Najważniejsze wydarzenia w dziejach ludzkości

Zacznijmy od fraszki C.K. Norwida:

DOBRA WOLA

– Przepraszam państwo, lecz przyszła wiadomość,

Że się Uranus wstrząsa

*

– Mniejsza o to

– Co tam po niebie gdzieś patrzysz Jegomość,

To astronomów rzecz, niech sobie plotą…

*

– Przepraszam państwo – ale panna Klara

Na pannę Różę powiedziała: „stara” –

I ten pod wachlarz bilecik schowała…

*

– Gdzie?! jaki?! dawaj!… to rzecz doskonała!

Norwid pisał tu o niezgodnościach ruchu Urana ze znanymi faktami. Okazało się, że niezgodności owe wywołane są przyciąganiem następnej planety, Neptuna. Jej położenie najpierw obliczono, a następnie znaleziono ją na niebie niemal dokładnie w tym miejscu, gdzie wskazywały obliczenia. Samo wydarzenie jest dobrą ilustracją różnicy między nauką nowożytną a innymi przykładami działalności „naukopodobnej” prowadzonej w najróżniejszych cywilizacjach.

Fraszka Norwida wskazuje też na zjawisko szersze niż salonowy brak zainteresowania nauką. Jesteśmy istotami społecznymi, czasem może nawet zanadto społecznymi: w tym sensie, że skłonni jesteśmy uważać świat międzyludzki za cały wszechświat, a nas samych za istoty stworzone nie mniej, ni więcej, tylko na podobieństwo Boga.

David Christian jest zawodowym historykiem. Zrobił jednak coś, na co nie poważyłaby się większość jego kolegów: prowadzi kurs historii wszechświata, od Wielkiego Wybuchu do dziś. Siłą rzeczy większa część materiału pochodzi z innych dziedzin niż historia: z kosmologii, geologii, biologii itd. Spojrzenie z tej perspektywy na dzieje ludzkości uważam za niezwykle ożywcze. Nigdy nie mogłem się nadziwić pasji, jaką większość historyków wkłada w badanie faktów drugo- albo nawet dziesięciorzędnych: jakaś potyczka pod Straconką (w zasadzie trochę większa bójka) albo śledzenie meandrów polityki jakiegoś nieistotnego władcy. Oczywiście rozumiem, czemu można się zajmować tego rodzaju tematem, podobnie jak rozumiem, czemu można się zajmować badaniem jednego gatunku chrząszczy (a jest ich blisko pół miliona). I wcale nie lekceważę „badaczy owadzich nogów”. Nie rozumiem jedynie, czemu nie widzę prób syntezy, innego spojrzenia, mniej uwikłanego w politykę, mity narodowe, mity religijne; mniej prowincjonalnego geograficznie, kulturowo i cywilizacyjnie.

Jakie więc były najważniejsze wydarzenia w dziejach ludzkości? Większość z nich zaszła w prehistorii albo historii bardzo zamierzchłej: wynalezienie rolnictwa, różnych technik pozwalających odziać się, lepić garnki i przede wszystkim tworzyć narzędzia. W dziejach intelektualnych decydujące znaczenie miało pismo i jego ulepszenie w postaci pisma alfabetycznego: dzięki temu ostatniemu nie tylko zawodowcy mogli umieć pisać – była to rewolucja podobna do rozpowszechnienia w latach osiemdziesiątych XX wieku komputerów osobistych, pozwalających każdemu korzystać z narzędzia przedtem zarezerwowanego dla personelu w białych kitlach (sam pamiętam sale z komputerami typu „Odra”, do których nie wolno było wchodzić, należało zostawić przed wejściem karty perforowane z programem i mieć nadzieję, że przejdzie on pomyślnie kompilację, a może nawet się policzy). Nie jest przypadkiem, że cywilizacja grecka rozkwitła w tym samym czasie, gdy rozpowszechniło się pismo alfabetyczne.

Grecy stworzyli też matematykę ujętą w sposób aksjomatyczny – do dziś jest to ideał przedstawiania wiedzy ścisłej. Geometria grecka i jej najważniejsze zastosowanie: opis ruchu planet stworzyły podstawy przyszłego rozwoju nauki, choć ciąg dalszy nastąpił dopiero po piętnastu wiekach i nie był oczywisty. Cywilizacja przeniosła się na północny zachód Europy. Średniowieczne chrześcijaństwo pokazało swą wielkość w gotyckich katedrach, jak też w tym, że potrafiło zasymilować grecką filozofię i naukę – był to zresztą jego szczytowy moment. Reformacja, która podzieliła chrześcijan, była w znacznym stopniu ujawnieniem się nowej wrażliwości i nowego podejścia do świata, czegoś bardziej fundamentalnego niż dogmaty wiary czy uznawanie bądź nieuznawanie papieża. Nowoczesna cywilizacja wywodzi się z chrześcijaństwa zreformowanego w Europie północnej i w Stanach Zjednoczonych. Katolicyzm definitywnie utracił kontakt z nowoczesnością w wieku XVII, w czasach Galileusza. I sądzę, że nigdy go nie odzyskał, choć w każdej epoce aż do dziś wielu było uczonych katolików i niemal każdy papież deklarował, iż ceni i popiera naukę.

Reformacja związana była od początku z wynalezieniem druku: zapewne nie rozszerzyłaby się tak szybko w innych warunkach. Druk i powszechna umiejętność pisania (głównie jednak w krajach protestanckich) były kolejnym progiem udostępniania wiedzy szerokim rzeszom. Jednak nie podział religijny był najważniejszy w wieku XVI i XVII. Nawet wojna trzydziestoletnia z dłuższej perspektywy jest epizodem bez znaczenia. To rewolucja naukowa przesądziła o znaczeniu tej epoki, a także o znaczeniu Europy w dziejach naszej planety. Jakąś nauką zajmowały się wszystkie cywilizacje, lecz to europejska znalazła skuteczny klucz do poznania przyrody. Najpełniej widać to w dziele Isaaca Newtona: modele matematyczne ściśle opisują rzeczywistość fizyczną. Połączenie matematyki i eksperymentu pozwala dowiedzieć się rzeczy, o których się filozofom nie śniło i które są sprawdzalne. Tym się różnimy od innych cywilizacji, że nasze samoloty latają, nie musimy sobie tego jedynie wyobrażać.

Rewolucja naukowa XVII wieku nie dotyczyła biologii. Wydawało się, że istoty żywe nie podlegają dokładnie tym samym prawom, co reszta materii. Świat biologiczny stał się ostatnim azylem zwolenników celowości. Przypomnijmy: już Arystoteles doszukiwał się w przyrodzie przyczyn celowych. Stopniowo celowość została wyeliminowana z astronomii i fizyki. Nie pytamy: w jakim celu Układ Słoneczny zawiera te a nie inne planety krążące po takich a nie innych orbitach. Wydawało się jednak, że oko ludzkie „zostało stworzone” do patrzenia, podobnie jak piękne, smukłe ciało geparda do szybkiego biegania. Charles Darwin i Alfred Russel Wallace pierwsi zauważyli, że przystosowanie do funkcji jest skutkiem doboru naturalnego, a nie celem. Oko naszych przodków (również czworonożnych, również pływających) doskonaliło się stopniowo, aż osiągnęło dzisiejszy stan (wcale zresztą nie idealny: można dobrać soczewki indywidualnie korygujące wzrok, które sprawiają, że widzimy szczegóły, o jakich dotąd nie mieliśmy pojęcia). Podobnie gepardy doskonaliły się w sztuce biegania, w miarę jak gazele doskonaliły się w sztuce uciekania. Ewolucja za pomocą sekwencji niezliczonych drobnych kroków stworzyła całą biosferę. Wielu ludziom wydaje się to nadal trudne do pojęcia i z uporem szukają luk w teorii ewolucji. Ci sami ludzie nie czują na ogół skrupułów, gdy dzięki nowoczesnej terapii zostają wyleczeni. Podobnie jak niektórzy postmoderniści, którzy twierdzą, że fizyka jest formą dominacji białego człowieka i nie jest więcej warta od mitów jakiegoś plemienia, a potem wsiadają w samolot, aby udać się na kolejną konferencję, gdzie będą o tym nauczać młodzież, żądną zdobycia, jeśli nie wiedzy, to przynajmniej stopni naukowych.

René Descartes (Kartezjusz), tęcza i uczeni jezuici (1637)

Dopóki jeszcze wolno, powtarzam swój dawny wpis na temat tęczy.

Pisze się często z uznaniem o uczonych jezuitach, zwłaszcza w XVII wieku, bo w następnym stuleciu zakon zaczął chylić się ku upadkowi i w końcu uległ kasacie papieskiej. Nauka stanowiła jakąś cząstkę szerokiej działalności pedagogicznej ojców i rzeczywiście, niektórzy z nich zasłużyli się różnymi odkryciami: np. plam słonecznych czy dyfrakcji światła. Dopóty, dopóki chodziło o badania czysto eksperymentalne albo obserwacyjne, ich osiągnięcia były niewątpliwe. Gorzej było z interpretacją wyników: ojcowie obowiązani byli trzymać się Arystotelesa, który był beznadziejnie przestarzały. W latach trzydziestych wieku XVII wieku doszedł jeszcze jeden kłopot: nie wolno im było głosić także kopernikanizmu. Skazanie Galileusza wpłynęło zastraszająco na wielu uczonych, również poza Italią. Taki zresztą był zamiar papieża Urbana VIII, który ubrdał sobie, że ruch Ziemi podważa prawdy wiary (w jakimś sensie miał zresztą rację: jedynie kosmologia geocentryczna wydaje się logiczna z religijnego punktu widzenia).
René Descartes, dawny uczeń jezuitów w La Flèche, wolał przezornie zamieszkać w Holandii. Wierzący katolik, spędził resztę życia na emigracji w krajach protestanckich. Nie opublikował też swego pierwszego dzieła Świat albo traktat o świetle, obawiając się, że jest zbyt kopernikańskie. Zadebiutował w druku dopiero w 1637 roku jako filozof, matematyk, a także fizyk. W tej ostatniej dziedzinie z jego śmiałych teorii, obejmujących właściwie cały wszechświat, ocalało ostatecznie jedynie wyjaśnienie zjawiska tęczy, podane w rozprawie Les météores.
Mimo zainteresowania tym zjawiskiem, ustalono niezbyt wiele. Jak pisał uczony jezuita, Jean Leurechon: „Jeśli mnie zapytacie o sposób wytwarzania, układ i formę tych kolorów [tęczy], to odpowiem, iż pochodzą one z odbicia oraz załamania światła, i to wszystko. Platon dobrze powiedział, że Iryda jest córą podziwu, a nie objaśnienia (…) wszyscy bowiem filozofowie i matematycy, którzy przez tak wiele lat zajmowali się poszukiwaniem i wyjaśnianiem ich przyczyn, a także spekulacjami, dowiedzieli się tylko, iż nic nie wiedzą i że dostępne są im jedynie pozory prawdy”. Ojciec Leurechon trochę przesadzał, ale czynił to w zbożnym i wychowawczym celu. Galileusz rozprawiający o ruchu Ziemi w Rzymie też wydawał się tamtejszym monsignorom nieledwie bezczelny: cóż on mógł wiedzieć o dekretach Stwórcy i urządzeniu wszechświata! Uczonym przystoi pokora.
Wiemy, że książkę Leurechona czytał Descartes i zapewne postanowił wykazać, że można jednak coś ustalić na temat świata i nie musimy w kółko powtarzać frazesów o własnej niewiedzy.
Powstawanie dwóch łuków tęczy przedstawia rysunek. Wewnętrzny łuk powstaje wskutek jednokrotnego odbicia światła wewnątrz kropli wody, zewnętrzny – wskutek dwukrotnego odbicia. W przypadku łuku wewnętrznego promień biegnie do oka obserwatora po drodze ABCDE, w przypadku łuku zewnętrznego biegnie po drodze FGHIKE.

fcarc-february2009-descartes-medium-original

descartes3

Tęcza nie jest żadnym realnym obiektem, ale każdy z nas widzi niejako własną tęczę, która przemieszcza się wraz z obserwatorem, jeśli tylko w powietrzu znajdują się w odpowiednim miejscu krople wody. Łuk wewnętrzny tworzy kąt 42º z kierunkiem promieni słonecznych, łuk zewnętrzny – kąt 52º. Descartes wyjaśnił, skąd biorą się oba kąty. Trudność polegała na tym, że promienie wpadające do kropli pod różnymi kątami wychodzą z niej także pod różnymi kątami. Nie od razu widać, co wyróżnia te dwie wartości: 42º oraz 52º.

descartes1

Kąt między promieniem Słońca a promieniem biegnącym po jednokrotnym odbiciu równy jest

\theta=4\beta-2\alpha.

Kąty \alpha oraz \beta związane są prawem załamania. Descartes ułożył tabelkę liczbowych wartości kątów odchylenia dla promienia odbitego raz i dwa razy. My przedstawimy to za pomocą wykresu.

descartes arc-en-ciel

Wykres interaktywny

Wewnętrzny łuk tęczy odpowiada maksymalnemu kątowi około 42º. W okolicy maksimum wykres funkcji staje się płaski, a to oznacza, iż znaczna część promieni będzie biegła w zbliżonym kierunku. W rezultacie dotrze do nas najwięcej promieni z okolic 42º. Łuk tęczy powinien mieć zewnętrzną krawędź ostrzejszą, a wewnętrzną bardziej rozmytą. Dla zewnętrznego łuku tęczy (powstającego przez dwukrotne odbicie) będzie na odwrót: minimalny kąt równa się ok. 51º i należy się spodziewać, że z tego kierunku dobiegać będzie najwięcej promieni. Pomiędzy tymi dwoma łukami niebo powinno być ciemniejsze. Tak więc kąty obserwowane w zjawisku tęczy odpowiadają ekstremalnym odchyleniom promienia od kierunku początkowego.

descartes2

W wyjaśnieniu Descartes’a pojawił się ilościowy aspekt zjawiska: jeśli natężenie światła z pewnego kierunku będzie zbyt małe, nie będziemy nic widzieć. Trochę promieni biegnie pod niemal każdym kątem, ale liczą się tylko te kierunki, w których biegnie dużo promieni. Tęcza nie ma wyraźnych granic zewnętrznych, gdybyśmy mogli rejestrować słabsze światło, oba pasy byłyby szersze. W czasach Descartes’a dzięki teleskopowi zrozumiano już, że nie zawsze widzimy światło dobiegające do naszych oczu: jego natężenie musi przekroczyć pewną progową wartość.

Full_featured_double_rainbow_at_Savonlinna_1000px

Zdjęcie: Laurie Kosonen

Wyjaśnienie tęczy podane przez Descartes’a było na tyle nowatorskie, że wielu uczonych nadal próbowało rozwiązać ten problem, nie dostrzegając, iż został już rozwiązany. To wcale nierzadka sytuacja, po teorii względności zaczęły się np. pojawiać prace, w których usiłowano inaczej rozwiązać problemy postawione przez Einsteina. Descartes przesłał swoją pracę o tęczy do ojca Étienne’a Noëla, jezuity, który uczył go niegdyś i z którym korespondował. Miał nadzieję, że jego rozprawa stanie się podręcznikiem używanym w kolegiach jezuickich. Stało się inaczej, nie doczekał się żadnej reakcji. Kilku innych uczonych zajmowało się później zagadnieniem tęczy tak, jakby nie istniała praca Descartes’a, m.in. teolog z Louvain, Libert Froidmont, który nie widział potrzeby uwzględnienia rozwiązania Descartes’a, gdy kilkakrotnie w późniejszym czasie wznawiał własną książkę na ten sam temat. Przyczyną niechęci Froidmonta i jezuitów mogło być to, co najmocniej przemawia do nas dzisiaj: poddanie zjawisk przyrody matematycznej konieczności. Bo jeśli światem rządzą matematyczne konieczności, to niepotrzebny staje się Stwórca. Descartes wcale tak zresztą nie myślał, ale inni zarzucali mu szerzenie bezbożnictwa naukowego. Isaac Newton, biblijny fundamentalista, z tego właśnie powodu zwalczał poglądy Descartes’a (jezuitów też zresztą nie cierpiał). Musiał w tym celu wymyślić własną wersję Boga-Ojca, który samorządnie i samowładnie realizuje swe matematyczne dekrety i obecny jest w każdym punkcie przestrzeni. Do Newtona należało wyjaśnienie kolorów tęczy: różne barwy mają rozmaity współczynnik załamania, toteż łuki różnych barw widzimy w nieco innych miejscach. Także Newton zastąpił numeryczną analizę Descartes’a twierdzeniem o ekstremum funkcji, matematyka była już znacznie bardziej zaawansowana.

