Po czym poznaje się wielkiego uczonego: Galileusz i inni na temat spadku swobodnego (pierwsza połowa XVII wieku)

Prawdziwa wielkość w nauce jest równie rzadka jak w sztuce czy literaturze. Tylko nieliczni zmieniają nasz sposób widzenia świata w taki sposób, że nie da się tego cofnąć ani zapomnieć. Galileusz odkrył paraboliczny kształt krzywej balistycznej. Co więcej, potrafił zrozumieć, skąd się ten kształt bierze i umieścić tę kwestię w nowym systemie pojęć. Jak ważny był kontekst tego odkrycia, świadczyć mogą słowa Isaaca Newtona. W 1687 r.  w Matematycznych zasadach filozofii przyrody formułuje on „Aksjomaty, czyli prawa ruchu”:

Prawo I Każde ciało pozostaje w swym stanie spoczynku lub ruchu jednostajnego po linii prostej, dopóki siły przyłożone nie zmuszą go do zmiany tego stanu.
Prawo II Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.

Są to oczywiście zasady dynamiki, których naucza się po dziś dzień (nie przytaczamy treści III prawa, ponieważ nie będzie nam tu potrzebne). Ciekawy jest komentarz angielskiego uczonego (urodzonego w roku śmierci Galileusza) do tych praw zamieszczony w dalszym ciągu tekstu:

Zasady, które przyjmuję, zaakceptowane są przez matematyków i potwierdzone przez wielorakie eksperymenty. Za pomocą dwóch pierwszych praw Galileusz stwierdził, że spadek ciał ciężkich zachodzi w proporcji do kwadratu czasu, a ruch ciał wystrzelonych przebiega po paraboli, jak potwierdza to eksperyment, jeśli uwzględnić fakt, że ruchy te są nieco opóźniane przez opór powietrza. Gdy ciało spada, stała siła grawitacji, działając jednakowo w poszczególnych jednakowych odcinkach czasu, nadaje ciału jednakowe wartości siły i generuje jednakowe prędkości; a w całym czasie nadaje całkowitą siłę i generuje całkowitą prędkość proporcjonalną do czasu. A odległości przebywane w odcinkach czasu są proporcjonalne do prędkości i czasów jednocześnie, tzn. są jak kwadraty czasów. (…) A kiedy ciało zostanie wystrzelone wzdłuż dowolnej linii prostej, jego ruch nadany w chwili początkowej składa się z ruchem wynikającym z grawitacji.

Ostatnie zdanie ilustruje rysunek: położenie wypadkowe ciała jest sumą wektorów \vec{v}t, czyli prostoliniowego ruchu nadanego w chwili wystrzału, oraz spadku swobodnego \frac{1}{2}\vec{g}t^2. Zapisywanie ruchów za pomocą wzorów algebraicznych i pojęcie wektora są późniejsze niż Newton. Algebry zaczął używać w tym kontekście dopiero Leonhard Euler, a wektory to osiągnięcie późniego wieku XIX.

Newton nie był zbyt dobrze poinformowany historycznie, z książek Galileusza znał tylko Dialog o dwóch układach świata, w 1687 r. nie było wątpliwości, jak przebiega ruch kuli armatniej albo spadającego swobodnie ciała, jeśli pominąć opór powietrza. Newton zajmował się już innymi problemami, takimi jak wpływ oporu powietrza na tor wystrzelonego ciała albo ciłą ciężkości zmieniającą się od punktu do punktu. Z jego perspektywy dwa pierwsze prawa były właściwie oczywiste i jak widzimy wcale sobie do nich nie rościł pierwszeństwa, przypisując je, do pewnego stopnia błędnie, Galileuszowi.

Do jakiego miejsca dotarł rzeczywiście Galileusz? Otóż sądził, że bez oporu powietrza rzut jest złożeniem jednostajnego ruchu poziomego i pionowego spadku. Bez problemu opisywał rzut poziomy, przypadek rzutu ukośnego, taki jak na rysunku, opisali już inni. Spadek swobodny nie był dla niego skutkiem siły grawitacji, w ogóle u Galileusza nie znajdziemy dynamiki, lecz tylko kinematykę ruchów. Z jakiegoś powodu ruch poziomy jest jednostajny, o ile nic mu nie przeszkadza. Natomiast spadek swobodny przebiega w ten sposób, że prędkość chwilowa jest proporcjonalna do czasu. Widzimy, że Newton przypisał mu swoje własne prawa i swoje rozumienie sytuacji fizycznej. Z pewnością nieświadomie, ponieważ raczej nie był nadmiernie skłonny do dzielenia się chwałą z innymi, po prostu nie wiedział, jak wyglądała historia. Przypominał w tym dzisiejszych uczonych, którzy, zainteresowani rozwiązywaniem stojących przed nimi problemów, niezbyt interesują się meandrami historii.

