Jak Ptolemeusz nie odkrył prawa Snella

Klaudiusz Ptolemeusz był astronomem i astrologiem, wierzył zapewne w boskość ciał niebieskich i studiowanie ich ruchów traktował jako udział w pewnym misterium. Bo też zrozumienie każdej, nawet drobnej tajemnicy świata ma w sobie coś z misterium i z obrzędu wtajemniczenia. Nie trzeba do tego mieszać ludzi w szatach rytualnych, profesjonalistów, którzy zazwyczaj niczego nie rozumieją. Nie potrzeba pleść o Bogu, o którym wszyscy wiemy bardzo niewiele.

Wyjaśnienie ruchu planet musiało Ptolemeuszowi przynieść wielką satysfakcję: dokończył dzieła wielu pokoleń. My dzisiaj patrzymy na jego teorię jak na wstęp do Kopernika i Keplera, lecz przez czternaście wieków uważano ją za niedościgniony wzór. Geocentryzm nikomu właściwie nie przeszkadzał, był oczywisty, tak jak my uważamy za oczywistość, że Ziemia się porusza, choć nie każdy potrafiłby wskazać doświadczalne dowody tego faktu. Ptolemeusz zresztą doskonale sobie zdawał sprawę z możliwości ruchu Ziemi, odrzucał ją przedstawiając pewne argumenty, a więc nie z braku wyobraźni.

Był zawodowym uczonym, zajmował się całością nauk matematycznych, a więc także geografią i skalami muzycznymi oraz optyką. Pierwszy opisał ilościowo i doświadczalnie zbadał zjawisko załamania światła. Używał do tego następującego przyrządu.

ptolemy_refraction

Światło biegnie po łamanej ZEH, DEB jest linią rozdziału dwóch ośrodków, np. na dole mamy wodę albo szkło (w kształcie połowy walca), a u góry powietrze. Koło zaopatrzone jest w podziałkę w stopniach. Uczony mierzył kąty padania i oraz załamania r. Oto jego wyniki dla granicy powietrze-woda.

 

i r
10 8
20 15,5
30 22,5
40 29
50 35
60 40,5
70 45,5
80 50

Jest to rzadki przypadek starożytnej pracy eksperymentalnej poza astronomią. Optyka była przedłużeniem astronomii, więc dość naturalne było zainteresowanie zjawiskami świetlnymi. Tabelka Ptolemeusza nie jest jednak do końca wynikiem doświadczalnym, zauważymy to, analizując dokładniej wartości kątów załamania i ich różnice.

i r pierwsze różnice drugie różnice
10 8 8
20 15,5 7,5 -0,5
30 22,5 7 -0,5
40 29 6,5 -0,5
50 35 6 -0,5
60 40,5 5,5 -0,5
70 45,5 5 -0,5
80 50 4,5 -0,5

Uczony najwyraźniej „poprawiał” surowe dane eksperymentalne, być może nawet nie wykonał wszystkich pomiarów, zachował się jak niesumienny student podczas zajęć laboratoryjnych: i tak przecież wiadomo, co ma wyjść. Nie należy z tego powodu wszczynać larum, że przyłapaliśmy Ptolemeusza na oszustwie: w jego czasach i jeszcze bardzo długo potem starano się raczej uzyskać pewną formułę, jakiś rodzaj matematycznego zrozumienia zamiast relacjonować listę wyników obarczonych błędami. Teoria i eksperyment spotykały się w nieco innym miejscu niż dziś. Ptolemeusz zapewne chciał po inżyniersku rozumieć, skąd się biorą liczby w jego tabelce. Funkcja liniowa tu nie pasuje, bo wówczas różnice byłyby stałe. Jeśli drugie różnice (czyli różnice kolejnych różnic) są stałe, to znaczy, że opisujemy obserwowaną zależność funkcją kwadratową (*). Jej wykresem będzie parabola.

woda

Czerwone kropki są prawidłowymi wynikami dla kątów załamania w wodzie. Błędy nie są wielkie, choć znacznie przewyższają niedokładności tolerowane wówczas w astronomii. Podobne dane przedstawia Ptolemeusz dla szkła, także i one są dopasowane do paraboli.

szklo

W istocie Ptolemeusz stracił okazję do odkrycia prawa bardziej zadowalającego pod względem matematycznym. Podał on bowiem także wyniki dla załamania z wody do szkła. Także i tym razem dopasował je do funkcji kwadratowej, choć z pewnymi anomaliami. Nie zauważył jednak, że skoro ma dane dla granic ośrodków powietrze-woda oraz szkło-woda, to kąty dla załamania z wody do szkła powinny już wynikać z poprzednich danych. Wystarczy bowiem wyobrazić sobie następującą sekwencję ośrodków: woda-powietrze-szkło. Dla obu granic znamy zależności miedzy kątami po obu stronach (Ptolemeusz wiedział, że kierunek biegu promieni nie ma znaczenia w załamaniu, wyobrażał sobie zresztą nie promienie świetlne, lecz promienie wzrokowe, które wybiegają z oka). Możemy sobie następnie wyobrazić, że warstwa powietrza staje się coraz cieńsza: kąty w wodzie i w szkle cały czas są takie same, logicznie jest więc przypuścić, że pierwsze dwie zależności dają nam tę trzecią (woda-szkło). Ptolemeusz nie poszedł tą drogą i chyba nie zauważył, że przybliżenie kwadratowe jest nie do utrzymania dla trzeciej pary ośrodków. W gruncie rzeczy prawo Snella, choć takie proste, wymaga spojrzenia na zjawisko załamania w odpowiedni sposób, mieści w sobie od razu pewną teorię. Nie miejmy za złe Ptolemeuszowi w II w.n.e., że nie poradził sobie z problemem, który jeszcze na początku wieku XVII okazał się za trudny dla samego Johannesa Keplera. Ostatecznie prawo załamania odkrył Ibn Sahl, żyjący w X wieku, kiedy nasi przodkowie kryli się po lasach, a w XVII wieku niezależnie od siebie Thomas Harriot, Willebrord Snell i René Descartes. Tylko ten trzeci opublikował to prawo, a także jego mechaniczne uzasadnienie, zresztą fałszywe.

