Galileusz i Torricelli: krzywe balistyczne (pierwsza połowa XVII wieku)

Rewolucja naukowa XVII wieku ukazała nowe zastosowania matematyki: poznano kształt orbit planetarnych, a także krzywą balistyczną – tor wystrzelonego bądź rzuconego ciała. Jedną z osobliwości rozwoju nauki na planecie Ziemia jest fakt, że skomplikowany eliptyczny ruch planet został odkryty przez Johannesa Keplera, zanim jeszcze poznano prosty paraboliczny kształt krzywej balistycznej. Odkrycia te były zupełnie od siebie niezależne, dopiero Isaac Newton potrafił dostrzec, że w obu przypadkach mamy do czynienia z przejawami ciążenia powszechnego.
Galileusz bardziej niż ktokolwiek inny przyczynił się do zmiany sposobu podejścia do nauki o ruchu: miała ona stać się matematyczna i ugruntowana w eksperymencie. Miała też być zupełnie nowa, osiągnięcia dawnych filozofów traciły gwałtownie na znaczeniu.

Jak pisał Galileusz w jednej ze swych zjadliwych polemik z jezuitą, o. Grassim (występującym pod nom de plume Sarsi):

„[Sarsi] zadaje pełne irytacji pytania: za kim zatem należałoby pójść? Może za Ptolemeuszem (…)? A może za Kopernikiem, od którego trzeba się jednak trzymać z daleka, z powodu potępienia jego hipotez? (…) w podejściu Sarsiego daje się zauważyć silna wiara, że w filozofii zawsze trzeba się opierać na opiniach jakiegoś sławnego autora, tak jakby nasza inteligencja, jeśli nie weźmie sobie za męża cudzego rozumu, musiała na zawsze pozostać sterylna i bezpłodna. Albo może jest on zdania, że filozofia jest czymś na kształt księgi lub wytworu ludzkiej fantazji, jak Iliada albo Orland szalony, czyli dzieła, w którym najmniej się liczy, czy to, co jest napisane, jest prawdą. Panie Sarsi, nie tak się rzeczy mają! Filozofia zawarta jest w tej przeogromnej księdze, którą ciągle mamy otwartą przed oczami (nazywam tę księgę wszechświatem), jednakże nie można jej pojąć, jeśli wpierw nie pozna się języka, nie pozna się znaków, za których pomocą została napisana. A księga ta została napisana w języku matematyki, i jej literami są trójkąty, koła i inne figury geometryczne” (przeł. T. Sierotowicz).

Odkrycie parabolicznego kształtu krzywej balistycznej jest jednym ze sławnych osiągnięć Galileusza. Brzmi prosto, ale wyjaśnianie, czemu tak jest, czy rzeczywiście tak jest i w jakich warunkach, zajęło uczonemu wiele lat i nie całkiem się udało pod względem matematycznym. W zadowalającej i eleganckiej formie ujął to dopiero Evangelista Torricelli, rozwijając prace mistrza. Starość Galileusza upłynęła w areszcie domowym po wyroku inkwizycji. Nawet kiedy umarł, papież Urban VIII zakazał uroczystego pogrzebu i uczonego pochowano w miejscu nie oznaczonym żadnym nagrobkiem. Pierwszym pomnikiem Galileusza było popiersie wybudowane przez jego ucznia Vincenza Vivianiego na ścianie własnego domu pół wieku później. Krzywa balistyczna znalazła się wsród emblematycznych osiągnięć wielkiego Toskańczyka. Po następnych czterdziestu latach szczątki uczonego doczekały się nie tylko uroczystego pochówku, ale i zaczęły być traktowane jak relikwie (do dziś przechowywane tu i ówdzie), co było może nieuniknione w kraju tak bardzo katolickim, lecz nieźle by ubawiło samego Galileusza.

