Einstein i Mann: o tym, co pozostaje, kiedy wszystko jest stracone (1933)

Nie sądziłem, że dożyję czasów ciekawych dla historyka interesującego się fenomenem nazizmu. Bez wątpienia życie polityczne przyniesie w najbliższym czasie sporo materiału do przemyśleń. Oczywiście, wiem, wiem, obecna „pomarszczona rewolucja” w naszym kraju, to nie to samo. Ale i podobieństw nie brak.

Mamy przede wszystkim różnicę skali. Nie ma co porównywać Niemiec z lat trzydziestych do Polski. Giganta i średniaka. Kraju najbardziej zaawansowanego przemysłu z krajem z samego ogona Europy. Kraju teologów i intelektualistów z krajem, gdzie magicznym kultem otacza się nawet samochody, święcąc je uroczyście. Kraju gotyckich katedr i kraju bazyliki w Licheniu. Kraju wzorowej organizacji i kraju legendarnego bałaganu. Ojczyzny Wolfganga Goethego i ojczyzny Jarosława Marka Rymkiewicza. Kraju Richarda Wagnera i kraju Zenka Martyniuka. Kraju palącego ciała Żydów i kraju palącego kukły Żydów. Atmosferę linczu i przemocy już mamy, na razie jest to lincz medialny i przemoc symboliczna. Przemarsze kwazimodlitewne w ochronie tysięcy policjantów, zwalnianie z pracy ludzi o innych poglądach, i to nawet wtedy, gdy ich poglądy nie mają w danej pracy specjalnego znaczenia. Kary za udział w protestach. Brutalność mediów państwowych dorównujących już chyba propagandzie Goebbelsa, w dodatku działalność owych mediów finansowana jest w znacznej części z przymusowych składek pobieranych także od przeciwników reżimu (szatański pomysł, prawda?). Wszystko w dymie kadzideł i przy aprobacie niemal całego kościoła, który głosi jakąś przedziwną ewangelię rasy i narodu, a czasem ubogaca nas takimi myślami spod ołtarza, jak opinia arcybiskupa Marka, że pod Smoleńskiem prawa fizyki działały i dlatego był to zamach. To rzeczywiście jest zamach na zdrowy rozsądek i na moralność. Nie wierzę, by subtelny znawca francuskiej filozofii, uczeń Tischnera, nie rozumiał, czemu marsze z ONR-em są niezupełnie tym samym, co głosił Jezus.

Odbywa się to wszystko, jeśli nie z woli, to bez protestu narodu, który sam sobie zgotował ten los i będzie przez długi, długi czas za to płacił. Widać Polska nie potrafi zbudować państwa na dłużej niż dwadzieścia lat.

Zwolennicy Hitlera też myśleli, że budują lepszy i sprawiedliwszy kraj, w którym dla prawdziwych Niemców nastaną tysiącletnie rządy prawa i sprawiedliwości, a o tych paru Żydów i liberałów nie ma co się kłócić.

Trzeba pamiętać, że nawet w roku 1933 naziści dopiero zaczynali się rozkręcać i wciąż starali się zachować jakieś pozory. Nie wszyscy i nie od razu byli ludobójcami, to ich własny system zrobił z nich zbrodniarzy i skorumpował w miarę zdobywania i umacniania władzy. U nas też się będzie rozkręcało, tamy zostały zerwane, choć może nie zajdziemy na tej drodze tak daleko i skończy się na standardach ukraińskich albo białoruskich. Ale może i putinowskich, kto wie. Rosja Putina była zresztą zupełnie inna, kiedy zaczynał on rządzić i zupełnie inna jest teraz.

Wiosną 1932 roku Adolf Hitler przegrał wybory prezydenckie. W wyborach do Reichstagu jego partia zdobyła w lipcu tego roku 37% głosów, a w powtórnych wyborach w listopadzie już tylko 32%. Wystarczyło to jednak, aby przejąć władzę w kraju. W styczniu 1933 roku Hitler został kanclerzem.

W listopadzie 1933 w wyborach brała udział już tylko jedna partia, NSDAP, i zgadnijcie, kto wygrał? NSDAP oczywiście, choć nie otrzymała wszystkich głosów: 8% głosów było nieważnych. Tak sobie postanowiono, więc takie były wyniki wyborów.

Einstein i Mann byli ludźmi z innych światów: Żyd-internacjonalista i pisarz, który czuł się wcieleniem Goethego i niemieckiej tradycji mieszczańskiej i artystycznej. Obaj zmuszeni zostali do emigracji, niewątpliwie bardziej bolesnej dla Thomasa Manna, który nie był ani liberałem, ani Żydem, ani marksistą, ani dekadentem, ani zimnym spekulantem (wszystko to zarzucali mu naraz albo po kolei w Niemczech). Jego brat, Heinrich, pasował natomiast nieźle do tych karykaturalnych epitetów oprócz „zarzutu”, że jest Żydem, ma się rozumieć.

List Alberta Einsteina do Thomasa Manna, 29 IV 1933

Le Coq pod Ostendą 29 IV 1933

Pragnę powiedzieć panu coś zupełnie oczywistego: świadoma odpowiedzialności postawa, jaką zajął Pan i Pański Brat, stanowiła jeden z nielicznych jasnych punktów pośród wydarzeń rozgrywających się ostatnio w Niemczech. Pozostali powołani do duchowego przywództwa nie wykazali odwagi ani siły charakteru, aby odciąć się wyraźnie od tych, którzy dzięki posiadaniu środków przymusu występują dziś jako reprezentanci państwa. Poprzez to zaniechanie powiększyli jeszcze władzę, jaką posiada ten fatalny element, który szkodzi niewymownie imieniu Niemiec. Narazili się Panowie tym samym na niebezpieczeństwo, że ten sam motłoch, któremu tamci schlebiają, będzie miał Panów w pogardzie.

Jeszcze raz widać, że losy wspólnoty określone są w przeważającej mierze przez jej moralny poziom. Kiedy znowu utworzy się przywództwo godne tego miana, to odrodzi się ono tylko dzięki stopniowej krystalizacji wokół takich ośrodków, jakimi stali się Pan i Pański Brat. Nawet gdyby miał Pan tego nie dożyć, niech stanie się to dla Pana najlepszą pociechą w tych gorzkich czasach, jakie przeżywamy obecnie i jakie jeszcze przyjdzie nam przeżywać.

List Thomasa Mann do Alberta Einsteina, 15 V 1933

Bandol (departament Var)

Grand Hotel

Kilkakrotna zmiana miejsca pobytu sprawiła, że dopiero dziś mogę panu podziękować za Jego łaskawy list.

