Najważniejsze wydarzenia w dziejach ludzkości

Zacznijmy od fraszki C.K. Norwida:

DOBRA WOLA

– Przepraszam państwo, lecz przyszła wiadomość,

Że się Uranus wstrząsa

*

– Mniejsza o to

– Co tam po niebie gdzieś patrzysz Jegomość,

To astronomów rzecz, niech sobie plotą…

*

– Przepraszam państwo – ale panna Klara

Na pannę Różę powiedziała: „stara” –

I ten pod wachlarz bilecik schowała…

*

– Gdzie?! jaki?! dawaj!… to rzecz doskonała!

Norwid pisał tu o niezgodnościach ruchu Urana ze znanymi faktami. Okazało się, że niezgodności owe wywołane są przyciąganiem następnej planety, Neptuna. Jej położenie najpierw obliczono, a następnie znaleziono ją na niebie niemal dokładnie w tym miejscu, gdzie wskazywały obliczenia. Samo wydarzenie jest dobrą ilustracją różnicy między nauką nowożytną a innymi przykładami działalności „naukopodobnej” prowadzonej w najróżniejszych cywilizacjach.

Fraszka Norwida wskazuje też na zjawisko szersze niż salonowy brak zainteresowania nauką. Jesteśmy istotami społecznymi, czasem może nawet zanadto społecznymi: w tym sensie, że skłonni jesteśmy uważać świat międzyludzki za cały wszechświat, a nas samych za istoty stworzone nie mniej, ni więcej, tylko na podobieństwo Boga.

David Christian jest zawodowym historykiem. Zrobił jednak coś, na co nie poważyłaby się większość jego kolegów: prowadzi kurs historii wszechświata, od Wielkiego Wybuchu do dziś. Siłą rzeczy większa część materiału pochodzi z innych dziedzin niż historia: z kosmologii, geologii, biologii itd. Spojrzenie z tej perspektywy na dzieje ludzkości uważam za niezwykle ożywcze. Nigdy nie mogłem się nadziwić pasji, jaką większość historyków wkłada w badanie faktów drugo- albo nawet dziesięciorzędnych: jakaś potyczka pod Straconką (w zasadzie trochę większa bójka) albo śledzenie meandrów polityki jakiegoś nieistotnego władcy. Oczywiście rozumiem, czemu można się zajmować tego rodzaju tematem, podobnie jak rozumiem, czemu można się zajmować badaniem jednego gatunku chrząszczy (a jest ich blisko pół miliona). I wcale nie lekceważę „badaczy owadzich nogów”. Nie rozumiem jedynie, czemu nie widzę prób syntezy, innego spojrzenia, mniej uwikłanego w politykę, mity narodowe, mity religijne; mniej prowincjonalnego geograficznie, kulturowo i cywilizacyjnie.

Jakie więc były najważniejsze wydarzenia w dziejach ludzkości? Większość z nich zaszła w prehistorii albo historii bardzo zamierzchłej: wynalezienie rolnictwa, różnych technik pozwalających odziać się, lepić garnki i przede wszystkim tworzyć narzędzia. W dziejach intelektualnych decydujące znaczenie miało pismo i jego ulepszenie w postaci pisma alfabetycznego: dzięki temu ostatniemu nie tylko zawodowcy mogli umieć pisać – była to rewolucja podobna do rozpowszechnienia w latach osiemdziesiątych XX wieku komputerów osobistych, pozwalających każdemu korzystać z narzędzia przedtem zarezerwowanego dla personelu w białych kitlach (sam pamiętam sale z komputerami typu „Odra”, do których nie wolno było wchodzić, należało zostawić przed wejściem karty perforowane z programem i mieć nadzieję, że przejdzie on pomyślnie kompilację, a może nawet się policzy). Nie jest przypadkiem, że cywilizacja grecka rozkwitła w tym samym czasie, gdy rozpowszechniło się pismo alfabetyczne.

Grecy stworzyli też matematykę ujętą w sposób aksjomatyczny – do dziś jest to ideał przedstawiania wiedzy ścisłej. Geometria grecka i jej najważniejsze zastosowanie: opis ruchu planet stworzyły podstawy przyszłego rozwoju nauki, choć ciąg dalszy nastąpił dopiero po piętnastu wiekach i nie był oczywisty. Cywilizacja przeniosła się na północny zachód Europy. Średniowieczne chrześcijaństwo pokazało swą wielkość w gotyckich katedrach, jak też w tym, że potrafiło zasymilować grecką filozofię i naukę – był to zresztą jego szczytowy moment. Reformacja, która podzieliła chrześcijan, była w znacznym stopniu ujawnieniem się nowej wrażliwości i nowego podejścia do świata, czegoś bardziej fundamentalnego niż dogmaty wiary czy uznawanie bądź nieuznawanie papieża. Nowoczesna cywilizacja wywodzi się z chrześcijaństwa zreformowanego w Europie północnej i w Stanach Zjednoczonych. Katolicyzm definitywnie utracił kontakt z nowoczesnością w wieku XVII, w czasach Galileusza. I sądzę, że nigdy go nie odzyskał, choć w każdej epoce aż do dziś wielu było uczonych katolików i niemal każdy papież deklarował, iż ceni i popiera naukę.

Reformacja związana była od początku z wynalezieniem druku: zapewne nie rozszerzyłaby się tak szybko w innych warunkach. Druk i powszechna umiejętność pisania (głównie jednak w krajach protestanckich) były kolejnym progiem udostępniania wiedzy szerokim rzeszom. Jednak nie podział religijny był najważniejszy w wieku XVI i XVII. Nawet wojna trzydziestoletnia z dłuższej perspektywy jest epizodem bez znaczenia. To rewolucja naukowa przesądziła o znaczeniu tej epoki, a także o znaczeniu Europy w dziejach naszej planety. Jakąś nauką zajmowały się wszystkie cywilizacje, lecz to europejska znalazła skuteczny klucz do poznania przyrody. Najpełniej widać to w dziele Isaaca Newtona: modele matematyczne ściśle opisują rzeczywistość fizyczną. Połączenie matematyki i eksperymentu pozwala dowiedzieć się rzeczy, o których się filozofom nie śniło i które są sprawdzalne. Tym się różnimy od innych cywilizacji, że nasze samoloty latają, nie musimy sobie tego jedynie wyobrażać.

Rewolucja naukowa XVII wieku nie dotyczyła biologii. Wydawało się, że istoty żywe nie podlegają dokładnie tym samym prawom, co reszta materii. Świat biologiczny stał się ostatnim azylem zwolenników celowości. Przypomnijmy: już Arystoteles doszukiwał się w przyrodzie przyczyn celowych. Stopniowo celowość została wyeliminowana z astronomii i fizyki. Nie pytamy: w jakim celu Układ Słoneczny zawiera te a nie inne planety krążące po takich a nie innych orbitach. Wydawało się jednak, że oko ludzkie „zostało stworzone” do patrzenia, podobnie jak piękne, smukłe ciało geparda do szybkiego biegania. Charles Darwin i Alfred Russel Wallace pierwsi zauważyli, że przystosowanie do funkcji jest skutkiem doboru naturalnego, a nie celem. Oko naszych przodków (również czworonożnych, również pływających) doskonaliło się stopniowo, aż osiągnęło dzisiejszy stan (wcale zresztą nie idealny: można dobrać soczewki indywidualnie korygujące wzrok, które sprawiają, że widzimy szczegóły, o jakich dotąd nie mieliśmy pojęcia). Podobnie gepardy doskonaliły się w sztuce biegania, w miarę jak gazele doskonaliły się w sztuce uciekania. Ewolucja za pomocą sekwencji niezliczonych drobnych kroków stworzyła całą biosferę. Wielu ludziom wydaje się to nadal trudne do pojęcia i z uporem szukają luk w teorii ewolucji. Ci sami ludzie nie czują na ogół skrupułów, gdy dzięki nowoczesnej terapii zostają wyleczeni. Podobnie jak niektórzy postmoderniści, którzy twierdzą, że fizyka jest formą dominacji białego człowieka i nie jest więcej warta od mitów jakiegoś plemienia, a potem wsiadają w samolot, aby udać się na kolejną konferencję, gdzie będą o tym nauczać młodzież, żądną zdobycia, jeśli nie wiedzy, to przynajmniej stopni naukowych.

Ojciec Gregor Mendel, 1865

Johann Mendel urodził się w chłopskiej rodzinie na Śląsku, był jednym z tych, których miano nazywać później Niemcami Sudeckimi. Chłopiec miał nieco szczęścia: w jego rodzinnej wsi była szkoła, gdyż lokalna właścicielka, hrabina Walpurga Truchsess-Zeil, dbała edukację poddanych. Ponieważ okazał się zdolny, poszedł do następnej szkoły, a później do gimnazjum w Opawie. Przypominało to chyba edukację Jędrzeja Radka z Syzyfowych prac, rodzice z trudem łożyli na utrzymanie syna w mieście. Niewątpliwie pragnęli też zostawić mu gospodarstwo – był bowiem jedynym chłopcem. Po ukończeniu gimnazjum Johann przeniósł się na studia do Ołomuńca, wciąż brakowało mu pieniędzy, sporo chorował. Jego pilność i talent zwróciły uwagę jednego z wykładowców i młodzieniec został przyjęty do augustianów w Brnie. Przyjął zakonne imię Gregor.