Punktem wyjścia były w poprzednim stuleciu rozważania takie, jak u Niccolò Fontany, zwanego Tartaglia (czyli „Jąkała”). Chwalił się on, że rozwiązał zagadnienie krzywej balistycznej. W jego pojęciu ruch pocisku czy innego wystrzelonego ciała składa się z trzech etapów: z początku jest to prostoliniowy ruch wymuszony, na końcu jest to także ruch prostoliniowy, lecz naturalny: spadanie pionowo w dół. Obie te fazy miały uzasadnienie w fizyce Arystotelesa. Zdroworozsądkowym dodatkiem było uznanie, że między tymi dwiema fazami jest jeszcze krzywoliniowe interludium, o którym teoria nie mówiła nic. Zupełnie gołosłownie Tartaglia twierdził, że zasięg strzału jest największy, gdy strzela się pod kątem 45° do poziomu. Istniały zatem aż dwie teorie tego, co się miało dziać podczas ruchu, w dodatku żadna z nich nie była ilościowa ani matematyczna. Arystoteles prowadził rozważania jakościowe, „filozoficzne”. Tymczasem artylerzyści rozumieli, że z teorią czy bez, pociski lecą wzdłuż określonej trajektorii.

Pierwszym patronem młodego Galileo Galilei z Florencji był Guidobaldo del Monte. Wspólnie przeprowadzili oni doświadczenia dotyczące kształtu krzywej balistycznej. Puszczali w tym celu ukośnie kulkę zanurzoną wcześniej w atramencie po nachylonej płaszczyźnie. Odkryli, że krzywa balistyczna jest symetryczna i podobna do paraboli lub hiperboli. Błędnie utożsamili jej kształt z krzywą łańcuchową – opisującą kształt ciężkiego łańcucha zamocowanego z obu końców. Galileusz do końca życia był przywiązany do tej obserwacji, choć w późniejszych doświadczeniach sprawdził, że obie krzywe są do siebie zbliżone tylko wtedy, gdy są dość płaskie. W drugiej połowie XVII wieku, stosując rachunek różniczkowy i całkowy, ustalono, że linia łańcuchowa to kombinacja funkcji wykładniczych (cosinus hiperboliczny), a więc nie ma wiele wspólnego z krzywą balistyczną.

Zrozumienie, skąd bierze się parabola jako krzywa balistyczna, wymagało czasu i eksperymentów. Galileusz zrozumiał, że ruch poziomy i ruch pionowy są od siebie niezależne (jeśli tylko opór ośrodka możemy pominąć). Pionowy spadek jest ruchem przyspieszonym, a więc odległość rośnie jak kwadrat czasu. Razem z jednostajnym ruchem poziomym daje to właśnie parabolę. Pierwszy opublikował te rozważania w roku 1632 Bonaventura Cavalieri, młody matematyk, który był przekonany, że Galileusz musiał je kiedyś wcześniej ogłosić. Starszy uczony zareagował furią, ale Cavalieri jakoś go ugłaskał i przekonał, że nie miał złych intencji. Dowód Cavalieriego, a także opublikowany później dowód Galileusza, odnosiły się do przypadku rzutu poziomego. Galileusz nie udowodnił, ściśle rzecz biorąc, że w rzucie ukośnym także powstaje parabola.

 

 

 

 

 

 

 

 

 

 

 

 

 

Powstawanie paraboli odcinki pionowe przebywane w równych czasach mają się jak 1:3:5:7 (czyli całkowite drogi mają się jak 1:4:9:16).  Rysunek z książki Cavalieriego, Lo Specchio ustorio („Zwierciadło zapalające”), 1632 r.

Jednak to Galileusza należy uznać za odkrywcę kształtu toru, on pierwszy bowiem zrozumiał w zasadzie wszystko, co było potrzebne do matematycznego opisu krzywej balistycznej. Przeprowadził też doświadczenia, w których mierzył zasięg rzutu poziomego kulek staczających się z równi pochyłej o różnych wysokościach. Uczony wiedział, że prędkość kulek u podnóża równi jest proporcjonalna do pierwiastka z wysokości. Zmierzył, że zasięg rzutu x jest proporcjonalny do tej prędkości.

Dopiero Evangelista Torricelli domknął stronę matematyczną teorii i udowodnił, że także w ruchu ukośnym mamy do czynienia z parabolą.

