Joseph Louis Lagrange i „wektor Laplace’a-Rungego-Lenza” (1781)

Pisałem kiedyś o zasadzie Arnolda: „Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy”. Przykładem może tu być tzw. wektor Rungego-Lenza, niemal odkryty przez Jakoba Hermanna, a na pewno odkryty przez Josepha Lagrange’a.

Joseph Louis Lagrange jest mało znany poza kręgiem profesjonalnych matematyków i fizyków. Wiele jego dokonań weszło do języka nauki i stała się dobrem powszechnym, funkcjonującym często bezimiennie. Urodzony w Turynie jako Giuseppe Luigi Lagrangia, poddany królestwa Sardynii, syn urzędnika królewskiego francuskiego pochodzenia, odkrył w sobie talent matematyczny jako nastolatek-samouk. Ojciec stracił fortunę w ryzykownych spekulacjach i syn potrzebował płatnego zajęcia. Pod koniec życia uczony twierdził, że gdyby nie potrzeba zarabiania, pewne nie zostałby matematykiem. Zapewne przesadzał. Talent tej wielkości nie daje chyba możliwości wyboru. W każdym razie młody Lagrange zadziwił Leonharda Eulera, z którym zaczął korespondować na temat rachunku wariacyjnego. W wieku dziewiętnastu lat został też mianowany sostituto – „zastępcą” profesora matematyki w szkole artyleryjskiej w Turynie. Uczył tam młodzieńców starszych od siebie, artyleria była uczonym rodzajem wojsk – to ze szkoły artylerii Napoleon Bonaparte wyniósł swój szacunek do przedmiotów ścisłych. Niezbyt przedsiębiorczy i cichy Lagrange spędził w Turynie wiele lat. Dopiero w wieku trzydziestu lat dzięki protekcji Jeana d’Alemberta został powołany do Akademii Nauk w Berlinie w miejsce Eulera, który wolał carową Katarzynę II od Fryderyka II pruskiego. Piemontczyk spędził w Prusach dwie dekady, narzekając na chłody i pisząc wciąż nowe ważne prace. W Berlinie powstało jego największe dzieło Méchanique analitique (sic!), opublikowane w dwóch tomach już w Paryżu, gdzie spędził resztę życia. Tam podczas Rewolucji zajmował się wprowadzeniem metrycznego systemu miar oraz nowego kalendarza i nowego podziału doby. Metr zdefiniowano wtedy jako jedną czterdziestomilionową część południka paryskiego, lecz babiloński, sześćdziesiątkowy podział godzin i minut okazał się zbyt głęboko zakorzeniony i tutaj zmiany się nie przyjęły. Został też Lagrange pierwszym profesorem analizy w École polytechnique, elitarnej i bardzo nowoczesnej na swe czasy szkole wyższej, modelu dla licznych politechnik na całym świecie.

Książka Lagrange’a była, niemal równo sto lat po Zasadach matematycznych Isaaca Newtona, podsumowaniem dorobku Newtonowskiej mechaniki za pomocą metod analitycznych spod znaku Leibniza, Bernoullich i Eulera.

W książce tej nie znajdzie Czytelnik żadnych rysunków. Metody, jakie w niej wykładam, nie wymagają żadnych konstrukcji ani rozumowań geometrycznych bądź mechanicznych, lecz jedynie operacji algebraicznych poddanych regularnym i jednolitym procedurom. Ci, co kochają Analizę, z przyjemnością zobaczą, jak mechanika staje się jej kolejną gałęzią i będą mi wdzięczni za takie poszerzenie jej domeny.

Newton byłby zapewne wstrząśnięty lekturą dzieła Lagrange’a. Zwyciężyła w nim algebra, metody formalnego przekształcania równań. Algorytmy zwyciężyły z wyobraźnią, ponieważ do ich stosowania wystarczy trzymać się prostych reguł. W ten sposób druga zasada dynamiki stała się układem trzech (lub więcej, zależnie od problemu) równań różniczkowych. Zagadnienie trzech przyciągających się ciał – jeden z wielkich problemów epoki, wymaga dwunastu całkowań. Lagrange pokazał w jednej ze swych prac, jak z dwunastu potrzebnych całkowań, zostaje do wykonania tylko siedem. Osiągnięcia tego rodzaju musiały być elitarne, choć miały też szersze znaczenie. Wielkim problemem epoki ponewtonowskiej była stabilność Układu Słonecznego. Newton przypuszczał, że wzajemne przyciąganie planet doprowadzi z czasem do rozregulowania się kosmicznego zegara, co zresztą może leżeć w boskim planie stwórczym: jako gorliwy czytelnik i komentator Apokalipsy św. Jana traktował znaną nam postać świata jako przejściową, próbował nawet oszacować, kiedy nastąpi ponowne przyjście Chrystusa. Lagrange, a po nim Pierre Simon Laplace (obaj raczej indyferentni religijnie) podjęli zagadnienie stabilności Układu Słonecznego. Wyglądało na to, że system planetarny zmienia się jedynie okresowo i nie ma w nim jednokierunkowych zmian parametrów orbit takich, jak ich rozmiar czy mimośród – a zatem grawitacja nie musi prowadzić do katastrofy kosmicznej. Zagadnienie to okazało się zresztą bardziej skomplikowane, niż sądzili Lagrange i Laplace. Pokazał to pod koniec wieku XIX Henri Poincaré. W wieku XX zrozumiano, że w układach takich jak planetarne powszechnie występują zjawiska chaotyczne. Chaos nie jest jednak nieuchronny, niezbyt wielkie zaburzenia nie naruszają bowiem regularnego charakteru ruchu. Wielkim osiągnięciem dwudziestowiecznej mechaniki analitycznej jest teoria KAM, zwana tak od nazwisk jej twórców: Andrieja Kołmogorowa, Vladimira Arnolda (to jego nazwisko pojawia się w zasadzie Arnolda – sformułowanej oczywiście nie przez niego, lecz przez Michaela Berry’ego) i Jürgena Mosera.

Pokażemy, jak Lagrange wprowadził trzy stałe ruchu Keplerowskiego, które dziś nazywa się powszechnie wektorem (Laplace’a)-Rungego-Lenza. Było to w roku 1779, a dwa lata później zostało opublikowane w pracach Akademii Berlińskiej (w Oeuvres de Lagrange, t. 5, s. 127-133). Algebraiczne podejście Lagrange’a łatwo daje się uogólnić na przestrzeń n-wymiarową {\mathbb R}^n, dlatego tak je pokażemy, uwspółcześniając nieco zapis. Siła grawitacji jest odwrotnie proporcjonalna do kwadratu odległości od centrum, działa wzdłuż promienia wodzącego planety (wektor o współrzędnych x_i/r jest wektorem jednostkowym o kierunku promienia wodzącego). Przyspieszenie planety zapisane jako składowe kartezjańskie spełnia równania

\ddot{x}_i=-\dfrac{\mu x_i}{r^3},\,i=1\ldots n,

gdzie kropki oznaczają pochodne po czasie t, \mu jest iloczynem masy Słońca i stałej grawitacyjnej, a r=x_ix_i\equiv x_1^2+\ldots+x_n^2. Po powtarzających się wskaźnikach sumujemy – jest to konwencja sumacyjna Einsteina, którą uczony żartobliwie nazywał swoim największym odkryciem matematycznym (nigdy nie uważał się za matematyka, lecz za fizyka, któremu przyszło stosować nowe techniki matematyczne i który przychodził do matematyki z innej strony). Za czasów Lagrange’a i jeszcze długo później pisano po trzy równania dla współrzędnych x,y,z, co wydłużało (niepotrzebnie z naszego dzisiejszego punktu widzenia) prace. Sam zapis równań jako trzech składowych kartezjańskich nie był czymś oczywistym za życia Newtona, a więc nawet na początku XVIII wieku. Jakob Hermann uważał, iż wymaga to uzasadnienia.

Szukamy wyrażeń, kombinacji współrzędnych i prędkości, które pozostają stałe podczas ruchu (są to tzw. całki pierwsze). Znanym wyrażeniem tego rodzaju jest energia E będąca sumą energii kinetycznej i potencjalnej:

E=\dfrac{1}{2}\dot{x}_1^2-\dfrac{\mu}{r}.

Lagrange podał jeszcze inne całki ruchu Keplerowskiego (w istocie wystarczy, aby siła działająca ze strony centrum skierowana była radialnie, konkretna jej postać jest nieistotna):

L_{ij}=x_i\dot{x}_j-x_j\dot{x}_i.

