Galileo Galiei, Dialog o dwu najważniejszych układach świata, 1632 (1/2): Początek i końcowy medykament

Dialog stanowi opus magnum Galileusza. Dobiegający siedemdziesiątki uczony uznał, że nadszedł w końcu czas, by ogłosić swoje poglądy na wszechświat i zagadnienie ruchu. Druk książki zakończył się w lutym 1632 roku. Jej pełny tytuł brzmiał: Dialog Galileo Galilei z Akademii Lincei, matematyka nadzwyczajnego uniwersytetu w Pizie, pierwszego filozofa i matematyka najjaśniejszego Wielkiego Księcia Toskanii, gdzie podczas spotkań w ciągu czterech dni dyskutuje się na temat dwóch największych układów świata: ptolemeuszowego i kopernikowego, proponując w sposób nierozstrzygający argumenty zarówno za jedną, jak i za drugą stroną. Frontispis przedstawiał trzech uczonych: Arystotelesa, Ptolemeusza i Kopernika (ten ostatni miał rysy przypominające raczej Galileusza), dyskutujących na temat układu świata. Natomiast strona tytułowa zawierała aż pięć różnych pozwoleń: dwa rzymskie bez daty i trzy florenckie z września 1630 roku.

Władze przywiązywały szczególną wagę do początku dzieła i końcowego argumentu, pochodzącego od samego Urbana VIII i nazywanego la medicina del fine – końcowym medykamentem, bo miał podważyć wszystko, co zostało wcześniej powiedziane, i tym samym niejako „uleczyć” chroniczną chorobę naukowych dociekań. Przypomina to nieco praktykę stosowaną w zupełnie innych czasach: w socjalistycznej Czechosłowacji filozofowie, chcąc zapewnić sobie minimum swobody naukowej, dodawali do swych prac wstępy i posłowia naszpikowane cytatami z Marksa, Engelsa i Lenina – nazywano je balkonami. W środku można było wówczas przemycić jakieś myśli zupełnie innej proweniencji.

Wstęp „Do wyrozumiałego Czytelnika” to tekst ociekający obłudą tak wielką, że aż ociera się o szyderstwo.

W latach ubiegłych, celem uniknięcia niebezpiecznego wzburzenia wśród współczesnych, ogłoszony został w Rzymie zbawienny dekret, nakazujący uzasadnione przemilczanie poglądów pitagorejczyków dotyczących ruchu Ziemi. Nie zbrakło takich, którzy zuchwale utrzymywali, że dekret ten nie został jakoby powzięty po rozważnym zbadaniu samego zagadnienia, ale jedynie pod wpływem nieuzasadnionych namiętności. Słyszało się też wyrzekania, że zgoła niebiegli w naukach astronomicznych konsultorzy nie powinni byli nagłymi zakazami podcinać skrzydeł umysłów badawczych.

Poczucie obowiązku nie pozwoliło mi milczeć, gdy doszły do mnie tak zuchwałe wyrzekania. W pełnym zrozumieniu tego tak bardzo roztropnego postanowienia uznałem za właściwe wystąpić publicznie na arenie świata jako świadek najszczerszej prawdy. Byłem podówczas w Rzymie (…) i nie bez uprzedniego zasięgnięcia mojej opinii nastąpiło ogłoszenie tego dekretu. Dlatego też zamiarem moim jest wykazanie pracą niniejszą narodom obcym, że o sprawach tych we Włoszech, a zwłaszcza w Rzymie, równie wiele wiadomo jak to, co w najśmielszych wyobrażeniach osiągnął wysiłek badawczy zagranicy; że zebrane przeze mnie owoce własnych rozmyślań odnoszące się do układu Kopernika podane były uprzednio do wiadomości cenzury rzymskiej, że zatem ze środowiska Wiecznego Miasta promieniują nie tylko dogmaty dla zbawienia duszy, ale i zdobycze wiedzy ku radości dociekających umysłów.

Naszkicowany w ten sposób zamysł pokazania, że władza absolutna nie tylko decyduje, bo ma siłę, ale jeszcze decyduje słusznie, bo ma także rację, i to nawet w marginalnych z jej punktu widzenia sprawach – jak kopernikanizm – nie wygląda przekonująco. Zwłaszcza że „radości dociekającego umysłu” bywały w Rzymie określane raczej jako zuchwalstwo i nowinkarstwo. Uroczysta obrona kwalifikacji astronomicznych konsultorów zwracała tylko niepotrzebnie uwagę na kulisy procesu decyzyjnego, które lepiej było trzymać w ukryciu: kiedy król jest nagi, głośny podziw dla jego szat wygląda dość podejrzanie. Przykre wrażenie robi też uwaga o zasięganiu opinii Galileusza – wygląda to tak, jakby starał się przekonać nie tylko innych, ale i samego siebie, że dekret z roku 1616 nie był porażką. Zdecydowanie robił dobrą minę do bardzo złej gry. Pragnął pokazać, że i on, i Kościół byli cały czas po właściwej stronie, choć być może nie wszyscy zewnętrzni obserwatorzy to dobrze rozumieli. Prawdopodobnie Galileusz próbował twórczo zinterpretować przeszłość, aby umożliwić pewną zmianę polityki przy zachowaniu pozorów niezmienności. Wiadomo było, że Kościół nie cofnie oficjalnej decyzji, ale to wcale nie oznaczało, iż nie można było zmienić sposobu jej rozumienia. Campanella przytoczył kiedyś w liście do Galileusza następujący przykład: sobór nicejski II zadekretował, że wolno malować anioły, gdyż są one cielesne. I nikt tej decyzji nigdy nie odwołał, choć wszyscy scholastycy byli zdania, iż anioły nie są cielesne. W sprawie kopernikańskiej pierwszy krok został już uczyniony: Urban VIII inaczej kładł akcenty w interpretacji dekretu z roku 1616, a nawet dał do zrozumienia, że dekret był niepotrzebny. Może więc była szansa na w miarę swobodną dyskusję przy zachowaniu pozorów? Zanim wybuchła „sprawa Galileusza”, taka możliwość istniała. Ponieważ dalsze wydarzenia potoczyły się w sposób dramatyczny, ta próba wypracowania kompromisu wydaje się niepotrzebna i zostawia jakiś cień na intencjach Galileusza.