Ojciec Gregor był zbyt delikatny i nieśmiały, aby dobrze czuć się w roli duszpasterza. Pasjonowała go natomiast przyroda, zajmował się klasztornym ogrodem, uczył w różnych szkołach, był jednym z założycieli lokalnego towarzystwa naukowego w Brnie. W lutym i marcu 1865 roku zreferował na kolejnych posiedzeniach owego Towarzystwa swoje badania dotyczące krzyżowania grochu. Nie było to zapewne gremium, które mogłoby docenić wyniki ojca Mendla. Być może zresztą jego wyniki na tyle odbiegały od ówczesnego rozumienia dziedziczności, że nawet gdyby ich autor nie był prowincjonalnym nauczycielem przyrody, i tak nikt by na nie nie zwrócił większej uwagi. Bywają prace, których w momencie powstania nikt nie czyta, a które później stają się początkiem nowej dziedziny. Tak było z pracą Mendla, około roku 1900 zrozumiano, że kładzie ona podwaliny pod nową dziedzinę wiedzy: genetykę.

Co w pracy Mendla tak bardzo odbiegało od tego, co uczeni pragnęli usłyszeć? Były to lata Charlesa Darwina, niewątpliwie ewolucja była tematem nr 1. Nawet w Brnie miesiąc przed referatem Mendla jeden z członków Towarzystwa omawiał właśnie ewolucję. Wiemy także, że Mendel przeczytał O powstawaniu gatunków. Darwin jednak niewiele miał do powiedzenia na temat zmienności i na temat mechanizmu dziedziczenia, a to, co mówił było zwykle bałamutne.

Mendel_seven_characters-ger.svg

Ojciec Gregor cierpliwie prowadził doświadczenia nad pewnymi określonymi wyraźnie cechami grochu: mogły one występować w jednej albo drugiej wersji: kwiaty mają jeden albo drugi kolor, łodyga jest niska albo wysoka itp. Prace Mendla dowodziły, że dziedziczenie ma charakter losowy i w dodatku dyskretny, cyfrowy: są pewne jednostki dziedziczenia, które łączą się w organizmie potomnym i określają jednoznacznie, która z ewentualności wystąpi: np. czy nasiona będą gładkie, czy pomarszczone. W dodatku Mendel założył, że gdy w roślinie zawarte są obie „skłonności”, to uwidacznia się tylko jedna z nich, a druga może być ukryta i ujawnić się dopiero w potomstwie. Wierzono wtedy raczej w jakieś mieszanie się cech, podobne do mieszania barw na palecie, a nie w coś tak zero-jedynkowego.

Także przypadkowość procesu dziedziczenia trudna była do przyjęcia. Często zarzucano Darwinowi, że Opatrzność chciałby zastąpić przypadkiem, ślepym losem. Prawdopodobnie nie było to prawdą w odniesieniu do poglądów samego Darwina, ale pokazuje, jak broniono się przed uznaniem roli losowości w świecie przyrody ożywionej.

Dopiero wiek dwudziesty wprowadził losowość i przypadkowość na naukowe salony. Zakrawa na ironię, że w 1936 roku Ronald Fisher, jeden z pionierów genetyki i statystyki matematycznej, zakwestionował wyniki liczbowe Mendla jako właśnie zbyt regularne jak na dzieło przypadku. Fisher zastosował do wyników Mendla test chi kwadrat i wykazał, że uzyskanie tak regularnych wyników jest niezwykle mało prawdopodobne. Wywołało to dyskusję, której echa do dziś przewijają się w literaturze dotyczącej genetyki oraz statystyki.

Czy globalne ocieplenie to bzdura? Pochwała atmosfery

Atmosfera Ziemi jest jak „uszyta na miarę”: chroni nas przed meteorytami, tłumi promieniowanie nadfioletowe, wytwarzające mutacje (np. raka skóry), zapewnia nam tlen niezbędny do oddychania i jest przezroczysta akurat w tym obszarze fal elektromagnetycznych, które widzimy. Oczywiście, od czasów Charlesa Darwina, wiemy, że trzeba spojrzeć na to odwrotnie: na drodze jakiej ewolucji doszło do tej sytuacji. Ochrona przed meteorytami jest np. niepełna, o czym boleśnie przekonały się dinozaury (zostały tylko energooszczędne zwierzątka w rodzaju dzisiejszych ryjówek – nasi prarodzice). Nam też w zasadzie grozi podobny los, jeśli odpowiednio duża asteroida uderzy w Ziemię. Warstwę ozonową, która chroni przed nadfioletem, dość łatwo byłoby zniszczyć, na szczęście przestaliśmy wypuszczać do atmosfery niektóre związki chemiczne, stosowane w celach dość trywialnych: w dezodorantach i lodówkach. Za tlen powinniśmy dziękować naszym braciom mniejszym roślinom, bez nich (bez fotosyntezy) nie moglibyśmy żyć. Widzimy fale elektromagnetyczne o takich długościach, bo nasza gwiazda centralna najwięcej wysyła w tym obszarze widma (byłoby bez sensu mieć oczy wrażliwe na fale, których praktycznie nie ma). To, że dzięki temu możemy widzieć także inne ciała niebieskie jest tylko wspaniałym dodatkiem. A dzięki obserwacjom gwiazd i planet powstała astronomia matematyczna. A dzięki astronomii powstała fizyka, a dzięki fizyce, a później chemii i biologii, powstała nasza cywilizacja w obecnym kształcie.

W sierpniu 1883 roku na wysepce Krakatau w Indonezji wybuchł wulkan. Wskutek tej erupcji i wywołanych nią fal tsunami zginęło 40 000 ludzi. W końcu października w Europie zaczęły się niesamowicie piękne zachody słońca – znaczyło to, że pył wyrzucony do atmosfery podczas erupcji zdążył już przywędrować na umiarkowane szerokości geograficzne (kolory zachodów słońca to głównie skutek rozpraszania Rayleigha). W Wielkiej Brytanii zachody słońca obserwował zafascynowany nimi poeta, żarliwy katolik, Gerald Manley Hopkins. Swoje opisy wysłał do „Nature”: „Ponad zielenią ukazał się czerwony blask, szerszy i bardziej krzepki; był miękko cętkowany i w żebrach czy pasach kolor był bliższy różu, a w prześwitach, gdzie przeświecał błękit nieba, bliższy malwy. Wyżej był niewyraźnie bzowy. Czerwień można było dostrzec najpierw na wysokości 45º nad horyzontem i widziało się w niej promienie, które jeden z patrzących porównał do ludzkiej dłoni. Do 4:45 czerwień wyparła zieleń i stapiając się z resztką pomarańczowego dosięgła horyzontu” (cyt. w: http://publicdomainreview.org/2012/05/28/the-krakatoa-sunsets/). Malarz William Askroft spędził wiele popołudni, malując widoki nieba na brzegu Tamizy w Chelsea, było to dla niego frustrujące doświadczenie: jego sztuka była bezsilna wobec tej ruchomej powodzi kolorów.

7261360630_2085ed432a_o7261360998_60c9500aa6_o

Zachody słońca po erupcji Krakatau pokazały naocznie, że atmosfera jest wspólna dla całej Ziemi. Jeszcze jedną wspaniałą zaletą, za którą winniśmy wdzięczność naszej siostrze atmosferze, jest efekt cieplarniany. Gdyby nie było atmosfery temperatura Ziemi byłaby równa -20º C – tyle wynika z prostego bilansu energii przychodzącej ze Słońca i wysyłanej przez Ziemię. Ilości energii przychodzącej i wysyłanej w jednostce czasu powinny być równe, inaczej Ziemia musi się ogrzewać albo stygnąć. Naprawdę gdyby temperatura była tak niska, na powierzchni Ziemi byłoby dużo lodu, który świetnie odbija światło i w rezultacie mniej światła słonecznego byłoby pochłaniane przez Ziemię, co znaczy, że temperatura byłaby jeszcze niższa.
Nasza atmosfera przepuszcza niemal całkowicie światło widzialne – większą część energii docierającej do nas ze Słońca. Ziemia, a także sama atmosfera, także wysyłają promieniowanie termiczne, ale jest ono w większości podczerwone, gdyż temperatura Ziemi jest 20 razy mniejsza od temperatury Słońca. Atmosfera Ziemi jest jednak nieprzezroczysta w podczerwieni, dzięki parze wodnej i CO2. Bilans energetyczny wygląda w rezultacie tak.

greenhouse1

Ziemia wysyła więcej promieniowania podczerwonego, niż otrzymuje ze Słońca. Bilans energii zarówno „pod atmosferą”, jak i „nad atmosferą” jest zerowy: tyle samo energii przychodzi i ucieka. Jednak atmosfera promieniuje w górę i w dół, dzięki czemu Ziemia może wysyłać więcej energii – a to oznacza, że jej temperatura jest wyższa: zamiast -20º C otrzymalibyśmy +30º C (-20º C będzie teraz temperaturą na skraju atmosfery, a nie na Ziemi). Temperatura wyszła trochę za wysoka, ale to szczegół. Gdybyśmy przyjęli, że nie cała energia wysyłana w podczerwieni przez Ziemię jest pochłaniana przez atmosferę, ale część jej ucieka w kosmos, wynik byłby bardziej realistyczny. Widać o co chodzi: im bardziej nieprzezroczysta atmosfera w podczerwieni, tym wyższa temperatura planety. Efekt ten – efekt cieplarniany – jest zbawienny, bo, powtórzmy, marnie by nam się żyło w temperaturach średnich poniżej -20º C. Tyle, że gdy atmosfera stanie się zanadto nieprzezroczysta w podczerwieni, na Ziemi może stać się zbyt ciepło. Ludzie od XVIII wieku wysłali do atmosfery tyle CO2, że zaczęło to już wpływać na klimat globalny. Możemy stać się ofiarami naszego sukcesu ewolucyjnego i cywilizacyjnego. Oczywiście, przyszłość jest nieznana, bo może też nadlecieć za, powiedzmy, pięćdziesiąt lat duża asteroida i zafundować nam nie tylko piękne zachody słońca, ale w ogóle zimę na dziesięć lat. Wtedy nikt się nie będzie musiał martwić globalnym ociepleniem, zresztą ryjówki mają na to za mały mózg.