Zasługą Galileusza było odrzucenie obowiązującej wówczas fizyki arystotelesowskiej. Spostrzegł on, że bez oporu powietrza ruchy ciał stają się prostsze. Musimy pamiętać, że dopiero po jego śmierci nauczono się wytwarzać próżnię, za życia Galileusza odkrycie praw ruchu (kinematycznych) oznaczało postawienie na głowie całej nauki, która przecież powinna zajmować się „prawdziwymi” ruchami i „prawdziwymi przyczynami” zjawisk. Zamiast tego Galileusz proponował teorię matematyczną, która stosuje się ściśle tylko do świata, jakiego nie ma. Była to, co się zowie, księżycowa teoria – na Księżycu zresztą byłoby ją najłatwiej testować, bo nie ma tam atmosfery. Teoria ta nic nie mówiła na temat przyczyn takich ruchów. Zresztą dynamika Newtona też wiele nie wyjaśniała: wprowadziła pojęcie siły, lecz siła była abstraktem matematycznym, który można wprawdzie badać ilościowo, ale nic o nim w gruncie rzeczy nie wiemy. Był to kolejny krok w budowaniu świata platońsko-pitagorejskiego, gdzie abstrakcyjna matematyka przydaje się w praktycznej pracy inżyniera, stąd wszystkie politechniki wymagają od studentów pewnej wiedzy matematycznej.

Galileusz nie był pewien, jakie jest najprostsze matematycznie prawo spadku swobodnego (sądził, że właśnie najprostsze prawo powinno obowiązywać w przyrodzie). Wahał się między prędkością proporcjonalną do czasu i prędkością proporcjonalną do drogi. Ostatecznie wybrał pierwszą ewentualność. Że nie był to wybór łatwy, świadczą jego wahania utrwalone w różnych tekstach, a także reakcja innych uczonych na prace Galileusza. Wielu z nich nie potrafiło się zgodzić na prędkość proporcjonalną do czasu. Jezuici, którzy z urzędu musieli demonstrować swą niechęć do heretyka nawet w sprawach dalekich od kopernikanizmu, optowali za różnymi dziwacznymi wersjami prawa swobodnego spadku. Drogi w kolejnych jednostkach czasu miały być np. w proporcjach 1:2:3:4… albo 1:2:4:8… Prędkość miała rosnąć proporcjonalnie do drogi albo skokowo w czasie. Niewiele lepiej wyglądało to wśród zwolenników, którzy także chętnie „poprawiali” Galileuszowe prawo spadku. Eksperymenty także nie wkazywały jednoznacznie, bo spadek swobodny zachodzi szybko, a nie potrafiono mierzyć czasów tak krótkich. Ponadto opór powietrza zniekształcał wyniki. Wielkość Galileusza jako uczonego przejawia się m.in. w tym, że umiał w warunkach niepewności eksperymentalnej i trudności pojęciowych wybrać właściwe rozwiązanie. Jest w tym lekkość i poczucie smaku, intuicja i długie przemyślenia. Galileusz jest wielkim uczonym także dlatego, że nie stworzył wszechogarniającego systemu, skoncentrował się na zagadnieniach, o których mógł coś powiedzieć, czasem spekulował, ale nie rościł sobie prawa do wiedzy absolutnej. Tylko ignoranci i Kościół katolicki znają wszystkie odpowiedzi. Galileusz ich nie znał. Nie wiedział np., czy wszechświat jest skończony, a jeśli tak, to gdzie leży jego środek. Wiedział, że nie jest nim Ziemia, już prędzej Słońce, ale też niekoniecznie. Jest pewna ironia w fakcie, że skazano go za głoszenie tez, które on sam uważał za nieprawdziwe. Nie chodziło jednak o to, kto ma rację, ale o to, kto ma władzę.