Mamy tych całek tyle, ile możliwości wyboru dwóch różnych wskaźników spośród n, czyli {n\choose 2}=\frac{n(n-1}{2}. Naprawdę jest to Keplerowskie prawo pól w przebraniu, a właściwie prawo pól plus stwierdzenie, że ruch zachodzi w płaszczyźnie (to ostatnie bywa nazywane zerowym prawem Keplera, co jest o tyle słuszne historycznie, że od niego Johannes Kepler zaczął swoje badania – przyjął je jako założenie. Kopernik nie wiedział, że tory planet są płaskie!). Zawsze możemy wybrać współrzędne tak, żeby co najwyżej dwie były różne od zera podczas ruchu, np. x_1, x_2. W przypadku 3D trzy całki (L_{23},L_{31},L_{12}) zachowują się jak wektor, jest to wektor momentu pędu.

Trzecia grupa całek, odkryta przez Lagrange’a i właściwa tylko siłom grawitacji, daje się zapisać w postaci

\mu e_i=-\dfrac{\mu x_i}{r}+\dot{x}_j L_{ij},\,i=1 \ldots n.

Wartości e_i są stałe. Jest to wektor zwany powszechnie w literaturze wektorem Rungego-Lenza. Lepiej poinformowani piszą o wektorze Laplace’a-Rungego-Lenza. W istocie jest to wektor Lagrange’a, którego szczególny przypadek podał Jakob Hermann, o czym Lagrange zapewne nie wiedział. Nie interesował go zresztą fakt, że jest to wektor, ważne dla niego były trzy całki ruchu. Laplace zaczerpnął te całki z pracy Lagrange’a i spopularyzował je, umieszczając w słynnym traktacie o mechanice niebios: Traité de mécanique céleste. Laplace, który uczył się pracy naukowej, czytając Lagrange’a, nie zawsze był lojalny wobec starszego kolegi. Ten zaś był chyba zbyt dumny, aby stale jak kupiec podkreślać swoje zasługi, co czyniła większość uczonych, konkurujących między sobą o niewielką pulę płatnych posad. Całki Lagrange’a z dzieł Laplace’a czerpali później inni bądź też sami odkrywali je niezależnie, jak William Rowan Hamilton. Runge i Lenz trafili do historii przypadkiem, z lenistwa późniejszych autorów, zbyt zajętych bieżącą pracą, aby włożyć wysiłek w przypisy.

Zobaczmy jeszcze, jak z wektora Lagrange’a wynika kształt toru planety. Mnożąc obie strony ostatniego równania przez x_i i sumując po powtarzającym się wskaźniku i, otrzymujemy

r +e_i x_i=L^2, 

gdzie L^2= \frac{1}{2} L_{ij}L_{ij}.Jest to równanie stożkowej o mimośrodzie e=\sqrt{e_i e_i}.

Trzeba podkreślić, że dla Lagrange’a nie było to jakieś szczególne osiągnięcie, lecz jedynie punkt wyjścia do pracy nad bardziej skomplikowanym zagadnieniem, gdy do problemu Keplera dodamy jeszcze siłę zaburzającą, jak w rzeczywistym problemie ruchu planet przyciąganych nie tylko przez Słońce, ale także przez inne planety.

Pokażemy jeszcze powyższe wyniki w zapisie wektorowym. Mamy wówczas

{\bf \ddot{r}}=-\dfrac{\mu {\bf r}}{r^3}.

Moment pędu równa się

{\bf L = r\times\dot{r}},

a wektor Lagrange’a:

\mu {\bf e}=-\dfrac{\mu {\bf r}}{r}+{\bf \dot{r}\times L}.

Mnożąc obie strony skalarnie przez {\bf r}, otrzymamy

r+{\bf e\cdot r}=\dfrac{L^2}{\mu}.

Uwaga techniczna. Łatwo sprawdzić, że podane wielkości są całkami pierwszymi, trudniej było je oczywiście odgadnąć. Kluczem jest tutaj obliczenie pochodnej po czasie z wektora jednostkowego, co Lagrange robi pozornie bez powodu, to znaczy powód wyjaśnia się po chwili. Mamy bowiem

\dfrac{d}{dt}\left(\dfrac{x_i}{r}\right)=\dfrac{\dot{x}_i r-\dot{r} x_i}{r^2}=\dfrac{x_jL_{ji}}{r^3}.

Korzystamy z faktu, że r\dot{r}=x_i\dot{x}_i (jest to zróżniczkowane tw. Pitagorasa: r^2=\sum_i x^2_i). Postać wektorowa jest przejrzysta, lecz ograniczona do {\bf R}^3.

 

 

Jakob Hermann pisze do Johanna Bernoulliego na temat ruchu planet, 12 lipca 1710 r.

Ulmenses sunt mathematici – mieszkańcy Ulm to matematycy – głosiło stare porzekadło. Znamy jednego matematyka z Ulm Johannesa Faulhabera, który miał kontakty z Keplerem i być może z Kartezjuszem. Słynna ogrzewana komora, w której rozmyślał francuski filozof pewnej jesieni, mieściła się w Neuburgu niezbyt oddalonym od Ulm. No i w Ulm urodził się Albert Einstein, lecz rodzina rok później się przeprowadziła i uczony jako człowiek dorosły nigdy potem nie odwiedził już swego miasta rodzinnego.

Prawdziwą kolebką matematyków była natomiast leżąca niezbyt daleko od Ulm Bazylea. Stąd pochodziła rozgałęziona rodzina Bernoullich, a także Leonhard Euler i Jakob Hermann. Protoplastą naukowego rodu był Jakob Bernoulli, to od niego uczyli się matematyki jego brat Johann oraz Jakob Hermann. Johann z kolei był ojcem wybitnego Daniela i nauczycielem genialnego Eulera. Ponieważ posad dla matematyków nie było w Europie wiele, więc wszyscy ci matematycy sporo podróżowali. Dzięki bazylejskim matematykom rachunek różniczkowy i całkowy Leibniza stał się podstawą nowożytnej matematyki.

Drugim wielkim zadaniem uczonych od końca XVII wieku stało się przyswojenie osiągnięć Isaaca Newtona. Matematyczne zasady filozofii przyrody zawierały rewolucyjną fizykę przedstawioną za pomocą indywidualnego języka matematycznego, stworzonego przez autora. Nie było w historii nauki traktatu tak oryginalnego zarówno pod względem treści fizycznej, jak i matematycznej. Toteż jego zrozumienie i opanowanie zajmowało całe lata nawet wybitnym uczonym. Na kontynencie panował matematyczny idiom Leibniza i twierdzenia Newtona tłumaczono niejako na tę zrozumiałą wśród uczonych symbolikę.

Jakob Hermann pierwszy podał różniczkowe sformułowanie II zasady dynamiki. Miało ono u niego postać

G=M dV: dT,

gdzie G,M oznaczały siłę i masę, a dV, dT – różniczki prędkości i czasu. Zapis ten pojawił się dopiero na 57 stronie jego traktatu Phoronomia (1716) i odnosił się do siły ciężkości zależnej od położenia. Oczywiście, Newton już w 1687 r. rozważał takie siły, ale wyłącznie w postaci geometrycznej. Jego II prawo brzmiało: „Zmiana ruchu jest proporcjonalna do przyłożonej siły poruszającej i następuje w kierunku prostej, wzdłuż której siła ta jest przyłożona.” Newton miał na myśli zmiany pędu ciała w pewnym krótkim czasie. Jednym problemem tego sformułowania była kwestia opisywania zmian w czasie, drugim problemem był wektorowy charakter siły: ilość ruchu, pęd, zmienia się w kierunku przyłożonej siły.

Pokażemy, jak Hermann rozwiązał problem ruchu ciała przyciąganego siłą odwrotnie proporcjonalną do kwadratu odległości od nieruchomego centrum. Zwolennicy Leibniza mieli zastrzeżenia do Newtonowskiego dowodu tego faktu, zbyt szkicowego. Pragnęli wyraźnego wykazania, że tylko stożkowe (albo część linii prostej) mogą być torem ciała. Opisywałem kiedyś rozwiązanie tego problemu podane w XIX wieku przez Williama Rowana Hamiltona.

Wyobrażamy sobie przyciągane przez centrum S ciało zakreślające krzywą CD. Jego ruch w nieskończenie krótkim czasie dt można przedstawić jako sumę wektorową ruchu bezwładnego od C do E oraz spadania od E do D wzdłuż kierunku siły w punkcie C, tzn. odcinki SC i DE są równoległe. Zmiana współrzędnej x w ruchu bezwładnym byłaby równa dx. Efekt działania siły przyciągającej to różniczka drugiego rzędu ddx (co później zapisywano d^{2}x). Oczywiście do ddx wchodzi tylko x-owa składowa siły.

Dziś narysowalibyśmy to tak, Hermann odnajduje trójkąty podobne na swoim rysunku i dochodzi do wniosku, że

ddx \propto F\dfrac{x}{r} dt^2.