Einstein, Gödel i czas

Einsteinowska teoria względności wprowadziła pojęcie czasoprzestrzeni: czterowymiarowego połączenia przestrzeni i czasu. Punktami czasoprzestrzeni są zdarzenia: należy podać ich miejsce i czas. W takim obrazie świata czas przypomina współrzędne przestrzenne, do pewnego stopnia może się z nimi mieszać (choć nie do końca). Zdarzenia, które mogą przyczynowo wynikać z danego zdarzenia punktowego, tworzą w czasoprzestrzeni stożek, którego wierzchołkiem jest właśnie owo punktowe zdarzenie. Pobocznicę stożka tworzą zdarzenia, które mogą zostać połączone z wierzchołkiem impulsem biegnącym z prędkością światła: np. falą elektromagnetyczną albo grawitacyjną. We wnętrzu stożka leżą zdarzenia, do których można się przedostać za pomocą innych, nie tak szybkich oddziaływań. Łącznie stożek przyszłości obejmuje wszystkie fizycznie możliwe następstwa danego zdarzenia. Obszar poza tym stożkiem, jest niedostępny dla oddziaływań. O tych zdarzeniach poza stożkiem przyszłości nie możemy nawet powiedzieć, że następują później, ponieważ w innym układzie odniesienia mogą nastąpić wcześniej albo równocześnie z naszym punktowym zdarzeniem. Ponieważ zdarzenia spoza stożka nie mogą być skutkami naszego zdarzenia, więc ewentualna zmiana kolejności czasowej niczego nie burzy w porządku świata.
Można powiedzieć, że perspektywa fizyka-relatywisty to spojrzenie z punktu widzenia wieczności: cała rozmaitość wszechświata wypełniona zdarzeniami we wszystkich możliwych czasach. My sami, podobnie jak każdy inny obiekt, możemy być przedstawieni za pomocą linii świata (może całej ich wiązki), czyli naszej trajektorii w czasoprzestrzeni. Nawet siedząc w fotelu przemieszczamy się w czasoprzestrzeni, czy może niezliczona liczba naszych kopii współistnieje w różnych jej punktach. Fizycznie możliwe linie świata leżą w stożku przyszłości każdego swego punktu, są to krzywe czasopodobne.
Kurt Gödel, urodzony w Brnie, lecz pochodzący z rodziny niemieckiej, wybrał obywatelstwo austriackie zamiast czechosłowackiego. Pod koniec lat trzydziestych Gödel cieszył się już sławą niewątpliwego geniusza. Jego młodzieńcze twierdzenia o niezupełności – wykazujące, że matematyka jest dziedziną znacznie bardziej ograniczoną, niż sądzono dotąd – są zapewne najważniejszym wynikiem z dziedziny podstaw matematyki w całym ubiegłym stuleciu. Jednak nawet niewątpliwe aryjskie papiery i światowa sława nie wystarczyły, aby mógł nadal pracować na uniwersytecie w Wiedniu po przyłączeniu Austrii do III Rzeszy. Gödel miał wcześniej zbyt liczne kontakty z żydowskimi uczonymi, aby mógł zostać na uczelni. Ostatecznie trafił do Princeton, gdzie bywał już wcześniej i gdzie zdążył się zaprzyjaźnić z Einsteinem. Paranoiczny, neurotyczny, trudny w kontaktach Gödel wydawał się przeciwieństwem przyjacielskiego, otwartego i skłonnego do żartów Einsteina. Obaj często razem wracali spacerem z Instytutu (Institute for Advanced Study). Fizyk zwierzył się nawet komuś, że właściwie chodził do Instytutu głównie ze względu na możliwość tych wspólnych spacerów, bo do własnej pracy nie przywiązywał już większej wagi. Einstein był także jednym ze świadków podczas zaprzysiężenia Gödla na obywatela amerykańskiego. Logik, spytany przez sędziego, czy sądzi, że w Stanach Zjednoczonych mógłby do władzy dojść reżim podobny do nazistów, zaczął wyjaśniać, że i owszem, konstytucja amerykańska jest bowiem wewnętrznie niespójna. Na szczęście sędzia Phillip Forman, który wcześniej zaprzysięgał Einsteina, zmienił dyplomatycznie temat, nie pozwalając logikowi rozwinąć szerzej swoich refleksji.
Gödel był gorącym teistą, luteraninem i sądził, że czas jest naszym złudzeniem, rzeczywisty świat musi być bezczasowy. W przeświadczeniu tym umacniało go odkrycie w roku 1949 dość szczególnego rozwiązania równań Einsteina. Rozwiązanie Gödla opisuje wszechświat, w którym istnieją zamknięte krzywe czasopodobne (close time-like curves, CTC).

reality_closed_timelike_curve

Oznacza to, że dla obserwatora poruszającego się w określony, lecz fizycznie możliwy sposób, czas się zapętla, a więc zdarzenia powtarzają się bez końca. Rozwiązanie Gödla nie opisuje naszego wszechświata, było to jasne od samego początku. „Fakt, że światy, w których nie ma czasu absolutnego i w których obiektywny odstęp czasu nie istnieje, zgodne są z prawami przyrody, rzuca pewne światło na sens czasu także w tych światach, w których można określić czas absolutny. – pisze Gödel – Gdyż (…) to, czy obiektywny odstęp czasu istnieje, czy nie (…) zależy od konkretnej konfiguracji materii i ruchu w świecie. Nie mamy tu wprawdzie bezpośredniej sprzeczności, lecz nie można uznać za satysfakcjonujący poglądu filozoficznego, który prowadzi do takich konsekwencji” (Albert Einstein: Philosopher-scientist, red. P.A. Schilpp, New York 1949, s. 562).
Odkrycie Gödla dało początek następnym rozwiązaniom tego rodzaju. Choć chyba praktycznie nikt nie wierzy, aby mogły one opisywać rzeczywisty wszechświat, ich analizowanie jest interesujące pod względem teoretycznym. Placet experiri – jak powtarzał Hans Castorp.

AEinstein_Goedel

Widzimy tu obu tak nieprawdopodobnych przyjaciół na jednym ze spacerów.

D.A. Henderson, synek Franklina i racjonalność decyzji o szczepieniu

W roku 2016 zmarł D.A. Henderson, epidemiolog, który walnie przyczynił się do zlikwidowania ospy na świecie. Był to wynik wieloletniej planowej pracy zespołu ludzi, którymi kierował najpierw w amerykańskiej CDC, a później w WHO. Fachowcy mówią, że to największy wymierny sukces w historii medycyny. Dramatem naszego świata jest fakt, że ludzie tacy jak on są niezbyt znani w przeciwieństwie do różnej maści celebrytów, skandalistów i kokainistów płci obojga.  OB-Henderson__13981471621450

Pisałem o epidemii w roku 1721 w Bostonie i tragicznym losie małego synka Benjamina Franklina. Stosując rachunek prawdopodobieństwa, nietrudno uzasadnić racjonalność decyzji o szczepieniu nawet przy niepełnych danych z XVIII wieku. Musimy pamiętać, że ówczesne szczepienie, tzw. inokulacja albo wariolizacja, różniły się od późniejszej metody. Zaszczepiano bowiem ludziom ospę ludzką, co w niektórych przypadkach kończyło się śmiercią. Dopiero pod koniec stulecia Edward Jenner odkrył, że bezpieczniejsze jest zaszczepianie ludziom ospy krowiej.

Zazwyczaj w podręcznikach matematyki mamy do czynienia z urnami, z których wyciąga się kule i w zależności od tego, co wyciągniemy, pojawiają się różne możliwości i budujemy drzewo rozmaitych ewentualności. Szczepienia są przykładem lepiej chyba przemawiającym do wyobraźni niż losowania białych i czarnych kul z urny.

Oto dane dla epidemii w Bostonie w roku 1721.

  • Liczba ludności miasta: 10 700
  • Poddanych inokulacji 281, z czego 6 zmarło
  • Spośród niepoddanych inokulacji 4917 zachorowało i przeżyło, 842 osoby zachorowały i zmarły, a 4654 osoby w ogóle nie zachorowały

Będziemy prawdopodobieństwa przybliżać częstościami, zazwyczaj nie mamy na to lepszego sposobu, należy pamiętać, że dane pochodzące z niewielkiej próby mogą się okazać niedokładne i dysponując większą statystyką, otrzymalibyśmy nieco inne wyniki. Mamy więc prawdopodobieństwo zgonu po inokulacji równe 6/281=0,021 i przeżycia inokulacji 1-0,021=0,979.

Prawdopodobieństwo zgonu wśród niepoddanych inokulacji oraz zarażonych jest równe 842/(842+4917)=0,146, a prawdopodobieństwo przeżycia w tej samej grupie równa się 1-0,146=0,854.

Prawdopodobieństwo zarażenia osoby niepoddanej inokulacji możemy próbować oszacować na podstawie naszych danych jako (4917+842)/(4654+4917+842)=0,553. Jest to szacowanie z dołu: musimy pamiętać, że część spośród 4654 osób, które nie zachorowały, przeszła już kiedyś ospę i była uodporniona na resztę życia. Jeśli prawdopodobieństwo zarażenia osoby, która nie przeszła ospy, oznaczymy przez x, mamy następujące drzewo możliwości.

qc23465.f1

Rysunek z pracy M Best, A Katamba, and D Neuhauser, Making the right decision: Benjamin Franklin’s son dies of smallpox in 1736.