Znalazł też prosty sposób przedstawienia maksymalnej wysokości oraz zasięgu rzutu w zależności od kąta. Jeśli AB jest maksymalną wysokością przy pionowym strzale, to należy skonstruować półokrąg, jak na rysunku. Dla dowolnego kąta wystrzału rysujemy linię AF: mamy wówczas maksymalną wysokość równą AE=h, odcinek EF=x/4 jest równy jednej czwartej zasięgu. Widać od razu, że maksymalny zasięg uzyskamy dla kąta \alpha=45^{\circ}. Widać też, że przy kątach różnych od 45^{\circ} każdemu zasięgowi odpowiadają dwie wartości kąta: można więc osiągnąć tę odległość za pomocą dwóch parabol: jednej mniej, a drugiej bardziej stromej.

Ruch paraboliczny jest wypadkową jednostajnego ruchu prostoliniowego i swobodnego spadku w kierunku pionowym. Reszta jest ćwiczeniem geometrycznym.

Także Torricelli zbadał kształt krzywej bezpieczeństwa: oddzielającej punkty będące w zasięgu strzału od tych, które są poza zasięgiem (przy danej prędkości pocisku). Krzywa ta także jest parabolą o wysokości równej wysokości strzału pionowego, a połowa jej szerokości równa się maksymalnemu zasięgowi strzału.


Książka Torricellego ukazała się w 1644 roku (choć wyniki zostały uzyskane jeszcze za życia Galileusza i stary mistrz miał okazję się z nimi zapoznać). W 1687 roku Isaac Newton pokazał, że dowolny ruch orbitalny jest złożeniem ruchu prostoliniowego i spadku swobodnego. Musimy tylko wziąć pod uwagę, że wielkość grawitacji zmienia się od punktu do punktu, a więc opis tego rodzaju słuszny jest jedynie w bardzo krótkim przedziale czasu. Jest to spora komplikacja matematyczna, pozwala jednak opisać w sposób jednolity rozmaite ruchy we wszechświecie. Tor wypadkowy będzie parabolą jedynie lokalnie, jego kształt w przypadku planet jest jedną z krzywych stożkowych. Podobno Isaac Newton tylko raz wybuchnął śmiechem: kiedy ktoś go zapytał, jaki jest pożytek z matematyki. Lepiej niż jego współcześni rozumiemy teraz głębokie powody tego śmiechu.

Obliczenia. Jeśli wprowadzimy układ współrzędnych poziomej – X i pionowej Y, to wektor  początkowej możemy zapisać jako \vec{v}=[v\cos\alpha, v\sin\alpha], a przyspieszenie ziemskie \vec{g}=[0,-g]. Równania ruchu mają więc postać:

\begin{cases} X=v\cos\alpha t,\\  Y=v\sin\alpha t-\dfrac{gt^2}{2v^2 \cos^2\alpha}.\end{cases}

Dla \alpha\neq \pi/2 równanie toru można obliczyć, wyznaczając t z pierwszego równania i wstawiając do drugiego:

Y=X\mbox{tg}\,\alpha -\dfrac{gX^2}{2v^2 \cos^2\alpha}.

Jest to równanie z funkcją kwadratową X po prawej stronie – tor jest więc parabolą. Łatwo można wyznaczyć współrzędne wierzchołka paraboli (za pomocą szkolnych wzorów albo szukając maksimum funkcji). W oznaczeniach z rysunków otrzymamy

\begin{cases} \dfrac{x}{2}=\dfrac{v^2}{g}\sin\alpha\cos\alpha,\\ \\h=\dfrac{v^2}{2g}\sin^2\alpha.\end{cases}

Ostatnie wyrażenie słuszne jest także dla \alpha=\pi/2, co wynika np. z ciągłości funkcji: gdy zbliżamy się do kąta \pi/2 wysokość maksymalna nie powina mieć skoku. Zatem maksymalna wysokość możliwa do osiągnięcia równa jest

AB=\dfrac{v^2}{2g}.

