Josef Loschmidt i wielkość cząsteczek powietrza (1865)

Richard Feynman pisał, że gdyby cała obecna nauka miała ulec zniszczeniu w jakimś kataklizmie i można było ocalić tylko jedno zdanie, to powinno ono brzmieć: „Wszystko składa się z atomów – małych cząstek, poruszających się bezładnie, przyciągających się, gdy są od siebie nieco oddalone, odpychających się zaś, gdy je zbytnio ścieśnić”.

Pomysł istnienia takich cząstek, jak i ich nazwę: atomy, czyli „niepodzielne” (a to zaprzeczenie, tomos – cięty, tnący, dzielący się na części, stąd np. określenia anatomia i tomografia) zawdzięczamy starożytnym Grekom Leucypowi i Demokrytowi. Rzeczy zbudowane są z atomów jak słowa z liter. Pisma atomistów były już w starożytności atakowane za wizję świata bez bogów, poddanego tylko konieczności. Istniała w nim tylko materia, nawet dusze, czyli zasady ruchu, miały być bowiem materialne.

Żyjący w I w. p.n.e. Rzymianin Lukrecjusz opisał tę wizję w długim i dydaktycznym, i o dziwo poetycko wybitnym, poemacie heksametrem. Lukrecjusz był epikurejczykiem, a więc nie tylko atomistą, lecz także wyznawcą etyki opartej na wartościach doczesnych – bogowie nie zajmują się bowiem ludźmi, a ci powinni sami zadbać o swe szczęście, żyć tak, by o ile to możliwe szukać przyjemności i unikać cierpienia. Etyka epikurejska była rozsądna i wyważona, obce im było wszelkie zatracanie się w pogoni za szczęściem, jak i nadużycia zmysłowe. Ceniono natomiast proste przyjemności i czystą radość życia. Atomizm, objaśniając funkcjonowanie świata, miał dopomóc ludziom w uwolnieniu się od lęku przed śmiercią, zemstą bogów i wizją wiecznego cierpienia po śmierci. Z tego względu już w starożytności epikureizm uznawano za filozofię bezbożną.

Kanoniczny obraz atomizmu to drobinki pyłu wirujące w smudze światła słonecznego. W mikroskali tak miały wyglądać wszystkie zjawiska: wiecznie poruszające się i zderzające atomy. Niezmienność ukryta pod zmieniającą się powierzchnią zjawisk.

Bo spojrzyj jeno, gdy promienie słonecznego światła wedrą się i rozleją po mrocznym domostwie! Zobaczysz w tym promiennym snopie wiele maleńkich ciałek, mieszających się w próżni na wiele sposobów. Jakoby w wiekuistej wojnie staczają potyczki i bitwy, walczą całymi hufcami bez chwili spoczynku, w utrapieniu ustawicznych skupień i rozłączeń. Z tego więc możesz zmiarkować, jak wygląda wieczne miotanie się zarodków rzeczy w ogromie próżni, o ile mała rzecz może dać przykład i tropy poznania wielkich. A jeszcze z tego powodu winieneś zwrócić baczniejszą uwagę na owe ciałka, co wichrzą dostrzegalnie w promieniach słonecznych, że takie wichrzenia zdradzają nadto istnienie tajnych i niewidocznych ruchów materii. Zobaczysz tam bowiem, że wiele ciałek, podrażnionych niewidzialnymi ciosami, zmienia drogę i w tył zawraca po odepchnięciu, to tu to tam, na wszystkie zewsząd strony. (Lukrecjusz, ks. II, przeł. A. Krokiewicz) (*)

Po Rzymianach rzeczywiście wydarzył się kataklizm: starożytna cywilizacja upadła, o atomistach wiedziano niewiele więcej niż to, że Arystoteles ich zwalczał. Ich pisma przepadły. Półtora tysiąca lat później, w 1417 r., osobliwy poemat Lukrecjusza odnalazł humanista i „łowca rękopisów”, papieski sekretarz, Poggio Bracciolini, prawdopodobnie w alzackim klasztorze w Murbach, gdzie dobrzy mnisi nie bardzo rozumieli, co za tekst przechowują na półkach. Przez następne wieki poemat był wielokrotnie wydawany i tłumaczony na języki narodowe, w tym na język angielski po raz pierwszy w XVII wieku. Atomizm nadal wzbudzał lęk: zderzające się atomy trudno było pogodzić z Opatrznością, choć niektórzy uczeni, jak Isaac Newton, potrafili zbudować jakąś chwiejną syntezę obu koncepcji. Jego Bóg był jednak surowym Pantokratorem, Wszechwładnym Ojcem, nie znoszącym sprzeciwu.

Benjamin Franklin, bystry i zaradny drukarz z Filadelfii, jeden z ojców założycieli Stanów Zjednoczonych, nie był zawodowym uczonym, nigdy nie miał takich ambicji. Ze swoim sposobem uprawiania nauki mieścił się zresztą znakomicie w tradycji Towarzystwa Królewskiego, które od samego początku zrzeszało przede wszystkim hobbystów i amatorów: lekarzy, pastorów, wiejskich dżentelmenów, podróżników (co zresztą nie przeszkadzało niektórym z nich dokonać ważnych odkryć).

Interesował się on legendarnym zjawiskiem uśmierzania fal przez rozlewanie oleju i poczynił w związku z tym pewne obserwacje. Wyniki doświadczeń Franklina przedstawione zostały w listach wymienianych między nim a medykiem Williamem Brownriggiem oraz wielebnym Farishem, opublikowanych w „Philosophical Transactions”. Po opisaniu swych wcześniejszych obserwacji podczas podróży morskich Franklin relacjonuje:

Będąc w Clapham, gdzie na wspólnych gruntach znajduje się duży staw, i widząc pewnego dnia, iż jego powierzchnia jest bardzo wzburzona wiatrem, przyniosłem ampułkę oleju i wylałem go trochę na wodę. Widziałem, jak rozprzestrzenia się on ze zdumiewającą szybkością po powierzchni; lecz efekt uspokojenia fal nie powstał, gdyż zastosowałem go początkowo po nawietrznej stronie stawu, gdzie fale były największe i wiatr zwiewał mój olej z powrotem na brzeg. Następnie przeszedłem na stronę zawietrzną, gdzie [fale] się tworzyły, i tam olej, w ilości nie większej niż łyżeczka do herbaty, spowodował natychmiastowe uspokojenie na obszarze wielu jardów kwadratowych; poszerzało się ono stopniowo w zadziwiający sposób, aż dotarło do przeciwnego brzegu, czyniąc jedną czwartą stawu, jakieś pół akra, gładką jak zwierciadło.

Franklin zwrócił uwagę na zdumiewająco wielką powierzchnię plamy oleju na wodzie.

Jeśli upuścić kroplę oleju na gładki marmurowy stół czy na zwierciadło, kropla pozostanie na swoim miejscu, tylko nieznacznie się rozszerzając. Lecz gdy upuścić ją na wodę, rozprzestrzenia się na wiele stóp dookoła i staje się tak cienka, że na znacznym obszarze wytwarza barwy pryzmatyczne, a jeszcze dalej staje się tak cienka, że aż niewidoczna, prócz efektu wygładzania fal na znacznie większych odległościach. Wydaje się, że wzajemne odpychanie cząsteczek pojawia się, kiedy tylko dotkną one wody, i że jest ono tak silne, iż działa także na inne ciała znajdujące się na powierzchni, takie jak słomki, liście, wióry itp., zmuszając je do ustąpienia ze wszystkich stron wokół kropli niczym centrum i pozostawiając duży pusty obszar.

Te obserwacje z roku 1773 zostały podjęte po przeszło stu latach przez wybitnego fizyka brytyjskiego lorda Rayleigha, w celu oszacowania rozmiarów cząsteczek oleju. Jeśli przyjąć, że zgodnie z tym, co spostrzegł Franklin, 2 cm3 oleju rozprzestrzeniają się na powierzchni pół akra, czyli 2000 m2, otrzymujemy grubość warstwy równą 1 nm. Wiemy obecnie, że olej tworzy na wodzie warstwę o grubości jednej cząsteczki, więc dane te pozwalają oszacować jej rozmiary. Amerykanin nie wykonał jednak tego rachunku, zadowolił się samą obserwacją.

Atomy zaczęły odgrywać bardziej konkretną rolę dzięki chemii Johna Daltona. W drugiej połowie XIX wieku fizycy tacy, jak James Clerk Maxwell i Rudolf Clausius, zauważyli, że obraz zderzających się molekuł można rozwinąć w teorię kinetyczną gazów. Ciśnienie gazu było objaśniane bombardowaniem ścianek naczynia przez jego cząsteczki poruszające się z ogromnymi prędkościami (rzędu prędkości dźwięku w danym gazie). Teoria ta dawała też zaskakujący wynik: otóż lepkość gazu miała być niezależna od jego gęstości. Maxwell z pomocą żony przeprowadził odpowiednie pomiary, które potwierdziły teorię. Znając lepkość, można było obliczyć średnią drogę swobodną cząsteczek. W powietrzu w warunkach normalnych wynosiła ona wg Maxwella \lambda=620 \mbox{ nm} .

Pierwszym fizykiem, który wyznaczył wielkość cząsteczek powietrza, był Josef Loschmidt. Urodzony w 1821 r. niedaleko Karlsbadu (dziś Karlovy Vary) w rodzinie chłopskiej, przeszedł długą i nieoczywistą drogę do działalności naukowej, pracował nad zagadnieniami z pogranicza matematyki i psychologii, skończył studia politechniczne w Wiedniu, założył własną firmę, zbankrutował, potem był nauczycielem i dopiero w 1866 r., a więc dobrze po czterdziestce, zaczął uczyć na Uniwersytecie Wiedeńskim, zrobił doktorat i został profesorem. Z młodym Ludwigiem Boltzmannem chodzili na koncerty i spierali się o Eroikę Beethovena.

Praca dotycząca wielkości cząsteczek była pionierska, do dziś mówi się czasem o liczbie Loschmidta (liczba cząsteczek gazu w 1 cm3 w warunkach normalnych), choć sam uczony nie podał jej wartości w swej pracy. Znany był związek między koncentracją n, drogą swobodną \lambda oraz przekrojem czynnym cząsteczek \sigma:

n\sigma \lambda=\dfrac{1}{\sqrt{2}}. \mbox{ (**)}

Zakładając, że cząsteczki są kuliste o średnicy s, przekrój czynny zapisać można jako pole powierzchni koła o  średnicy 2s (cząsteczki zderzają się, gdy ich środki są w odległości s od siebie). Nie znamy koncentracji ani promienia, potrzebne jest więc jeszcze jedno równanie. Loschmidt przyjął, że w stanie ciekłym cząsteczki upakowane są ciasno, a więc porównując objętość grama cieczy do objętości gazu, możemy określić, jaką część \varepsilon objętości gazu zajmują cząsteczki. Mamy więc

\varepsilon=n \dfrac{\pi s^3}{6}.

Wyznaczając z obu równań s, otrzymujemy

s=6\sqrt{2}\varepsilon \lambda.

