnienie (które jest niczym innym niż strumieniem pędu cząstek przypadającym na jednostkę powierzchni) należy dodać do gęstości materii.

Dla naszej kuli cząstek próbnych (zakładamy, że ich masa i energia jest znikomo mała) obowiązuje równanie grawitacyjne:

\dfrac{\ddot{V}}{V}=-4\pi G \left(\varrho+\dfrac{p_x+p_y+p_z}{c^2}\right) \mbox{ (*)}.

Stała G jest stałą grawitacji. Okazuje się, że równanie to jest równoważne tensorowym równaniom Einsteina, musimy tylko dopuścić kule cząstek próbnych poruszających się w chwili początkowej z dowolnymi prędkościami względem naszego inercjalnego (swobodnie spadającego) układu odniesienia. Zazwyczaj ciśnienie jest symetryczne i możemy wtedy zapisać wyraz z ciśnieniami jako 3p/c^2.

Intuicyjny sens tego równania jest jasny: materia (a także ciśnienie) zmniejszają objętość kuli cząstek próbnych – grawitacja jest siłą przyciągającą. Jeśli nasza kula znajduje się w pustej przestrzeni, jej objętość się nie zmieni, zmieniać się będzie natomiast jej kształt.

  • Ekspansja wszechświata

Przyjmiemy przybliżenie wszechświata jednorodnego (taki sam w każdym miejscu) oraz izotropowego (taki sam w każdym kierunku). Obserwacje pokazują, że w dostatecznie dużej skali założenia te są spełnione. Wszechświat nasz się rozszerza, co można sobie wyobrazić, jak na rysunku: daleki obiekty (np. galaktyki) są wciąż względem siebie rozmieszczone tak samo, powiększa się jedynie skala tego obrazu. Możemy ją mierzyć za pomocą jednego parametru R(t). Mamy więc pewien wyróżniony układ współrzędnych dla wszechświata: względem niego galaktyki się nie poruszają (średnio biorąc, ponieważ mogą one mieć swoje prędkości własne, których na rysunku nie zaznaczyliśmy). Jest też jeden wyróżniony czas. Spoczynek galaktyk w tym naszym układzie współrzędnych jest ich ruchem w polu grawitacyjnym (linie stałych współrzędnych są krzywymi geodezyjnymi).

Rozszerzanie nie dotyczy obiektów bliskich, np. Układu Słonecznego albo naszej Galaktyki. Obserwacje wskazują, że R(t) jest funkcją rosnącą czasu. Chwila, w której R(t_{BB})=0, jest chwilą Wielkiego Wybuchu. Skala wszechświata byłaby w niej równa zeru, czyli wszystkie odległości zmniejszyłyby się do zera. Wielki Wybuch jest więc ściągnięciem (być może nieskończonej) przestrzeni do zera, osobliwością. Nie jest wybuchem np. bomby w przestrzeni, lecz wybuchem samej przestrzeni. Znaczy to tylko tyle, że ogólna teoria względności, jak i wszystko, co dziś wiemy, słuszne jest dla t>t_{BB}\equiv 0. Sytuacja jest podobna jak dla funkcji y=1/x: jest ona określona dla wartości x>0 i nie ma sensu w x=0. To wszystko nie wyklucza, że kiedyś jakaś lepsza teoria nie zastąpi owej osobliwości czymś skończonym, gdyż wielkości nieskończone to żadne przewidywanie.

  • Dynamika wszechświata Einsteina-de Sittera

Najprostszy model wszechświata wskazali w 1932 roku Albert Einstein i Willem de Sitter w krótkim komunikacie. Ponieważ chcemy skorzystać z równania Einsteina (*), więc powinniśmy rozpatrzyć kulę cząstek próbnych (galaktyk) spoczywających względem siebie w pewnej chwili. Na rysunku kula ta oznaczona jest jako B’.

Zmiany jej objętości łatwo powiązać ze zmianami jej promienia r(t). Otrzymujemy:

\dfrac{\ddot{V}}{V}=3\dfrac{\ddot{r}}{r}=-4\pi G \varrho,

gdzie pominęliśmy wyraz z ciśnieniem materii.

Wyobraźmy sobie teraz drugą kulę, która rozszerza się wraz z wszechświatem. Dla uproszczenia przyjmijmy, że obie kule mają jednakowy promień w chwili początkowej. Różnią się prędkościami ruchu, czyli pierwszymi pochodnymi współrzędnych, tak jak to zaznaczono na rysunku. Cząstki na powierzchni obu kul poruszają się z tym samym przyspieszeniem, ponieważ ich ruch jest spadaniem w polu grawitacyjnym, a wszystko spada z takim samym przyspieszeniem. Mamy zatem \ddot{R}=\ddot{r} i możemy poprzednie równanie przepisać dla kuli współporuszającej się z galaktykami:

3\dfrac{\ddot{R}}{R}=-4\pi G\varrho.

Zapisaliśmy to dla nieskończenie małej kuli, ale w jednorodnym i izotropowym wszechświecie równanie takie będzie słuszne dla kuli o dowolnych rozmiarach. Druga pochodna promienia równa jest

\ddot{R}=-\dfrac{4}{3}\pi R^3 \varrho \dfrac{G}{R^2}=-\dfrac{GM}{R^2}. \mbox{(2)}

Zastąpiliśmy iloczyn objętości kuli i gęstości masą M. Ta masa zawarta wewnątrz kuli nie zmienia się z czasem, ponieważ kula współporusza się z galaktykami. Otrzymaliśmy równanie, które ma prostą interpretację newtonowską. Jest to równanie ruchu ciała (czerwona kropka) w polu grawitacyjnym masy M.

Wiemy, że zależnie od wartości prędkości możliwe są dwie sytuacje: albo nasza czerwona kropka zawróci po osiągnięciu pewnej maksymalnej odległości, albo będzie oddalać się do nieskończoności. Ten sam wniosek dotyczy kuli galaktyk: albo zawrócą one w pewnej chwili, albo nigdy nie zawrócą i będą się oddalać nieograniczenie. Model Einsteina-de Sittera dotyczy sytuacji granicznej: gdy prędkość oddalania jest równa prędkości ucieczki. Jest to więc najmniejsza prędkość, przy której ekspansja nigdy się nie zatrzyma. Całkowita „energia” naszej czerwonej kropki równa się zero (piszemy w cudzysłowie, bo to nie jest energia świata, lecz jedynie wielkość analogiczna do energii, gdyż takie same równania mają takie same rozwiązania i możemy skorzystać z wiedzy przedeinsteinowskiej):

\dfrac{\dot{R}^2}{2}-\dfrac{GM}{R}=0 \Rightarrow R(t)\sim t^{\frac{2}{3}}.

W modelu tym wszechświat zaczyna się Wielkim Wybuchem. Einstein i de Sitter chcieli zbudować najprostszy relatywistyczny model rozszerzającego się wszechświata i niezbyt przejmowali się szczegółowymi wynikami obserwacji. Model ten ma jeszcze tę własność, że trójwymiarowa przestrzeń jest w nim płaska. W teorii Einsteina to sytuacja szczególna, nasza siatka galaktyk mogłaby bowiem być zakrzywiona.

Oczywiście na obrazku możemy przedstawić dwuwymiarowe powierzchnie, a w tym przypadku chodzi o trójwymiarową przestrzeń.

Wydaje się, że 3-przestrzeń naszego wszechświata jest płaska, tzn. jeśli byłaby zakrzywiona, to promień krzywizny musiałby być gigantyczny nawet w skali kosmologicznej.

  • Stała kosmologiczna = ciemna energia

Einstein zauważył, że z formalnego punktu widzenia jego równania pola mogą zawierać dodatkowy wyraz proporcjonalny do metryki. Fizycznie odpowiadałby on stałej gęstości energii w całej przestrzeni równej \varrho_{vac} c^2  oraz stałemu ciśnieniu p. Wyobraźmy sobie pewną objętość V. Energia w niej zawarta równa się \varrho_{vac} c^2 V. Z termodynamiki wiemy, że zmiana energii dE równa się pracy wykonanej nad układem -pdV. W naszym przypadku

dE=\varrho_{vac} c^2 dV=-pdV\Rightarrow p=-\varrho_{vac} c^2.

Nietypowy znak ciśnienia związany jest z tym, że teraz rozszerzanie powiększa energię zamiast ją zmniejszać, jak w przypadku gazu w naczyniu. Jeśli we wszechświecie nie ma żadnej innej formy energii, równania Einsteina przybierają postać:

3\dfrac{\ddot{R}}{R}=-4\pi G (\varrho_{vac} -3\varrho_{vac})=8\pi G \varrho_{vac}\equiv \Lambda c^2.

Parametr \Lambda zwany jest stałą kosmologiczną. Wszechświat taki prędzej czy później zacznie się rozszerzać (przyjmujemy, że stała kosmologiczna jest dodatnia), i to coraz szybciej. Pusty wszechświat ze stałą kosmologiczną nazywa się wszechświatem de Sittera. Czynnik skali R(t) rośnie wykładniczo z czasem:

R(t)=R_0\exp\left(\sqrt{\dfrac{\Lambda c^2}{3}}t\right).

Zauważmy, że w takim modelu nie ma Wielkiego Wybuchu, ponieważ czynnik skali zawsze jest dodatni. Oczywiście, wiemy, że w naszym wszechświecie występuje materia, a więc wszechświat de Sittera nie jest realistycznym modelem, lecz jedynie pewnym przybliżeniem. Obserwacje pokazują, że nasz wszechświat coraz bardziej zbliża się do świata de Sittera. Mówimy dziś o ciemnej energii, co jest inną nazwą dla stałej kosmologicznej (choć może się też okazać, że sytuacja jest bardziej skomplikowana i opis za pomocą \Lambda nie wystarczy).