Jeśli przyjmiemy x=0,553, to prawdopodobieństwo przeżycia bez inokulacji będzie równe (1-x)+x cdot 0,854=0,919. Jak widać, wartość ta jest mniejsza od prawdopodobieństwa przeżycia inokulacji, zatem statystycznie biorąc, zabieg ten zwiększa szanse przeżycia. Gdybyśmy mieli więcej informacji, wartość x mogłaby się okazać jeszcze większa, a to by oznaczało, że prawdopodobieństwo przeżycia bez inokulacji jest jeszcze mniejsze (można zapisać to prawdopodobieństwo jako 1-x+0,854x=1-0,146x, jest to więc malejąca funkcja zmiennej x).

Można też się zastanowić, jaka musi być najmniejsza wartość x, żeby inokulacja była racjonalnym zabiegiem. Granicą racjonalności będą równe prawdopodobieństwa zgonu: xcdot 0,146=0,021, skąd x> 0,144. Ponieważ dane wskazują, że prawie na pewno ostatni warunek jest spełniony, inokulacja jest racjonalnym zabiegiem.

Nie mamy, niestety, danych dla epidemii w 1736 roku w Filadelfii, gdzie mieszkał Benjamin Franklin z rodziną. Mamy jednak dane dla późniejszej epidemii w Bostonie w roku 1752.

  • Boston liczył wówczas 15 684 mieszkańców
  • 5998 osób przeszło już ospę i nie musiało się jej obawiać
  • 2124 osoby poddały się inokulacji (znacznie więcej niż w roku 1721), 30 z nich zmarło
  • 1843 osoby uciekły na wieś, by przeczekać epidemię, nie wiemy, jak wiele spośród nich zmarło.
  • 5719 osób nie poddało się inokulacji ani nie uciekło; 97% spośród nich zachorowało, a 539 zmarło

Prawdopodobieństwo zgonu po inokulacji równe jest 30/2124=0,014; prawdopodobieństwo przeżycia: 0,986. Wartości zbliżone są do tego, co otrzymaliśmy wyżej dla roku 1721.

Wśród niezaszczepionych i narażonych na zachorowanie śmiertelność była równa 539/(0,97cdot 5719)=0,097, prawdopodobieństwo przeżycia choroby równało się 1-0,097=0,903. Oznaczało to, że nie robiąc nic, ma się prawdopodobieństwo przeżycia 0,03+0,97cdot 0,903=0,906. Należy porównywać to z wartością 0,986 dla zaszczepionych. Inokulacja była więc znacznie lepszą decyzją.

Statystyka z roku 1752 obejmuje jeszcze możliwość ucieczki z miasta. Była to najprostsza metoda unikania chorób epidemicznych i kogo było na nią stać, ten ją stosował. Nie znamy prawdopodobieństwa zachorowania wśród tych, co uciekli. Oznaczmy je przez y. Mamy więc następujące drzewo możliwości.

qc23465.f2

(Rysunek z pracy jw.)

Można zadać pytanie, jakie powinno być y, aby ucieczka była lepszym wyjściem niż pozostanie w Bostonie i poddanie się inokulacji. Prawdopodobieństwo zgonu osoby uciekającej to 0,097y, należy je porównać z prawdopodobieństwem zgonu po inokulacji, równym 0,014. A zatem, jeśli y< 0,144, to ucieczka jest racjonalna. Trudno jest oczywiście oszacować wartość y, zależy ona np. od tego, czy uciekniemy, zanim jeszcze epidemia się rozwinie, czy w jej późniejszej fazie (choroba ma pewien okres inkubacji, możemy więc wyjeżdżając czuć się dobrze mimo zarażenia). W dodatku uciekając, nadal nie mamy odporności na ospę, a w Bostonie w ciągu osiemnastego wieku większe epidemie wystąpiły w latach 1721, 1730, 1752, 1764, 1776, 1778 oraz 1792. Można się było spodziewać, że za kilkanaście lat choroba znów się pojawi.

Sofia Kovalevskaya – pożytki z własnego pokoju

W znanym eseju zatytułowanym Własny pokój Virginia Woolf zastanawia się nad późnym pojawieniem się kobiet w literaturze. Gdyby Shakespeare miał siostrę, równie jak on utalentowaną, nie udałoby się jej niczego osiągnąć w ówczesnym świecie. Nawet w XIX wieku literacka kariera kobiet nie była łatwa, Jane Austen, pisała swe książki we wspólnej bawialni, gdzie zawsze coś się działo, nie miała bowiem pokoju dla siebie, w którym mogłaby się zamknąć i pisać.
Sofia Kovalevskaya była córką generała Korwin-Krukowskiego, na poły Polaka, który jednak służył całe życie w carskiej armii i czuł się Rosjaninem. W okresie powstania styczniowego rodzina mieszkała na Litwie i choć generał nie brał żadnego udziału w tłumieniu powstania, znalazł się w trudnej sytuacji zarówno wobec okolicznych Polaków, którzy musieli z nim utrzymywać stosunki towarzyskie, jak i wobec swoich przełożonych, którzy nie byli pewni jego lojalności. Jego nastoletnia córka, Sofia, była nad wiek rozwiniętą osóbką, po uszy zakochaną w pewnym dorosłym sąsiedzie panu Bujnickim. Bujnicki poszedł do powstania i ślad po nim zaginął, a jego majątek został zlicytowany. Sofia roiła sobie, że go pomści albo odszuka gdzieś na Syberii za kilka lat, kiedy tylko dorośnie i wyrwie się spod opieki guwernantki. Stłumienie polskiego powstania i późniejsze represje nie podobały się zresztą wielu Rosjanom i oficerowie, którzy brali w tym udział, niekoniecznie byli dobrze widziani przez swoich kolegów.
Generalska córka miała oczywiście własny pokój. Także w domu na wsi, w Palibino, gdzie rodzina spędzała sporo czasu. Nie oznaczało to chyba szczególnego komfortu, gdyż pokój Sofii zamiast tapetą oklejony został wykładami akademika Ostrogradskiego dotyczącymi rachunku różniczkowego i całkowego. Sofia, już wcześniej słyszała coś niecoś o matematyce od swego stryja: o kwadraturze koła, o asymptotach, co zbliżają się do prostej, nigdy jej nie osiągając. Długie godziny spędzała na odczytywaniu tajemnych symboli matematycznych. Nic z tego nie rozumiała, ale dużo zapamiętała na całe życie. Uczono ją w domu i matematyka nie była w tej edukacji traktowana serio, ojciec nie lubił zresztą uczonych kobiet. Kiedyś wpadł Sofii w ręce elementarny podręcznik fizyki, napisany przez ich sąsiada, profesora Tyrtowa. Dziewczynka przeczytała książkę, usiłując z kontekstu odgadnąć sens takich pojęć jak sinus. Widząc to Tyrtow przekonał generała, że warto córkę uczyć matematyki.

kovalevszkaja2

Sofia bardzo wcześnie wyszła za mąż za Vladimira Kovalevskiego. Było to małżeństwo fikcyjne, pozwalające jednak dziewczynie na wyjazd za granicę bez opieki rodziców. Pojechała do Heidelbergu i do Berlina studiować, co nie było łatwe, ponieważ uniwersytety nie przyjmowały kobiet. Wszędzie musiała się specjalnie starać o prawo słuchania wykładów, bez formalnej immatrykulacji. I nawet to nie zawsze udawało się uzyskać. Jak sama twierdzi, najwięcej nauczyła się w trakcie prywatnych lekcji u Karla Weierstrassa, który nie szczędził swego czasu, kiedy przekonał się o jej matematycznym talencie. Zamiast pracy doktorskiej na jeden temat Kovalevskaya przedstawiła trzy, na podstawie których uniwersytet w Getyndze nadał jej doktorat cum summa laude [z najwyższym wyróżnieniem]. Nie odbyła się jednak publiczna obrona i całość została przeprowadzona tak, by nie burzyć spokoju męskiego grona profesorskiego.
Młoda osoba interesowała się nie tylko matematyką, sporo podróżowała, znała kilka języków, zetknęła się z wieloma wybitnymi postaciami, jak Thomas Huxley, Charles Darwin, czy George Eliot. Przyjaźniła się z rodzeństwem Göstą Mittag-Lefflerem (wybitnym matematykiem, też studentem Weierstrassa) i jego siostrą, pisarką, Anne Charlotte Leffler, z którą razem zajmowały się pracą literacką. W 1888 roku trzydziestoośmioletnia Sofia wygrała konkurs paryskiej Akademii nauk. Chodziło o ścisłe rozwiązanie równań ruchu bryły sztywnej. Znane były rozwiązania Eulera i Lagrange’a, rozwiązanie Kovalevskiej jest do tej pory trzecim i ostatnim takim przypadkiem (por. E.T. Whittaker, Dynamika analityczna). Ścisłe rozwiązania odgrywają w nauce wyjątkowo istotną rolę, stanowiąc coś w rodzaju teoretycznego laboratorium, w którym można badać własności rozwiązań niedostępne w innych przypadkach. Odkrycie Kovalevskiej aż po dzień dzisiejszy inspiruje specjalistów z fizyki matematycznej. Praca naukowa kobiety w Rosji była w tamtych czasach niemożliwa i cały dorobek Kovalevskiej powstał za granicą. W 1889 roku została profesorem zwyczajnym na stosunkowo młodym uniwersytecie w Sztokholmie. Była pierwszą kobietą, która osiągnęła ten klasyczny szczyt naukowej kariery. Niedługo później zmarła niespodziewanie na grypę.