W przypadku powietrza, które nie było jeszcze wtedy skroplone (Wróblewski, Olszewski 1883 r.), Loschmidt wyznaczył wartość \varepsilon pośrednio, uzyskując 0,000866 zamiast 0,0014. Wyznaczona przez niego średnica cząsteczki równa była około 1 nm, a więc nieco za dużo. Drugą nieznaną wielkością w tym układzie równań jest koncentracja powietrza w warunkach normalnych, czyli właśnie liczba Loschmidta.

Ludwig Boltzmann po śmierci przyjaciela wygłosił wspomnienie o nim. Znalazły się w nim słowa:

Ciało Loschmidta rozpadło się już na atomy: na ile konkretnie atomów – możemy obliczyć, korzystając z ustanowionych przez niego zasad. I aby w przemówieniu dotyczącym fizyka eksperymentatora, nie obyło się bez pokazu, poprosiłem, by napisano tę liczbę na tablicy: 10^{25}. (***)

Sprawa istnienia atomów nie była wszakże wtedy przesądzona. Boltzmann wierzył w ich istnienie, ale Ernst Mach, fizyk i filozof z tego samego uniwersytetu w nie nie wierzył. Dopiero doświadczenia Jeana Perrina przypieczętowały tę kwestię już w XX wieku.

(*) W przekładzie wierszowanym fragment ten brzmi następująco:

Przypatrz się bowiem promieniom słonecznym, kiedy wtargnęły

Do domu i rozlewają światło po ciemnych zakątkach:

Zobaczysz w strumieniu światła bez liku drobniutkich pyłków,

Które mieszają się z sobą w próżni na wiele sposobów;

I jakby ścierał się zastęp z zastępem w wieczystej wojnie,

Wiodąc potyczki i bitwy bez jednej chwili wytchnienia,

Tak one na przemian ciągle to schodzą się, to rozchodzą;

Gdyś widział to, możesz sobie przedstawić, jak w wielkiej próżni

Miotają się bez żadnego przestanku zarodki rzeczy –

O ile rzecz drobna może wystarczyć za podobiznę

Rzeczy ogromnych i wskazać drogę do ich zrozumienia.

Z jednego jeszcze powodu winieneś zwrócić uwagę

Na pyłki, które widomie się kłębią w promieniach słońca:

Ich pomieszanie oznacza, że również wewnątrz materii

Istnieją ruchy, tajemne dla oczu, niedostrzegalne.

Zobaczysz, że wiele pyłków, niedostrzegalnie rażonych,

Odmienia drogę, że wiele pchniętych do tyłu zawraca,

Pędzą to w jedną, to w drugą stronę, we wszystkich kierunkach.

(przeł. G. Żurek, T. Lucretius Carus, O naturze rzeczy, ks. II, w. 113-141)

(**) Sens tego równania jest bardzo prosty: cząsteczka poruszając się, zakreśla w ruchu miedzy zderzeniami walec o objętości \sigma\lambda , średnia liczba cząsteczke w takim walcu równa jest n\sigma\lambda i powinna być rzędu jedności, dokładny współczynnik dają ściślejsze rozważania, nb. Loschmidt użył w tym miejscu współczynnika \frac{3}{4} wynikającego z pracy Clausiusa.

(***) Ciało ludzkie liczy jakieś 7\cdot 10^{27} atomów. Boltzmann nie był tu zbyt precyzyjny.

 

Le Verrier, Adams, Galle i d’Arrest: wspólne odkrycie Neptuna (1846)

W październiku 1846 roku Zygmunt Krasiński pisał do Delfiny Potockiej:

…w tych dniach odkryto i na oczy zobaczono tego planetę tak idealnie obrachowanego, tak matematycznie przepowiedzianego (…) przez pana du Verrier, młodego astronoma, który ze zboczeń Uranusa wyciągnął konieczność bytu takiego planety i obliczył jego wielkość i przestrzeń, gdzie go szukać, wskazał. (…) Niegdyś Kolumb tak Amerykę odkrył, wprzód wyproroczywszy ją.

Poeta całkiem precyzyjnie opisał to wydarzenie. Odkrycie nowej planety stało się ogromną sensacją, przy czym najbardziej zdumiewał fakt, że najpierw położenie planety na niebie wyliczono, a później wystarczyło niejako tylko spojrzeć w niebo, by ją dostrzec. 23 września 1846 Johann Gottfried Galle, asystent w Obserwatorium astronomicznym w Berlinie otrzymał list od swego młodego jeszcze, lecz szybko wybijającego się francuskiego kolegi Le Verriera. Znalazło się w nim przewidywane położenie nowej planety, która powinna być widoczna jako dość słaba, lecz dostrzegalna bez trudu przez teleskop gwiazda. W sprzyjających okolicznościach można by nawet dostrzec niewielką tarczę planety (3″ wg Le Verriera). Przypadkiem tego właśnie dnia dyrektor obserwatorium Johann Franz Encke obchodził swe pięćdziesiąte piąte urodziny i wydawał przyjęcie dla osób stojących towarzysko wyżej niż Galle, tak więc asystent mógł skorzystać z najlepszego dziewięciocalowego teleskopu i zająć się słabo rokującą przepowiednią (Encke ponoć niechętnie zgodził się na te poszukiwania). Gallemu towarzyszył w tej pracy student Heinrich Louis d’Arrest. Szczęśliwym trafem mieli do dyspozycji najnowszą mapę tego obszaru nieba sporządzoną przez Carla Bremikera w ich obserwatorium. Była to część wielkiego zespołowego przedsięwzięcia sporządzenia map ułatwiających poszukiwania komet i planetoid. Całość została podzielona na dwadzieścia cztery części, z czego trzy sporządził Bremiker (później miał on opracować jeszcze dwie). Mapa ta nie została jeszcze rozesłana do innych obserwatoriów. Galle przy teleskopie i d’Arrest nad mapą sprawdzali kolejne gwiazdy w przeszukiwanym obszarze, zaledwie po godzinie pracy, kwadrans po północy Galle dostrzegł gwiazdę, której nie było na mapie Bremikera. Następnej nocy stwierdzili, że gwiazdka ta nieco się przemieściła. Odkrycie nowej planety stało się faktem. Znajdowała się ona niecały stopień od położenia przewidywanego przez Le Verriera.

Mapa z zaznaczonymi obserwowanym (beobachtet) i obliczonym (berechnet) położeniem Neptuna. Planeta zmieściła się szczęśliwie w lewym dolnym rogu mapy Bremikera.

Praca Le Verriera w pewnym sensie nie była zaskakująca dla astronomów. Wiedziano bowiem od dawna, że położenia Urana odbiegają od wartości obliczonych. Planety poruszają się w pierwszym przybliżeniu po elipsach ze Słońcem w ognisku, dokładne jednak obliczenia wymagają uwzględnienia przyciągania grawitacyjnego (owe „zboczenia” u Krasińskiego) pozostałych planet. Uran odkryty został przypadkowo w roku 1781, ponieważ jednak astronomowie dawno mieli zwyczaj pieczołowitego gromadzenia wszelkich danych, udało się później znaleźć także obserwacje planety sprzed oficjalnego odkrycia. Dawało to spory zasób obserwacji, których nie udawało się pogodzić z wynikami obliczeń. Te frustrujące wyniki, uzyskane przez Alexisa Bouvarda, znane były społeczności uczonych. Wysuwano też niejednokrotnie hipotezę, iż źródłem rozbieżności jest planeta położona dalej od Słońca, problem jednak uważano za zbyt trudny matematycznie i rachunkowo, by go zadowalająco rozwiązać.

Odchylenia Urana od położeń obliczonych przez Bouvarda. Warto zwrócić uwagę na skalę wykresu: chodzi o sekundy kątowe. Dokładność obserwacji rzędu pojedynczych sekund kątowych i podobna dokładność obliczeń teoretycznych były już standardem w tym czasie. Odchylenia (résidus, czyli reszty pozostające po porównaniu z teorią) zmieniają się w sposób systematyczny, nie wyglądają więc na błędy obserwacji.

Powszechnie sądzono, że zagadnienie jest zbyt trudne, dopóki nie zajęli się nim, niezależnie od siebie i nie wiedząc o sobie, Urbain Le Verrier i Henry Couch Adams. Pierwszy z nich, ekspansywny i ambitny trzydziestolatek, porzucił chemię i w krótkim czasie stał się ważnym astronomem teoretycznym. Dla drugiego, znacznie młodszego i jeszcze bez żadnego dorobku naukowego, była to pierwsza poważna praca po ukończaniu studiów w Cambridge, gdzie zdobywał wprawdzie wszystkie nagrody matematyczne, lecz teraz chodziło o rzecz znacznie poważniejszą. Obaj uczeni przyjęli założenie o zbyt dużej odległości planety od Słońca, udało im się jednak tak dobrać parametry orbity i masę poszukiwanej planety, że rozbieżności między obserwacjami a teorią znacznie się zmniejszyły i dla obserwacji z pierwszego półwiecza XIX wieku były rzędu kilku sekund kątowych.

W sprawdzeniu przewidywań znacznie bardziej powiodło się Le Verrierowi. Jego praca była też bardziej kompletna, do lata 1846 roku opublikował już trzy artykuły poświęcone nowej planecie. Adams nie miał kontaktów miedzynarodowych, nie publikował na bieżąco swych wyników, a u swoich rodaków też nie zyskał zaufania. Niektórzy twierdzą, że Brytyjczyk obarczony był syndromem Aspergera, pewne jest, że nie umiał nikogo przekonać do swojej pracy i nie zabiegał o to zbyt energicznie. Astronom Królewski George Bidell Airy zareagował dopiero na trzecią pracę Le Verriera, wcześniej Adamsowi nie udało się z nim spotkać. Zabawnym szczegółem jest fakt, że James Challis, który na polecenie Airy’ego zaczął poszukiwania planety, katalogował gwiazdy w „podejrzanej” okolicy i przy okazji dwa razy zaobserwował Neptuna, nie widząc o tym. Odkładał opracowanie obserwacji na później, aż w końcu dowiedział się o odkryciu Gallego.

Orbity wynikające z obliczeń obu uczonych były zbyt duże, w konsekwencji przecenil oni znacznie masę Neptuna. W rzeczywistości był on bliżej Urana i miał mniejszą masę.

Siła przyciągająca Urana ze strony Neptuna (strzałki pełne) i jej przybliżenie u Le Verriera (strzałki przerywane). Rysunki z artykułu rocznicowego na stulecie odkrycia autorstwa André Danjona, Le centenaire de la découverte de Neptune, „Ciel et Terre”, t. 62 (1946), s. 369-383.