Jeśli chodzi o podejście do omawianego zagadnienia, Galileusz przedstawia je następująco: „W niniejszej rozprawie zająłem stanowisko Kopernika, traktując je jako czystą hipotezę matematyczną i starając się za pomocą wszelkich sztuczek wykazać, że jest ono lepsze nie w porównaniu z twierdzeniem o spoczynku Ziemi traktowanym w sposób absolutny, lecz od tego, jakiego bronią niektórzy, uważający się za perypatetyków, lecz będący nimi tylko z nazwy, zadowoleni, że mogą tkwić w bezruchu* i oddawać hołd złudzie, niezdolni do samodzielnego filozofowania, posługujący się jedynie utrzymanymi w pamięci a przy tym źle zrozumianymi pojęciami czterech elementów”. W tym proustowskim zdaniu Galileusz deklaruje, że celem jego ataku są tacy perypatetycy, którzy nie potrafią dobrze filozofować. Niskie mniemanie o współczesnych sobie perypatetykach uczony powtarzał wielokrotnie, głosząc, że sam Arystoteles, który był dobrym filozofem, szanującym fakty i obserwacje, nie mógłby zajmować takiego stanowiska jak rozmaici uczeni z bożej łaski, używający wielkiego imienia jako listka figowego dla własnej ignorancji. Oczywiście dyskusja tego rodzaju nie mogła być czysto „matematyczna”, musiała być „filozoficzna” – w ówczesnym sensie, obejmującym fizykę i filozofię. W każdym razie deklarowanym zamysłem autora było prowadzenie debaty w sposób przyjęty od średniowiecza na uniwersytetach. W debatach takich wolno było bronić różnych, nawet mocno nieortodoksyjnych, kwestii, traktowano to jako swego rodzaju ćwiczenie czy eksperymentowanie myślowe.

Mowa tu będzie o trzech głównych zagadnieniach. Najpierw postaram się dowieść, że wszelkie doświadczenia, jakie można przeprowadzić na Ziemi, są niewystarczające, aby udowodnić jej ruch, i że równie dobrze odnosić się mogą do Ziemi ruchomej, jak i do Ziemi nieruchomej. Mam nadzieję, że w tych rozważaniach pojawi się wiele spostrzeżeń nieznanych starożytności.

Najogólniej mówiąc chodzi tu o zasadę względności, a więc twierdzenie, iż zjawiska fizyczne przebiegają tak samo na ruchomej Ziemi, jak przebiegałyby na Ziemi nieruchomej. Wysuwano od starożytności wiele różnych argumentów mających wykazać, że ruch Ziemi pociągałby za sobą jakieś dziwaczne, a nawet katastrofalne skutki: ptaki i chmury zostawałyby w tyle, wciąż wiałby wschodni wiatr, budynki musiałyby się walić itd. Tymczasem Galileusz, analizując szczegółowo te argumenty, potrafił wykazać, że z punktu widzenia fizyka nie ma (prawie) różnicy między Ziemią ruchomą a nieruchomą.

Dalej badane będą zjawiska niebieskie, przemawiające na korzyść hipotezy Kopernika, jak gdyby ona koniecznie miała się ostać zwycięsko – z dodatkiem nowych rozważań, zmierzających raczej ku ułatwieniu zadań astronomii, aniżeli ku wykryciu konieczności w przyrodzie.

Z wiadomych przyczyn Galileusz stara się podkreślić, że nie pretenduje do żadnych absolutnych stwierdzeń w kwestii kopernikańskiej.

Na trzecim miejscu mówić będę o różnych pomysłowych fantazjach. Powiedziałem wiele lat temu, że na nieznane zjawisko przypływów morskich można by rzucić pewne światło, zakładając ruch Ziemi. Wypowiedź ta moja, przechodząc z ust do ust, znalazła miłosiernych ojców, którzy przyjęli ją jak swoją, przedstawiając jako płód własnego umysłu.

Galileusz ze ślepym uporem trzymał się swojej teorii pływów, nie reagując na żadne fakty obserwacyjne, to znaczy z łatwością dostosowując ją do nich – co przypominało najgorsze praktyki perypatetyków, tak przez niego ganione. Uczony wciąż tropił i znajdował u innych jakieś zapożyczenia ze swych prac; niektóre wypowiedzi tego rodzaju sprawiają dziś wrażenie paranoi, rażąc swą niewątpliwą przesadą. Teoria pływów miała być punktem kulminacyjnym Dialogu, choć w istocie jej główną zaletą było to, że dostarczyła pretekstu do napisania znakomitej książki.

Po oddaniu cenzurze tego, co konieczne, Galileusz przedstawił pięćset stron rozważań ściśle naukowych w formie dialogu trzech interlokutorów. Na samym końcu, po omówieniu pływów, znajduje się następująca wymiana zdań:

SIMPLICIO: O ile chodzi o rozważania, które miały tu miejsce, a w szczególności o te ostatnie, o przyczynach przypływu i odpływu morza, to naprawdę nie powiem, bym je w zupełności rozumiał (…) jednakowoż nie mogę ich uznać za odpowiadające prawdzie i ostateczne we wnioskach; co więcej, mam wciąż przed oczyma mego umysłu najbardziej niewzruszoną naukę, przekazaną mi przez wielkiego i wybitnego uczonego, przed którą należy zamilknąć. Wiem, że wy obaj na pytanie, czy Bóg swoją nieskończoną wszechmocą i mądrością mógł przyznać elementowi wody owe ruchy zmienne, które w nim dostrzegamy, i to innym sposobem aniżeli wprawiając w ruch zawierające je zbiorniki, odpowiedzielibyście, jestem tego pewien, że i mógłby, i umiałby tego dokonać wieloma sposobami, dla naszego umysłu nawet niewyobrażalnymi. Na mocy tego wysnuwam bezpośredni wniosek, że byłoby zbytnią śmiałością chcieć ograniczać i zacieśniać potęgę i mądrość boską do poziomu ludzkich urojeń.

SALVIATI: Jest to zaprawdę cudowna i anielska nauka: a w zupełnej z nią zgodzie znajduje się również inna, również boska, która zezwala wprawdzie na roztrząsanie budowy wszechświata, ale poucza również (być może po to, by działanie ludzkie nie stępiło się i nie skostniało w lenistwie), że jeszcze dalecy jesteśmy od poznania istoty dzieł Jego ręki. (…)

SAGREDO: Niech to będzie ostatnim słowem naszych czterodniowych rozważań. (…) A teraz będziemy mogli, naszym zwyczajem, popłynąć oczekującą nas gondolą i zażyć świeżości wieczornej godziny.