Thomas Mann, Moje czasy, 1950

W chwili pisania tego eseju Mann ma 75 lat i świadomość, że nie zostało mu wiele życia: „to właśnie są czasy mi dane, klepsydra dla mnie postawiona, a piasku przesypującego się delikatnym strumykiem tak niewiele u góry zostało, że mógłby mnie ogarnąć lęk, gdyby w wypadku czasu nie chodziło o coś tak osobliwie cennego i płynnego, że mała jego ilość wciąż jeszcze pozostaje ilością wielką”. Wzbrania się pisać o sobie, woli pisać o epoce, którą wyrażał w swoich książkach.

Mówi o swoim pokoleniu. „Nie chcemy, jak to powiedziano w dawnej niemieckiej kolędzie: «zazdrościć sobie darów» i chełpić się ich pięknem. Wszystkie pokolenia będą obdarowane. A jednak chciałbym podkreślić pewną zaletę, jaką mogą poszczycić się ludzie urodzeni w roku 1875 względem tych, którzy przyszli na świat w 1914 lub później: Nie jest bez znaczenia, że mogliśmy żyć w ostatniej ćwierci dziewiętnastego stulecia – wielkiego stulecia – że mogliśmy być obywatelami schyłkowej fazy kultury mieszczańskiej, epoki liberalnej, że mogliśmy żyć jeszcze w tym świecie, wchłaniać jego atmosferę…”. Były to czasy budowania potęgi Niemiec Bismarcka, zwycięskich w wojnie z Francją w 1870 roku. Czasy Reichsbanku, o którym mówiono, iż jest tak dobrze zorganizowany, że gdyby jego prezes oszalał, to jeszcze przez cały rok nie odbiłoby się to na działaniach podległej mu instytucji. Pisze Mann: „Fakt, że funt angielski wart był 20 marek, dolar cztery, że za jedną markę Rzeszy Niemieckiej kupić można było 120 centymów włoskich, szwajcarskich czy francuskich, wydawał się czymś nienaruszalnym i zgodnym z wolą Boga. Ktoś, kto nie miał w ręku złotych pieniędzy, ten nie poznał aurea aetas [złotego wieku] mieszczaństwa, dziś jeszcze, w głębokiej starości, odczuwam drżenie, wspominając, że pierwsze honorarium autorskie otrzymałem w postaci trzech złotych dziesięciomarkowych monet. Rysem charakterystycznym tej epoki były solidność i przyzwoitość”. Nie obnażano ciał, jedynie na uroczystych balach panie odsłaniały ramiona i dekolty. Za czasów Manna pojawił się kant na męskich spodniach i odstawiono do muzeum ostatni konny tramwaj w Monachium. Nastąpiła rewolucja, czy może nawet ciąg kolejnych rewolucji w oświetleniu: lampy naftowe, gazowe, potem elektryczne. Pojawiły się rowery, samochody, samoloty.

Niemożliwe są jednak zmiany ograniczone wyłącznie do sfery materialnej, nowe wynalazki i odkrycia bez wpływu na świat mentalny, wyobraźnię, poczucie moralne. Niełatwo tu zresztą ocenić, co jest przyczyną, co skutkiem, a co tylko przygodną zbieżnością w czasie. Równolegle do republiki uczonych, polityków, nuworyszów, dorabiających się majątku, na czym tylko się dało, płynął nurt romantyzmu, sprzeciwu wobec „szkiełka i oka”, dostrzegania tego, co wydawało się nieistotne, a nawet nieprzyzwoite – w imię prawdy uczuć czy prawdy społecznej. Za mieszczańską fasadą kształtowała się nowa buntownicza wrażliwość: Wagner, odsłaniający ciemną potęgę pierwotnych namiętności, miłość mocną jak śmierć i bohaterów, którzy muszą wypełnić swe przeznaczenie, choćby musieli przypłacić to życiem. Niepokojące sny zostały podniesione do rangi zbiorowego mitu. Niedaleko już było do Freuda i Junga. Nie jest też przecież przypadkiem, że festiwale w Bayreuth tak cenił Adolf Hitler. Pojawili się mistrzowie demaskacji, jak Nietzsche, z bolesnym zapamiętaniem odwracający znaki mieszczańskich wartości, jak Marks, doszukujący się w religii, instytucjach państwa i całym publicznym dyskursie nie ponadczasowych treści, lecz żałosnych prób uzasadnienia gnijącej cywilizacji kapitalizmu, przedłużenia krzyczącej niesprawiedliwości w podziale dóbr.

Stanem świadomości europejskiej na początku wieku XX zajmuje się Czarodziejska góra, dojrzała powieść Manna, która ukazała się w 1925 roku, gdy jej autor przekroczył półwiecze. O duszę jasnowłosego prostaczka Hansa Castorpa, niedoszłego inżyniera okrętowego z Hamburga, walczą tam różne siły, personifikowane przez Kławdię Chauchat, a także dwóch ideologicznych pedagogów: nacjonalistę i liberała Lodovica Settembriniego oraz jezuitę i rewolucjonistę Leona Naphtę. Kławdia jest Rosjanką, piękną, choć trawioną gorączką i mało sobie robiącą z konwenansów kobietą o oczach szkolnego kolegi, pierwszej miłości Hansa. To ona przywiązuje go na siedem baśniowych lat do międzynarodowego sanatorium Berghof w Davos, sprawiając, że zrywa wszelkie kontakty z „nizinami”. Siłą tej psychomachii jest rozdzielenie racji. Mannowi bliżej zapewne do Settembriniego, lecz za nieznośne uważa jego wzniosłe deklamacje o ludzkości i lepszym jutrze. Naphta jest zagrożeniem (mówiono, iż pierwowzorem tej postaci był György Lukács, filozof marksistowski), ponieważ lepiej rozumie, że człowiek niekoniecznie chce być dobry i że gotów jest popełnić niejedną zbrodnię choćby z ciekawości, obojętności albo dla poczucia wspólnoty. Jak mówi ćwierć wieku później sam Mann: „można postawić pytanie, czy człowiek, kierując się potrzebą psychicznych i metafizycznych więzi, od wolności nie pragnie bardziej grozy”.

Artysta, Thomas Mann, za swój obowiązek uważał zawsze służenie prawdzie – prawdzie artystycznej, gdyż naukowej zbytnio nie cenił. Być może uczeni są przy kimś takim jak Mann jedynie naiwnymi inżynierami z Hamburga, uruchamiającymi moce, nad którymi nie potrafią zapanować, ponieważ nie rozumieją sami siebie. Czy na gruncie uczciwego podejścia do prawdy mogliby się kiedyś spotkać? I czy są jeszcze pisarze, traktujący swe posłannictwo z taką mieszczańską sumiennością i odpowiedzialnością za słowo jak Thomas Mann?

„Jako pisarz, jako psycholog, jako kreator tego, co ludzkie, zaprzysiągłem wierność prawdzie, jestem na nią skazany. Lubię jej wdzięk, lubię, gdy przenika mnie jej godność i pogarda dla nieprawdy”. Szczególnie ostre słowa ma Thomas Mann dla nieprawdy wykorzystywanej do celów politycznych. „Gregorovius w swoich Dziejach miasta Rzymu w okresie średniowiecza, tam, gdzie omawia powstanie Kościoła chrześcijańskiego i dogmatów jego wiary, na przykład prymat biskupa Rzymu, a zatem utrwalanie się władzy papieskiej, pisze z całym spokojem zdanie: «Jeśli zatem władza czcigodnej, spoczywającej na kilkuwiekowej wierze tradycji jawi się jako coś cudownego, to należy rozważyć kwestię, iż w obrębie wszelkiej kształtującej się religii tradycje i legendy tworzą fundament praktycznej działalności. Gdy tylko uzna je świat, stają się faktami.» Osobliwą grozą napawa mnie to flegmatyczne zdanie. Jak to jest? Legendy, gdy tylko «uzna je świat», stać się mogą prawdą – mity, baśnie, fałszerstwa, kłamstwa fundamentem dziejowej rzeczywistości? (…) W takim razie są one ohydną odmianą poezji, poezji przemocy, gdyż wszelkie usprawiedliwianie nieprawdy jest w końcu przemocą, podobnie jak nią jest choćby najłagodniejsze wykorzystywanie ludzkiej potrzeby wiary”. Mann odnosi swe refleksje do totalitaryzmu, który z kłamstwa tworzy nową religię. I rzeczywiście, totalitaryzmy najmocniej eksploatowały ludzką potrzebę wiary i wspólnoty, ale czy tylko one? Czy wszelka władza, kiedy tylko nie napotyka oporu, nie ulega totalitarnym pokusom? Czy abstrakcyjne, wirtualne wspólnoty dzisiejszego świata wolne są od fałszywych mitów założycielskich? Czy nie jesteśmy w coraz większym stopniu manipulowani przez specjalistów od wmawiania nieprawdy i odwracania uwagi?
Warto czytać Thomasa Manna.

Cytaty w przekładzie Huberta Orłowskiego za wyborem esejów Moje czasy, Wydawnictwo Poznańskie, Poznań 2002.