Był to największy zaszczyt, jaki spotkał mnie nie tylko w tych ciężkich miesiącach, ale może w ogóle w całym moim życiu; jednakże Pan chwali mnie za zachowanie, które było moim naturalnym odruchem, a więc nie zasługuje właściwie na pochwałę. Mniej naturalna jest dla mnie sytuacja, w którą przez to popadłem: jestem bowiem z natury zbyt dobrym Niemcem, aby perspektywa trwałego wygnania mogła nie być dla mnie bardzo ciężkim przeżyciem. Zerwanie z krajem, prawie nieuniknione, przygnębia i trwoży mnie bardzo, co jest dowodem, że stan ten nie odpowiada zupełnie mojej naturze, zdeterminowanej przez Goethowsko-reprezentatywne elementy tradycji i bynajmniej nie stworzonej do martyrologii. Tylko wyjątkowe zło i fałsz mogły mi narzucić tę rolę; bo też według mego najgłębszego przekonania cała ta „niemiecka rewolucja” jest z gruntu zła i fałszywa. Brakuje jej cech, które zjednywały sympatię świata prawdziwym rewolucjom, nawet najkrwawszym. W całej swej istocie jest nie „odrodzeniem” – cokolwiek by o tym mówili i wrzeszczeli jej wyznawcy – lecz nienawiścią, zemstą, pospolitą żądzą mordu i drobnomieszczańską małostkowością. Nie uwierzę nigdy, by mogło z tego wyniknąć coś dobrego, czy to dla Niemiec, czy to dla świata. Fakt, żeśmy do ostatka ostrzegali przed siłami, które doprowadziły do tej katastrofy moralnej i intelektualnej, na pewno będzie kiedyś dla nas tytułem do chwały, ale my zapewne przedtem zginiemy.

w: Tomasz Mann. Listy 1889-1936, przeł. W. Jedlicka, Czytelnik, Warszawa 1966, s. 436-437.

Nie ma w historii niezawinionych upadków, społeczeństwa albo stają na wysokości swego losu, albo nie.

Wierutne głupstwa Roberta Jastrowa

Uprawianie żurnalistyki naukowej, polega na tym, aby spłycić i uprzystępnić oraz opatrzyć całość chwytliwym tytułem. W ostatni weekend w „Gazecie świątecznej” ukazał się wywiad Piotra Cieślińskiego z ks. prof. Michałem Hellerem. Zaczyna się tak:

Prof. Michał Heller: Teoria Wielkiego Wybuchu jest jak czarny sen racjonalistów

Wspięli się na najwyższy szczyt, zaraz odkryją tajemnicę narodzin Wszechświata. A na szczycie witają ich teologowie, którzy siedzieli tam od wieków.

Dopiero gdzieś głęboko w tekście dowiadujemy się, że to nie Ksiądz Profesor, ale amerykański astronom Robert Jastrow powiedział, i w dodatku czterdzieści lat temu. Było to głupstwo w 1978 roku i jest nadal głupstwem w 2017 roku.

Równie dobrze można powiedzieć, że, proszę, fizycy odkryli, iż kwarki mamy w trzech kolorach, których nie można wprost zaobserwować w eksperymencie, ponieważ Byt istnieje w trzech hipostazach, popularnie zwanych Osobami, i nie można tego eksperymentalnie zmierzyć. Teologowie czekali więc na szczycie, zanim uczeni stworzą chromodynamikę kwantową.

A gdzie siedzieli teologowie, kiedy Galileusz dowodził, że Ziemia jest ciałem niebieskim, jedną z planet, i się porusza, a wszechświat nie ma środka? Siedzieli po drugiej stronie stołu przesłuchań Galileusza, byli już tam wcześniej.

Gdzie teologowie byli i gdzie znaleźli w Piśmie, że człowiek pochodzi od małpy?

Dlaczego niby tekst Biblii miałby zawierać cokolwiek wartościowego na temat przyrody? A nie np. Wedy? Albo Kalevala? Czy Kubuś Puchatek? („Im bardziej Puchatek zaglądał do środka, tym bardziej Prosiaczka tam nie było” – myśl ta zapowiada niewątpliwie odkrycie ciemnej energii: wszechświat rozszerza się bowiem coraz prędzej.)

Galileusz cytował kardynała Cesare Baronia, iż Pismo nie mówi, jak rusza się niebo, lecz jak do niego trafić. Nie był to pogląd popularny w kręgach kościelnych i chyba nie jest do dziś, ale to zmartwienie wierzących.

Narzekał na to w roku 1822 ojciec Filippo Anfossi OP, Mistrz Świętego Pałacu Apostolskiego (czyli szef rzymskiej cenzury), który z żalem postawił takie oto pytanie: „Czy Duch Święty wiedział, jakie odkrycia zostaną dokonane w przyszłości? Jeśli wiedział, to czemu świątobliwe osoby z jego inspiracji mówiły nam przeszło osiemdziesiąt razy, że Słońce się porusza, a ani razu, że jest ono nieruchome?”

Wracając zaś do Wielkiego Wybuchu. Żadna teoria kosmologiczna i w ogóle naukowa nie ma związku z religią. Kropka. Nie ma najmniejszego znaczenia, czy uczeni są księżmi, czy ateistami, czy też jest im wszystko jedno. Inspirację czerpać mogą z Pisma równie dobrze, jak z baśni Andersena – nie ma to żadnego znaczenia. Jedyne, co liczy się w nauce, to wyprowadzenie z teorii obserwowalnych zjawisk i skonfrontowanie tego z pomiarami. Jeśli kogoś zainspiruje Królowa Śniegu to też dobrze. Nazywa się to kontekst odkrycia i kontekst uzasadnienia. Nie ma znaczenia, czy Einstein doszedł do ogólnej teorii względności drogą logicznie najprostszą i co go motywowało. Ważne, że równania są prawidłowe, co przez ostatnie sto lat wciąż się potwierdzało (teologów na tym szczycie nie było).

Teologia chrześcijańska odegrała pewną rolę w historii nauki: było to w średniowieczu i dotyczyło głównie kwestii czysto logicznych czy filozoficznych, zderzenia Jerozolimy z Atenami, mówiąc pokrótce. Jest to wkład poważny i można się na serio zastanawiać, czy bez tego przygotowania możliwy byłaby Rewolucja naukowa XVII wieku.

Podstawy rzeczowe do rozważań o teologach na szczycie są w tym tylko, że w latach sześćdziesiątych ubiegłego wieku modna była teoria stanu stacjonarnego, w której wszechświat nie ma początku. Potem odkryto mikrofalowe promieniowanie tła i jasne się stało, że nastąpił Wielki Wybuch. Nigdy nie był to spór kosmologów wierzących i niewierzących, bo większość kosmologów nie interesuje się w ogóle kwestią, jaki jest związek ich badań z teologią, domyślnie zakładając, że żaden.

Wielki Wybuch to nie to samo co creatio ex nihilo. Istnieją zupełnie porządne teorie, które sytuują go jako epizod w dziejach wszechświata. A więc (może) nie potrzeba żadnego początku. Możliwe, że nasz wszechświat jest jednym z odgałęzień multiświata. Wszystkie te dyskusje w żaden sposób nie wiążą się z Księgą Rodzaju.

Racjonaliści (Jastrow mówi, dokładnie biorąc, o uczonych żyjących wiarą w moc rozumu) nie mają powodów do złych snów. Wszechświat, który zaczyna się i kończy (przynajmniej w znanej formie) jest raczej łatwiejszy do przyjęcia niż taki, który trwa od zawsze. Nasze życie też zaczyna się kończy i nie ma niebiańskiego ciągu dalszego.

Kiedyś przemądrzali teologowie decydowali, co ma być prawdą, a co nie w naukach eksperymentalnych. Dziś starają się podłączyć do historycznego sukcesu nauki i wykazują, że nauka to nie wszystko, teologowie gdzieś wcześniej byli itd. itp.