Pole SCD zakreślane w czasie dt można przedstawić jako pole trójkąta o bokach [x,y] oraz [dx,dy], a więc jest ono równe połowie pola równoległoboku dt\propto y dx-x dy.
Ostatecznie różniczkę ddx możemy zapisać następująco (siła jest odwrotnie proporcjonalna do kwadratu odległości):

-a ddx=\dfrac{x}{r^3}(y dx-x dy)^2,

gdzie a jest stałą proporcjonalności. Naszym zadaniem jest znalezienie równania krzywej.
Całką tego równania jest

a dx=\dfrac{y}{r}(ydx-xdy).

Dzieląc obustronnie przez x^2 i całkując ponownie, otrzymujemy

-\dfrac{a}{x}+c=-\dfrac{r}{x}\;\Rightarrow\; a-cx=r,

gdzie c jest stałą całkowania. Jest to równanie stożkowej (po obustronnym podniesieniu do kwadratu otrzymamy wielomian kwadratowy w zmiennych x,y).

Postępowanie Hermanna jest pomysłowe, choć całkowania są nieintuicyjne. Można jednak, jak zawsze, sprawdzić je, idąc od końca do początku, tzn. wykonując dwa kolejne różniczkowania. Tak naprawdę sztuka rozwiązywania równań różniczkowych jest często zamaskowanym odgadywaniem całek. Różniczkowania wynikają z reguły Leibniza dla iloczynu d(uv)=v du+u dv.
W naszym przypadku mamy np. dla drugiego równania

d\left(\dfrac{y}{r}\right)=\dfrac{rdy-ydr}{r^2}=\dfrac{r^2 dy-y rdr}{r^3}.

Pamiętając, że r^2=x^2+y^2, mamy rdr=xdx+ydy. Itd. itp. rachunki „od końca” są łatwe. W pierwszym całkowaniu przyjęliśmy stałą całkowania równą zeru, co nie zmniejsza ogólności wyniku, bo Hermann zakłada, iż oś Sx jest osią toru planety, tzn. przecięcie z osią x z lewej strony punktu S następuje w peryhelium albo aphelium, czyli przy y=0 powinno być dx=0.
Johann Bernoulli, który miał dość nieznośny charakter (nigdy nie dość wypominania mu, jak to konkurował ze swym synem Danielem) odpowiedział wybrzydzaniem na procedurę Hermanna i przedstawił swoją ogólniejszą, opartą na innym podejściu.

Z dzisiejszego punktu widzenia Hermann odkrył pewną całkę pierwszą problemu Keplera (tak się dziś nazywa problem ruchu wokół centrum przyciągającego jak 1/r^2). Całka pierwsza to wyrażenie, którego wartość nie zmienia się podczas ruchu. U Hermanna jest to

-\dfrac{dx}{dt}L_{z}-\dfrac{y}{r}=A_{y}=const.

W wyrażeniu tym L_z=xp_{y}-yp_{x}. Gdyby zająć się przyspieszeniem wzdłuż osi Sy, otrzymalibyśmy drugą całkę. Razem składają się one na wektor

\vec{A}=\vec{p}\times \vec{L}-\dfrac{\vec{r}}{r}.

Nazywa się go wektorem Rungego-Lenza, choć odkrył go właściwie Jakob Hermann. W pełni zdał sobie sprawę z faktu, że mamy trzy takie całki pierwsze, czyli w istocie wektor, Joseph Lagrange, a po nim Pierre Simon Laplace. Laplace przedyskutował też systematycznie wszystkie całki pierwsze problemu Keplera (trzy to moment pędu, trzy to nasz wektor, jedna to energia całkowita planety). Carl David Runge (ur. 1856) oraz Wilhelm Lenz (ur. 1888) pojawiają się w tej historii późno i w rolach dość przypadkowych. Pierwszy (znany z algorytmu Rungego-Kutty) użył tego wektora w swoim podręczniku analizy wektorowej, drugi zastosował go do pewnego problemu w starej teorii kwantów, przepisując go z podręcznika Rungego. Zupełnie niekosztowny sposób wejścia do historii. Wilhelm Lenz jest natomiast autorem tzw. modelu Isinga (Ernst Ising był jego doktorantem). Wektor odegrał pewną rolę w powstaniu mechaniki kwantowej. Stosując go, Wolfgang Pauli otrzymał wartości energii w atomie wodoru na podstawie formalizmu macierzowego Heisenberga. Chwilę później Erwin Schrödinger zrobił to samo w swoim formalizmie i wielu fizyków nie wiedziało, co o tym myśleć, bo na pierwszy rzut oka oba podejścia różniły się kompletnie.

Paul Painlevé, Einstein i czarne dziury (1921-1922)

Dzieje rodziny Paula Painlevé’go mogłyby posłużyć jakiemuś nowemu Balzacowi: dawni winogrodnicy, bednarze i kamieniarze, w pokoleniu dziadków zajęli się drukarstwem i litografią, przyszły ojciec uczonego z drukarza-litografa przeobraził się w przedsiębiorcę, producenta farby drukarskiej. Paul uczył się w renomowanych liceach paryskich Saint-Louis i Louis-le-Grand, a studiował matematykę w prestiżowej École normale supérieure, będącej znakomitym wstępem zarówno do kariery naukowej, jak politycznej. (Jej absolwenci zdobyli trzynaście Nagród Nobla, dziesięć Medali Fieldsa i dwie Nagrody Abela). Painlevé uzupełniał wykształcenie matematyczne w Getyndze u Hermanna Schwarza i Feliksa Kleina. W roku 1900, będąc jeszcze przed czterdziestką został członkiem Akademii Nauk, co naszej rodaczce Marii Skłodowskiej-Curie nie udało się nigdy, pomimo dwóch Nagród Nobla. Francuskie elity naukowe były mocno konserwatywne i nie każdy mógł zostać do nich dopuszczony. Painlevé interesował się także lotnictwem: teoretycznie – obliczając siłę nośną oraz praktycznie – odbywając w roku 1908 z Wilburem Wrightem ponadgodzinny lot na wysokości 10 m, przebyli 55 km i szczęśliwie wylądowali, był to ówczesny rekord. Alma Mahler wspomina, że Painlevé należał do entuzjastów symfonii Gustava Mahlera i jeździł specjalnie w różne miejsca, aby ich wysłuchać. Razem z generałem Georges’em Picquartem grywali je podobno na fortepianie w aranżacjach na cztery ręce. Wyciągi fortepianowe dzieł symfonicznych czy oper były dość popularne w czasach, gdy muzyki można było słuchać jedynie na żywo, a fortepiany lub pianina stały w niemal każdym mieszczańskim domu. Z Picquartem łączyły Painlevé’go poglądy w sprawie Dreyfusa, to właśnie Picquart udowodnił, że nie Alfred Dreyfus, lecz Ferdinand Esterhazy był szpiegiem w armii francuskiej. Przez kraj przetoczyła się wcześniej zajadła kampania antysemicka, wysokie dowództwo armii nie chciało przyznać się do błędu i Dreyfus został zrehabilitowany przeszło dziesięć lat po degradacji i uwięzieniu na Diabelskiej Wyspie. W 1910 r. Painlevé został socjalistycznym deputowanym do parlamentu. Od tej pory zajmował się czynnie polityką, bywał ministrem, przewodniczącym Izby Deputowanych, a nawet premierem. W 1921 roku zaczął zabiegać o wizytę Einsteina w Paryżu, niewątpliwie pragnąc w ten sposób zbliżyć oba narody po krwawej wojnie. W następnym roku Einstein rzeczywiście przyjął zaproszenie i przyjechał, o czym pisałem.

Painlevé interesował się nie tylko aspektem politycznym, zajął się bliżej teorią względności, z czego wynikło kilka prac oraz ożywione dyskusje z Einsteinem w Paryżu. Matematyk odkrył nowy sposób opisu pola grawitacyjnego wokół masy punktowej, z czego wyciągnął dość radykalne wnioski, osłabiające w jego mniemaniu, teorię względności. Einstein, nie zgadzając się z tymi wnioskami, nie potrafił wtedy udzielić bardziej konkretnej odpowiedzi. Dyskusje te miały także pewne praktyczne następstwa. Otóż szwedzki okulista, ale i matematyk, Allvar Gullstrand także odkrył ową metrykę Gullstranda-Painlevé’go, jak to się dziś nazywa. I uznał, podobnie, jak Painlevé, że teoria względności nie daje jednoznacznych przewidywań. Oznaczałoby to, że światowa sensacja wokół teorii względności po odkryciu ugięcia światła gwiazd w pobliżu tarczy słonecznej była mocno na wyrost. Gullstrand opiniował prace Einsteina dla Komitetu Noblowskiego i w roku 1921 nagrody nie przyznano. Einstein był najpoważniejszym kandydatem, ale Gullstrand podważał wartość jego prac. W końcu Nagrodę przyznano Einsteinowi dopiero w roku 1922 (za poprzedni rok), a więc po długim bardzo namyśle. W dodatku uznano, że bezpieczniej będzie zostawić na boku kwestię teorii względności, toteż przyznano Nagrodę za wyjaśnienie zjawiska fotoelektrycznego – w tym przypadku nie było wątpliwości, że przewidywania Einsteina zostały wyraźnie potwierdzone eksperymentalnie. Painlevé wyrażał swą krytykę o tyle bardziej dyplomatycznie, że uznawał zarazem wartość poznawczą podejścia Einsteina i zestawiał go z Lagrange’em. Obaj jednak, zarówno Francuz, jak Szwed, mieli spore zastrzeżenia.