Religia Einsteina i Spinoza

W związku z publicznym zainteresowaniem postacią Barucha Spinozy pragnę przypomnieć, że do wiary w Boga Spinozy przyznawał się wielokrotnie Albert Einstein. Uczony czytał Spinozę, zwiedził jego dom zamieniony na muzeum i wielokrotnie się wypowiadał na temat filozofa. Więcej o Spinozie pisałem tutaj. Przypominam wpis z roku 2012, choć nie sądzę, żeby w wiadomościach TVP pojawił się pasek o treści: „Einstein wierzył w Boga Spinozy”

Przez media przewinęła się ostatnio wiadomość o wystawieniu na aukcji listu Einsteina z 1954 roku, a więc napisanego niedługo przed śmiercią uczonego. List dotyczy religii i skierowany był do filozofa Erika Gutkinda. Może to objaw nasilenia wojny kultur (a może szukania dobrych lokat kapitału w niepewnych czasach), w każdym razie list został sprzedany za przeszło trzy miliony dolarów, podczas gdy w 2008 kosztował zaledwie 400 000 dolarów.

Einstein mówi w tym liście rzeczy, jakie wielokrotnie powtarzał w ciągu swego życia. „Słowo Bóg jest dla mnie jedynie wyrazem i wytworem ludzkiej słabości, a Biblia zbiorem dostojnych, lecz jednak mocno prymitywnych legend. Żadna, nawet najbardziej subtelna interpretacja nie może tego (moim zdaniem) zmienić. Te wysubtelnione  interpretacje są ze swej natury wielce różnorodne i nie mają prawie nic wspólnego z pierwotnym tekstem. Nieskażona religia żydowska jest dla mnie, tak samo jak wszystkie inne religie, wcieleniem prymitywnych przesądów. I naród żydowski, do którego chętnie należę i z którego mentalnością czuję się głęboko zrośnięty, nie ma w moich oczach żadnej szczególnej godności, odmiennej niż inne narody”.

Jeszcze w okresie międzywojennym Einstein został zaatakowany przez kardynała Bostonu Williama Henry’ego O’Connella: „Zwątpienie i mgliste spekulacje na temat czasu i przestrzeni prowadzą jedynie do stworzenia zasłony, poza którą skrywa się upiorne widmo ateizmu”. Także rabin Herbert S. Goldstein z Nowego Jorku poczuł się zaniepokojony i wysłał do Einsteina telegram: „Czy wierzy pan w Boga? Stop. Odpowiedź opłacona do 50 słów”. Odpowiedź uczonego, choć telegraficznie skrótowa, nie zadowoliła chyba rabina: „Wierzę w Boga Spinozy, który objawia się w regularnej harmonii wszystkiego, co istnieje, ale nie w Boga, który zajmuje się losami i uczynkami ludzkości”.

A jednak mimo wypowiedzi, które sprawiać musiały spory zawód rozmaitym przedstawicielom Boga na ziemi, Albert Einstein był głęboko religijny z natury. Kiedy mówił o Bogu, który nie rzuca kośćmi albo jest wyrafinowany, lecz nie złośliwy, mówił bardziej serio, niż mogło się zdawać. Bóg w jego ustach był czymś więcej niż tylko façon de parler. Uczonemu bliżej było do bogobojnego protestanta Keplera niż do obrazoburcy Galileusza. Wypowiadał się otwarcie, nie ukrywał poglądów, ale nie miał temperamentu bojownika, polemisty, dyskutanta, pragnącego odnieść zwycięstwo za wszelką cenę. Choćby za cenę prawdy. Wspominany przeze mnie Max Brod wydał w 1948 roku jeszcze jedną powieść historyczną o uczonych. Nosiła tytuł Galilei in Gefangenschaft („Galileusz uwięziony”) i zapewne nie była lepsza od książki o Tychonie Brahe. Autor przesłał ją Einsteinowi, a ten odpisał z podziękowaniem i uwagami po lekturze. „Wyobrażam go sobie inaczej. Nie należy wątpić w to, że walczył on namiętnie o prawdę – bardziej niż ktokolwiek inny. Ale trudno uwierzyć, aby człowiek dojrzały widział sens połączenia odnalezionej prawdy z płytkimi myślami tłumu, zaplątanego w groszowe interesy. (…) Bez szczególnej potrzeby udaje się on do Rzymu, by walczyć z klechami i innymi politykierami. Taki obraz nie odpowiada memu wyobrażeniu o niezależności wewnętrznej starego Galileusza. Nie mogę sobie wyobrazić, bym ja na przykład przedsięwziął coś w tym rodzaju, by bronić teorii względności. Pomyślałbym, że prawda jest znacznie silniejsza ode mnie i wydawałoby mi się śmieszną donkiszoterią bronić jej mieczem, osiodławszy Rosynanta”.

Intuicja Einsteina była częściowo trafna. Galileusz niewątpliwie bardziej od Einsteina gustował w polemikach (choć nie był chyba bardziej od Einsteina uparty, jeśli chodzi o pryncypia). Jednak Galileusz nie jeździł do Rzymu jedynie po to, by zaspokoić swoją potrzebę wielkości i chwały. Być może z początku wiodła go ambicja. Szybko jednak zrozumiał, że gra toczy się o elementarną swobodę dyskusji i ocalenie własnej skóry. Był szanowanym uczonym, który chciał ogłosić dzieło życia, wiedząc, że nie zostanie ono dobrze przyjęte przez władze kościelne. Dzieło nie dotyczyło religii, wydawało się więc, że jakiś kompromis będzie możliwy, aby obie strony mogły wyjść z twarzą.  Kościół zawsze deklarował poparcie dla nauk. Jednak układy z władzą absolutną obowiązują tylko jedną stronę. Galileusz zapewne musiał przegrać, ponieważ był zbyt mało cyniczny.

Albert Einstein miał zdecydowane poglądy w wielu sprawach, ale był też człowiekiem mądrym (to nie to samo, co być wybitnym uczonym: głupich, choć wybitnych był legion). Rozumiał, że nie każda dyskusja może zostać rozstrzygnięta, czy to w nauce, czy w życiu publicznym. Podejrzewam też, że rozumiał, jak niewiele w istocie dzieli ludzi, jeśli chcą się poważnie zastanowić nad swoimi poglądami i swoją wiarą, a nie podporządkować sobie innych. Większość tzw. debat publicznych nie ma niestety nic wspólnego z namysłem, bardzo zaś wiele z władzą i dominacją. Poszukiwanie prawdy jest czymś zgoła innym.

Oko ludzkie i doskonałość stworzenia

Czy długa szyja żyrafy, zajęcze skoki albo narząd taki, jak ludzkie oko, są wytworem opatrznościowego inteligentnego projektu, czy też mogły ukształtować się samorzutnie wskutek ewolucji? Do połowy XIX wieku poglądy ewolucyjne były raczej odosobnione i niedopracowane. W żywych istotach widziano przykład mądrości bożej. Nawet arcyniedowiarek Voltaire pisał w swym Traité de métaphysique (czyli „Traktacie metafizycznym”):

Kiedy widzę zegarek, którego wskazówka pokazuje godziny, dochodzę do wniosku, że istota inteligentna rozmieściła sprężyny tej machiny w taki sposób, by wskazówka pokazywała godziny. Podobnie widząc sprężyny ciała ludzkiego, dochodzę do wniosku, że istota inteligentna rozmieściła jego narządy w taki sposób, aby mogło mieścić się i odżywiać przez dziewięć miesięcy w macicy; że oczy są mu dane, by widzieć, ręce, aby chwytać itd.

Voltaire nie był osobistym wrogiem Stwórcy, był deistą, sceptycznie zapatrującym się na Jego samozwańczych przedstawicieli na ziemi. Argument Voltaire’a podjęty został przez teologa Williama Paleya, który w zegarku znalezionym na wrzosowisku chciał widzieć dowód istnienia Boga, i to koniecznie w jego anglikańskiej odmianie. Rozwijana była, zwłaszcza w XIX wieku, tzw. teologia naturalna. Podkreślano w niej rozmaite przykłady dostosowania istot żywych albo ich poszczególnych narządów do swych funkcji i traktowano to jako przykłady inżynierskich talentów Stwórcy – był wszak wiek przemysłu napędzanego siłą pary, a niebawem także elektryczności, i inżynierowie byli w cenie.Także młody Charles Darwin znał i podzielał argumentację tego rodzaju, zanim odkrył inne rozwiązanie: żywe organizmy mogą ewoluować, a sukces odnoszą te z nich, którym najlepiej uda się wykorzystać swoje środowisko. Nie ma więc projektu ani zegarmistrza czy konstruktora, jest następowanie kolejnych innowacji, kumulujących się niekiedy w coś tak bliskiego doskonałości jak oko ludzkie albo gepard.

W liberalnym i dżentelmeńskim świecie Darwina dyskusja musiała być rzetelna, wyzbyta demagogii. Dlatego w dziele O powstawaniu gatunków uczony zamieścił cały rozdział poświęcony trudnościom własnej teorii – coś, czego jego dzisiejsi koledzy, tak usilnie walczący o przetrwanie w akademickim środowisku, z reguły nie robią, poprzestając na autoreklamie.