Po czym poznaje się wielkiego uczonego: Galileusz i inni na temat spadku swobodnego (pierwsza połowa XVII wieku)

Prawdziwa wielkość w nauce jest równie rzadka jak w sztuce czy literaturze. Tylko nieliczni zmieniają nasz sposób widzenia świata w taki sposób, że nie da się tego cofnąć ani zapomnieć. Galileusz odkrył paraboliczny kształt krzywej balistycznej. Co więcej, potrafił zrozumieć, skąd się ten kształt bierze i umieścić tę kwestię w nowym systemie pojęć. Jak ważny był kontekst tego odkrycia, świadczyć mogą słowa Isaaca Newtona. W 1687 r.  w Matematycznych zasadach filozofii przyrody formułuje on „Aksjomaty, czyli prawa ruchu”:

Prawo I Każde ciało pozostaje w swym stanie spoczynku lub ruchu jednostajnego po linii prostej, dopóki siły przyłożone nie zmuszą go do zmiany tego stanu.
Prawo II Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.

Są to oczywiście zasady dynamiki, których naucza się po dziś dzień (nie przytaczamy treści III prawa, ponieważ nie będzie nam tu potrzebne). Ciekawy jest komentarz angielskiego uczonego (urodzonego w roku śmierci Galileusza) do tych praw zamieszczony w dalszym ciągu tekstu:

Zasady, które przyjmuję, zaakceptowane są przez matematyków i potwierdzone przez wielorakie eksperymenty. Za pomocą dwóch pierwszych praw Galileusz stwierdził, że spadek ciał ciężkich zachodzi w proporcji do kwadratu czasu, a ruch ciał wystrzelonych przebiega po paraboli, jak potwierdza to eksperyment, jeśli uwzględnić fakt, że ruchy te są nieco opóźniane przez opór powietrza. Gdy ciało spada, stała siła grawitacji, działając jednakowo w poszczególnych jednakowych odcinkach czasu, nadaje ciału jednakowe wartości siły i generuje jednakowe prędkości; a w całym czasie nadaje całkowitą siłę i generuje całkowitą prędkość proporcjonalną do czasu. A odległości przebywane w odcinkach czasu są proporcjonalne do prędkości i czasów jednocześnie, tzn. są jak kwadraty czasów. (…) A kiedy ciało zostanie wystrzelone wzdłuż dowolnej linii prostej, jego ruch nadany w chwili początkowej składa się z ruchem wynikającym z grawitacji.

Ostatnie zdanie ilustruje rysunek: położenie wypadkowe ciała jest sumą wektorów \vec{v}t, czyli prostoliniowego ruchu nadanego w chwili wystrzału, oraz spadku swobodnego \frac{1}{2}\vec{g}t^2. Zapisywanie ruchów za pomocą wzorów algebraicznych i pojęcie wektora są późniejsze niż Newton. Algebry zaczął używać w tym kontekście dopiero Leonhard Euler, a wektory to osiągnięcie późniego wieku XIX.

Newton nie był zbyt dobrze poinformowany historycznie, z książek Galileusza znał tylko Dialog o dwóch układach świata, w 1687 r. nie było wątpliwości, jak przebiega ruch kuli armatniej albo spadającego swobodnie ciała, jeśli pominąć opór powietrza. Newton zajmował się już innymi problemami, takimi jak wpływ oporu powietrza na tor wystrzelonego ciała albo ciłą ciężkości zmieniającą się od punktu do punktu. Z jego perspektywy dwa pierwsze prawa były właściwie oczywiste i jak widzimy wcale sobie do nich nie rościł pierwszeństwa, przypisując je, do pewnego stopnia błędnie, Galileuszowi.

Do jakiego miejsca dotarł rzeczywiście Galileusz? Otóż sądził, że bez oporu powietrza rzut jest złożeniem jednostajnego ruchu poziomego i pionowego spadku. Bez problemu opisywał rzut poziomy, przypadek rzutu ukośnego, taki jak na rysunku, opisali już inni. Spadek swobodny nie był dla niego skutkiem siły grawitacji, w ogóle u Galileusza nie znajdziemy dynamiki, lecz tylko kinematykę ruchów. Z jakiegoś powodu ruch poziomy jest jednostajny, o ile nic mu nie przeszkadza. Natomiast spadek swobodny przebiega w ten sposób, że prędkość chwilowa jest proporcjonalna do czasu. Widzimy, że Newton przypisał mu swoje własne prawa i swoje rozumienie sytuacji fizycznej. Z pewnością nieświadomie, ponieważ raczej nie był nadmiernie skłonny do dzielenia się chwałą z innymi, po prostu nie wiedział, jak wyglądała historia. Przypominał w tym dzisiejszych uczonych, którzy, zainteresowani rozwiązywaniem stojących przed nimi problemów, niezbyt interesują się meandrami historii.

Zasługą Galileusza było odrzucenie obowiązującej wówczas fizyki arystotelesowskiej. Spostrzegł on, że bez oporu powietrza ruchy ciał stają się prostsze. Musimy pamiętać, że dopiero po jego śmierci nauczono się wytwarzać próżnię, za życia Galileusza odkrycie praw ruchu (kinematycznych) oznaczało postawienie na głowie całej nauki, która przecież powinna zajmować się „prawdziwymi” ruchami i „prawdziwymi przyczynami” zjawisk. Zamiast tego Galileusz proponował teorię matematyczną, która stosuje się ściśle tylko do świata, jakiego nie ma. Była to, co się zowie, księżycowa teoria – na Księżycu zresztą byłoby ją najłatwiej testować, bo nie ma tam atmosfery. Teoria ta nic nie mówiła na temat przyczyn takich ruchów. Zresztą dynamika Newtona też wiele nie wyjaśniała: wprowadziła pojęcie siły, lecz siła była abstraktem matematycznym, który można wprawdzie badać ilościowo, ale nic o nim w gruncie rzeczy nie wiemy. Był to kolejny krok w budowaniu świata platońsko-pitagorejskiego, gdzie abstrakcyjna matematyka przydaje się w praktycznej pracy inżyniera, stąd wszystkie politechniki wymagają od studentów pewnej wiedzy matematycznej.

Galileusz nie był pewien, jakie jest najprostsze matematycznie prawo spadku swobodnego (sądził, że właśnie najprostsze prawo powinno obowiązywać w przyrodzie). Wahał się między prędkością proporcjonalną do czasu i prędkością proporcjonalną do drogi. Ostatecznie wybrał pierwszą ewentualność. Że nie był to wybór łatwy, świadczą jego wahania utrwalone w różnych tekstach, a także reakcja innych uczonych na prace Galileusza. Wielu z nich nie potrafiło się zgodzić na prędkość proporcjonalną do czasu. Jezuici, którzy z urzędu musieli demonstrować swą niechęć do heretyka nawet w sprawach dalekich od kopernikanizmu, optowali za różnymi dziwacznymi wersjami prawa swobodnego spadku. Drogi w kolejnych jednostkach czasu miały być np. w proporcjach 1:2:3:4… albo 1:2:4:8… Prędkość miała rosnąć proporcjonalnie do drogi albo skokowo w czasie. Niewiele lepiej wyglądało to wśród zwolenników, którzy także chętnie „poprawiali” Galileuszowe prawo spadku. Eksperymenty także nie wkazywały jednoznacznie, bo spadek swobodny zachodzi szybko, a nie potrafiono mierzyć czasów tak krótkich. Ponadto opór powietrza zniekształcał wyniki. Wielkość Galileusza jako uczonego przejawia się m.in. w tym, że umiał w warunkach niepewności eksperymentalnej i trudności pojęciowych wybrać właściwe rozwiązanie. Jest w tym lekkość i poczucie smaku, intuicja i długie przemyślenia. Galileusz jest wielkim uczonym także dlatego, że nie stworzył wszechogarniającego systemu, skoncentrował się na zagadnieniach, o których mógł coś powiedzieć, czasem spekulował, ale nie rościł sobie prawa do wiedzy absolutnej. Tylko ignoranci i Kościół katolicki znają wszystkie odpowiedzi. Galileusz ich nie znał. Nie wiedział np., czy wszechświat jest skończony, a jeśli tak, to gdzie leży jego środek. Wiedział, że nie jest nim Ziemia, już prędzej Słońce, ale też niekoniecznie. Jest pewna ironia w fakcie, że skazano go za głoszenie tez, które on sam uważał za nieprawdziwe. Nie chodziło jednak o to, kto ma rację, ale o to, kto ma władzę.

Teksty Galileusza i innych ówczesnych uczonych pokazują, jak wiele trudności pojęciowych musieli oni pokonać. Np. co to jest prędkość chwilowa (nie bardzo można ją zmierzyć). Galileusz posługiwał się następującym rysunkiem.

Linia AB oznacza czas. Linie poziome są prędkościami. AG i równoległe do niego odcinki odpowiadają ruchowi jednostajnemu. AIE to linia ograniczająca odcinki prędkości chwilowej rosnącej proporcjonalnie do czasu. Uczony dowodził, że suma jednakowych odcinków GA=FB jest taka sama, jak suma odcinków rosnących z czasem. Wobec czego można cały ruch przyspieszony zastąpić ruchem jednostajnym o prędkości równej połowie prędkości końcowej. Inaczej mówiąc prostokąt GABF jest równoważny trójkątowi AEB. Galileusz nie zrobił kroku, który nam wydaje się oczywisty, i nie utożsamił drogi przebywanej w obu ruchach z polem odpowiednich figur. Mówił o sumach odcinków. Iloczyn prędkości i czasu nie miał dla niego żadnego sensu, ponieważ chodzi o wielkości fundamentalnie różne. My przedstawilibyśmy to tak.

 

W drugiej połowie wieku XVII stało się jasne, że procedurę taką można uogólnić. Pole pod wykresem prędkości to droga i można ją zapisać jako całkę. Z kolei pochodna drogi po czasie daje prędkość chwilową. To podstawowa para operacji w rachunku różniczkowym i całkowym.

 

Gdyby prędkość była proporcjonalna do drogi, mielibyśmy do czynienia z wykładniczym wzrostem, jest to funkcja opisująca eksplozję (np. demograficzną albo jądrową)

\dfrac{ds}{dt}=ks\Rightarrow s=s_{0}\,e^{kt}.

Prędkość opisana jest taką samą funkcją (bo pochodna funkcji wykładniczej jest też funkcją wykładniczą).

Z obu tych wykresów widać, że funkcja taka niezbt nadaje się do opisania ruchu, który zaczyna się w określonej chwili bez żadnej prędkości początkowej, ponieważ nigdy nie jest równa zeru. Spadek od s=0 do dowolnego punktu musiałby trwać nieskończenie długo. Zatem prędkość w spadku nie może być proporcjonalna do drogi, bo przeczy to elementarnej wiedzy na temat spadku ciał. Oczywiście, można by spekulować, czy spadek nie może się od razu zaczynać z prędkością różną od zera. Rozwiązanie przyjęte przez Galileusza też było kontrowersyjne w oczach jego współczesnych: wymagało bowiem, aby ciało na początku poruszało się przez chwilę z dowolnie bliską zeru prędkością. Przywodziło to na myśl od razu paradoksy Zenona z Elei przeciwko ruchowi. Wiemy jednak, że spadające ciało się porusza, choć chwilę przedtem spoczywało. Eppur si muove.

Intuicja Galileusza pozwoliła mu też pozbyć się balastu niepotrzebnych pytań dodatkowych: o przyczyny spadku, o opór powietrza itd. Nauka rozwija się zawsze przez pracę nad konkretnymi zagadnieniami i trzeba umieć oddzielić to, czego nie da się w danym momencie rozstrzygnąć albo co nie ma znaczenia. Pouczająca jest tu reakcja Kartezjusza na dzieło Galileusza. Francuski filozof, młodszy o trzydzieści lat, z dużą pewnością siebie odrzucił rozwiązanie Galileusza. Zarzucił mu, że buduje bez podstaw, nie wiedząc nawet, skąd bierze się ciężar ciała (Kartezjusz był pewien, że to skutek popychania ciała przez niewidzialne cząstki materii subtelnej!). Jako dobry matematyk i do tego znacznie później urodzony stwierdził, że pod względem matematycznym praca florentyńczyka jest raczej słaba, jego dowody zaś niezbyt eleganckie. Zarzuty były do pewnego stopnia uzasadnione, ale to toskański uczony miał rację, o tyle, o ile można mieć w nauce rację: jego teoria zgodna była z eksperymentem i pozwalała pójść dalej.

Religia Einsteina i Spinoza

W związku z publicznym zainteresowaniem postacią Barucha Spinozy pragnę przypomnieć, że do wiary w Boga Spinozy przyznawał się wielokrotnie Albert Einstein. Uczony czytał Spinozę, zwiedził jego dom zamieniony na muzeum i wielokrotnie się wypowiadał na temat filozofa. Więcej o Spinozie pisałem tutaj. Przypominam wpis z roku 2012, choć nie sądzę, żeby w wiadomościach TVP pojawił się pasek o treści: „Einstein wierzył w Boga Spinozy”

Przez media przewinęła się ostatnio wiadomość o wystawieniu na aukcji listu Einsteina z 1954 roku, a więc napisanego niedługo przed śmiercią uczonego. List dotyczy religii i skierowany był do filozofa Erika Gutkinda. Może to objaw nasilenia wojny kultur (a może szukania dobrych lokat kapitału w niepewnych czasach), w każdym razie list został sprzedany za przeszło trzy miliony dolarów, podczas gdy w 2008 kosztował zaledwie 400 000 dolarów.

Einstein mówi w tym liście rzeczy, jakie wielokrotnie powtarzał w ciągu swego życia. „Słowo Bóg jest dla mnie jedynie wyrazem i wytworem ludzkiej słabości, a Biblia zbiorem dostojnych, lecz jednak mocno prymitywnych legend. Żadna, nawet najbardziej subtelna interpretacja nie może tego (moim zdaniem) zmienić. Te wysubtelnione  interpretacje są ze swej natury wielce różnorodne i nie mają prawie nic wspólnego z pierwotnym tekstem. Nieskażona religia żydowska jest dla mnie, tak samo jak wszystkie inne religie, wcieleniem prymitywnych przesądów. I naród żydowski, do którego chętnie należę i z którego mentalnością czuję się głęboko zrośnięty, nie ma w moich oczach żadnej szczególnej godności, odmiennej niż inne narody”.

Jeszcze w okresie międzywojennym Einstein został zaatakowany przez kardynała Bostonu Williama Henry’ego O’Connella: „Zwątpienie i mgliste spekulacje na temat czasu i przestrzeni prowadzą jedynie do stworzenia zasłony, poza którą skrywa się upiorne widmo ateizmu”. Także rabin Herbert S. Goldstein z Nowego Jorku poczuł się zaniepokojony i wysłał do Einsteina telegram: „Czy wierzy pan w Boga? Stop. Odpowiedź opłacona do 50 słów”. Odpowiedź uczonego, choć telegraficznie skrótowa, nie zadowoliła chyba rabina: „Wierzę w Boga Spinozy, który objawia się w regularnej harmonii wszystkiego, co istnieje, ale nie w Boga, który zajmuje się losami i uczynkami ludzkości”.

A jednak mimo wypowiedzi, które sprawiać musiały spory zawód rozmaitym przedstawicielom Boga na ziemi, Albert Einstein był głęboko religijny z natury. Kiedy mówił o Bogu, który nie rzuca kośćmi albo jest wyrafinowany, lecz nie złośliwy, mówił bardziej serio, niż mogło się zdawać. Bóg w jego ustach był czymś więcej niż tylko façon de parler. Uczonemu bliżej było do bogobojnego protestanta Keplera niż do obrazoburcy Galileusza. Wypowiadał się otwarcie, nie ukrywał poglądów, ale nie miał temperamentu bojownika, polemisty, dyskutanta, pragnącego odnieść zwycięstwo za wszelką cenę. Choćby za cenę prawdy. Wspominany przeze mnie Max Brod wydał w 1948 roku jeszcze jedną powieść historyczną o uczonych. Nosiła tytuł Galilei in Gefangenschaft („Galileusz uwięziony”) i zapewne nie była lepsza od książki o Tychonie Brahe. Autor przesłał ją Einsteinowi, a ten odpisał z podziękowaniem i uwagami po lekturze. „Wyobrażam go sobie inaczej. Nie należy wątpić w to, że walczył on namiętnie o prawdę – bardziej niż ktokolwiek inny. Ale trudno uwierzyć, aby człowiek dojrzały widział sens połączenia odnalezionej prawdy z płytkimi myślami tłumu, zaplątanego w groszowe interesy. (…) Bez szczególnej potrzeby udaje się on do Rzymu, by walczyć z klechami i innymi politykierami. Taki obraz nie odpowiada memu wyobrażeniu o niezależności wewnętrznej starego Galileusza. Nie mogę sobie wyobrazić, bym ja na przykład przedsięwziął coś w tym rodzaju, by bronić teorii względności. Pomyślałbym, że prawda jest znacznie silniejsza ode mnie i wydawałoby mi się śmieszną donkiszoterią bronić jej mieczem, osiodławszy Rosynanta”.