(*) Łatwo zauważyć, że różnice dla funkcji kwadratowej są liniową funkcją argumentu. W przypadku biegu promieni z powietrza do wody Ptolemeusz stosuje (niejawnie) funkcję

r=\dfrac{33}{40}i-\dfrac{1}{400}i^2.

Funkcja odwrotna nie jest już kwadratowa (musimy rozwiązać ostatnią równość względem i). Zatem złożenie tej funkcji odwrotnej z funkcją kwadratową nie może nam dać funkcji kwadratowej dla trzeciej pary ośrodków.

Dane Ptolemeusza

 

Reklamy

Czy ogon macha psem? – o pewnym argumencie na rzecz heliocentryzmu

W listopadzie 1948 roku Albert Einstein napisał w liście do starego przyjaciela:

U nas, jak dotąd, wszystko dobrze. Także moja siostra nie cierpi, choć obiektywnie jej stan pogarsza się w sposób widoczny. Czytam jej co wieczór – dziś np. dziwne argumenty wysuwane przez Ptolemeusza przeciwko poglądowi Arystarcha, że Ziemia się obraca, a nawet obiega Słońce. Nie mogę się oprzeć skojarzeniu z niektórymi argumentami współczesnych fizyków: uczone i wyszukane, ale bez wyczucia. Ocena wagi argumentów w roztrząsaniach teoretycznych to zawsze kwestia intuicji.

Maja Einstein cierpiała po udarze i powoli gasła, była jednak sprawna umysłowo, toteż brat czytał jej wieczorami rozmaite książki, przeważnie klasyczne (Maja miała doktorat z filologii romańskiej). W sprawie mechaniki kwantowej Albert Einstein zapewne się mylił, miał jednak rację, że póki dane rozwiązanie naukowe dopiero się kształtuje, jest in statu nascendi, dopóty nie ma prostego sposobu ustalenia, jakie argumenty są trafne, a jakie nie, trzeba zawierzyć intuicji.

Dyskusja na temat tez kopernikańskich była długa i zażarta. Spojrzymy tu tylko na jeden argument, który sam nie miał jakiejś ogromnej wagi i niczego nie przesądził, ale wiązał się wyraźnie z wyobrażeniem wszechświata. Według Kopernika porusza się niewielka Ziemia, a nie ogromne niebo. W szczególności to owa niewielka Ziemia krąży wokół znacznie większego Słońca, a nie na odwrót.

Johannes Kepler pisał (Astronomia nova, 1609, Introductio): „Popatrzmy tedy na ciała Ziemi i Słońca i zdecydujmy, któremu z nich bardziej przystoi być źródłem ruchu tego drugiego. Czy to Słońce, które porusza także pozostałe planety, porusza Ziemią, czy też Ziemia – Słońcem, poruszającym owe pozostałe [planety] i tylekroć od niej większym?” Myślał tu o układzie Tychona Brahego, w myśl którego wszystkie planety prócz Ziemi krążą wokół Słońca. Dla Keplera było to nieprawdopodobne, gdyż uważał, że to Słońce jest źródłem siły poruszającej planetami, z jego punktu widzenia układ Tychona nie miał uzasadnienia dynamicznego, bo ruchem Słońca wokół Ziemi rządziłoby wówczas jakieś inne i odrębne prawo. Ponadto Słońce jest znacznie większe od Ziemi. Mamy więc ogon machający psem.

cyrano

Co wiedziano na temat rozmiarów Słońca i Ziemi? Astronomowie mieli zwyczaj używania kąta, tzw. paralaksy (dziennej). Paralaksa Słońca to kąt, pod jakim ze Słońca widać byłoby promień Ziemi. Oczywiście, niełatwo taki kąt znaleźć. Od starożytności wierzono, iż kąt ten wynosi 3′, Kepler przypuszczał, że równy on jest 1′, pod koniec wieku XVII znano już w przybliżeniu prawidłową wielkość: p\approx 9''. Z trójkąta prostokątnego na rysunku łatwo wyznaczyć odległość Słońca w jednostkach promienia Ziemi. Ten sam rysunek moglibyśmy zastosować, zamieniając miejscami Słońce i Ziemię: otrzymalibyśmy wówczas kątowy promień tarczy słonecznej widzianej z Ziemi \theta. W takim razie stosunek promienia Słońca R_S do promienia Ziemi R_Z równy jest

\dfrac{R_S}{R_Z}=\dfrac{\sin\theta}{\sin p}\approx \dfrac{\theta}{p}\approx \dfrac{16'}{p}.

(Sinusy małych kątów możemy zamienić wielkościami samych kątów.) Ptolemeusz sądził więc, że Słońce jest 5 razy większe od Ziemi, Kepler – że jest 15 razy większe, a naprawdę jest ono przeszło sto razy większe.

