Galileo Galilei, Dialog o dwu najważniejszych układach świata, 1632 (2/2)

Galileuszowy Dialog rozgrywa się w pałacu Sagreda w Wenecji, dokąd przybywają na dyskusję Filippo Salviati i Simplicio (pedanterią byłoby w tym miejscu wytykanie autorowi, że Sagredo i Salviati nigdy się nie spotkali). Ich wymiana myśli odbywa się więc nie później niż w roku 1614, kiedy obaj przyjaciele uczonego jeszcze żyli, a więc przed ogłoszeniem dekretu Kongregacji Indeksu w sprawie Kopernika, w czasie gdy swobodna dyskusja była jeszcze możliwa. Rozmowy podzielone są na cztery kolejne dni i nie zawsze trzymają się ściśle wyznaczonego tematu. Przydaje to Dialogowi naturalności, a autorowi stwarza okazję, aby zatrącić o pewne kwestie, nie trzymając się zawsze ustalonego porządku. Ten pozorny chaos Galileuszowych dyskusji był zamierzony, choć niektórzy czytelnicy czuli się z tego powodu zagubieni. Osobisty ton rozważań miał do odegrania niezwykle ważną rolę: czytelnik uświadamia sobie, że zwolennicy nowej kosmologii nie są jakimiś ignorantami czy szaleńcami, wręcz przeciwnie: znają większość tradycyjnej nauki i argumentów geocentrycznych, lecz odrzucają je po dojrzałym namyśle. Salviati jest Simpliciem, który nauczył się matematyki, przemyślał swoje poglądy i opanował wiele nowych idei. Sagredo, mając do wyboru argumenty tradycjonalistów i nowe idee, przychyla się z reguły do tych nowych, nie dlatego wszakże, że są nowe, lecz dlatego, że lepiej objaśniają świat, kiedy im się przyjrzeć bez uprzedzeń. Największą wartością Dialogu był właśnie pewien eksperyment poznawczy: wyobrażenie sobie świata na wzór kopernikański i rozważenie różnych tego konsekwencji. Okazuje się, że nie tylko można być zwolennikiem Kopernika, nie tracąc zdrowego rozsądku, ale że nie sposób już być konsekwentnym zwolennikiem Ptolemeusza. Galileusz sprowadził rozważania do ostrej dychotomii: albo Ptolemeusz, albo Kopernik. Pominął całkiem układ Tychona, choć można twierdzić, że z jego punktu widzenia rozwiązanie Tychona nic nie wnosiło, zajmował się bowiem głównie pytaniem, czy Ziemia jest planetą i się porusza, a w tej kwestii duński astronom był równie konserwatywny jak starożytni Grecy.

Giovanni Francesco Sagredo (Ashmolean Museum)

Pierwszy dzień rozmów poświęcony jest tematowi jedności materii we wszechświecie. Wedle Arystotelesa niebiosa zbudowane są z eteru, takie też stanowisko obowiązywało w zasadzie jezuitów, choć, jak pamiętamy, ich największy teolog, Bellarmin, prywatnie uważał, że niebiosa mogą być z ognia. Tak czy inaczej, zwolennicy tradycji nie chcieli żadną miarą uznać, aby Ziemia miała w czymś przypominać ciała niebieskie. Galileusz przede wszystkim pokazuje, że powszechnie znane i nauczane na uniwersytetach argumenty Arystotelesa są nic niewarte. Poprawia zresztą greckiego filozofa z upodobaniem niemal w każdej sprawie. Gdy Simplicio, który jest skarbnicą książkowych mądrości, przytacza opinię Arystotelesa, że ciała mają trzy wymiary: długość, szerokość i głębokość, gdyż liczba trzy jest doskonała, Salviati zauważa natychmiast, że nie ma czegoś takiego jak doskonałość sama przez się, gdyż doskonałość służy zawsze jakiemuś celowi: zwierzęta np. mają parę nóg albo cztery nogi, a nigdy trzy. Co do geometrii, proponuje inny sposób podejścia. Można bowiem z dowolnego punktu wytyczyć trzy wzajemnie prostopadłe proste. Simplicio nie całkiem rozumie, czemu akurat trzy – winę ponosi tu jego brak edukacji matematycznej. Galileusz nie wiedział, że mogą istnieć geometrie wielowymiarowe, ale jego podejście zadowoliłoby współczesnego fizyka: wymiar przestrzeni należy do faktów empirycznych i określamy go sprawdzając, jaki rodzaj geometrii stosuje się do przestrzeni. I oczywiście doskonałość liczby trzy nie ma tu nic do rzeczy.

U Arystotelesa kierunki do góry i w dół miały sens absolutny i związane były z elementami ognia i powietrza – naturalnie wznoszącymi się w górę, oraz wody i ziemi – naturalnie spadającymi w dół. Z eterem związany był ruch kolisty – co objaśniać miało wieczność i niezmienność świata nadksiężycowego. Galileusz kwestionuje te rozumowania, zawierające jako założenie to, czego się dopiero chce dowieść. „Wszystko to wygląda tak, jakby celem Arystotelesa było przemieszanie nam kart w ręku i dostosowanie planu architektonicznego do świata już zbudowanego, a nie budowanie świata wedle wskazań architektury. Jeżeli bowiem oświadczę, że we wszechświecie istnieć mogą tysiące ruchów kołowych, a co za tym idzie, tysiące ośrodków, to otrzymamy też wówczas tysiące ruchów w górę i w dół” – stwierdza Sagredo. Uczony rozmontowuje i unieszkodliwia krok po kroku całą arystotelesowską machinę argumentów, stanowiącą wówczas podstawową wiedzę, jaką wynosiło się z uniwersytetów. Trudno sobie wyobrazić, aby zadania tego podjął się ktoś przepełniony respektem dla instytucji akademickich. Galileusz nie mógł zniszczyć tradycyjnej kosmologii w sposób łagodny, operacja ta musiała też wywoływać reakcje obronne u tych, którzy wychowali się w arystotelesowskiej wierze. Nie doceniamy dziś siły tamtej tradycji i Dialog nie wywołuje już u nas wstrząsu intelektualnego, wtedy jednak chodziło o zakwestionowanie całego systemu wyjaśniania i wyobrażania sobie świata.

W niektórych założeniach Galileusz nie odbiega jednak od Arystotelesa: obaj uważali świat za doskonale uporządkowaną całość – po grecku „kosmos”. W kosmosie Arystotelesa ruchy prostoliniowe ograniczone były do bezpośredniego sąsiedztwa Ziemi, dlatego ruch prostoliniowy i naturalny musiał mieć początek i koniec. Także Galileusz wzdraga się przed ruchem prostoliniowym: „W dodatku zważmy, że ruch po linii prostej z natury swojej jest nieskończony, gdyż sama linia prosta jest nieskończona i nieokreślona. Jest więc niepodobieństwem, by coś ruchomego miało z przyrodzenia swego właściwość poruszania się po linii prostej, to jest do celu, którego nie sposób osiągnąć, ponieważ nie posiada on kresu. Jak zresztą sam Arystoteles bardzo słusznie zaznacza, przyroda nie nakreśla sobie zadań, które nie mogą być osiągnięte, i nie zwykła jest zmierzać tam, dokąd dojść nie można”. Widzimy, że droga do sformułowania I zasady dynamiki była jeszcze długa – Isaac Newton urodził się w roku śmierci Galileusza.

Chcąc, aby kosmos był uporządkowany, Galileusz zakłada w nim istnienie ruchów kołowych. W odróżnieniu od Arystotelesa uważa, że nie potrzebują one jednak żadnego poruszyciela, mogą trwać niezakłócone w nieskończoność. By wyjaśnić początek układu planetarnego, odwołuje się do swej hipotezy, w myśl której Stwórca wypuścił na początku planety z jednego punktu i spadały one ku Słońcu ruchem przyspieszonym aż do chwili, gdy każda osiągnęła przepisaną odległość od Słońca. Wówczas ich ruch zmienił kierunek na obiegowy, ale wartości ich prędkości się nie zmieniła. Kosmogonia w wydaniu Galileusza przypomina nieco jego własne eksperymenty, w których zmieniał on kierunek prędkości – np. po stoczeniu się kulki z równi pochyłej na płaski stół – i obserwował, że jej wartość pozostaje taka sama. Uczony traktował te spekulacje jako pewne uzupełnienie Platońskiego Timajosa, gdzie opowiedziana jest historia o zbudowaniu świata przez demiurga. Wyniki jego obliczeń zdawały się zgodne z danymi na temat planet. Matematyk Wielkiego Księcia nie mówił o siłach i ciężkości, tym bardziej ciężkości powszechnej, jego mechanika była kinematyką. Hipoteza kosmogoniczna Galileusza była później rozważana z całą powagą przez Isaaca Newtona, który zauważył, że grawitacja Słońca musiałaby zostać podwojona w chwili zmiany kierunku prędkości.

Sagredo pyta, czy prędkość nie mogłaby zostać nadana planecie w sposób skokowy, po co to spadanie i przechodzenie kolejnych prędkości? „Ja nie powiedziałem i nie śmiałbym twierdzić, że dla natury i Boga byłoby niemożliwe nadanie takiej, jak mówicie, prędkości, i to natychmiast. Twierdzę jedynie, że de facto natura tego nie czyni. Takie rozwiązanie stałoby poza naturalnym biegiem rzeczy, a więc należałoby do dziedziny cudów” – odpowiada Salviati. Galileusz podkreśla, że nie ogranicza w ten sposób boskiej wszechmocy, bada jedynie świat taki, jaki dany jest nam w doświadczeniu, tak a nie inaczej stworzony. Koronny zarzut wobec niego będzie oparty na niezrozumieniu natury działalności naukowej. Florentyńczyk czuł się badaczem kosmosu już stworzonego, zupełnie nie interesowały go pytania o atrybuty samego Stwórcy. Rozważając choćby niezobowiązująco, jak mógł powstać układ planetarny, ryzykował oskarżenie, że wkracza na teren zastrzeżony dla Księgi Rodzaju. Spekulacje na temat puszczenia w ruch machiny kosmicznej prowadził zresztą także Kartezjusz, katolik z pewnością nie mniej liczący się z głosem Kościoła niż Galileusz. W miarę poznawania praw ruchu nieuniknione były tego rodzaju spekulacje, zaglądające niejako Stwórcy przez ramię.