Intuicja Einsteina była częściowo trafna. Galileusz niewątpliwie bardziej od Einsteina gustował w polemikach (choć nie był chyba bardziej od Einsteina uparty, jeśli chodzi o pryncypia). Jednak Galileusz nie jeździł do Rzymu jedynie po to, by zaspokoić swoją potrzebę wielkości i chwały. Być może z początku wiodła go ambicja. Szybko jednak zrozumiał, że gra toczy się o elementarną swobodę dyskusji i ocalenie własnej skóry. Był szanowanym uczonym, który chciał ogłosić dzieło życia, wiedząc, że nie zostanie ono dobrze przyjęte przez władze kościelne. Dzieło nie dotyczyło religii, wydawało się więc, że jakiś kompromis będzie możliwy, aby obie strony mogły wyjść z twarzą.  Kościół zawsze deklarował poparcie dla nauk. Jednak układy z władzą absolutną obowiązują tylko jedną stronę. Galileusz zapewne musiał przegrać, ponieważ był zbyt mało cyniczny.

Albert Einstein miał zdecydowane poglądy w wielu sprawach, ale był też człowiekiem mądrym (to nie to samo, co być wybitnym uczonym: głupich, choć wybitnych był legion). Rozumiał, że nie każda dyskusja może zostać rozstrzygnięta, czy to w nauce, czy w życiu publicznym. Podejrzewam też, że rozumiał, jak niewiele w istocie dzieli ludzi, jeśli chcą się poważnie zastanowić nad swoimi poglądami i swoją wiarą, a nie podporządkować sobie innych. Większość tzw. debat publicznych nie ma niestety nic wspólnego z namysłem, bardzo zaś wiele z władzą i dominacją. Poszukiwanie prawdy jest czymś zgoła innym.

Johann Bernoulli i krzywa łańcuchowa (1690)

Matematycy XVII wieku lubili badać rozmaite osobliwe krzywe i uwielbiali chełpić się swoimi umiejętnościami. Krzywe stożkowe: elipsa, parabola i hiperbola, czyli krzywe opisywane równaniami drugiego stopnia, już im nie wystarczały. Isaac Newton przeprowadził klasyfikację wszystkich krzywych trzeciego stopnia, co jest znacznie trudniejsze niż dla drugiego stopnia. Chętnie też zajmowali się krzywymi powstającymi wskutek ruchu (jak cykloida) albo jako rozwiązanie pewnego problemu z mechaniki. Jedną z takich krzywych była linia łańcuchowa, czyli kształt, jak przyjmuje giętki i ciężki łańcuch zawieszony na dwóch końcach.
Jeszcze w XVI wieku młody Galileusz starał się poznać kształt krzywej łańcuchowej, sądząc, że jest to ta sama krzywa, jaką zakreśla rzucone ciało. Prowadził wraz z Guidobaldem del Monte eksperymenty, aby porównać obie krzywe. Krzywą balistyczną rysowali puszczając kulkę zamoczoną w atramencie po równi pochyłej, jak na obrazku.

Okazało się, że krzywa balistyczna przypomina parabolę, lecz krzywa łańcuchowa różni się od niej znacząco. Jak wiemy, Galileuszowi udało się znaleźć mechaniczne wyjaśnienie dla krzywej balistycznej. Jednak kształtu krzywej łańcuchowej nie potrafił opisać matematycznie.
W 1690 roku Jacob Bernoulli, matematyk z Lozanny, rzucił na łamach „Acta Eruditorum” – pierwszego niemieckiego czasopisma naukowego, założonego z inicjatywy Leibniza – wyzwanie do innych matematyków, by opisali kształt krzywej łańcuchowej. Jeszcze w tym samym roku zagadnienie to rozwiązali Gottfried Wilhelm Leibniz, a także młodszy brat Jacoba, dwudziestoczteroletni Johann, kształcący się na medyka. Kilka lat wcześniej Leibniz w tym samym czasopiśmie ogłosił zarysy rachunku różniczkowego i całkowego. Bracia Bernoulli pilnie przestudiowali tę technikę formułowania i rozwiązywania problemów, obaj też wkrótce przewyższyli Leibniza, zwłaszcza Johann, który stał się szybko jednym z mistrzów rachunku różniczkowego i całkowego. Ambitny Johann nie został medykiem (podobnie jak niegdyś Galileusz). Niedługo później zrobił furorę w matematycznych kręgach Paryża. Jego wykłady częściowo opublikował pod swoim nazwiskiem markiz de L’Hôpital (któremu Johann sprzedał wyniki), druga ich część opublikowana została dopiero pół wieku później w t.3 Opera omnia Johanna.
Po roku „Acta Eruditorum” opublikowały wyniki Leibniza, Huygensa i Johanna Bernoulliego, lecz bez dowodów. Ówcześni matematycy niechętnie ujawniali metody, woleli raczej drażnić konkurentów swymi umiejętnościami.
Praca Christiaana Huygensa była niezadowalająca, stary mistrz nie znał nowych technik. Rozpatrywał łańcuch zbudowany z odcinków i próbował wykonać przejście graniczne do krzywej ciągłej, gdy długość każdego odcinka dąży do zera. Leibniz podał rozwiązanie w najprostszy sposób jako konstrukcję średniej arytmetycznej z dwóch krzywych wykładniczych („curva logarithmica”). Kilka lat później Leibniz opisał szczegółowo swoje rozwiązanie w liście do Huygensa. Nie było ono zbyt eleganckie, lecz ukazywało siłę metody postępowania, dzięki której nawet mało inteligentne podejście do problemu dawało się skutecznie przeforsować. Sam Jacob nie zdołał rozwiązać problemu i niezbyt mu się podobało, że dokonał tego jego młodszy brat.

Johann Bernoulli wyraził swoje rozwiązanie w postaci pola pod pewną krzywą, czyli całki. Przeanalizował też szczegółowo cały problem i rozwiązał go w sposób zdecydowanie elegantszy. Podał szereg twierdzeń, które przedstawione są na kolejnych rysunkach.

Punktem wyjścia jest zasada następująca: (Fig. 131) siły działające w dwóch dowolnych punktach A i C po różnych stronach minimum mają kierunek styczny do krzywej (łańcuch jest giętki) i muszą dodane wektorowo zrównoważyć ciężar łańcucha pomiędzy A i C. Środek ciężkości odcinka AC łańcucha znajdzie się dokładnie nad punktem D. Jeśli (Fig. 133) utniemy jakiś kawałek łańcucha, np. powyżej F, pozostała część nie zmieni kształtu. W szczególności (Fig. 132 i 135) możemy wybrać jako jedną z sił styczną w minimum, pozwala to szczególnie prosto sformułować warunek, jaki musi spełniać nasza krzywa. Fig. 136 daje konstrukcję Leibniza, równoważną Fig. 137 konstrukcję Johanna.
Podstawowa własność krzywej łańcuchowej daje się odczytać ze współczesnej wersji Fig. 132.

Aby utrzymać w równowadze odcinek łańcucha o długości s i ciężarze \varrho s potrzebna jest równa temu ciężarowi składowa pionowa siły (fioletowa). Składowe poziome (czerwone) równoważą się nawzajem, co oznacza, że składowa pozioma jest niezależna od wysokości. Możemy więc zapisać dla naszej krzywej

\dfrac{dy}{dx}=\mbox{tg }\alpha = s.

Nachylenie stycznej proporcjonalne jest do odległości od minimum. Bez zmniejszenia ogólności możemy przyjąć, że stała proporcjonalności równa jest 1 – możemy to zawsze osiągnąć wybierając odpowiednio jednostkę długości. Reszta jest zastosowaniem cudownej metody Leibniza (*), która szybko prowadzi do wyniku:

y(x)=\cosh x\equiv \dfrac{e^x+e^{-x}}{2}.

Obecnie sumę taką jak w kształcie krzywej łańcuchowej zapisujemy jako cosinus hiperboliczny: algebra funkcji hiperbolicznych jest podobna do trygonometrycznych, z tą istotną różnicą, że jedynka trygonometryczna zastąpiona jest wyrażeniem \cosh^2 x-\sinh^2 x=1 i pochodna cosinusa hiperbolicznego jest równa sinusowi hiperbolicznemu (bez minusa).
Krzywa łańcuchowa różni się od paraboli tym bardziej, im dalej od minimum się znajdziemy.

(*) Oznaczmy pochodną szukanej funkcji przez u. Różniczkując obie strony równania krzywej łańcuchowej, otrzymujemy

\dfrac{du}{dx}=\dfrac{ds}{dx}=\dfrac{\sqrt{dy^2+dx^2}}{dx}=\sqrt{u^2+1}.

Stąd

{\displaystyle \int {\dfrac{du}{\sqrt{u^2+1}}}=\int dx=x+A,}

Całkę możemy obliczyć korzystając z jedynki hiperbolicznej: \cosh^2 z=\sinh^2 z+1. Podstawiając u=\sinh z, mamy du=\cosh z dz i po lewej stronie zostaje całka z 1:

z=x+A.

Możemy wziąć sinh z obu stron, otrzymamy wówczas

\sinh z=u=\dfrac{dy}{dx}=\sinh (x+A).

Całkując ostatnią równość, otrzymujemy y=\cosh x. Stałe całkowania powinny być równe 0, jeśli chcemy mieć wykres taki, jak na obrazkach powyżej.

Galileo Galilei odkrywa nowe planety (styczeń 1610 r.)

Miarą odkrycia – w nauce i poza nią – jest zawsze wielkość niespodzianki, jaką sprawiło.

I byłem jak astronom, gdy olśnionym okiem

Nową w swym gospodarstwie planetę dostrzeże;

Albo zuchwały Cortez, kiedy orlim wzrokiem

Dojrzał z dala Pacyfik, a jego rycerze

To na siebie patrzyli w zdumieniu głębokim,

To na widzialne z góry Darienu wybrzeże.

Obu tych porównań użył John Keats, chcąc opisać niezwykłe wrażenie, jakie zrobiła na nim lektura Homera w przekładzie Chapmana. Pisząc na początku XIX wieku, wiedział o odkryciu Urana, a także czterech planetoid, uczeni w piśmie spierają się aż do dziś o stosowność drugiego porównania, bowiem słynny awanturnik, Hernán Cortés, nie miał nic wspólnego z odkryciem Przesmyku Panamskiego. Nie pownniśmy jednak traktować poetów niczym Wikipedii.

Największym naukowym szokiem XVII stulecia było odkrycie nieba teleskopowego: rzeźby powierzchni Księżyca (wedle szkolarzy miała ona być gładka jak szlifowana przez jubilera kula), tysięcy gwiazdek niewidzialnych gołym okiem (po co właściwie Bóg je stworzył?), plam na Słońcu (przecież, uczynione z eteru, powinno być niezmienne i świetliste), a także czterech satelitów Jowisza. Odkrycia te uczyniły w niewiele miesięcy ze starzejącego się profesora uniwersytetu w Padwie, florentyńczyka Galileo Galilei, europejską sławę.

Zdumienie współczesnych było tym większe, że teleskop był pierwszym z serii naukowych instrumentów pozwalających dostrzec rzeczy dotąd ukryte i niewidzialne. Dziś dobrze wiemy, że pełno jest wokół nas rozmaitych rodzajów niewidzialnego promieniowania i że czułe przyrządy mogą rejestrować światło tak słabe, iż niewidoczne dla oka. Świat przedgalileuszowy był taki, jaki jawi się zmysłom: skoro śnieg jest biały, to znaczy, że przysługuje mu taka barwa. Dla nas jest to kwestia odbijania pewnych długości fal i pochłaniania innych. Przedmioty nie są same z siebie białe ani twarde, ani pachnące – wszystko to są reakcje naszych zmysłów na pewne sygnały ze świata zewnętrznego.

W 1609 roku Galileusz dowiedział się o przyrządzie zbudowanym z soczewek i przybliżającym obrazy dalekich przedmiotów. Pierwsze instrumenty tego rodzaju skonstruowali rzemieślnicy w Holandii i wkrótce różni przedsiębiorczy jegomoście krążyli po Europie, starając się sprzedać korzystnie owe wynalazki. Galileusz także potrafił szlifować soczewki, różnił się wszakże od rzemieślników systematycznością podejścia i rozległością horyzontów. Dzięki pierwszej szybko zaczął budować coraz lepsze przyrządy, powiększające dwadzieścia, a nawet trzydzieści razy. Dzięki drugiej znalazł naukowe zastosowanie nowego wynalazku, umiał go też lepiej sprzedać niż owi wędrowni przekupnie. To, że wynalazek nie był jego autorstwa, nie miało tu żadnego znaczenia.

Sprzedał go zresztą dwa razy. Pierwszy raz senatowi Wenecji (do której należał uniwersytet w Padwie). Republika żyjąca z handlu i piractwa była zainteresowana przyrządem z daleka pozwalającym ustalić, jaki okręt zbliża się do nas. Galileusz przeprowadził nawet dla dostojników pokaz działania swego przyrządu z dzwonnicy San Marco. Widzieli przez niego nie tylko Lizza Fusina i Chioggię, ale nawet wieżę i kopuły bazyliki Santa Giustina w Padwie, w Murano zaś – ludzi wchodzących i wychodzących z kościoła San Giacomo. Sukces ten zaowocował listem Galileusza do doży z prośbą o podwyżkę. Otrzymał podwyżkę pensji do 1000 dukatów rocznie i gwarancję dożywotniego zatrudnienia. Jak się zdaje, uczony nie był w pełni zadowolony, może dlatego że władze zastrzegły się, iż dalszych podwyżek już nie będzie. Galileusz zaczął myśleć o powrocie do Florencji i do tego przydały się odkrycia teleskopowe, a przede wszystkim odkrycie księżyców Jowisza. Uczony zaproponował bowiem nazwać je gwiazdami medycejskimi, od nazwiska rodu panującego w jego mieście. Cztery gwiazdy miały odpowiadać czterem braciom. Ewentualnie mogły być nazwane cosmici – od panującego Kosmy Medyceusza. Przyjęta została pierwsza propozycja, uczony otrzymał we Florencji także 1000 dukatów rocznie, ale że dukaty florenckie zawierały siedem lirów, a nie pięć, jak weneckie, była to podwyżka o 40%. Co więcej, uwolnić się miał na zawsze od nauczania. Ceną było przyjęcie roli dworzanina, kogoś w rodzaju szczególnie cenionego błazna.

Rękopis Galileusza znajdujący się w Ann Arbor. U góry znajduje się szkic listu do doży z sierpnia 1609 roku, na dole kartki mamy zapis pierwszych obserwacji księżyców Jowisza w styczniu (gennaio) 1610, a także (w prawym dolnym rogu) szkice układu księżyców z góry.

W liście pisanym 7 stycznia 1610 roku uczony informuje, że planety wyglądają jak małe tarczki, gwiazdy natomiast nie zmieniają swego wyglądu. Ponieważ Jowisz widoczny był już w grudniu, kiedy Galileusz obserwował zmieniający się z nocy na noc, wraz z przesuwaniem cienia, krajobraz Księżyca, więc przypuszcza się, że tej nocy przyrząd Galileusza sprawował się lepiej – on sam pisze, że aby uzyskać ostrzejszy obraz, trzeba obiektyw przysłonić. Soczewki ówczesne były marnej jakości, zresztą gdyby nawet ich powierzchnie były idealnie sferyczne, wady optyczne takie, jak aberracja sferyczna i chromatyczna, ograniczały jakość obrazów. Ograniczenie się do promieni przyosiowych poprawiało sytuację, kosztem wielkości pola widzenia i jasności obrazu.

W tym samym liście uczony odnotowuje pewną osobliwość w pobliżu Jowisza znajdowały się trzy gwiazdki ułożone w jednej linii.