Znacznie lepszym tytułem tej byłoby: WIELKI WYBUCH NIE MA NIC WSPÓLNEGO Z KSIĘGĄ RODZAJU i lepiej nie mącić w głowach ludziom, którzy czytają o nauce, lecz nie mają wykształcenia, aby ocenić samodzielnie to, co czytają.

Dosłowny cytat z Jastrowa wygląda tak:

For the scientist who has lived by his faith in the power of reason, the story ends like a bad dream. He has scaled the mountains of ignorance, he is about to conquer the highest peak; as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries.

God and the Astronomers, 1978

Einstein o Lukrecjuszu, 1924

PIOTR: Ktoś ty? DUCH: Lukrecy, Lewiatan, Voltaire, Alter Fritz, Legio sum.

[A. Mickiewicz, Dziady]

Dziś zajmiemy się diabłem zwanym przez wieszcza Lukrecy, czyli Lukrecjusz.

Żyjący w I w. p.n.e. Titus Lucretius Carus, autor poematu O rzeczywistości (in. O naturze rzeczy), był zarazem wybitnym poetą i zwolennikiem atomizmu w wersji Epikura. Idea, że świat zbudowany jest z atomów i nie jest kierowany przez osobowe bóstwa, przyjmowała się trudno i z oporami. Człowiek ma umysł, który chętnie postrzega rzeczywistość w kategoriach celu. Dlatego w różnych epokach od starożytności począwszy traktowano poglądy Lukrecjusza jako absurdalne i heretyckie. Nie wierzono, aby jako tako uładzony wszechświat mógł powstać bez czynnej interwencji bóstwa. Zderzające się w nieskończoności atomy wydawały się wizją jałową i ponurą, a do tego wielce nieprawdopodobną: no bo jak długo musiałyby się zderzać atomy, by utworzyć Einsteina? Wiemy jednak, że Einstein powstał nie z mgławicy gazowej, lecz jako człowiek, a człowiek od australopiteka itd. itp. Życie na Ziemi powstało (w skali kosmicznej) niemal nazajutrz po utworzeniu się planety, co wskazywałoby albo na to, że ewolucja od chemii do biologii nie jest aż tak nieprawdopodobna, albo wracamy do kapłanów i ich wyjaśnień na ten temat, które nic nie wyjaśniają.

Poniższy tekst jest wstępem Alberta Einsteina do poematu Lukrecjusza. Uczony zdobył w tym czasie światową sławę, choć nie wszystkich Niemców to cieszyło, albowiem był on Żydem. W kraju, po puczu monachijskim Adolfa Hitlera i wciąż w kryzysie gospodarczym, narastały kompleksy i nacjonalizm. Toteż Einstein czuł się tam, jak „ktoś, kto leży w dobrym łóżku, lecz oblazły go pluskwy”. Znamy to uczucie.

https://kierul.wordpress.com/2013/02/01/einstein-zydowski-prorok-we-wlasnym-kraju/

https://kierul.wordpress.com/2012/11/22/einstein-i-mann-koniec-wielkich-niemiec/

Każdy, kto nie idzie całkowicie z duchem naszego czasu i kto czuje się niekiedy obserwatorem otaczającego świata, a zwłaszcza duchowej postawy swych współczesnych, nie może pozostać obojętny na czar dzieła Lukrecjusza. Widzimy w nim bowiem, jak wyobraża sobie świat człowiek niezależny, wyposażony w żywe doznania zmysłowe i zdolność rozumowania, obdarzony naukową i spekulatywną ciekawością, człowiek, niemający najmniejszego pojęcia o osiągnięciach współczesnej nauki, które nam wpojono w dzieciństwie, nim jeszcze mogliśmy się z nimi skonfrontować w sposób świadomy i krytyczny.

Głębokie wrażenie robi na nas niezmącona pewność Lukrecjusza – wiernego ucznia Demokryta i Epikura – że świat jest zrozumiały, tzn. wszystko, co się w nim dzieje, powiązane jest łańcuchem przyczyn i skutków. Żywi on mocne przekonanie, a nawet sądzi, iż potrafi udowodnić, że wszystko bierze się z poddanego prawom ruchu niezmiennych atomów, którym nie przypisuje żadnych innych własności prócz geometrycznych i mechanicznych. Jakości zmysłowe, takie jak ciepło, zimno, barwa, zapach i smak, sprowadzają się do ruchu atomów; to samo dotyczy życia. Dusza i umysł są w jego mniemaniu zbudowane ze szczególnie lekkich atomów, wiąże on przy tym (niezbyt konsekwentnie) pewne szczególne własności materii z konkretnymi cechami doświadczenia.

Za najważniejszy cel swego dzieła uważa Lukrecjusz uwolnienie człowieka od niewolniczego strachu, wynikłego z religii i przesądów, a podsycanego i wykorzystywanego przez kapłanów dla własnych celów. Z pewnością jest to dla niego bardzo ważne. Wydaje się jednak, że powoduje nim przede wszystkim chęć przekonania czytelników do atomistyczno-mechanistycznego obrazu świata, choć nie odważa się tego powiedzieć wprost praktycznie nastawionym Rzymianom. Wzruszający jest też jego szacunek dla Epikura oraz języka i kultury Grecji, które uważa za znacznie doskonalsze niż język łaciński i kultura rzymska. Przynosi Rzymianom zaszczyt, że można było mówić im takie rzeczy. Czy któryś ze współczesnych narodów potrafiłby wypowiadać się tak szlachetnie o innym?

Wiersze Dielsa czyta się tak naturalnie, iż zapomina się, że to przekład.

Berlin, czerwiec 1924 roku

http://einsteinpapers.press.princeton.edu/vol14-doc/498

Henrietta Swan Leavitt i pulsowanie gwiazd (1908-1912)

Nauka wywodzi się z faktów, ale samo ich zbieranie to jeszcze nie nauka. Oczywiście, doświadczenia czy obserwacje, jeśli są rzetelne, mogą zawsze się przydać. Na miano odkrycia zasługują jednak tylko wówczas, gdy ujawnią coś istotnie nowego: obiekt inny niż dotychczas znane, nowe zjawisko albo nieoczekiwaną prawidłowość. Henrietta Swan Leavitt badała pewną klasę gwiazd zmieniających okresowo jasność. Odkryła, że im jaśniejsza gwiazda, tym dłuższy jest jej okres. Oznaczało to, że mierząc okres, możemy znaleźć jasność absolutną gwiazdy, tzn. obliczyć, jak jasna byłaby ona, gdyby obserwować ją z pewnej ustalonej odległości. Znając więc obserwowaną jasność gwiazdy, można byłoby obliczyć jej odległość. Astronomowie widzą jedynie, z jakiego kierunku przybywa światło, wyznaczenie odległości do różnych ciał niebieskich było zawsze zadaniem bardzo trudnym i zarazem fundamentalnym. Odkrycie Leavitt wykorzystano później do zbadania kształtu Galaktyki i wyznaczenia odległości do innych galaktyk. Była to zatem nie tylko nieoczekiwana prawidłowość, ale i niezastąpione narzędzie dla innych astronomów.