Jednym z zarzutów wobec Galileusza miało być to, że „włożył końcowy medykament w usta głupka”, tj. Simplicia, który zresztą przedstawiany jest raczej jako chodzący worek komunałów i człowiek może nie nadzwyczajnie przenikliwy, ale dość pogodnego usposobienia, pozbawiony zjadliwości realnych przeciwników uczonego. Rzeczywiście argument papieski nie wypada najlepiej w kontekście Dialogu, wydaje się jednak, że Galileusz nie miał świadomego zamiaru szydzenia z jego wartości. Starał się raczej, ustami Salviatiego, inaczej go ukierunkować: boska wszechmoc objawia się także w niewyczerpanym bogactwie przyrody – tu Galileusz jest całkowicie szczery i wyraża swoje głębokie przekonanie. Jeśli w jego poglądach pojawiał się gdzieś Bóg, to chyba najbardziej bezpośrednio tam, gdzie ujawniały się tajniki przemyślnego urządzenia świata. Był to raczej Wielki Architekt niż Absolutny Władca z wizji Urbana VIII. Można powiedzieć, że dwaj wybitni Toskańczycy spotkali się w kwestiach kończących Dialog i żaden nie chciał ustąpić z racji bliskich swemu sercu.

Sformułowania Galileusza mogły razić pobożne uszy, nie było to jednak zamiarem uczonego, a wynikało raczej z jego chwilami zaskakującej niewrażliwości czy nawet braku słuchu na sposób myślenia ludzi reprezentujących tradycyjny Kościół. Ich argumenty docierały do niego tylko na poziomie intelektualnym, nie rozumiał jednak postawy, jaka się za tym kryła; wydaje się, że i oni w zetknięciu z nim odczuwali jakąś obcość – nie mogło to skończyć się dobrze.

* Galileusz robi tu aluzję do nazwy szkoły filozoficznej: „perypatetycy” tzn. chodzący, więc nieruchomy perypatetyk to oksymoron.

Cytaty z polskiego przekładu Dialogu E. Ligockiego przy współudziale K. Giustiniani-Kępińskiej (PWN Warszawa 1953)

Reklamy

James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Hermann Minkowski i czasoprzestrzeń (1908)

We wrześniu roku 1908 na Zjeździe Niemieckich Przyrodników i Lekarzy  w Kolonii odczyt wygłosił Hermann Minkowski, matematyk z Getyngi. Powiedział tam:

Poglądy na przestrzeń i czas, które zamierzam tu rozwinąć, wyrosły z gruntu doświadczalno-fizykalnego. Tendencja ich jest radykalna. Odtąd przestrzeń w sobie i czas w sobie mają całkowicie stać się cieniami i tylko pewien rodzaj ich unii utrzymać ma samodzielność. („Wiadomości matematyczne”, t. 13, z. 5-6 (1909), s. 231.)

Chodziło w istocie o usunięcie sprzeczności miedzy dwiema wielkimi teoriami fizyki: mechaniką Newtona i elektrodynamiką Maxwella i Lorentza. Elektrodynamika przewidywała istnienie fal elektromagnetycznych, które w próżni rozchodzić się miały z prędkością światła c. Zbieżność wynikającej z teorii wartości z mierzoną prędkością światła była silnym argumentem za teorią Maxwella. Aby jednak wyznaczyć prędkość czegokolwiek, w tym impulsu świetlnego, musimy sprecyzować układ odniesienia, np. układ współrzędnych kartezjańskich. W jakim układzie odniesienia prędkość światła i innych fal elektromagnetycznych równa się dokładnie c? Sądzono powszechnie, że istnieje pewien nieruchomy ośrodek, eter, w którym rozchodzą się fale elektromagnetyczne, podobnie jak fale dźwiękowe w powietrzu albo innym ośrodku sprężystym. Eter długo zresztą pokutował w mowie potocznej jako „fale eteru”. Ponieważ Ziemia porusza się wokół Słońca, więc nie może zawsze spoczywać względem eteru, a skoro tak to obserwowana na Ziemi prędkość światła nie może być zawsze i w każdym kierunku taka sama. Wektorowe składanie prędkości wynika jednoznacznie z mechaniki Newtona, która miała za sobą dwa wieki sukcesów. Eksperymenty prowadzone przez wiele lat, głównie przez Alberta Michelsona, nie wykazywały żadnych efektów ruchu Ziemi: ani o żadnej porze roku, ani w piwnicy, ani w górach. Hendrik Lorentz wykazał, że można ocalić spójność fizyki za cenę wprowadzenia dość osobliwego założenia o skracaniu się ciał wzdłuż kierunku ruchu. Wprowadził też dodatkowy czas t', pewną matematyczną fikcję, która sprawiała, że równania elektrodynamiki nie zmieniały się w poruszającym się układzie odniesienia. Dopiero Albert Einstein rozciął ów węzeł gordyjski, stwierdzając, że pojecie eteru jest „zbędne”, nie istnieje żaden uprzywilejowany układ odniesienia. W każdym układzie odniesienia prawa fizyki: zarówno mechaniki, jak i elektrodynamiki mają taką samą postać (dokładnie w układzie inercjalnym, tzn. takim, który nie porusza się ruchem przyspieszonym, jak hamujący autobus bądź karuzela w ruchu). Oznacza to w szczególności, że prędkość światła zmierzona przez każdego obserwatora będzie równa c. Ceną za usunięcie sprzeczności była fundamentalna zmiana w pojęciu czasu. Jak pisał Minkowski w dalszym ciągu swego wykładu:

Lecz dopiero zasługą jest A. Einsteina wykazanie ścisłe, że czas jednego elektronu jest tak dobry jak drugiego, tj. że t i t' należy traktować jednakowo.