* * O *

(tutaj i poniżej rysunki z książki Galileusza zestawione są ze współczesnymi obliczeniami położeń czterech księżyców wg Jovian Moons Applet)

Nazajutrz sytuacja się zmieniła:

O * * *
Galileusz wywnioskował, że Jowisz przesunął się na wschód (na rysunku na lewo) względem gwiazdek. Było to o tyle dziwne, że powinien w tym okresie poruszać się na zachód. Uczony zapisał nawet, że planeta porusza się w przeciwnym kierunku, „niż przyjmują kalkulatorzy”. Może zdał sobie sprawę, że wyjaśnienie takie raczej jest niemożliwe: widoczne ruchy planet były w ogólnych zarysach prawidłowo opisane przez takich „kalkulatorów”, jak Ptolemusz czy Kopernik, i raczej nie należało tu oczekiwać niespodzianek. Następny wieczór był pochmurny, 10 stycznia natomiast sytuacja przedstawiała się następująco:

* * O
Uczony uznał, że najbardziej na zachód wysunięta gwiazdka została zasłonięta przez tarczę Jowisza. Nazajutrz, 11 stycznia, nadal było widać dwie gwiazdki na wschód od Jowisza:

* * O
Były one teraz bardzo blisko siebie, a bliższa planety była znacznie słabsza od drugiej, podczas gdy w poprzednie wieczory wszystkie trzy miały mniej więcej taką samą jasność. „Wydaje się stąd, że wokół Jowisza są trzy inne gwiazdy błędne, niewidziane przez nikogo aż do tej pory” (gwiazdy błędne, czyli ruchome – było to określenie planet, które przesuwają się na tle gwiazd). Dwa dni później Galileusz zaobserwował cztery gwiazdki obok Jowisza:

* O * * *


Stało się jasne, że odkrył coś naprawdę nowego: cztery planety krążące wokół Jowisza niczym Jowisz i reszta planet wokół Słońca. Postanowił swoje obserwacje jak najprędzej ogłosić drukiem, zdając sobie sprawę, że
odkrycie satelitów przez innych obserwatorów jest tylko kwestią czasu.

Książka, Sidereus Nuncius („Nuncjusz gwiezdny”), ukazała się w marcu, przynosząc Galileuszowi sławę i posadę we Florencji. Oznaczało to także zerwanie z Wenecjanami urażonymi takim traktowaniem. Niektórzy sądzą, że Galileusz zaczął już wtedy myśleć o propagowaniu kopernikanizmu. W każdym razie miniatura Układu Słonecznego: Jowisz i jego księżyce była dla niego silnym argumentem psychologicznym za heliocentryzmem.

Odkrycia teleskopowe mogły zostać dokonane przez każdego, ale to Galileusz potrafił szybko zbudować odpowiednie przyrządy. Jeszcze ważniejsze okazało się jego przygotowanie mentalne: już dawno sądził, że nauka arystotelesowska  nie odpowiada rzeczywistości, teraz dzięki swemu przyrządowi miał nowe i niespodziewane argumenty przeciwko tradycyjnemu obrazowi świata. Potrafił je elokwentnie przedstawić i opisać, patrzenie nie jest prostą i jednoznaczną czynnością. Dostrzegamy zawsze tylko to, do czego jesteśmy jakoś wcześniej przygotowani. Księżyce Jowisza w tym samym praktycznie czasie zaobserwował Simon Marius (proponował je nazwać „Gwiazdami Brandenburskimi” – miał innych patronów). Prawdopodobnie jednak dopiero po książce Galileusza zrozumiał on, co właściwie zobaczył, a mianowicie: księżyce krążące wokół innej planety. Marius nie interpretował swych obserwacji w duchu heliocentrycznym, po prostu uzupełnił tradycyjny ptolemeuszowy obraz świata o cztery nowe obiekty. W tym ujęciu zamiast wybuchu rewolucji mielibyśmy mokry kapiszon.

Wstęp do sprawy Galileusza

Sprawa Galileusza była tyleż heroiczną, co bezskuteczną próbą zatrzymania czasu i naukowego postępu przez Kościół rzymski. Od czasu skazania Galileusza pojawił się wzór działania, powtarzający się aż do dziś: „nauki” Kościoła, interpretowane przez słabo zorientowanych w nauce teologów, utrzymywane jedynie siłą stojącej za nimi instytucji, wycofywały się stopniowo i chyłkiem z co bardziej oczywistych głupstw głoszonych jako prawdy objawione. Co nie znaczy, że działo się to szybko. Jak zauważył kiedyś Albert Camus: „Książki Kopernika i Galileusza były na indeksie do 1822 roku. Trzy wieki uporu to już kokieteria” (przeł. J. Guze).

Odkrycia dokonywane w XVII wieku w astronomii i fizyce prowadziły do obrazu świata coraz bardziej oddalonego od potocznych wyobrażeń, a więc także i od zdroworozsądkowej u swego korzenia filozofii Arystotelesa oraz od literalnego rozumienia tekstu Pisma Świętego. Teoria Kopernika była jednym z pierwszych przykładów, gdy nauka głosiła tezę sprzeczną z naszym bezpośrednim doświadczeniem. Zamęt poznawczy jeszcze bardziej pogłębiły teleskopowe odkrycia Galileusza na niebie. Już sam fakt, że istnieją obiekty niepostrzegalne gołym okiem, stanowił duży wstrząs dla współczesnych. Sam uczony pod wpływem tych odkryć zaczął coraz śmielej głosić kopernikanizm, uznając, że potrafi nie tylko udowodnić fałszywość fizyki arystotelesowskiej, ale także wykazać naukowo ruch Ziemi.

Galileusz zajął się teologią z konieczności, ponieważ został zadenuncjowany jako heretyk i stał się celem niewybrednych ataków ze strony dominikanów z Florencji. Najważniejszy z jego tekstów teologicznych, List do Wielkiej Księżny Krystyny (1615), pochodzi z okresu, gdy uczony wciąż jeszcze miał nadzieję, że Kościół katolicki nie opowie się oficjalnie przeciwko nauce kopernikańskiej. Wymagało to jednak odstąpienia od dosłownej interpretacji niektórych fragmentów Pisma Świętego. Galileusz przedstawił własną propozycję hermeneutyki Biblii, zwracając uwagę na fakt, że adresowana jest ona także do ludzi nieuczonych i posługuje się w tym celu językiem potocznym, nie można więc oczekiwać od tekstu Pisma objaśnień zjawisk przyrodniczych. Co więcej, przywołując tradycję dwóch ksiąg: księgi objawionej i księgi przyrody, stara się wykazać, że w razie pozornego konfliktu obu tych źródeł poznania, gdyby jakaś dobrze udowodniona prawda nauk przyrodniczych stała w sprzeczności z naszym zrozumieniem Pisma, należałoby zastanowić się nad zmianą interpretacji tekstu świętego. Podkreślić należy, że przynajmniej w ogólnych zarysach taki punkt widzenia nie był jakoś szczególnie oryginalny w XVII wieku. Przed Galileuszem zbliżone podejście hermeneutyczne głosił Johannes Kepler, później w podobnym duchu wypowiadali się niemal wszyscy przedstawiciele nowej nauki, nawet tacy fundamentaliści biblijni jak Isaac Newton. Jako przykład nowej interpretacji Biblii podaje Galileusz cud z Księgi Jozuego, gdy wedle tekstu Pisma Św. (Joz, 10, 13) słońce zatrzymało się na pewien czas. Otóż cud ten – zdaniem Galileusza – można zrozumieć naukowo, gdy przyjmiemy, że Słońce (znajdujące się pośrodku układu planetarnego) przestało obracać się wokół osi, co z kolei sprawiło, że także planety stanęły i cały kosmiczny zegar znieruchomiał, po czym znowu ruszył. Jak się wydaje, Galileusz zaczerpnął tu wiele ze wstępu do Astronomia nova (1609) Keplera, gdzie zaproponowany został taki właśnie mechanizm omawianego cudu (cudowne było zatrzymanie i ponowne uruchomienie Słońca, pozostałe zjawiska przebiegały w sposób naturalny).

Kościół katolicki wyjątkowo niechętnie patrzył na próby indywidualnej interpretacji Pisma, zwłaszcza podejmowane przez ludzi świeckich, nawet tak wybitnych jak Galileusz. Toteż różne zabiegi Galileusza, w tym jego kampania informacyjno-propagandowa prowadzona w Rzymie wśród najwyższego duchowieństwa, nie odniosły skutku. W roku 1616 nieruchomość Słońca uznano za sprzeczną z tekstem Pisma Św., a ruch Ziemi – za co najmniej błąd w wierze. Sam Galileusz został napomniany, by nie głosił poglądów kopernikańskich, choć dokładny sens tego napomnienia pozostaje wciąż niejasny – zachowały się na ten temat dwa nieco różne w treści dokumenty. Galileusz zrozumiał, że musi zamilknąć, choć poglądów kopernikańskich nie zmienił. Na razie uczonego nie spotkało nic złego. Do jego patronów w tym okresie należał m. in. kardynał Maffeo Barberini, który w 1620 r. napisał nawet na jego cześć wiersz pod tytułem Adulatio perniciosa („Zgubna pochwała”). Jak bardzo proroczy okazał się tytuł owego wiersza, miał się Galileusz przekonać, gdy Barberini został papieżem, przybierając imię Urbana VIII. Papież uważał się za intelektualistę i uczony uznał, że nadszedł sprzyjający czas na otwarte opowiedzenie się za ruchem Ziemi, ogłaszając w 1632 r. Dialog o dwu najważniejszych układach świata Ptolemeuszowym i Kopernikowym. Książka miała wprawdzie wszelkie możliwe zezwolenia władz kościelnych, lecz nie przypadła do gustu papieżowi. Rozpętała się burza, zakończona skazaniem Galileusza na dożywotni areszt domowy i całkowity zakaz publikacji. Musiał też publicznie podczas upokarzającej ceremonii wyrzec się swych poglądów.

Obraz z XIX wieku przedstawiający wyrzeczenie się poglądów przez Galileusza (Joseph-Nicolas Robert-Fleury). W rzeczywistości uczony wystąpił w worku pokutnym i musiał klęczeć, odczytując poniższy tekst:

Ja, Galileo, syn Vincenza Galilei z Florencji, w wieku lat moich 70, osobiście stanąwszy przed sądem, na klęczkach w obliczu waszym, najdostojniejsi i najwielebniejsi panowie kardynałowie, generalni inkwizytorzy w całej powszechności chrześcijańskiej przeciwko występkowi herezji, mając przed oczami moimi najświętszą Ewangelię, której dotykam własnymi rękami, przysięgam, że zawsze wierzyłem, obecnie wierzę i z pomocą bożą w przyszłości wierzyć będę w to wszystko, co utrzymuje, głosi i czego naucza św. Kościół katolicki i apostolski. Ponieważ jednak po tym, gdy to Święte Oficjum upomniało mnie i nakazało z mocą prawną, bym całkowicie porzucił fałszywe mniemanie, że Słońce jest środkiem świata i nie porusza się, a Ziemia nie jest środkiem świata i się porusza, i abym nie utrzymywał, nie bronił ani nie nauczał tej fałszywej doktryny, i po tym, gdy mi podano do wiadomości, że doktryna ta jest sprzeczna z Pismem Świętym, napisałem i ogłosiłem drukiem książkę, w której omawiam tę potępioną już doktrynę i na jej poparcie przytaczam bardzo przekonujące argumenty, nie dając żadnego rozwiązania – przeto uznany zostałem za mocno podejrzanego o herezję, a mianowicie, iż utrzymywałem i wierzyłem, że Słońce, nieruchome, jest środkiem świata (*), a Ziemia nie jest tym środkiem i się porusza.
Pragnę tedy z umysłów Waszych Eminencji i każdego prawego chrześcijanina usunąć to mocne podejrzenie, jakie słusznie wzbudziłem. (…) Przysięgam, że w przyszłości nigdy już nie będę głosił ani twierdził, słowem bądź pismem, niczego, co skłoniłoby do takiego podejrzenia. Jeślibym zaś poznał jakiegoś heretyka lub podejrzanego o herezję, doniosę o tym Świętemu Oficjum (…) Ja, Galileo Galilei, wyrzekam się, przysięgam, obiecuję i przyjmuję wszystko to, co wyżej przeczytałem, i na przypieczętowanie tego własnoręcznie podpisuję niniejszy dokument, który odczytałem słowo po słowie w Rzymie, w klasztorze Santa Maria sopra Minerva, dzisiaj, w dniu 22 czerwca 1633 roku.
Ja, Galileo Galilei, wyrzekłem się, jak wyżej, i własnoręcznie podpisuję.

Sprawa Galileusza jest oczywiście w jakiejś mierze konfliktem intelektualnym, starciem idei. Rozstrzygała się kwestia nowego podejścia do interpretacji Pisma Św. Kościół instytucjonalny nie miał jednak cienia wątpliwości, że filozofia nadal powinna być służką tradycyjnie rozumianej teologii. Galileusz i jego zwolennicy (często także duchowni) nie zostali wysłuchani – linia podziału biegła tu zresztą nie tyle między Kościołem a nauką, co raczej między zwolennikami nowych idei a ich przeciwnikami. Ostateczne decyzje zarówno w roku 1616, jak i w roku 1633 zapadły bez głębszego rozważenia tez Galileusza. W tym drugim przypadku sprawdzano tylko, czy można znaleźć w książce podstawy do oskarżenia jej autora. Bardzo możliwe, że jakąś rolę odegrał tu gniew Urbana VIII, który poczuł się urażony widząc własne słowa włożone w usta Simplicia – niezbyt rozgarniętego uczestnika Galileuszowego Dialogu. Cała sprawa Galileusza stała się głośnym przykładem użycia (czy też nadużycia) władzy doczesnej Kościoła katolickiego do cenzurowania treści teorii naukowej. Nie ma w tym kontekście znaczenia, czy Galileusz miał mocne dowody naukowe przemawiające za ruchem Ziemi – bardzo rzadko uczony może przedstawić takie dowody już w chwili publikacji swej teorii.

Przemiana światopoglądowa związana z rewolucją naukową była już wówczas w toku i żadne zakazy nie mogły tego odwrócić. Jednak tak ostry konflikt nie był nieuchronny. W tym konkretnym przypadku rolę odegrały zapewne cechy osobiste uczonego, który miał temperament zjadliwego polemisty, a także szersze uwarunkowania, jak osłabiona pozycja polityczna papieża i potrydencka mentalność oblężonej twierdzy.

Nie wszędzie dopasowanie prawd naukowych i prawd religijnych dokonywało się w sposób administracyjny, jak w Rzymie. W krajach protestanckich nie było żadnego odpowiednika sprawy Galileusza. W roku 1638 John Wilkins opublikował w Londynie książkę The Discovery of A World in the Moone, w której głosił kopernikanizm zbliżony do poglądów Galileusza. Wilkinsa nie tylko nie spotkały z powodu książki żadne represje, ale pod koniec życia został biskupem Kościoła anglikańskiego i jednym z założycieli Towarzystwa Królewskiego.

Konsekwencje sprawy Galileusza dla dalszego rozwoju nauki były stosunkowo niewielkie, m. in. dlatego, że niebawem znaczenie zyskały kraje północne, przede wszystkim Francja, Holandia i Anglia, gdzie cenzura kościelna miała wpływ niewielki albo żaden. Kartezjusz wolał jednak na wszelki wypadek mieszkać w Holandii i wstrzymał się z ogłoszeniem gotowego w roku 1633 Świata albo traktatu o świetle. Kartezjusz, podobnie jak Galileusz, był szczerym katolikiem i z wielu powodów nie chciał konfliktu ze swym kościołem.

Wstyd Kościoła pozostał do dziś. Jeszcze pod koniec XX wieku, kiedy podjęto na wniosek Jana Pawła II badania nad sprawą Galileusza, strona kościelna starała się zrzucić z siebie winę, przyznając jedynie, że uczony „wiele wycierpiał
(…) ze strony ludzi i instytucji Kościoła”, dodając zarazem jednym tchem, że to Galileusz błędnie rozumiał metodę naukową.

(*) Nb. Galileusz nie uważał, że Słońce jest środkiem świata, w ogóle nie wierzył, aby istniał jakiś środek świata, ale z pozycji klęcznej trudno było zaczynać na ten temat dyskusję.

Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym – Galileo Galilei (1/2)

Dialog o dwu najważniejszych układach świata: ptolemeuszowym i kopernikowym – Galileo Galilei (2/2)

Galileusz i Torricelli: krzywe balistyczne (pierwsza połowa XVII wieku)

Rewolucja naukowa XVII wieku ukazała nowe zastosowania matematyki: poznano kształt orbit planetarnych, a także krzywą balistyczną – tor wystrzelonego bądź rzuconego ciała. Jedną z osobliwości rozwoju nauki na planecie Ziemia jest fakt, że skomplikowany eliptyczny ruch planet został odkryty przez Johannesa Keplera, zanim jeszcze poznano prosty paraboliczny kształt krzywej balistycznej. Odkrycia te były zupełnie od siebie niezależne, dopiero Isaac Newton potrafił dostrzec, że w obu przypadkach mamy do czynienia z przejawami ciążenia powszechnego.
Galileusz bardziej niż ktokolwiek inny przyczynił się do zmiany sposobu podejścia do nauki o ruchu: miała ona stać się matematyczna i ugruntowana w eksperymencie. Miała też być zupełnie nowa, osiągnięcia dawnych filozofów traciły gwałtownie na znaczeniu.