Odcinki na rysunku Torricellego są z naszego współczesnego (trygonometrycznego) punktu widzenia równe:

\begin{cases}\dfrac{EF}{AB}=\dfrac{EF}{AF}\cdot\dfrac{AF}{AB}=\cos\alpha\sin\alpha,\\ \\  \dfrac{AE}{AB}=\dfrac{AE}{AF}\cdot\dfrac{AF}{AB}=\sin^2\alpha.\end{cases}

Zasięg i maksymalna wysokość skalują się zatem jak odpowiednie funkcje trygonometryczne, \sin2\alpha oraz \sin^2\alpha.

Reklamy

Evangelista Torricelli: nieskończona trąba i barometr (1643-1644)

Nauka powstająca w XVII wieku była iście rewolucyjna: podważono jednocześnie niemal cały tradycyjny system myślowy, wiedzę zgromadzoną od tysiącleci. Świat materialny zmienił się niewiele od średniowiecza, choć nauczono się żeglować po oceanach i korzystać z broni palnej. Jednak technika była wciąż prymitywna, energia trudno dostępna, a większość ludzi walczyła jedynie o przetrwanie. Zanim przeobraziła się cywilizacja, należało najpierw przebudować zawartość głów. Postęp pojęciowy jest zawsze niezmiernie trudny, trzeba pokonać własne nawyki myślowe, wyciągnąć wnioski z nowych założeń, niewielu ludzi potrafi żyć wśród tymczasowych koncepcji i bez żalu porzucać je na rzecz innych, nowych, lepiej opisujących wymykającą się rzeczywistość. M.in. dlatego niewielu jest einsteinów na świecie, mimo że nie brak ludzi bardzo inteligentnych i utalentowanych.

Evangelista Torricelli określany jest często jako uczeń Galileusza. W istocie był bardziej uczniem Benedetta Castellego, wiernego przyjaciela i okazjonalnie współpracownika mistrza z Florencji. Ze starym, niewidomym już uczonym spędził ledwie kilka miesięcy: od października 1641 r. do stycznia roku następnego, gdy Galileusz zmarł. Torricelli był już wtedy po trzydziestce i był ukształtowanym uczonym w duchu archimedesowym, gdzieś między matematyką a inżynierią i eksperymentem. Odziedziczył po Galileuszu stanowisko matematyka przy księciu Toskanii. Galileusz był także nadwornym filozofem, czyli fizykiem i astronomem, ale w owej chwili, dziesięć lat po wyroku inkwizycji, lepiej było nie kłuć w oczy władz kościelnych. Sławnego uczonego pochowano w nieoznaczonym grobie i musiało minąć sto lat, nim pozwolono na postawienie tablicy nagrobnej. Torricelli w roku 1643 stał się sławny w całej uczonej Europie dzięki rozważaniom na temat pewnej nieskończonej bryły, która miała skończoną objętość. Przypominała ona wnętrze trąby.

tromba

Bryła Torricellego powstaje z obrotu hiperboli (równobocznej) wokół jednej z asymptot. Wycinamy z niej tylko część zaznaczoną na rysunku: mamy zwężającą się, nieskończenie długą trąbę. Torricelli wykazał, że pole powierzchni takiej trąby jest nieskończone, lecz objętość jest skończona. Oszacujemy tę objętość. Dzielimy naszą bryłę na cylindryczne cienkie powłoki: leżą one jedna wewnątrz drugiej jak składany tubus. Pole podstawy takiej powłoki (wydrążonego walca) równe jest 2\pi r dr, co jest iloczynem długości okręgu i grubości naszej powłoki dr. Objętość wydrążonego walca o takiej podstawie  i wysokości h(r) możemy łatwo oszacować z góry:

dV=2\pi r dr h(r) < 2 \pi r dr \dfrac{a^2}{r}=2 \pi a^2 dr.

Zatem suma objętości wszystkich wydrążonych walców jest mniejsza niż 2\pi a^2 R, gdzie R to największy promień przekroju poprzecznego trąby. Torricelli obliczył tę objętość, stosując metodę Cavalieriego, a także przeprowadzając dowód w duchu Archimedesa. Paradoksalny wynik wzbudził zainteresowanie i komentowali go najwięksi matematycy epoki: jeśli był prawdziwy, granice matematyki matematyki zostały poszerzone.