  • Wszechświat Einsteina i wszechświat w XXI wieku

Stała kosmologiczna wprowadzona została przez Einsteina w pracy, która zapoczątkowała kosmologię w dzisiejszym sensie. Uczony sądził, że obserwacje wskazują, iż wszechświat jest statyczny, nie zmienia się z czasem. Równania pola grawitacyjnego nie dopuszczają takiej możliwości, dopóki nie wprowadzimy stałej kosmologicznej. Równanie (*) przybiera postać:

3\dfrac{\ddot{R}}{R}=-4\pi G\varrho+\Lambda c^2,

co można przekształcić podobnie jak dla modelu EdS:

\ddot{R}=-\dfrac{MG}{R^2}+\dfrac{\Lambda c^2}{3}R\mbox{ (3)}.

W porównaniu z (2) do przyciągającego wyrazu grawitacyjnego doszedł wyraz odpychający ze stałą kosmologiczną. Jeśli zażądamy, aby ich suma była równa zeru, otrzymamy statyczny model Einsteina z 1917 roku. Później, kiedy okazało się, że wszechświat się rozszerza, Einstein bez żalu pozbył się wyrazu kosmologicznego. Model statyczny był zresztą i tak nie do utrzymania, ponieważ nie jest on stabilny. Załóżmy bowiem, że dobraliśmy tak stałe, iż prawa strona równania (3) równa jest zeru. Mamy więc równowagę. Jeśli jednak powiększymy choćby nieznacznie czynnik skali R, to wzrosną oba wyrazy po prawej stronie i przyspieszenie będzie dodatnie, tzn. niewielki przyrost R powiększy się i nasz wszechświat zacznie się rozszerzać. Podobnie, jeśli zmniejszylibyśmy nieznacznie czynnik skali, prawa strona równania stałaby się ujemna i czynnik skali zacząłby się samorzutnie zmniejszać. Można to też pokazać, zapisując zasadę zachowania „energii” dla równania (3), podobnie jak to zrobiliśmy dla równania (2):

\dfrac{v^2}{2}-\dfrac{GM}{R}-\dfrac{\Lambda c^2 R^2}{6}\equiv E_k+E_p=const.

Nasza „energia” potencjalna ma w tym przypadku postać wzniesienia: jeśli nawet znajdziemy się na jego szczycie z zerową „energią” kinetyczną, to każde, nawet najmniejsze, zaburzenie wytrąci nas z położenia równowagi.

Sytuacja ta ma zasadnicze znaczenie dla naszego wszechświata, ponieważ zawiera on zarówno materię, jak i ciemną energię. Znajdujemy się już po prawej stronie zbocza i coraz szybciej staczamy się w dół, co oznacza, że wyraz kosmologiczny dominuje nad zwykłą grawitacją.

Źródło ilustracji: NASA

Na powyższym obrazku mamy porównanie kilku różnych modeli kosmologicznych. Linia czerwona oznacza 30% materii i 70% ciemnej energii (stałej kosmologicznej) – to są proporcje naszego wszechświata. Linia niebieska pokazuje, jak zachowywałby się czynnik skali, gdyby przyjąć, że ciemnej energii nie ma. Linia zielona odpowiada światowi Einsteina-de Sittera, w którym nie ma ciemnej energii. Wreszcie linia pomarańczowa opisuje wszechświat znacznie gęstszy od naszego, który najpierw się rozszerza, po czym zaczyna się kurczyć aż po Wielki Krach.

 

Tu jeszcze raz widzimy czynnik skali zgodny z obserwacjami naszego wszechświata. 3-przestrzeń jest płaska. Funkcję tę można wyrazić przez funkcje elementarne (por. koniec tekstu). Dla małych t zachowanie przypomina model EdS, później przełącza się na model dS (sama ciemna energia). Grawitacja zakrzywia funkcję w dół, ciemna energia wypycha ją w górę. W rezultacie powstaje krzywa dość zbliżona do linii prostej, ale jest to początek wykładniczego wzrostu.

  • Geometria modelu Einsteina

Nasze podejście do równań Einsteina utrudnia nieco zbadanie, jak wygląda geometria różnych modeli. Pokażemy poniżej, że model statyczny Einsteina opisywany jest geometrią sferyczną: tzn. 3-przestrzeń jest sferą trójwymiarową (powierzchnią kuli czterowymiarowej).

Mamy więc

3\dfrac{\ddot{V}}{V}=-4\pi G\varrho_0+\Lambda c^2=0.

Warunek ten otrzymany był dla niewielkiej kuli cząstek próbnych spoczywającej względem materii wszechświata Einsteina. Rozpatrzmy teraz inną kulę cząstek próbnych, która porusza się ruchem jednostajnym z prędkością v względem materii wszechświata. W układzie nowych cząstek próbnych materia świata ma większą energię: zamiast spoczynkowej mc^2 każda cząstka świata ma teraz energię mc^2+\frac{mv^2}{2} (zakładamy, że prędkość jest nierelatywistyczna). Ponadto długość w kierunku ruchu się skróci i objętość zmniejszy o czynnik \sqrt{1-\frac{v^2}{c^2}}\approx 1-\frac{1}{2}\frac{v^2}{c^2}. Łącznie gęstość naszej materii wzrośnie:

\varrho=\varrho_0\left(1+\dfrac{v^2}{c^2}\right).

W naszym układzie odniesienia pojawi się też ciśnienie w kierunku ruchu, ponieważ wszystkie cząstki poruszają się z taką samą prędkością v.

Pęd transportowany przez powierzchnię o polu S w czasie \delta t będzie równy całkowitemu pędowi cząstek na rysunku, czyli \varrho_0 vv\delta t S, a ciśnienie prostopadłe do powierzchni będzie równe p=\varrho_0 v^2. Łącznie otrzymamy

\dfrac{\ddot{V}}{V}=-8\pi G\varrho_0\dfrac{v^2}{c^2}. \mbox{ (4)}

Co to znaczy, że przestrzeń jest zakrzywiona? Prędkości naszych cząstek próbnych są jednakowe i każda z nich porusza się po południku. Zakrzywienie przestrzeni będzie przejawiać się w tym, że takie równolegle poruszające się cząstki będą się do siebie zbliżać: dwóch podróżników startujących na północ z dwóch punktów równika spotka się na biegunie północnym. Kula poruszająca się w przestrzeni kulistej (możemy sobie wyobrazić koło poruszające się po powierzchni sferycznej) o promieniu krzywizny R_U zostaje skrócona w kierunku prostopadłym do ruchu, ponieważ jej cząstki biegną po południkach, a te zbiegają się ku sobie.

Wyobraźmy sobie, że skrajne cząstki naszego koła poruszają się po południkach tworzących ze sobą kąt \delta \varphi. Obie cząstki poruszają się z przyspieszeniem dośrodkowym. Patrząc sponad bieguna północnego naszej kuli, zaobserwujemy przyspieszenia obu cząstek \vec{a}_1 oraz \vec{a}_2.

Przyspieszenie względne, jak to widać z rysunku, będzie równe

\ddot{y}=-a\delta\varphi=-\dfrac{v^2}{R_U}\dfrac{y}{R_U}=-y\dfrac{v^2}{R_U^2}.

Wobec tego kula 3D cząstek próbnych skróci się w kulistej przestrzeni w dwóch wymiarach prostopadłych do kierunku ruchu i będziemy mieli

\dfrac{\ddot{V}}{V}=2\dfrac{\ddot{r}}{r}=-\dfrac{2v^2}{R_U^2}.

Wstawiając ten wynik do równania (4), otrzymamy warunek

\dfrac{2 v^2}{R_U^2}=8\pi G \varrho_0 \dfrac{v^2}{c^2} \Rightarrow R_U=\dfrac{c}{\sqrt{4\pi G\varrho_0}}=\dfrac{1}{\sqrt{\Lambda}}.

Tyle właśnie otrzymał Einstein. Wniosek ten dość mu się podobał, ponieważ wszechświat miałby skończoną objętość, a zarazem nie miał brzegu.

  • Zależność czynnika skali od czasu

Obliczmy czynnik skali wszechświata dla płaskiego świata zbudowanego z chłodnej materii (p=0) i ciemnej energii. Jest to przypadek naszego wszechświata. Płaskość 3-przestrzeni oznacza, że suma „energii” kinetycznej i potencjalnej jest równa zeru:

\dfrac{1}{2}\dot{R}^2=\dfrac{GM}{R^2}\Rightarrow H^2\equiv \dfrac{1}{R^2}\left(\dfrac{dR}{dt}\right)^2=\dfrac{8\pi G \varrho_{crit}}{3}.

Otrzymaliśmy warunek, jaki spełniać musi gęstość wszechświata: musi być ona równa \varrho_{crit}. Wyrażenie \frac{\dot{R}}{R} nazywa się stałą Hubble’a. Stała Hubble’a zależy od czasu (nie jest więc ściśle biorąc stałą). W przypadku gdy wszechświat jest płaski, lecz zawiera oprócz zwykłej materii także ciemną energię, warunek płaskości przybiera postać:

\varrho_{crit}=\varrho_m+\varrho_{vac}.

Przeważnie zapisuje się to, podając ułamek energii każdego składnika:

\Omega_m+\Omega_{\Lambda}=1,\,\mbox{ gdzie } \Omega_m\equiv\dfrac{\varrho_m}{\varrho_{crit}} \mbox{ oraz } \Omega_{\Lambda}\equiv\dfrac{\varrho_{vac}}{\varrho_{crit}}.

Stała Hubble’a w danym momencie od Wielkiego Wybuchu nie zależy od konkretnego wyboru czynnika skali, można więc wybrać go tak, jak lubią astronomowie obserwacyjni, żeby obecna skala wszechświata była równa 1. Możemy teraz napisać:

\dfrac{1}{R}\dfrac{dR}{dt}=H_0 \sqrt{ \dfrac{\Omega_{m,0}}{R^3}+\Omega_{\Lambda,0} }.