Jak pisał Galileusz w jednej ze swych zjadliwych polemik z jezuitą, o. Grassim (występującym pod nom de plume Sarsi):

„[Sarsi] zadaje pełne irytacji pytania: za kim zatem należałoby pójść? Może za Ptolemeuszem (…)? A może za Kopernikiem, od którego trzeba się jednak trzymać z daleka, z powodu potępienia jego hipotez? (…) w podejściu Sarsiego daje się zauważyć silna wiara, że w filozofii zawsze trzeba się opierać na opiniach jakiegoś sławnego autora, tak jakby nasza inteligencja, jeśli nie weźmie sobie za męża cudzego rozumu, musiała na zawsze pozostać sterylna i bezpłodna. Albo może jest on zdania, że filozofia jest czymś na kształt księgi lub wytworu ludzkiej fantazji, jak Iliada albo Orland szalony, czyli dzieła, w którym najmniej się liczy, czy to, co jest napisane, jest prawdą. Panie Sarsi, nie tak się rzeczy mają! Filozofia zawarta jest w tej przeogromnej księdze, którą ciągle mamy otwartą przed oczami (nazywam tę księgę wszechświatem), jednakże nie można jej pojąć, jeśli wpierw nie pozna się języka, nie pozna się znaków, za których pomocą została napisana. A księga ta została napisana w języku matematyki, i jej literami są trójkąty, koła i inne figury geometryczne” (przeł. T. Sierotowicz).

Odkrycie parabolicznego kształtu krzywej balistycznej jest jednym ze sławnych osiągnięć Galileusza. Brzmi prosto, ale wyjaśnianie, czemu tak jest, czy rzeczywiście tak jest i w jakich warunkach, zajęło uczonemu wiele lat i nie całkiem się udało pod względem matematycznym. W zadowalającej i eleganckiej formie ujął to dopiero Evangelista Torricelli, rozwijając prace mistrza. Starość Galileusza upłynęła w areszcie domowym po wyroku inkwizycji. Nawet kiedy umarł, papież Urban VIII zakazał uroczystego pogrzebu i uczonego pochowano w miejscu nie oznaczonym żadnym nagrobkiem. Pierwszym pomnikiem Galileusza było popiersie wybudowane przez jego ucznia Vincenza Vivianiego na ścianie własnego domu pół wieku później. Krzywa balistyczna znalazła się wsród emblematycznych osiągnięć wielkiego Toskańczyka. Po następnych czterdziestu latach szczątki uczonego doczekały się nie tylko uroczystego pochówku, ale i zaczęły być traktowane jak relikwie (do dziś przechowywane tu i ówdzie), co było może nieuniknione w kraju tak bardzo katolickim, lecz nieźle by ubawiło samego Galileusza.

Punktem wyjścia były w poprzednim stuleciu rozważania takie, jak u Niccolò Fontany, zwanego Tartaglia (czyli „Jąkała”). Chwalił się on, że rozwiązał zagadnienie krzywej balistycznej. W jego pojęciu ruch pocisku czy innego wystrzelonego ciała składa się z trzech etapów: z początku jest to prostoliniowy ruch wymuszony, na końcu jest to także ruch prostoliniowy, lecz naturalny: spadanie pionowo w dół. Obie te fazy miały uzasadnienie w fizyce Arystotelesa. Zdroworozsądkowym dodatkiem było uznanie, że między tymi dwiema fazami jest jeszcze krzywoliniowe interludium, o którym teoria nie mówiła nic. Zupełnie gołosłownie Tartaglia twierdził, że zasięg strzału jest największy, gdy strzela się pod kątem 45° do poziomu. Istniały zatem aż dwie teorie tego, co się miało dziać podczas ruchu, w dodatku żadna z nich nie była ilościowa ani matematyczna. Arystoteles prowadził rozważania jakościowe, „filozoficzne”. Tymczasem artylerzyści rozumieli, że z teorią czy bez, pociski lecą wzdłuż określonej trajektorii.

Pierwszym patronem młodego Galileo Galilei z Florencji był Guidobaldo del Monte. Wspólnie przeprowadzili oni doświadczenia dotyczące kształtu krzywej balistycznej. Puszczali w tym celu ukośnie kulkę zanurzoną wcześniej w atramencie po nachylonej płaszczyźnie. Odkryli, że krzywa balistyczna jest symetryczna i podobna do paraboli lub hiperboli. Błędnie utożsamili jej kształt z krzywą łańcuchową – opisującą kształt ciężkiego łańcucha zamocowanego z obu końców. Galileusz do końca życia był przywiązany do tej obserwacji, choć w późniejszych doświadczeniach sprawdził, że obie krzywe są do siebie zbliżone tylko wtedy, gdy są dość płaskie. W drugiej połowie XVII wieku, stosując rachunek różniczkowy i całkowy, ustalono, że linia łańcuchowa to kombinacja funkcji wykładniczych (cosinus hiperboliczny), a więc nie ma wiele wspólnego z krzywą balistyczną.

Zrozumienie, skąd bierze się parabola jako krzywa balistyczna, wymagało czasu i eksperymentów. Galileusz zrozumiał, że ruch poziomy i ruch pionowy są od siebie niezależne (jeśli tylko opór ośrodka możemy pominąć). Pionowy spadek jest ruchem przyspieszonym, a więc odległość rośnie jak kwadrat czasu. Razem z jednostajnym ruchem poziomym daje to właśnie parabolę. Pierwszy opublikował te rozważania w roku 1632 Bonaventura Cavalieri, młody matematyk, który był przekonany, że Galileusz musiał je kiedyś wcześniej ogłosić. Starszy uczony zareagował furią, ale Cavalieri jakoś go ugłaskał i przekonał, że nie miał złych intencji. Dowód Cavalieriego, a także opublikowany później dowód Galileusza, odnosiły się do przypadku rzutu poziomego. Galileusz nie udowodnił, ściśle rzecz biorąc, że w rzucie ukośnym także powstaje parabola.

 

 

 

 

 

 

 

 

 

 

 

 

 

Powstawanie paraboli odcinki pionowe przebywane w równych czasach mają się jak 1:3:5:7 (czyli całkowite drogi mają się jak 1:4:9:16).  Rysunek z książki Cavalieriego, Lo Specchio ustorio („Zwierciadło zapalające”), 1632 r.

Jednak to Galileusza należy uznać za odkrywcę kształtu toru, on pierwszy bowiem zrozumiał w zasadzie wszystko, co było potrzebne do matematycznego opisu krzywej balistycznej. Przeprowadził też doświadczenia, w których mierzył zasięg rzutu poziomego kulek staczających się z równi pochyłej o różnych wysokościach. Uczony wiedział, że prędkość kulek u podnóża równi jest proporcjonalna do pierwiastka z wysokości. Zmierzył, że zasięg rzutu x jest proporcjonalny do tej prędkości.

Dopiero Evangelista Torricelli domknął stronę matematyczną teorii i udowodnił, że także w ruchu ukośnym mamy do czynienia z parabolą.

Znalazł też prosty sposób przedstawienia maksymalnej wysokości oraz zasięgu rzutu w zależności od kąta. Jeśli AB jest maksymalną wysokością przy pionowym strzale, to należy skonstruować półokrąg, jak na rysunku. Dla dowolnego kąta wystrzału rysujemy linię AF: mamy wówczas maksymalną wysokość równą AE=h, odcinek EF=x/4 jest równy jednej czwartej zasięgu. Widać od razu, że maksymalny zasięg uzyskamy dla kąta \alpha=45^{\circ}. Widać też, że przy kątach różnych od 45^{\circ} każdemu zasięgowi odpowiadają dwie wartości kąta: można więc osiągnąć tę odległość za pomocą dwóch parabol: jednej mniej, a drugiej bardziej stromej.

Ruch paraboliczny jest wypadkową jednostajnego ruchu prostoliniowego i swobodnego spadku w kierunku pionowym. Reszta jest ćwiczeniem geometrycznym.

Także Torricelli zbadał kształt krzywej bezpieczeństwa: oddzielającej punkty będące w zasięgu strzału od tych, które są poza zasięgiem (przy danej prędkości pocisku). Krzywa ta także jest parabolą o wysokości równej wysokości strzału pionowego, a połowa jej szerokości równa się maksymalnemu zasięgowi strzału.


Książka Torricellego ukazała się w 1644 roku (choć wyniki zostały uzyskane jeszcze za życia Galileusza i stary mistrz miał okazję się z nimi zapoznać). W 1687 roku Isaac Newton pokazał, że dowolny ruch orbitalny jest złożeniem ruchu prostoliniowego i spadku swobodnego. Musimy tylko wziąć pod uwagę, że wielkość grawitacji zmienia się od punktu do punktu, a więc opis tego rodzaju słuszny jest jedynie w bardzo krótkim przedziale czasu. Jest to spora komplikacja matematyczna, pozwala jednak opisać w sposób jednolity rozmaite ruchy we wszechświecie. Tor wypadkowy będzie parabolą jedynie lokalnie, jego kształt w przypadku planet jest jedną z krzywych stożkowych. Podobno Isaac Newton tylko raz wybuchnął śmiechem: kiedy ktoś go zapytał, jaki jest pożytek z matematyki. Lepiej niż jego współcześni rozumiemy teraz głębokie powody tego śmiechu.

Obliczenia. Jeśli wprowadzimy układ współrzędnych poziomej – X i pionowej Y, to wektor  początkowej możemy zapisać jako \vec{v}=[v\cos\alpha, v\sin\alpha], a przyspieszenie ziemskie \vec{g}=[0,-g]. Równania ruchu mają więc postać:

\begin{cases} X=v\cos\alpha t,\\  Y=v\sin\alpha t-\dfrac{gt^2}{2v^2 \cos^2\alpha}.\end{cases}

Dla \alpha\neq \pi/2 równanie toru można obliczyć, wyznaczając t z pierwszego równania i wstawiając do drugiego:

Y=X\mbox{tg}\,\alpha -\dfrac{gX^2}{2v^2 \cos^2\alpha}.

Jest to równanie z funkcją kwadratową X po prawej stronie – tor jest więc parabolą. Łatwo można wyznaczyć współrzędne wierzchołka paraboli (za pomocą szkolnych wzorów albo szukając maksimum funkcji). W oznaczeniach z rysunków otrzymamy

\begin{cases} \dfrac{x}{2}=\dfrac{v^2}{g}\sin\alpha\cos\alpha,\\ \\h=\dfrac{v^2}{2g}\sin^2\alpha.\end{cases}

Ostatnie wyrażenie słuszne jest także dla \alpha=\pi/2, co wynika np. z ciągłości funkcji: gdy zbliżamy się do kąta \pi/2 wysokość maksymalna nie powina mieć skoku. Zatem maksymalna wysokość możliwa do osiągnięcia równa jest

AB=\dfrac{v^2}{2g}.

Odcinki na rysunku Torricellego są z naszego współczesnego (trygonometrycznego) punktu widzenia równe:

\begin{cases}\dfrac{EF}{AB}=\dfrac{EF}{AF}\cdot\dfrac{AF}{AB}=\cos\alpha\sin\alpha,\\ \\  \dfrac{AE}{AB}=\dfrac{AE}{AF}\cdot\dfrac{AF}{AB}=\sin^2\alpha.\end{cases}

Zasięg i maksymalna wysokość skalują się zatem jak odpowiednie funkcje trygonometryczne, \sin2\alpha oraz \sin^2\alpha.

Galileo Galilei, Dialog o dwu najważniejszych układach świata, 1632 (2/2)

Galileuszowy Dialog rozgrywa się w pałacu Sagreda w Wenecji, dokąd przybywają na dyskusję Filippo Salviati i Simplicio (pedanterią byłoby w tym miejscu wytykanie autorowi, że Sagredo i Salviati nigdy się nie spotkali). Ich wymiana myśli odbywa się więc nie później niż w roku 1614, kiedy obaj przyjaciele uczonego jeszcze żyli, a więc przed ogłoszeniem dekretu Kongregacji Indeksu w sprawie Kopernika, w czasie gdy swobodna dyskusja była jeszcze możliwa. Rozmowy podzielone są na cztery kolejne dni i nie zawsze trzymają się ściśle wyznaczonego tematu. Przydaje to Dialogowi naturalności, a autorowi stwarza okazję, aby zatrącić o pewne kwestie, nie trzymając się zawsze ustalonego porządku. Ten pozorny chaos Galileuszowych dyskusji był zamierzony, choć niektórzy czytelnicy czuli się z tego powodu zagubieni. Osobisty ton rozważań miał do odegrania niezwykle ważną rolę: czytelnik uświadamia sobie, że zwolennicy nowej kosmologii nie są jakimiś ignorantami czy szaleńcami, wręcz przeciwnie: znają większość tradycyjnej nauki i argumentów geocentrycznych, lecz odrzucają je po dojrzałym namyśle. Salviati jest Simpliciem, który nauczył się matematyki, przemyślał swoje poglądy i opanował wiele nowych idei. Sagredo, mając do wyboru argumenty tradycjonalistów i nowe idee, przychyla się z reguły do tych nowych, nie dlatego wszakże, że są nowe, lecz dlatego, że lepiej objaśniają świat, kiedy im się przyjrzeć bez uprzedzeń. Największą wartością Dialogu był właśnie pewien eksperyment poznawczy: wyobrażenie sobie świata na wzór kopernikański i rozważenie różnych tego konsekwencji. Okazuje się, że nie tylko można być zwolennikiem Kopernika, nie tracąc zdrowego rozsądku, ale że nie sposób już być konsekwentnym zwolennikiem Ptolemeusza. Galileusz sprowadził rozważania do ostrej dychotomii: albo Ptolemeusz, albo Kopernik. Pominął całkiem układ Tychona, choć można twierdzić, że z jego punktu widzenia rozwiązanie Tychona nic nie wnosiło, zajmował się bowiem głównie pytaniem, czy Ziemia jest planetą i się porusza, a w tej kwestii duński astronom był równie konserwatywny jak starożytni Grecy.

Giovanni Francesco Sagredo (Ashmolean Museum)

Pierwszy dzień rozmów poświęcony jest tematowi jedności materii we wszechświecie. Wedle Arystotelesa niebiosa zbudowane są z eteru, takie też stanowisko obowiązywało w zasadzie jezuitów, choć, jak pamiętamy, ich największy teolog, Bellarmin, prywatnie uważał, że niebiosa mogą być z ognia. Tak czy inaczej, zwolennicy tradycji nie chcieli żadną miarą uznać, aby Ziemia miała w czymś przypominać ciała niebieskie. Galileusz przede wszystkim pokazuje, że powszechnie znane i nauczane na uniwersytetach argumenty Arystotelesa są nic niewarte. Poprawia zresztą greckiego filozofa z upodobaniem niemal w każdej sprawie. Gdy Simplicio, który jest skarbnicą książkowych mądrości, przytacza opinię Arystotelesa, że ciała mają trzy wymiary: długość, szerokość i głębokość, gdyż liczba trzy jest doskonała, Salviati zauważa natychmiast, że nie ma czegoś takiego jak doskonałość sama przez się, gdyż doskonałość służy zawsze jakiemuś celowi: zwierzęta np. mają parę nóg albo cztery nogi, a nigdy trzy. Co do geometrii, proponuje inny sposób podejścia. Można bowiem z dowolnego punktu wytyczyć trzy wzajemnie prostopadłe proste. Simplicio nie całkiem rozumie, czemu akurat trzy – winę ponosi tu jego brak edukacji matematycznej. Galileusz nie wiedział, że mogą istnieć geometrie wielowymiarowe, ale jego podejście zadowoliłoby współczesnego fizyka: wymiar przestrzeni należy do faktów empirycznych i określamy go sprawdzając, jaki rodzaj geometrii stosuje się do przestrzeni. I oczywiście doskonałość liczby trzy nie ma tu nic do rzeczy.

U Arystotelesa kierunki do góry i w dół miały sens absolutny i związane były z elementami ognia i powietrza – naturalnie wznoszącymi się w górę, oraz wody i ziemi – naturalnie spadającymi w dół. Z eterem związany był ruch kolisty – co objaśniać miało wieczność i niezmienność świata nadksiężycowego. Galileusz kwestionuje te rozumowania, zawierające jako założenie to, czego się dopiero chce dowieść. „Wszystko to wygląda tak, jakby celem Arystotelesa było przemieszanie nam kart w ręku i dostosowanie planu architektonicznego do świata już zbudowanego, a nie budowanie świata wedle wskazań architektury. Jeżeli bowiem oświadczę, że we wszechświecie istnieć mogą tysiące ruchów kołowych, a co za tym idzie, tysiące ośrodków, to otrzymamy też wówczas tysiące ruchów w górę i w dół” – stwierdza Sagredo. Uczony rozmontowuje i unieszkodliwia krok po kroku całą arystotelesowską machinę argumentów, stanowiącą wówczas podstawową wiedzę, jaką wynosiło się z uniwersytetów. Trudno sobie wyobrazić, aby zadania tego podjął się ktoś przepełniony respektem dla instytucji akademickich. Galileusz nie mógł zniszczyć tradycyjnej kosmologii w sposób łagodny, operacja ta musiała też wywoływać reakcje obronne u tych, którzy wychowali się w arystotelesowskiej wierze. Nie doceniamy dziś siły tamtej tradycji i Dialog nie wywołuje już u nas wstrząsu intelektualnego, wtedy jednak chodziło o zakwestionowanie całego systemu wyjaśniania i wyobrażania sobie świata.