Odkrycie to zapoczątkowało wielką karierę Le Verriera, który z czasem został dyrektorem Obserwatorium w Paryżu, rządzącym despotycznie przez wiele lat. Adams, choć ceniony, pozostawał w cieniu, mimo że obaj wykonywali dość podobną pracę polegającą na szczegółowych obliczeniach teoretycznych opartych na prawie ciążenia. Obaj też, niezależnie, dotarli do granicy dokładności takiego programu naukowego. Adams opublikował w 1854 roku pracę, z której wynikało nieznaczne przyspieszenie ruchu Księżyca po orbicie z czasem (tzw. przyspieszenie wiekowe albo sekularne). Le Verrier zaś obliczył, że orbita Merkurego obraca się nieco szybciej niż powinna po uwzględnieniu przyciągania pozostałych planet. Efekt był drobny, równy 38″ na stulecie, lecz realny. Żądny jeszcze większej sławy uczony francuski postulował tym razem istnienie planety bliższej Słońca niż Merkury. Nadano jej nazwę Wulkan, lecz choć szukano jej długo, ostatecznie wyjaśniono tylko tyle, że takiej planety na pewno nie ma.

Oba drobne efekty znalezione przez Adamsa i Le Verriera okazały się prawdziwe. W pierwszym przypadku przyczyną jest nie przyspieszanie Księżyca, ale zwalnianie obrotu Ziemi wokół osi. Dodatkowy obrót orbity Merkurego (dziś przyjmuje się jego wartość równą 43″ na stulecie) wynika natomiast z ogólnej teorii względności i obliczenie tej wartości w listopadzie 1915 roku stało się przełomowym momentem naukowego życia Alberta Einsteina.

Oko ludzkie i doskonałość stworzenia

Czy długa szyja żyrafy, zajęcze skoki albo narząd taki, jak ludzkie oko, są wytworem opatrznościowego inteligentnego projektu, czy też mogły ukształtować się samorzutnie wskutek ewolucji? Do połowy XIX wieku poglądy ewolucyjne były raczej odosobnione i niedopracowane. W żywych istotach widziano przykład mądrości bożej. Nawet arcyniedowiarek Voltaire pisał w swym Traité de métaphysique (czyli „Traktacie metafizycznym”):

Kiedy widzę zegarek, którego wskazówka pokazuje godziny, dochodzę do wniosku, że istota inteligentna rozmieściła sprężyny tej machiny w taki sposób, by wskazówka pokazywała godziny. Podobnie widząc sprężyny ciała ludzkiego, dochodzę do wniosku, że istota inteligentna rozmieściła jego narządy w taki sposób, aby mogło mieścić się i odżywiać przez dziewięć miesięcy w macicy; że oczy są mu dane, by widzieć, ręce, aby chwytać itd.

Voltaire nie był osobistym wrogiem Stwórcy, był deistą, sceptycznie zapatrującym się na Jego samozwańczych przedstawicieli na ziemi. Argument Voltaire’a podjęty został przez teologa Williama Paleya, który w zegarku znalezionym na wrzosowisku chciał widzieć dowód istnienia Boga, i to koniecznie w jego anglikańskiej odmianie. Rozwijana była, zwłaszcza w XIX wieku, tzw. teologia naturalna. Podkreślano w niej rozmaite przykłady dostosowania istot żywych albo ich poszczególnych narządów do swych funkcji i traktowano to jako przykłady inżynierskich talentów Stwórcy – był wszak wiek przemysłu napędzanego siłą pary, a niebawem także elektryczności, i inżynierowie byli w cenie.Także młody Charles Darwin znał i podzielał argumentację tego rodzaju, zanim odkrył inne rozwiązanie: żywe organizmy mogą ewoluować, a sukces odnoszą te z nich, którym najlepiej uda się wykorzystać swoje środowisko. Nie ma więc projektu ani zegarmistrza czy konstruktora, jest następowanie kolejnych innowacji, kumulujących się niekiedy w coś tak bliskiego doskonałości jak oko ludzkie albo gepard.

W liberalnym i dżentelmeńskim świecie Darwina dyskusja musiała być rzetelna, wyzbyta demagogii. Dlatego w dziele O powstawaniu gatunków uczony zamieścił cały rozdział poświęcony trudnościom własnej teorii – coś, czego jego dzisiejsi koledzy, tak usilnie walczący o przetrwanie w akademickim środowisku, z reguły nie robią, poprzestając na autoreklamie.

Pisze Darwin:

Przypuszczenie, że oko ze wszystkimi swoimi niezrównanymi urządzeniami do nastawiania ogniskowej na rozmaite odległości, do dopuszczania rozmaitych ilości światła oraz korygowania aberracji sferycznej i chromatycznej mogło powstać drogą doboru naturalnego, wydaje się – przyznaję to otwarcie – w najwyższym stopniu niedorzeczne. Rozum jednak mi mówi, że jeśli można dowieść istnienia licznych stadiów pośrednich, od skomplikowanego i doskonałego oka do prostego i niedoskonałego, przy czym każde z tych stadiów jest użyteczne dla posiadacza, jeżeli zmiany te są bardzo niewielkie i dziedziczne (…), i jeżeli takie zmiany lub modyfikacje narządu będą zawsze korzystne dla zwierzęcia przy zmianie warunków życia, wtedy trudności przyjęcia, iż doskonałe i skomplikowane oko może powstać drogą doboru naturalnego (…) nie sposób uznać za rzeczywistą. [przeł. Sz. Dickstein, J. Nussbaum, popr. J. Popiołek, M. Yamazaki, s. 175-176]

O „doskonałości” oka ludzkiego powiemy nieco dalej. Najpierw spójrzmy na samą kwestię ewolucji od plamki ocznej do rozbudowanej struktury z gałką oczną, soczewką i siatkówką.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Dość łatwo wyobrazić sobie kolejne kroki ewolucyjne i korzyści z nich płynące: lepiej mieć jakiś detektor światła niż go nie mieć (np. u fotosyntezującej eugleny światło jest źródłem energii, korzystnie jest zatem znaleźć się w miejscu o lepszym oświetleniu). Podobnie, lepiej jest otrzymywać jakąś, nawet niedokładną informację o kierunku, z którego dociera światło, niż nie otrzymywać jej wcale. Naturalne więc są struktury typu camera obscura: otwór, przez który wpada światło, a naprzeciwko tego otworka komórki światłoczułe. Oko tego rodzaju pozwala zaobserwować jakiś obraz przedmiotu, ma jednak słabą zdolność rozdzielczą i wpuszcza niewiele światła. Owady wykorzystują wiele egzemplarzy takich oczu jednocześnie. Lepszym rozwiązaniem jest poszerzenie otworu, którym wpada światło i umieszczenie soczewki wytwarzającej obraz na światłoczułym ekranie – siatkówce. Można wówczas regulować ilość światła docierającego do siatkówki oraz uzyskać obraz o dobrej zdolności rozdzielczej.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Obliczono, że cała ta ścieżka ewolucyjna może zmieścić się w czasie rzędu pół miliona lat, przyjmując, że u małych organizmów morskich pokolenie trwa mniej więcej jeden rok). Oznacza to, że kiedy wydarzyła się eksplozja kambryjska: pojawienie się licznych zwierząt około 540 mln lat temu, to praktycznie natychmiast (w skali geologicznej) powinny się też pojawić oczy. Wśród skamieniałości z kambru znajdują się trylobity i żywiące się nimi drapieżniki anomalocaris – zwierzęta te posiadały oczy złożone. Odkryto też, że u gatunków tak różnych, jak myszy, owady i ludzie wpływ na budowę oka ma ten sam gen regulujący PAX6, najwyraźniej mieliśmy więc wspólnych przodków.

Grafika: Trevor D. Lamb, Evolution of the Eye, „Scientific American”, July 2011

Dzielimy przeszłość oka ze śluzicą (hagfish) i minogiem (lamprey). W rozwoju embrionalnym oko człowieka powtarza owe wczesne stadia rozwojowe.

Parę słów na temat jakości optycznej naszego oka. Nie jest ono bynajmniej konstrukcją idealną. W zasadzie ostry obraz odbieramy tylko poprzez czopki skupione w plamce żółtej na powierzchni około 1 mm² – jest to zdecydowanie najbardziej drogocenny fragment naszego ciała. Daje to pole widzenia rzędu zaledwie 2°. Czopki zapewniają nam też widzenie barwne, ponieważ występują w trzech odmianach, które wrażliwe są (głównie) na czerwień, zieleń i błękit. Wrażenie obrazu przed oczami tworzone jest przez nasz mózg, wzrok skanuje bowiem nieustannie pole widzenia (dlatego tak ważna jest ruchomość gałki ocznej). Mamy tu więc do czynienia z dobrej jakości kamerą o niezwykle wąskim polu widzenia, która tworzy szerszy obraz dzięki swoim bezustannym ruchom i oprogramowaniu. Spróbujmy np. przeczytać poniższy tekst, a zobaczymy, że idea linearnego odczytywania tekstu literaz za literą nie jest całkiem poprawna.

Nie werizłeim że mzóg mżoe bez polbrmeu oczdaytć sowła z pporyzsteaimawni ltemirai blye tlkyo perwizsa i otanista błyy na sowich mecscijah

Aberracje sferyczna i chromatyczna (*), o których mówił Darwin nie są w przypadku oka tak trudne do skorygowania, jak mu się zdawało, a to dlatego, że najważniejsze są promienie blisko osi optycznej, dla nich aberracje te są niewielkie. Możemy natomiast przystosowywać się do zmiennych warunków oświetlenia dzięki kurczeniu i rozszerzaniu źrenic oraz możemy modyfikować ogniskową całego oka tak, by obraz przedmiotów położonych niezbyt blisko oka był wyraźny (konkretna odległość dobrego widzenia zależy od indywidualnych cech oka oraz wieku jego posiadacza). W obrębie plamki żółtej zdolność rozdzielcza oka zbliża się do granicy dyfrakcyjnej, tzn. teoretycznej zdolności rozdzielczej (por. John Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop).

Pod względem konstrukcyjnym oko ludzkie jest jednak zbudowane gorzej niż oko ośmiornicy.

Po lewej stronie mamy oko kręgowca. Włókna nerwowe (2) przechodzą w nim przed światłoczułą siatkówką (1). Cały ten bałagan przed siatkówką pogarsza oczywiście jakość obrazu. Nerwy skupiają się w w dodatku w wiązkę (nerw wzrokowy) (3) w taki sposób, że pozostaje obszar oka niewrażliwy na światło, tzw. plamka ślepa (4). To, że jej zwykle nie widzimy, jest czarodziejstwem mózgu. Po prawej stronie mamy znacznie porządniejszy inżyniersko projekt oka głowonoga, gdzie siatkówka jest umieszczona przed nerwami wzrokowymi, które nie zakłócają biegu światła i nie tworzą plamki ślepej.

Jeśli Stwórca starał się osiągnąć projekt idealny, to udało mu się go zrealizować w przypadku ośmiornic, nie ludzi. Przypomina się odpowiedź wybitnego biologa J.S.E. Haldane’a na pytanie pewnego teologa, czego na temat Boga można dowiedzieć się z badań biologicznych. „Że wykazuje nadmierne upodobanie do chrząszczy” – brzmiała odpowiedź. Jest to aluzja do faktu, że istnieje około miliona gatunków chrząszczy, z czego tylko część jest znana badaczom.

(*) Aberracja sferyczna to efekt nieogniskowania wszystkich promieni w jednym miejscu przez soczewkę o powierzchniach idealnie sferycznych. W oku nie mamy do czynienia z tak prostą sytuacją, ale problem nieogniskowania w jednym punkcie także występuje.