Rozumowania Arystotelesa nie miały wartości: „Ani Arystoteles, ani wy sami nigdy nie będziecie w stanie dowieść, że Ziemia de facto znajduje się w środku wszechświata. A jeżeli może być mowa o określeniu jakiegoś środka wszechświata, to okaże się, że raczej Słońce może być w nim umieszczone”. W trakcie dalszych rozważań Galileusz podkreśla, że nie sposób ustalić, czy wszechświat w ogóle ma jakiś środek. Słońce jest środkiem ruchu planet, nie znaczy to jednak wcale, że musi być zarazem środkiem całego wszechświata. Urzędowi czytelnicy ze Świętego Oficjum nie zwrócili bądź woleli nie zwracać uwagi na te stwierdzenia Dialogu i przypisano Galileuszowi pogląd, że Słońce jest w środku świata. Jeśli ani Ziemia, ani Słońce nie były środkiem, to pozostawała wizja Bruna i Kartezjusza: nieskończonego wszechświata z nieskończoną mnogością „środków” w postaci gwiazd okrążanych przez planety.

Kosmos Galileusza nie musi być niezmienny. Podobnie jak Ziemia nie byłaby doskonalsza, gdyby „była cała jednym rozległym piaszczystym pustkowiem czy kulą z jaspisu, czy też gdyby w czasie potopu zamarzły pokrywające ją wody, a ona stała się olbrzymim globem zlodowaciałym; gdyby na niej nic się nie rodziło, nic nie przeobrażało i nie zmieniało (…) Im bardziej zagłębiam się w niedorzeczność rozpowszechnionych pojęć, tym bardziej stają się one dla mnie lekkomyślne i bezsensowne. Czyż można sobie wyobrazić większą głupotę aniżeli nazywanie rzadkich kamieni, srebra i złota kosztownościami – a ziemi i błota marnościami? I jakże tym ludziom nie przychodzi tu na myśl, że jeśliby ziemia należała do takich rzadkości jak klejnoty i najcenniejsze metale, to nie znalazłby się książę, który by nie poświęcił worka diamentów i rubinów oraz czterech wozów złota, by mieć przynajmniej garść ziemi, wystarczającą do posadzenia w małym wazoniku jaśminu czy zasiania pomarańczy chińskiej, aby przyglądać się, jak wschodzi, rośnie, okrywa się pięknymi liśćmi, pachnącymi kwiatami, wdzięcznymi owocami. (…) Ci, którzy egzaltują się niezniszczalnością, niezmiennością itd., dochodzą, jak sądzę, do wypowiadania podobnych stwierdzeń jedynie dlatego, że w obawie przed śmiercią pragną przetrwać jak najdłużej”. Dla Galileusza Ziemia – taka, jaka jest – nie jest niedoskonała. Wcale nie przeszkadza mu myśl, że podobne do niej mogą być inne ciała niebieskie. Przekonanie, że cały kosmos ma służyć jedynie Ziemi i jej mieszkańcom, wkłada w usta Simplicia: „Dla wygody człowieka rodzą się konie, dla żywienia koni ziemia wydaje trawę, a obłoki dostarczają jej wody. Dla wygody i wyżywienia ludzi rodzą się trawy, zboża, owoce, zwierzęta, ptaki, ryby, i w ogóle, jeśli starannie zbadamy i zgłębimy wszystkie te rzeczy, dojdziemy do wniosku, że cel, ku któremu wszystko to zmierza, to potrzeba, pożytek, wygoda i przyjemność człowieka. A jaki pożytek mogłyby mieć dla rodzaju ludzkiego płody powstające na Księżycu czy na innej planecie? Bo chyba nie chcielibyście mnie przekonywać, że na Księżycu są również ludzie, korzystający z rodzących się na nim owoców; myśl taka bądź trąci bajką, bądź jest bezbożna”. Z argumentami tego rodzaju spotykał się Galileusz nie raz. Odpowiada, że nie wydaje mu się prawdopodobne, by na Księżycu byli ludzie, ale to jeszcze wcale nie oznacza, że nie może tam być żadnych zmian. Naszą wyobraźnię kształtują doświadczenia; ktoś, kto mieszkałby w lesie i nie znał żadnych zbiorników wodnych, nie potrafiłby sobie wyobrazić ryb ani statków przepływających oceany. Wrażliwość Galileusza jest raczej panteistyczna niż antropocentryczna: różnorodność i porządek w naturze są dla niego źródłem zachwytu, Stwórca w jego pojęciu nie ograniczył się tylko do zapewnienia bytu ludziom, lecz stworzył naturę godną podziwu i badania dla niej samej.

Simplicio opisuje swym rozmówcom Księżyc i wychodzi mu z rozumowań, że musi on być zrobiony ze szczególnie twardej i nieprzenikliwej materii. „Jakżeż piękny byłby ten materiał niebieski do budowania pałaców, jeśliby można było nabyć coś równie twardego i przezroczystego” – wzdycha Sagredo, po czym obaj z Salviatim zastanawiają się, czy mieszkańcy obijaliby się o te niewidzialne ściany, czy też nie – biorąc pod uwagę, że materia niebios jest także niedotykalna. Galileusz przedstawia argumenty za tym, że także Ziemia widziana z daleka byłaby podobna do Księżyca. Charakterystyczna jest jednak ostrożność, z jaką uczony przedstawia wnioski dotyczące tak odległych światów, jak dalekie planety – ostrożność ta bardzo kontrastuje z beztroską pewnością siebie wszystkich Simpliciów, z którymi przychodziło mu się stykać. Galileusz cały czas podkreśla, że rozumiemy bardzo niewiele. Wprowadza tu rozróżnienie poznania ekstensywnego i intensywnego. W sensie ekstensywnym zawsze skazani jesteśmy na znajomość drobnego ułamka tego, co jest we wszechświecie. „Ale biorąc pod uwagę drogę intensywną – o ile pojęcie intensywności oznacza intensywne, a więc doskonałe zrozumienie – umysł ludzki poznaje, zdaniem moim, niektóre zagadnienia tak doskonale i z taką absolutną pewnością, jaką posiada tylko przyroda. Takimi są właśnie czyste nauki matematyczne, a więc geometria i arytmetyka – w których rozum boży zna nieskończenie większą liczbę prawd – gdyż zna je wszystkie – jednak z tych niewielu znanych rozumowi ludzkiemu mieści się, według mnie, poznanie równe bożemu w obiektywnej pewności, gdyż dochodzi do zrozumienia zawartej w nich konieczności – a nie może chyba istnieć większa pewność aniżeli właśnie ta”. Ta piękna intuicja platońska stała się jednym więcej kamieniem obrazy dla sędziów uczonego. Warto zwrócić uwagę, że podobne przekonania nie były wyłączną własnością Galileusza: tak samo myśleli Kepler i Kartezjusz, i większość tych, którzy w XVII wieku stworzyli nowożytną naukę.

Dzień drugi Dialogu poświęcony jest kwestii ruchu obrotowego Ziemi wokół osi. Galileusz przytacza (ustami Sagreda) charakterystyczną anegdotę: „Byłem pewnego dnia w domu bardzo szanowanego w Wenecji lekarza. Jedni odwiedzali go ze względu na swoje studia, a inni przez ciekawość, by zobaczyć sekcję, przeprowadzaną ręką tego równie uczonego, jak sumiennego i zręcznego anatoma. Tego dnia właśnie zdarzyło się, że poszukiwał on miejsca, skąd biorą początek nerwy, na temat których toczy się sławny spór między lekarzami-galenistami i perypatetykami. Anatom pokazał, jak wielki pęk nerwów, wychodząc z mózgu i idąc przez potylicę, schodzi wzdłuż stosu pacierzowego, rozgałęziając się na całe ciało, tak że jedno tylko włókno, cieniutkie jak nić, dochodzi do serca. Zwracając się następnie do pewnego szlachcica, którego znał jako filozofa-perypatetyka i gwoli którego ze szczególną dokładnością odsłonił i zademonstrował to wszystko, zapytał go, czy mu to wystarcza i czy nabrał pewności, że nerwy biorą początek w mózgu, a nie w sercu, na co ów filozof po krótkim namyśle odpowiedział: «Pokazaliście mi to wszystko w sposób tak jasny i dotykalny, że gdyby tekst Arystotelesa, według którego nerwy powstają w sercu, nie był z tym sprzeczny, to musiałbym siłą rzeczy uznać wasze twierdzenie za prawdę»”. Galileusz uwielbiał dworować z niesamodzielności intelektualnej zwolenników Arystotelesa, którzy uznawali greckiego filozofa za wyrocznię we wszystkich sprawach, choć po części rozumiał, skąd się to bierze. Simplicio tłumaczy, że pisma Arystotelesa tworzą wspaniały, skomplikowany gmach i trzeba znać je wszystkie, by rozumieć właściwie ich treść. Rzeczywiście gmach wiedzy zbudowany, czy raczej nadbudowany, przez średniowiecze nad naukami Greka mógł imponować i stwarzać wrażenie ostatecznej prawdy. W czasach Galileusza tacy filozofowie, jak Borro czy Cremonini, przez całe życie nie zajmowali się niczym innym jak komentowaniem tego korpusu wiedzy i dociekaniem, co Filozof naprawdę miał na myśli. Ludzie o takim nastawieniu, nawet słysząc o wynalazku teleskopu, potrafili znaleźć ustęp u Arystotelesa, gdzie się o nim wspomina. Oczywiście Sagredo i Salviati bawią się, przywołując anegdoty tego rodzaju. Także astrologia i alchemia traktowane są niezbyt serio: „W podobny sposób alchemicy, pod wpływem uporczywego maniactwa, utrzymują, że wszystkie najwznioślejsze umysły świata zajęte były jedynie opisywaniem sposobów wytwarzania złota (…) Jest rzeczą nadzwyczaj zabawną rozczytywanie się w ich komentarzach do poetów antycznych, u których dopatrują się największych tajemnic ukrytych pod osłoną baśni: co oznaczały miłostki bogini Księżyca i jej zejście na ziemię w pogoni za Endymionem, jej gniew na Akteona, przemiana Jowisza raz w złoty deszcz – to znów w palące się płomienie”. Czytając takie fragmenty, zaczynamy się zastanawiać, jak bardzo wiarygodne były dla Galileusza opisy cudów chrześcijańskich, czy jeśli w ogóle traktował je serio, to nie sądził, że należałoby je odrzeć z otoczki zbyt naiwnych stwierdzeń. Jak się zdaje, niedługo przed Dialogiem uczony napisał jakiś traktat poświęcony naturalistycznym wyjaśnieniom cudów, który się jednak nie zachował.