W niektórych założeniach Galileusz nie odbiega jednak od Arystotelesa: obaj uważali świat za doskonale uporządkowaną całość – po grecku „kosmos”. W kosmosie Arystotelesa ruchy prostoliniowe ograniczone były do bezpośredniego sąsiedztwa Ziemi, dlatego ruch prostoliniowy i naturalny musiał mieć początek i koniec. Także Galileusz wzdraga się przed ruchem prostoliniowym: „W dodatku zważmy, że ruch po linii prostej z natury swojej jest nieskończony, gdyż sama linia prosta jest nieskończona i nieokreślona. Jest więc niepodobieństwem, by coś ruchomego miało z przyrodzenia swego właściwość poruszania się po linii prostej, to jest do celu, którego nie sposób osiągnąć, ponieważ nie posiada on kresu. Jak zresztą sam Arystoteles bardzo słusznie zaznacza, przyroda nie nakreśla sobie zadań, które nie mogą być osiągnięte, i nie zwykła jest zmierzać tam, dokąd dojść nie można”. Widzimy, że droga do sformułowania I zasady dynamiki była jeszcze długa – Isaac Newton urodził się w roku śmierci Galileusza.

Chcąc, aby kosmos był uporządkowany, Galileusz zakłada w nim istnienie ruchów kołowych. W odróżnieniu od Arystotelesa uważa, że nie potrzebują one jednak żadnego poruszyciela, mogą trwać niezakłócone w nieskończoność. By wyjaśnić początek układu planetarnego, odwołuje się do swej hipotezy, w myśl której Stwórca wypuścił na początku planety z jednego punktu i spadały one ku Słońcu ruchem przyspieszonym aż do chwili, gdy każda osiągnęła przepisaną odległość od Słońca. Wówczas ich ruch zmienił kierunek na obiegowy, ale wartości ich prędkości się nie zmieniła. Kosmogonia w wydaniu Galileusza przypomina nieco jego własne eksperymenty, w których zmieniał on kierunek prędkości – np. po stoczeniu się kulki z równi pochyłej na płaski stół – i obserwował, że jej wartość pozostaje taka sama. Uczony traktował te spekulacje jako pewne uzupełnienie Platońskiego Timajosa, gdzie opowiedziana jest historia o zbudowaniu świata przez demiurga. Wyniki jego obliczeń zdawały się zgodne z danymi na temat planet. Matematyk Wielkiego Księcia nie mówił o siłach i ciężkości, tym bardziej ciężkości powszechnej, jego mechanika była kinematyką. Hipoteza kosmogoniczna Galileusza była później rozważana z całą powagą przez Isaaca Newtona, który zauważył, że grawitacja Słońca musiałaby zostać podwojona w chwili zmiany kierunku prędkości.

Sagredo pyta, czy prędkość nie mogłaby zostać nadana planecie w sposób skokowy, po co to spadanie i przechodzenie kolejnych prędkości? „Ja nie powiedziałem i nie śmiałbym twierdzić, że dla natury i Boga byłoby niemożliwe nadanie takiej, jak mówicie, prędkości, i to natychmiast. Twierdzę jedynie, że de facto natura tego nie czyni. Takie rozwiązanie stałoby poza naturalnym biegiem rzeczy, a więc należałoby do dziedziny cudów” – odpowiada Salviati. Galileusz podkreśla, że nie ogranicza w ten sposób boskiej wszechmocy, bada jedynie świat taki, jaki dany jest nam w doświadczeniu, tak a nie inaczej stworzony. Koronny zarzut wobec niego będzie oparty na niezrozumieniu natury działalności naukowej. Florentyńczyk czuł się badaczem kosmosu już stworzonego, zupełnie nie interesowały go pytania o atrybuty samego Stwórcy. Rozważając choćby niezobowiązująco, jak mógł powstać układ planetarny, ryzykował oskarżenie, że wkracza na teren zastrzeżony dla Księgi Rodzaju. Spekulacje na temat puszczenia w ruch machiny kosmicznej prowadził zresztą także Kartezjusz, katolik z pewnością nie mniej liczący się z głosem Kościoła niż Galileusz. W miarę poznawania praw ruchu nieuniknione były tego rodzaju spekulacje, zaglądające niejako Stwórcy przez ramię.

Rozumowania Arystotelesa nie miały wartości: „Ani Arystoteles, ani wy sami nigdy nie będziecie w stanie dowieść, że Ziemia de facto znajduje się w środku wszechświata. A jeżeli może być mowa o określeniu jakiegoś środka wszechświata, to okaże się, że raczej Słońce może być w nim umieszczone”. W trakcie dalszych rozważań Galileusz podkreśla, że nie sposób ustalić, czy wszechświat w ogóle ma jakiś środek. Słońce jest środkiem ruchu planet, nie znaczy to jednak wcale, że musi być zarazem środkiem całego wszechświata. Urzędowi czytelnicy ze Świętego Oficjum nie zwrócili bądź woleli nie zwracać uwagi na te stwierdzenia Dialogu i przypisano Galileuszowi pogląd, że Słońce jest w środku świata. Jeśli ani Ziemia, ani Słońce nie były środkiem, to pozostawała wizja Bruna i Kartezjusza: nieskończonego wszechświata z nieskończoną mnogością „środków” w postaci gwiazd okrążanych przez planety.

Kosmos Galileusza nie musi być niezmienny. Podobnie jak Ziemia nie byłaby doskonalsza, gdyby „była cała jednym rozległym piaszczystym pustkowiem czy kulą z jaspisu, czy też gdyby w czasie potopu zamarzły pokrywające ją wody, a ona stała się olbrzymim globem zlodowaciałym; gdyby na niej nic się nie rodziło, nic nie przeobrażało i nie zmieniało (…) Im bardziej zagłębiam się w niedorzeczność rozpowszechnionych pojęć, tym bardziej stają się one dla mnie lekkomyślne i bezsensowne. Czyż można sobie wyobrazić większą głupotę aniżeli nazywanie rzadkich kamieni, srebra i złota kosztownościami – a ziemi i błota marnościami? I jakże tym ludziom nie przychodzi tu na myśl, że jeśliby ziemia należała do takich rzadkości jak klejnoty i najcenniejsze metale, to nie znalazłby się książę, który by nie poświęcił worka diamentów i rubinów oraz czterech wozów złota, by mieć przynajmniej garść ziemi, wystarczającą do posadzenia w małym wazoniku jaśminu czy zasiania pomarańczy chińskiej, aby przyglądać się, jak wschodzi, rośnie, okrywa się pięknymi liśćmi, pachnącymi kwiatami, wdzięcznymi owocami. (…) Ci, którzy egzaltują się niezniszczalnością, niezmiennością itd., dochodzą, jak sądzę, do wypowiadania podobnych stwierdzeń jedynie dlatego, że w obawie przed śmiercią pragną przetrwać jak najdłużej”. Dla Galileusza Ziemia – taka, jaka jest – nie jest niedoskonała. Wcale nie przeszkadza mu myśl, że podobne do niej mogą być inne ciała niebieskie. Przekonanie, że cały kosmos ma służyć jedynie Ziemi i jej mieszkańcom, wkłada w usta Simplicia: „Dla wygody człowieka rodzą się konie, dla żywienia koni ziemia wydaje trawę, a obłoki dostarczają jej wody. Dla wygody i wyżywienia ludzi rodzą się trawy, zboża, owoce, zwierzęta, ptaki, ryby, i w ogóle, jeśli starannie zbadamy i zgłębimy wszystkie te rzeczy, dojdziemy do wniosku, że cel, ku któremu wszystko to zmierza, to potrzeba, pożytek, wygoda i przyjemność człowieka. A jaki pożytek mogłyby mieć dla rodzaju ludzkiego płody powstające na Księżycu czy na innej planecie? Bo chyba nie chcielibyście mnie przekonywać, że na Księżycu są również ludzie, korzystający z rodzących się na nim owoców; myśl taka bądź trąci bajką, bądź jest bezbożna”. Z argumentami tego rodzaju spotykał się Galileusz nie raz. Odpowiada, że nie wydaje mu się prawdopodobne, by na Księżycu byli ludzie, ale to jeszcze wcale nie oznacza, że nie może tam być żadnych zmian. Naszą wyobraźnię kształtują doświadczenia; ktoś, kto mieszkałby w lesie i nie znał żadnych zbiorników wodnych, nie potrafiłby sobie wyobrazić ryb ani statków przepływających oceany. Wrażliwość Galileusza jest raczej panteistyczna niż antropocentryczna: różnorodność i porządek w naturze są dla niego źródłem zachwytu, Stwórca w jego pojęciu nie ograniczył się tylko do zapewnienia bytu ludziom, lecz stworzył naturę godną podziwu i badania dla niej samej.

Simplicio opisuje swym rozmówcom Księżyc i wychodzi mu z rozumowań, że musi on być zrobiony ze szczególnie twardej i nieprzenikliwej materii. „Jakżeż piękny byłby ten materiał niebieski do budowania pałaców, jeśliby można było nabyć coś równie twardego i przezroczystego” – wzdycha Sagredo, po czym obaj z Salviatim zastanawiają się, czy mieszkańcy obijaliby się o te niewidzialne ściany, czy też nie – biorąc pod uwagę, że materia niebios jest także niedotykalna. Galileusz przedstawia argumenty za tym, że także Ziemia widziana z daleka byłaby podobna do Księżyca. Charakterystyczna jest jednak ostrożność, z jaką uczony przedstawia wnioski dotyczące tak odległych światów, jak dalekie planety – ostrożność ta bardzo kontrastuje z beztroską pewnością siebie wszystkich Simpliciów, z którymi przychodziło mu się stykać. Galileusz cały czas podkreśla, że rozumiemy bardzo niewiele. Wprowadza tu rozróżnienie poznania ekstensywnego i intensywnego. W sensie ekstensywnym zawsze skazani jesteśmy na znajomość drobnego ułamka tego, co jest we wszechświecie. „Ale biorąc pod uwagę drogę intensywną – o ile pojęcie intensywności oznacza intensywne, a więc doskonałe zrozumienie – umysł ludzki poznaje, zdaniem moim, niektóre zagadnienia tak doskonale i z taką absolutną pewnością, jaką posiada tylko przyroda. Takimi są właśnie czyste nauki matematyczne, a więc geometria i arytmetyka – w których rozum boży zna nieskończenie większą liczbę prawd – gdyż zna je wszystkie – jednak z tych niewielu znanych rozumowi ludzkiemu mieści się, według mnie, poznanie równe bożemu w obiektywnej pewności, gdyż dochodzi do zrozumienia zawartej w nich konieczności – a nie może chyba istnieć większa pewność aniżeli właśnie ta”. Ta piękna intuicja platońska stała się jednym więcej kamieniem obrazy dla sędziów uczonego. Warto zwrócić uwagę, że podobne przekonania nie były wyłączną własnością Galileusza: tak samo myśleli Kepler i Kartezjusz, i większość tych, którzy w XVII wieku stworzyli nowożytną naukę.

Dzień drugi Dialogu poświęcony jest kwestii ruchu obrotowego Ziemi wokół osi. Galileusz przytacza (ustami Sagreda) charakterystyczną anegdotę: „Byłem pewnego dnia w domu bardzo szanowanego w Wenecji lekarza. Jedni odwiedzali go ze względu na swoje studia, a inni przez ciekawość, by zobaczyć sekcję, przeprowadzaną ręką tego równie uczonego, jak sumiennego i zręcznego anatoma. Tego dnia właśnie zdarzyło się, że poszukiwał on miejsca, skąd biorą początek nerwy, na temat których toczy się sławny spór między lekarzami-galenistami i perypatetykami. Anatom pokazał, jak wielki pęk nerwów, wychodząc z mózgu i idąc przez potylicę, schodzi wzdłuż stosu pacierzowego, rozgałęziając się na całe ciało, tak że jedno tylko włókno, cieniutkie jak nić, dochodzi do serca. Zwracając się następnie do pewnego szlachcica, którego znał jako filozofa-perypatetyka i gwoli którego ze szczególną dokładnością odsłonił i zademonstrował to wszystko, zapytał go, czy mu to wystarcza i czy nabrał pewności, że nerwy biorą początek w mózgu, a nie w sercu, na co ów filozof po krótkim namyśle odpowiedział: «Pokazaliście mi to wszystko w sposób tak jasny i dotykalny, że gdyby tekst Arystotelesa, według którego nerwy powstają w sercu, nie był z tym sprzeczny, to musiałbym siłą rzeczy uznać wasze twierdzenie za prawdę»”. Galileusz uwielbiał dworować z niesamodzielności intelektualnej zwolenników Arystotelesa, którzy uznawali greckiego filozofa za wyrocznię we wszystkich sprawach, choć po części rozumiał, skąd się to bierze. Simplicio tłumaczy, że pisma Arystotelesa tworzą wspaniały, skomplikowany gmach i trzeba znać je wszystkie, by rozumieć właściwie ich treść. Rzeczywiście gmach wiedzy zbudowany, czy raczej nadbudowany, przez średniowiecze nad naukami Greka mógł imponować i stwarzać wrażenie ostatecznej prawdy. W czasach Galileusza tacy filozofowie, jak Borro czy Cremonini, przez całe życie nie zajmowali się niczym innym jak komentowaniem tego korpusu wiedzy i dociekaniem, co Filozof naprawdę miał na myśli. Ludzie o takim nastawieniu, nawet słysząc o wynalazku teleskopu, potrafili znaleźć ustęp u Arystotelesa, gdzie się o nim wspomina. Oczywiście Sagredo i Salviati bawią się, przywołując anegdoty tego rodzaju. Także astrologia i alchemia traktowane są niezbyt serio: „W podobny sposób alchemicy, pod wpływem uporczywego maniactwa, utrzymują, że wszystkie najwznioślejsze umysły świata zajęte były jedynie opisywaniem sposobów wytwarzania złota (…) Jest rzeczą nadzwyczaj zabawną rozczytywanie się w ich komentarzach do poetów antycznych, u których dopatrują się największych tajemnic ukrytych pod osłoną baśni: co oznaczały miłostki bogini Księżyca i jej zejście na ziemię w pogoni za Endymionem, jej gniew na Akteona, przemiana Jowisza raz w złoty deszcz – to znów w palące się płomienie”. Czytając takie fragmenty, zaczynamy się zastanawiać, jak bardzo wiarygodne były dla Galileusza opisy cudów chrześcijańskich, czy jeśli w ogóle traktował je serio, to nie sądził, że należałoby je odrzeć z otoczki zbyt naiwnych stwierdzeń. Jak się zdaje, niedługo przed Dialogiem uczony napisał jakiś traktat poświęcony naturalistycznym wyjaśnieniom cudów, który się jednak nie zachował.

Wśród argumentów przemawiających za wirowaniem Ziemi był i ten, że łatwiej wyobrazić sobie nieruchomy wszechświat z niewielką wirującą Ziemią niż odwrotnie. Sagredo mówi: „Uważałbym tego, kto mniema, że słuszniej jest kazać poruszać się całemu światu, byle tylko utrzymać w bezruchu Ziemię, za mniej rozsądnego od kogoś, kto wzniósłby się na szczyt waszej kopuły (*) tylko po to, by spojrzeć na miasto wraz z otaczającymi je osiedlami, i domagał się, by cała okolica obracała się dokoła niego, byleby on nie ponosił trudu obracania głowy”. Simplicio widzi jednak sytuację inaczej: „O ile jednak chodzi o potęgę Tego, który wszystko wprawia w ruch – a przecież jest ona nieskończona – to nie mniej Mu łatwo poruszyć wszechświat aniżeli Ziemię czy słomkę. A skoro ta potęga jest nieskończona, to dlaczego nie miałaby raczej objawiać się większa jej część aniżeli mniejsza?”

Standardowy argument przemawiający za nieruchomością Ziemi był taki, że gdyby ona wirowała ciało swobodnie upuszczone ze szczytu wieży musiałoby spaść daleko na zachód od jej podnóża. Odmianami tego argumentu były doświadczenia z armatami: strzelając pionowo w górę, powinniśmy zaobserwować podobny efekt przesuwania się Ziemi pod pociskiem, który musiałby spaść daleko od miejsca wystrzału. Długości strzałów na wschód i na zachód powinny się różnić od siebie. „Jaka szkoda, że artyleria nie istniała za czasów Arystotelesa. Przy jej pomocy pokonałby on niewiedzę i mówił bez żadnego wahania o sprawach wszechświata” – stwierdza sarkastycznie Sagredo. Galileusz szczegółowo analizuje takie sytuacje, wykazując, że ruch Ziemi nie wpływa na obserwowany przebieg zjawisk.