Einstein był młody i nie pracował na uniwersytecie w Getyndze, lecz w Biurze Patentowym w Bernie. Obie te okoliczności pozwoliły mu na przyjęcie radykalnego rozwiązania, że wyniki pomiaru czasu mogą zależeć od ruchu układu odniesienia. Do tej pory czas miał być absolutną miarą zmian w świecie fizycznym. Pogląd Newtona, zakorzeniony w jego metafizyce i teologii, stał się niewzruszony dla następnych pokoleń uczonych. Młodość oznaczała w tym wypadku pewną bezwzględność w stosunku do szacownych poprzedników. W zasadzie klocki pojęciowe zostały już uformowane przez Lorentza i Henri Poincarégo, Einstein ustawił je tylko w pozornie paradoksalny sposób, nie troszcząc się o wrażliwość starego pokolenia. Ustawienie to przetrwało do dziś. Z Lorentzem zresztą się później zaprzyjaźnił, Poincaré, przyznając mu naukową rangę, mocno się dystansował od jego ujęcia. Dlaczego pomogło mu, że nie pracował w Getyndze? Młody Albert porzucił gimnazjum w Monachium, nie mając jeszcze szesnastu lat, i wyjechał z Niemiec, zrzekł się też wkrótce obywatelstwa Królestwa Wirtembergii, a tym samym Rzeszy Niemieckiej. Nie cierpiał niemieckiego ducha posłuszeństwa, uważał, że w gimnazjum jest jak w wojsku. W rezultacie studiował na Politechnice w Zurychu, która była uczelnią gorszą niż uniwersytety niemieckie albo Uniwersytet Wiedeński. Prawie nie miał tam fizyki teoretycznej oprócz jednego wykładu Minkowskiego, gdzie omawiane były kwestie takie jak włoskowatość, a więc zupełnie już przestarzałe z punktu widzenia fizyka. Einstein nauczył się wszystkiego sam. Po studiach, ponieważ był dość pyskaty, nie znalazł miejsca na uczelni. Nie chcieli go nawet do prowadzenia ćwiczeń ze studentami, których na politechnice było dużo i które były tak samo wtedy, jak i dziś, niezbyt rozwijające intelektualnie. Urząd patentowy był pracą zastępczą. Przedtem różne uniwersytety z całej niemal Europy zdążyły odrzucić podania młodego absolwenta. Gdyby miał szczęście i zaczął pracować w Getyndze, wśród wybitnych matematyków i fizyków, trudniej byłoby mu zachować niezależność. Tamtejsza szkoła wywierała silne piętno na pracujących tam uczonych. Minkowski, który z Zurychu przeniósł się do Getyngi, miał niezbyt wysokie pojęcie o Einsteinie, który niewiele zresztą chodził na wykłady czysto matematyczne (choć stopnie z egzaminów miał dobre, uczył się w ostatniej chwili). Ujmując rzecz ogólnie: Pan Bóg wiedział, co robi, tworząc odrębne profesje matematyków i fizyków. David Hilbert i Felix Klein interesowali się fizyką, ale osiągnięcia, zarówno ich własne, jak i młodszych kolegów w tej dziedzinie były wybitne, a jednocześnie jakoś chybione. Powstawały prace eleganckie, lecz puste z punktu widzenia fizyka. Toteż lepiej, że Einstein nie musiał walczyć z presją tamtejszego środowiska. Możliwe zresztą, że by sobie poradził, bo miał wyjątkowo silny charakter. Sam zresztą mówił, że charakter ważniejszy jest od talentu, chodziło mu o to, żeby robić swoje, nie myśląc, że to się może nie udać. Fizyka w jego wydaniu to były niemal zawsze prace, które mogły się udać albo okazać kompletnym nieporozumieniem. Charakter potrzebny był mu do podejmowania ryzyka i nieprzejmowania się porażkami, których zawsze jest więcej niż sukcesów.

Wprowadzona przez Minkowskiego czasoprzestrzeń stała się trwałą częścią fizyki. Teoria względności, naruszając niezmienność czasu, wciąga go niejako do gry, pozwalając mu mieszać się z przestrzenią. Ze współczesnego punktu widzenia prędkość światła jest jedynie przelicznikiem między czasem a odległością. Stała c ma obecnie pewną wartość zadekretowaną przez międzynarodowe porozumienia. Żeby mieć te same jednostki na osiach możemy umieszczać ct oraz współrzędne x,y,z (będziemy też czasem pisać po prostu t zamiast $ct$). W czasoprzestrzeni punktami są zdarzenia o określonych współrzędnych (x, y, z, ct). Wygląda to tak dla czasoprzestrzeni (2+1)-wymiarowej:

Powiedzmy, że O jest zdarzeniem, które nas szczególnie interesuje. Zdarzenia, które mogły wywrzeć wpływ na O albo leżą na stożku przeszłości, jak Y – sygnał świetlny mógł dotrzeć do O. Stożek przeszłości, to wszystko, co widzimy: galaktykę w Andromedzie widzimy taką, jaka była dwa miliony lat temu, bo tyle czasu potrzebuje światło, aby do nas dotrzeć. Wszystkie zjawiska, które mogłyby wpłynąć na O leżą na stożku przeszłości albo wewnątrz niego, jak X. Analogiczną rolę pełni stożek przyszłości: leżą na nim albo wewnątrz niego wszystkie zdarzenia, na które O może (w zasadzie) mieć wpływ. Natomiast zdarzenia takie, jak A nie są w żadnym związku przyczynowym ani skutkowym z O. Struktura taka pozostaje niezmienna dla każdego obserwatora, choć inaczej on umiejscowi poszczególne punkty obrazka. To, co pozostaje nienaruszone, to wyżej opisane relacje: jeśli np. X było w stożku przeszłości względem O, to zawsze tak będzie, choć położenie X wewnątrz stożka może się różnym obserwatorom wydać różne.

Pokażemy teraz, jakie wartości różni obserwatorzy przypisują tym samym zdarzeniom. Fizyka powinna być niezależna od układu współrzędnych. Możemy np. obrócić układ współrzędnych w płaszczyźnie xy. Każdy punkt P=(x,y) w nowym układzie osi będzie miał nowe współrzędne (x',y').

\begin{cases}x'=x\cos\varphi-y\sin\varphi \\y'=y\cos\varphi+x\sin\varphi.\end{cases}

Transformacja ta nie zmienia odległości punktu P od początku układu współrzędnych, zatem:

x^2+y^2=x'^2+y'^2.

Łatwo sprawdzić, że wypisane wyżej równania spełniają ten warunek, po drodze musimy skorzystać z jedynki trygonometrycznej \sin^2\varphi+\cos^2\varphi=1.

Możemy też zmienić układ współrzędnych nieprimowany na poruszający się ruchem jednostajnym układ primowany.

Klasyczny i „zdroworozsądkowy” związek między współrzędnymi przyjmie teraz postać:

\begin{cases}x'=x-vt\\y'=y\\t'=t.\end{cases}

Jest to tzw. transformacja Galileusza. Prawidłową transformacją jest jednak tzw. transformacja Lorentza. Minkowski spojrzał na nią w sposób geometryczny, jak na przekształcenie, które zachowuje następującą wielkość (odtąd zachowujemy tylko x,t, współrzędne y,z nie zmieniają się, gdy ruch zachodzi w kierunku osi x):

x^2-t^2=x'^2-t'^2.