Pisze Darwin:

Przypuszczenie, że oko ze wszystkimi swoimi niezrównanymi urządzeniami do nastawiania ogniskowej na rozmaite odległości, do dopuszczania rozmaitych ilości światła oraz korygowania aberracji sferycznej i chromatycznej mogło powstać drogą doboru naturalnego, wydaje się – przyznaję to otwarcie – w najwyższym stopniu niedorzeczne. Rozum jednak mi mówi, że jeśli można dowieść istnienia licznych stadiów pośrednich, od skomplikowanego i doskonałego oka do prostego i niedoskonałego, przy czym każde z tych stadiów jest użyteczne dla posiadacza, jeżeli zmiany te są bardzo niewielkie i dziedziczne (…), i jeżeli takie zmiany lub modyfikacje narządu będą zawsze korzystne dla zwierzęcia przy zmianie warunków życia, wtedy trudności przyjęcia, iż doskonałe i skomplikowane oko może powstać drogą doboru naturalnego (…) nie sposób uznać za rzeczywistą. [przeł. Sz. Dickstein, J. Nussbaum, popr. J. Popiołek, M. Yamazaki, s. 175-176]

O „doskonałości” oka ludzkiego powiemy nieco dalej. Najpierw spójrzmy na samą kwestię ewolucji od plamki ocznej do rozbudowanej struktury z gałką oczną, soczewką i siatkówką.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Dość łatwo wyobrazić sobie kolejne kroki ewolucyjne i korzyści z nich płynące: lepiej mieć jakiś detektor światła niż go nie mieć (np. u fotosyntezującej eugleny światło jest źródłem energii, korzystnie jest zatem znaleźć się w miejscu o lepszym oświetleniu). Podobnie, lepiej jest otrzymywać jakąś, nawet niedokładną informację o kierunku, z którego dociera światło, niż nie otrzymywać jej wcale. Naturalne więc są struktury typu camera obscura: otwór, przez który wpada światło, a naprzeciwko tego otworka komórki światłoczułe. Oko tego rodzaju pozwala zaobserwować jakiś obraz przedmiotu, ma jednak słabą zdolność rozdzielczą i wpuszcza niewiele światła. Owady wykorzystują wiele egzemplarzy takich oczu jednocześnie. Lepszym rozwiązaniem jest poszerzenie otworu, którym wpada światło i umieszczenie soczewki wytwarzającej obraz na światłoczułym ekranie – siatkówce. Można wówczas regulować ilość światła docierającego do siatkówki oraz uzyskać obraz o dobrej zdolności rozdzielczej.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Obliczono, że cała ta ścieżka ewolucyjna może zmieścić się w czasie rzędu pół miliona lat, przyjmując, że u małych organizmów morskich pokolenie trwa mniej więcej jeden rok). Oznacza to, że kiedy wydarzyła się eksplozja kambryjska: pojawienie się licznych zwierząt około 540 mln lat temu, to praktycznie natychmiast (w skali geologicznej) powinny się też pojawić oczy. Wśród skamieniałości z kambru znajdują się trylobity i żywiące się nimi drapieżniki anomalocaris – zwierzęta te posiadały oczy złożone. Odkryto też, że u gatunków tak różnych, jak myszy, owady i ludzie wpływ na budowę oka ma ten sam gen regulujący PAX6, najwyraźniej mieliśmy więc wspólnych przodków.

Grafika: Trevor D. Lamb, Evolution of the Eye, „Scientific American”, July 2011

Dzielimy przeszłość oka ze śluzicą (hagfish) i minogiem (lamprey). W rozwoju embrionalnym oko człowieka powtarza owe wczesne stadia rozwojowe.

Parę słów na temat jakości optycznej naszego oka. Nie jest ono bynajmniej konstrukcją idealną. W zasadzie ostry obraz odbieramy tylko poprzez czopki skupione w plamce żółtej na powierzchni około 1 mm² – jest to zdecydowanie najbardziej drogocenny fragment naszego ciała. Daje to pole widzenia rzędu zaledwie 2°. Czopki zapewniają nam też widzenie barwne, ponieważ występują w trzech odmianach, które wrażliwe są (głównie) na czerwień, zieleń i błękit. Wrażenie obrazu przed oczami tworzone jest przez nasz mózg, wzrok skanuje bowiem nieustannie pole widzenia (dlatego tak ważna jest ruchomość gałki ocznej). Mamy tu więc do czynienia z dobrej jakości kamerą o niezwykle wąskim polu widzenia, która tworzy szerszy obraz dzięki swoim bezustannym ruchom i oprogramowaniu. Spróbujmy np. przeczytać poniższy tekst, a zobaczymy, że idea linearnego odczytywania tekstu literaz za literą nie jest całkiem poprawna.

Nie werizłeim że mzóg mżoe bez polbrmeu oczdaytć sowła z pporyzsteaimawni ltemirai blye tlkyo perwizsa i otanista błyy na sowich mecscijah

Aberracje sferyczna i chromatyczna (*), o których mówił Darwin nie są w przypadku oka tak trudne do skorygowania, jak mu się zdawało, a to dlatego, że najważniejsze są promienie blisko osi optycznej, dla nich aberracje te są niewielkie. Możemy natomiast przystosowywać się do zmiennych warunków oświetlenia dzięki kurczeniu i rozszerzaniu źrenic oraz możemy modyfikować ogniskową całego oka tak, by obraz przedmiotów położonych niezbyt blisko oka był wyraźny (konkretna odległość dobrego widzenia zależy od indywidualnych cech oka oraz wieku jego posiadacza). W obrębie plamki żółtej zdolność rozdzielcza oka zbliża się do granicy dyfrakcyjnej, tzn. teoretycznej zdolności rozdzielczej (por. John Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop).

Pod względem konstrukcyjnym oko ludzkie jest jednak zbudowane gorzej niż oko ośmiornicy.

Po lewej stronie mamy oko kręgowca. Włókna nerwowe (2) przechodzą w nim przed światłoczułą siatkówką (1). Cały ten bałagan przed siatkówką pogarsza oczywiście jakość obrazu. Nerwy skupiają się w w dodatku w wiązkę (nerw wzrokowy) (3) w taki sposób, że pozostaje obszar oka niewrażliwy na światło, tzw. plamka ślepa (4). To, że jej zwykle nie widzimy, jest czarodziejstwem mózgu. Po prawej stronie mamy znacznie porządniejszy inżyniersko projekt oka głowonoga, gdzie siatkówka jest umieszczona przed nerwami wzrokowymi, które nie zakłócają biegu światła i nie tworzą plamki ślepej.

Jeśli Stwórca starał się osiągnąć projekt idealny, to udało mu się go zrealizować w przypadku ośmiornic, nie ludzi. Przypomina się odpowiedź wybitnego biologa J.S.E. Haldane’a na pytanie pewnego teologa, czego na temat Boga można dowiedzieć się z badań biologicznych. „Że wykazuje nadmierne upodobanie do chrząszczy” – brzmiała odpowiedź. Jest to aluzja do faktu, że istnieje około miliona gatunków chrząszczy, z czego tylko część jest znana badaczom.

(*) Aberracja sferyczna to efekt nieogniskowania wszystkich promieni w jednym miejscu przez soczewkę o powierzchniach idealnie sferycznych. W oku nie mamy do czynienia z tak prostą sytuacją, ale problem nieogniskowania w jednym punkcie także występuje.

Aberracja chromatyczna pojawia się, ponieważ promienie różnych barw mają różne współczynniki załamania, nawet więc gdyby kształt soczewki został zaprojektowany w sposób idealny, dotyczyłoby to jedynie jednej barwy, dla innych obraz musiałby być nieco rozmyty.

A kromatikus aberráció jelensége.

Harry Kessler: Spotkania z Einsteinem

Hrabia Harry Kessler, syn niemieckiego bankiera i córki irlandzkiego baroneta, urodził się w Paryżu, uczył w szkole prywatnej w Ascot, później w gimnazjum Johanneum w Hamburgu. Czuł się jednakowo dobrze w Niemczech, we Francji i w Anglii, choć wbrew stereotypowi kosmoplity był niemieckim patriotą. Zajmował się głównie sztuką, jako jeden z pierwszych propagował malarstwo Vincenta van Gogha, którego dwa obrazy posiadał. Wypełniał też rozmaite mniej lub bardziej oficjalne misje dyplomatyczne, do których nadawał się wybornie, mając świetne kontakty wśród elity europejskiej. W historii Polski zapisał się poprzez kontakty z Józefem Piłsudskim w czasie jego uwięzienia w Magdeburgu. Wkrótce później został też pierwszym zagranicznym ambasadorem w niepodległej Polsce. Jego Dziennik („Tagebuch”), prowadzony od 1880 r. do 1937 r., jest ważnym źródłem historycznym na temat Niemiec przed wojną światową, w jej trakcie, a także Republiki Weimarskiej i jej upadku.

Portret pędzla Edvarda Muncha z roku 1906

Młodszego o jedenaście lat Einsteina poznał Kessler w Berlinie. W lutym 1921 roku znaleźli się w jednej delegacji do Amsterdamu. Chodziło o ustanowienie kontaktów z Międzynarodowym Kongresem Związków Zawodowych mającym tam siedzibę, w tle majaczyła kwestia wysokości reparacji nałożonych na Niemcy. Obaj byli pacyfistami, Einstein od początku wojny, Kessler, po służbie na froncie i w misjach dyplomatycznych, doszedł do wniosku, że potrzebna jest jakaś forma międzynarodowej organizacji zapewniającej pokojową współpracę, częściową realizacją tej idei była Liga Narodów. Einstein półtora roku wcześniej stał się, niemal z dnia na dzień, najsławniejszym uczonym świata, kiedy brytyjscy astronomowie ogłosili wyniki obserwacji zaćmienia słońca potwierdzające jego teorię grawitacji.