Opiszę, na czym polegały zastrzeżenia Painlevé’go i co odpowiadał mu Einstein (na ile to dziś wiadomo). W drugiej części opiszę metrykę Gullstranda-Painlevé’go i jej konsekwencje: czarną dziurę. Uczeni pomiędzy rokiem 1915 a latami pięćdziesiątymi XX stulecia wiele razy natykali się na zagadnienie czarnych dziur i na rozmaite sposoby cofali się przed ich uznaniem, błędnie interpretując swoje równania. Pokazuje to, że interpretacja formalizmu matematycznego była tu niesłychanie trudnym problemem, znacznie poważniejszym niż formalne przekształcenia, które w różnych wersjach wykonywało wielu uczonych.

Ogólna teoria względności ma tę własność, że możemy używać w zasadzie niemal dowolnych czterech współrzędnych dla opisania miejsca i czasu. Same współrzędne nie muszą nic oznaczać z fizycznego punktu widzenia, tę samą sytuację można więc opisywać na różne sposoby. Często nie widać, że owe różne opisy dotyczą w istocie tej samej sytuacji. Tak było w przypadku metryki Gullstranda-Painlevé’go.

Czasoprzestrzeń wokół punktowej masy m w teorii Einsteina opisana jest metryką Schwarzschilda:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2-\dfrac{dr^2}{1-\dfrac{r_S}{r}}-r^2 d\varphi^2.

Stała r_S jest promieniem Schwarzschilda (dziś: promieniem horyzontu czarnej dziury). Painlevé i niezależnie od niego Gullstrand odkryli, że można tę samą sytuację opisać także za pomocą innej metryki:

ds^2=\left(1-\dfrac{r_S}{r}\right)dt^2+2\sqrt{\dfrac{r_S}{r}}dr dt-dr^2-r^2 d\varphi^2.

W obu przypadkach zapisałem metrykę tylko w płaszczyźnie równikowej, żeby mniej pisać (mamy wtedy jedynie zmienne t, r,\varphi). Painlevé podał także inne możliwe postaci owej metryki, sugerując, że dowodzi to, iż teoria Einsteina jest w istocie pusta, można bowiem wyciągnąć z niej rozmaite wnioski dla tej samej sytuacji fizycznej. Np. w pierwszej metryce przestrzeń trójwymiarowa nie jest euklidesowa, a w drugiej jest. Ergo wnioski Einsteina dotyczące światła w polu grawitacyjnym Słońca oraz ruchu Merkurego są nieuzasadnione. Podobnie rozumował Gullstrand, słuchany uważnie przez Komitet Noblowski.

Painlevé uznał, że wyciąganie z postaci metryki wniosków fizycznych to „czysta fikcja”. Zakomunikował to na posiedzeniu paryskiej Akademii Nauk i uprzejmie doniósł o tym listownie Einsteinowi. Na co Einstein, członek berlińskiej Akademii Nauk, równie uprzejmie oznajmił, że „metryczna interpretacja ds^2 nie jest żadną «pure imagination», lecz samym sednem teorii (der innerste Kern)” [Einstein Papers, t. 12, s. 369]. Podkreślał też, że same współrzędne nie znaczą nic, trzeba z nich dopiero wyciągnąć wnioski fizyczne nt. czasu i odległości.

Pewne zbliżenie stanowisk nastąpiło podczas dyskusji w Paryżu, choć Painlevé pisał już mniej bojowo, wkrótce zresztą wrócił do polityki. Paul Langevin podsumował to, mówiąc, że byłoby lepiej, gdyby Painlevé przeczytał o teorii względności, zanim wystąpił ze swą krytyką, a nie dopiero później. Tak to w akademiach bywa: ludzie dostają się do nich dzięki dawnym osiągnięciom, a nie stanowi to żadnej gwarancji, że dobrze rozumieją nowości naukowe. W dodatku akademie (przynajmniej wtedy) drukowały wszystko, co ich członkowie uznali za ciekawe. Dyskusja w paryskiej Akademii Nauk na temat teorii względności w latach 1921-1922 nie stała na zbyt wysokim poziomie. Akademicy byli na ogół niechętni Einsteinowi. Na propozycję, aby go przyjąć na członka-korespondenta, jeden z szacownych uczonych zareagował stwierdzeniem, że trudno wyróżniać w ten sposób człowieka, który „zniszczył mechanikę”.

Podczas wizyty Einsteina matematyk Jacques Hadamard zapytał o kwestię osobliwości metryki Schwarzschilda dla r=r_S. Niemiecki uczony przekonywał, a nawet poparł pewnymi rachunkami, które przeprowadził z dnia na dzień, że taka „katastrofa Hadamarda” nie może się zdarzyć w rzeczywistości, ponieważ zanim skoncentruje się materię pod promieniem Schwarzschilda, to wcześniej ciśnienie wewnątrz takiej gwiazdy stanie się nieskończone. Nie miał w tej kwestii racji, ale także później starał się dowodzić, że czarne dziury są niemożliwe. Einstein martwił się o spójność własnej teorii, ale wyrażał też dość powszechne stanowisko, Arthur Eddington, największy specjalista od budowy wnętrza gwiazd, twierdził, że z pewnością musi istnieć prawo fizyczne zabraniające takiego upakowania materii.

Jak można spojrzeć na tę dyskusję z perspektywy czasu, mając po swej stronie „łaskę późnego urodzenia”? Na wątpliwości Hadamarda (jak najbardziej uzasadnione) odpowiada metryka Painlevé’ego. Wystarczy spojrzeć, że nic się tam nie dzieje przy r=r_S (także jej wyznacznik jest różny od zera). Zatem w innych współrzędnych osobliwości tu nie ma i Einstein nie musiał się męczyć żadnymi rachunkami. Katastrofa Hadamarda jest osobliwością konkretnych współrzędnych Schwarzschilda, to coś w rodzaju „osobliwości” współrzędnych geograficznych na biegunie ziemskim, gdzie zbiegają się wszystkie południki. Wiemy jednak, że nic się tam złego nie dzieje z Ziemią.

W dodatku metryka Painlevé’go ze znakiem minus przed pierwiastkiem też stanowi rozwiązanie równań Einsteina. Nietrudno zobaczyć, co wtedy otrzymamy dla światła, tzn. gdy ds^2=0. Załóżmy dodatkowo, że promień świetlny biegnie radialnie, tzn. d\varphi=0. Dostajemy

0=\left(1-\dfrac{r_S}{r}\right)dt^2 -2\sqrt{\dfrac{r_S}{r}} dr dt-dr^2.

Dzieląc obie strony przez dt^2, dostajemy równanie kwadratowe dla prędkości radialnej. Jego rozwiązania dane są wyrażeniem:

\dfrac{dr}{dt}=\pm 1 -\sqrt{\dfrac{r_s}{r}}.

Równanie to opisuje dwa skrajne promienie świetlne: spadający na centrum i oddalający się od centrum. Gdy r>r_S jeden z nich zbliża się do centrum, drugi oddala. Kiedy jednak przekroczymy punkt „katastrofy Hadamarda” i r<r_S oba promienie zbliżają się ku centrum. Znaczy to, że nawet promień świetlny nie może się wydostać poza obszar r<r_S, czyli spod horyzontu czarnej dziury.

Przejście do współrzędnych Painlevé’go nie zmienia współrzędnej r, lecz jedynie czas. Jest on teraz mierzony jako czas własny cząstek spadających z nieskończoności na centrum. Są to współrzędne padającego deszczu, jak nazywają to Edwin F. Taylor i John Archibald Wheeler (*) w swej książce Exploring Black Holes.