W ostatnim równaniu wyraziliśmy gęstości o prawej stronie przez ich dzisiejsze wartości (gęstość materii skaluje się jak R^{-3}, gęstość energii próżni się nie zmienia). Chcemy teraz wyznaczyć z tego równania funkcję R(t). Pomnóżmy obie strony równania przez \frac{3}{2} R^{3/2}, otrzymujemy wówczas;

\dfrac{ dR^{\frac{3}{2}} }{dt}=\dfrac{3}{2}H_0 \sqrt{ \Omega_{m,0}+\Omega_{\Lambda,0}R^{3} }.

Jeśli wprowadzimy nową zmienną u=R^{3/2}, możemy nasze równanie przepisać w postaci

\dfrac{du}{\sqrt{ k^2+u^2} }=\dfrac{3H_0 \sqrt{\Omega_{\Lambda,0}}}{2} dt,

gdzie k^2\equiv \frac{\Omega_{m,0}}{\Omega_{\Lambda,0}}. Wykonując jeszcze jedno postawienie u=k\sinh \zeta, otrzymamy

\zeta=\dfrac{3H_0 \sqrt{\Omega_{\Lambda,0}}}{2} t,

a wracając do starej zmiennej, możemy zapisać wyrażenie na czynnik skali:

R=\left( \dfrac{\Omega_{m,0}} {\Omega_{\Lambda,0} }\right)^{\frac{1}{3}} \sinh^{\frac{2}{3}} \dfrac{3H_0 \sqrt{\Omega_{\Lambda,0} }}{2} t .

Wyrażenie to pozwala natychmiast zobaczyć, że dla małych czasów (\sinh x\approx x) czynnik skali rośnie jak t^{\frac{2}{3}}, dla dużych natomiast staje się wykładniczy (\sinh x\approx \frac{1}{2}e^{x}). Możemy więc opisać ewolucję naszego wszechświata za pomocą trzech parametrów dzisiejszego wszechświata: stałej Hubble’a oraz dwóch gęstości.

  • Wiek wszechświata

Znajomość obecnego składu wszechświata $latex \Omega_{m,0}$ oraz $latex \Omega_{\Lambda,0}$ wraz ze znajomością dzisiejszej stałej Hubble’a pozwala też obliczyć czas T, jaki upłynął od Wielkiego Wybuchu (czyli czas, gdy a(T)=1):

T=\dfrac{2}{3 H_0 \sqrt{\Omega_{\Lambda,0} }} \,\mbox{artgh}\, \sqrt{\Omega_{\Lambda,0}  }.

Dla danych misji Planck z roku 2015: \Omega_{m,0}=1-\Omega_{\Lambda,0}=0.3089 i stałej Hubble’a H_0=67.90 km/s/Mpc wiek wszechświata T=13.80\cdot 10^9 lat. Zadziwiające jest, że tak niewielka liczba parametrów (gęstość, stała Hubble’a plus wiedza o płaskości) wystarczy do obliczenia, co dzieje się z obiektem tak skomplikowanym jak wszechświat.

 

Oliver Heaviside i głuchy telefon (1886-1891)

Heaviside był człowiekiem trudnym w kontaktach, nie bardzo też interesowała go kariera zawodowa. Rodzina była zbyt biedna, aby mógł zdobyć solidne wykształcenie, toteż zakończył swą szkolną edukację w wieku szesnastu lat. Przebyta w dzieciństwie szkarlatyna upośledziła jego słuch, izolując go od rówieśników. Choć z czasem odzyskał w znacznej mierze słuch, to pozostał autsajderem na resztę życia. Krótko pracował jako telegrafista i pracownik techniczny u boku starszego brata Arthura w firmie zarządzającej kablem pomiędzy Danią i Anglią, lecz zwolnił się w wieku dwudziestu czterech lat i już nigdy później nie pracował zawodowo. Mieszkając w pokoju u rodziców, zajmował się eksperymentalnie i teoretycznie elektrycznością, jedyne pieniądze zarabiał z publikacji artykułów w fachowym piśmie „The Electrician”. Był jednym z pierwszych kontynuatorów Jamesa Clerka Maxwella, udało mu się uprościć i przejrzyściej zapisać równania elektromagnetyzmu. Odkrył rachunek operatorowy ułatwiający rozwiązywanie równań różniczkowych (posługiwał się funkcją δ na długo przed Dirakiem). Zastosował też zapis wektorowy, bez którego trudno dziś sobie wyobrazić teorię Maxwella. Dzięki bratu, pracującemu jako inżynier, znał praktyczne problemy telefonii i podał metodę zbudowania linii przesyłowej w taki sposób, aby nie zniekształcała sygnałów. Problem był palący, ponieważ telefonia rozwijała się burzliwie i wraz ze wzrostem odległości sygnał nie tylko był słabszy, ale też ulegał zniekształceniu. Dalsza historia tego odkrycia Heaviside’a była zapewne do przewidzenia: z początku nie chciano mu wierzyć, a później to inni zarobili miliony na wcieleniu jego idei w życie.

Biografia Heaviside’a skłania do zastanowienia nad rolą autorytetów w różnych dziedzinach. Będąc jednym z najwybitniejszych uczonych swoich czasów, postrzegany był jako jakiś niedouczony telegrafista, a przy tym dziwak. Jego artykuły w „The Electrician” były trudne do zrozumienia, a może po prostu nikt nie przykładał się do ich zrozumienia, ponieważ były autorstwa jakiegoś urzędnika, nie wiadomo właściwie kogo. Tymczasem stanowiły one oryginalny wykład do teorii elektromagnetyzmu. Gdy Heinrich Hertz odkrył fale elektromagnetyczne, w pracach Heaviside’a znaleźć można było nowocześniejsze i prostsze ujęcie teorii, która tak wspaniale się potwierdziła. Nasz „telegrafista” wyprzedził tu znacznie większość uczonych brytyjskich i kontynentalnych. W szczególności jego podejście górowało nad konserwatywnym i sceptycznym nastawieniem Williama Thomsona, późniejszego lorda Kelvina. Ten ostatni nie potrafił się przekonać do teorii Maxwella, co miało znaczenie, ponieważ był najsławniejszym uczonym Wielkiej Brytanii, zasiadał we wszystkich możliwych radach i towarzystwach, a każde jego słowo prasa traktowała jak wyrocznię. Tak było, gdy w 1888 roku, po odkryciu Hertza, Thomson orzekł, iż jego zastrzeżenia wobec teorii Maxwella nieco się zmniejszyły (uznał bowiem, że prąd przesunięcia – najważniejszy element pojęciowy zaproponowany przez Maxwella – z „zupełnie nie do utrzymania” awansował w jego oczach do kategorii „niezupełnie do utrzymania”). Thomson miał swoją wizję idealnej teorii elektromagnetyzmu, prawdopodobnie zresztą dlatego nie osiągnął końcowego sukcesu. W każdym razie to młodszy od niego James Clerk Maxwell rozwiązał problem, choć sir William nie chciał się z tym pogodzić.

 

Baron Kelvin of Largs

William Thomson umiał jednak zachowywać się fair i dzięki temu Oliver Heaviside doczekał się nieco uznania za życia. Wcześniej, w roku 1887, przeszedł swe najgorsze chwile, gdy stracił możliwość publikowania, a zarazem też skromne dochody, jakie ta działalność zapewniała. Za 40 funtów rocznie redakcja otrzymywała ciągły strumień oryginalnych publikacji z dziedziny elektromagnetyzmu. Kryzys nastąpił wtedy, gdy Oliver Heaviside wszedł w konflikt z Williamem Henry’m Preece’em, ważnym ekspertem brytyjskiej poczty. Preece starał się przeforsować kosztowną decyzję budowy linii telefonicznych z kablem miedzianym w miejsce żelaznego. Argumentował, że dzięki temu wzrośnie zasięg rozmów, ponieważ kable żelazne wytwarzają pole magnetyczne, a to prowadzi do strat energii (zmienne pole magnetyczne indukuje dodatkowe napięcie, mówi się o indukcyjności kabla: miedziane zmniejszały wg Preece’a indukcyjność i na tym polegała ich wyższość). Mało tego, Preece twierdził, że wykazał fałszywość teorii Maxwella. W tym samym czasie Arthur i  Oliver próbowali opublikować pracę, która podważała poglądy Preece’a, a nawet im przeczyła: otóż pole magnetyczne wcale nie musi przeszkadzać w przesyłaniu rozmów telefonicznych, a nawet może pomagać. Pewny siebie Preece zakazał publikacji. Obaj bracia zareagowali na to rozmaicie: Arthur jako podwładny Preece’a przestał się zajmować tym tematem, Oliver natomiast zaczął z upodobaniem dowodzić niekompetencji Preece’a, którego określał m.in. jako „the eminent scienticulist” – czyli coś w rodzaju „wybitnego mędrka”. Racja naukowa była całkowicie po stronie Heaviside’a, znalazł on warunek, jaki spełniać powinna linia przesyłowa, aby nie zniekształcała rozmów (chodzi o to, by składowe o różnych częstościach tłumione były w jednakowym stopniu, w ten sposób daleki odbiorca otrzymuje sygnał słabszy, lecz podobny do wysłanego). Ów warunek Heaviside’a był kontrintuicyjny, lecz prawdziwy i oznaczał, że należy w praktyce zwiększać indukcyjność linii, czyli wytwarzane przez nie pole magnetyczne. Nacisk Preece’a sprawił, że zmienił się redaktor naczelny „The Electrician” i nowy już nie chciał publikować artykułów Heaviside’a.