Digges_Leonard_1596_A_prognostication_everlastinge_of_right_good_effect_Page_15(1)

Leonard Digges, Prognostication Everlasting, 1596

Co odpowiadano na taki argument? Uczony jezuita Giovanni Riccioli w swoim niezwykle obszernym i kompetentnym dziele Almagestum novum (1651) nie miał innego wyjścia niż zwalczać Kopernika, gdyż tak postanowił Kościół Święty, a przynajmniej ówczesny papież, w sprawie Galileusza. Na argument, iż łatwiej i mniejszym kosztem byłoby Bogu i Naturze poruszać niewielką Ziemią zamiast ogromnym niebem, Riccioli stwierdza, że po pierwsze wysiłek nie jest tu aż tak wielki, ponieważ we wszechświecie ruch nie napotyka żadnego oporu, a po drugie Bóg oraz Inteligencje łatwo by sobie poradziły, nawet gdyby jakieś opory występowały.

Huygens_Christiaan_1698_The_celestial_worlds_discoverd_Page_15

Christiaan Huygens, Cosmotheoros, wyd. ang., 1698 (wartość paralaksy Słońca jest już mniej więcej znana)

Popularną wersję odpowiedzi znajdziemy u Besiana Arroya, dokora Sorbony i teologa miasta Lyonu, który w 1671 roku napisał książeczkę Le Prince Instruit (Władca oświecony), zadedykowaną samemu królowi, w której oświeca przyszłych polityków. Otóż Ziemia tkwi nieruchomo w środku, ponieważ jest ciężka. Zgodnie z fizyką Arystotelesa, gdyby nawet się poruszyła, to tylko ruchem prostoliniowym, bo ciężkie ciała spadają ku centrum świata. Gwiazdy zaś (tzn. wszelkie ciała niebieskie) „wedle swej naturalnej dyspozycji są lekkie, okrągłe i ustanowione, aby oświetlać Ziemię, toteż muszą się poruszać zgodnie ze swą naturalną skłonnością i dążnością, jaką dał im Wszechmocny”. Śmiechu warty jest Kopernik, w jego systemie jest tak, jakbyśmy przenosili komnaty, stoły i całe domostwa w pobliże pochodni, by je oświetlić, zamiast wnieść pochodnię do środka. Zwolennicy filozofii Arystotelesa nie wierzyli w jedność materii: dla nich ciała niebieskie były z eteru, nie miały więc bezwładności i stosunkowo nietrudno było nimi poruszyć. Inaczej to wyglądało dla tych, którzy jak Kepler i Galileusz, szukali jednolitych praw i jednolitej materii w całym wszechświecie.

Chrześcijanie tradycyjni wierzyli także, że cały świat stworzony został dla człowieka, jego rozmiary świadczyły o potędze Boga. Sceptycy widzieli to nieco inaczej. Cyrano de Bergerac pisał: „Dorzuć pan do tego nieznośną a właściwą ludziom pychę, która wmówiła im, że Naturę dla nich jedynie stworzono, jak gdyby ktoś mógł dać wiarę, że Słońce, olbrzymie ciało 434 razy większe od Ziemi [chodzi o objętość – J.K.], zapalono tylko z tej racji, aby dojrzewała ich nieszpułki i aby obradzała kapusta” (Tamten świat, przeł. J. Rogoziński). Bernard Le Bovier de Fontenelle dopowiadał: „Do owego szalonego Ateńczyka niejako podobni jesteśmy, który sobie uroił, że wszystkie okręty do portu Pirejskiego przybijające do niego należały. Nasze szaleństwo w tym się wydaje, iż mniemamy, że cały świat dla naszych szczególnie stworzony został wygód, i gdy się pytamy filozofów, na co się przyda tak wiele gwiazd stałych, których jedna część też by czyniła skutki, które wszystkie razem czynią, odpowiadają ozięble, iż do ukontentowania oczu ich służą” (przeł. E. Dębicki, przekład uwspółcześniony. za: W. Voisé, Historia kopernikanizmu w dwunastu szkicach). Książkę Fontenelle’a przełożył na polski ksiądz pijar Eustachy Dębicki w 1765 roku, a więc osiemdziesiąt lat po jej napisaniu. W 1687 roku kwestię, co krąży wokół czego rozstrzygnął Isaac Newton. Stwierdził z pewną satysfakcją, że nikt dotąd nie miał racji, gdyż planety i Słońce krążą wokół wspólnego środka masy, więc ściśle biorąc także Słońce nie jest nieruchome.

W połowie wieku XVIII do przeszłości należały nie tylko fizyka Arystotelesa i boje o kopernikanizm, ale zdążył zapanować i upaść także kartezjanizm, i to nawet we Francji, gdzie był najmocniejszy. Nikt poważnie już nie wątpił w mechanikę Newtona. Rewolucja naukowa XVII wieku dopiero teraz zaczęła docierać także do Polski. Ksiądz Jędrzej Kitowicz, nie do końca świadomie, daje świadectwo potwornego zacofania, z jakiego zaczęto się wówczas wydobywać:

W akademiach zaś publicznych, czyli generalnych, jako to krakowskiej, zamojskiej i wileńskiej, prócz nauk dopiero wyliczonych były nadto: nauka matematyki wszelkiego rodzaju, astrologii, geografii, geometrii, kosmografii, do tego: jurisprudencji, medycyny, i zwały się te akademie universitates. Co się tycze ogółem filozofii – tej patriarchów nie było więcej jak dwóch: Arystoteles i św. Tomasz, ponieważ na wszystkich dysputach nie tłomaczyli się inaczej walczący z sobą, tylko albo „iuxta mentem Aristotelis”, albo „iuxta mentem divi Thomae”. W akademiach kto się promował do godności doktorskiej w filozofii, musiał przysięgać, jako inaczej nie będzie trzymał i uczył, tylko „iuxta mentem divi Thomae”; ci tedy, którzy się trzymali zdania Arystotelesa, zwali się peripatetici, a którzy św. Tomasza, zwali się thomistae.