Od czasu do czasu broniący wciąż stanowiska kopernikańskiego Salviati czuje się w obowiązku przypomnieć, że jest to jedynie jego rola w Dialogu, a nie wewnętrzne przekonanie. Ale zarówno zwolennicy, jak przeciwnicy Kopernika (i Galileusza) uznali, że gra toczy się bardziej serio, niż twierdziły persony Dialogu.

Badanie konsekwencji względności ruchu zajęło dużą część rozważań tego dnia. Pojawia się tam także dość osobliwy fragment, w którym Galileusz stara się spojrzeć na spadek swobodny na obracającej się Ziemi z punktu widzenia kogoś, kto się nie obraca razem z nią. Prędkość wirowania Ziemi udzieli się wówczas spadającemu ciału i jego tor będzie jakąś linią krzywą. Jaką konkretnie krzywą? Łukiem okręgu kończącym się w środku Ziemi – odpowiada Salviati. Sam Galileusz mówił o tym fragmencie bizzarrìa – czyli fantazja, i rzeczywiście koncepcja jest osobliwa (i nieprawdziwa). Dyskusje na takie wydumane tematy, jak tor spadku do środka Ziemi, miały już swoją tradycję i posunęły naprzód rozumienie fizyki ruchu; słynna wymiana listów na ten temat miała odbyć się w przyszłości między Robertem Hookiem a Isaakiem Newtonem i stała się ważnym bodźcem dla profesora z Cambridge.

Innym argumentem przeciwko ruchowi obrotowemu Ziemi był brak obserwowanej siły odśrodkowej. Galileusz stara się wykazać, że taka siła w ogóle w przypadku Ziemi nie występuje. Idzie tu zbyt daleko. Trzydzieści lat później Isaac Newton, nieznany wtedy jeszcze nikomu, czytając Dialog, obliczy wartość tej siły i udowodni, że jest ona wprawdzie znacznie mniejsza od siły ciążenia, ale różna od zera.

Dzieło Galileusza stanowiło raczej początek, wstęp do dalszych badań. Autor, wykazując cierpliwie, skutecznie i konsekwentnie, że Arystoteles nic nie wiedział o ruchu, działał na współczesnych mu konserwatystów zaiste jak artyleria.

Na celowniku uczonego znalazła się antykopernikańska książeczka Lochera, ucznia Christopha Scheinera, prawdopodobnie ich wspólne dzieło.

Spiralne spadanie ciał na obracającą się Ziemię ze sfery Księżyca. Trwa sześć dni (Johann Georg Locher, Disquisitiones mathematicae, de controversiis et novitatibus astronomicis, Ingolstadt 1614). Oś obrotu Ziemi νλ jest na rysunku pozioma; spadek kuli z punktu A nad równikiem odbywa się po spirali, która prostopadle przecina rysunek aż do punktu B. Linia przerywana zaczynająca się w γ jest torem kuli spadającej znad miejsca na Ziemi położonego w umiarkowanej szerokości geograficznej (tak jak Ingolstadt). Jezuici wyobrażali sobie, że cała sfera Księżyca musiałaby u Kopernika wirować w ciągu doby.

SAGREDO: Ach, jakież piękne rysunki, co za ptaki, co za kule – a co to za inne piękne rzeczy?

SIMPLICIO: To kule, które przybywają ze sfery księżycowej.

SAGREDO: A to, cóż to takiego?

SIMPLICIO: To małża, z gatunku tych, które u nas w Wenecji nazywają buovoli. I ona też przybywa ze sfery księżycowej.

SAGREDO: Tak jest istotnie. Oto dlaczego Księżyc wywiera tak wielki wpływ na pewne stwory morskie z gatunku ostrygowatych.

Otóż autorzy ci, chcąc zdyskredytować ideę ruchu Ziemi, postarali się wykonać pewne obliczenia: ile mil na godzinę przebywa punkt na równiku, a ile na innych równoleżnikach, a także jaką drogę przebędzie w ciągu minuty, a nawet sekundy. Cel propagandowy tych obliczeń był oczywisty: prędkość wirowania Ziemi jest porównywalna z prędkością dźwięku, a więc wydaje się ogromna nawet i dziś. Chodziło o to, by idea ruchu Ziemi wydała się absurdalna. Autorzy następnie wyobrażają sobie spadek kuli armatniej ze sfery Księżyca, co miałoby, ich zdaniem, trwać sześć dni.

„Otóż, jeśliby wszechmocą boską czy też za sprawą jakiegoś anioła cudownie została przeniesiona tam, wysoko, wielka kula armatnia, umieszczona w naszym zenicie i puszczona stamtąd swobodnie, to wówczas, zdaniem autora i moim – mówi Simplicio – byłoby rzeczą najbardziej niewiarygodną, by spadając w dół, utrzymywała się zawsze na linii naszego pionu, w ciągu tylu dni zachowując wciąż wraz z Ziemią ruch obrotowy naokoło jej środka, zakreślając na równiku linię spiralną w płaszczyźnie tego największego koła, podczas gdy na równoleżnikach zakreślałaby linie spiralne naokoło stożków, a na biegunach spadałaby po zwykłej linii prostej”. Salviati pyta o założenia dotyczące spadku ze sfery Księżyca na Ziemię. Jezuici wyobrażali sobie, że spadanie takie byłoby jednostajne, w dodatku popełnili prosty błąd obliczeniowy: skoro cała sfera Księżyca obraca się raz na dobę, to spadanie z taką prędkością do centrum powinno zająć 2π razy krócej, czyli mniej niż 4 godziny, a nie sześć dni. Już lepiej z geometrią radzą sobie bednarze – zauważa Salviati. Przy okazji przedstawia prawo spadku przyspieszonego: „Studiowałem wszystkie te sprawy z największą radością i zachwytem, widząc, że powstaje cała nowa dziedzina wiedzy. Dotyczy ona spraw, o których napisano już setki tomów, a żadne z nieskończenie wielu cudownych odkryć, które obejmuje, nie zostało zauważone i zrozumiane przez nikogo wcześniej, aż dopiero przez naszego przyjaciela [tj. Galileusza – J.K.]”. Galileusz oblicza, jak długo spadałaby kula z wysokości Księżyca, jeśli wiadomo, że z wysokości stu łokci spada w ciągu pięciu sekund. Oczywiście z punktu widzenia uczonego nie ma powodu, aby spadek następował po jakiejś linii spiralnej. Prawo spadku swobodnego i własności ruchu przyspieszonego po raz pierwszy pojawiają się tu w druku. Było to odkrycie rzeczywiście ogromnej wagi – jeszcze jedno z odkryć prowadzących w stronę mechaniki Newtona.

Prawo odkryte przez Galileusza stosować się miało do wszystkich ciał, bez rozróżnienia lekkich i ciężkich, inaczej niż u Arystotelesa, który ruch wiązał z naturą danego ciała. „Jeżeli wymienione tu rzeczy są z natury swej różne, a rzeczy z natury różne nie mogą mieć wspólnego ruchu, to należałoby (…) pomyśleć o czymś innym, aniżeli tylko o dwóch ruchach, w górę i w dół. Jeśli trzeba wynaleźć jeden ruch dla strzał, inny dla ślimaków, jeszcze inny dla kamieni – jakiś inny jeszcze dla ryb, to trzeba by pomyśleć również o dżdżownicach, topazach i grzybkach, które z przyrodzenia swego nie różnią się mniej jedne od drugich aniżeli grad i śnieg”. Książeczka Lochera i Scheinera zostaje wykpiona na wielu stronach, Galileusz zasłużenie traktuje ją jak stek głupstw. Bo też jezuiccy autorzy, gromadząc swe argumenty, nie próbowali w ogóle zrozumieć stanowiska strony kopernikańskiej. Straszyli katastrofami, jakie miałyby wynikać z ruchu Ziemi, nie zastanawiając się nad tym, że gdyby naprawdę teoria kopernikańska była taka łatwa do obalenia, to jej zwolennikami nie byliby najwybitniejsi uczeni epoki, Kepler i Galileusz. Istniała realna trudność przestawienia wyobraźni na kopernikanizm, nawet Galileusz miał z tym czasami kłopoty, było to dla ludzi tej epoki zadaniem trudnym. Ale istniał też opór przed kopernikanizmem wynikający ze złej nauki i złej naukowej wiary.

Następnym omawianym autorem jest Scipione Chiaramonti. „Gdybym nie miał nadziei, że od tego drugiego autora usłyszę coś mądrzejszego, to niewiem, czy nie zdecydowałbym się raczej na przejażdżkę gondolą w poszukiwaniu świeżości” – stwierdza bez ogródek Sagredo. Galileusz udowadnia, że Chiaramonti nie zna teorii, którą zawzięcie krytykuje. Tenże autor wystąpił też niefortunnie w sprawie odległości gwiazdy nowej obserwowanej przez Tychona, dowodząc, że z pewnością leży ona poniżej Księżyca.

Rozważania te należały już do dnia trzeciego Dialogu. Był on poświęcony ruchowi rocznemu Ziemi. Arystoteles dowodził, że gwiazdy zajmują obszar sferyczny i obracają się raz na dobę wokół Ziemi – z tego powodu uważał wszechświat za skończony. Jeśli jednak odrzucić jego założenie, przyjąć ruch dobowy Ziemi i zgodzić się na nieruchome gwiazdy, to znika powód, by uważać świat za skończony. Równie dobrze może on być nieskończony i nie mieć żadnego kształtu.

Obserwacje wskazują, że planety mają swój środek ruchu w Słońcu – w tym punkcie zgodni byli Tycho Brahe i Kopernik. Pozostaje więc do rozstrzygnięcia, czy Słońce, czy raczej Ziemia poruszają się ruchem rocznym. Zdaniem Salviatiego-Galileusza więcej przemawia za nieruchomym Słońcem. Oprócz dawniej już znanych argumentów przedstawił on nowy, wywodzący się z obserwacji plam słonecznych. Ich przesuwanie pokazuje, że Słońce wiruje wokół osi. Okazuje się jednak, że w różnych porach roku tory plam na tle tarczy słonecznej mają różny kształt. W czerwcu i grudniu są prostoliniowe i tworzą ustalony kąt z ekliptyką, w marcu i wrześniu natomiast mają kształt łuków. Najprostsze wyjaśnienie zjawiska daje teoria Kopernika: oś Słońca ma stałe nachylenie do płaszczyzny orbity Ziemi i w ciągu roku oglądamy raz nieco więcej południowej półkuli Słońca, raz nieco więcej jego półkuli północnej. Nie potrzeba już żadnych innych ruchów, aby objaśnić to, co się obserwuje. Dla Galileusza takie wirowanie wokół osi nie wymagało podtrzymywania. Podobnie rzecz się ma z Ziemią: jej oś obrotu nachylona jest do płaszczyzny orbity – czego skutkiem są zmiany pór roku. Kopernik, aby zachować stałość kierunku osi ziemskiej, przyjmował jeszcze dodatkowy trzeci ruch Ziemi, Galileusz go nie potrzebował.

W Dialogu Galileusz twierdzi, że odkrył nachylenie osi Słońca do ekliptyki prowadząc obserwacje z willi Le Selve, a więc przed rokiem 1614. Wydaje się to mało prawdopodobne; dokładne obserwacje plam i ich ruchu pojawiły się w monumentalnej książce Christopha Scheinera Rosa Ursina, która ujrzała światło dzienne w czasie, gdy Galileusz pisał Dialog. Dopiero w 1629 roku dostrzegł kopernikańskie wyjaśnienie zjawiska i zamieścił w książce. Znowu okazało się, że herkulesowe trudy Scheinera zaowocowały zgrabnym argumentem przeciwko Ptolemeuszowemu układowi świata. Oczywiście można wyjaśnić każde zjawisko równie dobrze w ziemskim układzie odniesienia, trzeba jednak przypisać wtedy Słońcu wiele ruchów zamiast jednego ruchu obrotowego. Z kopernikańskiego punktu widzenia wszystko układało się w konsystentną całość: wszystkie ruchy obrotowe i obiegowe zachodzą bowiem w jednym kierunku i nie potrzeba z każdym nowo odkrytym zjawiskiem dopisywać wciąż jakichś nowych ruchów.

Co do osobistej uczciwości Galileusza, nie ma twardych dowodów, że korzystał on z obserwacji Scheinera, pewne jest natomiast, iż ponownie dostrzegł on więcej niż jezuicki astronom, który poświęcił znaczną część swego dzieła na jałowy z natury (choć pasjonujący dla uczestników) spór o pierwszeństwo odkrycia plam na Słońcu. Trudno oprzeć się wrażeniu, że mnogość i dokładność obserwacji, jakkolwiek potrzebne, ważne są tylko wtedy, gdy pozwalają nam coś więcej zrozumieć ze sposobu funkcjonowania świata. Jeden koń arabski pobiegnie szybciej niż sto koni fryzyjskich.

W dniu trzecim Dialogu Galileusz wraca też do książeczki Lochera i przytacza inne jeszcze wnioski, do których – wedle jezuity – prowadzić miał kopernikanizm: „W tak fantastycznym układzie świata trzeba głosić różne kapitalne bzdury, na przykład takie, że Słońce, Wenus i Merkury znajdują się pod Ziemią, że materie ciężkie ruchem naturalnym poruszają się ku górze, a lekkie w dół; że Chrystus, nasz Pan i Zbawiciel, wstąpił do piekieł i zstąpił na niebiosa, gdy zbliżał się ku Słońcu; że gdy Jozue rozkazał Słońcu, by się zatrzymało, to Ziemia się zatrzymała, bądź też Słoń-

ce poruszać się zaczęło w kierunku przeciwnym do Ziemi; że gdy Słońce jest w znaku Raka, to Ziemia biegnie przez Koziorożca, że zimowe znaki zodiaku wywołują lato, a letnie zimę; że nie gwiazdy wschodzą i zachodzą dla Ziemi, lecz Ziemia wschodzi i zachodzi dla gwiazd; że wschód zaczyna się na zachodzie, a zachód na wschodzie i że jednym słowem, wywraca się cały porządek świata”.

Najsłabszą częścią Dialogu jest dzień czwarty, mający w zamyśle autora dostarczyć najsilniejszego argumentu za ruchem Ziemi. Tym argumentem jest istnienie pływów na morzach. Simplicio odnosi się do pomysłu sceptycznie:

„SIMPLICIO: Powiem jednakże z tą swobodą, która wśród nas jest dozwolona, że wprowadzanie tu ruchu Ziemi i robienie go przyczyną przypływu i odpływu w nie mniejszej mierze wydaje mi się pomysłem z bajki niż wszystkie inne, o których dotąd słyszałem; a gdyby mi nie podano innych wyjaśnień, bardziej odpowiadających prawom przyrody, to bez obawy powziąłbym przeświadczenie, że ma się tu do czynienia ze zjawiskiem nadprzyrodzonym, a więc cudownym i niedostępnym dla umysłów ludzkich, jak zresztą i nieskończona liczba innych zjawisk, zależnych bezpośrednio od wszechmogącej ręki Boga.

SALVIATI: (…) wśród wszystkich przyczyn, które przytoczone były dotychczas jako prawdziwe, żadna, jakiekolwiek byśmy stosowali zabiegi, nie byłaby w stanie wyjaśnić podobnych zjawisk. Albowiem ani przy pomocy światła Księżyca czy Słońca, ani umiarkowanej ciepłoty, ani różnic głębiny nie zdoła się w sztuczny sposób spowodować, aby woda zawarta w nieruchomym naczyniu poruszała się tam i z powrotem, aby wznosiła się i opadała, i to w jednym miejscu tak, a w drugim inaczej. Jeśli jednak bez żadnych sztuczek i w najnaturalniejszy sposób, wprowadzając naczynie w ruch, potrafię dokładnie odtworzyć wszystkie te zmiany, które widzi się na wodach mórz, to dlaczego mielibyście odrzucić takie wyjaśnienie i uciekać się do cudu.

Cały ten fragment i jego dalszy ciąg wkraczają na ryzykowny temat cudów, przynajmniej werbalnie. Galileusz tłumaczy, że gdyby w sposób cudowny nadać Ziemi niejednostajny ruch, to w jego następstwie wody zaczną – w sposób najzupełniej naturalny – poruszać się tak, jak to widzimyw zjawisku pływów. Dalej zaś wyjaśnia, że zamiast cudownego poruszania Ziemią wystarczy jej ruch naturalny, taki jak u Kopernika. Rozumowanie uczonego nie tylko odzierało zjawisko pływów z wszelkiej cudowności, ale też sprawiało wrażenie, iż inne wyjaśnienie jest niemożliwe. W ten sposób istnienie pływów byłoby dowodem, że ruch Ziemi jest „prawdą absolutną” – wbrew najgłębszemu przekonaniu Maffeo Barberiniego. Swoistym dowodem uznania ze strony Kościoła był fakt, że nikt nie próbował argumentacji Galileusza kwestionować na gruncie naukowym, jakby zgadzano się z nim, że inne wyjaśnienie naukowe i naturalne jest niemożliwe.