 

 

(Na rysunku odległości i czasy wyskalowane są w promieniach Schwarzschilda)

Gdy cząstka mija horyzont, jej stożek przyszłości zaczyna być zwrócony ku wnętrzu, a to znaczy, że niebawem spadnie na centralną osobliwość. Drugi znak we współrzędnych Painlevé’go odpowiadałby wznoszeniu się z centrum do nieskończoności. Prawa grawitacji nie mówią nic na temat kierunku czasu: zawsze możliwy jest ruch przeciwny. Jak się zdaje, tylko współrzędne związane ze spadaniem mają jakiś sens fizyczny. W 1922 r. nie miał o tym wszystkim pojęcia ani Paul Painlevé, ani Albert Einstein.

(*) John Wheeler był autorem określenia „czarna dziura”.

Emmy Noether i jej twierdzenie, część II (1918) Albo: Formalizm Lagrange’a w kwadrans

Podamy tu uproszczoną postać twierdzenia Noether, słuszną w mechanice punktów materialnych. Najważniejsze zastosowania tego twierdzenia dotyczą sytuacji ogólniejszej, to znaczy pól, czyli pewnych funkcji zależnych od położenia i czasu. Uogólnienie jest zresztą dość oczywiste. Jeszcze jedna rzecz: Noether udowodniła dwa twierdzenia, nas interesuje tu tylko pierwsze z nich.

Zaczniemy od mechaniki w sformułowaniu Lagrange’a. Zamiast mówić o siłach, możemy użyć energii potencjalnej V i zbudować lagranżian {\cal L}=E_k-V. Dwa przykłady, które nam się w dalszym ciągu przydadzą:

Przykład 1 Jednowymiarowy ruch dwóch punktów materialnych o współrzędnych x_1, x_2 oraz masach m_1, m_2. Energia potencjalna zależy tylko od względnego położenia obu punktów (co oznacza, że oddziałują one tylko na siebie nawzajem, nie ma żadnych sił zewnętrznych). Lagranżian ma postać:

{\cal L}=\dfrac{m_1\dot{x_1}^2}{2}+\dfrac{m_2\dot{x_1}^2}{2}-V(x_1-x_2).

Kropki oznaczają pochodne po czasie: pochodna współrzędnej po czasie to oczywiście prędkość.

Przykład 2 Punkt na płaszczyźnie poruszający się w potencjale zależnym tylko od odległości od pewnego punktu centralnego (jak planety wokół Słońca). Lagranżian ma w tym przypadku postać:

{\cal L}=\dfrac{m\dot{x}^2}{2}+\dfrac{m\dot{y}^2}{2}-V(\sqrt{x^2+y^2}).

Zauważmy, że te lagranżiany są dość podobne: w obu mamy do czynienia z dwoma stopniami swobody. Z formalnego punktu widzenia to liczba stopni swobody jest ważna, a nie liczba cząstek. Będziemy pisać lagranżian w postaci ogólnej jako {\cal L}={\cal L}(q,\dot{q}), co znaczy, że współrzędnymi są q. Lagranżian będzie też zależał od prędkości \dot{q}. Gdyby liczba stopni swobody była n to powinniśmy te współrzędne ponumerować jakimś wskaźnikiem i=1\ldots n. Wolimy nie wypisywać tych wskaźników, żeby nie gmatwać zapisu.

Następny krok to równania ruchu. Zamiast praw Newtona stosujemy zasadę najmniejszego działania i otrzymujemy równania Lagrange’a. Konkretnie wygląda to tak, tworzymy działanie S,

\displaystyle{S=\int_{0}^{\tau}{\cal L} (q, \dot{q}) dt.}

Szukamy minimum działania (dokładnie: ekstremum), wyobrażając sobie, że do ruchu q=q(t) dodajemy niewielką funkcję \delta q(t). Żądamy teraz, aby zmiana (wariacja) działania znikała. Rozpatrujemy przy tym z założenia tylko takie ruchy, które zaczynają się kończą w ustalonych punktach. Sytuację tę ilustruje rysunek poniżej. Oczywiście do \dot{q} musimy dodać pochodną \dot{\delta q}=\delta\dot{q}.

Łatwo teraz pokazać (co robimy na końcu), że

\delta S=0\iff \dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}=0.

Otrzymaliśmy równania Lagrange’a, które zastępują teraz równania Newtona. W gruncie rzeczy przypominają one równania Newtona: pochodna po czasie z pewnej wielkości p\equiv \frac{\partial {\cal L}}{\partial \dot{q}} nazywanej pędem uogólnionym jest równe sile (uogólnionej). Sprawdźmy to na przykładzie pierwszym. Mamy w istocie dwa równania dla obu naszych zmiennych:

\begin{array}{l}-V'(x_1-x_2)=\dfrac{d}{dt}(m_1 \dot{x_1})\\  \\  V'(x_1-x_2)=\dfrac{d}{dt}(m_2 \dot{x_2}).\end{array}

W równaniach tych V' oznacza pochodną, dostajemy parę sił o przeciwnych znakach, czyli spełniona jest III zasada dynamiki, jak być powinno. Na razie wygląda to wszystko na zawiły sposób sformułowania prostych równań Newtona. Lagrange wiedział jednak, co robi i czemu ogólniejsze podejście jest lepsze. Sformułowanie Lagrange’a łatwo pozwala zastosować inne zmienne niż kartezjańskie. Nasz przykład 2 ma symetrię radialną. Możemy użyć zamiast współrzędnych kartezjańskich współrzędnych biegunowych r, \varphi. Lagranżian przyjmuje wówczas postać:

{\cal L}=\dfrac{m\dot{r}^2}{2}+\dfrac{mr^2\dot{\varphi}^2}{2}-V(r).

Teraz lagranżian nie zależy od jednej ze zmiennych (\varphi), mamy więc dla niej proste równanie:

\dfrac{d}{dt}(mr^2 \dot{\varphi})=0

Inaczej mówiąc, wielkość p_{\varphi}=J=mr^2\dot{\varphi} jest stała. Okazuje się, że pędem uogólnionym sprzężonym z \varphi jest moment pędu J, jak powinno być, gdyż energia potencjalna nie zależy od kierunku, a więc siły są centralne (skierowane do albo od początku układu współrzędnych). Widzimy, że zastosowanie sprytnie dobranych współrzędnych upraszcza nam od razu problem. Jeśli tylko znajdziemy odpowiednie współrzędne, to niektóre pędy uogólnione będą stałe podczas ruchu.

Twierdzenie Noether pozwala nam od symetrii lagranżianu przejść od razu do pewnej wielkości, która musi być zachowana podczas ruchu. Nie musimy przy tym wymyślać jakichś szczególnych współrzędnych. Każdej symetrii odpowiada pewna wielkość, która nie zmienia się z czasem.

Zaczniemy od określenia, czym jest symetria. Żądamy, aby podstawienie (gdzie \delta q jest niewielkie):

\begin{array}{l} q(t) \rightarrow  q(t)+\delta q(t)\\  \\  \dot{q}(t) \rightarrow  \dot{q}(t)+\delta \dot{q}(t).\end{array}

nie zmieniało lagranżianu:

{\cal L}(q,\dot{q})={\cal L}(q+\delta q, \dot{q}+\delta\dot{q}).

Twierdzenie Noether głosi, że wielkość A określona równaniem

A=\delta q_i\dfrac{\partial {\cal L}}{\partial \dot{q_i}}\equiv \delta q_i \cdot p_i

nie zmienia się podczas ruchu. Wprowadziliśmy tu wskaźniki numerujące stopnie swobody, należy po nich wysumować. Dowód można znaleźć na końcu tekstu.

Najłatwiej wyjaśnić sens twierdzenia na naszych przykładach. W pierwszym z nich operacja przesunięcia jednocześnie obu punktów materialnych o wspólną niezależną od czasu wielkość \delta a, tzn.:

\begin{array}{l} x_1(t) \rightarrow  x_1(t)+\delta a\\  \\  x_2(t) \rightarrow  x_2(t) + \delta a.\end{array}

nie zmienia energii potencjalnej. Energia kinetyczna też się nie zmienia, ponieważ pochodna funkcji stałej jest równa zeru. Zatem jednoczesne przesunięcie obu punktów materialnych nie wpływa na ich ruch względny, co z fizycznego punktu widzenia brzmi rozsądnie. W myśl tw. Noether zachowana powinna być tu wielkość

A=\delta a m_1\dot{x}_1+\delta a m_2\dot{x}_2=\delta a(m_1\dot{x}_1+m_2\dot{x}_2).

Jest to oczywiście pęd całkowity.