Pierwsi pijarowie jakoś około roku 1749 czyli trochę wyżej odważyli się wydrukować w jednym kalendarzyku politycznym niektóre kawałki z Kopernika, dowodzące, że się ziemia obraca, a słońce stoi. Czego ledwo dostrzegli jezuici, nie omięszkali i swoich rozumów, co ich tylko mieli najbystrzejszych, użyć przeciwko pijarom, ciężkim przeciwnikom swoim, ale też inne zakony przeciw nim poburzyć o takową hypothesim, czyli zdanie dawnej nauce przeciwne. Rozruch ten po szkołach był na kształt pospolitego ruszenia przeciwko pijarom; wydawali książki zbijające takową opinią, zapraszali pijarów na dysputy i najwięcej z tej materii pijarom dokuczeć usiłowali. Ci atoli, coraz nowy jaki kawałek wyrwawszy z teraźniejszych wodzów filozoficznych: Kopernika, Kartezjusza, Newtona, Leibniza, dokazali tego, że wszystkie szkoły przyjęły neoteryzm, czyli naukę recentiorum [nowszych autorów], według której ziemia się obraca koło słońca, nie słońce około ziemi, tak jak pieczenia obraca się koło ognia, nie ogień koło pieczeni. Koloru nie masz żadnego w rzeczach, tylko te barwy, które na nich widziemy: białe, czarne, zielone, czerwone, żółte etc., sprawuje temperament oczu i światła, czego jest wielkim dowodem jabłko na przykład, w dzień zielone, które toż samo przy świecach wydaje się granatowe; że ból, świerzbienie i inne czucia nie mają swego placu w ciele, tylko w duszy, ponieważ ciało bez duszy nic nie czuje. (Opis obyczajów za panowania Augusta III, rozdział O szkołach publicznych).

Zanim zaśniesz, pomyśl, jak wiele zawdzięczasz Ptolemeuszowi

Każdy z nas, żyjących, jest dzieckiem szczęścia: nasze drzewo genealogiczne nie miało żadnych luk – inaczej nie przyszlibyśmy na świat. Odziedziczyliśmy jednak znacznie więcej niż geny: stoi za nami cała cywilizacja, korzystamy z dorobku pokoleń ludzi przemyślnych, inteligentnych, czasami genialnych. Od teorii promieniowania Einsteina przez pierwsze lasery w latach sześćdziesiątych dwudziestego wieku aż do odtwarzaczy Blue-ray i skanerów kodów paskowych w sklepie czy w bibliotece prowadzi droga długa, lecz możliwa do prześledzenia. Na szczęście nie musimy sami tej drogi powtarzać, korzystamy z gotowych wytworów, sprawdzonych technologii, podręczników udostępniających wiedzę kolejnym pokoleniom. Podobnie jest z tysiącem innych przedmiotów, wynalazków, odkryć. Cóż bardziej naturalnego?

Jeśli cofniemy się w czasie dostatecznie daleko, postęp wiedzy przestaje być w jakimś momencie oczywisty. Nasza cywilizacja naukowo-techniczna zaczęła się w XVII wieku na zachodzie Europy i stopniowo rozprzestrzeniła (w różnym stopniu) na resztę świata. Poprzednie wieki przynosiły bardzo powolny postęp, jeśli w ogóle go przynosiły. Kiedy upadło imperium rzymskie, przez całe wieki działo się w chrześcijańskiej części Europy bardzo niewiele dobrego. Cesarz Karol I nie potrafił nawet pisać i choć na starość mozolnie ćwiczył na woskowych tabliczkach, nie udało mu się jednak tej sztuki opanować. Przez wieki odsetek ludzi potrafiących pisać był znikomy, a przecież od czytania i pisania do twórczego uprawiania nauki jest jeszcze parę szczebli do pokonania. Dopiero po długiej, mniej więcej tysiącletniej przerwie Europa przyswoiła sobie dorobek nauki greckiej. Kopernik przy całej swej oryginalności był zaledwie uczniem Ptolemeusza i jego islamskich kontynuatorów.

Jednym z najważniejszych wątków w historii nauki była teoria ruchów planet, dziedzina na pozór mało praktyczna i odległa od zastosowań. Kto wie jednak, czy to nie teoria astronomiczna Ptolemeusza przesądziła o sukcesie zachodnioeuropejskiej nauki. Bez Ptolemeusza nie byłoby Kopernika, bez Kopernika trudno wyobrazić sobie Newtona, a bez Newtona całej reszty. To oczywiście tylko skrót rozumowania, ale można by je rozbudować. Zagadnienie ruchów planet wymagało dokładnych obserwacji i najlepszych dostępnych technik matematycznych od trygonometrii aż do analizy matematycznej i teorii równań różniczkowych.

Derek J. de Solla Price, amerykański historyk nauki, uważał, iż to właśnie astronomia Klaudiusza Ptolemeusza sprawiła, że nauka rozwinęła się w Europie, a nie np. w Chinach czy wśród Majów:

Można więc zaryzykować twierdzenie, że ta zwarta teoria stanowi intelektualne plateau naszej kultury – wysokie plateau, występujące wyłącznie u nas. We wszystkich dziedzinach nauki wszystkich innych kultur nie ma niczego, co mogłoby zaćmić tę wczesną, a tak wyrafinowaną i zaawansowaną próbę czysto matematycznego wyjaśnienia przyrody. Gdybyśmy mieli wskazać na jakiś cud w naszej historii intelektualnej, to nie wiadomo, czy nie tu właśnie należałoby szukać źródła naszej nowożytnej nauki. [Węzłowe problemy historii nauki, przeł. H. Krahelska, s. 15]