Widzimy tu analogię do obrotów, różny jest tylko znak. Wielkość ta zwana jest interwałem czasoprzestrzennym i tym się różni od kwadratu odległości, że może przyjmować znaki zarówno dodatnie, jak i ujemne. Nowe i stare współrzędne muszą leżeć na jednej gałęzi hiperboli albo na jednej linii prostej (stożek). Narysowaliśmy jeden z możliwych przypadków:

Możemy wprowadzić nowe współrzędne:

\begin{cases}x_{-}=x-t\\x_{+}=x+t.\end{cases}

Zgadujemy następującą postać transformacji Lorentza:

\begin{cases}x'_{-}=e^{\varphi}x_{-}\\x'_{+}=e^{-\varphi}x_{+}.\end{cases}

Łatwo zauważyć, że wielkość interwału czasoprzestrzennego jest zachowana (wzory skróconego mnożenia). Przy okazji widać też, że transformacji odwrotnej odpowiadać będzie parametr -\varphi, a przy złożeniu dwóch ruchów parametry się dodadzą. Nie wiemy tylko jeszcze, jaki jest sens parametru \varphi, powinien on być jakoś związany z prędkością jednego układu względem drugiego. Wracając do zwykłych współrzędnych x,t, otrzymamy

\begin{cases}x'=x\cosh\varphi-t\sin\varphi\\t'=t\cosh\varphi-x\sinh\varphi.\end{cases}

Prędkość układu primowanego, to prędkość ruchu punktu x'=0. Korzystając z tego, dostajemy

v=\dfrac{x}{t}=\dfrac{\sinh\varphi}{\cosh\varphi}=\mbox{tgh }\varphi.

Przy małych wartościach \varphi jest równe prędkości. Widzimy też, że prędkość mieści się w przedziale (-c,c). Dla tangensów hiperbolicznych istnieje wzór podobny, jak w zwykłej trygonometrii:

u=\mbox{tgh }(\varphi_1+\varphi_2)=\dfrac{\mbox{tgh }\varphi_1+\mbox{tgh }\varphi_2}{1+\mbox{tgh }\varphi_1 \mbox{tgh }\varphi_1}=\dfrac{v_1+v_2}{1+v_1 v_2}.

Itd. itp. Łatwo można dalej wyprowadzać wnioski z postaci transformacji Lorentza.

 

Pitagoras i Vincenzo Galilei: początek i koniec tradycji pitagorejskiej (VI w. p.n.e., 1588)

Pitagoras pierwszy nazwał się filozofem, lecz stał się założycielem sekty na poły religijnej, która przekazywała sobie wierzenia, obyczaje, obrządki i nie dopuszczała nikogo bez długiego procesu formowania charakteru i umysłu. Pitagorejczycy wierzyli w wędrówkę dusz, obejmującą także dusze zwierzęce, więc nie składali ofiar ze zwierząt i starali się nie jeść mięsa, zazwyczaj zadowalali się warzywami, kaszą i przyprawami. Mieli też osobliwą na tle ówczesnej Grecji koncepcję piękna:

Piękny jest więc widok całego nieba i poruszających się po nim gwiazd, jeśli ktoś potrafi dostrzec ich porządek; a piękne jest to wszystko przez uczestniczenie w tym, co pierwsze i dostrzegalne umysłem. Pierwsza zaś jest dla Pitagorasa natura liczb i stosunków liczbowych, ogarniająca całość rzeczywistości, zgodnie z nimi bowiem wszechświat jest mądrze zbudowany i prawidłowo uporządkowany; mądrość zaś jest wiedzą o tym, co piękne i pierwsze, boskie i niezniszczalne, zawsze takie samo i podlegające takiemu samemu porządkowi (…) filozofia natomiast to umiłowanie takiej kontemplacji [Jamblich, O życiu pitagorejskim, przeł. J. Gajda-Krynicka].

Wszechświat postrzegali pitagorejczycy jako κόσμος – kosmos, czyli pięknie złożoną harmonijną całość. Pitagoras odkrył, że prostym proporcjom liczbowym, takim jak 2:1; 3:2 oraz 4:3 odpowiadają harmonijnie współbrzmiące interwały dźwięków: oktawa, kwinta i kwarta. Fakt ten stał się punktem wyjścia całej jego filozofii i kosmologii. Odgrywały w nich rolę muzyka i matematyka, ich związek był fundamentalny. Muzyka miała bowiem swe odbicie w strukturze wszechświata, nie była jedynie sztuką wydawania sugestywnych dźwięków. W ten sposób, po raz pierwszy, wszechświat stał się matematyczny.

Pitagorejczycy uzasadniali owe proporcje dźwięków w sposób numerologiczny. Ich zdaniem liczby 1, 2, 3, 4, były wieloznacznymi symbolami. Suma tych czterech liczb nazywana była tetraktys – arcyczwórką. Arytmetyka miała być także podstawą geometrii: przestrzeń wyobrażali sobie pitagorejczycy jako „skwantowaną”, złożoną z dyskretnych wielkości. Doprowadziło to do kryzysu: zgodnie bowiem z twierdzeniem Pitagorasa długość przekątnej kwadratu o boku równym 1 wynosi \sqrt{2}. Jeśli przyjąć, że można tę liczbę zapisać jako stosunek liczb całkowitych (jak powinno być w dyskretnej przestrzeni), dochodzi się do sprzeczności. Dziś mówimy, że \sqrt{2} jest liczbą niewymierną. Odkrycie tego faktu wstrząsnęło pitagorejczykami.

Wróćmy jednak do harmonii dźwięków. Mamy tu początek fizyki matematycznej – oto pewne stosunki w przyrodzie poddane są zasadom matematyki. Z czasem miało się okazać, że jest to prawda w odniesieniu do całej przyrody, choć uznanie tego faktu zajęło ludzkości ponad dwa tysiące lat. Dziś nie mamy wątpliwości co do nadzwyczajnej skuteczności matematyki w badaniu przyrody. Niektórzy uważają nawet, że w każdej nauce tyle jest prawdy, ile jest w niej matematyki.

W jakim sensie proporcje związane są z parami dźwięków?