Wśród argumentów przemawiających za wirowaniem Ziemi był i ten, że łatwiej wyobrazić sobie nieruchomy wszechświat z niewielką wirującą Ziemią niż odwrotnie. Sagredo mówi: „Uważałbym tego, kto mniema, że słuszniej jest kazać poruszać się całemu światu, byle tylko utrzymać w bezruchu Ziemię, za mniej rozsądnego od kogoś, kto wzniósłby się na szczyt waszej kopuły (*) tylko po to, by spojrzeć na miasto wraz z otaczającymi je osiedlami, i domagał się, by cała okolica obracała się dokoła niego, byleby on nie ponosił trudu obracania głowy”. Simplicio widzi jednak sytuację inaczej: „O ile jednak chodzi o potęgę Tego, który wszystko wprawia w ruch – a przecież jest ona nieskończona – to nie mniej Mu łatwo poruszyć wszechświat aniżeli Ziemię czy słomkę. A skoro ta potęga jest nieskończona, to dlaczego nie miałaby raczej objawiać się większa jej część aniżeli mniejsza?”

Standardowy argument przemawiający za nieruchomością Ziemi był taki, że gdyby ona wirowała ciało swobodnie upuszczone ze szczytu wieży musiałoby spaść daleko na zachód od jej podnóża. Odmianami tego argumentu były doświadczenia z armatami: strzelając pionowo w górę, powinniśmy zaobserwować podobny efekt przesuwania się Ziemi pod pociskiem, który musiałby spaść daleko od miejsca wystrzału. Długości strzałów na wschód i na zachód powinny się różnić od siebie. „Jaka szkoda, że artyleria nie istniała za czasów Arystotelesa. Przy jej pomocy pokonałby on niewiedzę i mówił bez żadnego wahania o sprawach wszechświata” – stwierdza sarkastycznie Sagredo. Galileusz szczegółowo analizuje takie sytuacje, wykazując, że ruch Ziemi nie wpływa na obserwowany przebieg zjawisk.

Od czasu do czasu broniący wciąż stanowiska kopernikańskiego Salviati czuje się w obowiązku przypomnieć, że jest to jedynie jego rola w Dialogu, a nie wewnętrzne przekonanie. Ale zarówno zwolennicy, jak przeciwnicy Kopernika (i Galileusza) uznali, że gra toczy się bardziej serio, niż twierdziły persony Dialogu.

Badanie konsekwencji względności ruchu zajęło dużą część rozważań tego dnia. Pojawia się tam także dość osobliwy fragment, w którym Galileusz stara się spojrzeć na spadek swobodny na obracającej się Ziemi z punktu widzenia kogoś, kto się nie obraca razem z nią. Prędkość wirowania Ziemi udzieli się wówczas spadającemu ciału i jego tor będzie jakąś linią krzywą. Jaką konkretnie krzywą? Łukiem okręgu kończącym się w środku Ziemi – odpowiada Salviati. Sam Galileusz mówił o tym fragmencie bizzarrìa – czyli fantazja, i rzeczywiście koncepcja jest osobliwa (i nieprawdziwa). Dyskusje na takie wydumane tematy, jak tor spadku do środka Ziemi, miały już swoją tradycję i posunęły naprzód rozumienie fizyki ruchu; słynna wymiana listów na ten temat miała odbyć się w przyszłości między Robertem Hookiem a Isaakiem Newtonem i stała się ważnym bodźcem dla profesora z Cambridge.

Innym argumentem przeciwko ruchowi obrotowemu Ziemi był brak obserwowanej siły odśrodkowej. Galileusz stara się wykazać, że taka siła w ogóle w przypadku Ziemi nie występuje. Idzie tu zbyt daleko. Trzydzieści lat później Isaac Newton, nieznany wtedy jeszcze nikomu, czytając Dialog, obliczy wartość tej siły i udowodni, że jest ona wprawdzie znacznie mniejsza od siły ciążenia, ale różna od zera.

Dzieło Galileusza stanowiło raczej początek, wstęp do dalszych badań. Autor, wykazując cierpliwie, skutecznie i konsekwentnie, że Arystoteles nic nie wiedział o ruchu, działał na współczesnych mu konserwatystów zaiste jak artyleria.

Na celowniku uczonego znalazła się antykopernikańska książeczka Lochera, ucznia Christopha Scheinera, prawdopodobnie ich wspólne dzieło.

Spiralne spadanie ciał na obracającą się Ziemię ze sfery Księżyca. Trwa sześć dni (Johann Georg Locher, Disquisitiones mathematicae, de controversiis et novitatibus astronomicis, Ingolstadt 1614). Oś obrotu Ziemi νλ jest na rysunku pozioma; spadek kuli z punktu A nad równikiem odbywa się po spirali, która prostopadle przecina rysunek aż do punktu B. Linia przerywana zaczynająca się w γ jest torem kuli spadającej znad miejsca na Ziemi położonego w umiarkowanej szerokości geograficznej (tak jak Ingolstadt). Jezuici wyobrażali sobie, że cała sfera Księżyca musiałaby u Kopernika wirować w ciągu doby.

SAGREDO: Ach, jakież piękne rysunki, co za ptaki, co za kule – a co to za inne piękne rzeczy?

SIMPLICIO: To kule, które przybywają ze sfery księżycowej.

SAGREDO: A to, cóż to takiego?

SIMPLICIO: To małża, z gatunku tych, które u nas w Wenecji nazywają buovoli. I ona też przybywa ze sfery księżycowej.

SAGREDO: Tak jest istotnie. Oto dlaczego Księżyc wywiera tak wielki wpływ na pewne stwory morskie z gatunku ostrygowatych.

Otóż autorzy ci, chcąc zdyskredytować ideę ruchu Ziemi, postarali się wykonać pewne obliczenia: ile mil na godzinę przebywa punkt na równiku, a ile na innych równoleżnikach, a także jaką drogę przebędzie w ciągu minuty, a nawet sekundy. Cel propagandowy tych obliczeń był oczywisty: prędkość wirowania Ziemi jest porównywalna z prędkością dźwięku, a więc wydaje się ogromna nawet i dziś. Chodziło o to, by idea ruchu Ziemi wydała się absurdalna. Autorzy następnie wyobrażają sobie spadek kuli armatniej ze sfery Księżyca, co miałoby, ich zdaniem, trwać sześć dni.

„Otóż, jeśliby wszechmocą boską czy też za sprawą jakiegoś anioła cudownie została przeniesiona tam, wysoko, wielka kula armatnia, umieszczona w naszym zenicie i puszczona stamtąd swobodnie, to wówczas, zdaniem autora i moim – mówi Simplicio – byłoby rzeczą najbardziej niewiarygodną, by spadając w dół, utrzymywała się zawsze na linii naszego pionu, w ciągu tylu dni zachowując wciąż wraz z Ziemią ruch obrotowy naokoło jej środka, zakreślając na równiku linię spiralną w płaszczyźnie tego największego koła, podczas gdy na równoleżnikach zakreślałaby linie spiralne naokoło stożków, a na biegunach spadałaby po zwykłej linii prostej”. Salviati pyta o założenia dotyczące spadku ze sfery Księżyca na Ziemię. Jezuici wyobrażali sobie, że spadanie takie byłoby jednostajne, w dodatku popełnili prosty błąd obliczeniowy: skoro cała sfera Księżyca obraca się raz na dobę, to spadanie z taką prędkością do centrum powinno zająć 2π razy krócej, czyli mniej niż 4 godziny, a nie sześć dni. Już lepiej z geometrią radzą sobie bednarze – zauważa Salviati. Przy okazji przedstawia prawo spadku przyspieszonego: „Studiowałem wszystkie te sprawy z największą radością i zachwytem, widząc, że powstaje cała nowa dziedzina wiedzy. Dotyczy ona spraw, o których napisano już setki tomów, a żadne z nieskończenie wielu cudownych odkryć, które obejmuje, nie zostało zauważone i zrozumiane przez nikogo wcześniej, aż dopiero przez naszego przyjaciela [tj. Galileusza – J.K.]”. Galileusz oblicza, jak długo spadałaby kula z wysokości Księżyca, jeśli wiadomo, że z wysokości stu łokci spada w ciągu pięciu sekund. Oczywiście z punktu widzenia uczonego nie ma powodu, aby spadek następował po jakiejś linii spiralnej. Prawo spadku swobodnego i własności ruchu przyspieszonego po raz pierwszy pojawiają się tu w druku. Było to odkrycie rzeczywiście ogromnej wagi – jeszcze jedno z odkryć prowadzących w stronę mechaniki Newtona.