Tymczasem teoria Galileusza była pod wieloma względami nieudana: nie tłumaczyła okresów powtarzania się przypływów i nie wyjaśniała, czemu występują one dwa razy na dobę. Uczony niewiele wiedział na temat samego zjawiska i niezbyt przejmował się tym, co wiedział. Znane są w nauce, i nie tylko w nauce, takie przypadki ślepego przywiązania do własnych idei. Galileusz, który niezmiernie łatwo popadał w mentorski ton wobec innych, tutaj sam nie potrafił sprostać wymaganiom, jakie należy postawić porządnej teorii.

Nie zmienia to jednak faktu, że Dialog jest książką wyjątkową, pierwszą tak dobrze pomyślaną i przeprowadzoną argumentacją na rzecz ruchu Ziemi. Choć z naukowego punktu widzenia nie zawiera żadnego absolutnego dowodu słuszności kopernikanizmu, pokazuje, że jest to pogląd naukowo spójny, nie prowadzący do sprzeczności i zupełnie prawdopodobny. Dowody na rzecz kopernikanizmu jeszcze długo później były jedynie pośrednie, ale świat stawał się zrozumiały, gdy patrzeć na niego z tej właśnie perspektywy. Dyskusja Galileusza, mimo polemicznej werwy, jest na ogół rzetelna; mało kto tak dogłębnie jak on przemyślał argumenty zwolenników Arystotelesa i nikt wcześniej nie poddał ich tak druzgocącej krytyce. Wielką zasługą historyczną kopernikanizmu była właśnie zmiana spojrzenia na usytuowanie Ziemi i człowieka w kosmosie, Galileusz bardziej niż ktokolwiek inny przyczynił się do przeprowadzenia tej przemiany obrazu świata.

(*) Chodzi o słynną kopułę na katedrze florenckiej autorstwa Filippa Brunelleschiego

Galileo Galiei, Dialog o dwu najważniejszych układach świata, 1632 (1/2): Początek i końcowy medykament

Dialog stanowi opus magnum Galileusza. Dobiegający siedemdziesiątki uczony uznał, że nadszedł w końcu czas, by ogłosić swoje poglądy na wszechświat i zagadnienie ruchu. Druk książki zakończył się w lutym 1632 roku. Jej pełny tytuł brzmiał: Dialog Galileo Galilei z Akademii Lincei, matematyka nadzwyczajnego uniwersytetu w Pizie, pierwszego filozofa i matematyka najjaśniejszego Wielkiego Księcia Toskanii, gdzie podczas spotkań w ciągu czterech dni dyskutuje się na temat dwóch największych układów świata: ptolemeuszowego i kopernikowego, proponując w sposób nierozstrzygający argumenty zarówno za jedną, jak i za drugą stroną. Frontispis przedstawiał trzech uczonych: Arystotelesa, Ptolemeusza i Kopernika (ten ostatni miał rysy przypominające raczej Galileusza), dyskutujących na temat układu świata. Natomiast strona tytułowa zawierała aż pięć różnych pozwoleń: dwa rzymskie bez daty i trzy florenckie z września 1630 roku.

Władze przywiązywały szczególną wagę do początku dzieła i końcowego argumentu, pochodzącego od samego Urbana VIII i nazywanego la medicina del fine – końcowym medykamentem, bo miał podważyć wszystko, co zostało wcześniej powiedziane, i tym samym niejako „uleczyć” chroniczną chorobę naukowych dociekań. Przypomina to nieco praktykę stosowaną w zupełnie innych czasach: w socjalistycznej Czechosłowacji filozofowie, chcąc zapewnić sobie minimum swobody naukowej, dodawali do swych prac wstępy i posłowia naszpikowane cytatami z Marksa, Engelsa i Lenina – nazywano je balkonami. W środku można było wówczas przemycić jakieś myśli zupełnie innej proweniencji.

Wstęp „Do wyrozumiałego Czytelnika” to tekst ociekający obłudą tak wielką, że aż ociera się o szyderstwo.

W latach ubiegłych, celem uniknięcia niebezpiecznego wzburzenia wśród współczesnych, ogłoszony został w Rzymie zbawienny dekret, nakazujący uzasadnione przemilczanie poglądów pitagorejczyków dotyczących ruchu Ziemi. Nie zbrakło takich, którzy zuchwale utrzymywali, że dekret ten nie został jakoby powzięty po rozważnym zbadaniu samego zagadnienia, ale jedynie pod wpływem nieuzasadnionych namiętności. Słyszało się też wyrzekania, że zgoła niebiegli w naukach astronomicznych konsultorzy nie powinni byli nagłymi zakazami podcinać skrzydeł umysłów badawczych.

Poczucie obowiązku nie pozwoliło mi milczeć, gdy doszły do mnie tak zuchwałe wyrzekania. W pełnym zrozumieniu tego tak bardzo roztropnego postanowienia uznałem za właściwe wystąpić publicznie na arenie świata jako świadek najszczerszej prawdy. Byłem podówczas w Rzymie (…) i nie bez uprzedniego zasięgnięcia mojej opinii nastąpiło ogłoszenie tego dekretu. Dlatego też zamiarem moim jest wykazanie pracą niniejszą narodom obcym, że o sprawach tych we Włoszech, a zwłaszcza w Rzymie, równie wiele wiadomo jak to, co w najśmielszych wyobrażeniach osiągnął wysiłek badawczy zagranicy; że zebrane przeze mnie owoce własnych rozmyślań odnoszące się do układu Kopernika podane były uprzednio do wiadomości cenzury rzymskiej, że zatem ze środowiska Wiecznego Miasta promieniują nie tylko dogmaty dla zbawienia duszy, ale i zdobycze wiedzy ku radości dociekających umysłów.

Naszkicowany w ten sposób zamysł pokazania, że władza absolutna nie tylko decyduje, bo ma siłę, ale jeszcze decyduje słusznie, bo ma także rację, i to nawet w marginalnych z jej punktu widzenia sprawach – jak kopernikanizm – nie wygląda przekonująco. Zwłaszcza że „radości dociekającego umysłu” bywały w Rzymie określane raczej jako zuchwalstwo i nowinkarstwo. Uroczysta obrona kwalifikacji astronomicznych konsultorów zwracała tylko niepotrzebnie uwagę na kulisy procesu decyzyjnego, które lepiej było trzymać w ukryciu: kiedy król jest nagi, głośny podziw dla jego szat wygląda dość podejrzanie. Przykre wrażenie robi też uwaga o zasięganiu opinii Galileusza – wygląda to tak, jakby starał się przekonać nie tylko innych, ale i samego siebie, że dekret z roku 1616 nie był porażką. Zdecydowanie robił dobrą minę do bardzo złej gry. Pragnął pokazać, że i on, i Kościół byli cały czas po właściwej stronie, choć być może nie wszyscy zewnętrzni obserwatorzy to dobrze rozumieli. Prawdopodobnie Galileusz próbował twórczo zinterpretować przeszłość, aby umożliwić pewną zmianę polityki przy zachowaniu pozorów niezmienności. Wiadomo było, że Kościół nie cofnie oficjalnej decyzji, ale to wcale nie oznaczało, iż nie można było zmienić sposobu jej rozumienia. Campanella przytoczył kiedyś w liście do Galileusza następujący przykład: sobór nicejski II zadekretował, że wolno malować anioły, gdyż są one cielesne. I nikt tej decyzji nigdy nie odwołał, choć wszyscy scholastycy byli zdania, iż anioły nie są cielesne. W sprawie kopernikańskiej pierwszy krok został już uczyniony: Urban VIII inaczej kładł akcenty w interpretacji dekretu z roku 1616, a nawet dał do zrozumienia, że dekret był niepotrzebny. Może więc była szansa na w miarę swobodną dyskusję przy zachowaniu pozorów? Zanim wybuchła „sprawa Galileusza”, taka możliwość istniała. Ponieważ dalsze wydarzenia potoczyły się w sposób dramatyczny, ta próba wypracowania kompromisu wydaje się niepotrzebna i zostawia jakiś cień na intencjach Galileusza.

Jeśli chodzi o podejście do omawianego zagadnienia, Galileusz przedstawia je następująco: „W niniejszej rozprawie zająłem stanowisko Kopernika, traktując je jako czystą hipotezę matematyczną i starając się za pomocą wszelkich sztuczek wykazać, że jest ono lepsze nie w porównaniu z twierdzeniem o spoczynku Ziemi traktowanym w sposób absolutny, lecz od tego, jakiego bronią niektórzy, uważający się za perypatetyków, lecz będący nimi tylko z nazwy, zadowoleni, że mogą tkwić w bezruchu* i oddawać hołd złudzie, niezdolni do samodzielnego filozofowania, posługujący się jedynie utrzymanymi w pamięci a przy tym źle zrozumianymi pojęciami czterech elementów”. W tym proustowskim zdaniu Galileusz deklaruje, że celem jego ataku są tacy perypatetycy, którzy nie potrafią dobrze filozofować. Niskie mniemanie o współczesnych sobie perypatetykach uczony powtarzał wielokrotnie, głosząc, że sam Arystoteles, który był dobrym filozofem, szanującym fakty i obserwacje, nie mógłby zajmować takiego stanowiska jak rozmaici uczeni z bożej łaski, używający wielkiego imienia jako listka figowego dla własnej ignorancji. Oczywiście dyskusja tego rodzaju nie mogła być czysto „matematyczna”, musiała być „filozoficzna” – w ówczesnym sensie, obejmującym fizykę i filozofię. W każdym razie deklarowanym zamysłem autora było prowadzenie debaty w sposób przyjęty od średniowiecza na uniwersytetach. W debatach takich wolno było bronić różnych, nawet mocno nieortodoksyjnych, kwestii, traktowano to jako swego rodzaju ćwiczenie czy eksperymentowanie myślowe.

Mowa tu będzie o trzech głównych zagadnieniach. Najpierw postaram się dowieść, że wszelkie doświadczenia, jakie można przeprowadzić na Ziemi, są niewystarczające, aby udowodnić jej ruch, i że równie dobrze odnosić się mogą do Ziemi ruchomej, jak i do Ziemi nieruchomej. Mam nadzieję, że w tych rozważaniach pojawi się wiele spostrzeżeń nieznanych starożytności.

Najogólniej mówiąc chodzi tu o zasadę względności, a więc twierdzenie, iż zjawiska fizyczne przebiegają tak samo na ruchomej Ziemi, jak przebiegałyby na Ziemi nieruchomej. Wysuwano od starożytności wiele różnych argumentów mających wykazać, że ruch Ziemi pociągałby za sobą jakieś dziwaczne, a nawet katastrofalne skutki: ptaki i chmury zostawałyby w tyle, wciąż wiałby wschodni wiatr, budynki musiałyby się walić itd. Tymczasem Galileusz, analizując szczegółowo te argumenty, potrafił wykazać, że z punktu widzenia fizyka nie ma (prawie) różnicy między Ziemią ruchomą a nieruchomą.

Dalej badane będą zjawiska niebieskie, przemawiające na korzyść hipotezy Kopernika, jak gdyby ona koniecznie miała się ostać zwycięsko – z dodatkiem nowych rozważań, zmierzających raczej ku ułatwieniu zadań astronomii, aniżeli ku wykryciu konieczności w przyrodzie.

Z wiadomych przyczyn Galileusz stara się podkreślić, że nie pretenduje do żadnych absolutnych stwierdzeń w kwestii kopernikańskiej.

Na trzecim miejscu mówić będę o różnych pomysłowych fantazjach. Powiedziałem wiele lat temu, że na nieznane zjawisko przypływów morskich można by rzucić pewne światło, zakładając ruch Ziemi. Wypowiedź ta moja, przechodząc z ust do ust, znalazła miłosiernych ojców, którzy przyjęli ją jak swoją, przedstawiając jako płód własnego umysłu.

Galileusz ze ślepym uporem trzymał się swojej teorii pływów, nie reagując na żadne fakty obserwacyjne, to znaczy z łatwością dostosowując ją do nich – co przypominało najgorsze praktyki perypatetyków, tak przez niego ganione. Uczony wciąż tropił i znajdował u innych jakieś zapożyczenia ze swych prac; niektóre wypowiedzi tego rodzaju sprawiają dziś wrażenie paranoi, rażąc swą niewątpliwą przesadą. Teoria pływów miała być punktem kulminacyjnym Dialogu, choć w istocie jej główną zaletą było to, że dostarczyła pretekstu do napisania znakomitej książki.

Po oddaniu cenzurze tego, co konieczne, Galileusz przedstawił pięćset stron rozważań ściśle naukowych w formie dialogu trzech interlokutorów. Na samym końcu, po omówieniu pływów, znajduje się następująca wymiana zdań:

SIMPLICIO: O ile chodzi o rozważania, które miały tu miejsce, a w szczególności o te ostatnie, o przyczynach przypływu i odpływu morza, to naprawdę nie powiem, bym je w zupełności rozumiał (…) jednakowoż nie mogę ich uznać za odpowiadające prawdzie i ostateczne we wnioskach; co więcej, mam wciąż przed oczyma mego umysłu najbardziej niewzruszoną naukę, przekazaną mi przez wielkiego i wybitnego uczonego, przed którą należy zamilknąć. Wiem, że wy obaj na pytanie, czy Bóg swoją nieskończoną wszechmocą i mądrością mógł przyznać elementowi wody owe ruchy zmienne, które w nim dostrzegamy, i to innym sposobem aniżeli wprawiając w ruch zawierające je zbiorniki, odpowiedzielibyście, jestem tego pewien, że i mógłby, i umiałby tego dokonać wieloma sposobami, dla naszego umysłu nawet niewyobrażalnymi. Na mocy tego wysnuwam bezpośredni wniosek, że byłoby zbytnią śmiałością chcieć ograniczać i zacieśniać potęgę i mądrość boską do poziomu ludzkich urojeń.

SALVIATI: Jest to zaprawdę cudowna i anielska nauka: a w zupełnej z nią zgodzie znajduje się również inna, również boska, która zezwala wprawdzie na roztrząsanie budowy wszechświata, ale poucza również (być może po to, by działanie ludzkie nie stępiło się i nie skostniało w lenistwie), że jeszcze dalecy jesteśmy od poznania istoty dzieł Jego ręki. (…)

SAGREDO: Niech to będzie ostatnim słowem naszych czterodniowych rozważań. (…) A teraz będziemy mogli, naszym zwyczajem, popłynąć oczekującą nas gondolą i zażyć świeżości wieczornej godziny.

Jednym z zarzutów wobec Galileusza miało być to, że „włożył końcowy medykament w usta głupka”, tj. Simplicia, który zresztą przedstawiany jest raczej jako chodzący worek komunałów i człowiek może nie nadzwyczajnie przenikliwy, ale dość pogodnego usposobienia, pozbawiony zjadliwości realnych przeciwników uczonego. Rzeczywiście argument papieski nie wypada najlepiej w kontekście Dialogu, wydaje się jednak, że Galileusz nie miał świadomego zamiaru szydzenia z jego wartości. Starał się raczej, ustami Salviatiego, inaczej go ukierunkować: boska wszechmoc objawia się także w niewyczerpanym bogactwie przyrody – tu Galileusz jest całkowicie szczery i wyraża swoje głębokie przekonanie. Jeśli w jego poglądach pojawiał się gdzieś Bóg, to chyba najbardziej bezpośrednio tam, gdzie ujawniały się tajniki przemyślnego urządzenia świata. Był to raczej Wielki Architekt niż Absolutny Władca z wizji Urbana VIII. Można powiedzieć, że dwaj wybitni Toskańczycy spotkali się w kwestiach kończących Dialog i żaden nie chciał ustąpić z racji bliskich swemu sercu.

Sformułowania Galileusza mogły razić pobożne uszy, nie było to jednak zamiarem uczonego, a wynikało raczej z jego chwilami zaskakującej niewrażliwości czy nawet braku słuchu na sposób myślenia ludzi reprezentujących tradycyjny Kościół. Ich argumenty docierały do niego tylko na poziomie intelektualnym, nie rozumiał jednak postawy, jaka się za tym kryła; wydaje się, że i oni w zetknięciu z nim odczuwali jakąś obcość – nie mogło to skończyć się dobrze.

* Galileusz robi tu aluzję do nazwy szkoły filozoficznej: „perypatetycy” tzn. chodzący, więc nieruchomy perypatetyk to oksymoron.

Cytaty z polskiego przekładu Dialogu E. Ligockiego przy współudziale K. Giustiniani-Kępińskiej (PWN Warszawa 1953)