Dzieło Ptolemeusza, znane jako Almagest, było w istocie podsumowaniem długiej tradycji. Tak samo zresztą jak Elementy Euklidesa – druga najważniejsza książka naukowa Greków. Teksty się wówczas przepisywało, siłą rzeczy zostawały więc te najlepsze, przekazujące najbardziej uporządkowaną wiedzę, nikomu by się nie chciało opłacać kopisty dla powielenia rzeczy miernych. Almagest zawiera opis ruchu planet: możemy obliczyć za jego pomocą, gdzie danego dnia o danej godzinie będą się znajdować która planeta. I wynik będzie całkiem dokładny, jak na obserwacje przeprowadzane gołym okiem. Jest to więc kompletna szczegółowa teoria ruchów ciał niebieskich. Dzisiejsi inżynierowie, którzy modelują matematycznie np. przepływy powietrza wokół skrzydeł samolotu, kontynuują tę tradycję. Wiemy teraz, że za pomocą modeli matematycznych opisać można mnóstwo różnych zjawisk. Przyroda jest matematyczna, ale także i ekonomia czy nauki społeczne korzystają z matematyki.

Były dwie tradycje astronomiczne w tej części świata: babilońska i grecka. Klaudiusz Ptolemeusz opisał, ale także i rozwinął tradycję grecką. Babilończycy posługiwali się ciągami liczb, byli rachmistrzami. Ich astronomia była całkiem precyzyjna, ale przypominała długi wydruk wyników jakiegoś programu komputerowego bez użycia grafiki. Babilończycy obliczyli np. bardzo dokładnie wartość \sqrt{2}, ale to Grecy udowodnili, iż jest to liczba niewymierna. Dla nich był to stosunek długości przekątnej kwadratu do jego boku. Także ruch planet Grecy opisali w sposób geometryczny. Podstawą był ruch po okręgu. Wyobrażano sobie np., że roczny ruch Słońca zachodzi po okręgu. Hipparch zmierzył jednak długości astronomicznych pór roku: żadna z nich nie trwała równe ćwierć roku. Poradził sobie z tym w taki sposób, że uznał, iż Słońce porusza się wprawdzie po okręgu ruchem jednostajnym, ale Ziemia położona jest w pewnej odległości od środka okręgu. Znalazł odpowiednie parametry, żeby wszystko się zgadzało. Jego model zastosował potem niemal bez zmian Mikołaj Kopernik: zamienił tylko miejscami Ziemię i Słońce.

hipparch

Zobaczmy np., jak Ptolemeusz opisywał ruch planety takiej, jak Mars (analogiczne modele działają dla pozostałych dwóch planet górnych: Saturna i Jowisza). Mars zazwyczaj porusza się względem gwiazd z zachodu na wschód, ale od czasu do czasu, wtedy, gdy jest najjaśniejszy zmienia kierunek ruchu. Wygląda to tak.

marsretro

Jasne jest, że tutaj nie wystarczy taki prosty model jak w przypadku Słońca. Spójrzmy na to najpierw z perspektywy heliocentrycznej, do której jesteśmy przyzwyczajeni. (Pomijamy dalej fakt, że płaszczyzny orbit Ziemi i Marsa są lekko nachylone, nie popełniamy dużego błędu, płaszczyzny te przecinają się pod kątem mniejszym niż 2^{\circ}, Ptolemeusz miał osobną teorię dla opisania tego tzw. ruchu w szerokości.) Mamy dwa wektory opisujące ruch Marsa \vec{r}_M i Ziemi \vec{r}_Z. Końce obu tych wektorów zakreślają elipsy, ale są one w praktyce bardzo bliskie okręgom. To, co obserwujemy, to kierunek od Ziemi do Marsa (starożytni astronomowie niewiele wiedzieli o odległościach). Możemy zapisać wektor od Ziemi do Marsa jako różnicę:

\vec{R}=\vec{r}_M-\vec{r}_Z=\vec{r}_M+(-\vec{r}_Z)

ptolemeusz

Druga równość zilustrowana jest na rysunku z prawej strony. To jest właśnie model Ptolemeusza. Widać, że jeśli okręgi stanowią dobre przybliżenie orbit, model taki będzie działać. Duży okrąg nazwano później deferentem, mały – epicyklem. Z historycznego punktu widzenia największą zaletą modelu Ptolemeusza okazała się możliwość przejścia do heliocentryzmu, czyli od obrazka z prawej strony do obrazka z lewej. Gdybyśmy nie mieli geometrycznych przedstawień, byłoby to znacznie trudniejsze. Dokładnie biorąc, model Ptolemeusza zawierał jeszcze dwa szczegóły, które znacznie poprawiały zgodność z obserwacjami. Ziemia była nieco odsunięta od środka deferentu – inaczej mówiąc, Słońce było odsunięte od środka okręgu (orbity Marsa na lewym rysunku). Drugim szczegółem – i to jest wkład samego Ptolemeusza – jest ruch niejednostajny po deferencie. W obrazie kopernikańskim odpowiadałoby to niejednostajnemu ruchowi po orbicie, rzeczywiście planeta bliżej Słońca porusza się szybciej, to skutek zasady zachowania momentu pędu, jak podczas piruetów na lodzie: ręce wzdłuż ciała skutkują szybszym wirowaniem. Jak jednak Grek z II w.n.e., dysponując tylko prostą trygonometrią, mógł opisać taki ruch niejednostajny? Ptolemeusz przyjął, że istnieje wewnątrz deferentu pewien punkt E taki, że obserwowany z niego ruch środka epicykla jest jednostajny. Założenie to krytykowały później niezliczone pokolenia astronomów, z Kopernikiem włącznie, ale sprawdza się ono znakomicie w praktyce.