Prawo odkryte przez Galileusza stosować się miało do wszystkich ciał, bez rozróżnienia lekkich i ciężkich, inaczej niż u Arystotelesa, który ruch wiązał z naturą danego ciała. „Jeżeli wymienione tu rzeczy są z natury swej różne, a rzeczy z natury różne nie mogą mieć wspólnego ruchu, to należałoby (…) pomyśleć o czymś innym, aniżeli tylko o dwóch ruchach, w górę i w dół. Jeśli trzeba wynaleźć jeden ruch dla strzał, inny dla ślimaków, jeszcze inny dla kamieni – jakiś inny jeszcze dla ryb, to trzeba by pomyśleć również o dżdżownicach, topazach i grzybkach, które z przyrodzenia swego nie różnią się mniej jedne od drugich aniżeli grad i śnieg”. Książeczka Lochera i Scheinera zostaje wykpiona na wielu stronach, Galileusz zasłużenie traktuje ją jak stek głupstw. Bo też jezuiccy autorzy, gromadząc swe argumenty, nie próbowali w ogóle zrozumieć stanowiska strony kopernikańskiej. Straszyli katastrofami, jakie miałyby wynikać z ruchu Ziemi, nie zastanawiając się nad tym, że gdyby naprawdę teoria kopernikańska była taka łatwa do obalenia, to jej zwolennikami nie byliby najwybitniejsi uczeni epoki, Kepler i Galileusz. Istniała realna trudność przestawienia wyobraźni na kopernikanizm, nawet Galileusz miał z tym czasami kłopoty, było to dla ludzi tej epoki zadaniem trudnym. Ale istniał też opór przed kopernikanizmem wynikający ze złej nauki i złej naukowej wiary.

Następnym omawianym autorem jest Scipione Chiaramonti. „Gdybym nie miał nadziei, że od tego drugiego autora usłyszę coś mądrzejszego, to niewiem, czy nie zdecydowałbym się raczej na przejażdżkę gondolą w poszukiwaniu świeżości” – stwierdza bez ogródek Sagredo. Galileusz udowadnia, że Chiaramonti nie zna teorii, którą zawzięcie krytykuje. Tenże autor wystąpił też niefortunnie w sprawie odległości gwiazdy nowej obserwowanej przez Tychona, dowodząc, że z pewnością leży ona poniżej Księżyca.

Rozważania te należały już do dnia trzeciego Dialogu. Był on poświęcony ruchowi rocznemu Ziemi. Arystoteles dowodził, że gwiazdy zajmują obszar sferyczny i obracają się raz na dobę wokół Ziemi – z tego powodu uważał wszechświat za skończony. Jeśli jednak odrzucić jego założenie, przyjąć ruch dobowy Ziemi i zgodzić się na nieruchome gwiazdy, to znika powód, by uważać świat za skończony. Równie dobrze może on być nieskończony i nie mieć żadnego kształtu.

Obserwacje wskazują, że planety mają swój środek ruchu w Słońcu – w tym punkcie zgodni byli Tycho Brahe i Kopernik. Pozostaje więc do rozstrzygnięcia, czy Słońce, czy raczej Ziemia poruszają się ruchem rocznym. Zdaniem Salviatiego-Galileusza więcej przemawia za nieruchomym Słońcem. Oprócz dawniej już znanych argumentów przedstawił on nowy, wywodzący się z obserwacji plam słonecznych. Ich przesuwanie pokazuje, że Słońce wiruje wokół osi. Okazuje się jednak, że w różnych porach roku tory plam na tle tarczy słonecznej mają różny kształt. W czerwcu i grudniu są prostoliniowe i tworzą ustalony kąt z ekliptyką, w marcu i wrześniu natomiast mają kształt łuków. Najprostsze wyjaśnienie zjawiska daje teoria Kopernika: oś Słońca ma stałe nachylenie do płaszczyzny orbity Ziemi i w ciągu roku oglądamy raz nieco więcej południowej półkuli Słońca, raz nieco więcej jego półkuli północnej. Nie potrzeba już żadnych innych ruchów, aby objaśnić to, co się obserwuje. Dla Galileusza takie wirowanie wokół osi nie wymagało podtrzymywania. Podobnie rzecz się ma z Ziemią: jej oś obrotu nachylona jest do płaszczyzny orbity – czego skutkiem są zmiany pór roku. Kopernik, aby zachować stałość kierunku osi ziemskiej, przyjmował jeszcze dodatkowy trzeci ruch Ziemi, Galileusz go nie potrzebował.

W Dialogu Galileusz twierdzi, że odkrył nachylenie osi Słońca do ekliptyki prowadząc obserwacje z willi Le Selve, a więc przed rokiem 1614. Wydaje się to mało prawdopodobne; dokładne obserwacje plam i ich ruchu pojawiły się w monumentalnej książce Christopha Scheinera Rosa Ursina, która ujrzała światło dzienne w czasie, gdy Galileusz pisał Dialog. Dopiero w 1629 roku dostrzegł kopernikańskie wyjaśnienie zjawiska i zamieścił w książce. Znowu okazało się, że herkulesowe trudy Scheinera zaowocowały zgrabnym argumentem przeciwko Ptolemeuszowemu układowi świata. Oczywiście można wyjaśnić każde zjawisko równie dobrze w ziemskim układzie odniesienia, trzeba jednak przypisać wtedy Słońcu wiele ruchów zamiast jednego ruchu obrotowego. Z kopernikańskiego punktu widzenia wszystko układało się w konsystentną całość: wszystkie ruchy obrotowe i obiegowe zachodzą bowiem w jednym kierunku i nie potrzeba z każdym nowo odkrytym zjawiskiem dopisywać wciąż jakichś nowych ruchów.

Co do osobistej uczciwości Galileusza, nie ma twardych dowodów, że korzystał on z obserwacji Scheinera, pewne jest natomiast, iż ponownie dostrzegł on więcej niż jezuicki astronom, który poświęcił znaczną część swego dzieła na jałowy z natury (choć pasjonujący dla uczestników) spór o pierwszeństwo odkrycia plam na Słońcu. Trudno oprzeć się wrażeniu, że mnogość i dokładność obserwacji, jakkolwiek potrzebne, ważne są tylko wtedy, gdy pozwalają nam coś więcej zrozumieć ze sposobu funkcjonowania świata. Jeden koń arabski pobiegnie szybciej niż sto koni fryzyjskich.

W dniu trzecim Dialogu Galileusz wraca też do książeczki Lochera i przytacza inne jeszcze wnioski, do których – wedle jezuity – prowadzić miał kopernikanizm: „W tak fantastycznym układzie świata trzeba głosić różne kapitalne bzdury, na przykład takie, że Słońce, Wenus i Merkury znajdują się pod Ziemią, że materie ciężkie ruchem naturalnym poruszają się ku górze, a lekkie w dół; że Chrystus, nasz Pan i Zbawiciel, wstąpił do piekieł i zstąpił na niebiosa, gdy zbliżał się ku Słońcu; że gdy Jozue rozkazał Słońcu, by się zatrzymało, to Ziemia się zatrzymała, bądź też Słoń-

ce poruszać się zaczęło w kierunku przeciwnym do Ziemi; że gdy Słońce jest w znaku Raka, to Ziemia biegnie przez Koziorożca, że zimowe znaki zodiaku wywołują lato, a letnie zimę; że nie gwiazdy wschodzą i zachodzą dla Ziemi, lecz Ziemia wschodzi i zachodzi dla gwiazd; że wschód zaczyna się na zachodzie, a zachód na wschodzie i że jednym słowem, wywraca się cały porządek świata”.

Najsłabszą częścią Dialogu jest dzień czwarty, mający w zamyśle autora dostarczyć najsilniejszego argumentu za ruchem Ziemi. Tym argumentem jest istnienie pływów na morzach. Simplicio odnosi się do pomysłu sceptycznie:

„SIMPLICIO: Powiem jednakże z tą swobodą, która wśród nas jest dozwolona, że wprowadzanie tu ruchu Ziemi i robienie go przyczyną przypływu i odpływu w nie mniejszej mierze wydaje mi się pomysłem z bajki niż wszystkie inne, o których dotąd słyszałem; a gdyby mi nie podano innych wyjaśnień, bardziej odpowiadających prawom przyrody, to bez obawy powziąłbym przeświadczenie, że ma się tu do czynienia ze zjawiskiem nadprzyrodzonym, a więc cudownym i niedostępnym dla umysłów ludzkich, jak zresztą i nieskończona liczba innych zjawisk, zależnych bezpośrednio od wszechmogącej ręki Boga.

SALVIATI: (…) wśród wszystkich przyczyn, które przytoczone były dotychczas jako prawdziwe, żadna, jakiekolwiek byśmy stosowali zabiegi, nie byłaby w stanie wyjaśnić podobnych zjawisk. Albowiem ani przy pomocy światła Księżyca czy Słońca, ani umiarkowanej ciepłoty, ani różnic głębiny nie zdoła się w sztuczny sposób spowodować, aby woda zawarta w nieruchomym naczyniu poruszała się tam i z powrotem, aby wznosiła się i opadała, i to w jednym miejscu tak, a w drugim inaczej. Jeśli jednak bez żadnych sztuczek i w najnaturalniejszy sposób, wprowadzając naczynie w ruch, potrafię dokładnie odtworzyć wszystkie te zmiany, które widzi się na wodach mórz, to dlaczego mielibyście odrzucić takie wyjaśnienie i uciekać się do cudu.

Cały ten fragment i jego dalszy ciąg wkraczają na ryzykowny temat cudów, przynajmniej werbalnie. Galileusz tłumaczy, że gdyby w sposób cudowny nadać Ziemi niejednostajny ruch, to w jego następstwie wody zaczną – w sposób najzupełniej naturalny – poruszać się tak, jak to widzimyw zjawisku pływów. Dalej zaś wyjaśnia, że zamiast cudownego poruszania Ziemią wystarczy jej ruch naturalny, taki jak u Kopernika. Rozumowanie uczonego nie tylko odzierało zjawisko pływów z wszelkiej cudowności, ale też sprawiało wrażenie, iż inne wyjaśnienie jest niemożliwe. W ten sposób istnienie pływów byłoby dowodem, że ruch Ziemi jest „prawdą absolutną” – wbrew najgłębszemu przekonaniu Maffeo Barberiniego. Swoistym dowodem uznania ze strony Kościoła był fakt, że nikt nie próbował argumentacji Galileusza kwestionować na gruncie naukowym, jakby zgadzano się z nim, że inne wyjaśnienie naukowe i naturalne jest niemożliwe.