Wcześnie w Bentheim, kontrola graniczna. Einstein, który, jak się zdaje, pierwszy raz podróżował sleepingiem, przyglądał się wszystkiemu z wielkim zainteresowaniem. W pociągu spytałem go, czy astronomiczne implikacje jego teorii względności mogą mieć zastosowanie w przypadku atomu, także zbudowanego w podobny, astronomiczny sposób. Einstein zaprzeczył temu, wskazując, że rozmiar (małość) atomu gra tu rolę. Powiedziałem na to, że wymiar, miara, wielkość i małość są czymś absolutnym, niemal jedynym absolutem, który się utrzymał. Einstein stwierdził, że w istocie rozmiar jest ostatecznym absolutem, poza który nie można wykroczyć. Był zaskoczony, że do tego doszedłem, gdyż absolutne znaczenie rozmiarów stanowi najgłębszą i niewytłumaczalną tajemnicę fizyki. Np. każdy atom żelaza jest dokładnie takich samych rozmiarów jak każdy inny atom żelaza powstały gdziekolwiek we wszechświecie, podczas gdy rozum ludzki może pojąć atomy rozmaitych rozmiarów.

Panująca wówczas teoria atomu była planetarna. Dopiero za kilka lat powstać miała mechanika kwantowa. Z punktu widzenia fizyki klasycznej – a tak patrzył Einstein – jednakowość atomów jest niezrozumiałą prawidłowością, musimy uznać to za dodatkowy fakt doświadczalny. W teorii kwantowej skala wielkości atomowych określona jest z jednej strony wielkością sił elektrycznych, a z drugiej – wielkością stałej Plancka. Mamy tu dwie stałe fizyczne: ładunek elementarny i stałą Plancka. Istnienie jednakowych cząstek, takich jak elektrony czy kwarki, wbudowane jest w kwantową teorię pola powstałą w latach trzydziestych. Co ciekawe, szczególna teoria względności jest potrzebna, aby wyjaśnić związek spinu ze statystyką (cząstki o spinie połówkowym, np. elektrony, nie mogą przebywać w tym samym stanie, co tłumaczy budowę atomów; cząstki o spinie całkowitym, przeciwnie, chętnie przebywają w tym samym stanie, co ma zastoswanie np. w laserach).

Następnego dnia rano obaj podróżnicy udali się do Rijksmuseum, gdzie oglądali Straż nocną Rembrandta.

W marcu 1922 r. Kessler znalazł się wśród gości zaproszonych na kolację do Einsteinów.

Wieczorem u Einsteinów. Spokojne, przyjemne mieszkanie w zachodnim Berlinie (Haberlandstraße 5), nieco zbyt duże i zbyt wielkoprzemysłowe przyjęcie, któremu ta kochana, wyglądająca niemalże dziecięco, para gospodarzy przydawała pewnej naiwności. Bogaty [Leopold] Koppel, [Paul von] Mendelssohn, przewodniczący [Emil] Warburg, jak zwykle kiepsko ubrany Bernhard Dernburg i tak dalej. Jakieś promeniowanie dobra i prostoty przekształcało to typowe berlińskie towarzystwo w coś niemalże patriarchalnego i bajkowego. Einstein i jego żona, których nie widziałem od czasu ich długiej podróży zagranicznej, odpowiadali z prostotą na moje pytania o przyjęcie w Ameryce i w Anglii; były to w istocie wielkie triumfy, choć Einstein podchodził do nich w swój ironiczny i sceptyczny sposób, mówiąc, że nie wie, czemu ludzie tak bardzo interesują się jego teoriami; jego żona mówiła mi, że mąż zawsze powtarza, iż czuje się jak oszust czy hochsztapler, który nie daje ludziom tego, czego od niego oczekują. Potem powtórzył mi wielokrotnie i bardzo dokładnie, co pisał do niego [Paul] Painlevé, i opowiedział o podróży do Paryża. Zaczyna ją za kilka dni i spędzi w Paryżu osiem dni. Tutaj będzie traktowany jak podejrzany w kręgach uniwersyteckich. Ale one są naprawdę okropne. Przepełnia go niesmak, kiedy o tym myśli. I ma nadzieję coś zdziałać w Paryżu dla wznowienia stosunków między uczonymi niemieckimi i francuskimi. Różnice zdań z Painlevé traktuje jako drobiazg, wydaje się, że nie przywiązuje do niej wagi.

Koppel, Mendelssohn, Dernburg byli bankierami. Pierwszy finansował w znacznej mierze Instytuty Cesarza Wilhelma chemii fizycznej i fizyki (obecnie instytuty Maksa Plancka). Warburg był fizykiem z bogatej i ustosunkowanej rodziny zasłużonej także w nauce i historii sztuki. Podróż do Ameryki służyła zbieraniu pieniędzy na uniwersytet w Jerozolimie. Wizyta w Anglii i nadchodząca wizyta we Francji miały znaczenie nie tylko naukowe, rany wojenne wciąż były głębokie po obu stronach, Einstein pragnął odrodzenia międzynarodowej społeczności uczonych. Paul Painlevé, matematyk i deputowany, działał z podobnych jak Einstein pobudek po stronie francuskiej. Sadził ponadto, że znalazł sprzeczności w einsteinowskiej teorii – jak widzimy jej twórca nizbyt się tym przejął, i słusznie. Wizyta w Paryżu okazała się sensacją naukową i dziennikarską.

Berlin, 18 grudnia 1924, czwartek. Po południu powrót z Weimaru do Berlina. Wieczorem w „Kaiserhofie” bankiet urodzinowy Billa Simonsa. Około setki sław ze świata politycznego, bankowego i intelektualnego; mieszanina kapitalizmu z socjalizmem, głównie na bazie żydowskiej.

Rozmawiałem dość długo z Albertem Einsteinem, gdyż obaj czuliśmy się dość obco w tym towarzystwie. Na moje pytanie nad czym teraz pracuje, odpowiedział, że rozmyśla. Kiedy się rozmyśla nad jakimkolwiek twierdzeniem naukowym, to właściwie zawsze można posunąć się nieco do przodu: bo każde, bez wyjątku, twierdzenie naukowe jest fałszywe; wynika to z nieadekwatności ludzkiego myślenia i możliwości pojmowania w stosunku do natury, wskutek czego wszelkie pojęciowe ujęcie natury nigdy nie pokrywa się z nią całkowicie. Każde twierdzenie naukowe, jeśli mu się bliżej przyjrzeć, zaczyna się chwiać i prowadzi do nowego dokładniejszego sformułowania, ale znowu coś się nie zgadza, co prowadzi do nowego sformułowania i tak ad infinitum. Coraz wyraźniej występuje na jego twarzy coś ironicznego, żartobliwie bolesny sceptycyzm Pierrota maluje się wokół oczu. Obserwując jego twarz, gdy mówi, nie sposób nie pomyśleć o poecie Lichtensteinie – Lichtensteinie, który śmieje się nie tylko z zewnętrznych przejawów ludzkiej arogancji, ale także z jej przyczyn.

Alfred Lichtenstein był ekspresjonistą, autorem groteskowych opowiadań w stylu Alfreda Jarry’ego. Zginął na wojnie w wieku dwudziestu pięciu lat.

Jeszcze jeden obrazek:

Berlin. 15 lutego 1926. Wieczorem na kolacji u mnie Albert Einstein z żoną, Roland de Margeries z żoną, hrabina Sierstorpff, Theodor Wolff z żoną, Helene i Jean Schlumberger (z „Nouvelle Revue Française”). (…) Einstein, majestatyczny, mimo przesadnej skromności i trzewików do fraka. Trochę przytył, ale w oczach nadal ma dziecinne, figlarne przebłyski. Jego żona opowiada, że odebrał on ostatnio, po wielu ponagleniach, dwa złote medale przyznane mu przez Royal Society i Royal Astronomical Society, a później spotkali się w kinie. Gdy go spytała, jak wyglądają medale, odrzekł, że nie wie, bo ich jeszcze nie rozpakował. Nie interesują go takie błahostki. Podała mi inne przykłady. Kiedy Niels Bohr otrzymał amerykański Medal Barnarda, który jest przyznawany wybitnemu badaczowi natury raz na cztery lata, w gazetach napisali, że poprzednio otrzymał go Albert Einstein. Einstein pokazał gazetę i spytał, czy to prawda, bo kompletnie o tym zapomniał. Nie można go było namówić, aby zawiesił order Pour le Mérite. Podczas jednego z niedawnych posiedzeń Akademii Nernst zwrócił mu uwagę, że nie ma Pour le Mérite, ze słowami: „Pewnie żona zapomniała panu go zawiesić. Błąd w stroju”. Einstein jednak odpowiedział: „Nie zapomniałem, wcale nie zapomniałem. Nie chciałem go włożyć”.

Einstein miał bardzo swoiste podejście do sławy, którą zyskał właściwie bez swego udziału. Starał się pozostać normalny, nadal zajmował się swoją pracą, uczęszczał na różne posiedzenia i spotkania, bo trudno było tego uniknąć, zresztą spotkania towarzyskie lubił. Był największą znakomitością Berlina czasów Republiki Weimarskiej, sprawiało mu przyjemność bywanie wśród ludzi wybitnych, chodzenie na koncerty i do teatru, nie przeszkadzało mu, że ludzie go rozpoznają na ulicach. Szczerze lekceważył symbole próżności: medale, ordery, honorowe członkostwa, rozumiejąc doskonale, że to nie ma żadnego, ale to żadnego znaczenia. W naszych czasach, gdy tylu ludzi jest wręcz opętanych chęcią zwrócenia na siebie uwagi za wszelką cenę, miło jest pomyśleć, że najsławniejszy uczony w dziejach zupełnie się nie przejmował tym, jak go widzą inni.

Rysunek Maksa Liebermanna, 1925 r.