Karykatura z 1888 r.: Preece pod sztandarem wieloletnich doświadczeń pokonuje Olivera Lodge’a (który podawał w wątpliwość skuteczność używanych piorunochronów i krytykował jego teoretyczne rozważania, stając po stronie Heaviside’a)

Atmosfera wokół niego poprawiła się dopiero wówczas, gdy publicznie docenił jego teorię William Thomson. Otworzyło to drogę do przyjęcia Heaviside’a w roku 1891 na członka Towarzystwa Królewskiego, ułatwiło też publikację kolejnych prac. Zadziwiająco mało zmieniło się w życiu uczonego, który przywiązywał chyba większą wagę do możliwości publikacji niż do zarobku. Nadal pozostał prywatnym uczonym, po śmierci rodziców jego środki do życia mocno się skurczyły. Dzięki dyskretnym staraniom paru wybitnych uczonych zaczął Heaviside otrzymywać skromną emeryturę (dyskretnych, ponieważ drażliwy Heaviside nie chciał jałmużny). Żył dość długo, by widzieć, jak jego idea zwiększenia indukcyjności kabli telefonicznych została wcielona w życie jako pupinizacja albo krarupizacja. Zarówno Amerykanin serbskiego pochodzenia Mihajlo Pupin, jak i Duńczyk Karl Emil Krarup, wyciągnęli praktyczne wnioski z teorii Heaviside’a. Pupin po długiej batalii prawnej z firmą AT&T zarobił na swoim patencie 450 000 $ (blisko 30 mln $ obecnie). Jego rozwiązanie polegało na umieszczaniu w stałych odległościach cewek zwiększających indukcyjność. Krarup zastosował żelazne druty (zwiększające pole magnetyczne) oplatające miedziany rdzeń. Dzięki temu w pierwszych latach XX wieku wzrósł zasięg linii telefonicznych, a ich układanie stało się tańsze. Także kariera Preece’a, który nigdy nie przyznał się do błędu, nie doznała żadnego uszczerbku i rozwijała się pomyślnie, z czasem doczekał się on tytułu szlacheckiego. Tylko Heaviside dziwaczał coraz bardziej, mieszkał sam, pod koniec życia zastąpił meble blokami granitu, zaniedbał się i cierpiał na rodzaj manii prześladowczej. Nie dowiemy się już, czy dziwaczał, ponieważ nie osiągnął pozycji w społeczeństwie odpowiadającej jego talentowi, czy też odwrotnie: nie udało mu się zdobyć pozycji w bardzo konkurencyjnym wiktoriańskim społeczeństwie, ponieważ zbytnio odbiegał od przyjętych standardów zachowania i nawet talent nie mógł tu pomóc.

Die Vermittlungszentrale im Berliner Fernspreschamt II
Original: Frankfurt am Main, Deutsches Postmuseum
Foto: Berlin, 1894

Centrala telefoniczna w Berlinie, 1894 r.

Technika telefoniczna rozwijała się szybko. Kolejnym krokiem było skonstruowanie wzmacniacza na triodach (regeneratora sygnałów), który zaczął być stosowany komercyjnie tuż przed pierwszą wojną światową. Heaviside zdążył jeszcze przewidzieć istnienie jonosfery, dzięki której fale radiowe rozchodzą się wzdłuż powierzchni Ziemi, umożliwiając np. międzykontynentalne przekazywanie sygnału radiowego.

Pokażemy na przykładzie, jak Heaviside potraktował kwestię przesyłania sygnałów bez zniekształceń. Linia przesyłowa to rozciągnięty bardzo obwód. Można uważać, że każdy jego fragment o długości \Delta x składa się z podstawowych elementów obwodu: oporu R\Delta x, indukcyjności L\Delta x oraz połączonych równolegle pojemności C\Delta x oraz przewodnictwa G\Delta x. Dla pierwszego i ostatniego elementu obowiązuje prawo Ohma (przewodnictwo jest odwrotnością oporu):

\dfrac{U}{I}=R.

Napięcie na końcach indukcyjności równe jest

U=L\dfrac{dI}{dt},

co Heaviside w swoim języku symbolicznym zapisywał jako U=LpI (p oznaczało branie pochodnej po czasie). Dla pojemności mamy natomiast

I=\dfrac{dQ}{dt}=C\dfrac{dU}{dt}=CpU.

gdzie Q jest ładunkiem.

Stosunki napięcia do natężenia są zastępczymi oporami, mamy więc dla indukcyjności Lp, a dla pojemności 1/pC. Ponieważ możemy podzielić naszą linię transmisyjną na dowolnie dużą liczbę powtarzających się segmentów o długości \Delta x, więc dodanie kolejnego segmentu nie powinno zmieniać zastępczego oporu. Opór zastępczy całej linii Z (wejściowy) musi w takim razie być tym samym, co połączenie równoległe elementów G\Delta x, C\Delta x oraz (R+Lp)\Delta x + Z na końcu. W połączeniu równoległym dodają się odwrotności oporów, mamy więc

\dfrac{1}{Z}=(G+pC)\Delta x+\dfrac{1}{(R+pL)\Delta x+Z}.

Po przekształceniach dostajemy równanie kwadratowe na opór zastępczy:

Z^2+(R+pL)\Delta x Z=\dfrac{R+pL}{G+pC}.

Jeśli teraz przyjmiemy, że \Delta x\rightarrow 0, to otrzymamy

Z^2=\dfrac{R+pL}{G+pC}.

Otrzymany wynik wygląda odrobinę dziwnie, jeśli przypomnimy sobie, że p to różniczkowanie. Nie jest jasne, jak powinniśmy dzielić przez p i jak wyciągać pierwiastek. Heaviside szedł za swoim formalizmem tak daleko, jak tylko się dało i rozpatrywał wyrażenia takie, jak np. p^{\frac{1}{2}}. Uważał on matematykę za naukę empiryczną i jak mówił: „Czy mam odmówić zjedzenia obiadu, ponieważ nie znam wszystkich szczegółów trawienia?” My nie musimy iść aż tak daleko. Widać z ostatniego wyrażenia, że gdy spełniony będzie warunek

\dfrac{R}{G}=\dfrac{L}{C},

nasz ułamek się skróci (cokolwiek to znaczy) i nie będzie zawierał p, w takiej sytuacji sygnał o dowolnym kształcie nie ulegnie zmianie. Jest to warunek Heaviside’a. W praktyce znaczył tyle, że indukcyjność L należy powiększyć, czego nie rozumiał Preece. Dodać należy, że Heaviside formułował tę swoją matematykę także w konwencjonalny sposób – był może dziwakiem, ale w kwestii technik matematycznych zachowywał się całkiem racjonalnie. Obecnie stosuje się transformaty Laplace’a albo można sobie wyobrażać, że zależność od czasu ma postać \exp(i\omega t) (gdzie \omega to częstość kołowa), wówczas różniczkowanie sprowadza się do mnożenia i mamy po prostu p=i\omega.

 

 

 

Masa krytyczna uranu 235: Jakow Borysowicz Zeldowicz i Robert Serber

Naturalny początek tej historii rozgrywa się w Mińsku na Białorusi. W XIX wieku miasto należało do strefy osiedlenia dla Żydów w cesarstwie rosyjskim. Napływali tam m.in. Żydzi wygnani z Petersburga i Moskwy, nie wolno im było mieszkać ani we wsiach, ani w dużych miastach, jak Kijów czy Odessa. Tu i ówdzie powtarzały się pogromy (to rosyjskie słowo stało się z czasem międzynarodowe). Wielu emigrowało, inni trwali. Jednym z emigrantów z Mińska do Stanów Zjednoczonych był Melville Feynman, handlowiec wysoko ceniący wykształcenie: jego dzieci Richard i Joan oboje zostali naukowcami. Richard Feynman jako młody geniusz trafił do Projektu Manhattan w Los Alamos. Kilka lat starszy od Richarda Jakow Zeldowicz urodził się w Mińsku. Jego rodzice, prawnik i tłumaczka, przeprowadzili się do Petersburga i Jakow tam rozpoczął swoją świetną karierę naukową. W jeszcze większym stopniu niż Feynman był samoukiem: nigdy nie skończył studiów. Był podobnie uniwersalny, znał się niemal na wszystkim, należał do najwybitniejszych fizyków rosyjskich, a nie brakowało tam znakomitych ludzi. Nie był tak sławny jak Richard Feynman, ponieważ większość swego twórczego życia pracował w tajnych projektach związanych z bronią jądrową. Dopiero koło pięćdziesiątki, na swoistej emeryturze, zajął się astrofizyką i kosmologią, wnosząc do nich istotny wkład. Zdążył wychować wybitnych uczniów, jak Igor Novikov i Rashid Sunyaev. Słynne telefony Zeldowicza do współpracowników i naukowych znajomych o szóstej rano oraz wielostronicowe listy z rozważaniami naukowymi wspomina wielu uczonych. Stephen Hawking po rozmowach z Zeldowiczem w Moskwie zaczął się zastanawiać nad promieniowaniem czarnych dziur. Novikov zapamiętał swoje pierwsze zetknięcie z Zeldowiczem i niesamowite wrażenie, jakie wywarł na nim starszy uczony, który z miejsca rozumiał wszystko, o czym mu się mówiło. Jego zdolność uczenia się nowych rzeczy zadziwiała. Opowiadał, jak ciekawie jest wejść w nową dziedzinę nauki: trzeba tylko nauczyć się 10% tego, co na dany temat wiadomo, i można zacząć własną pracę. Pracując ciężko, dość szybko osiąga się poziom, przy którym rozumie się 90% prac z danej dziedziny – wtedy należy ją zostawić, bo zrozumienie pozostałych 10% wymaga wielu lat.