Zobaczmy, jak opisać symetrię w przykładzie drugim. Operacją nie zmieniającą lagranżianu będzie oczywiście obrót w płaszczyźnie xy (najprostsze obroty zmieniają dwie współrzędne, dlatego mamy jeden taki obrót na płaszczyźnie, trzy w przestrzeni trójwymiarowej: xy, xz, yz i sześć w przestrzeni czterowymiarowej). Niewielki obrót o kąt \delta\varphi   w płaszczyźnie dany jest równaniami:

\begin{array}{l}x\rightarrow x-y\delta\varphi\\ \\ y\rightarrow y+x\delta\varphi.\end{array}

Szczegóły można znaleźć poniżej. Wielkością zachowaną jest teraz oczywiście moment pędu:

A=\delta\varphi (xp_y-yp_x)=\delta\varphi J.

Widać, skąd tak naprawdę pochodzi ta dziwaczna kombinacja pędów i współrzędnych: bierze się ona z rozpatrzenia obrotów w płaszczyźnie. W przestrzeni trójwymiarowej mielibyśmy trzy składowe momentu pędu, w przestrzeni czterowymiarowej sześć. Moment pędu można uważać za wektor tylko w przypadku trójwymiarowym, tak się składa, że jest to przypadek ważny dla nas, ale z matematycznego punktu widzenia liczba składowych momentu pędu zazwyczaj nie jest równa wymiarowi przestrzeni.

Jeszcze jedna uwaga: nasze transformacje symetrii są niewielkie. Co to dokładnie znaczy, widać intuicyjnie w przypadku translacji czy obrotów. Rzecz w tym, że np. do symetrii zwierciadlanej tw. Noether się nie stosuje.

Tak to wygląda w najprostszej wersji, możliwe są rozmaite uogólnienia. Jednym z najważniejszych są operacje symetrii zawierające czas. Nasze lagranżiany nie zależą jawnie od czasu. W takim przypadku translacja w czasie jest operacją symetrii. Wielkością zachowywaną w tym przypadku jest A=\dot{q_i}p_i-{\cal L}=E_k+V, czyli całkowita energia układu. Poza symetriami fundamentalnymi możliwe są oczywiście rozmaite symetrie obowiązujące dla konkretnego zagadnienia, każda z nich prowadzi do zachowywanej podczas ruchu wielkości.

(*) Łatwo uzyskać można wyrażenie dla wariacji działania.

\displaystyle{\delta S=\int_{0}^{\tau}\left(\delta q \dfrac{\partial {\cal L}}{\partial q}+\delta\dot{q}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt}

Nie zakładamy tu żadnego szczególnego zachowania \delta q(t) na końcach przedziału czasu. Sytuację przedstawia rysunek.

Całkując drugi wyraz przez części, otrzymujemy następującą postać wariacji;

\displaystyle{\delta S=\int_{0}^{\tau}\delta q \left(\dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt+\left. \delta q\dfrac{\partial {\cal L}}{\partial\dot{q}}\right|^{\tau}_{0}}.

Wynikają stąd zarówno równania Lagrange’a, jak i tw. Noether.

W przypadku zasady najmniejszego działania żądamy, aby \delta S=0. Ponieważ na początku i końcu wariacja \delta q(0)=\delta q(\tau)=0, więc znika też ostatni, scałkowany, wyraz w powyższym wyrażeniu. A to z kolei oznacza, że wyrażenie w nawiasie znika (gdyż \delta q(t) poza tym, że jest niewielkie, może być dowolne i gdyby nawias w jakimś przedziale był różny od zera, to moglibyśmy tak dobrać \delta q(t), żeby całka była różna od zera).

W przypadku tw. Noether wiemy, że działanie się nie zmienia, ponieważ nie zmienia się lagranżian i przedział całkowania, czyli przy tych założeniach \delta S=0. Zakładamy też, że ruch odbywa się zgodnie z równaniami Lagrange’a, co oznacza, że nawias pod całką jest równy zeru, całka też musi być równa zeru. Zostaje nam warunek A(\tau)-A(0)=0. Zatem A(t) od czasu nie zależy.

Wyrażenia dla współrzędnych przy niewielkim obrocie otrzymujemy, przyjmując \cos\delta\varphi=1 oraz \sin\delta\varphi=\delta\varphi. Pokazuje to, co znaczą małe obroty: zostawiamy wyrazy liniowe w \delta\varphi, pomijamy natomiast wyrazy wyższych rzędów.

Najmniejsze działanie: od kształtu liny do zasady Hamiltona

Isaac Newton nie traktował trzech zasad dynamiki jako swego szczególnie ważnego odkrycia; sądził, że formułuje tylko fakty znane wcześniejszym badaczom, takim jak np. Christiaan Huygens. Jednak to jego sformułowanie okazało się kanoniczne i trafiło do podręczników. Nie jest to zupełny przypadek: zasady te pozwoliły bowiem zbudować konsekwentną naukę o ruchu i określiły sposób myślenia jego następców. Newton pojawił się w odpowiedniej chwili historycznej, gdy kwestia ruchu w mechanice dojrzała do ścisłego przedstawienia i kiedy pojawiła się stosowna matematyka – czy to w postaci rachunku fluksji samego Newtona, czy rachunku różniczkowego i całkowego Leibniza i Johanna Bernoulliego.

Mechanikę można sformułować na kilka innych sposobów. Zwłaszcza Newtonowskie pojęcie siły jest było nowatorskie i zapewne by się nie pojawiło, gdyby nie samotnik z Cambridge. Nauki ścisłe także są konstrukcją ludzką i tylko częściowo odkrycia w nich przypominają odkrycia geograficzne: kto pierwszy zobaczy wyspę Kuba, automatycznie staje się jej odkrywcą. Nie ma tu bowiem platońskiego świata idei do odkrycia, a w każdym razie idee te mogą przyjmować zupełnie różne kształty i ich zarysy stają się widoczne dopiero wtedy, kiedy ktoś taki jak Albert Einstein albo Andrew Wiles je nam wskaże.

We współczesnej fizyce, zarówno klasycznej, jak kwantowej, najważniejszym sposobem zapisywania praw są zasady najmniejszego działania (in. zasady wariacyjne). Historycznie pojawiły się one później niż Newtonowskie siły, ich znaczenie stopniowo jednak rosło. Gdyby Albert Einstein dostatecznie mocno wierzył w zasady wariacyjne, to zapewne sformułowałby równania swej teorii grawitacji kilka lat wcześniej, jeszcze w Zurychu, a nie w Berlinie, oszczędzając sobie mnóstwa ciężkiej pracy i frustracji z powodu niepowodzeń. Klasyczne zasady najmniejszego działania nabrały nowego sensu w fizyce kwantowej, w Feynmanowskich sumach po historiach. Model Standardowy cząstek elementarnych, czyli sumę naszej wiedzy o mikroświecie, też zapisuje się za pomocą działania.

Poniżej przedstawimy dwa przykłady pokazujące, jak  można sformułować mechanikę w postaci zasad najmniejszego działania.

Kształt ciężkiej liny

Chcemy znaleźć kształt, jaki przyjmie ciężka lina zaczepiona w dwóch punktach.Stan równowagi odpowiada minimalnej energii całkowitej.

Mamy tu do czynienia z dwoma rodzajami energii. Z jednej strony działa grawitacja: im niżej znajdzie się dany element liny, tym niższa będzie jego energia potencjalna. Odcinek liny odpowiadający małemu przedziałowi (x, x+\Delta x) będzie miał masę \varrho dx i jego energia potencjalna będzie równa (g jest przyspieszeniem ziemskim):

\Delta V=-\varrho gy \Delta x.

Drugim rodzajem energii jest tu energia sprężysta. Wyobraźmy sobie, że zależy ona tylko od wydłużenia naszej liny i dla jej małego elementu równa jest

\Delta T=N(\Delta s-\Delta x),

gdzie N jest siłą napięcia liny.

Dla uproszczenia rachunków ograniczymy się do przypadku, gdy nasza lina ma niewielką strzałkę ugięcia, czyli dy jest znacznie mniejsze niż dx. Możemy wtedy przekształcić wyrażenie na energię sprężystą następująco:

dT=N(\sqrt{\Delta x^2+\Delta y^2}-\Delta x)\approx \dfrac{1}{2}N\left(\dfrac{\Delta y}{\Delta x}\right)^2 \Delta x.

W równości przybliżonej skorzystaliśmy z przybliżenia \sqrt{1+g}\approx 1+\frac{1}{2} g, słusznego dla wartości g\ll 1. Zauważmy, że działa ono nieźle nawet dla stosunkowo dużych wartości g, np. otrzymujemy \sqrt{2}\approx 1,5 zamiast 1,41, co oznacza błąd poniżej 10%.

Mamy więc dwa wkłady do energii: energia potencjalna obniża się, gdy dany odcinek liny znajdzie się niżej, ale żeby to było możliwe, lina musi się wydłużyć, co powiększa jej energię sprężystą. Pytanie, jakie sobie stawiamy, brzmi: jak znaleźć krzywą opisującą kształt liny?