Leavitt pochodziła z rodziny pastorów, jej przodek, John Leavitt, był diakonem swego kościoła i krawcem, który osiadł w Massachusetts. Purytanie szukający dla siebie nowego kraju byli ludźmi przedsiębiorczymi, zdyscyplinowanymi, wytrwałymi, kochającymi wolność i religijnymi. Połączenie tych wszystkich cech nadało Ameryce swoiste piętno, odczuwane do dziś. Surowi i niepobłażający własnym słabościom, sami wybierali sobie pasterzy, tworząc kongregacje silnie ze sobą związane, do których niełatwo było przeniknąć. Gdy chciało się zostać członkiem kościoła, przez lata trzeba było przechodzić próbę charakteru i zachowania. Ich zasady religijne nakazywały, aby każda władza, kościelna bądź świecka, była ograniczona do niezbędnego minimum. Jeśli dodamy do tego wysoki poziom edukacji (już w XVII wieku koloniści w Ameryce osiągnęli poziom alfabetyzacji porównywalny albo wyższy niż w przedwojennej Polsce) i szacunek dla uważnej pracy (w dni powszednie należy stale robić coś pożytecznego, w niedziele modlić się i myśleć o Bogu, nie oddawać się próżnym rozrywkom), to jasne jest, że społeczeństwo takie musiało odnieść sukces ekonomiczny. Ojciec Leavitt był pastorem kongregacji z Plymouth pełniącym posługę w Cleveland. Córka uczyła się tam przez rok w konserwatorium, lecz zaczęła stopniowo tracić słuch, aż w końcu zupełnie ogłuchła. Studiowała potem w koedukacyjnym Oberlin College i następnie w Cambridge (Massachusetts) w żeńskim kolegium, przekształconym później w Radcliffe College. Leavitt zdobyła wszechstronne wykształcenie: od języków starożytnych aż do rachunku różniczkowego i całkowego. Uczyła się też astronomii, lecz nigdy nie zdobyła dyplomu z tej dziedziny.

leavitt_aavso

Nigdy nie była też zatrudniona jako samodzielna badaczka, pracowała jako skromny pracownik techniczny Harvard College Observatory. Jego dyrektor, Edward Pickering, zaczął szeroko stosować fotografię do badania widm oraz jasności gwiazd. Szybko gromadziły się tysiące szklanych płyt fotograficznych, które należało poddać bliższym badaniom. Niezadowolony z asystentów, Pickering stwierdził, że ich pracę lepiej by wykonała jego służąca i rzeczywiście zatrudnił swoją służącą, Willaminę Fleming. Z czasem pod jej kierunkiem zgromadził się cały zespół kobiet, zwanych rachmistrzyniami (computers) albo mniej elegancko „haremem Pickeringa”. Wykształcone kobiety nie miały zbyt wiele możliwości pracy, toteż chętnie pracowały w obserwatorium.

pickerings_harem

(Leavitt trzecia z lewej)

Specjalnością Leavitt były gwiazdy zmienne, potrafiła wyłowić je, porównując płyty fotograficzne naświetlone w różnym czasie. Była to praca żmudna i wymagająca wielkiej koncentracji. Swoistym dowodem uznania ze strony dyrektora była jej stawka godzinowa: 30 centów zamiast 25 płaconych koleżankom (sam zarabiał około 2 dolarów za godzinę). W roku 1908 w „Annals of Harvard College Observatory” Leavitt ogłosiła odkrycie 1777 gwiazd zmiennych w dwóch Obłokach Magellana. Samych Obłoków, będących satelitami naszej galaktyki, Leavitt nigdy nie widziała, opracowywała tylko fotografie zrobione w filii obserwatorium na półkuli południowej. Praca naukowa zaczęła więc przypominać taśmową produkcję w zakładach samochodowych Henry’ego Forda. Leavitt zauważyła, że wśród gwiazd zmiennych okresowych występuje zależność średniej jasności i okresu. Ponieważ należało przypuszczać, iż gwiazdy w Obłokach Magellana znajdują się praktycznie w tej samej odległości od Słońca, znaczyło to, że ich jasności absolutne także skorelowane są z okresem.

lea

Na osi pionowej mamy wielkość gwiazdową (proporcjonalną do ujemnego logarytmu z jasności), na poziomej okres, a z prawej jego logarytm. Dwie linie odpowiadają maksymalnej i minimalnej jasności obserwowanej. Dane dotyczą gwiazd z Małego Obłoku Magellana. Praca ta, z roku 1912, podpisana była przez Pickeringa, który stwierdzał jednak na wstępie, że komunikat „przygotowany został przez pannę Leavitt”. Tak wyglądało cywilizowane traktowanie kobiet sto lat temu.

Czemu niektóre gwiazdy zmieniają okresowo jasność? Zazwyczaj gwiazdy są stabilne, to znaczy ciśnienie głębszych warstw utrzymuje ciężar warstw bardziej zewnętrznych (podobnie ciśnienie w atmosferze ziemskiej maleje z wysokością). Czasem zdarza się jednak, że zamiast stanu równowagi pojawiają się oscylacje: gwiazda okresowo powiększa się i kurczy. Związane to jest z nieprzezroczystością materii gwiazdy. Gdy rośnie temperatura, więcej atomów ulega jonizacji, przez co materia staje się nieprzezroczysta (mieszanina dodatnich i ujemnych ładunków silnie pochłania fale elektromagnetyczne, podczas gdy zwykły gaz złożony z atomów jest przezroczysty, jak powietrze). Jeśli więc wytworzy się na pewnej głębokości taka nieprzezroczysta warstwa, energia cieplna będzie się gromadzić, a w konsekwencji wzrośnie ciśnienie i wypchnie tę warstwę na zewnątrz. Jednak rozszerzaniu towarzyszy zmniejszanie się temperatury i nasza warstwa w stanie ekspansji przepuszcza więcej energii na zewnątrz, co z kolei zmniejsza ciśnienie i wywołuje kurczenie się i wzrost nieprzezroczystości.

Dlaczego jasność i okres są powiązane? Pomijając szczegóły, można powiedzieć, że jasność L pulsującej gwiazdy jest proporcjonalna do pola jej powierzchni, a więc kwadratu promienia R: L\sim R^2. Okres pulsacji powinien wiązać się z promieniem gwiazdy oraz przyspieszeniem grawitacyjnym g na jej powierzchni (przyspieszenie grawitacyjne wewnątrz gwiazdy stanowi jakiś ułamek g). Z wielkości tych możemy utworzyć tylko jedną kombinację dającą czas (por. wzór na okres wahadła):

T\sim\sqrt{\dfrac{R}{g}}.

Ponieważ przyspieszenie grawitacyjne można zapisać jako

g=\dfrac{GM}{R^2},

gdzie G jest stałą grawitacyjną, a M masą, więc łącząc te wyrażenia, otrzymamy

T\sim R^{\frac{3}{2}}M^{-\frac{1}{2}}\sim L^{\frac{3}{4}}M^{-\frac{1}{2}}.

Obserwowana zależność to T\sim L^{0,86}. Po zlogarytmowaniu otrzymamy linie proste z wykresu Leavitt.