Tutaj można zobaczyć model Ptolemeuszowy dla Marsa w ruchu (warto włączyć ślad planety: Trail on, żeby zobaczyć, jak skomplikowany jest ten ruch z ziemskiego układu odniesienia, skomplikowane spirale zakreślane przez planetę nigdy się nie powtarzają)

Klaudiusz Ptolemeusz mógłby świetnie się nadawać na portret na T-shircie, nie wiemy jednak, jak wyglądał. Nie znamy nawet jego imienia: Klaudiusz Ptolemeusz to jego nomen i cognomen, czyli dwa człony nazwiska. Żył w II w. w Aleksandrii, która nieco przypominała dzisiejszy Hong Kong albo Nowy Jork: wielkie, kosmopolityczne, bogate miasto, nieszczędzące pieniędzy na naukę. Prawdopodobnie był Grekiem, obywatelem Rzymu. Swoje wcześniejsze dzieła dedykował Syrusowi, o którym wiadomo jeszcze mniej: może był to jego nauczyciel, a może kochanek.

Śmierć Hypatii: rok 415 po narodzeniu Chrystusa

Aleksandria słynęła swoją biblioteką i swoim uczonymi – tutaj powstała większość znanych osiągnięć nauki greckiej – miasto było zhellenizowane, kto chciał uprawiać naukę, musiał uczyć się greki. D. J. de Solla Price wysunął kiedyś tezę, że bez aleksandryjskiej nauki niemożliwa byłaby rewolucja naukowa XVII wieku, a więc w konsekwencji nasza współczesna cywilizacja. Pewne jest w każdym razie, że w Aleksandrii uprawiano najlepszą naukę w ówczesnym świecie.

Miasto u ujścia Nilu było bogate i wielonarodowe, oprócz Egipcjan wiele do powiedzenia mieli w nim Grecy, znajdowała się tu także największa kolonia żydowska poza ziemiami Izraela.

Hypatia była córką matematyka Teona. Razem z ojcem pracowała nad komentarzem do Optyki Euklidesa i nad wydaniem Almagestu Ptolemeusza, sama napisała komentarze do Stożkowych Apoloniusza, a także do pierwszych sześciu ksiąg Arytmetyki Diofantosa – samych dzieł stworzonych w Aleksandrii wystarczało aż nadto na pracowite życie. Prawdopodobnie dzięki zainteresowaniu Hypatii sześć pierwszych ksiąg Diofantosa zachowało się do naszych czasów, teksty trwały wówczas dopóty, dopóki ktoś uznawał je za warte trudu przepisywania. Dzieła aleksandryjskie stały się później podstawą nauki islamskiej, a także europejskiej w XVI i XVII wieku. Nie było właściwie uczonego, który nie czytałby swoich greckich poprzedników i nie nawiązywał z nimi swoistego dialogu. Tak było z Kopernikiem i Newtonem. Właśnie czytając Diofantosa Pierre de Fermat wpadł na pomysł swego wielkiego twierdzenia.

Dioph3

Stronica Diofantosa ze słynnym dopiskiem Fermata (oryginał się nie zachował, dysponujemy jedynie wydaniem z roku 1670 przygotowanym przez syna uczonego Clémenta-Samuela de Fermat). „Sześcian natomiast na dwa sześciany ani czwarta potęga na sumę dwóch czwartych potęg, ani ogólnie żadna inna potęga prócz kwadratu na sumę dwóch takich samych nie może zostać rozłożona, czego dowód zaprawdę cudowny odkryłem, nie starczy nań jednak miejsca na tym marginesie”.

Życie Hypatii przypadło na schyłek kultury antycznej. Chrześcijanie nie potrzebowali pogańskiej nauki, której nie znali i nie rozumieli. Tępili też zawzięcie wszystkie inne religie – bo przecież tylko ich religia mogła być prawdziwa. Pogańskie świątynie burzono bądź zamieniano na kościoły. Osławiony był pod tym względem patriarcha Teofil, „wieczny nieprzyjaciel pokoju i cnoty, człowiek zuchwały i zły, którego ręce zbrukane były na przemian złotem i krwią” (Edward Gibbon, The Decline and Fall of the Roman Empire, rozdz. 28). Przypisuje mu się także niszczenie resztek „pogańskiej” biblioteki aleksandryjskiej. Nie wiadomo, czy było jeszcze co niszczyć, z pewnością jednak Teofil nie widziałby szczególnego powodu, by ją chronić.

Sytuacja w mieście zaogniła się jeszcze bardziej, gdy po śmierci Teofila patriarchą i biskupem został jego siostrzeniec Cyryl – późniejszy święty, jeden z ojców i doktorów Kościoła – hierarcha nie mniej wojowniczy i równie ograniczony. Po poganach przyszła kolej na Żydów. Ponieważ chrześcijanie byli w większości, więc ostatecznie „mnóstwo Żydów opuściło miasto i to wydarzenie na pewno odbiło się na gospodarce miasta. Cyryl zaś niewątpliwie wykorzystał te wypadki, aby pozbyć się z Aleksandrii jak największej liczby Żydów. Wiedział bowiem, że osłabi to tradycyjną wrogość między wyznaniami i zmniejszy grono przeciwników polityki Kościoła w mieście” (M. Dzielska, Hypatia). Ta niezawodna metoda rozładowywania konfliktów nieraz jeszcze była z powodzeniem stosowana.

W wyniku zamieszek splądrowano mienie żydowskie i jedną z synagog zamieniono ku bożej chwale na kościół pod wezwaniem św. Jerzego. Prefekt Egiptu Orestes, podejrzewany o niechęć do chrześcijan, napadnięty został na ulicy przez chrześcijańskich fanatyków, jego gwardia przyboczna uciekła, a jeden z mnichów, niejaki Ammoniusz, trafił Orestesa kamieniem w głowę. Został później pojmany i zmarł w trakcie tortur. Biskup Cyryl przyznał mu palmę męczeńską za obronę wiary.