Teksty Galileusza i innych ówczesnych uczonych pokazują, jak wiele trudności pojęciowych musieli oni pokonać. Np. co to jest prędkość chwilowa (nie bardzo można ją zmierzyć). Galileusz posługiwał się następującym rysunkiem.

Linia AB oznacza czas. Linie poziome są prędkościami. AG i równoległe do niego odcinki odpowiadają ruchowi jednostajnemu. AIE to linia ograniczająca odcinki prędkości chwilowej rosnącej proporcjonalnie do czasu. Uczony dowodził, że suma jednakowych odcinków GA=FB jest taka sama, jak suma odcinków rosnących z czasem. Wobec czego można cały ruch przyspieszony zastąpić ruchem jednostajnym o prędkości równej połowie prędkości końcowej. Inaczej mówiąc prostokąt GABF jest równoważny trójkątowi AEB. Galileusz nie zrobił kroku, który nam wydaje się oczywisty, i nie utożsamił drogi przebywanej w obu ruchach z polem odpowiednich figur. Mówił o sumach odcinków. Iloczyn prędkości i czasu nie miał dla niego żadnego sensu, ponieważ chodzi o wielkości fundamentalnie różne. My przedstawilibyśmy to tak.

 

W drugiej połowie wieku XVII stało się jasne, że procedurę taką można uogólnić. Pole pod wykresem prędkości to droga i można ją zapisać jako całkę. Z kolei pochodna drogi po czasie daje prędkość chwilową. To podstawowa para operacji w rachunku różniczkowym i całkowym.

 

Gdyby prędkość była proporcjonalna do drogi, mielibyśmy do czynienia z wykładniczym wzrostem, jest to funkcja opisująca eksplozję (np. demograficzną albo jądrową)

\dfrac{ds}{dt}=ks\Rightarrow s=s_{0}\,e^{kt}.

Prędkość opisana jest taką samą funkcją (bo pochodna funkcji wykładniczej jest też funkcją wykładniczą).

Z obu tych wykresów widać, że funkcja taka niezbt nadaje się do opisania ruchu, który zaczyna się w określonej chwili bez żadnej prędkości początkowej, ponieważ nigdy nie jest równa zeru. Spadek od s=0 do dowolnego punktu musiałby trwać nieskończenie długo. Zatem prędkość w spadku nie może być proporcjonalna do drogi, bo przeczy to elementarnej wiedzy na temat spadku ciał. Oczywiście, można by spekulować, czy spadek nie może się od razu zaczynać z prędkością różną od zera. Rozwiązanie przyjęte przez Galileusza też było kontrowersyjne w oczach jego współczesnych: wymagało bowiem, aby ciało na początku poruszało się przez chwilę z dowolnie bliską zeru prędkością. Przywodziło to na myśl od razu paradoksy Zenona z Elei przeciwko ruchowi. Wiemy jednak, że spadające ciało się porusza, choć chwilę przedtem spoczywało. Eppur si muove.

Intuicja Galileusza pozwoliła mu też pozbyć się balastu niepotrzebnych pytań dodatkowych: o przyczyny spadku, o opór powietrza itd. Nauka rozwija się zawsze przez pracę nad konkretnymi zagadnieniami i trzeba umieć oddzielić to, czego nie da się w danym momencie rozstrzygnąć albo co nie ma znaczenia. Pouczająca jest tu reakcja Kartezjusza na dzieło Galileusza. Francuski filozof, młodszy o trzydzieści lat, z dużą pewnością siebie odrzucił rozwiązanie Galileusza. Zarzucił mu, że buduje bez podstaw, nie wiedząc nawet, skąd bierze się ciężar ciała (Kartezjusz był pewien, że to skutek popychania ciała przez niewidzialne cząstki materii subtelnej!). Jako dobry matematyk i do tego znacznie później urodzony stwierdził, że pod względem matematycznym praca florentyńczyka jest raczej słaba, jego dowody zaś niezbyt eleganckie. Zarzuty były do pewnego stopnia uzasadnione, ale to toskański uczony miał rację, o tyle, o ile można mieć w nauce rację: jego teoria zgodna była z eksperymentem i pozwalała pójść dalej.

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s