Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Nieśmiertelny wynalazek Josepha Fouriera (1804-1822)

Fourier, syn krawca, którego wcześnie odumarli rodzice, wszystko zawdzięczał swemu talentowi, a także umiejętności niezrażania sobie ludzi. Jego kariera wiele mówi o Francji tamtych czasów. Urodził się i wychowywał za panowania Ludwika XVI. Ktoś zwrócił uwagę na zdolnego chłopca i polecił go biskupowi Auxerre. Dzięki protekcji duchownego Fourier został przyjęty do szkoły artyleryjskiej kierowanej przez maurystów (benedyktyńska kongregacja św. Maura). Wcześnie ujawnił talent matematyczny. Zabiegał o przyjęcie na służbę do artylerii, lecz mimo poparcia słynnego matematyka Adrien Marie Legendre’a, minister odmówił. „Fourier, nie pochodząc ze szlachty, nie ma wstępu do artylerii, choćby nawet był drugim Newtonem” – oświadczył minister. Młody człowiek wstąpił więc do nowicjatu u maurystów, ale wybuchła Rewolucja Francuska i Fourier zmienił zdanie. Ojcowie zatrudnili go mimo to w swej szkole artyleryjskiej, gdzie uczył matematyki, a jak było trzeba, to także retoryki, filozofii i historii. Należał do słuchaczy École normale roku III: był to swoisty eksperyment szkolny, mający dostarczyć Rewolucji nowy zastęp nauczycieli. Tysiąc pięciuset uczniów słuchało wykładów największych uczonych Francji: Lagrange’a, Laplace’a, Monge’a, Bertholleta. Prawdziwą karierę zrobił Fourier dopiero za czasów Napoleona: był wśród uczonych towarzyszących Pierwszemu Konsulowi w wyprawie egipskiej („Osły i uczeni do środka” – wołali oficerowie, kiedy konwój Francuzów został zaatakowany na pustyni). Fourier został sekretarzem Instytutu Egipskiego powołanego przez Napoleona, wniósł swój wkład do jego publikacji. Po kapitulacji armii i powrocie do Francji, został prefektem departamentu Izery, gdzie budował drogi i osuszył bagna Bourgoin. W tym czasie dobiegający czterdziestki uczony zajął się poważniej fizyką matematyczną: zagadnieniem rozchodzenia się ciepła. W roku 1807 wygrał konkurs Akademii Nauk poświęcony temu zagadnieniu. W roku 1822 opublikował swą słynną monografię Théorie analytique de la chaleur – „Analityczną teorię ciepła”.

Joseph_Fourier
Wiedza o cieple nie była zbyt wielka: znano pojęcie temperatury i ciepła właściwego. Nie wiedziano, czym jest ciepło, wyobrażano sobie, że jest rodzajem nieważkiej cieczy, która przepływa z jednego ciała do drugiego, nie ginąc ani nie powstając (zasady termodynamiki sformułowano trzydzieści lat później). Fourier przyjął, że strumień ciepła na jednostkę powierzchni i czasu zależy od tego, jak szybko zmienia się temperatura z odległością.

fourier-strum

J_x=-a\dfrac{\Delta T}{\Delta x}=-a\dfrac{dT}{dx}.

Szybkość zmiany temperatury to gradient. Strumień ciepła jest więc proporcjonalny do gradientu temperatury: jeśli ten sam spadek temperatury przypada na dwa razy krótszy odcinek, to strumień będzie dwa razy większy. Znak minus informuje, że ciepło płynie od temperatury wyższej do niższej, a nie odwrotnie. Stała a charakteryzuje materiał.
Będziemy szukali przepływów stacjonarnych, tj. takich, które nie zależą od czasu. Jeśli przepływ ciepła jest jednowymiarowy, tzn. strumień jest wyłącznie w kierunku osi x, to łatwo stwierdzić, że stacjonarność oznacza wówczas stałość J_x. Powierzchnie izoterm to płaszczyzny prostopadłe do osi Ox, a gradient temperatury jest stały.
Znacznie ciekawsza jest sytuacja w przypadku 2D. Wyobraźmy sobie prostokąt o bokach \Delta x, \Delta y. W naszym przypadku stacjonarnym całkowita ilość ciepła wypływająca w jednostce czasu z prostokąta musi być równa zeru: inaczej prostokąt ogrzewałby się albo oziębiał z czasem.

fourier box

Warunek ten zapisany matematycznie oznacza, że

\Delta y(J_x(x+\Delta x, y)-J_x(x, y))+\Delta x(J_y(x, y+\Delta y)-J_y(x, y))=

=\Delta x\Delta y\left(\dfrac{\partial{J_x}}{\partial{x}}+\dfrac{\partial{J_y}}{\partial{y}}\right)=0.

W pierwszym wierszu mnożymy strumienie przez długości odpowiedniego boku prostokąta, aby otrzymać ilość ciepła przechodzącą przez daną krawędź. Korzystając z tego, że strumień związany jest z gradientem, otrzymujemy następujący warunek stacjonarnego przepływu:

\dfrac{\partial^2{T}}{\partial{x^2}}+\dfrac{\partial^2{T}}{\partial{y^2}}=0.