Jamblich tak pisze o okolicznościach dokonania owego odkrycia przez Pitagorasa:

Rozmyślał kiedyś i zastanawiał się, czy da się wymyślić dla słuchu jakieś pomocnicze narzędzie, pewne i nieomylne, jakie ma wzrok w cyrklu, w miarce (…), dotyk zaś w wadze i w wynalazku miar; a przechadzając się w pobliżu warsztatu kowalskiego, jakimś boskim zrządzeniem losu usłyszał młoty kujące żelazo na kowadle i wydające dźwięki zgodne ze sobą, z wyjątkiem jednej kombinacji. Rozpoznał zaś w nich współbrzmienie oktawy, kwinty i kwarty. Dostrzegł natomiast, że dźwięk pośredni między oktawą a kwintą sam w sobie pozbawiony jest harmonii, lecz uzupełnia to, czego w innych jest w nadmiarze. Zadowolony zatem, ponieważ została mu zesłana pomoc od boga, poszedł do warsztatu i po wielu rozmaitych próbach odkrył, iż różnica dźwięków rodzi się z ciężaru młotów, nie z siły uderzających, nie z kształtu narzędzi ani też nie z przekształceń kutego żelaza; a zbadawszy dokładnie odpowiednie wagi i ciężary młotów, poszedł do domu i wbił między ściany, od kąta do kąta, jeden kołek, jeden by z wielości kołków albo też z różnej ich natury nie zrodziła się jakaś różnica; następnie przywiesił do kołka w równym od siebie oddaleniu cztery struny z jednakowej materii, jednakowej długości, grubości i jednakowo sporządzone, przywiązawszy do każdej z dołu ciężar i wyrównawszy całkowicie długość strun. Następnie uderzając jednocześnie w dwie struny na przemian, odnalazł wymienione wyżej współbrzmienia, inne w każdym ze związków. Odkrył bowiem, że ta, która obciążona była największym ciężarem wraz z tą, która miała ciężar najmniejszy, razem uderzone tworzą stosunek oktawy. Jedna bowiem miała dwanaście ciężarków, druga zaś sześć; w podwójnej proporcji ujawniła się oktawa, jak to wskazywały same ciężarki. [przeł. J. Gajda-Krynicka]

Jamblich był syryjskim pitagorejczykiem żyjącym w III/IV w. n.e., a więc niemal tysiąc lat po filozofie z Samos. Dlatego, jak to się zdarza zwolennikom bardziej entuzjastycznym niż rozumiejącym, poplątał to i owo w tej historii. Wiemy, że pragnął swymi opowieściami przewyższyć zdobywające sobie popularność historie o innym mistrzu, Jezusie Chrystusie.

Jamblich przedstawia nam etapy odkrycia: mamy więc problem (jak proporcje mogą być odwzorowane dźwiękami?), iluminację pod wpływem przypadkowego bodźca (młoty kowalskie), analizę i wyjaśnienie sensu owej iluminacji, a następnie przeprowadzenie eksperymentu, w którym początkowa sytuacja zostaje sprowadzona do najważniejszej istotnej zależności: chodzi nie młoty, lecz dźwięki; można je badać za pomocą jednakowych strun pod działaniem różnych sił naciągu.

Mamy właściwie przepis, jak należy odkrywać matematyczne prawa przyrody, oczywiście w stosownej chwili musimy otrzymać pomoc od boga, inaczej wkroczymy w jedną z tych niezliczonych ścieżek, które nigdy nie zawiodły do żadnego rozsądnego punktu. Bywa i tak, że ciąg dalszy odnajduje się po wielu latach – w tym sensie z oceną wartości pewnych prac naukowych należy poczekać.

Niestety, ciąg dalszy opowieści Jamblicha dowodzi, że nie zrozumiał on odkrycia mistrza. Nie chodzi bowiem o siły naciągu, lecz długości strun. To one muszą być w odpowiedniej proporcji. Np. kwintę otrzymamy, biorąc taką samą strunę z takim samym naciągiem, lecz o długości krótszej w proporcji 2:3. Przez wieki powtarzano błąd Jamblicha, nie zadając sobie trudu mierzenia czegokolwiek. Powszechnie sądzono, że owe proporcje zawarte są we wszystkich sposobach wydobywania dźwięków tak, jak to widzimy na ilustracji poniżej, pochodzącej z przełomu XV i XVI wieku.

W XVI wieku powiększono listę dźwięków współbrzmiących harmonijnie, uzasadniając to zresztą także na sposób pitagorejski. Gioseffo Zarlino, maestro di capella San Marco w Wenecji, proponował dołączenie 5 i 6 do starożytnego zestawu. Uzasadniał to rozmaitymi „nadzwyczajnymi” własnościami liczby sześć: jest liczbą doskonałą (równą sumie swych podzielników), sześć było dni Stworzenia itd.

Empiryczne podejście do tego zagadnienia zawdzięczamy sceptycyzmowi i jadowitemu charakterowi Vincenza Galilei, muzyka i teoretyka muzyki z Florencji. Był on uczniem Zarlina, lecz zaatakował go bezpardonowo w wydanym w roku 1589 traktacie. Uważał wszelką numerologię za nonsens i postanowił wykazać to doświadczalnie. Stosunki dźwięków nie są bowiem związane jednoznacznie ze stosunkami liczbowymi. Np. kwintę możemy uzyskać nie tylko skracając strunę w stosunku 3/2, ale także zwiększając siłę naciągu w proporcji (3/2)^2=9/4. Mamy więc następujące prawo: chcąc otrzymać dany wyższy dźwięk możemy albo skrócić strunę x razy, albo zwiększyć siłę naciągu x^2 razy. Było to pierwsze w ogóle nowożytne prawo fizyki matematycznej.
W ten sposób numerologia została pogrążona, gdyż widzimy, że równie dobrze można by wiązać kwintę z proporcją 9/4. Był to tylko jeden z wielu argumentów wysuwanych w traktacie przeciwko Zarlinowi. Vincenzo Galilei miał zdolnego syna o imieniu Galileo, któremu przekazał swój choleryczny temperament i namiętną pogardę dla umysłowej niższości. Niewykluczone, że eksperymenty nad tą kwestią prowadzili zresztą obaj razem, zapewne w roku 1588. W roku następnym Galileo uzyskał skromną posadę na uniwersytecie w Pizie. Napisał tam poemat na temat noszenia togi, w którym drwił z księży (wrogowie wszelkiej niewygody), uczonych kolegów (są jak flaszki wina: nieraz we wspaniale oplecionych butelkach zamiast bukietu czuje się wiatr albo perfumowaną wodę i nadają się tylko do tego, by do nich nasikać), a także twierdził, że chodzenie nago jest największym dobrem. Zajął się też poważnie mechaniką. Możliwe, że to ciężarki zawieszone na końcu struny w eksperymentach prowadzonych z ojcem, a nie kandelabr w katedrze, nasunęły mu myśl o wahadle.

Prawo odkryte przez Vincenza Galileo łatwo uzasadnić. Prędkość rozchodzenia się dźwięku v w strunie naciągniętej siłą T, która ma gęstość liniową (masa na jednostkę długości) \varrho równa się

v=\sqrt{\dfrac{T}{\varrho}}.

Jeśli końce struny są nieruchome, to długość powstającej fali \lambda jest dwa razy większa niż długość struny L: \lambda=2L. Zatem częstość drgań struny \nu jest równa

\nu=\dfrac{1}{2L}\sqrt{\dfrac{T}{\varrho}}.