Aberracja chromatyczna pojawia się, ponieważ promienie różnych barw mają różne współczynniki załamania, nawet więc gdyby kształt soczewki został zaprojektowany w sposób idealny, dotyczyłoby to jedynie jednej barwy, dla innych obraz musiałby być nieco rozmyty.

A kromatikus aberráció jelensége.

Wieczny powrót od Retyka i Kopernika do Poincarégo

Niebo Greków składało się z wirujących z różną prędkością sfer. Jak pisał Platon w Timajosie:

…aby dać jasną miarę relatywnej powolności i szybkości, z którymi gwiazdy wykonują swoich osiem ruchów, Bóg umieścił na drugiej po Ziemi orbicie światło, które nazywamy teraz Słońcem, aby całe niebo było oświetlone, a jestestwa żyjące, wszelkie, jakie natura zamierzyła, mogły uczestniczyć w Liczbie, ucząc się arytmetyki przez obroty Tego Samego i podobnego. (…)  A na obieg innych gwiazd ludzie, z bardzo małymi wyjątkami, nie zwracają uwagi, nie nadają im nazw, nie porównują ich obiegów ilościowo, tak, że powiedzieć można, nie wiedzą, że czas to błędne wędrówki tych gwiazd nieprzeliczone i przedziwnie różnorodne. Mimo to można pojąć, że doskonała liczba czasu wypełnia rok doskonały wtedy, gdy wszystkie osiem obrotów, mających swoje względne stopnie szybkości, dokona się wspólnie i zakończy w tym samym czasie, mierzonym obrotem Tego Samego, które się porusza w sposób jednostajny. (39 c-39d)

Według Platona po 36 000 lat cykl kosmiczny się powtarza. W XVI w. Georg Joachim Retyk, jedyny uczeń Kopernika, powiązał epoki historyczne ze zmianami mimośrodu orbity Ziemi. Środek orbity Ziemi poruszał się bowiem u Kopernika po niewielkim kółku , a okres tego ruchu wynosił 3434 lat egipskich. Kiedy mimośród orbity Ziemi był największy Rzym stał się z republiki cesarstwem. Po ćwierci obiegu owego małego kółka powstał islam, a po następnej ćwierci ok. 1652 r. – upadnie, jak prorokował. Drugie przyjście Chrystusa miało nastąpić w roku 2510, gdy mimosród wróci po raz drugi do swej wartości w chwili stworzenia. W książce Kopernika nie znajdziemy rozważań tego typu. Nie ma jednak podstaw by sądzić, że ich nie aprobował. Astrologia była dziedziną respektowaną, głównym powodem badania położeń planet na niebie. Więc choć Kopernik nie był z pewnością entuzjastycznym astrologiem – nie zachowały się tworzone jego ręką horoskopy, to mógł wierzyć, że los Ziemi i jej mieszkańców jest powiązany ze zjawiskami niebieskimi. O obrotach było dziełem czysto astronomicznym i matematycznym, zatem umieszczanie w nim astrologicznych konkretów byłoby nie na miejscu.

Środek orbity Ziemi \bar{S} porusza się po małym kółku, rzeczywiste Słońce spoczywa sobie spokojnie obok, nie biorąc udziału w tych „rewolucjach”. Słowo użyte przez Kopernika w tytule De revolutionibus oznaczało obroty, a więc coś cyklicznego, z czasem zaczęło oznaczać wszelkie dramatyczne przemiany, na ogół już jednokierunkowe. Proporcje na rysunku są oczywiście przesadzone, inaczej niewiele byłoby widać.

Wraz z upadkiem idei sfer niebieskich znaczenie cyklów planetarnych zmalało, a czas zaczął wydawać się nieskończony niczym prosta euklidesowa: od minus do plus nieskończoności. Oczywiście, chrześcijanie obowiązani byli wierzyć w stworzenie świata i jego koniec, ale z braku dopływu nowych bodźców wiara ta wyraźnie słabła. Już w XVIII wieku niezbyt się buntowano, gdy Buffon obliczył wiek Ziemi na mniej więcej dziesięć razy dłuższy, niż wynikałby z Biblii. Potem Fourier, zajmując się stygnięciem Ziemi, jeszcze powiększył tę wartość. Mechanistyczny wszechświat najłatwiej było sobie wyobrażać jako trwający od zawsze i mający istnieć zawsze. Od połowy XIX w. do obrazu tego doszły dwie zasady termodynamiki. Według pierwszej – zasady zachowania energii – istnieje wielkość, która we wszystkich przemianach się nie zmienia, co przemawia za tym, że wszechświat nie ma końca. Według drugiej zasady energia rozkłada się z czasem coraz bardziej równomiernie, świat powinien stawać się jednolitym ośrodkiem o stałej gęstości i temperaturze. Tak więc choć istniałby zawsze, po pewnym czasie przechodziłby w postać mało interesującą i praktycznie martwą. Mówiło się o „śmierci cieplnej” wszechświata.

Pomysł wiecznego powrotu pojawił się w latach osiemdziesiątych XIX stulecia nie u uczonego, lecz u filozofa, Friedricha Nietzschego. Pisał on:

Jeśli wszechświat należy uważać za pewną ilość energii, za pewną liczbę ośrodków energii, a każda inna koncepcja pozostaje nieokreślona i przez to bezużyteczna, to wynika stąd, że wszechświat przejść musi przez obliczalną liczbę kombinacji w wielkiej grze losowej, którą jest jego istnienie. W nieskończoności, w takim albo innym momencie, zrealizowana musi zostać każda możliwa kombinacja; a nawet więcej: musi ona zostać zrealizowana nieskończenie wiele razy. (…) wszechświat ukazuje się więc jako ruch kolisty, który zdążył się już powtórzyć nieskończenie wiele razy i który toczy swą grę przez całą wieczność.

Nietzsche, pogrążający się już w szaleństwie, przekonany był, że rozumowanie takie przeczy mechanistycznej nauce, którą traktował pogardliwie. Jednak w roku 1889 Henri Poincaré udowodnił, że w newtonowskiej mechanice także mamy do czynienia z wiecznym powrotem. Jego rozprawa zatytułowana O problemie trzech ciał i równaniach dynamiki zawierała nowatorskie podejście do klasycznego tematu za pomocą metod topologii, czyli rozważań operujących ogólnymi pojęciami takimi jak ciągłość, które okazały się bardzo owocne. Poincaré stał się prekursorem teorii chaosu. A metody topologiczne wykazywały jeszcze nieraz swą przydatność: np. w badaniu osobliwości w ogólnej teorii względności (czarne dziury, początek wszechświata) czy w badaniach osobliwych stanów materii (Nobel 2016).

Poincaré udowodnił następujące twierdzenie: Jeśli dopuszczalne stany układu mechanicznego zawarte są w pewnym ograniczonym obszarze D, to w dowolnym otoczeniu U każdego punktu obszaru D znajdzie się punkt s, który powraca do otoczenia U.

Można to narysować. Przestrzeń stanów to zbiór punktów, których współrzędnymi są położenia i pędy x,p (same położenia nie wystarczą, bo nie precyzują, jak zachodzi ruch; jest to tzw. przestrzeń fazowa układu). Naszym obszarem D jest niebieska elipsa (obszar ograniczony odpowiada temu, że np. energia układu jest stała). Rozpatrujemy dowolnie mały obszar U (u nas ma postać czerwonego kółka). Stany z obszaru U po jakimś kroku czasowym przechodzą w stany g(U), niemające wspólnego punktu z U (gdyby tak nie było, to już mamy tezę twierdzenia). Po kolejnych krokach czasowych otrzymujemy g^2(U),\ldots g^n(U). Wiadomo z mechaniki, że objętości tych wszystkich obszarów U, g(U),\ldots g^n(U) są jednakowe (twierdzenie Liouville’a). Skoro tak, to któryś z obszarów ciągu g^n(U) musi przeciąć się z U, a tym samym istnieć będzie punkt s należący zarówno do U, jak i g^n(U) (*)

Oznacza to, że wybierając dowolny stan początkowy i czekając dostatecznie długo, doczekamy się powrotu naszego układu jeśli nie do punktu początkowego to dowolnie blisko tego punktu. Wynik jest zupełnie ogólny, nie musimy nic wiedzieć na temat działających sił, a nasz układ może być dowolnie duży. Twierdzenie Poincarégo pokazuje więc, że na gruncie mechaniki mamy do czynienia z wiecznym powrotem. Można pokazać, że powroty takie będą się powtarzać nieskończenie wiele razy. Idea powrotu nie przeczy więc mechanicznemu światu, choć niezgodna jest ze śmiercią cieplną wszechświata. Poincaré zauważył filozoficzne konsekwencje swego twierdzenia. Zauważył je także młody matematyk Ernst Zermelo, asystent Plancka, który wystąpił z polemiką przeciwko koncepcji entropii Boltzmanna. Zermelo dał się potem poznać jako wybitny specjalista od podstaw matematyki, jego aksjomaty teorii mnogości stosowane są dziś powszechnie.

(*) Idea dowodu twierdzenia Poincarégo opiera się na zachowaniu objętości w przestrzeni fazowej. Kolejne zbiory g^k(U) mają takie same objętości, nie mogą więc być parami rozłączne, gdyż wtedy suma ich objętości przekroczyłaby każdą zadaną liczbę, a wszystko musi się zmieścić w większym obszarze D. Jeśli zaś jakaś para tych obszarów nie jest rozłączna, np. g^k(U) \cap g^l(U)\neq \O przy pewnych k>l\geq 0, to g^{k-l}(U)\cap U \neq\O , co oznacza, że dla jakiegoś punktu s\in U mamy s=g^{k-l}y, gdzie y\in S.

Zachowanie objętości kolejnych obszarów wynika stąd, że gdybyśmy wyobrazili sobie punkty przestrzeni fazowej jako punkty w poruszającej się cieczy, to dywergencja pola prędkości owej cieczy równa się zeru, a to jest warunek dla cieczy nieściśliwej, czyli zachowującej objętość. Oznaczając wektor prędkości \vec{q}=(\dot{x}_i,\dot{p}_i) dla i=1,\ldots, 3N (gdzie N jest liczbą cząstek składających się na układ), mamy

\mbox{div } \vec{q}=\dfrac{\partial\dot{x}_i}{\partial x_i}+\dfrac{\partial\dot{p}_i}{\partial p_i}=\dfrac{\partial^2 H}{\partial x_i \partial p_i}-\dfrac{\partial^2 H}{\partial p_i \partial x_i}=0,

gdzie H=H(x,p) jest hamiltonianem układu, po wskaźniku i sumujemy.