W roku 1926 szwedzki matematyk Gösta Mittag-Leffler, zwolennik równouprawnienia kobiet w nauce, który przyczynił się do profesury Sofii Kowalewskiej w Sztokholmie i Nagrody Nobla dla Marii Skłodowskiej-Curie, chciał nominacji Leavitt do tej nagrody. Dowiedział się jednak, że kilka lat wcześniej zmarła ona na raka w wieku 53 lat. Nagroda Nobla wymaga wielkich osiągnięć, ale często także dobrego zdrowia, by jej dożyć. Leavitt żyła skromnie, pozostawiła po sobie majątek wartości 314 dolarów i 91 centów. Niewątpliwie należała do tych, którym nauka zawdzięcza dużo więcej niż oni nauce.

Konstandinos Kawafis: Czekając na barbarzyńców (1898)

Na cóż czekamy, zebrani na rynku?

Dziś mają tu przyjść barbarzyńcy.

Dlaczego taka bezczynność w senacie?
Senatorowie siedzą – czemuż praw nie uchwalą?

Dlatego że dziś mają przyjść barbarzyńcy.
Na cóż by się zdały prawa senatorów?
Barbarzyńcy, gdy przyjdą, ustanowią prawa.

Dlaczego nasz cesarz zbudził się tak wcześnie
i zasiadł – w największej z bram naszego miasta –
na tronie, w majestacie, z koroną na głowie?

Dlatego że dziś mają przyjść barbarzyńcy.
Cesarz czeka u bramy, aby tam powitać
ich naczelnika. Nawet przygotował
obszerne pismo, które chce mu wręczyć –
a wypisał w nim wiele godności i tytułów.

Czemu dwaj konsulowie nasi i pretorzy
przyszli dzisiaj w szkarłatnych, haftowanych togach?
Po co te bransolety, z tyloma ametystami,
i te pierścienie z blaskiem przepysznych szmaragdów?
Czemu trzymają w rękach drogocenne laski,
tak pięknie srebrem inkrustowane i złotem?

Dlatego że dziś mają przyjść barbarzyńcy,
a takie rzeczy barbarzyńców olśniewają.

Czemu retorzy świetni nie przychodzą, jak zwykle,
by wygłaszać oracje, które ułożyli?

Dlatego że dziś mają przyjść barbarzyńcy,
a ich nudzą deklamacje i przemowy.

Dlaczego wszystkich nagle ogarnął niepokój?
Skąd zamieszanie? (Twarze jakże spoważniały.)
Dlaczego tak szybko pustoszeją ulice
i place? Wszyscy do domu wracają zamyśleni.

Dlatego że noc zapadła, a barbarzyńcy nie przyszli.
Jacyś nasi, co właśnie od granicy przybyli,
mówią, że już nie ma żadnych barbarzyńców.

Bez barbarzyńców – cóż poczniemy teraz?
Ci ludzie byli jakimś rozwiązaniem.

(przeł. Z. Kubiak)

Nie jest to najlepszy wiersz Kawafisa, nieco zbyt retoryczny, zbudowany katechizmowo, nie odwołuje się do konkretnej sytuacji historycznej, ironia jest tu zbyt łatwa. Ale nawet słabszy, wczesny Kawafis, to wciąż Kawafis: z wyobraźnią ożywiającą historię, pozwalającą widzieć zarówno materialne i psychologiczne szczegóły, jak i głębszy sens spektaklu. Oto mamy rozwiniętą cywilizację, która nie ma siły trwać, jej elity skoncentrowane są na dogadzaniu własnej próżności, popisywaniu się bogactwem, pomysłowością w sprawach trzeciorzędnych, błyskotkami i błahostkami. Wszyscy czekają na potop, który by odnowił oblicze ziemi.

Na kilkanaście lat przed wielką wojną światową i wielką rewolucją rosyjską, przed czekistami, czarnymi koszulami i brunatnymi koszulami, stalinami i hitlerami, łagrami i lagrami, poeta z prowincjonalnej Aleksandrii umiał zaglądać w głąb czasu i dobrze rozumiał, na czym polega znużenie światem i tęsknota za rządami silnej ręki, przecinającymi beznadziejne dylematy. Tak słodko wyrzec się wolności. Miliony miały sobie powtarzać: co nam po wolności, skoro i tak nasze życie przypomina dożywotnie więzienie, którego murów sami nie przebijemy.

Każdy czytelnik musi zadać sobie nieuchronne pytanie: kim są owi barbarzyńcy. Dla Greków byli to ci, którzy nie mówili po grecku. Definicja ta w jakimś sensie pozostaje użyteczna do dziś, jeśli rozumieć ją szerzej, a więc nie tylko w odniesieniu do języka, ale i do tego, co się myśli. Grecy nauczyli nas szacunku dla człowieka, podziwu dla jego ciała, umysłu, czasem także charakteru. Uczyli pokory wobec świata, przestrzegali przed hybris, zgubną pychą, która narusza prawa boskie i nieuchronnie wiedzie do katastrofy. Zaszczepili nam zmysł tragedii i koncepcję filozofii. Arystotelesowska definicja prawdy nigdy nie przestała być aktualna (w sformułowaniu św. Tomasza jest to zgodność naszych pojęć z faktami, coś niełatwego do osiągnięcia, lecz bezcennego). Zresztą bez Greków chrześcijaństwo byłoby zaledwie jedną więcej egzotyczną żydowską sektą, nigdy nie osiągnęłoby metafizycznej subtelności i intelektualnej dojrzałości. Także prawa logiki i ich nadużycia, retoryka i demagogia, skodyfikowane zostały przez Greków. Ani druk, ani internet nie dodały tu nic nowego oprócz zgiełku i narastającego z czasem przeświadczenia, że liczy się tylko dzień dzisiejszy, a co wczoraj niewarte jest pamiętania. Zasypywani powodzią nieistotnych słów i obrazów, niczym nartniki po powierzchni wody, ślizgamy się po teraźniejszości, niewiele z niej rozumiejąc.

Jakich barbarzyńców obawia się dzisiejszy świat Zachodu? Islamskich terrorystów, chińskich producentów, kolorowych imigrantów, własnych społeczeństw? Cywilizacje mają swoje przypływy i odpływy, ta zachodnioeuropejska i amerykańska prawdopodobnie chyli się ku upadkowi, a ci, którzy chcą jej bronić są gorsi niż barbarzyńcy przybywający od granic. Zdegenerowane chrześcijaństwo, które nie rozumie, kim był żydowski prorok Jezus z Nazaretu i które jest tylko bezmyślnym klepaniem magicznych zaklęć, wznoszeniem nienawistnych okrzyków i paradowaniem z faszystowskimi symbolami, bez żadnej przyszłości. Ludzie, którzy kłamią, nawet wtedy, kiedy się nie odzywają. Uczestnicy polowań z nagonką na Bogu ducha winne ofiary – ale przecież nikt nie jest niewinny. Nowi dygnitarze, bezmyślni albo powtarzający sobie w duchu, że tak trzeba. Prymitywy, których uniwersum mieści się w telefonie. Barbarzyńców nie trzeba daleko szukać – oni są w nas, w naszych sąsiadach, krewnych i znajomych, wystarczą sprzyjające okoliczności, a chamstwo i brutalność wezmą górę. Jacyś barbarzyńcy zawsze się znajdą, wezmą władzę, która leży na ulicy, i ustanowią swoje prawa, proste jak pałka i płaskie jak umysł towarzysza Płaszczaka.