Tymczasem teoria Galileusza była pod wieloma względami nieudana: nie tłumaczyła okresów powtarzania się przypływów i nie wyjaśniała, czemu występują one dwa razy na dobę. Uczony niewiele wiedział na temat samego zjawiska i niezbyt przejmował się tym, co wiedział. Znane są w nauce, i nie tylko w nauce, takie przypadki ślepego przywiązania do własnych idei. Galileusz, który niezmiernie łatwo popadał w mentorski ton wobec innych, tutaj sam nie potrafił sprostać wymaganiom, jakie należy postawić porządnej teorii.

Nie zmienia to jednak faktu, że Dialog jest książką wyjątkową, pierwszą tak dobrze pomyślaną i przeprowadzoną argumentacją na rzecz ruchu Ziemi. Choć z naukowego punktu widzenia nie zawiera żadnego absolutnego dowodu słuszności kopernikanizmu, pokazuje, że jest to pogląd naukowo spójny, nie prowadzący do sprzeczności i zupełnie prawdopodobny. Dowody na rzecz kopernikanizmu jeszcze długo później były jedynie pośrednie, ale świat stawał się zrozumiały, gdy patrzeć na niego z tej właśnie perspektywy. Dyskusja Galileusza, mimo polemicznej werwy, jest na ogół rzetelna; mało kto tak dogłębnie jak on przemyślał argumenty zwolenników Arystotelesa i nikt wcześniej nie poddał ich tak druzgocącej krytyce. Wielką zasługą historyczną kopernikanizmu była właśnie zmiana spojrzenia na usytuowanie Ziemi i człowieka w kosmosie, Galileusz bardziej niż ktokolwiek inny przyczynił się do przeprowadzenia tej przemiany obrazu świata.

(*) Chodzi o słynną kopułę na katedrze florenckiej autorstwa Filippa Brunelleschiego

Elementy – Euklides (ok. 300 p.npe.)

Myślimy często o starożytnej Grecji jako o cywilizacji, która dała nam filozofię, teatr, poezję, historię, sztukę, logikę, demokrację. Mniej dostrzegane są początki nauk ścisłych, które, wbrew wszelkiemu prawdopodobieństwu, osiągnęły u Greków niezwykle wysoki poziom. Dwa najważniejsze dzieła, Elementy i Almagestpowstały w Aleksandrii, pierwsze na początku świetności miasta, drugie już pod jej koniec. Oddzielone od siebie ponad czterema wiekami, skondensowały w sobie to, co najlepsze w starożytnym dorobku. A bez greckiej geometrii i astronomii nie do pomyślenia byłaby późniejsza nauka islamska, a także praca Mikołaja Kopernika i jego następców prowadząca do rewolucji naukowej XVII wieku.

Tekst Elementów, podzielony na trzynaście ksiąg, obejmuje w sposób systematyczny najważniejsze osiągnięcia matematyki greckiej przed Archimedesem. Napisane około roku 300 p.n.e. dzieło było przez wieki kopiowane zarówno w greckim oryginale, jak i w przekładach na hebrajski, arabski i łacinę, a od 1482 roku zaczęło ukazywać się drukiem w niezliczonych wydaniach książkowych, które liczbą ustępują tylko wydaniom Biblii. Aż do początku XIX wieku znano tekst Euklidesa jedynie w redakcji Teona z Aleksandrii, uczonego z IV w.n.e., ojca Hypatii. W 1808 r. François Peyrard, pierwszy bibliotekarz École Polytechnique w Paryżu, odkrył, iż rękopis Elementów zrabowany z Watykanu przez Napoleona (Vaticanus graecus 190, zwany też P) jest wcześniejszą wersją dzieła. Stała się ona później podstawą definitywnego wydania opracowanego przez duńskiego filologa Johana Ludviga Heiberga.

[Vaticanus graecus 190]

Dzieło Euklidesa nie było pierwszym noszącym ten tytuł, szybko stało się jednak klasyczne, czego pośrednim dowodem jest fakt, że nie zachowały się niemal żadne wcześniejsze teksty matematyczne – w czasach gdy kopiowanie książek było kosztowne i pracochłonne, następowała swoista selekcja naturalna rękopisów, w której te bardziej przydatne wypierały mniej użyteczne. Elementy są najwcześniejszym zachowanym greckim traktatem poświęconym matematyce, ponieważ stanowią one podręcznik, z którego można nauczyć się podstaw matematyki. Stosowane były w tej funkcji nie tylko w starożytności, ale i w czasach późniejszych aż po dziewiętnasty wiek.

Zadziwiająco mało wiemy o autorze tekstu, nawet jego istnienie podawano w wątpliwość, argumentując, że dzieło jest niejednorodne i różne jego księgi wykazują rozmaity stopień dojrzałości. Na ogół sądzi się jednak, że Euklides działał i prawdopodobnie także urodził się w Aleksandrii, mieście niedługo wcześniej założonym przez Aleksandra Wielkiego i przez długie wieki stanowiącym ośrodek nauki i kultury greckiej. Według Proklosa, neoplatończyka z V w.n.e., Euklides żył za panowania Ptolemeusza I i był młodszy niż krąg uczniów Platona, a starszy od Archimedesa i Eratostenesa. Miał być platonikiem i z tego powodu dzieło jego kulminowało konstrukcją i omówieniem pięciu brył platońskich, znanych z Timajosa. Euklidesa nie uważano nigdy za oryginalnego twórcę, sądzono, że zebrał on i usystematyzował osiągniecia poprzedników, w szczególności Eudoksosa i Teajteta. Elementy nie są jednak prostą kompilacją znanego już materiału, lecz próbą zbudowania dedukcyjnego systemu wiedzy matematycznej. Możliwe, że tak jak i w późniejszej historii matematyki, po okresach szybkich postępów następowały okresy systematyzacji i porządkowania wiedzy i Elementy są świadectwem takiego dążenia. Choć odkrycia późniejszych matematyków, takich jak Archimedes, Apoloniusz i Pappus, znacznie wykroczyły poza problematykę Elementów, dzieło to pozostało najszerzej używanym podręcznikiem w historii. Jego znaczenie nie ogranicza się do matematyki: dedukcyjny system wiedzy stał się ideałem wielu późniejszych filozofów i uczonych. W naukach ścisłych aż do dziś uważa się możliwość ustrukturyzowania wykładu na wzór greckiej geometrii za ważny sprawdzian dojrzałości danej dyscypliny. Wprowadzając postulaty, z których następnie wyprowadzamy twierdzenia, osiągamy pojęciową jasność i większą przejrzystość konstrukcji myślowych, musimy bowiem uświadomić sobie jasno przyjęte założenia.

Pamiętać też należy, iż grecka geometria nie była traktowana jako abstrakcyjna gra logiczna, lecz jako teoria wywodząca się z obserwacji dotyczących ciał w przestrzeni, stanowiła więc i nadal stanowi (wraz z nieeklidesowymi rozszerzeniami) podstawę fizyki. Można więc traktować ją jako pierwszą matematyczną teorię fizyczną. Kiedy niedługo później Archimedes w podobny sposób ujmował zasady równowagi ciał, rozszerzał niejako geometrię, tworząc zarazem pierwszą fizykę matematyczną.

Poniżej skoncentrujemy się na przedstawieniu metody postępowania Euklidesa, ograniczając się do tego, co było znane i czytane najszerzej i nie ograniczało się tylko do samej matematyki. Aksjomatyczna konstrukcja wiedzy jest osiągnięciem greckim nie mniejszym niż demokratyczne rządy albo rzeźba. Dzięki Euklidesowi nigdy już nie stracono z oczu, przynajmniej w kręgu śródziemnomorskim, owej metody uzyskiwania zdań niezbitych i pewnych. Jeśli prawdą jest, że (jak ujął to Alfred North Whitehead) filozofia europejska stanowi ciąg przypisów do Platona, to z niemniejszą dozą słuszności powiedzieć można, że nauki ścisłe – fizyka w nie mniejszym stopniu niż matematyka – stanowią rozbudowany komentarz do Elementów Euklidesa.

Każda z ksiąg (albo grup ksiąg) poprzedzona jest definicjami. Księga pierwsza zaczyna się od wymienienia pięciu postulatów geometrii oraz pięciu ogólniejszych prawidłowości odnoszących się do tego, co Euklides nazywa wielkościami – może tu chodzić (jak czytelnik dowiaduje się przy okazji kolejnych twierdzeń) o długość odcinka, wielkość kąta, pole powierzchni czy objętość pewnych brył. Następnie z owych dziesięciu założeń wyprowadzane są kolejne twierdzenia oraz konstrukcje. Księgi I-IV oraz VI, XI-XIII poświęcone są geometrii, sięga V zawiera wykład teorii proporcji Eudoksosa (odgrywały one w matematyce greckiej rolę dzisiejszych liczb rzeczywistych), księgi VII-IX dotyczą arytmetyki, w księdze X dyskutowane są rozmaite rodzaje liczb niewymiernych, zawsze jednak traktowanych jako proporcje długości pewnych odcinków. Ostatnia księga XIII kończy się twierdzeniem, że istnieje dokładnie pięć brył platońskich (sześcian oraz foremne: czworościan, ośmiościan, dwunastościan i dwudziestościan).