W roku następnym został Torricelli odkrywcą barometru. Tak się zwykle mówi, bardzo upraszczając całą sprawę. On sam nie uznawał siebie za wynalazcę takiego przyrządu ani nad nim jakoś szczególnie nie pracował. Dopiero później urządzenie takie zaczęto nazywać barometrem i traktować jako przyrząd służący do pomiaru ciśnienia atmosferycznego. Torricelli niczego nie mierzył w sposób ciągły, lecz uważał swoje doświadczenie za rodzaj filozoficznego (tj. naukowego) pokazu. Chodziło w nim o istnienie próżni. Natura abhorret vacuum – natura nie znosi próżni – mawiali filozofowie scholastyczni, czerpiąc to twierdzenie od Arystotelesa. Wiadomo było z praktycznych doświadczeń inżynierów, iż nie można wciągnąć wody w rurze wyżej niż na 18 łokci. Galileusz objaśniał to siłami spoistości wody: gdy wysokość jej słupa przekracza owe 18 łokci, słup rozrywa się pod własnym ciężarem, tak jak rozerwałaby się pod własnym ciężarem dostatecznie długa kolumna z marmuru zawieszona od góry. Torricelli sądził inaczej, uważał, że słup cieczy równoważony jest ciśnieniem zewnętrznym. A skoro chodzi o równowagę, to zamiast 18 łokci wody wystarczy 5/4 łokcia i jeden cal żywego srebra (rtęci) – gdyż jego ciężar właściwy jest kilkanaście razy większy. Wystarczy wziąć szklaną rurkę długości, powiedzmy, dwóch łokci, zatopioną z jednej strony i nalać do niej rtęci. Następnie zatykamy rurkę palcem i odwracamy zatopioną częścią do góry, po czym wkładamy rurkę do naczynia z rtęcią (nikt w XVII wieku nie rozumiał, jak się zdaje, jak szkodliwe może być takie nieostrożne manipulowanie rtęcią, Newton żartował sobie, że posiwiał wcześnie z powodu używania rtęci w doświadczeniach alchemicznych, naprawdę chyba się tym jednak nie przejmował).

torr

Uczony sądził, że nad rtęcią tworzy się próżnia. A więc łatwo jest ją wytworzyć i natura się jej nie lęka. O swoich doświadczeniach napisał do Michelangela Ricciego w czerwcu 1644 roku. Pokazywał je też ojcu Marinowi Mersenne’owi, który spełniał w owych czasach rolę serwera pocztowego dla środowiska uczonych, gdy ten odwiedził go we Florencji. Nie słychać, aby Torricelli zamienił swoją odwróconą rurkę na stały przyrząd, który można z dnia na dzień obserwować. Spodziewał się chyba, że zmiany ciśnienia atmosferycznego będą większe, niż są w rzeczywistości. W tym samym liście pisał, iż żyjemy na dnie oceanu powietrza – coś podobnego sugerował kilkanaście lat wcześniej Giovanni Battista Baliani w liście do Galileusza. Torricelli mógł o takim poglądzie słyszeć. Tak czy owak nie zajmował się sprawą dłużej, dopiero kilka lat później stała się ona europejską sensacją, gdy doświadczenia podobne zaczęto powtarzać w różnych krajach, a przede wszystkim we Francji, a zagadnieniem ciśnienia atmosferycznego i istnienia próżni zajął się m.in. Blaise Pascal. Dla jego analitycznego i skłonnego do paradoksów umysłu pogląd, który przeczył jednocześnie scholastykom i „nowoczesnemu” Kartezjuszowi, musiał wydawać się wielce interesujący. Torricelli zmarł młodo, w roku 1649, i nie dożył czasów, w których uznano go za „odkrywcę barometru”. Zapewne byłby zdziwiony, że ten maleńki fragment jego naukowego dorobku doczekał się takiej sławy, podczas gdy o reszcie mało kto dziś pamięta.

List Torricellego do Ricciego.

Jego angielski przekład