Dodatek matematyczny, twierdzenie Poincarégo w nowoczesnym sformułowaniu. Ujęcie to zawdzięczamy Constantinowi Carathéodory’emu, matematykowi z Getyngi, był już rok 1919. Pojawiło się pojęcie miary, będące uogólnieniem zwykłej objętości. Twierdzenie Poincarégo można uściślić w ten sposób, że zbiór punktów przestrzeni fazowej, które nigdy nie powracają do wybranego otoczenia jest miary zero. Zbiory miary zero, czyli zerowej objętości, mogą mieć skomplikowaną strukturę, ale są rzadkie w tym sensie, że nie można im przypisać żadnej dodatniej objętości. Nowoczesne pojęcie miary zbioru rozszerza dodawanie miar na zbiory przeliczalne (dające się ponumerować liczbami naturalnymi, ciągi zbiorów). Miara spełnia więc warunek:

\mu(\bigcup\limits_{i=1}^{\infty} A_i)=\sum\limits_{i=1}^{\infty} \mu(A_i),

gdy zbiory są parami rozłączne: A_i\cap A_j=\O, dla różnych wskaźników i,j. Pokażemy, że jeśli odwzorowanie g zachowuje miarę, a miara obszaru D jest skończona, to miara zbioru tych punktów D, które nie mają własności powracania, jest równa zeru. W tym sensie prawie każdy stan ma własność powracania.

Dla dowodu pokrywamy obszar D przeliczalną liczbą kul U_1, U_2, \ldots, . Dla każdej kuli U_n definiujemy jej podzbiór B_n jako zbiór tych s\in U_n, dla których g^k(s)\in U_n tylko dla skończenie wielu wartości wskaźnika k. Zbiór B=\bigcup\limits_{i=1}^{\infty} B_i jest zbiorem punktów niepowracających. Ponieważ \mu(B)\leq \sum\limits_{i=1}^{\infty} \mu(B_i), wystarczy udowodnić, że każdy ze zbiorów B_n jest miary zero.

W tym celu wybierzmy dowolny wskaźnik i. Będziemy teraz pisać oznaczenia U_i bez indeksu dla  uproszczenia zapisu.

Rozpatrzmy zbiór C=U\setminus \bigcup\limits_{p=1}^{\infty}g^{-p}(U). Punkt s\in g^{-k}(U) wtedy i tylko wtedy, gdy g^k(s)\in U oraz g^m(s)\notin U przy m>k. Zbiory g^{-i}(C), g^{-j}(C) są parami rozłączne, gdy wskaźniki i, j są różne, przy czym dopuszczamy, aby któryś z nich równał się zeru (g^{-0}(C)=C). Zbiór B_i=\bigcup\limits_{p=0}^{\infty}g^{-p}(C). Zatem mamy

\mu(B_i)=\sum\limits_{p=0}^{\infty}\mu(g^{-p}(C)).

Miary wszystkich zbiorów po prawej stronie są takie same, bo nasze odwzorowanie zachowuje miarę. Gdyby miary te były dodatnie, suma byłaby nieskończona, co jest niemożliwe, gdyż B_i\subset U_i, więc jego miara musi być skończona. Zatem wszystkie miary po prawej stronie są zerowe i \mu(B_i)=0. Zbiór B jest przeliczalną sumą B_i, zatem i on musi być miary zero. Dowód ten pochodzi z artykułu R. Daniela Mouldina, Probability and Nonlinear Systems, „Los Alamos Science” nr poświęcony Stanisławowi Ulamowi.

Twierdzenie Poincarégo o powracaniu ilustruje tzw. kot Arnolda (chodzi o Vladimira Arnolda, wybitnego matematyka rosyjskiego). Mamy tu ograniczoną przestrzeń stanów i pewną grupę stanów początkowych, które ułożone są w kształt kociego pyszczka. Gdy puścimy w ruch tę animację, zobaczymy, że w pewnych chwilach kot powraca.

 

Fizyka dla mieszkańców Syriusza: stałe fizyczne (Max Planck, 1899-Matvei Bronstein, 1935)

Max Planck, profesor fizyki w Berlinie, najwybitniejszy niemiecki fizyk teoretyczny przełomu wieku XIX i XX, przez lata badał własności promieniowania termicznego. Idealnym obiektem badań jest tu tzw. ciało doskonale czarne, czyli takie, które pochłania całe padające nań promieniowanie. Można wykazać, że każde ciało doskonale czarne emituje promieniowanie o rozkładzie widmowym zależnym wyłącznie od temperatury. Np. Słońce jest w dobrym przybliżeniu ciałem doskonale czarnym.

Widzimy tu (szary) teoretyczny rozkład widmowy promieniowania ciała doskonale czarnego o temperaturze T=5777 K zestawiony z rzeczywistym promieniowaniem docierającym ze Słońca. Ciało doskonale czarne nie jest czarne, jego barwa zależy od temperatury. (obrazek: Wikimedia)

Znalezienie postaci krzywej widmowej tego promieniowania stało się największym osiągnięciem Maksa Plancka. Otrzymana przez niego zależność ma następującą postać

I(\lambda)=\dfrac{2hc^2}{\lambda^5}\,\dfrac{1}{\exp{(\frac{hc}{\lambda kT})}-1},

gdzie stałe k,c, h oznaczają odpowiednio stałą Boltzmanna (nazwa wprowadzona przez Plancka), prędkość światła w próżni i stałą Plancka. Mamy tu trzy stałe fizyczne, które ze względu na uniwersalność promieniowania powinny mieć fundamentalne znaczenie.

Max Planck zauważył (w roku 1899, zanim jeszcze wyprowadził swój słynny wzór), że stałe k, c,h w połączeniu ze stałą grawitacyjną G pozwalają wprowadzić jednostki niezależne od zaszłości ludzkiej historii czy w ogóle niezależne od naszych ludzkich parametrów: „pojawia się możliwość ustanowienia jednostek długości, masy, czasu i temperatury niezależnych od szczególnych ciał czy substancji, których znaczenie dla wszystkich czasów i wszystkich kultur, także pozaziemskich i pozaludzkich, pozostanie w konieczny sposób takie same”.

Stała Plancka to h=6,7\cdot 10^{-34} kg\cdot m^2/s , stała grawitacyjna to G=6,7\cdot 10^{-11} m^3/(kg\cdot s^2). Mamy więc dla ich iloczynu i ilorazu jednostki:

[hG]=\dfrac{\mbox{kg}\cdot \mbox{m}^2}{\mbox{s}}\,\dfrac{\mbox{m}^3}{\mbox{kg}\cdot \mbox{s}^2}=\dfrac{\mbox{m}^3}{\mbox{s}^3}\mbox{m}^2=[c^3]\mbox{m}^2,

[h/G]=\dfrac{\mbox{kg}\cdot \mbox{m}^2}{\mbox{s}}\,\dfrac{\mbox{kg}\cdot \mbox{s}^2}{\mbox{m}^3}=\mbox{kg}^2\cdot \dfrac{\mbox{s}}{\mbox{m}}=\mbox{kg}^2 [c^{-1}].

Zatem wielkości l_P, m_P będą nowymi „pozaziemskimi” jednostkami długości oraz masy:

l_P=\sqrt{\dfrac{hG}{c^3}}=4\cdot 10^{-35}\mbox{ m} ,

m_P=\sqrt{\dfrac{hc}{G}}=5,5\cdot 10^{-8}\mbox{ kg}.

Jednostkę czasu otrzymamy, dzieląc odległość przez prędkość światła:

t_P=\sqrt{\dfrac{hG}{c^5}}=1,3\cdot 10^{-43}\mbox { s}.

Te „pozaziemskie” jednostki Planck nazwał naturalnymi, a my dziś nazywamy układem jednostek Plancka. Podstawowe stałe fizyki mają w nim wartości równe 1: h=c=G=1. W roku 1899 interesująca wydawała się sama możliwość wprowadzenia jednostek, umożliwiających porozumiewanie się z fizykiem z Syriusza, który ma – jak to dobrze wiemy – postać  świecącego zielono dodekahedronu zanurzonego w inteligentnym oceanie (oni tam szybciej weszli w fazę AI).

Jednostki długości i czasu w układzie Plancka są skrajnie małe: nie tylko w porównaniu z nami, ale nawet z protonem i czasem potrzebnym światłu na przebycie jego wnętrza. Sens fizyczny tych jednostek stał się jasny znacznie później.

Najpierw powiedzmy, jak interpretuje się dziś stałe użyte przez Plancka.

Stała Boltzmanna jest w zasadzie przelicznikiem temperatury w kelwinach T na wartości energii kT – byłoby logiczniej z punktu widzenia fizyki mierzyć temperatury w jednostkach energii, a skoro tego nie robimy, potrzebujemy stałej Boltzmanna. Według najnowszych ustaleń od roku 2019 stała Boltzmanna równa jest dokładnie k=1,380649\cdot 10^{-13} J/K. Jest to tym samym nowa definicja kelwina (bo dżul zdefiniowany jest na podstawie kilograma, metra i sekundy).

Prędkość światła, czy ogólniej: każdego promieniowania elektromagnetycznego, w próżni wydawała się już około roku 1900 wielkością bardzo ważną. Dzięki teorii względności z roku 1905 wiemy, że jest to coś więcej niż pewna charakterystyczna prędkość w przyrodzie. Jest to bowiem naturalna granica prędkości ciał. Z punktu widzenia teorii względności prędkość światła jest właściwie przelicznikiem między odległościami a czasem. W fizyce poeinsteinowskiej odległości i czas należałoby mierzyć tymi samymi jednostkami. Inaczej mówiąc, stała c wyraża stosunek jednostek odległości do jednostek czasu. Jej wartość w dzisiejszej fizyce jest na mocy konwencji równa dokładnie c=299\,792\, 458 m/s$. Ta dziwna wartość wynika z potrzeby ciągłości dawnych i nowych jednostek.

Trzecia stałą, pojawiającą się we wzorze Plancka, jest oznaczana przez niego literą h wielkość, dziś zwana stałą Plancka. Pojawia się ona wszędzie tam, gdzie występują zjawiska kwantowe. Podstawowe równanie fizyki kwantowej, równanie Schrödingera, można zawsze zapisać w postaci

i\hbar \dfrac{\partial\psi}{\partial t}=H\psi,

gdzie i to jednostka urojona, a \hbar\equiv \dfrac{h}{2\pi}, \psi jest funkcją falową, a H – hamiltonianem, czyli matematycznym zapisem energii układu. Planck z początku nie wiedział, jak ogromne znaczenie ma jego stała wprowadzona dla promieniowania. Obecnie (od roku 2019) wartość stałej Plancka jest określona raz na zawsze jako h=6,67607015\cdot 10^{-34} J·s. W istocie, jest to nowa definicja kilograma, słynny wzorzec z Sèvres jest już niepotrzebny (kilogram pojawia się w jednostce energii: 1\mbox{J}=1 \mbox{kg}\cdot \dfrac{\mbox{m}^2}{\mbox{s}^2}.).

Stałe h,c,G określają możliwe teorie fundamentalne fizyki. Sytuację tę można przedstawić za pomocą sześcianu Bronsteina (sam obrazek jest późniejszy):

 

W początku układu mamy mechanikę klasyczną bez grawitacji. Odpowiada to wartościom \hbar=G=1/c=0. Szczególna teoria względności odpowiada przyjęciu 1/c<\infty, mechanika kwantowa przyjęciu niezerowej stałej Plancka \hbar\neq 0. Kwantowa teoria pola, czyli Model Standardowy cząstek odpowiada \hbar\neq 0 oraz c<\infty. Ogólna teoria względności zawiera stałą grawitacji G oraz prędkość światła c. Kwantowa teoria grawitacji byłaby „teorią wszystkiego” w tym sensie, że zawierałaby zarówno efekty kwantowe, jak i grawitacyjne. Wszystkie trzy stałe byłyby w niej niezerowe.