Zeldowicz napisał kiedyś nieformalny podręcznik matematyki wyższej dla uczniów i początkujących studentów. Książka wywołała burzę i ataki ze strony matematyków z powodu braku ścisłości. Podejście Zeldowicza było jednak inżynierskie, praktyczne, przypominające rzeczowy stosunek Feynmana do matematyki. Obaj pozostawieni na bezludnej wyspie potrafiliby odtworzyć znaczną część wiedzy matematycznej ludzkości. Niżej przedstawimy prościutkie rozumowania Zeldowicza pozwalające oszacować masę krytyczną uranu. On sam bardzo cenił proste rozważania, które mogą stanowić wstęp do bardziej rozbudowanych teorii i przybliżeń, lubił fizykę uprawianą na odwrocie koperty. W części drugiej pokażemy, jak to samo obliczenie przeprowadzone zostało w wykładach Serbera, stanowiących wstępną informację dla członków Projektu Manhattan. Odtajnione wykłady znaleźć można w sieci jako The Los Alamos Primer.

Wyobraźmy sobie dużą bryłę uranu 235. Biegnący w niej neutron o prędkości v prędzej czy później trafi w jakieś jądro uranu. Pole powierzchni jądra to pole powierzchni koła o promieniu r_0\approx 10^{-12}\mbox{ cm}. Tylko pewien ułamek zderzeń kończy się rozszczepieniem, oznaczmy go przez \alpha. Z punktu widzenia rozszczepienia jądro uranu ma więc pole przekroju

\sigma=\alpha \pi r_0^2\approx 1,6\cdot 10^{-24}\mbox{ cm}^2,

gdzie przyjęto \alpha=\frac{1}{2}. W krótkim czasie dt neutron przebiegnie drogę v dt i może zderzyć się z jądrami znajdującymi się w objętości walca \sigma v dt. Jeśli oznaczymy przez N liczbę jąder uranu na jednostkę objętości, średnia liczba zderzeń z jądrami w czasie dt równa będzie N\sigma v dt. Załóżmy, że w naszej bryle znajduje się n neutronów, po każdym rozszczepieniu przybywa \nu neutronów, a ubywa jeden neutron pochłonięty przez jądro. Liczba aktów rozszczepienia w krótkim czasie jest więc równa

dn=(\nu-1)N\sigma v n dt\Rightarrow \dfrac{dn}{dt}=\dfrac{\nu-1}{\tau}n, \mbox{ gdzie } \dfrac{1}{\tau}=N\sigma v.

Oznacza to, że liczba neutronów rośnie wykładniczo:

n(t)=n_0\exp{\dfrac{(\nu-1)t}{\tau}},

jeśli tylko \nu>1, co jest warunkiem reakcji łańcuchowej: powstaje więcej neutronów, te zaś wywołują jeszcze więcej rozpadów itd.

Typowa prędkość neutronów w rozszczepieniu równa jest v\approx 2\cdot 10^{9} \mbox{cm/s}, liczba jąder na jednostkę objętości równa jest N=4\cdot 10^{22}\mbox{ cm}^{-3} (Łatwo obliczyć tę wielkość, znając gęstość uranu, która równa jest 18 \mbox{g/cm}^3 oraz liczbę Avogadro: 235 g uranu to 6\cdot 10^{23} atomów). Liczba tworzących się neutronów równa jest średnio \nu=2,5. Otrzymujemy więc

\dfrac{\tau}{\nu-1}=5\cdot 10^{-9}\mbox{ s}.

Oznacza to bardzo gwałtowny wzrost liczby neutronów i aktów rozszczepienia, w ciągu 1\mu s=10^{-6} s jest to wzrost o czynnik 10^{88}, a ponieważ nawet 1 tona uranu to mniej niż 10^{28} jąder, więc nawet zaczynając od jednego neutronu, rozszczepienie objęłoby tę objętość uranu w czasie poniżej mikrosekundy. Jest to wybuch.

Zakładaliśmy, że nasz blok uranu jest duży, to znaczy każdy uwolniony neutron prędzej czy później natrafia na jakieś jądro i inicjuje rozszczepienie. Gdy nasza objętość jest mniejsza, musimy wziąć pod uwagę ucieczkę neutronów na zewnątrz. Ucieczka ta będzie zachodzić przez powierzchnię, więc najlepiej, gdy nasza bryła ma najmniejsze pole powierzchni przy danej objętości – znaczy to, że musi ona być kulista. W czasie dt uciekną neutrony z warstwy o grubości v dt przy powierzchni. Założymy też, że wszystkie neutrony (w liczbie n) rozłożone są równomiernie w objętości kuli o promieniu r. Wówczas zmiana liczby neutronów w czasie dt równa jest

dn=-\dfrac{n}{\frac{4}{3}\pi r^3}\cdot v dt \cdot 4\pi r^2=-n \dfrac{3v}{r} dt\Rightarrow \dfrac{dn}{dt}=-\dfrac{3kv}{r}n.

W ostatnim równaniu wprowadziliśmy pewien czynnik poprawkowy k<1 związany z tym, że nie wszystkie neutrony z warstwy przypowierzchniowej mają prędkości na zewnątrz, a także z tym, że zapewne gęstość neutronów przy powierzchni będzie mniejsza niż w głębi. Ucieczka neutronów prowadzi do wykładniczego zaniku ich liczby. Przy uwzględnieniu obu rozważanych wyżej czynników: mnożenia się oraz ucieczki, otrzymujemy równanie

\dfrac{dn}{dt}=\left(\dfrac{\nu-1}{\tau}-\dfrac{3kv}{r}\right) n.

Gdy znak wyrażenia w nawiasie jest dodatni, otrzymujemy wybuch. Wartość graniczna promienia określa masę krytyczną:

R=\dfrac{3kv\tau}{\nu-1}\equiv \dfrac{3k\lambda}{\nu-1}.

Ostatnia równość definiuje drogę swobodną neutronów \lambda=v\tau. Promień kuli krytycznej jest więc równy k\cdot 30\mbox{ cm}. Ponieważ k\approx 0,3, więc R\approx 9 \mbox{cm}, co odpowiada masie około 50 kg.

Zobaczmy, jak tę samą sytuację opisał Robert Serber. Wprowadzamy koncentrację neutronów P zależną od czasu i położenia w próbce. Równanie ciągłości, czyli warunek zachowania liczby neutronów, należy zmodyfikować tak, by uwzględniał tworzenie się nowych neutronów w rozszczepieniu. Załóżmy najpierw, że P zależy jedynie od współrzędnej x.

Rozpatrując objętość materiału o jednostkowym polu powierzchni przekroju i grubości dx, możemy zapisać:

\dfrac{\partial P}{\partial t}dx=P\dfrac{\nu-1}{\tau}dx-[j_x(x+dx)-j_x(x)],

gdzie j_x jest strumieniem cząstek w kierunku x. (Sens tego równania jest czysto buchalteryjny: przyrost liczby neutronów w zakreślonym obszarze wynika albo stąd, że one tam powstały, albo stąd, że wpłynęły z lewej bądź z prawej strony). Dzieląc obie strony przez dx, otrzymujemy

\dfrac{\partial P}{\partial t}=\dfrac{\nu-1}{\tau}P-\dfrac{\partial j_x}{\partial x}.

Zakładając następnie, że cząstki dyfundują z obszarów o większej gęstości do obszarów o mniejszej gęstości w zwykły sposób (prawo Ficka), mamy

j_x=-D\dfrac{\partial P}{\partial x }.

Stała D to stała dyfuzji. Możemy też zapisać równanie ciągłości zwięźlej w postaci:

\dfrac{\partial P}{\partial t}=\dfrac{\nu-1}{\tau} P+D \dfrac{\partial^2 P}{\partial x^2}.

Dla zmian we wszystkich kierunkach ostatnie równanie powinno być uogólnione w oczywisty sposób:

\dfrac{\partial P}{\partial t}=\dfrac{\nu-1}{\tau} P+D \left( \dfrac{\partial^2 P}{\partial x^2}+\dfrac{\partial ^2 P}{\partial y^2}+\dfrac{\partial^2 P}{\partial z^2}\right).

Wyrażenie w nawiasie to laplasjan, otrzymaliśmy równanie dyfuzji w obecności źródeł cząstek: u nas takim źródłem są neutrony już istniejące w danej objętości materiału. Optymalnym kształtem jest nadal kula uranu, wówczas rozkład gęstości neutronów powinien zależeć jedynie od odległości od jej środka \varrho. Jeśli przyjąć, że funkcja P jest ma postać

P(\varrho, t)=\exp{\dfrac{\nu'}{\tau}}f(\varrho),

gdzie znak parametru \nu' przesądza o tym, czy mamy do czynienia z wybuchem, czy z wykładniczym zanikaniem neutronów. Równanie dyfuzji przybiera postać

\Delta f+\dfrac{\nu-1-\nu'}{D\tau}f=0.

Najprostsze rozwiązanie sferycznie symetryczne otrzymamy, korzystając z równości

\Delta \left(\dfrac{\sin k\varrho }{\varrho } \right)=-k^2 \dfrac{\sin k\varrho }{\varrho}.\mbox{(*)}

Nasze równanie sprowadza się wtedy do równania algebraicznego

-k^2+\dfrac{\nu-1-\nu'}{D\tau}=0.

Aby znaleźć parametr k, musimy nałożyć warunki brzegowe: nasze rozwiązanie ma być skończone, zażądajmy też, aby f(R)=0=\sin kR , tzn. gęstość neutronów na powierzchni kuli ma spadać do zera. Mamy więc w najprostszym przypadku kR=\pi (oczywiście istnieją inne miejsca zerowe funkcji sinus, ale dla nich gęstość neutronów by oscylowała wzdłuż promienia, przyjmujemy, że są one niefizyczne).

Chcąc otrzymać warunek krytyczny, musimy zażądać także, aby \nu'=0, otrzymamy wówczas:

R^2=\dfrac{\pi^2 D\tau}{\nu-1}.

Możemy porównać oba warunki, pamiętając, że D=\frac{1}{3}\lambda v, promień krytyczny przybierze postać

R=\dfrac{\pi\lambda}{\sqrt{3(\nu-1)}}.