Podejście Euklidesa niewątpliwie wiele zawdzięcza istniejącej już tradycji matematycznej, a także platońskiemu rozróżnieniu między przedmiotami postrzeganymi przez zmysły a bytami idealnymi: korzystając z rysunków, traktuje je tylko jako pomoc w wyobrażeniu sobie, jak mają się do siebie idealne figury geometryczne. Koncepcję uporządkowania wiedzy, zaczynając od założeń, których prawdziwość przyjmuje się bez dowodu, znaleźć można u Arystotelesa, nie wiadomo jednak, czy występuje tu jakaś bezpośrednia zależność, czy tylko wspólna tradycja filozoficzna. Geometria stała się pierwszą wyspecjalizowaną dziedziną wiedzy, uprawianą nie ze względów praktycznych, lecz dla niej samej. Wysokie mniemanie o pedagogicznych wartościach geometrii żywił Platon, sądząc, że kieruje ona uwagę ku temu, co wieczne i niezmienne. Stobajos przytacza następującą anegdotę:

Ktoś zaczął się uczyć u Euklidesa i kiedy poznał pierwsze twierdzenie, spytał:
– Co mi przyjdzie z tego, żem się tego nauczył?

Na to Euklides zawołał niewolnika i powiedział:

– Daj mu trzy obole, jeśli musi mieć zysk z tego, czego się uczy.

Omówimy bliżej główne linie rozumowania księgi I Elementów. Tekst poprzedzają 23 definicje, np. „Punkt jest tym, co nie ma żadnych części”, „Linia zaś jest długością bez szerokości”, „Równoległe są proste, które będąc na tej samej płaszczyźnie rozciągają się bez kresu w obie strony, ale w żadnej części się nie przetną” (przeł. M. Roszkowski). Linia prosta u Euklidesa jest zawsze skończona, tzn. jest odcinkiem wedle dzisiejszej terminologii. Dzisiejsi matematycy nie definiują wszystkich pojęć danej teorii, część z nich muszą bowiem stanowić pojęcia pierwotne, które przyjmuje się bez definicji, a ich sens ujawnia się dopiero, gdy badamy, w jaki sposób pojęcia występują one w aksjomatach i twierdzeniach.

Pięć postulatów głosi kolejno, że

1. Z każdego punktu do każdego innego można poprowadzić prostą (odcinek).
2. Odcinek można (obustronnie) przedłużać.
3. Z dowolnego środka można zakreślić okrąg przechodzący przez dany punkt.
4. Wszystkie kąty proste są wzajemnie równe.
5. Jeśli prosta przecina dwie inne proste, tworząca dwa kąty wewnętrzne mniejsze (w sumie) od dwóch kątów prostych, to można owe dwie proste przedłużyć tak, aby się przecięły.

Kąt prosty zdefiniowany jest tak, jak to widać na rysunku: gdy oba kąty utworzone przez półprostą o początku leżącym na danej prostej są równe, to kąty są kątami prostymi. Postulat 4 głosi, że dowolne kąty proste są równe, co znaczy tyle, że są przystające – mogą być na siebie nałożone tak, aby ich wierzchołki oraz ramiona się pokrywały (Euklides nie mówi tego wprost).

Pięć aksjomatów ogólnych stwierdza (w redakcji M. Kordosa):
1. Dwie wielkości równe trzeciej są równe.
2. Dodając do równych równe, dostajemy równe.
3. Odejmując od równych równe, dostajemy równe.
4. Wielkości dające się zamienić są równe.
5. Część jest mniejsza od całości.

Aksjomaty te stosowane są do porównania długości, kątów, figur, jak np. trójkąty. Mniejszy oznacza np. w przypadku odcinków, że po ich nałożeniu zostaje jeszcze jakaś niepokryta część większego (całości). Euklides nie posługuje się żadnymi miarami, porównuje tylko wielkości między sobą. Dlatego np. trójkąty są równe, gdy są przystające (można je na siebie nałożyć), ale także, gdy mają np. wspólną podstawę oraz jednakowe wysokości – dziś powiedzielibyśmy, że ich pola powierzchni są równe. Euklides nie myślał o długości jako liczbie, ani o polu prostokąta jako iloczynie długości boków, porównywał co najwyżej między sobą dwie wielkości.

Cały wykład podzielony jest na zagadnienia, które mogą być albo rozwiązaniem problemu konstrukcyjnego, albo twierdzeniem. W księdze I znajduje się 48 zagadnień, twierdzenie I,47 to twierdzenie dziś nazywane tw. Pitagorasa, I,48 to twierdzenie do niego odwrotne. Przyjrzyjmy się postępowaniu Euklidesa. Stosujemy dla przejrzystości nieco uwspółcześnioną terminologię, sformułowania nasze nie są wprawdzie dosłownym przekładem oryginału, ale też i nie odbiegają od niego zbyt daleko.

I,1 Mając dany odcinek AB, skonstruować na nim trójkąt równoboczny.

Konstrukcja sprowadza się do zakreślenia dwóch okręgów (Post. 3), które wyznaczą punkty przecięcia (co jednak nie wynika z aksjomatów Euklidesa, choć jest prawdą). Mając punkt przecięcia C, budujemy dwa odcinki AB oraz BC (Post. 1). Odcinki te są równe, ponieważ równe są odcinkowi AB (Aksj. 1). Trójkąt jest więc równoboczny. Warto zwrócić uwagę na eliminowanie kroków „oczywistych” i zastępowanie ich odwołaniami do postulatów i aksjomatów – w tym leży matematyczna siła Euklidesa, choć w oczach mniej matematycznie nastawionego czytelnika wywołuje to wrażenie (może nadmiernej) pedanterii.

I,2 Mając dany odcinek BC oraz punkt A nie leżący na nim, skonstruować odcinek AE=BC.

Łączymy w tym celu punkty AB (Post. 1) i budujemy trójkąt równoboczny za pomocą I,1. Promieniem BC zakreślamy okrąg o środku B (Post. 3). Przedłużamy następnie odcinek BD (Post. 2) do przecięcia z tym okręgiem H. Następnie promieniem HD zakreślamy okrąg o środku D. Przedłużenie AD (Post. 2) przetnie się z tym okręgiem w punkcie E. Odcinek AE (Post. 1) jest szukanym odcinkiem równym BC. Z aksjomatów ogólnych łatwo wnioskujemy, że odcinki te są równe, tzn. równe są ich długości (promień większego okręgu na rysunku to suma AB i boku trójkąta, odejmując potem bok trójkąta, otrzymujemy naszą tezę).
Warto zauważyć, że konstrukcje Euklidesa wykonywane są za pomocą linijki bez żadnej skali oraz cyrkla, który także nie pozwala przenosić odległości, lecz tylko poprwadzić okrąg z danego środka przez dany punkt (po przeniesieniu cyrkiel „nie pamięta” swego rozwarcia). Dzięki I,2 możemy uwolnić się od tego ograniczenia i odtwarzać odległość dwóch punktów w innym miejscu.

I,4 Dwa trójkąty, których dwa boki oraz zawarty między nimi kąt są równe, są przystające (równe).

Jest to cecha przystawania trójkątów bok-kąt-bok (bkb). Euklides dowodzi tego twierdzenia, nakładając na siebie oba trójkąty. Nie jest to postępowanie oczywiste, jeśli nie uważamy naszych figur za sztywne obiekty, które można przemieszczać bez zmiany kształtu i długości. David Hilbert przyjął w XIX w. to twierdzenie za jeden z aksjomatów w swoim wykładzie geometrii euklidesowej.

I,5 W trójkącie równoramiennym ABC, w którym AB=BC, kąty wewnętrzne przy podstawie są równe.

Przedłużamy ramiona trójkąta o jednakowe odcinki BF=CG. Trójkąty ABG i ACF są przystające na mocy poprzedniego twierdzenia, zatem także kąty ABG oraz ACF są równe. Trójkąty BFC i CGB są przystające na mocy tego samego twierdzenia (kąty BFC i BGC są równe, gdyż oba trójkąty pierwszej pary są przystające). Kąty ABC i BCA można przedstawić jako różnicę odpowiednio równych kątów (np. \sphericalangle ABC=\sphericalangle ABG-\sphericalangle CBG), muszą zatem być równe.
Twierdzenie to zyskało w średniowieczu nazwę Pons asinorum („ośli most”), nie wiadomo, czy z powodu kształtu towarzyszącego mu rysunku, czy też dlatego, że w tym miejscu ujawniał się już podział na tych, którzy rozumieją geometrię i na tych, którzy jej nie rozumieją. Pappus przedstawił prostszy dowód, w którym I,4 stosujemy do trójkątów BAC i CAB: ich boki są parami równe, a kąt przy wierzchołku jest tym samym kątem BAC, zatem oba trójkąty są przystające i kąty przy podstawie są równe. Euklides mógł mieć opory przeciwko takiemu potraktowaniu jednego trójkąta jako dwóch.

I,6 Jeśli kąty przy podstawie trójkąta są równe, to trójkąt jest równoramienny.

Euklides dowodzi tego twierdzenia przez sprowadzenie do niedorzeczności (reductio ad absurdum). Zakładamy, że teza twierdzenia jest fałszywa, a następnie staramy się wykazać, że wynika stąd zaprzeczenie założeń twierdzenia. Jeśli AB\neq AC, to któryś z odcinków jest większy, tzn. ma większą długość. Załóżmy, że AB>AC. Możemy wówczas na odcinku AB odłożyć odcinek AD=AC. Kąt DCB jest zatem mniejszy od kąta ACB. Jednocześnie trójkąt DBC jest równoboczny, a więc kąty DCB i DBC są równe na mocy poprzedniego twierdzenia. Kąt DBC jest tym samym, co kąt ABC, ergo ABC jest mniejszy od ACB wbrew założeniu.

I,9 Skonstruować dwusieczną danego kąta.

