Johann Bernoulli i krzywa łańcuchowa (1690)

Matematycy XVII wieku lubili badać rozmaite osobliwe krzywe i uwielbiali chełpić się swoimi umiejętnościami. Krzywe stożkowe: elipsa, parabola i hiperbola, czyli krzywe opisywane równaniami drugiego stopnia, już im nie wystarczały. Isaac Newton przeprowadził klasyfikację wszystkich krzywych trzeciego stopnia, co jest znacznie trudniejsze niż dla drugiego stopnia. Chętnie też zajmowali się krzywymi powstającymi wskutek ruchu (jak cykloida) albo jako rozwiązanie pewnego problemu z mechaniki. Jedną z takich krzywych była linia łańcuchowa, czyli kształt, jak przyjmuje giętki i ciężki łańcuch zawieszony na dwóch końcach.
Jeszcze w XVI wieku młody Galileusz starał się poznać kształt krzywej łańcuchowej, sądząc, że jest to ta sama krzywa, jaką zakreśla rzucone ciało. Prowadził wraz z Guidobaldem del Monte eksperymenty, aby porównać obie krzywe. Krzywą balistyczną rysowali puszczając kulkę zamoczoną w atramencie po równi pochyłej, jak na obrazku.

Okazało się, że krzywa balistyczna przypomina parabolę, lecz krzywa łańcuchowa różni się od niej znacząco. Jak wiemy, Galileuszowi udało się znaleźć mechaniczne wyjaśnienie dla krzywej balistycznej. Jednak kształtu krzywej łańcuchowej nie potrafił opisać matematycznie.
W 1690 roku Jacob Bernoulli, matematyk z Lozanny, rzucił na łamach „Acta Eruditorum” – pierwszego niemieckiego czasopisma naukowego, założonego z inicjatywy Leibniza – wyzwanie do innych matematyków, by opisali kształt krzywej łańcuchowej. Jeszcze w tym samym roku zagadnienie to rozwiązali Gottfried Wilhelm Leibniz, a także młodszy brat Jacoba, dwudziestoczteroletni Johann, kształcący się na medyka. Kilka lat wcześniej Leibniz w tym samym czasopiśmie ogłosił zarysy rachunku różniczkowego i całkowego. Bracia Bernoulli pilnie przestudiowali tę technikę formułowania i rozwiązywania problemów, obaj też wkrótce przewyższyli Leibniza, zwłaszcza Johann, który stał się szybko jednym z mistrzów rachunku różniczkowego i całkowego. Ambitny Johann nie został medykiem (podobnie jak niegdyś Galileusz). Niedługo później zrobił furorę w matematycznych kręgach Paryża. Jego wykłady częściowo opublikował pod swoim nazwiskiem markiz de L’Hôpital (któremu Johann sprzedał wyniki), druga ich część opublikowana została dopiero pół wieku później w t.3 Opera omnia Johanna.
Po roku „Acta Eruditorum” opublikowały wyniki Leibniza, Huygensa i Johanna Bernoulliego, lecz bez dowodów. Ówcześni matematycy niechętnie ujawniali metody, woleli raczej drażnić konkurentów swymi umiejętnościami.
Praca Christiaana Huygensa była niezadowalająca, stary mistrz nie znał nowych technik. Rozpatrywał łańcuch zbudowany z odcinków i próbował wykonać przejście graniczne do krzywej ciągłej, gdy długość każdego odcinka dąży do zera. Leibniz podał rozwiązanie w najprostszy sposób jako konstrukcję średniej arytmetycznej z dwóch krzywych wykładniczych („curva logarithmica”). Kilka lat później Leibniz opisał szczegółowo swoje rozwiązanie w liście do Huygensa. Nie było ono zbyt eleganckie, lecz ukazywało siłę metody postępowania, dzięki której nawet mało inteligentne podejście do problemu dawało się skutecznie przeforsować. Sam Jacob nie zdołał rozwiązać problemu i niezbyt mu się podobało, że dokonał tego jego młodszy brat.