Matvei Bronstein, dwudziestoparolatek, już w roku 1933 zaczął się zastanawiać nad kwantowaniem grawitacji. Pięć lat później już nie żył, aresztowany i skazany na śmierć podczas wielkiego terroru w Związku Sowieckim. Także Lew Landau, największy rosyjski teoretyk, był wówczas aresztowany. W jego przypadku pomogła interwencja Piotra Kapicy.

Sześcian Bronsteina jest tylko prostą ilustracją jednego z aspektów poszukiwanej kwantowej teorii grawitacji: wszystkie trzy fundamentalne stałe miałyby w niej skończoną wartość. Wszystkie te stałe (wraz ze stałą Boltzmanna) pojawiają się w we wzorze Hawkinga na temperaturę czarnej dziury. Układ Plancka byłby w kwantowej grawitacji naturalnym układem jednostek. Znaczy to, że zjawisk kwantowych związanych z grawitacją należy oczekiwać w skali długości Plancka, czyli znacznie poniżej dostępnych dziś w badaniach. Masa Plancka jest niemal porównywalna z naszymi jednostkami. Znaczy to jednak, że odpowiadająca jej energia równa będzie E_P=m_P c^2=4,9\cdot 10^{9} J. W teorii fundamentalnej jest to energia olbrzymia, widać to, gdy wyrazimy ją w elektronowoltach:  E_P=3,07\cdot 10^{28} eV. Dla porównania najdroższy akcelerator w dziejach fizyki, LHC w CERN-ie, może maksymalnie osiągnąć energię 14 TeV, czyli 14\cdot 10^{12} eV – jest to piętnaście rzędów wielkości poniżej energii Plancka.

Wartości stałych fundamentalnych stanowią rodzaj przelicznika pomiędzy naszymi zwykłymi jednostkami, jak metry, sekundy, kilogramy, a jednostkami, jakich używa przyroda, zrozumiałymi dla kolegi z Syriusza. Nb. matematyka jest zapewne jedynym językiem, w którym moglibyśmy się z owym dodekaedrem porozumieć. Może należy zwrócić na to uwagę w dyskusji dotyczącej matury z matematyki: matematyka to jedyny język, w którym możemy się porozumiewać z mieszkańcami Syriusza czy szerzej: ze wszechświatem. Zastosowania są chyba oczywiste.

Niezależne od jednostek są stałe bezwymiarowe. Np. kwadrat ładunku elektronu można wyrazić następująco:

\alpha=\dfrac{q_e^2}{4\pi\varepsilon_0 \hbar c}=\dfrac{1}{137,036}.

Mając jeszcze do dyspozycji masę elektronu m_e, można wyrazić wszystkie wielkości atomowe. Energia wiązania elektronu w atomie wodoru to

E_j=\alpha^2 m_e c^2=13,6 \mbox{ eV},

a promień atomu (tzw. promień Bohra):

r=\dfrac{\hbar}{\alpha m_e c}=0,5\cdot 10^{-10}\mbox{ m}.

Wielkości te określają skalę zjawisk atomowych i cząsteczkowych. W  fundamentalnej teorii wszystkiego powinniśmy masę elektronu wyrazić w masach Plancka, a promień Bohra w długościach Plancka.

Ilu różnych bezwymiarowych stałych potrzebujemy do opisu świata? Używamy jednostek Plancka. Zatem grawitacja kwantowa nie zawiera żadnych dowolnych stałych. Model Standardowy potrzebuje trzech stałych określających siłę oddziaływań: oprócz \alpha dla oddziaływań elektromagnetycznych, potrzeba jeszcze stałych dla oddziaływań słabych i silnych. W sumie mamy 3 stałe. Dalej, potrzebujemy mas: sześciu kwarków, trzech leptonów i trzech neutrin oraz bozonu Higgsa (wszystko wyrażamy w masach Plancka, więc są to wielkości bezwymiarowe). Dotąd mamy 16 stałych. Potrzebna jest jeszcze wartość oczekiwana pola Higgsa: stała nr 17. Kolejnych 8 stałych bierze się z różnych macierzy mieszania. Daje to 25 parametrów, przy czym większość wynika z Modelu Standardowego. Wielkość ciemnej energii jest parametrem nr 26 (jeśli ciemna energia to stała kosmologiczna). Z jednej strony jest tych stałych za wiele jak na fundamentalną teorię, z drugiej strony jednak od czterdziestu lat nikt nie potrafi wskazać teorii bardziej ekonomicznej, a te stałe nie są jakimiś kaprysami teoretyków, lecz potwierdzane są w eksperymentach (tutaj LHC ma jak najbardziej zastosowanie).

Więcej szczegółów nt. stałych w artykule Johna Baeza.

 

Ludwig Boltzmann: Jak świat pogrąża się w chaosie (1877)

Atomizm był od starożytności doktryną szczególnie ostro zwalczaną. Wydawało się bowiem – i zapewne słusznie – że w świecie z atomów nie ma miejsca na duszę, która może przetrwać śmierć ciała. Jednak odkrycie w XV w. poematu Lukrecjusza O rzeczywistości (nb. przez papieskiego sekretarza, Gianfrancesco Braccioliniego) wywarło spory wpływ na dzieje idei. W Anglii Isaaca Newtona udało się pogodzić bożą wszechmoc z atomizmem, ale nie wszyscy zwolennicy nowej nauki byli przekonani do takich kompromisów. Do nieprzejednanych oponentów atomizmu należeli m.in. René Descartes i Gottfied Wilhelm Leibniz.

Naukowa kariera atomizmu złączona była z chemią oraz nauką o cieple. Od czasu Johna Daltona atomy okazały się niezwykle przydatnym narzędziem dla chemików. Fizycy dopiero w drugiej połowie XIX wieku zaczęli rozwijać teorię kinetyczną, czyli w gruncie rzeczy konsekwencje cząstkowego obrazu materii obdarzonej ruchem. Szczególnie prosta okazała się teoria kinetyczna gazów, ponieważ wystarczyło założyć, że cząsteczki gazów oddziałują tylko za pomocą zderzeń. Ten sposób myślenia przebijał się wszakże bardzo powoli, jak świadczy przykład Johna Waterstona. Kilkanaście lat później James Clerk Maxwell zapoczątkował nowoczesną teorię kinetyczną.

Teoria gazów stała się głównym tematem badań Ludwiga Boltzmanna, wiedeńczyka, który co kilka lat przenosił się niespokojnie z jednego uniwersytetu na drugi, pracując w Wiedniu, Grazu, potem znowu w Wiedniu, znowu w Grazu, w Monachium, jeszcze raz w Wiedniu, w Lipsku i ponownie w Wiedniu. Boltzmann stworzył całą nową dziedzinę wiedzy: fizykę statystyczną – czyli mikroskopowy statystyczny opis zjawisk cieplnych. Głównym zastosowaniem była dla niego teoria gazów, w istocie jednak teorię tę stosować można do wszelkich układów wielu cząstek. Wyjaśnia ona własności makroskopowe różnych ciał: kryształów, cieczy, metali, półprzewodników, magnetyków itd. Pokazuje, jak z poziomu oddziaływań między atomami i cząsteczkami przejść na poziom własności materii obserwowanej w laboratorium.

Zjawiska cieplne podlegają zasadom termodynamiki. Pierwsza z nich to po prostu zasada zachowania energii. Druga jest znacznie bardziej interesująca: mówi bowiem o kierunku możliwych przemian w świecie. Można zdefiniować wielkość zwaną entropią S, która jest funkcją stanu ciała, czyli np. w przypadku gazu zawartego w objętości V i mającego energię E: S=S(V,E). Otóż druga zasada termodynamiki mówi, że entropia układu izolowanego cieplnie nie może maleć, a zazwyczaj rośnie. Intuicyjnie wzrost entropii odpowiada temu, że większa część energii ciała ma postać chaotycznych ruchów cieplnych i trudniej ją wykorzystać do uporządkowanych zmian typu np. zmiany objętości (dlatego nie można zbudować np. silnika samochodowego, który wykorzystywałby w 100% energię uzyskaną ze spalania; samochody elektryczne przenoszą ten problem do elektrowni, które też zazwyczaj coś spalają, z nieco większą wydajnością, ale także daleką od 100%).

Entropia jest wielkością tzw. ekstensywną, to znaczy entropia układu złożonego z dwóch części będzie sumą entropii obu części:

S=S_1+S_2.

Jak na poziomie cząsteczkowym opisać wzrost entropii? Boltzmannowi udało się powiązać entropię z prawdopodobieństwem, a właściwie z liczbą mikrostanów odpowiadających danemu makrostanowi. Rozważmy naczynie z gazem, w którym znajduje się N cząstek o łącznej energii E. Tej samej wartości energii całkowitej odpowiada bardzo wiele różnych konfiguracji cząstek (mikrostanów). Gaz dąży spontanicznie do równowagi cieplnej, ponieważ jest to stan najbardziej prawdopodobny. Wzrost entropii nie jest więc tajemniczym prawem przyrody, lecz konsekwencją trywialnego faktu matematycznego, że zdarzenia bardziej prawdopodobne realizują się częściej niż wyjątkowe.

Jak można to opisać ilościowo? Stan ruchu jednej cząstki możemy opisać, podając jej położenie \vec{r} oraz pęd \vec{p}. Załóżmy, że całą przestrzeń dostępnych stanów podzieliliśmy na komórki o jednakowej objętości. Stan makroskopowy gazu znamy, gdy podana zostanie liczba cząstek gazu w każdej komórce. Wyobrażamy sobie przy tym, że liczby te są duże (w jednym molu mamy N_A=6\cdot 10^{23} cząstek, więc nawet po rozdzieleniu tych cząstek na bardzo wielką liczbę komórek, możemy wciąż mieć dużo cząstek w każdej komórce). Stan makroskopowy będzie więc listą liczb cząstek w kolejnych komórkach: (n_1, n_2,\ldots, n_r), gdzie r jest całkowitą liczbą komórek (jeśli całkowita energia gazu równa jest E, to żadna cząstka nie może mieć energii większej niż E, a więc obszar przestrzeni stanów potrzebny nam w rozważaniach jest ograniczony).

Schematyczny rysunek obszaru w przestrzeni stanów (jest on sześciowymiarowy, a więc trudny do narysowania). Zaznaczyliśmy jedną z komórek, na jakie dzielimy całą przestrzeń stanów wraz z liczbą cząstek w tej komórce.