Na ramionach kąta odkładamy równe odcinki AD i AE. Następnie na odcinku AD konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek wraz z wierzchołkiem kąta wyznaczają szukaną dwusieczną, co można łatwo udowodnić: kąty ADE i AED są równe jako kąty przy podstawie trójkąta równoramiennego. W takim razie także kąty ADF i AEF są równe i oba trójkąty ADF i AEF są przystające. Wobec tego kąty DAF i FAE są równe c.n.d.

I,11 Skonstruować prostopadłą do danej prostej w punkcie D.

Wyznaczamy na prostej dwa punkty A i B w równych odległościach od D: AD=DB. Następnie na odcinku AB konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek C wraz z punktem D wyznaczają szukaną prostopadłą. Aby to udowodnić, zauważamy, że trójkąty ADC i BDC są przystające, a zatem kąty CDA i CDB są równe – spełniona jest więc definicja kąta prostego i oba te kąt są równe kątowi prostemu. Tym samym DC jest prostopadła do prostej AB.

I,20 (Nierówność trójkąta) Dwa boki trójkąta razem są dłuższe od trzeciego boku.

Niech będzie dany trójkąt CAB, chcemy dowieść, że odcinki AC wraz z CB są większe od AB. W tym celu na przedłużeniu AC odkładamy odcinek CD=CB. Kąt ABD jest większy od kąta CBD. Ten ostatni równy jest kątowi CDB, czyli ADB. W trójkącie ABD naprzeciwko większego kąta leży większy bok (I, 19; nie przytaczamy dowodu), a zatem AD=AC+CB>AB (stosując współczesny zapis).
Z twierdzenia tego wynika, że długość łamanej łączącej dwa punkty jest zawsze większa niż długość odcinka łączącego te punkty. W konsekwencji, jeśli połączymy oba punkty jakąś krzywą gładką, ale taką że zarówno samą krzywą, jak i jej długość można dowolnie przybliżać za pomocą łamanych, to długość łuku krzywej nie może być mniejsza niż długość odcinka łączącego dane punkty. Inaczej mówiąc, odcinek jest krzywą o najmniejszej długości (przy ustalonych obu końcach). Euklides nie dowodzi takiego twierdzenia, ale było ono znane greckim geometrom.
Dopiero blisko połowy księgi I staje się potrzebny Postulat 5.

I,29 Jeśli prosta EF przecina parę prostych równoległych AB i CD, to kąty naprzemianległe wewnętrzne są równe.

Wykażemy, że kąt AGF równy jest kątowi EHD. Załóżmy, że oba te kąty nie są równe. Niech np. AGF będzie większy od EHD. Ponieważ kąty AGF i BGF dopełniają się do dwóch kątów prostych (I,14; nie przytaczamy dowodu), więc suma kątów BGF i EHD jest mniejsza od dwóch kątów prostych. Z Post. 5 wynika, że proste AB i CD (po ewentualnym przedłużeniu) przetną się, nie są zatem – wbrew założeniu – prostymi równoległymi.
Postulat 5 sformułowany został tak, aby wygodnie się nim było posługiwać do wykazania, że dwie proste nie są równoległe. Nie wydawał się on tak oczywisty jak pozostałe i wzbudzał zawsze rozmaite wątpliwości. Jest on równoważny innemu postulatowi sformułowanemu przez Playfaira: Przez punkt nie leżący na danej prostej można przeprowadzić dokładnie jedną prostą równoległą do danej. Postulat 5 jest także równoważny twierdzeniu o sumie kątów wewnętrznych trójkąta.

I,32 Suma kątów wewnętrznych trójkąta równa jest dwóm kątom prostym.

Wystarczy zauważyć równość zaznaczonych kątów na rysunku (linia przerywana jest równoległa do boku trójkąta).

I,47 (Tw. Pitagorasa) W trójkącie prostokątnym suma kwadratów zbudowanych na przyprostokątnych jest równa kwadratowi zbudowanemu na przeciwprostokątnej.

Zwróćmy uwagę na sformułowanie: należy najpierw skonstruować kwadraty, o których mowa w twierdzeniu, a następnie wykazać, że suma (pól) dwóch mniejszych kwadratów jest równa polu kwadratu największego. Wysokość trójkąta opuszczona z kąta prostego po przedłużeniu dzieli kwadrat na dwa prostokąty. Euklides wykazuje, że dla trójkąta ABΓ oba pola zaznaczone na zielono oraz oba pola zaznaczone na niebiesko są równe.

Dowód Euklidesa korzysta z konstrukcji I,46 kwadratu na danym odcinku oraz linii równoległej do BΔ i ΓE przechodzącej przez dany punkt A (I,31). Wykazuje następnie, że AH jest przedłużeniem AΓ oraz AΘ jest przedłużeniem AB (I,14). Trójkąty ABΔ oraz ZBΓ są przystające na mocy twierdzenia I,4 (bkb). Prostokąt BΛ o podstawie BΔ ma tę samą wysokość co trójkąt ABΔ o tej samej podstawie. Na mocy I,41 prostokąt jest dwa razy większy od trójkąta (to wynik równoważny wzorowi na pole trójkąta, gdy określimy pole prostokąta). Kwadrat BH jest z tego samego powodu dwa razy większy od trójkąta ZBΓ o podstawie ZB. W analogiczny sposób pokazać można, że oba pola zaznaczone na niebiesko są równe, co kończy dowód.

W księdze VI Euklides przytacza inny dowód tw. Pitagorasa, oparty na podobieństwie mniejszych trójkątów na rysunku i trójkąta wyjściowego. Ten drugi dowód znany był prawdopodobnie wcześniej, dowód I,47, pochodzący zapewne od samego Euklidesa, jest bardziej zadowalający matematycznie, gdyż używa mniejszej liczby założeń: w księdze I daleko jeszcze jesteśmy od tak subtelnych konstrukcji jak figury podobne.
Ostatnie twierdzenie tej księgi I,48 jest odwrotne do tw. Pitagorasa: Jeśli spełniony jest warunek pól dla kwadratów zbudowanych na bokach trójkąta, to trójkąt ów jest prostokątny.

Elementy są podręcznikiem i były nim już w chwili powstania. Ścisłość rozumowań Euklidesa stała się wzorem dla przyszłych matematyków. Wybitny matematyk XX wieku André Weil pisał: „ [Elementy] Euklidesa to pierwszy zachowany tekst matematyczny, w którym pojęcie dowodu utożsamione zostało z łańcuchem wnioskowań pozbawionym luk; nie bez powodu ten sposób widzenia przedmiotu zachował swą aktualność do dziś”.

Nie sposób oczywiście przedstawić nawet pobieżnie wpływu książki czytanej w ciągu dwudziestu kilku wieków przez tysiące ludzi: wybitnych matematyków, jak i myślicieli czy po prostu uważnych czytelników mniej lub bardziej oddalonych od nauk ścisłych.

Greckie manuskrypty Elementów przechowywane były w Bizancjum. Od nich pochodziły przekłady arabskie, które z kolei dały początek rozpowszechnianiu się tekstu zarówno na Wschód (języki hebrajski, syryjski, perski), jak i na Zachód (łacina). W europejskim średniowieczu przekładano Euklidesa z arabskiego na łacinę wielokrotnie w wieku dwunastym i później. Już sama międzynarodowa lista tłumaczy daje pojęcie o zainteresowaniu Elementami: Adelard z Bath, Hermann z Karyntii, Gerard z Cremony, Robert z Chester, Campanus z Novary. Przekład tego ostatniego stał się podstawą pierwszego drukowanego wydania Elementów w Wenecji w roku 1482. W XVI wieku udało się też dotrzeć do tekstu greckiego (w wersji Teona). Od tamtej pory ukazały się niezliczone wydania oraz przekłady na języki narodowe (brak nadal kompletnego przekładu polskiego, choć już w 1808 Józef Czech, dyrektor Liceum Krzemienieckiego, przełożył osiem ksiąg, opierając się na angielskiej wersji Roberta Simonsa).

Twierdzenie Pitagorasa w weneckim wydaniu z 1482 r. (numeracja twierdzenia lekko w nim szwankowała)

Geometria oraz arytmetyka miały w średniowieczu mocną pozycję jako sztuki wyzwolone wchodzące w skład quadrivium („czterodroże”) wraz z astronomią i muzyką (która obejmowała głównie teoretyczną naukę o proporcjach dźwięków w różnych skalach). Także i później podstawy geometrii stanowiły nieodzowny element wykształcenia, Elementów długo jeszcze używano jako podręcznika. Bertrand Russell, logik i filozof, wspomina: „W wieku jedenastu lat zacząłem Euklidesa z moim bratem w roli tutora. Było to w moim życiu wielkie wydarzenie, równie olśniewające co pierwsza miłość. Wcześniej nie wyobrażałem sobie nawet, że istnieje na świecie coś tak zachwycającego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie napotkałem w nim żadnych trudności. To wtedy po raz pierwszy zaświtało w mej głowie, że może obdarzony zostałem jakąś inteligencją”. Kilka lat młodszy Albert Einstein nie uczył się wprawdzie z Elementów, lecz z podręcznika będącego ich zmodernizowaną wersją; także dla niego odkrycie geometrii było wielkim przeżyciem, wspominał potem podręcznik jako „świętą książeczkę”, co w jego ustach – uduchowionego niedowiarka i spinozisty – miało swoją wymowę. Einstein sądził wręcz, że głęboki wstrząs intelektualny, jaki wówczas przeżył, stanowi niejako rodzaj probierza, czy ktoś się do nauki nadaje, czy nie. Zanim jeszcze podręcznik trafił w jego ręce, udało mu się znaleźć dowód twierdzenia Pitagorasa oparty na podobieństwie trójkątów (VI,31).