Pierre Fermat: zasada najmniejszego działania dla światła (1657-1662)

Greccy geometrzy zauważyli, że światło biegnie po najkrótszej drodze, i to zarówno wtedy, gdy porusza się prostoliniowo między dwoma punktami (np. A i C), jak i wówczas, gdy po drodze odbija się od zwierciadła, biegnąc po łamanej ABC. Najkrótszej drodze odpowiada prawo odbicia: kąt odbicia równy jest kątowi padania.

fermat-heron

Rozumowanie z rysunku znajdujemy u Herona z Aleksandrii w jego Katoptryce (czyli optyce zwierciadeł). Jeśli punkt A odbijemy symetrycznie w płaszczyźnie zwierciadła (prostopadłej do rysunku), otrzymujemy A’. Drogi A’B i AB są więc równe. Zamiast ABC możemy rozpatrywać A’BC. Dowolna łamana AXC ma taką samą długość, jak A’XC. Ponieważ każda łamana biegnąca od A’ do C jest dłuższa niż odcinek prostej, więc najkrótsza droga równa jest ABC i punkt B leży wówczas na odcinku A’C. Łatwo widać, że dla takiej drogi kąt odbicia równa się kątowi padania.

W roku 1657 Pierre Fermat, radca parlamentu (czyli sądu) w Tuluzie, otrzymał w prezencie książkę poświęconą światłu.

la_lumiere_cureau_de_la-chambre

Jej autorem był Marin Cureau de La Chambre, lekarz, do którego nastoletni Ludwik XIV, przyszły Król-Słońce miał ogromne zaufanie. Fermat, urzędnik królewski, czuł się w obowiązku zajrzeć do książki doradcy tak uczonego i ustosunkowanego na dworze (zręczność dyplomatyczną autora widać i w tym, że na karcie tytułowej jego własne nazwisko złożone jest znacznie mniejszą czcionką niż nazwisko potężnego kardynała Mazarin). Książka zawierała dowód Herona. Cureau de La Chambre zwracał też uwagę, że gdy światło się załamuje, przebywana przez nie droga już nie jest najkrótsza.

fermat0

Droga ABC jest oczywiście dłuższa niż ADC na rysunku. Fermat znał, jak wszyscy, prawo załamania (prawo Snella), opublikowane przez Kartezjusza w 1637 roku. Nie zgadzał się jednak z fizycznym wyprowadzeniem tego prawa, niezbyt wierzył chyba w te wszystkie niewidzialne cząstki rozmaitych kształtów i wielkości, które miały się ze sobą zderzać i na siebie napierać, tłumacząc absolutnie wszystko: od ruchu planet i optyki, po magnetyzm i ciężkość ciał. Jako matematyk szukał wyjaśnienia elegantszego i mniej uwikłanego w trudne do sprawdzenia przesłanki. Gdyby przyjąć, że w gęstszym ośrodku światło napotyka większy opór, to należałoby drogę w ośrodku liczyć np. podwójnie. A więc nadal można podejrzewać, że światło wybiera najłatwiejszą drogę. Należałoby jednak minimalizować nie sumę dróg, lecz pewną ich kombinację, np. AB+2BC. Gęstszemu ośrodkowi odpowiadałby większy współczynnik: wyglądało to rozsądnie, gdyż u Kartezjusza światło miało „większą siłę” w ośrodku gęstszym, co nie jest zbyt intuicyjne (ani zrozumiałe). Nie chcąc wdawać się w spory na temat natury światła, Fermat unikał mówienia o jego prędkości – bowiem zdaniem kartezjan oraz Cureau de La Chambre światło rozchodzi się momentalnie. Sporów z kartezjanami, uczniami mistrza, nie uniknął, podobnie jak dwadzieścia lat wcześniej z ojcem-założycielem tej sekty filozoficznej. Fermat znany był z wysuwania twierdzeń, których nie chciało mu się albo których nie potrafił dowieść, słynnym przykładem jest jego Wielkie Twierdzenie udowodnione pod koniec XX wieku. Także i tym razem niezbyt chętnie brał się do sprawdzenia, czy rzeczywiście światło podlega zasadzie najmniejszego działania. Miał własną metodę szukania ekstremum, dość toporną z dzisiejszego punktu widzenia, zastąpioną później przez obliczanie pochodnych. W wersji Fermata prowadziła ona do długich rachunków, ale w pierwszym dniu nowego roku 1662 zakomunikował Cureau de La Chambre, że obliczenia się udały i prowadzą do znanego prawa załamania. Niemal pięcioletnie opóźnienie między wysunięciem twierdzenia a zbadaniem jego konsekwencji tłumaczył Fermat dwiema przeszkodami: po pierwsze, nie był całkiem pewien, jak należy sformułować zasadę minimum i czy prawo Snella jest ściśle słuszne. Drugą przeszkodą była, typowa dla matematyków, niechęć do długich rachunków. W tym przypadku w grę wchodziły cztery odcinki, a więc cztery pierwiastki z sumy kwadratów współrzędnych. „Obawa, że po długich i trudnych rachunkach dojdę do jakiejś fantastycznej i nieregularnej proporcji oraz moja naturalna skłonność do lenistwa pozostawiły rzecz w tym stanie aż do ostatniego napomnienia, którego udzielił mi w pańskim imieniu pan przewodniczący de Miremont. (…) Nagroda za tę pracę okazała się zupełnie nadzwyczajna, niespodziewana i szczęśliwa. Kiedy bowiem przebrnąłem przez wszystkie równania, mnożenia, antytezy i inne operacje, jakich wymaga moja metoda (…) stwierdziłem, że moja zasada daje dokładnie tę samą proporcję załamania, jaką ustalił pan Descartes. Tak bardzo zaskoczył mnie ten niespodziewany wynik, że z trudem mogłem dojść do siebie. Wiele razy powtórzyłem różne operacje algebraiczne, otrzymując stale ten sam wynik, choć moje rozumowanie zakłada, iż przejście światła przez gęste ciała jest trudniejsze niż przez rzadkie, co uważam za prawdziwe oraz niewątpliwe, niemniej jednak pan Descartes zakłada coś przeciwnego”.

Fermat zakłada więc, że nie suma dróg s_1+s_2 musi być minimalna, lecz suma ich kombinacji liniowych s_1+ns_2, gdzie n jest współczynnikiem załamania drugiego ośrodka (względem pierwszego). Łatwo widać, że jeśli przyjmiemy za prędkość światła w drugim ośrodku wielkość v=c/n (gdzie c jest prędkością w ośrodku pierwszym), to można tę zasadę sformułować jako zasadę najkrótszego czasu:

t=\dfrac{s_1}{c}+\dfrac{s_2}{v}=\dfrac{s_1+n s_2}{c}.