Napięcie struny wchodzi więc w potędze 1/2, stąd wynik Vinzenza Galileo.

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Jak długo spadał Lucyfer?

Nie tylko Wielki Wybuch głosi chwałę Pana. Także i obecność szatanów, co wszędzie są czynni. Najlepszym dowodem ich siły jest dzisiejsze radosne zgromadzenie na Stadionie Narodowym w stolicy naszego kraju. Ojciec John Bashobora oraz arcypasterz Pragi wraz z setkami duchownych wypędzać tam będą diabły na oczach 40 000 wiernych (bilety po 60 zł). Może i tym razem o. Bashobora kogoś wskrzesi, co mu się już nieraz zdarzało. Z całą pewnością uzdrowi wielu, dzięki czemu poprawią się finanse NFZ.

W środku świata przebywa Lucyfer, dlatego świat nasz zwiemy diablocentrycznym. Jaki był jednak fizyczny sposób, by strącić tam Księcia Tego Świata? Ciężkość. Wyobraźmy sobie tunel przewiercony przez Ziemię na wskroś. Gdyby wrzucić doń Lucyfera, to jak długo bestia by spadał? I czy zatrzymałby się w środku Ziemi, czy też przeleciał dalej, aż na antypody? Zdania były tu podzielone. Bartolomeus Amicus SJ, rówieśnik Galileusza, sądził, że kamień wrzucony do takiego tunelu doleci do środka Ziemi i świata, gdzie się zatrzyma. Pogląd ten był wypowiadany i wcześniej, stąd zapewne u Dantego w Boskiej Komedii mamy obraz Lucyfera zarytego w środku świata, z trzema paszczami, w każdej po jednym słynnym zdrajcy. Inaczej uważał Nicole Oresme, zwolennik impetusu. Jego zdaniem kamień (albo Lucyfer) w środku Ziemi osiągnie największy impetus, dzięki czemu przeleci dalej aż do antypodów. I będzie tak sobie oscylować, aż mu się impetus całkiem wyczerpie. Ostatecznie zalegnie Lucyfer w środku Ziemi, lecz po iluś zabawnych oscylacjach.

Fizyka Newtona pozwala obliczyć, jak długo spadałby Lucyfer do środka Ziemi. Rozpatrzymy dwa skrajne przypadki: gdyby Ziemia wypełniona była materią jednorodnej gęstości oraz gdyby jej cała masa skupiona była w punkcie centralnym. Prawda zawiera się gdzieś pośrodku: gęstość rośnie ku centrum Ziemi, lecz stopniowo, nie skokowo, jak w drugim przypadku.

Przypadek jednorodnej Ziemi

Przyspieszenie grawitacyjne naszego Lucyfera w odległości r od środka Ziemi byłoby równe

g(r)=\dfrac{Gm(r)}{r^2},

gdzie m(r) to masa małej kuli o promieniu r. Przyjmujemy, że gęstość materii ziemskiej jest wszędzie taka sama, masa jest więc proporcjonalna do objętości i przyspieszenie grawitacyjne będzie ostatecznie proporcjonalne do r:

g(r)=\dfrac{GMr)}{R^3}=\dfrac{g}{R}r \Rightarrow T=2\pi\sqrt{\dfrac{R}{g}}.

Przez G, M, R oznaczyliśmy odpowiednio stałą grawitacji oraz masę i promień Ziemi; g to przyspieszenie ziemskie na powierzchni Ziemi. Przyspieszenie Lucyfera jest więc proporcjonalne do odległości i równanie to jest takie samo jak dla wahadła matematycznego, promień Ziemi odgrywa tu rolę długości. Zatem będzie nasz Lucyfer oscylował z okresem opisanym wzorem dla wahadła matematycznego. Do środka Ziemi będzie to ćwierć oscylacji, co zajmie niecałe dwadzieścia jeden minut.

Przypadek całej masy skupionej w centrum

W tym przypadku przyspieszenie ziemskie rośnie w miarę zbliżania się do środka:

g(r)=\dfrac{GM}{r^2},

Czas spadku znaleźć można, tak jak zrobił to Newton, wyobrażając sobie najpierw ruch po elipsie o długości dużej półosi a=\frac{1}{2}R. Jeśli elipsę tę będziemy stopniowo spłaszczać (zachowując długość dużej półosi) okres się nie zmieni (III prawo Keplera). Ognisko elipsy będzie się przybliżać do jej wierzchołka. Czas spadku będzie połową okresu obiegu takiej elipsy.

Korzystając z III prawa Keplera mamy

T^2=\dfrac{4\pi^2 a^3}{GM}\Rightarrow T=2\pi\sqrt{\dfrac{R3}{8GM}}=\pi\sqrt{\dfrac{R}{2g}}.

Połowa tego okresu jest szukanym czasem, a więc w tej wersji Lucyfer będzie spadał niecałe piętnaście minut.

Dla rzeczywistej zależności m(r) dla Ziemi przyspieszenie ziemskie najpierw nieco rośnie w głąb planety, a potem zaczyna spadać mniej więcej liniowo, kiedy znajdziemy się w żelazowo-niklowym jądrze.

Rozważania średniowiecznych filozofów w rodzaju takiego hipotetycznego kamienia w hipotetycznym tunelu przez Ziemię przyczyniały się do zrozumienia zagadnień ruchu i grawitacji, były to ówczesne Gedankenexperimente. Oresme w XIV wieku miał jednak nowocześniejszą teorię niż Amicus w XVII. Pojęcie impetus, choć dalekie jeszcze od dzisiejszego pędu, miało przed sobą przyszłość. Samo jednak wyostrzanie pojęć jest na nic, dopóki nic nie można obliczyć, przynajmniej w fizyce.

Evangelista Torricelli: nieskończona trąba i barometr (1643-1644)

Nauka powstająca w XVII wieku była iście rewolucyjna: podważono jednocześnie niemal cały tradycyjny system myślowy, wiedzę zgromadzoną od tysiącleci. Świat materialny zmienił się niewiele od średniowiecza, choć nauczono się żeglować po oceanach i korzystać z broni palnej. Jednak technika była wciąż prymitywna, energia trudno dostępna, a większość ludzi walczyła jedynie o przetrwanie. Zanim przeobraziła się cywilizacja, należało najpierw przebudować zawartość głów. Postęp pojęciowy jest zawsze niezmiernie trudny, trzeba pokonać własne nawyki myślowe, wyciągnąć wnioski z nowych założeń, niewielu ludzi potrafi żyć wśród tymczasowych koncepcji i bez żalu porzucać je na rzecz innych, nowych, lepiej opisujących wymykającą się rzeczywistość. M.in. dlatego niewielu jest einsteinów na świecie, mimo że nie brak ludzi bardzo inteligentnych i utalentowanych.