Energia całkowita naszej liny jest równa

{\displaystyle E=\int_{0}^{L}\left(\dfrac{1}{2}N\left(\dfrac{dy}{dx}\right)^2-\varrho g y\right)dx.}

Jeśli zadamy krzywą y(x) i wstawimy ją do powyższego równania, to dostaniemy energię odpowiadającą danemu kształtowi. Matematycy mówią, ze mamy funkcjonał: czyli funkcji przypisujemy pewną liczbę. Dziedziną naszego funkcjonału jest zbiór różnych funkcji, które mogłyby opisywać kształt naszej liny.

Jak znaleźć minimum energii? Metodę postępowania podał w roku 1755 pewien bystry dziewiętnastolatek, Joseph Lagrange, w liście do słynnego Leonharda Eulera. Wyobraźmy sobie, że daną funkcję y(x) nieznacznie zmienimy na y(x)+\delta y(x). Jak wtedy zmieni się nasz funkcjonał? Łatwo pokazać, że zmiana energii jest w naszym przypadku równa

{\displaystyle \delta E=\int_{0}^{L}\left( N \dfrac{d^2 y}{dx^2}-\varrho g \right) \delta y(x) dx.} (*)

Pominięte zostały wyrazy zawierające  \delta y^2. Funkcja \delta y(x) (tzw. wariacja, czyli zmiana, y(x)) jest dowolna. W minimum niewielka wariacja y  nie powinna wpływać na wartość funkcjonału: kiedy jesteśmy już na dnie, to jest nam wszystko jedno, w którą stronę się przesuniemy, i tak będziemy na dnie. Jest to słuszne tylko w pierwszym przybliżeniu, gdy możemy pominąć wkłady kwadratowe i wyższe wariacji funkcji. Zatem warunkiem na minimum jest znikanie wariacji funkcjonału:

 \delta E=0  \Leftrightarrow N \dfrac{d^2 y}{dx^2}-\varrho g =0.

Ostatnia równoważność wynika stąd, że znikanie całki z nawiasu razy dowolna (niewielka) funkcja \delta y(x) musi oznaczać, iż ten nawias jest równy zeru dla każdego x.

Dwa wnioski: ogólny i szczegółowy.

Wniosek ogólny: Warunkiem minimum funkcjonału jest spełnienie pewnego równania zawierającego pochodną.

Wniosek szczegółowy: W naszym przypadku równanie to stwierdza, że druga pochodna y''(x) ma być stała. Znaczy to, że pierwsza pochodna y'(x) jest funkcją liniową, a sama funkcja y(x) jest kwadratowa, kształt krzywej to parabola. Żeby się te rozważania nie wydawały zbyt abstrakcyjne, proszę spojrzeć na obrazek.

Akashi Kaikyō Bridge, Wikipedia

Ruch rzuconego ciała

Teraz zapomnijmy o fizycznej treści poprzedniego punktu, pozostańmy przy samej matematyce: takie same równania mają takie same rozwiązania, jak uczył Feynman. Jeżeli wziąć za zmienną niezależną czas t zamiast x, to stała druga pochodna oznacza, ze mamy stałe przyspieszenie, czyli ruch w polu grawitacyjnym Ziemi. Możemy nieco zmienić oznaczenia N=\varrho=m, zamiast E napiszmy S, bo tak się standardowo oznacza działanie. Mamy więc zasadę wariacyjną i równoważne jej równanie różniczkowe:

 \delta S=0  \Leftrightarrow m \dfrac{d^2 y}{dt^2}-m g =0,

gdzie działanie równe jest

{\displaystyle S=\int_{0}^{T}\left(\dfrac{1}{2}m\left(\dfrac{dy}{dx}\right)^2-m g y\right)dx.}

Zamiast równań Newtona dla rzuconego ciała, możemy zażądać, aby znikała wariacja z działania. W naszym przypadku nadal rozwiązaniem jest parabola.

Zmieniła się jej interpretacja fizyczna: teraz opisujemy ruch jednowymiarowy, rzut pionowy. Skądinąd wiemy, że rozciągnięty w czasie rzut pionowy będzie miał kształt paraboli (mówimy tu o krzywej we współrzędnych t, y). Jeśli przyjrzeć się postaci działania, to oba składniki w nawiasie powinny nam się kojarzyć z energią kinetyczną i potencjalną:

 {\displaystyle S=\int_{0}^{T}\left(\dfrac{mv^2}{2}-V(y)\right)dt.}

Otrzymujemy w ten sposób zasadę Hamiltona najmniejszego działania. Równania, które z niej wynikają, nazywają się, żeby rzecz całą zagmatwać, równaniami Lagrange’a (są one równoważne zasadom dynamiki Newtona). Funkcja pod całką nazywa się lagranżianem i jest równa: {\cal L}=E_k-V. Należy zwrócić uwagę, że {\cal L} nie jest energią całkowitą, lecz różnicą energii kinetycznej i potencjalnej – przechodząc od liny do rzutu, zmieniliśmy znak. Zasada najmniejszego działania oznacza, że jeśli nieco zmienimy ruch w stosunku do ruchu rzeczywistego, to działanie się nie zmieni. Funkcje, które rozpatrujemy, zaczynają się w chwili 0 w punkcie y=0 i kończą w tym samym punkcie w chwili t=T. Można wybrać dowolne punkty przestrzeni, ustalony jest tu natomiast przedział czasu. Wszystkie rozpatrywane funkcje zaczynają się i kończą w tych samych chwilach i w tych samych dwu punktach. Rzeczywisty ruch cząstki spełnia zasadę najmniejszego działania.

Sformułowanie mechaniki za pomocą zasady Hamiltona ma wiele różnych zalet matematycznych, o których teraz nie będziemy pisać. Pojawiło się stosunkowo późno, bo w XIX wieku, choć zasada najkrótszego czasu w optyce znana była dwa stulecia wcześniej. Sam fakt, że na ruch można spojrzeć w taki sposób, jest interesujący i nowatorski. Polecam zupełnie elementarny wykład Feynmana na temat tej zasady.

Uwaga: Znikanie wariacji nie musi oznaczać minimum, tak samo jak znikanie zwykłej pochodnej funkcji niekoniecznie oznacza, że mamy do czynienia z minimum: może to być maksimum albo punkt przegięcia. Zwyczajowo mówi się o najmniejszym działaniu, choć w konkretnych przypadkach bywa to maksimum.

(*) Warto może przedstawić krótko procedurę obliczania wariacji funkcjonału. Sztuka polega na scałkowaniu przez części: jest to krok powtarzany do skutku we wszystkich obliczeniach wariacji. Chodzi o to, żeby zamiast \delta y'(x) mieć \delta y(x). Operacje różniczkowania \frac{d}{dx} i brania wariacji \delta są przemienne, bo pochodna różnicy to różnica pochodnych.

Pierwszy składnik pod całką zmienia się wskutek tego, że y'(x) zastępujemy przez y'(x)+\delta y'(x), różnica wyrażeń podcałkowych to

\frac{1}{2}N(2y'\delta y')=\frac{d}{dx}(Ny'\delta y)-Ny''\delta y,

gdzie pominęliśmy \delta y'^2. Po wstawieniu tego pod całkę otrzymujemy wynik, pamiętając, że nasze wariacje znikają na końcach przedziału: \delta y(0)=\delta y(L)=0.

Nieśmiertelny wynalazek Josepha Fouriera (1804-1822)

Fourier, syn krawca, którego wcześnie odumarli rodzice, wszystko zawdzięczał swemu talentowi, a także umiejętności niezrażania sobie ludzi. Jego kariera wiele mówi o Francji tamtych czasów. Urodził się i wychowywał za panowania Ludwika XVI. Ktoś zwrócił uwagę na zdolnego chłopca i polecił go biskupowi Auxerre. Dzięki protekcji duchownego Fourier został przyjęty do szkoły artyleryjskiej kierowanej przez maurystów (benedyktyńska kongregacja św. Maura). Wcześnie ujawnił talent matematyczny. Zabiegał o przyjęcie na służbę do artylerii, lecz mimo poparcia słynnego matematyka Adrien Marie Legendre’a, minister odmówił. „Fourier, nie pochodząc ze szlachty, nie ma wstępu do artylerii, choćby nawet był drugim Newtonem” – oświadczył minister. Młody człowiek wstąpił więc do nowicjatu u maurystów, ale wybuchła Rewolucja Francuska i Fourier zmienił zdanie. Ojcowie zatrudnili go mimo to w swej szkole artyleryjskiej, gdzie uczył matematyki, a jak było trzeba, to także retoryki, filozofii i historii. Należał do słuchaczy École normale roku III: był to swoisty eksperyment szkolny, mający dostarczyć Rewolucji nowy zastęp nauczycieli. Tysiąc pięciuset uczniów słuchało wykładów największych uczonych Francji: Lagrange’a, Laplace’a, Monge’a, Bertholleta. Prawdziwą karierę zrobił Fourier dopiero za czasów Napoleona: był wśród uczonych towarzyszących Pierwszemu Konsulowi w wyprawie egipskiej („Osły i uczeni do środka” – wołali oficerowie, kiedy konwój Francuzów został zaatakowany na pustyni). Fourier został sekretarzem Instytutu Egipskiego powołanego przez Napoleona, wniósł swój wkład do jego publikacji. Po kapitulacji armii i powrocie do Francji, został prefektem departamentu Izery, gdzie budował drogi i osuszył bagna Bourgoin. W tym czasie dobiegający czterdziestki uczony zajął się poważniej fizyką matematyczną: zagadnieniem rozchodzenia się ciepła. W roku 1807 wygrał konkurs Akademii Nauk poświęcony temu zagadnieniu. W roku 1822 opublikował swą słynną monografię Théorie analytique de la chaleur – „Analityczną teorię ciepła”.