Jest to równanie Laplace’a, występujące też w elektromagnetyzmie i teorii grawitacji. Aby zrozumieć jego sens, można wyobrazić sobie punkt płaszczyzny otoczony przez cztery inne punkty oddalone o niewielką odległość h.

fourier neighbours

Równanie Laplace’a mówi, że średnia arytmetyczna temperatur w punktach czerwonych równa się temperaturze w środkowym punkcie niebieskim. Nie powinno to dziwić: chodziło przecież o to, aby ciepło nie gromadziło się w żadnym obszarze ani z niego nie uciekało (**). Biorąc odpowiednio małe h, można w ten sposób rozwiązać równanie Laplace’a numerycznie. Można pokazać ogólnie, że gdy funkcja spełnia równanie Laplace’a, to jej średnia wartość po małej sferze (u nas okręgu) o promieniu h równa jest wartości w środku sfery.

fourier sfera

Wśród zagadnień rozważanych przez Fouriera znalazło się i takie: mamy nieskończony dwuwymiarowy pasek, którego jeden bok utrzymywany jest w temperaturze 1, a dwa boczne w temperaturze 0 (odpowiadały one w naszej skali 100^{\circ}\mbox{C} oraz 0^{\circ}\mbox{C}). Zakładamy też, że w nieskończoności temperatura spada do zera. Szukamy rozwiązania stacjonarnego.

fourier_boundary
Łatwo można znaleźć rozwiązania, w których temperatura na obu bokach równa jest zeru oraz stopniowo spada:

T(x,y)=C\exp{(-nx)}\sin{ny},\mbox{(*)}

gdzie parametr n jest całkowity. Dla n=1 wygląda to tak:

fourier1

Dla x=0 mamy jednak funkcję zdecydowanie różną od stałej. Łatwo sobie wyobrazić, że tak będzie i dla innych wartości n. Idea Fouriera polegała na tym, aby temperaturę wzdłuż osi Oy przedstawić jako sumę nieskończenie wielu sinusów:

T(0,y)=\frac{4}{\pi}(\sin y+\frac{1}{3}\sin 3y+\frac{1}{5}\sin 5y+\ldots).

Tak wygląda suma pierwszych trzech wyrazów:

fourier3A tak ośmiu:

fourier8

Naprawdę nasza suma sinusów jest nieparzysta i wygląda następująco (osiem składników):

fourier8full

Jest to funkcja o okresie 2\pi. Podejście Fouriera spotkało się z niedowierzaniem i krytyką. Wprowadzał on do rozważań „dziwne” funkcje, które nie są określone jednym wzorem i nie są ciągłe, przybliżając je wszystkie czymś tak banalnie prostym jak sinusoidy. Wiele prac z dziedziny fizyki i matematyki wyrosło z podejścia Fouriera. Matematycy zastanawiali się nad zbieżnością i pojęciem funkcji, fizycy i inżynierowie stosowali w praktyce. Dziś traktujemy szereg Fouriera jak przedstawienie wektora za pomocą pewnych wektorów bazowych. Np. każdy wektor na płaszczyźnie możemy przedstawić jako kombinację dwóch jednostkowych wektorów o kierunkach osi x i y. Funkcje okresowe o okresie 2\pi wyrażają się przez funkcje \sin{nx} i \cos{nx}, które pełnią rolę wektorów bazowych. Przestrzeń tak zdefiniowana jest nieskończenie wymiarowa i nazywa się przestrzenią Hilberta. Z punktu widzenia fizyka czy inżyniera analiza fourierowska pozwala rozłożyć każdy impuls okresowy na składowe, co pozwala wiele zrozumieć. Np. wysokość tonu wydawanego przez instrument muzyczny określona jest pierwszym sinusem, a następne przesądzają o barwie dźwięku: po tym odróżniamy a zagrane na fortepianie od a zagranego na skrzypcach.

Kiedy już mamy naszą dziwną funkcję rozwiniętą w szereg Fouriera, wystarczy zsumować nieskończenie wiele rozwiązań takich jak (*). Pierwsze trzy składniki dadzą rozwiązanie poniżej (możemy zawsze w razie potrzeby użyć większej liczby wyrazów).

fourier3 laplace

(**) Związek średniej arytmetycznej z równaniem Laplace’a wynika z rozwinięcia w szereg Taylora z dokładnością do h^2:

T(x\pm h,y)=T(x,y)\pm h\dfrac{\partial{T}}{\partial{x}}+\frac{1}{2}h^2\dfrac{\partial^2{T}}{\partial{x^2}},

T(x,y\pm h)=T(x,y)\pm h\dfrac{\partial{T}}{\partial{y}}+\frac{1}{2}h^2\dfrac{\partial^2{T}}{\partial{y^2}}.

Biorąc średnią arytmetyczną z tych czterech wyrażeń i odejmując wartość T(x,y), otrzymujemy

\overline{T}-T=\frac{1}{4} h^2 \left(\dfrac{\partial^2{T}}{\partial{x^2}}+\dfrac{\partial^2{T}}{\partial{y^2}}\right).