Fermat dumny był z otrzymania eleganckiego wyniku, lecz kartezjanie uważali go za ciekawostkę matematyczną, a nie zasadę odnoszącą się do światła. Zasada Fermata nabrała sensu dopiero dla Christiaana Huygensa, który światło uznawał za rozchodzące się zaburzenie eteru, coś w rodzaju fali nieokresowej, jak np. fala uderzeniowa. Wiedział on już, że prędkość światła jest skończona. Huygens przedstawił też elegancki dowód, że zasada Fermata prowadzi do prawa załamania Snella. Jest on wyraźnie prostszy niż obliczenie Fermata – zwykle udaje się uprościć rozumowanie, kiedy już wiadomo, dokąd prowadzi.

fermat-a-la-huygens

Porównujemy rzeczywisty bieg promienia światła ABC z fikcyjnym AFC. Budujemy prostokąt AOHB, mamy w ten sposób pewność, że AB=OH. Na BC opuszczamy prostopadłą GF z punktu G. Z prawa załamania mamy

\dfrac{\mbox{HF}}{\mbox{BG}}=\dfrac{\sin\alpha}{\sin\beta}=n.

Zachodzą też nierówności

\mbox{AF}>\mbox{OH}+\mbox{HF}=\mbox{AB}+n\mbox{BG},

n\mbox{FC}>n\mbox{GC}.

Dodając te nierówności stronami, otrzymujemy:

\mbox{AF}+n\mbox{FC}>\mbox{AB}+n\mbox{BC}.

Zmieniając nieco nasz rysunek, możemy zrozumieć przyczynę prawa załamania dla fal. Linie AA’ oraz BH to czoła fali w pierwszym ośrodku, GF oraz CC’ to czoła fali w drugim ośrodku. W czasie potrzebnym na przejście odległości HF w pierwszym ośrodku, w drugim fala przejdzie odległość BG.

fermat-huygens2

Zatem stosunek obu odległości równy jest

\dfrac{\sin\alpha}{\sin\beta}=\dfrac{c}{v}=n.

Bezpośrednie wyjaśnienie zasady Fermata daje nam mechanika kwantowa albo falowa teoria światła: faza światła zależy od czasu. W sąsiedztwie ekstremum fazy zmieniają się bardzo powoli i rezultatem jest silna fala wypadkowa.

Warto może przytoczyć dzisiejszą wersję obliczeń Fermata. Jest ona banalna, co nie oznacza, że jesteśmy mądrzejsi od Fermata, ale że mamy lepsze techniki rachunkowe. Pojawiły się one już kilka lat później w rękopisach Isaaca Newtona, które niewielu widziało, a później w 1684 roku w pierwszej publikacji Leibniza na temat rachunku różniczkowego. Metoda Fermata przekształciła się w algorytmy, do których stosowania wcale nie potrzeba inteligencji, z powodzeniem robią to dziś programy w rodzaju WolframAlpha itp.

fermat

Wielkość, którą mamy zminimalizować, ma postać:

s(x)=\sqrt{(x-x_a)^2+y_a^2}+n\sqrt{((x-x_b)^2+y_b^2}.

Szukamy ekstremum tej funkcji, przyrównując jej pochodną do zera:

s'(x)=\dfrac{2(x-x_a)}{2\sqrt{(x-x_a)^2+y_a^2}}+n\dfrac{2(x-x_b)}{2\sqrt{((x-x_b)^2+y_b^2}}=0.

Łatwo spostrzec, patrząc na rysunek, że pierwszy składnik równy jest \sin\alpha, a drugi -n\sin\beta, skąd otrzymujemy prawo Snella.

J.J. Thomson: Jak powstaje fala elektromagnetyczna? (1903)

Pole elektryczne spoczywającego ładunku zachowuje się tak, jak linie prędkości cieczy (nieściśliwej). Oznacza to, że linie sił pola biegną radialnie z ładunku punktowego i każdą zamkniętą powierzchnię otaczającą nasz ładunek przecina tyle samo linii sił. Strumień pola elektrycznego jest taki sam przez każdą powierzchnię zamkniętą (taka sama objętość cieczy przepływa w jednostce czasu przez każdą powierzchnię: ciecz nie gromadzi się ani nigdzie nie ucieka, np. w czwarty wymiar, ile wpłynęło przez jedną powierzchnię, tyle musi wypłynąć przez drugą).

maxwell fluid

Zatem natężenie pola E razy pole powierzchni sferycznej o promieniu r jest stałe:

E4\pi r^2=\dfrac{q}{\varepsilon_0}\Rightarrow E=\dfrac{q}{4\pi\varepsilon_0 r^2} \mbox{(*)}.

Inaczej mówiąc, kwadrat odległości w prawie Coulomba bierze się stąd, że pole powierzchni sfery rośnie jak r^2. W równaniach tych q oznacza ładunek, \varepsilon_0 stałą informującą o wielkości sił elektrycznych, jest to tzw. przenikalność próżni i jest stałą fizyczną. Najczęściej jednak mamy do czynienia nie z polami elektrostatycznymi, lecz z falami elektromagnetycznymi: dzięki tym falom widzimy na ekranie ten tekst, dzięki tym falom możemy rozmawiać przez komórkę albo obserwować wszechświat, można śmiało stwierdzić, że większość naszej jednostkowej i cywilizacyjnej wiedzy zdobyliśmy dzięki falom elektromagnetycznym.

Spójrzmy nieco inaczej na rysunek wyżej. Gdyby punkt w środku oznaczał Słońce (albo jakąś inną gwiazdę, albo dowolne źródło o symetrii kulistej), a linie były promieniami światła, to przez każdą powierzchnię zamkniętą w jednostce czasu powinna przechodzić taka sama ilość energii, inaczej mówiąc: moc przepływająca przez każdą powierzchnię byłaby taka sama – wszechświat jest dość pusty i praktycznie cała energia przepływa dalej (gdybyśmy zresztą wyobrazili sobie planetę między dwiema powłokami, to po pierwsze byłaby ona malutka w porównaniu do gwiazdy, a więc pochłaniałaby niewiele mocy, a poza tym wysyłałaby tyle watów, ile pochłania – inaczej planeta gwałtownie stygłaby albo się ogrzewała.) Równanie zapisane wyżej można by powtórzyć z niewielkimi zmianami: jeśli I to moc na jednostkę powierzchni (W/m2), czyli natężenie promieniowania gwiazdy, to możemy napisać:

I4\pi r^2=P\Rightarrow I=\dfrac{P}{4\pi r^2}.

P jest mocą gwiazdy [W], czyli ilością energii wysyłanej przez nią w jednostce czasu. Zatem natężenie fali powinno maleć jak 1/r^2, ponieważ pole powierzchni sfery rośnie jak r^2. Natężenie fali jest dla wszystkich rodzajów fal, nie tylko elektromagnetycznych, proporcjonalne do kwadratu amplitudy. Mamy zatem

I\sim E^2\sim \dfrac{1}{r^2}\Rightarrow E\sim \dfrac{1}{r}.

Pole elektryczne fali powinno być odwrotnie proporcjonalne do odległości od źródła, a nie do jej kwadratu, jak w przypadku statycznym (*). Możemy teraz zrozumieć, czemu pole elektrostatyczne trudniej zaobserwować: maleje ono bowiem z odległością szybciej niż pole fali elektromagnetycznej. Jest i drugi powód: atomy zawierają tyle samo ładunku ujemnego co dodatniego i w efekcie pola elektrostatyczne niemal się równoważą – niemal, bo ładunki dodatnie (jądra) są średnio biorąc w innym miejscu niż ujemne (elektrony), wypadkowe pole maleje w rezultacie jeszcze szybciej, z sześcianem odległości. Siły elektrostatyczne są bardzo istotne dla wiązań atomów, czyli na niewielkich odległościach.