Metoda geometryczna kusiła też filozofów. Thomas Hobbes, mając już czterdzieści lat, natknął się w bibliotece znajomego gentlemana na egzemplarz Elementów, które otwarte były na stronie zawierającej twierdzenie Pitagorasa. Przeczytawszy jego treść, wykrzyknął: na Boga, to niemożliwe! Potem jednak cofając się stopniowo do twierdzeń, na których oparty był dowód, zrozumiał, że rozumowanie Euklidesa jest bez zarzutu. René Descartes sam był wybitnym matematykiem i z geometrią zapoznał się wcześnie w jezuickim kolegium w La Flèche. Właśnie na goemetrii wzorował się w swym podejściu do filozofii, która miała być nowym początkiem ludzkiej wiedzy. „Owe długie łańcuchy uzasadnień, zupełnie proste i łatwe, którymi zazwyczaj posługują się geometrzy, by dotrzeć do swych najtrudniejszych dowodzeń, dały mi sposobność do wyobrażenia sobie, że wszystkie rzeczy dostępne poznaniu ludzkiemu wynikają w taki sam sposób wzajemnie ze siebie, a także, że nie mogą istnieć tak odległe, do których byśmy wreszcie nie dotarli, i tak ukryte, których byśmy nie wykryli, bylebyśmy tylko nie przyjmowali za prawdziwą żadnej rzeczy, która by prawdziwą nie była, i zachowywali zawsze należyty porządek w wyprowadzaniu jednych z drugich” (przeł. W. Wojciechowska, Rozprawa o metodzie, PWN 1981, s. 23). Zdaniem Immanuela Kanta przedmioty, które bada matematyka: przestrzeń i czas nie pochodzą z doświadczenia, ale mają swe źródło w poznającym przedmiocie. Geometria stała się w ten sposób nauką o jedynie możliwej przestrzeni.

Tymczasem matematycy nabierali coraz więcej wątpliwości. Karl Friedrich Gauss już w roku 1813 rozmyślał nad geometrią nieuklidesową, lecz oportunistycznie nie zdecydował się na publikację swych wyników. Także Ferdinand Karl Schweikart, profesor prawa, rozwijał podobne idee w zaciszu gabinetu. Dopiero János Bolyai i Nikołaj Iwanowicz Łobaczewski, niezależnie od siebie zaryzykowali publikację prac sprzecznych z dotychczasową tradycją, nie były one przyjęte dobrze. Obaj zajmowali się geometrią hiperboliczną, w której istnieje nieskończenie wiele prostych równoległych do danej prostej. Postulat 5 Euklidesa jest bowiem niezależny od pozostałych i równie dobrze można zbudować konsekwentną geometrię, wychodząc z jego zaprzeczenia. Pod koniec XIX wieku David Hilbert podał ścisłe sformułowanie geometrii euklidesowej. Znalazło się w nim dwadzieścia aksjomatów, trzy pojęcia pierwotne (punkt, linia prosta, płaszczyzna) oraz cztery relacje pierwotne (leżenia pomiedzy, zawierania oraz przystawania odcinków oraz kątów). Różnica w podejściu między dawną geometrią a jej nowoczesnym, abstrakcyjnym sformułowaniem podkreślona została przez Hilberta następująco: „Powinno się w każdej chwili móc wstawić w miejsce punktów, linii i płaszczyzn – stoły, krzesła i kufle do piwa” (oczywiście pod warunkiem, że obiekty te spełniają aksjomaty geometrii).

Arystoteles w opactwie Mont Saint-Michel

„Książki historyczne, które nie zawierają żadnego kłamstwa, są nadzwyczaj nudne” [Anatole France].

W roku pańskim 708 św. Aubertowi, biskupowi Avranches, ukazał się archanioł Michał, nakazując zbudować opactwo na wysepce dostępnej jedynie podczas odpływu Atlantyku. Ponieważ zjawienia się takie były wówczas czymś pospolitym, święty Aubert zignorował zrazu polecenie niebiańskiego wysłannika i posłuchał dopiero wtedy, gdy archanioł dotknął palcem jego głowy, wypalając w niej dziurę. Takie były początki opactwa Mont Saint-Michel. A dziurawa czaszka świętego na pamiątkę owych wydarzeń przechowywana jest do dziś.

811px-Folio_195r_-_The_Mass_of_Saint_MichaelMiniatura z Godzinek księcia de Berry, przedstawiająca walkę archanioła Michała z diabłem nad opactwem (pocz. XV w.)

Europejskie średniowiecze było chrześcijańskie, co znaczy, że Bóg stał nad nim jak autor nad swoim nie całkiem ukończonym dziełem, gotów w każdej chwili interweniować, gdyby coś poszło nie tak (choć oczywiście wiedział w swej niezmierzonej mądrości, jaki będzie dalszy bieg dziejów i częściowo to odsłonił w Apokalipsie i innych proroctwach). Miała jednak Europa i drugie źródło, z wyboru: mądrość starożytnych Greków. Choć poganie, Grecy imponowali rozległą wiedzą, a jeszcze bardziej znakomitą kulturą umysłową: wysubtelnioną logiką, rozwiniętą retoryką, subtelnością pojęciowych rozróżnień i głębokością wiedzy nawet w dziedzinach tak ezoterycznych, jak geometria, teoria muzyki czy astronomia. Powinniśmy być nieskończenie wdzięczni naszym przodkom, którzy z tak wielkim entuzjazmem starali się przywrócić ową zaginioną wiedzę Greków. Gdyby nie oni, nie mielibyśmy nauki ani techniki, jeździlibyśmy na koniu albo osiołku i nasze kraje przypominałyby raczej zacofane prowincje Bangladeszu czy Indii niż np. centrum Paryża. A przede wszystkim mielibyśmy inaczej umeblowane głowy.

Cywilizacja zachodniej Europy była wprawdzie ekspansywna i przekonana o swoich racjach, ale wyznawcy islamu wcale się pod tym względem nie różnili od Europejczyków. Sylvain Gougenheim przekonuje, że obie religie wytworzyły odmienny klimat umysłowy i zapewne ma w tym sporo racji. Różnicę tę widać np. w stosunku do greckiej spuścizny. Kraje islamu przyswoiły ją sobie wcześniej, lecz – mówiąc obrazowo – nigdy nie miały swojego Kopernika, podczas gdy w Europie ktoś taki prędzej czy później w zasadzie musiał się pojawić. Przyswajanie kultury zawsze jest twórcze, polega na trudzie wbudowania jej w siebie, uczynienia z niej naturalnego składnika własnego umysłu, wyrobienia w sobie umiejętności naturalnego oddychania podobną atmosferą, a w końcu także na zdolności do jej odrzucenia, gdy wymaga tego nasz rozwój. Grecy byli tak samo obcy ludziom islamu, jak i Europejczykom, ale tylko ci drudzy zaczęli z czasem uważać starożytnych nieomal za własnych przodków. Było to pokrewieństwo z wyboru, rodziło zresztą często napięcia w zderzeniu z chrześcijaństwem, lecz do pewnego momentu napięcia te dobrze Europie służyły: pomyślmy o św. Tomaszu i Arystotelesie albo o Boskiej Komedii.

Wcześniej należało oczywiście Arystotelesa, i w ogóle cały grecki kanon wiedzy, przyswoić. Odbywało się to często za pośrednictwem przekładów z arabskiego: w ten sposób w XII wieku Gerard z Cremony, pracując dziesiątki lat w arabskim Toledo, przełożył na łacinę być może aż 87 ważnych dzieł naukowych, w tym Archimedesa, Ptolemeusza, Euklidesa, Galena, część Arystotelesa. Była to praca gigantyczna, obejmująca także wiele dzieł arabskich, np. al-Khwārizmīego, od którego imienia wywodzi się (nieprzypadkowo) słowo algorytm. Gougenheim zwraca uwagę, że równolegle, a nawet nieco wcześniej, Giacomo z Wenecji tłumaczył w opactwie Mont Saint-Michel dzieła Arystotelesa wprost z greki na łacinę. Wiemy zresztą, że do czasów św. Tomasza najważniejsze dzieła greckie przetłumaczone zostały już z oryginału. Drogi docierania greckiej i islamskiej wiedzy na Zachód były przeróżne i przedziwne, często łańcuszek języków między greką a łaciną był znacznie dłuższy. Nie wszystko zresztą, co przybywało ze Wschodu, było islamskie: w krajach islamskich pracowali także nieislamscy uczeni, chrześcijanie i nie tylko, często chodziło także o transmisję wiedzy aż z Indii.

Trud niezliczonych tłumaczy stał się intelektualnym fundamentem Europy. Trzeba przy tym pamiętać, że w czasach książek przepisywanych nie wystarczał sam przekład: należało go powielać, każdy następny egzemplarz musiał być przez kogoś pracowicie przepisany. Spróbujmy sobie wyobrazić, jak wiele książek uznalibyśmy za warte trudu przepisania. Lepiej wówczas zrozumiemy ów niepohamowany entuzjazm, jaki niewątpliwie odczuwali ci wcześni Europejczycy, często mnisi albo ludzie związani jakoś z Kościołem, który przez długi czas był jedynym pracodawcą dla klerków.

Fakt, że istniał gdzieś przekład danego dzieła, wcale jeszcze nie oznaczał, iż trafi on na swego czytelnika. Znamienne są tu losy łacińskich przekładów Ptolemeusza. Ich bodaj najważniejszy europejski czytelnik – Mikołaj Kopernik – zdobył egzemplarz Almagestu już po napisaniu swojej książki O obrotach. I to mimo podróży do Włoch. A żył już przecież w czasach druku. Wpadły mu za to najprawdopodobniej w ręce jakieś prace szkoły z Maraghi we wschodnim Azerbejdżanie irańskim. Zaiste: habent sua fata libelli.

Gougenheim ma rację – nawet gdy nieco przesadza – że jesteśmy w znacznie większym stopniu spadkobiercami starożytnej Grecji niż cywilizacji islamu. Ostatecznie decyduje akt woli: aby się do kogoś upodobnić, trzeba bardzo tego pragnąć.

Sylvain Gouguenheim, Aristote au Mont Saint-Michel, Paris 2008 (z podziękowaniem dla Wojtka).