Nasza teoria zakłada zbyt gwałtowny spadek gęstości neutronów przy powierzchni, w dokładniejszych rozważaniach należałoby to poprawić. Zgromadzenie masy krytycznej materiału rozszczepialnego nie rozwiązuje problemu bomby atomowej, jest jedynie informacją o rzędzie wielkości. W praktyce okazuje się, że w trakcie gwałtownego wybuchu objętość materiału rośnie, a z nią rośnie także droga swobodna neutronów. W rezultacie nie jest łatwo wykorzystać całą energię materiału rozszczepialnego. Bomba, która spadła na Hiroszimę, wykorzystała energię rozszczepienia zaledwie 1 kg uranu 235, potem reakcja się spontanicznie zatrzymała.

(*) Laplasjan dla symetrii sferycznej można zapisać jako

\Delta f=\dfrac{1}{\varrho}\dfrac{\partial^2(\varrho f)}{\partial \varrho^2},

Łatwo sprawdzić, że funkcje \varrho f=\sin k \varrho oraz \varrho f=\cos k\varrho przechodzą na same siebie pod działaniem laplasjanu (są funkcjami własnymi laplasjanu). Tylko pierwsza z nich jest skończona wewnątrz kuli.

 

 

 

 

 

 

Walter Ritz, rówieśnik Einsteina (1878-1909)

Nauka jest przedsięwzięciem zbiorowym, ostatecznie to społeczność uczonych – niczym chór greckiej tragedii – osądza protagonistów i komunikuje boskie wyroki. Jest przedsięwzięciem zbiorowym także w bardziej trywialnym i współczesnym znaczeniu mrowiska, w którym nie należy przeceniać roli poszczególnych mrówczych jednostek. Jednak „lawina bieg od tego zmienia, po jakich toczy się kamieniach”, a tragedia byłaby niemożliwa bez głównych postaci. Z jednej więc strony mamy etos mrówek trudzących się dla kolektywnego dobra, z drugiej – kult bohaterów, herosów wyobraźni i intelektu.

Walter Ritz był człowiekiem niezwykle utalentowanym i zdążył wnieść oryginalny wkład do nauki, mimo że cierpiał na gruźlicę, która odbierała mu siły, a po kilku latach odebrała także i życie. Nie osiągnął tyle, ile by chciał i potrafił, ale zdążył już zaznaczyć swoją indywidualność. Chciałbym zestawić jego drogę naukową z biegiem życia i dorobkiem młodszego niemal dokładnie o rok Alberta Einsteina. Przed rokiem 1909 Einstein nie był jeszcze sławny, wręcz przeciwnie: słyszało o nim niewielu i jego kariera dopiero się zaczynała. Dopiero jesienią tego roku wziął po raz pierwszy udział w konferencji naukowej, zamienił także posadę w Biurze Patentowym w Bernie na stanowisko profesora nadzwyczajnego uniwersytetu w Zurychu. Pensja na obu stanowiskach była dokładnie jednakowa. Konkurentem Einsteina do posady był Walter Ritz, uczelnia by go wolała, „ponieważ jest Szwajcarem i według zdania naszego kolegi Kleinera jego prace wykazują nadzwyczajny talent graniczący z geniuszem”. Choroba nie pozwoliła jednak Ritzowi objąć tego stanowiska. Einstein otrzymał więc swoje pierwsze stanowisko naukowe niejako w zastępstwie za kolegę. Wcześniej ze starań o tę posadę wycofał się Friedrich Adler, który tak jak Einstein, zrobił doktorat u Alfreda Kleinera, profesora zwyczajnego na uniwersytecie w Zurychu. Drugi etat profesorski dla fizyka był skutkiem jego zabiegów, tak to się wówczas odbywało: mógł być jeden Ordinarius z danej dziedziny, ewentualnie tworzono także pomocniczy, nie tak prestiżowy i gorzej płatny, etat Extraordinariusa. Adler wszakże niezbyt walczył o stanowisko, bardziej interesowała go filozofia nauki i działalność socjalistyczna (był synem znanego psychologa i przywódcy austriackich socjalistów Victora Adlera). Pisał w roku 1908 do ojca: „Zapomniałem powiedzieć, kto prawdopodobnie otrzyma profesurę: człowiek, któremu z punktu widzenia społeczeństwa należy się ona znacznie bardziej niż mnie i kiedy ją otrzyma, będę się z tego bardzo cieszył mimo pewnej przykrości. Nazywa się Einstein, studiował w tym samym czasie co ja, chodziliśmy razem na niektóre wykłady. (…) Ludzie z jednej strony odczuwają wyrzuty sumienia z powodu tego, jak go wcześniej potraktowano, z drugiej zaś strony skandal jest szerszy i dotyczy całych Niemiec: żeby ktoś taki musiał tkwić w biurze patentowym”.

Walter Ritz był w tym czasie Privatdozentem w Getyndze. Pochodził ze Sionu w Szwajcarii, ojciec, malarz pejzaży i scen rodzajowych, przyrodnik, geolog, etnograf i alpinista, zmarł w 1894 roku po długiej chorobie. Walter uczęszczał w tym czasie do liceum i uchodził za nader utalentowanego. W 1897 zaczął studia na politechnice w Zurychu, był więc o rok niżej niż Einstein. Ritz z początku miał być inżynierem, lecz zmienił wydział na nauczycielski (jak Einstein). Obaj chodzili na wykłady tych samych profesorów. Albert Einstein nie cieszył się jednak dobrą opinią: profesor fizyki Heinrich Weber uważał go za przemądrzałego i aroganckiego i nie miał najmniejszej chęci zostawiać go na uczelni. Weber nie był wybitnym uczonym, ale Politechnika miała znakomitych matematyków, wśród nich dwóch wielkich: Hermanna Minkowskiego i Adolfa Hurwitza. Einstein w tamtym okresie niezbyt pasjonował się matematyką, toteż i na wykłady chodził rzadko. Minkowski, który później stworzył matematyczne sformułowanie teorii względności, nie spodziewał się zbyt wiele po Einsteinie: „Byłem niezwykle zdumiony, gdyż wcześniej Einstein był zwykłym wałkoniem. O matematykę w ogóle się nie troszczył” [C. Seelig, Albert Einstein, s. 45]. Nie lepszą opinię miał zapewne Hurwitz, kiedy Einstein, nie mogąc nigdzie znaleźć pracy, w akcie rozpaczy, zwrócił się do niego o asystenturę, spotkała go milcząca odmowa, choć nie prosił o wiele: Politechnika stale potrzebowała asystentów do prowadzenia ćwiczeń i sprawdzania prac studenckich.

Znacznie wyżej oceniany był Walter Ritz. W roku 1901 wyjechał on na dalsze studia do Getyngi. Minkowski, który był w stałym kontakcie ze swym przyjacielem Davidem Hilbertem, pisał: „W następnym semestrze będziesz miał u siebie matematyka stąd, W. Ritza, który wykazuje dużo zapału, ale jak dotąd wyszukiwał sobie same nierozwiązywalne problemy”. [List do Davida Hilberta, 11 III 1901, Briefe an Hilbert, s. 139] Uniwersytet w Getyndze stał się w tamtych latach najważniejszym ośrodkiem matematycznym, nie brakowało tam także fizyków teoretycznych i doświadczalnych. Centrum stanowili Felix Klein i David Hilbert, dwaj przyjaciele i znakomici matematycy, wytyczający kierunki badań w swej ukochanej dziedzinie. Niedługo dołączyć miał do nich Hermann Minkowski. Walter Ritz uczęszczał na wykłady Hilberta, a także zaczął pracować nad doktoratem pod kierunkiem fizyka teoretycznego i znawcy twórczości Bacha, Woldemara Voigta. Oprócz ważnych nauczycieli poznał Ritz w Getyndze także wybitnych rówieśników. Zaprzyjaźnił się niemal od razu z Paulem Ehrenfestem, a także z Tatianą Afanasevą, Rosjanką, przyszłą żoną Paula, także studiującą fizykę. Ehrenfest był studentem Ludwiga Boltzmanna w Wiedniu i do Getyngi przyjechał, gdy Boltzmann wywędrował z Wiednia.

Doktorat Ritza dotyczył spektroskopii atomowej. Chodziło o wyjaśnienie obserwowanych serii widmowych. Np. częstości widzialnych linii wodoru opisać można wzorem Balmera:

\nu=N\left( \dfrac{1}{4}-\dfrac{1}{n^2} \right), \mbox{ gdzie } n=3,4, 5, \ldots

Stosując mianowniki typu (n+\alpha)^2 można było opisać także inne serie widmowe, np. metali alkalicznych. Serie częstości nasuwały myśl o falach stojących, a więc układzie przypominającym strunę albo membranę. Ładunek drgający z częstością \nu wysyła falę elektromagnetyczną o takiej właśnie częstości. W przypadku kwadratowej membrany równanie ruchu ma postać:

\dfrac{1}{v^2}\dfrac{\partial^2 f}{\partial t^2}=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}.

Jest to po prostu dwuwymiarowe równanie falowe (t,x,y są odpowiednio czasem i współrzędnymi kartezjańskimi w płaszczyźnie membrany, f opisuje wychylenie membrany, stała v jest prędkością fal w membranie). Łatwo stwierdzić, że dozwolone częstości własne opisane są wyrażeniem

\nu^2=A(n^2+m^2), \mbox{ gdzie }n,m=1,2,3,\ldots

Zakładamy tu, że krawędzie membrany pozostają cały czas nieruchome. Ritz spróbował znaleźć równania, które mogłyby opisać wzór Balmera i inne podobne przypadki. W przypadku wzoru Balmera odpowiednim równaniem okazało się

\partial_{t}^2\partial_{x}^4 \partial_{y}^4 f=B(\partial_{x}^2-\partial_{y}^2)^2 f.