Hypatia nie była ani Żydówką, ani chrześcijanką. Maria Dzielska stawia tezę, że Hypatia miała wpływ na Orestesa i dlatego ją zabito. Autorytet Hypatii był jednak wyłącznie duchowy, a politykę w mieście uprawiało się, organizując bojówki i kontrbojówki. Zapewne oboje wraz z Orestesem starali się obronić miasto przed jedynowładztwem duchownych, w dodatku tak skrajnych i nieprzejednanych jak Cyryl.

Nietrudno było podburzyć przeciwko niej tłuszczę, skoro nawet świątobliwy historyk, biskup Jan z Nikiu, stwierdza: „Była w tym czasie w Aleksandrii pogańska filozofka o imieniu Hypatia; zajmowała się stale magią, astrolabiami i instrumentami muzycznymi i omamiła wielu ludzi szatańskimi sztuczkami. Nadzwyczajnie szanował ją prefekt miasta [Orestes], gdyż omamiła go swoją magią. Przestał uczęszczać do kościoła, jak zwykł to dotychczas czynić”. Dalej następuje opis prowokacji żydowskich i chrześcijańskiej odpowiedzi w postaci pogromu. Nie tłumacząc, jaki związek miały te wszystkie sprawy z Hypatią, Jan z Nikiu kontynuuje z wyraźną satysfakcją: „Następnie tłum wiernych Pańskich pod przewodnictwem urzędnika Piotra – który był doskonałym sługą Jezusa Chrystusa – zabrał się za szukanie owej pogańskiej kobiety, która swymi magicznymi sztuczkami omamiła mieszkańców miasta oraz prefekta. A gdy dowiedzieli się, gdzie przebywa, udali się po nią i zastali ją siedzącą na wysokim krześle. Zmusili ją do zejścia i wlekli ją po ziemi, aż zawlekli do wielkiego kościoła, zwanego Cezarejon. Było to podczas postu. I zdarli z niej szaty, i wlekli ją po ulicach miasta, aż umarła. I zanieśli ją do miejsca zwanego Kinaron, i spalili jej ciało w ogniu. Cały lud otoczył patriarchę Cyryla, obwołując go «nowym Teofilem», który zniszczył pozostałości pogaństwa w mieście”.

Wygląda więc na to, że gdy tłum spalił, co mógł żydowskiego, zajął się Hypatią, możliwe, że stało się to w trakcie jej wykładu. Ów „doskonały sługa Jezusa Chrystusa” Piotr, urzędnik, a może, jak piszą inni, kościelny lektor, mający niższe święcenia – sprawia, że ciarki przebiegają po krzyżu…

index

Frontispis Indeksu ksiąg zakazanych papieża Benedykta XIV z roku 1758. Podpis głosi: „I wielu też z tych, co uprawiali magię, poznosiło księgi i paliło je wobec wszystkich. Wartość ich obliczono na pięćdziesiąt tysięcy denarów w srebrze” (Dz 19,19). Indeks ten jako pierwszy nie powtarzał ogólnego zakazu ksiąg nauczających o ruchu Ziemi i nieruchomości Słońca, choć utrzymał szczegółowy zakaz czytania dzieł Kopernika, Keplera i Galileusza.

Historia paranoiczna

Mówi się czasem, że niczego nie należy przyjmować na wiarę, bez krytycznego zbadania. Jest to jednak zalecenie niewykonalne. Aby funkcjonować w świecie, musimy korzystać z wiedzy, której sami nie sprawdzaliśmy, zawsze trzeba polegać na jakichś autorytetach. Możemy co najwyżej od czasu do czasu przyjrzeć się bliżej jakiejś wybranej sprawie albo wartości jakiegoś autorytetu.

Badania takie mogą być cenne i pożyteczne. Historycy żyją niejako z rewidowania historii –  gdyby przeszłość była ustalona jednoznacznie raz na zawsze, nie byłoby sensu pisać nowych książek. Należy tylko wystrzegać się popadania w tanią sensacyjność albo w paranoję, która jest próbą nadmiernego zracjonalizowania wydarzeń, zwykle tak, aby wykryć ich złowieszczy bieg. W naszych czasach szczególnie modne jest kwestionowanie dobrych intencji, szukanie brudnych motywów albo chociaż ukrytych interesów w ludzkim postępowaniu. Historie sekretne i biografie „bez tajemnic” zalewają półki w księgarniach i media wszelkiej maści. Chwilami można odnieść wrażenie, iż żyjemy wewnątrz mózgu jakiegoś paranoika, który nie zaśnie, dopóki nie ułoży sobie wszystkich wydarzeń dnia w logiczną spiskową całość. I oczywiście, ta „prawdziwa prawda” musi odwoływać się do złej strony ludzkiej natury. Obawiam się, że mówi to więcej o nas samych, o tym, jak sami siebie oceniamy, niż o wydarzeniach w ten sposób relacjonowanych.