Jak można z pola spoczywającego ładunku otrzymać pole fali elektromagnetycznej? Zacznijmy od jednostek. Skoro dla pola statycznego E maleje jak 1/r^2, to aby otrzymać zależność 1/r, musimy we wzorze (*) znaleźć dodatkowy czynnik w mianowniku o wymiarze długości (m). Pole fali elektromagnetycznej związane jest z ruchem przyspieszonym ładunku, logicznie jest przypuścić, że powinno być proporcjonalne do jego przyspieszenia a (m/s2). Mamy więc w liczniku metry podzielone przez sekundy do kwadratu. A chcielibyśmy mieć same metry, i w mianowniku. Możemy wykorzystać w tym miejscu drugą stałą fizyczną elektromagnetyzmu, tzn. prędkość światła c (pierwsza to \varepsilon_0). Jeśli przyspieszenie podzielimy przez c^2, dostaniemy taki wymiar, jak potrzeba:

\left[\dfrac{a}{c^2}\right]=\dfrac{m/s^2}{m^2/s^2}=\dfrac{1}{m}.

W wyniku tego zgadywania, zwanego uczenie analizą wymiarową, możemy przypuszczać, że pole elektryczne fali wytwarzanej przez ładunek q powinno mieć postać:

E=\dfrac{qa}{4\pi\varepsilon_0 c^2 r}f(\theta).

Włączyliśmy tu jakąś nieznaną funkcję kąta miedzy przyspieszeniem a promieniem wodzącym. Kąty są bezwymiarowe, więc nie zmienia to naszych wniosków. Zobaczymy, jak można zrozumieć mechanizm wytwarzania fali i ostatni wzór. Rozumowanie poniżej pochodzi od J.J. Thomsona, który w roku 1903 miał wykłady w Yale, gdzie je przedstawił wśród wielu innych rozważań. Fale elektromagnetyczne znane były od kilku dziesięcioleci, wkład Thomsona jest tu czysto dydaktyczny (Główną jego naukową zasługą było odkrycie elektronu, za które otrzymał Nagrodę Nobla w 1906 roku.) Rozumowanie to było zresztą wielokrotnie powtarzane przez autorów podręczników, m.in. w kursie berkeleyowskim, znanym i w Polsce.

Punktem wyjścia jest fakt, że pole elektryczne ładunku poruszającego się jednostajnie wygląda w każdej chwili tak samo jak pole ładunku spoczywającego (*) – chcąc zmierzyć pole w danym punkcie i w danej chwili, musimy wstawić do tego wzoru odległość miedzy punktem a ładunkiem obliczoną właśnie w owej chwili. Zakładamy tu, że prędkość jest niewielka w porównaniu z prędkością światła, jest to założenie do uniknięcia, choć sam Thomson niezbyt dobrze rozumiał ten punkt – było to jeszcze przed teorią względności. W każdym razie w większości przypadków, oprócz akceleratorów cząstek albo kosmicznych katastrof, założenie to jest spełnione.

Impuls typu fali elektromagnetycznej uzyskamy, gdy nasz ładunek zmieni prędkość. Wyobraźmy sobie np., że w pewnej chwili t=0 ładunek zaczął hamować. Oczywiście nie mógł stanąć w miejscu, przez pewien krótki czas \tau poruszał się z przyspieszeniem, a potem już był nieruchomy. Jak powinny wyglądać linie sił w chwili T\gg \tau? Wiemy, że informacja nie może przenosić się szybciej niż c, zatem na zewnątrz sfery o promieniu cT=OR nic jeszcze nie wiadomo, że ładunek się zatrzymał i linie sił zbiegają do punktu O’, w którym powinien się on znaleźć, gdyby nadal poruszał się jednostajnie. W pobliżu ładunku, w odległościach mniejszych niż c(T-\tau)=OP, już wiadomo, że ładunek jest nieruchomy: linie sił zbiegają się w punkcie O. Linie sił pola elektrycznego muszą być ciągłe, nie mogą się zaczynać ani kończyć w punkcie przestrzeni, gdzie nie ma ładunku. Łącząc obraz sprzed hamowania i po hamowaniu uzyskamy co następuje:

electricitymatte00thombw

(Linia sił OPP’Q, oryginalny rysunek z wykładów Thomsona, Electricity and Matter, New Haven 1912)

purcell

(Linia sił to ABCD, ta sama sytuacja w podręczniku Purcella i Morina z roku 2013)

Na pierwszym rysunku nie zaznaczono drogi hamowania, na drugim jest ona zaznaczona, ale tak, że widać, iż jest znacznie krótsza niż droga v_0 T. Do pola radialnego doszło pole skierowane poprzecznie, prostopadle do promienia wodzącego. Właśnie to pole poprzeczne zmienia się jak 1/r. Nie wiem, czy dziś łatwiej się uczyć niż przed wiekiem, z pewnością lepsze są rysunki i liczniejsze źródła wiedzy. Trzymając się oznaczeń drugiego rysunku, widzimy, że stosunek pola poprzecznego E_{\theta} do radialnego E_r równy jest

\dfrac{E_{\theta}}{E_{r}}=\dfrac{v_0 T\sin\theta}{c\tau}=\dfrac{v_0}{\tau}\dfrac{cT}{c^2}\sin\theta=a\dfrac{r}{c^2}\sin\theta.

Widzimy, że wraz z rosnącą odległością stosunek obu składowych pola jest coraz większy: daleko od źródła zostaje jedynie pole poprzeczne. Wstawiając za E_{r} wzór (*), otrzymamy pole promieniowania.

E=\dfrac{qa\sin\theta}{4\pi\varepsilon_0 c^2 r}.

Jak widać, f(\theta)=\sin\theta. Ostatnia zależność oznacza, że tylko przyspieszenie ładunku prostopadłe do promienia wodzącego jest źródłem fali. Jeśli patrzymy na poruszający się ładunek i nie widzimy ruchu (bo porusza się on wzdłuż linii widzenia), nie ma promieniowania. Wyrażenie dla E_{\theta} słuszne jest dla dowolnego ruchu nierelatywistycznego. W antenach ładunki oscylują, zatem przyspieszenie zmienia się okresowo, a tym samym zgodnie z naszym wzorem zmienia się okresowo także pole elektryczne. Mamy rozchodzącą się falę elektromagnetyczną. Nie zajmowaliśmy się tu polem magnetycznym, które jest proporcjonalne do pola elektrycznego i prostopadłe do niego, a także do kierunku rozchodzenia się fali.

Uwaga nt. kątów: Natężenie fali elektromagnetycznej będzie zawierało kwadrat pola, a więc \sin^2\theta. Oczywiście, jeśli źródło złożone jest z wielu ładunków, których przyspieszenia rozmieszczone są przypadkowo i izotropowo (jak w przypadku gwiazdy), wypadkowa energia będzie niezależna od kierunku, zostanie tylko zależność od odległości.

Uwaga nt. stałych: Czasem używa się innej pary stałych: \varepsilon_0 oraz \mu_0. Zachodzi zależność:

\mu_0=\dfrac{1}{\varepsilon_0 c^2}.