Johann Bernoulli wyraził swoje rozwiązanie w postaci pola pod pewną krzywą, czyli całki. Przeanalizował też szczegółowo cały problem i rozwiązał go w sposób zdecydowanie elegantszy. Podał szereg twierdzeń, które przedstawione są na kolejnych rysunkach.

Punktem wyjścia jest zasada następująca: (Fig. 131) siły działające w dwóch dowolnych punktach A i C po różnych stronach minimum mają kierunek styczny do krzywej (łańcuch jest giętki) i muszą dodane wektorowo zrównoważyć ciężar łańcucha pomiędzy A i C. Środek ciężkości odcinka AC łańcucha znajdzie się dokładnie nad punktem D. Jeśli (Fig. 133) utniemy jakiś kawałek łańcucha, np. powyżej F, pozostała część nie zmieni kształtu. W szczególności (Fig. 132 i 135) możemy wybrać jako jedną z sił styczną w minimum, pozwala to szczególnie prosto sformułować warunek, jaki musi spełniać nasza krzywa. Fig. 136 daje konstrukcję Leibniza, równoważną Fig. 137 konstrukcję Johanna.
Podstawowa własność krzywej łańcuchowej daje się odczytać ze współczesnej wersji Fig. 132.

Aby utrzymać w równowadze odcinek łańcucha o długości s i ciężarze \varrho s potrzebna jest równa temu ciężarowi składowa pionowa siły (fioletowa). Składowe poziome (czerwone) równoważą się nawzajem, co oznacza, że składowa pozioma jest niezależna od wysokości. Możemy więc zapisać dla naszej krzywej

\dfrac{dy}{dx}=\mbox{tg }\alpha = s.

Nachylenie stycznej proporcjonalne jest do odległości od minimum. Bez zmniejszenia ogólności możemy przyjąć, że stała proporcjonalności równa jest 1 – możemy to zawsze osiągnąć wybierając odpowiednio jednostkę długości. Reszta jest zastosowaniem cudownej metody Leibniza (*), która szybko prowadzi do wyniku:

y(x)=\cosh x\equiv \dfrac{e^x+e^{-x}}{2}.

Obecnie sumę taką jak w kształcie krzywej łańcuchowej zapisujemy jako cosinus hiperboliczny: algebra funkcji hiperbolicznych jest podobna do trygonometrycznych, z tą istotną różnicą, że jedynka trygonometryczna zastąpiona jest wyrażeniem \cosh^2 x-\sinh^2 x=1 i pochodna cosinusa hiperbolicznego jest równa sinusowi hiperbolicznemu (bez minusa).
Krzywa łańcuchowa różni się od paraboli tym bardziej, im dalej od minimum się znajdziemy.

(*) Oznaczmy pochodną szukanej funkcji przez u. Różniczkując obie strony równania krzywej łańcuchowej, otrzymujemy

\dfrac{du}{dx}=\dfrac{ds}{dx}=\dfrac{\sqrt{dy^2+dx^2}}{dx}=\sqrt{u^2+1}.

Stąd

{\displaystyle \int {\dfrac{du}{\sqrt{u^2+1}}}=\int dx=x+A,}

Całkę możemy obliczyć korzystając z jedynki hiperbolicznej: \cosh^2 z=\sinh^2 z+1. Podstawiając u=\sinh z, mamy du=\cosh z dz i po lewej stronie zostaje całka z 1:

z=x+A.

Możemy wziąć sinh z obu stron, otrzymamy wówczas

\sinh z=u=\dfrac{dy}{dx}=\sinh (x+A).

Całkując ostatnią równość, otrzymujemy y=\cosh x. Stałe całkowania powinny być równe 0, jeśli chcemy mieć wykres taki, jak na obrazkach powyżej.