Dotyczy to także nauki i słynnych uczonych.
Pisano już o „zbrodni Ptolemeusza” – który rzekomo tak poprawiał dane obserwacyjne, aby mu lepiej pasowały do teorii. Robert Andrews Millikan, który pierwszy zmierzył ładunek elektronu i eksperymentalnie potwierdził, że ładunki w przyrodzie są zawsze jego wielokrotnością, podejrzewany był o wybiórcze traktowanie wyników doświadczeń – rzekomo wyselekcjonował do publikacji tylko te, które pasowały mu do wniosków. Podobne wątpliwości podnoszono też wobec najważniejszego w historii potwierdzenia Einsteinowskiej teorii względności: pomiaru zakrzywienia światła w pobliżu Słońca. Pomiarów tych dokonała ekipa astronomów z udziałem Arthura Stanleya Eddingtona w roku 1919. Wyniki były ogromnym triumfem teorii Einsteina. Od tamtego momentu datuje się sława uczonego, która nie zmniejszyła się nawet po jego śmierci, można powiedzieć, że zadomowił się on w wirtualnej rzeczywistości naszego gatunku na dobre. Może więc cała ta sława była niezasłużona? A przynajmniej nie należała mu się już w roku 1919?

Według wersji rewizjonistycznej Eddington, kwakier, pacyfista i teoretyk, nie chcąc brać udziału w wojnie i będąc zwolennikiem teorii względności, nie tylko dążył do zorganizowania wyprawy w celu zmierzenia zakrzywienia światła, ale również nie był obiektywny podczas opracowania obserwacji i forsował nieuzasadniony wniosek, że teoria Einsteina została potwierdzona.

Teoria Einsteina przewiduje, że zakrzywienie promienia biegnącego w odległości R od jakiejś masy równe jest 2r/R radianów, gdzie r jest pewną odległością, charakterystyczną dla danej masy  (klasycznie r jest równe promieniowi kuli, w jakiej należałoby zamknąć tę masę, aby prędkość ucieczki z jej powierzchni równa była prędkości światła c). Największą masą w naszym kosmicznym sąsiedztwie jest Słońce, dla którego promień r równy jest 3 km, a więc niedużo w porównaniu z promieniem naszej gwiazdy, wynoszącym 700 000 km. Dla światła biegnącego tuż przy powierzchni Słońca przewidywany kąt odchylenia równy jest 1,75” (sekundy kątowej, równej 1/3600 stopnia). Pomiary z dokładnością ułamków sekund kątowych nie były żadnym problemem, zwykle jednak nie można obserwować gwiazd w pobliżu Słońca, gdyż jest ono zbyt jasne. Idea polegała na przeprowadzeniu pomiarów podczas całkowitego zaćmienia, gdy tarcza naszej gwiazdy zostaje na kilka minut zasłonięta tarczą Księżyca. Obrazy gwiazd na fotografii wykonanej podczas zaćmienia powinny wykazać dodatkowe oddalenie od tarczy słonecznej.

r75Na rysunku a) widzimy, jak to wyglądało. Część b) pokazuje, jak zakrzywienie promieni w pobliżu jakiejś dużej masy prowadzi do soczewkowania grawitacyjnego, zjawiska dobrze znanego i przydatnego dziś w codziennej pracy astronomów.

Pas zaćmienia całkowitego 29 maja 1919 przebiegał od Afryki do Ameryki Południowej. Zorganizowano dwie ekspedycje, jedną do Sobral w Brazylii, drugą na wyspę Principe na zachód od kontynentu afrykańskiego. Obie ekspedycje wykonały pewną liczbę fotografii zaćmionego Słońca, przy okazji zaobserwowano wyjątkowo okazałą protuberancję – wybuch na Słońcu. Ten sam obszar nieba sfotografowano także wówczas, gdy nie było tam Słońca, ponieważ obejmował on gromadę otwartą Hiady, w okolicy było sporo względnie jasnych gwiazd. Klisze wyglądały następująco:

1919_05_29_Eddington1919_eclipse_positive

(kreskami zaznaczone są położenia gwiazd)

Położenia gwiazd na kliszach mierzono następnie za pomocą mikrometru. Nie wszystkie wyniki zgadzały się między sobą: rezultaty uzyskane za pomocą jednego z trzech przyrządów wyraźnie odbiegały od pozostałych dwóch – występował jakiś błąd systematyczny. Uczeni opracowujący dane, pod kierownictwem Astronoma Królewskiego, Franka Watsona Dysona, musieli zadecydować, którym wynikom bardziej ufać. Szczegółowe badania tej sprawy, ostatnio przez Daniela Kenneficka, przynoszą zawód amatorom spiskowej historii: Eddington nie brał większego udziału w opracowywaniu obserwacji, a astronomowie brytyjscy kierowali się swoim doświadczeniem i wyczuciem, nie mieli też szczególnego upodobania do teorii względności. O stosunku do osoby Alberta Einsteina w Anglii w tamtym okresie świadczy najlepiej fakt, że gdy chciano go odznaczyć złotym medalem Królewskiego Towarzystwa Astronomicznego za rok 1919/20, sprawa się nie powiodła: Einstein uważany był za Niemca, a krwawa wojna dopiero się zakończyła. Medal otrzymał Francuz, a więc przedstawiciel koalicjanta, Guillaume Bigourdan, staranny obserwator, który przez wiele lat starał się wykryć ruch mgławic na niebie, co było, niestety, trudem tyleż heroicznym, co daremnym – obiekty te są zbyt daleko, aby widać było ich przesunięcia.

Na koniec jeszcze wykres z pracy Dysona, Eddingtona i C. Davidsona, podsumowującej odkrycie. Widzimy tu zaobserwowane odchylenia gwiazd w zależności od odwrotności odległości od Słońca. Gruba linia ciągła odpowiada przewidywaniom teorii względności, linia kreskowana dwa razy mniejszym przewidywaniom newtonowskim.

summary-figure

Korzystałem z pracy D. Kenneficka, Not Only Because of Theory: Dyson, Eddington, and the Competing Myths of the 1919 Eclipse Expedition, w: Einstein and the Changing Worldviews of Physics, red. C. Lehner, J. Renn, E. Stengler, Birkhäuser, New York 2012.