Jeśli znamy poszczególne n_i, to możemy także obliczyć całkowitą liczbę cząstek N:

N=n_1+n_2+\ldots n_r

oraz całkowitą energię E:

E=\varepsilon_1 n_1+\varepsilon_2 n_2+\ldots+\varepsilon_r n_r,

gdzie \varepsilon_i oznacza energię w  i-tej komórce. Dalej zakładamy, że N oraz E (a także objętość gazu) są ustalone. Ilu konfuguracjom cząstek (mikrostanom) będzie odpowiadać dana lista (n_1, n_2,\ldots, n_r)? Zakładając, że cząstki są rozróżnialne, lecz jednakowe, liczba konfiguracji W prowadzących do tej samej listy równa jest

W=\dfrac{N!}{n_1! n_2!\ldots n_r!}.

Nietrudno zrozumieć sens tego wyrażenia: liczbę permutacji wszystkich cząstek dzielimy przez liczby permutacji wewnątrz kolejnych komórek, bo nie zmieniają one wartości n_i. Liczba konfiguracji jest proporcjonalna do prawdopodobieństwa. Możemy poszukać takiej listy (\bar{n}_1, \bar{n}_2, \ldots, \bar{n}_r), dla której W będzie maksymalne. Fizycznie powinno to odpowiadać stanowi równowagi termodynamicznej. Ów rozkład najbardziej prawdopodobny jest tzw. rozkładem Maxwella-Boltzmanna:

\bar{n}_i=C\exp(-\beta \varepsilon_i),

gdzie stałe C,\beta określone są warunkami stałości całkowitej liczby cząstek i energii. Boltzmann wcześniej uzyskał ten rozkład z innych rozważań. Można teraz zdefiniować entropię następującym wzorem:

S=k \ln W\equiv k \ln \dfrac{N!}{n_1! n_2!\ldots n_r!}.

Pojawienie się logarytmu jest tu całkiem oczekiwane, ponieważ gdy weźmiemy dwa układy o liczbach konfiguracji odpowiednio W_1, W_2, to całkowita liczba konfiguracji będzie równa

W=W_1W_2,

a chcemy żeby entropie w takiej sytuacji się sumowały: S=S_1+S_2. Zdefiniowaliśmy entropię nie tylko w stanach równowagowych, którym odpowiadają listy (\bar{n}_1, \bar{n}_2, \ldots, \bar{n}_r), ale także w dowolnych innych, którym odpowiadają listy (n_1, n_2,\ldots, n_r). Żeby nowa definicja miała sens, trzeba było oczywiście wykazać, że w sytuacjach równowagowych, otrzymuje się znane wcześniej wyrażenia. Wzór Boltzmanna

S=k\ln W,

stał się nową definicją entropii, dziś uważaną za podstawową. W istocie wzór Boltzmanna ma znacznie szersze pole zastosowań niż fizyka klasyczna znana w jego czasach. Jeśli rozważymy np. cząstki nierozróżnialne, można z analogicznych rozważań otrzymać prawa obowiązujące dla gazu fermionów (np. elektrony w metalu albo w białym karle) albo gazu bozonów (z czego wynikają prawa promieniowania cieplnego oraz, w innej nieco sytuacji, kondensacja Bosego-Einsteina). Wzór Boltzmanna pozwala też wyprowadzić wniosek, że w niskich temperaturach, gdy układ znajduje się w stanie podstawowym, entropia powinna być równa zeru – jest to treścią trzeciej zasady termodynamiki sformułowanej przez Wilhelma Nernsta.

W czasach Boltzmanna teoria kinetyczna była wysoce spekulatywna. Nie było pewności, czy w ogóle istnieją cząstki składające się na gaz. A więc znajdowanie liczby ich konfiguracji mogło wydawać się liczeniem diabłów na łebku szpilki. Ludwig Boltzmann przez całe życie odpierać musiał rozmaite zarzuty i brać udział w polemikach. Część dotyczyła spraw istotnych: w jaki sposób z odwracalnej mechaniki dochodzi się do procesów nieodwracalnych jak stygnięcie herbaty w kubku albo przewidywane wówczas przez niektórych uczonych stygnięcie, śmierć cieplna całego wszechświata? Najbardziej zjadliwe były polemiki filozoficzne. Zaciętym wrogiem Boltzmanna był tu Ernst Mach, dziś znany głównie za sprawą liczby Macha w lotnictwie ponaddźwiękowym. Fotografował on kule w locie.

Chciał też rewizji całej fizyki. Sądził, że posługuje się ona mnóstwem pojęć nie wytrzymujących krytyki. Np. przestrzeń absolutna u Newtona. Rozważania Macha zainspirowały Alberta Einsteina, choć w sposób bardzo swoisty. Sam Mach nie chciał słyszeć o teorii względności. Filozofia Macha miała ambicję wyrugowania z nauki pojęć nieopartych na bezpośrednim doświadczeniu. Chciał on niejako spojrzeć na świat od nowa. Dostrzegał w nim jedynie swoje wrażenia i ich wiązki.

Rysunek Ernsta Macha: jego pokój widziany lewym okiem

Dlatego koncepcja atomów była przez niego uważana za fikcję. Boltzmanna traktował jak naiwnego materialistę, nieświadomego subtelności pojęciowych. Przyszłość należała do fizyki statystycznej i atomów. „Naiwne” koncepcje fizyków zadziwiająco często sprawdzały się w praktyce. Co oczywiście, zdaniem filozofów, niczego nie dowodzi.

Skłonny do zmian nastrojów, Boltzmann cierpiał na napady depresji. W 1906 roku, przebywając na wakacjach w Duino nieopodal Triestu, popełnił samobójstwo, w czasie gdy żona i córka pływały w morzu. Nie dowiemy się, ile zdołałby osiągnąć, gdyby znano wtedy leki antydepresyjne.

Zaprawdę, to osobliwe, nie przebywać już odtąd na ziemi,

wyuczone zaledwie porzucić zwyczaje,

różom i innym odrębnie obiecującym rzeczom

nie dawać znaczeń ludzkiej przyszłości, już nigdy.

Tym, czym się było w dłoniach tak nieskończenie trwożnych,

nie być już więcej i nawet własne swe imię

porzucić, jak się porzuca połamaną zabawkę.

To osobliwe, już nie mieć życzeń. To osobliwe,

wszystko, co było związane, ujrzeć w przestrzeni

rozpierzchłe…

(przeł. M. Jastrun)

Ucieczka na Południe, 29 grudnia 1894 roku

Było to w końcu grudnia, niedługo po zimowym przesileniu. Lokomotywa posapywała i wypuszczała od czasu do czasu kłęby dymu i pary, które niknęły gdzieś pod dachem dworca. Wzdłuż oświetlonych elektrycznością peronów odbywała się spieszna krzątanina, słychać było podekscytowane nawoływania, jakaś dama ze szpicem na ręku szła poprzedzona karawaną kufrów niesionych przez bagażowych, wąsaty kolejarz flegmatycznie obstukiwał osie wagonów, sprawdzając hamulce pneumatyczne. Młody człowiek o bystrej twarzy, piwnych oczach i ciemnych kędzierzawych włosach, w magicznym wieku na granicy dzieciństwa i dorosłości, taszcząc walizkę i futerał na skrzypce, wsiadł do wagonu trzeciej klasy pociągu do Włoch. Potem rozległy się gwizdki zawiadowcy i trzaski zamykanych drzwi, pociąg ruszył, posapując, i po dłuższej chwili rytm kół stukających o spojenia szyn stał się równy i miarowy. Zniknęła hala dworca, w tyle zostało parę oświetlonych ulic i za oknem migały już tylko nieliczne światła domów.

Dworzec Główny w Monachium oświetlony lampami łukowymi firmy Siemens & Halske.

Scena ta nie przeszła do historii, możemy się jedynie domyślać jej dokładnego przebiegu. Wiemy, że był 29 grudnia 1894 roku. Wieczorny pociąg z Monachium w nocy przekraczał przełęcz Brenner, następnego dnia pasażerowie budzili się już we Włoszech: Trydent, Werona, wreszcie, o 3:46 po południu przybywali do Mediolanu. Ów młody człowiek, Albert Einstein, nie uprzedził rodziców o przyjeździe, zjawił się po prostu na progu ich mieszkania. Teraz następowało najtrudniejsze: musiał im to wszystko jakoś wytłumaczyć. Czemu porzucił gimnazjum, dlaczego nie chce wracać, nie tylko do Monachium, ale w ogóle do Niemiec. Trzeba było przekonać ich do rzeczy oczywistych: ta szkoła nie mogła go już niczego nauczyć, a on nie skończy jak ojciec, bez wykształcenia i bez sukcesów, wdając się w przedsięwzięcia od początku skazane na klęskę. Nie był taki jak ojciec, łączył w sobie najlepszy rozum Einsteinów i cierpliwość oraz inicjatywę Kochów. Wiedział, że da sobie radę i wiedział, że nie wróci do Niemiec. Musi tylko teraz przelać tę spokojną pewność na zatrwożonych rodziców.

Posługując się wystawionym przez lekarza, przyjaciela domu, zaświadczeniem o wyczerpaniu nerwowym Albert opuścił, a właściwie porzucił gimnazjum Luitpolda. Zakład naukowy noszący imię księcia-regenta mieścił się w okazałym gmachu dawnego lazaretu wojskowego, kadra nauczycielska miała w większości tytuły doktorów, niektórzy pisali prace naukowe. Szkoła ta z pewnością nie przynosiła stolicy Bawarii wstydu, wręcz przeciwnie: mogła być powodem do dumy. Jednak najwybitniejszy uczeń w jej dziejach nie wytrwał do matury.

A więc szkoła: jej duch, atmosfera, a także poszczególne przedmioty. Nie wytrzymałby kolejnych trzech lat. Siedem godzin łaciny i sześć godzin greki: Cyceron, Katon Starszy, Ksenofont, ciągle nowe, nigdy nie kończące się księgi Odysei. I od tego roku, nauczający owych skarbów użytecznej wiedzy wielmożny pan doktor Joseph Degenhart, Ordinarius, który stwierdził przy całej klasie, że Einstein „nigdy nie dojdzie do niczego w życiu”. Wszystkie pary oczu utkwione w niego w tym momencie. Na ustach Alberta lekko drwiący uśmieszek, nie zamierzał kapitulować wobec tego osła. To Degenhart nie wytrzymał, wezwał go do siebie po paru tygodniach i wyraził życzenie, aby pan Einstein opuścił szkołę. Na niewinne pytanie, co mu zarzuca, nauczyciel odparł, że samą swą obecnością podważa jego autorytet. Autorytet – owa rzecz bezcenna i tak krucha, iż trzeba by ją nosić ze sobą w osobnym futerale. Oto ja, a to mój autorytet. Sprawy zaszły za daleko, zresztą szkoda było czasu. W programie matematyki dopiero teraz, w siódmej klasie, zaczynały się równania kwadratowe i najprostsza trygonometria. Na lekcjach fizyki równia pochyła i prawo Archimedesa. A przecież Albert zajmował się już rachunkiem różniczkowym i całkowym oraz elektromagnetyzmem! Joseph Ducrue, który uczył obu przedmiotów ścisłych, bez oporu wystawił zaświadczenie, że uczeń Einstein opanował matematykę i fizykę w stopniu wystarczającym do matury.