Oznaczyliśmy tu pochodne cząstkowe po odpowiednich zmiennych przez \partial_{i}, gdzie i=x,y, t. Dobierając odpowiednio warunki brzegowe, udało się Ritzowi znaleźć także bardziej skomplikowane wzory na częstości linii widmowych. Równania te były wysokiego rzędu (tutaj dziesiątego), w dodatku o niespotykanej w fizyce postaci. Znak minus po prawej stronie oznacza, że zamiast laplasjanu (który wynika z symetrii obrotowej) do opisu membrany stosujemy pewne niestandardowe wyrażenie. Ritz pokazał, że jego równania wynikały z zasady wariacyjnej, formalnie więc były w porządku. Słabość tego podejścia tkwiła w braku jakiegokolwiek wyobrażenia drgającego atomu: po prostu bierzemy do obliczeń membranę, która nie może być czymś istniejącym w przyrodzie. Nikt wówczas nie miał pojęcia, jak wyglądają atomy, dopiero niedawno ustalono, że istnieją elektrony – naładowane cząstki o masie tysiące razy mniejszej niż masy atomów. Serie częstości w fizyce klasycznej odpowiadały zawsze falom stojącym, wystarczy pomyśleć o instrumentach muzycznych, które z punktu widzenia fizyka są rozmaicie zbudowanymi generatorami fal opartymi na falach stojących w strunie czy w słupie powietrza.

Model Ritza odniósł pewien sukces: przewidział, że w serii rozmytej potasu powinna istnieć linia widmowa odpowiadająca długości fali \lambda=6964 Å. W następnym roku, udało mu się tę linię zidentyfikować w widmie. Po doktoracie Ritz zaczął podróże naukowe: lato 1903 spędził w Lejdzie, gdzie słuchał wykładów H. Lorentza, potem znalazł się w Bonn, gdzie odkrył „swoją” linię potasu, w listopadzie pracował już w laboratorium profesora Aimé Cottona w École Normale w Paryżu. Zima paryska dała mu się we znaki, jakiś czas musiał spędzić w sanatorium w Sankt Blasien w Schwarzwaldzie. Gdy poczuł się lepiej, pojechał do Zurychu, aby wywołać swe klisze z widmami w podczerwieni naświetlone w Paryżu. Jakiś czas przemieszkał w Sion pod opieką matki. Lekarze zabraniali mu pracować, twierdząc, że to szkodzi jego zdrowiu. Zimą 1906/1907 pisał z Nicei do przyjaciela:

Zgodzi się pan ze mną, że nie mogę w takim stopniu co inni wierzyć w przyszłość, która miałaby mi wynagrodzić stan obecny. Pozostało mi zapewne niewiele czasu i jestem mocno zdeterminowany, aby spędzić go w środowiskach naukowych i intelektualnych, bo tylko tak znaleźć mogę zadowolenie i poczucie, że żyję, a może właśnie to stanowi warunek mojego wyzdrowienia? Drogi przyjacielu, nie mogę mieć nadziei ani na szczęście rodzinne, ani na dobre samopoczucie starego kawalera cieszącego się zdrowiem, pozostaje mi jedynie Nauka i życie intelektualne, i doprawdy nie mam siły zakopywać się tutaj w imię bardzo niepewnego celu.

Wrócił do pracy, zimę 1907/1908 spędził w Tybindze, gdzie współpracował z Friedrichem Paschenem, badającym eksperymentalnie widma pierwiastków. Ritz miał nowe pomysły na temat budowy atomu i mogli wymieniać się pomysłami oraz wynikami. Następnie wrócił do Getyngi, gdzie został Privatdozentem, choć nie prowadził zajęć ze względu na stan zdrowia. Henri Poincaré interesował się jego pracami i odwiedzając Getyngę, spotkał się z nim i ogłosił zamiar przyznania mu nagrody Lecomte’a przez francuską Akademię Nauk. Był to już ostatni rok życia Ritza.

Co robiło tak wielkie wrażenie na jego współczesnych? Badania nad seriami linii widmowych – po doktoracie Ritz zaproponował jeszcze jeden model atomowy: była to drgająca i obracająca się wokół osi naładowana struna. Także i ten model stanowić miał jedynie matematyczne uzasadnienie dla obserwowanych prawidłowości widm, nie mówił nic na temat np. własności chemicznych czy budowy wewnętrznej atomu. Próbował za pomocą swego modelu wyjaśnić anomalny efekt Zeemana: zjawisko rozszczepiania linii widmowych w silnym polu magnetycznym. Cząstkową teorię tego zjawiska podał Hendrik Lorentz, za co otrzymał wraz z Peterem Zeemanem Nagrodę Nobla w roku 1902. Teoria Lorentza nie opisuje jednak wszystkich obserwowanych przypadków, te niewyjaśnione objęto określeniem: anomalny efekt Zeemana – jak to często bywa, za normalne uznajemy to, co dobrze rozumiemy. Prace Ritza zawierały jeden istotny szczegół techniczny: częstości linii widmowych były w nich różnicami dwóch wyrażeń. W istocie chodzi o zasadę zachowania energii:

h\nu=E_{n}-E_{m}.

(Stała h jest stałą Plancka). Ritz nie napisał jednak takiego równania i uznałby je za bezsensowne. Jego rozważania opierały się na klasycznej teorii drgań i nie było w nich miejsca na fotony. Równanie takie znalazło się po raz pierwszy u Bohra, choć on także nie wierzył w fotony. Duński uczony sądził, że energie po prawej stronie określone były warunkami kwantowania (zawierającymi stałą Plancka – sygnał, że mamy do czynienia z fizyką kwantową), ale przejścia miedzy poziomami energetycznymi prowadziły do wysłania fali o energii danej powyższym równaniem. Sama postać tego równania, nawet jeśli nie rozumiemy różnych stałych, może być przydatna. Np. dodając stronami dwa takie równania otrzymać możemy:

\nu_{nm}+\nu_{mk}=\nu_{nk}.

Jest to związek między wielkościami obserwowanymi, mówi się w tym kontekście o zasadzie kombinacji, wcześniej zauważonej przez Janne Rydberga. Ritz znalazł dla tej zasady wyjaśnienie, choć fałszywe. Postęp w rozumieniu budowy atomów oraz wyjaśnieniu widm nastąpił dopiero za kilka lat, po odkryciu przez Ernesta Rutherforda jądra atomowego i sformułowaniu przez Nielsa Bohra znanego modelu, który stanowił przełom w badaniach. Sam Bohr opowiadał później, że o widmach dowiedział się z książki Johannesa Starka Prinzipien der Atomdynamik (cz. 2), gdzie znalazły się wzory Balmera, jak i informacje o różnych pracach na ten temat, m.in. Waltera Ritza. Z kolejnych teorii atomu szwajcarskiego fizyka nie zostało nic. Nie da się zbudować teorii atomu bez fizyki kwantowej.

Wyjaśnienie anomalnego efektu Zeemana udało się dopiero po wprowadzeniu pojęcia spinu elektronu w 1925 r. Nie wiemy, co Walter Ritz potrafiłby wnieść do tych prac, gdyby nadal żył. Wiemy natomiast, że musiałby zmienić podejście, bo tą drogą nie doszedłby do sukcesu. Widać jednak ambicję młodego fizyka, by zmierzyć się z jednym z najtrudniejszych problemów fizyki.

Jedynym fizykiem, który mógłby zapisać równanie na różnicę energii, był w tym czasie Einstein. Energia fotonu to był jego pomysł, traktowany przez kolegów jako aberracja. Ritz nie wierzył ani w prace kwantowe Einsteina, ani w teorię względności. Najwyraźniej on także nie traktował serio pomysłów kolegi ze studiów. Teoria względności zastępowała pojęcia czasu i przestrzeni jedną wspólną rozmaitością: czasoprzestrzenią, co zauważył Hermann Minkowski, który od roku 1902  pracował już w Getyndze. Nienaruszona była przy tym elektrodynamika Maxwella w postaci nadanej jej przez Hendrika Lorentza. Ritz wybrał inną drogę: też nie wierzył w eter i uznawał zasadę względności, ale postulował, aby zmienić elektrodynamikę. Jego podejście oznaczałoby zarzucenie koncepcji pola elektromagnetycznego. Elektrodynamika Ritza została jedynie zarysowana, byłaby ona teorią bardzo skomplikowaną matematycznie i nieelegancką. Gdy źródło światła się poruszało, to jego prędkość powinna się dodawać do c. Einstein dyskutował na temat elektrodynamiki z Ritzem, ogłosili nawet razem króciutki protokół rozbieżności w tej sprawie. Zdaniem Einsteina należy startować z pojęcia pola – cała jego dalsza kariera była z tym pojęciem związana.

Innym osiągnięciem Ritza było sformułowanie eleganckiej metody przybliżonej dla opisu drgań, za jej pomocą rozwiązał zagadnienie figur Chladniego.