Evangelista Torricelli określany jest często jako uczeń Galileusza. W istocie był bardziej uczniem Benedetta Castellego, wiernego przyjaciela i okazjonalnie współpracownika mistrza z Florencji. Ze starym, niewidomym już uczonym spędził ledwie kilka miesięcy: od października 1641 r. do stycznia roku następnego, gdy Galileusz zmarł. Torricelli był już wtedy po trzydziestce i był ukształtowanym uczonym w duchu archimedesowym, gdzieś między matematyką a inżynierią i eksperymentem. Odziedziczył po Galileuszu stanowisko matematyka przy księciu Toskanii. Galileusz był także nadwornym filozofem, czyli fizykiem i astronomem, ale w owej chwili, dziesięć lat po wyroku inkwizycji, lepiej było nie kłuć w oczy władz kościelnych. Sławnego uczonego pochowano w nieoznaczonym grobie i musiało minąć sto lat, nim pozwolono na postawienie tablicy nagrobnej. Torricelli w roku 1643 stał się sławny w całej uczonej Europie dzięki rozważaniom na temat pewnej nieskończonej bryły, która miała skończoną objętość. Przypominała ona wnętrze trąby.

tromba

Bryła Torricellego powstaje z obrotu hiperboli (równobocznej) wokół jednej z asymptot. Wycinamy z niej tylko część zaznaczoną na rysunku: mamy zwężającą się, nieskończenie długą trąbę. Torricelli wykazał, że pole powierzchni takiej trąby jest nieskończone, lecz objętość jest skończona. Oszacujemy tę objętość. Dzielimy naszą bryłę na cylindryczne cienkie powłoki: leżą one jedna wewnątrz drugiej jak składany tubus. Pole podstawy takiej powłoki (wydrążonego walca) równe jest 2\pi r dr, co jest iloczynem długości okręgu i grubości naszej powłoki dr. Objętość wydrążonego walca o takiej podstawie  i wysokości h(r) możemy łatwo oszacować z góry:

dV=2\pi r dr h(r) < 2 \pi r dr \dfrac{a^2}{r}=2 \pi a^2 dr.

Zatem suma objętości wszystkich wydrążonych walców jest mniejsza niż 2\pi a^2 R, gdzie R to największy promień przekroju poprzecznego trąby. Torricelli obliczył tę objętość, stosując metodę Cavalieriego, a także przeprowadzając dowód w duchu Archimedesa. Paradoksalny wynik wzbudził zainteresowanie i komentowali go najwięksi matematycy epoki: jeśli był prawdziwy, granice matematyki matematyki zostały poszerzone.

W roku następnym został Torricelli odkrywcą barometru. Tak się zwykle mówi, bardzo upraszczając całą sprawę. On sam nie uznawał siebie za wynalazcę takiego przyrządu ani nad nim jakoś szczególnie nie pracował. Dopiero później urządzenie takie zaczęto nazywać barometrem i traktować jako przyrząd służący do pomiaru ciśnienia atmosferycznego. Torricelli niczego nie mierzył w sposób ciągły, lecz uważał swoje doświadczenie za rodzaj filozoficznego (tj. naukowego) pokazu. Chodziło w nim o istnienie próżni. Natura abhorret vacuum – natura nie znosi próżni – mawiali filozofowie scholastyczni, czerpiąc to twierdzenie od Arystotelesa. Wiadomo było z praktycznych doświadczeń inżynierów, iż nie można wciągnąć wody w rurze wyżej niż na 18 łokci. Galileusz objaśniał to siłami spoistości wody: gdy wysokość jej słupa przekracza owe 18 łokci, słup rozrywa się pod własnym ciężarem, tak jak rozerwałaby się pod własnym ciężarem dostatecznie długa kolumna z marmuru zawieszona od góry. Torricelli sądził inaczej, uważał, że słup cieczy równoważony jest ciśnieniem zewnętrznym. A skoro chodzi o równowagę, to zamiast 18 łokci wody wystarczy 5/4 łokcia i jeden cal żywego srebra (rtęci) – gdyż jego ciężar właściwy jest kilkanaście razy większy. Wystarczy wziąć szklaną rurkę długości, powiedzmy, dwóch łokci, zatopioną z jednej strony i nalać do niej rtęci. Następnie zatykamy rurkę palcem i odwracamy zatopioną częścią do góry, po czym wkładamy rurkę do naczynia z rtęcią (nikt w XVII wieku nie rozumiał, jak się zdaje, jak szkodliwe może być takie nieostrożne manipulowanie rtęcią, Newton żartował sobie, że posiwiał wcześnie z powodu używania rtęci w doświadczeniach alchemicznych, naprawdę chyba się tym jednak nie przejmował).

torr

Uczony sądził, że nad rtęcią tworzy się próżnia. A więc łatwo jest ją wytworzyć i natura się jej nie lęka. O swoich doświadczeniach napisał do Michelangela Ricciego w czerwcu 1644 roku. Pokazywał je też ojcu Marinowi Mersenne’owi, który spełniał w owych czasach rolę serwera pocztowego dla środowiska uczonych, gdy ten odwiedził go we Florencji. Nie słychać, aby Torricelli zamienił swoją odwróconą rurkę na stały przyrząd, który można z dnia na dzień obserwować. Spodziewał się chyba, że zmiany ciśnienia atmosferycznego będą większe, niż są w rzeczywistości. W tym samym liście pisał, iż żyjemy na dnie oceanu powietrza – coś podobnego sugerował kilkanaście lat wcześniej Giovanni Battista Baliani w liście do Galileusza. Torricelli mógł o takim poglądzie słyszeć. Tak czy owak nie zajmował się sprawą dłużej, dopiero kilka lat później stała się ona europejską sensacją, gdy doświadczenia podobne zaczęto powtarzać w różnych krajach, a przede wszystkim we Francji, a zagadnieniem ciśnienia atmosferycznego i istnienia próżni zajął się m.in. Blaise Pascal. Dla jego analitycznego i skłonnego do paradoksów umysłu pogląd, który przeczył jednocześnie scholastykom i „nowoczesnemu” Kartezjuszowi, musiał wydawać się wielce interesujący. Torricelli zmarł młodo, w roku 1649, i nie dożył czasów, w których uznano go za „odkrywcę barometru”. Zapewne byłby zdziwiony, że ten maleńki fragment jego naukowego dorobku doczekał się takiej sławy, podczas gdy o reszcie mało kto dziś pamięta.

List Torricellego do Ricciego.

Jego angielski przekład