Joseph_Fourier
Wiedza o cieple nie była zbyt wielka: znano pojęcie temperatury i ciepła właściwego. Nie wiedziano, czym jest ciepło, wyobrażano sobie, że jest rodzajem nieważkiej cieczy, która przepływa z jednego ciała do drugiego, nie ginąc ani nie powstając (zasady termodynamiki sformułowano trzydzieści lat później). Fourier przyjął, że strumień ciepła na jednostkę powierzchni i czasu zależy od tego, jak szybko zmienia się temperatura z odległością.

fourier-strum

J_x=-a\dfrac{\Delta T}{\Delta x}=-a\dfrac{dT}{dx}.

Szybkość zmiany temperatury to gradient. Strumień ciepła jest więc proporcjonalny do gradientu temperatury: jeśli ten sam spadek temperatury przypada na dwa razy krótszy odcinek, to strumień będzie dwa razy większy. Znak minus informuje, że ciepło płynie od temperatury wyższej do niższej, a nie odwrotnie. Stała a charakteryzuje materiał.
Będziemy szukali przepływów stacjonarnych, tj. takich, które nie zależą od czasu. Jeśli przepływ ciepła jest jednowymiarowy, tzn. strumień jest wyłącznie w kierunku osi x, to łatwo stwierdzić, że stacjonarność oznacza wówczas stałość J_x. Powierzchnie izoterm to płaszczyzny prostopadłe do osi Ox, a gradient temperatury jest stały.
Znacznie ciekawsza jest sytuacja w przypadku 2D. Wyobraźmy sobie prostokąt o bokach \Delta x, \Delta y. W naszym przypadku stacjonarnym całkowita ilość ciepła wypływająca w jednostce czasu z prostokąta musi być równa zeru: inaczej prostokąt ogrzewałby się albo oziębiał z czasem.

fourier box

Warunek ten zapisany matematycznie oznacza, że

\Delta y(J_x(x+\Delta x, y)-J_x(x, y))+\Delta x(J_y(x, y+\Delta y)-J_y(x, y))=

=\Delta x\Delta y\left(\dfrac{\partial{J_x}}{\partial{x}}+\dfrac{\partial{J_y}}{\partial{y}}\right)=0.

W pierwszym wierszu mnożymy strumienie przez długości odpowiedniego boku prostokąta, aby otrzymać ilość ciepła przechodzącą przez daną krawędź. Korzystając z tego, że strumień związany jest z gradientem, otrzymujemy następujący warunek stacjonarnego przepływu:

\dfrac{\partial^2{T}}{\partial{x^2}}+\dfrac{\partial^2{T}}{\partial{y^2}}=0.

Jest to równanie Laplace’a, występujące też w elektromagnetyzmie i teorii grawitacji. Aby zrozumieć jego sens, można wyobrazić sobie punkt płaszczyzny otoczony przez cztery inne punkty oddalone o niewielką odległość h.

fourier neighbours

Równanie Laplace’a mówi, że średnia arytmetyczna temperatur w punktach czerwonych równa się temperaturze w środkowym punkcie niebieskim. Nie powinno to dziwić: chodziło przecież o to, aby ciepło nie gromadziło się w żadnym obszarze ani z niego nie uciekało (**). Biorąc odpowiednio małe h, można w ten sposób rozwiązać równanie Laplace’a numerycznie. Można pokazać ogólnie, że gdy funkcja spełnia równanie Laplace’a, to jej średnia wartość po małej sferze (u nas okręgu) o promieniu h równa jest wartości w środku sfery.

fourier sfera

Wśród zagadnień rozważanych przez Fouriera znalazło się i takie: mamy nieskończony dwuwymiarowy pasek, którego jeden bok utrzymywany jest w temperaturze 1, a dwa boczne w temperaturze 0 (odpowiadały one w naszej skali 100^{\circ}\mbox{C} oraz 0^{\circ}\mbox{C}). Zakładamy też, że w nieskończoności temperatura spada do zera. Szukamy rozwiązania stacjonarnego.

fourier_boundary
Łatwo można znaleźć rozwiązania, w których temperatura na obu bokach równa jest zeru oraz stopniowo spada:

T(x,y)=C\exp{(-nx)}\sin{ny},\mbox{(*)}

gdzie parametr n jest całkowity. Dla n=1 wygląda to tak:

fourier1

Dla x=0 mamy jednak funkcję zdecydowanie różną od stałej. Łatwo sobie wyobrazić, że tak będzie i dla innych wartości n. Idea Fouriera polegała na tym, aby temperaturę wzdłuż osi Oy przedstawić jako sumę nieskończenie wielu sinusów:

T(0,y)=\frac{4}{\pi}(\sin y+\frac{1}{3}\sin 3y+\frac{1}{5}\sin 5y+\ldots).

Tak wygląda suma pierwszych trzech wyrazów:

fourier3A tak ośmiu:

fourier8

Naprawdę nasza suma sinusów jest nieparzysta i wygląda następująco (osiem składników):

fourier8full

Jest to funkcja o okresie 2\pi. Podejście Fouriera spotkało się z niedowierzaniem i krytyką. Wprowadzał on do rozważań „dziwne” funkcje, które nie są określone jednym wzorem i nie są ciągłe, przybliżając je wszystkie czymś tak banalnie prostym jak sinusoidy. Wiele prac z dziedziny fizyki i matematyki wyrosło z podejścia Fouriera. Matematycy zastanawiali się nad zbieżnością i pojęciem funkcji, fizycy i inżynierowie stosowali w praktyce. Dziś traktujemy szereg Fouriera jak przedstawienie wektora za pomocą pewnych wektorów bazowych. Np. każdy wektor na płaszczyźnie możemy przedstawić jako kombinację dwóch jednostkowych wektorów o kierunkach osi x i y. Funkcje okresowe o okresie 2\pi wyrażają się przez funkcje \sin{nx} i \cos{nx}, które pełnią rolę wektorów bazowych. Przestrzeń tak zdefiniowana jest nieskończenie wymiarowa i nazywa się przestrzenią Hilberta. Z punktu widzenia fizyka czy inżyniera analiza fourierowska pozwala rozłożyć każdy impuls okresowy na składowe, co pozwala wiele zrozumieć. Np. wysokość tonu wydawanego przez instrument muzyczny określona jest pierwszym sinusem, a następne przesądzają o barwie dźwięku: po tym odróżniamy a zagrane na fortepianie od a zagranego na skrzypcach.

Kiedy już mamy naszą dziwną funkcję rozwiniętą w szereg Fouriera, wystarczy zsumować nieskończenie wiele rozwiązań takich jak (*). Pierwsze trzy składniki dadzą rozwiązanie poniżej (możemy zawsze w razie potrzeby użyć większej liczby wyrazów).

fourier3 laplace

(**) Związek średniej arytmetycznej z równaniem Laplace’a wynika z rozwinięcia w szereg Taylora z dokładnością do h^2:

T(x\pm h,y)=T(x,y)\pm h\dfrac{\partial{T}}{\partial{x}}+\frac{1}{2}h^2\dfrac{\partial^2{T}}{\partial{x^2}},

T(x,y\pm h)=T(x,y)\pm h\dfrac{\partial{T}}{\partial{y}}+\frac{1}{2}h^2\dfrac{\partial^2{T}}{\partial{y^2}}.

Biorąc średnią arytmetyczną z tych czterech wyrażeń i odejmując wartość T(x,y), otrzymujemy

\overline{T}-T=\frac{1}{4} h^2 \left(\dfrac{\partial^2{T}}{\partial{x^2}}+\dfrac{\partial^2{T}}{\partial{y^2}}\right).