Osiągnięcia Ritza są niepełne i niedokończone za sprawą choroby. Jednak w chwili śmierci Ritza i on, i Einstein mieli dorobek porównywalny ilościowo: jeden solidny, pięćsetstronicowy tom dzieł. Einstein ceniony był w Berlinie, gdzie pracowali Max Planck, Max Laue i Walther Nernst. Inni zachowywali dystans wobec jego prac i albo o nich nic nie wiedzieli, albo nie wiedzieli, co myśleć. Hermann Minkowski też niezbyt często wymieniał nazwisko Einsteina, może wciąż go pamiętał jako leniwego studenta? Ritz również zajmował się problemami fundamentalnymi i był chyba lepiej rozumiany przez kolegów. W jego przypadku doktorat był początkiem kontaktów z wieloma uczonymi, niewątpliwie działała tu opinia doktoratu z Getyngi, jeśli nie miał wprost jakichś listów polecających. Można się zastanawiać nad tym, jak potoczyłaby się kariera naukowa Einsteina, gdyby mniej zrażał ludzi do siebie i nie był taki arogancki? Przecież on także mógłby trafić do Getyngi i poddać się czarowi eleganckiej, choć częstokroć jałowej fizyki matematycznej. Pomogłoby mu to niewątpliwie w dalszej karierze, chyba że nie przekonałby Minkowskiego. Czy nie zaszkodziłoby mu to jednak w sensie naukowym? Ritz spędził sporo czasu w naukowym odosobnieniu z powodu choroby, ale był już mimo młodego wieku szanowanym uczonym i miał kontakty. Einstein był w tym czasie niemal całkowicie izolowany. Pracował osiem godzin dziennie w biurze przez sześć dni w tygodniu i zadowolony był, że mają z Milevą co jeść i że zostają mu wieczory oraz niedziele na pracę naukową. Opowiadał potem Infeldowi, że do trzydziestki nie widział prawdziwego fizyka teoretyka. Nie jest to prawda w sensie ścisłym, bo poznał np. Maksa Lauego, ale z pewnością zaczynał jako kompletny autsajder, który niemal wszystkiego nauczył się sam z książek i artykułów.

Do Getyngi trafił Einstein znacznie później, już jako samodzielny mistrz. Przedstawił tam swoją teorię grawitacji w czerwcu roku 1915. Skończyło się to zresztą dwuznacznym incydentem, gdyż praca ta spodobała się Hilbertowi, co miało ten skutek, że pod koniec roku obaj pracowali nad nią równolegle i mało brakowało, a Einstein zostałby pozbawiony satysfakcji postawienia kropki nad i, tzn. zapisania równań pola. W Getyndze bowiem uczeni nie mieli oporów przed korzystaniem z wyników kolegów, traktując je jako rodzaj dobra wspólnego. Nazywało się to u nich „nostryfikacją” cudzych wyników.

Prace Einsteina cechuje ogromna intuicja: zazwyczaj miał on dobre wyczucie, czego należy się trzymać i w którą stronę zmierzać. Tak było np. z polem elektromagnetycznym. Einstein wiedział, że teoria Maxwella ma ograniczenia kwantowe, ale samo pojęcie pola traktował jako fundament. Cenił bardzo dorobek Lorentza (znany mu wyłącznie z publikacji), który na Ritzu nie zrobił wielkiego wrażenia, mimo że znał jego autora. Einstein przed rokiem 1905 rozpatrywał możliwość innej elektrodynamiki, zgodnej z mechaniką Newtona, była ona podobna do późniejszej propozycji Ritza. Dlatego później nie tracił już czasu na koncepcje, które kiedyś odrzucił po starannym namyśle. Prawdopodobnie właśnie przez to, że Ritz był umysłem o wiele mniej rewolucyjnym, współcześni cenili go wyżej, osiągnięcia Einsteina od początku wydawały się kontrowersyjne, niektórzy wielcy uczeni, jak Henri Poincaré podchodzili do nich bardzo sceptycznie. Nie wiemy, jak rozwinąłby się Walter Ritz, gdyby wcześniej odkryto penicylinę, ale można przypuszczać, że był już ukształtowany intelektualnie i nie stać by go było na żaden rewolucyjny skok w nieznane. Teoretycy rzadko robią coś rewolucyjnego po trzydziestce, chyba że kontynuują coś, co już wcześniej sami zaczęli. Dorobek Einsteina z tamtych lat jest bardzo mało techniczny, nie ma tam właściwie wcale skomplikowanych obliczeń, są raczej proste rozumowania i pomysłowe argumenty. W porównaniu prace Waltera Ritza wydają się znacznie bardziej zaawansowane. A jednak: „Ten piękny wysiłek w porównaniu z geniuszem jest tym, czym urywany lot świerszcza w porównaniu z lotem jaskółki” (A. Camus).

Jak można odtworzyć wzór Balmera? Szukając rozwiązań w postaci sinusów wzdłuż x i y oraz o częstości \nu, otrzymamy (a jest długością boku kwadratu):

f(x,y,t)=A \sin \dfrac{n\pi x}{a}\sin\dfrac{m\pi y}{a}\sin 2\pi\nu t.

Drugie pochodne sprowadzają się teraz do mnożenia przez odpowiedni czynnik, podstawiając do równania Ritza, otrzymamy

\nu^2 m^4 n^4 \sim (n^2-m^2)^2,

skąd przy m=2 dostajemy wzór Balmera.

Ernst Chladni: czy można zobaczyć dźwięk? (1787)

Że przedsięwzięcie to, mianowicie doświadczanie natury, wywoływanie jej fenomenów, „kuszenie” jej przez ujawnianie jej działalności przy pomocy eksperymentów – że wszystko to jest już całkiem bliskie czarnoksięstwa, ba, należy już nawet do jego zakresu i samo jest dziełem „kusiciela”, było przeświadczeniem minionych epok; przeświadczeniem godnym szacunku, jeśli mam tu wyrazić swe zdanie. Chciałbym wiedzieć, jakimi oczami spoglądano by wówczas na owego człowieka z Wittenbergi, który (…) przed stu kilkudziesięciu laty dokonał był eksperymentu z widzialną muzyką, co i nam niekiedy pokazywano. Do nielicznych przyrządów fizycznych, jakimi rozporządzał ojciec Adriana, należała okrągła i w środku jedynie na kolcu swobodnie oparta szklana płyta, na której się ów cud dokonywał. Płyta owa była mianowicie posypana drobniutkim piaskiem i ojciec przy pomocy starego smyczka od wiolonczeli, którym po jej brzegu z góry na dół przeciągał, wprawiał ją w drgania, poruszany zaś piasek przesuwał się i układał w zdumiewająco precyzyjne a różnorakie arabeski i figury. Ta wizualna akustyka, w której oczywistość i tajemnica, prawo i osobliwość, nader uroczo wspólnie występowały, bardzo się nam, chłopcom, podobała… [Th. Mann, Doktor Faustus, przeł. M. Kurecka i W. Wirpsza]

Adrian Leverkühn, kompozytor, będący dwudziestowiecznym wcieleniem doktora Fausta, zaprawiał się w ten sposób w początkach muzycznego czarnoksięstwa. Nie były to sztuczki błahe, gdy pamiętać, że śmierć jest mistrzem z Niemiec – u ich końca znajdowały się zniszczona i spustoszona Europa oraz klęska zarówno tych, co popierali, jak i tych, co nie potrafili się przeciwstawić szaleńczym wizjom tysiącletniej Rzeszy. A człowiekiem z Wittenbergi (tam niegdyś przybił Marcin Luter do kościelnych drzwi swoje tezy o zepsuciu kościoła) był Ernst Florens Friedrich Chladni, prawnik i przyrodnik, któremu ojciec surowo zabronił zajmować się muzyką przed dziewiętnastym rokiem życia. Profesor prawa nie życzył sobie najwyraźniej, by syn zarabiał na życie publicznymi występami. Ojciec zmarł, a syn zarabiał na życie nie jako muzyk wprawdzie – na to było za późno, ale jako objazdowy przyrodnik demonstrujący rozmaite zjawiska akustyczne oraz instrumenty muzyczne własnej konstrukcji.

Pokaz Chladniego w salonie księcia Thurn und Taxis, Ratyzbona, 1800 r.

Public Domain Review

Owe Klangfiguren albo figury Chladniego przyniosły uczonemu sławę. Doszedł on do wielkiej biegłości w ich demonstrowaniu, przytrzymując palcami drgającą płytkę w odpowiednio dobranych miejscach. Pokaz ten fascynował publiczność w całej Europie znacznie bardziej niż wynalezione przez niego eufon i klawicylinder. W zasadzie Chladni nie był odkrywcą tego zjawiska, wspominał o czymś podobnym Leonardo da Vinci, a także Galileusz, który przytacza nie do końca wiarygodny opis doświadczenia, mającego wykazać związek długości fali drgania z wysokością dźwięku. Galileo, syn muzyka Vincenza, widział zapewne takie drgania, trudno to dziś przesądzić. Z fizycznego punktu widzenia chodzi o fale stojące, czyli drgania, których zależność przestrzenna jest ustalona: w pewnych miejscach amplituda jest większa, w innych spada do zera – te ostatnie tworzą w dwuwymiarowym przypadku linie węzłów (albo bardziej uczenie: linie nodalne). Przytrzymując płytkę w odpowiednich miejscach, można taką linię węzłów niejako „przytrzymać”.

Jednym ze szczytowych punktów kariery Chladniego były lata pobytu w Paryżu. Został tam w lutym 1809 roku przyjęty przez cesarza Francuzów Napoleona Wielkiego, który od czasu swoich studiów szkole artylerii żywił szczególne uznanie dla wiedzy fizycznej i matematycznej. Chladni otrzymał od cesarza subwencję na przetłumaczenie swego traktatu o akustyce na francuski. Cesarz raczył też ogłosić konkurs na matematyczną teorię owego zjawiska. Nagrodę 3000 franków przyznano ostatecznie, po pewnych perypetiach, w roku 1816 Sophie Germain, która z racji płci skazana była na pozostawanie na obrzeżach świata naukowego. Jej rozwiązanie nie było całkiem poprawne. Problem drgań poprzecznych dwuwymiarowej sprężystej płytki okazał się trudniejszy, niż początkowo sądzono. Dopiero w 1850 r. Gustav Kirchhoff rozwiązał to zagadnienie dla przypadku kolistej płytki. Rozwiązania przybliżone dla płytki prostokątnej podał Walter Ritz na początku wieku XX. Wbrew pozorom nie są to subtelności, które mogą zaciekawić jedynie matematyków. Jeden ze słynnych wypadków zawalenia się wiszącego mostu w Tacoma (USA) w r. 1940 związany był właśnie z drganiami przypominającymi figury Chladniego, a wywołanymi przez wiatr.