Nie tylko przedmioty ścisłe, ale nawet język niemiecki, stanowiły zaledwie dodatek do programu klasycznego gimnazjum, ustępstwo na rzecz nowych czasów, niechętnie traktowane przez zwolenników tradycji. Nie chodziło o to, by wychować zastępy łacinników i znawców klasycznej greki. Prawdziwym celem było ćwiczenie charakteru, pamięci i sprawności myślenia na tym abstrakcyjnym materiale przypominającym marmur wypolerowany przez czas i ludzki dotyk. Celem było także nauczanie cnoty na uświęconych tradycją przykładach. Cezar podbijający Galię, wszystkie jej trzy części. Ale też Caesar pontifex. Cywilizacja zorganizowana jak mowa w senacie albo przemówienie do legionistów przed bitwą. Tych samych tekstów uczyli się chłopcy w całej Europie. Przekładali klasyczne okresy na swoje barbarzyńskie języki ze świadomością, że jest to właściwie niemożliwe: nie można bowiem dorównać klasykom, a już z pewnością nie mogą tego dokonać oni, niezbyt starannie przygotowani do lekcji, nieuformowani. Nie mogą też zadaniu temu sprostać ich ojczyste języki, które dopiero powoli zdobywały sobie prawo obywatelstwa. Już w samych usiłowaniach przekładu kryło się pewne ustępstwo wobec nowych czasów: uczniom nie groziły bowiem jak niegdyś plagi za używanie ojczystego języka między sobą na przerwach.

Właściwie tylko Ferdinand Reuss potrafił na lekcjach powiązać tę całą szacowną spuściznę z literaturą niemiecką i z jakimkolwiek życiem. Schiller, a zwłaszcza Goethe, prawdziwy olimpijczyk, panujący nad formą i głęboki bez widocznego wysiłku. To jednak coś więcej niż zjadliwość i sentymentalizm Heinego, choć wobec jego przenikliwej inteligencji – chapeau bas. Hermann und Dorothea – heksametry poświęcone prawdziwym uczuciom dwojga młodych, zbuntowanych przeciwko światu dorosłych, w którym liczą się jedynie kalkulacje, stanowiska i majątki. Wreszcie coś autentycznego, o żywych ludziach, a nie mitologicznych herosach. Zaczął doceniać subtelność języka niemieckiego, skończyły się długie godziny pamięciowego wkuwania. Nawet lekcje łaciny stały się mniej martwe. Za czasów Reussa, w szóstej klasie, osiągnął najwyższą swą notę z łaciny: jedynkę. Niestety, obecny rok szkolny od początku był katastrofą.
W sumie nie był złym uczniem. Po części dlatego, że nie chciał martwić rodziców, a po części dlatego, że nauka przychodziła mu bez trudu. Słabsze stopnie, dwójki, miał tylko z owej nieszczęsnej greki. Była to ocena dobra, ale i nic więcej: nie miał pamięci do słówek ani ambicji, by przygotowywać więcej, niż zadawał Degenhart. Gospodarz klasy bardzo chciał zmobilizować chłopców do rywalizacji, toteż krzywo patrzył na odmowę uczestnictwa w grupowym wysiłku. Albert miał jednak wadę wielu inteligentnych ludzi: nie cierpiał robić rzeczy, które wydawały mu się bez sensu. Pomysł, by posłać go do gimnazjum klasycznego, dobrze świadczył o ambicjach rodziców – były to w Niemczech szkoły elitarne, choć znaleźć je można było w każdym większym miasteczku. Większość ważnych stanowisk w kraju zajmowali absolwenci gimnazjum. Matura była świadectwem przynależności do lepszej części społeczeństwa i w zamian za bezsensowny trud uczenia się rzeczy zbytecznych przynosiła pewien prestiż, możliwość wzniesienia się ponad swoje pochodzenie. W przypadku Żydów wykształcenie stanowiło przepustkę do wolnych zawodów, czasem do działalności naukowej, gdyż służba państwowa, zarówno cywilna, jak wojskowa, była dla nich praktycznie niedostępna. Ojciec Alberta musiał poprzestać na szkole realnej i zająć się prowadzeniem interesów, nie było mowy o studiach, choć podobno był zdolny, a szczególnie dobrze szła mu matematyka.

Albert rozumiał to wszystko, nie chciał być ciężarem dla rodziców, widział zresztą, że ojciec nie jest bynajmniej obrotnym Semitą z ludowych anegdot, który zawsze znajdzie sposób, żeby wyjść na swoje. Czuł się jednak organicznie niezdolny do spędzania lepszej części każdego dnia w zimnym gmachu z budującymi maksymami na barokowych plafonach. Nie chciał słuchać dyrektora prawiącego o obowiązkach i „kategorycznym imperatywie naszego filozofa Kanta”. Bronił się przed nimi i nimi gardził: potrafili wszystko strywializować, wszelkie cnoty sprowadzić do posłuszeństwa wobec przełożonych. Formowano ich na przyszłych urzędników, niezawodne trybiki w machinie państwa. Nawet ci liberalni Bawarczycy coraz mocniej przesiąkali duchem pruskim. Dopiero w domu stawał się sobą, odzyskiwał równowagę: musiał zagrać Mozarta, żeby oczyścić umysł i zmyć cierpki osad absurdu przynoszony z tej niesłychanej instytucji niczym kurz na butach. Samo granie Mozarta nie mogło oczywiście wystarczyć, nigdy przecież nie zostanie wirtuozem. Na szczęście były książki: czyste intelektualne piękno matematyki, zbyt dostojne dla bandy dorastających chłopaków, którzy całą energię obracali na podglądanie bujnej Gretchen usługującej w piwiarni. Co oni mogli wiedzieć o falach Hertza i eterze?

Także starszy od Einsteina o kilka lat Thomas Mann nie cierpiał szkoły i nie doszedł do matury, stając się, jak to sam ujmował: „wykolejonym gimnazistą” . Pisarz wspominał: „Nienawidziłem szkoły i do samego końca nie mogłem sprostać jej wymaganiom. Gardziłem nią jako środowiskiem, krytykowałem maniery jej władców i wcześnie zająłem wobec niej stanowisko, które było swojego rodzaju literacką opozycją przeciw panującemu w niej duchowi, dyscyplinie, metodom tresury. Indolencja, może konieczna dla mego odrębnego rozwoju, potrzeba dużej ilości wolnego czasu na próżnowanie i spokojną lekturę, prawdziwe lenistwo umysłowe (…) – wszystko to sprawiało, że nienawidziłem przymusowej nauki i lekceważyłem ją przekornie”. Młody patrycjusz o artystycznych zainteresowaniach, tak samo jak przyszły uczony, nie potrafił się pogodzić z pamięciowym wkuwaniem i koszarowym kolektywizmem systemu nauczania. Obaj potrzebowali czasu na swobodne, niespieszne lektury. Albert Einstein twierdził później, że do edukacji młodzieży wystarczyłyby z powodzeniem cztery godziny dziennie lekcji w szkole i dwie godziny własnej nauki.

Obaj, przyszły pisarz i przyszły uczony, byli marzycielskimi nastolatkami, których urzekała muzyka i romantyczna poezja niemiecka. Obaj lubili improwizować na fortepianie, Albert uczył się od szóstego roku życia gry na skrzypcach.
Każdy inteligentny nastolatek odczuwa potrzebę buntu i przeżywa kryzys wiary w oficjalną moralność. Dobrze wówczas mieć towarzysza niedoli, który podobnie myśli i czuje, wydaje się naszym alter ego. Thomas Mann pisze o swej młodzieńczej przyjaźni: „Komitywa nasza przetrwała wszystkie lata szkolne bodaj z tej samej przyczyny, z której niegdyś powstała. Był to «patos dystansu» wobec większości naszych kolegów; zna go każdy, kto mając lat piętnaście czytuje potajemnie Heinego i w tercji wydaje zdecydowane sądy o świecie i ludziach”. Jak się zdaje, Albert Einstein przeżywał ów nietzscheański patos dystansu samotnie, w okresie życia, kiedy odczuwa się tak wielką potrzebę zwierzeń i bliskości, nie przyjaźnił się z żadnym rówieśnikiem. Występuje tu pewna osobliwość: Einstein, który później zaprzyjaźniał się z ludźmi łatwo, a nawet może zbyt łatwo i zbyt powierzchownie, w okresie pobytu w Monachium nie miał żadnego powiernika, nauczył się zachowywać dla siebie większość swoich myśli. Po latach pojawił się jakiś gimnazjalny kolega wspominający, jak Einstein czytał Kanta, nie ma wszakże żadnych dowodów, by przyjaźnili się bliżej w okresie szkolnym.

Przyzwyczaił się do osobności, może od początku był nieco osobny. Nawet mówić zaczął później i przez jakiś czas miał zwyczaj wygłaszać każde zdanie najpierw po cichu, a dopiero później powtarzał je na głos. Bawił się sam i wykazywał nieczęstą u dzieci cierpliwość w budowaniu wysokich budowli z kamiennych klocków Anker albo w ustawianiu domków z kart wysokich na czternaście kondygnacji. Nie była to zresztą dokładnie biorąc samotność, ponieważ miał matkę, która nad nim stale czuwała, nawet na odległość, a także młodszą siostrę. Często odwiedzała ich rodzina, miał wielu kuzynów i kuzynek, niemal codziennie bywał w fabryce, rozmawiał ze stryjkiem Jakobem i pracownikami. Rodzina nie zrywała też związków z gminą żydowską, nawet jeśli nie były one religijne. Co czwartek zapraszano na obiad ubogiego studenta medycyny z Polski, Maksa Talmuda. To on, obok stryjka Jakoba, zajmował się jego umysłowym rozwojem. Max był wyznawcą materializmu medycznego, zaczął przynosić Albertowi książki o nauce. Seria popularnych książeczek Aarona Bernsteina o cudach nauk, o planetach i atomach, światach, w których nie byliśmy, ale coraz więcej o nich wiemy. Ludwiga Büchnera Kraft und Stoff – „Siła i materia”. Istnieje tylko materia i działające na nią oraz poprzez nią siły. Nie ma świata nadprzyrodzonego, prawa przyrody są niewzruszone i nie zależą od naszego widzimisię. Zjawiska w przyrodzie przebiegają niezależnie od tego, czy ktoś je obserwuje i czy ktoś je rozumie. I nie zależą od naszej moralności. Przeświadczenie o ojcowskiej opiece Stwórcy stało się wkrótce dla Alberta tak samo nieprawdopodobne jak opowieści o Noem, który po Potopie przeżył jeszcze trzysta pięćdziesiąt lat, a w sumie lat dziewięćset pięćdziesiąt. Odkrył, że każda religia, żydowska, tak samo jak chrześcijańska, służy jedynie władzy – zamiast stawiać przy każdym policjanta, który by go pilnował, wmawia się ludziom, że ich czyny widzi Bóg, który choć jest wszechmocny i w najwyższym stopniu mądry, lecz z jakiegoś powodu z wielkim zainteresowaniem zajmuje się śledzeniem postępków każdego Barucha czy Hansa. Rozwiązanie tanie, choć coraz mniej skuteczne. Poczuł gorzką radość demaskatora: jeśli żywisz jakieś złe podejrzenia co do motywów postępowania poszczególnych ludzi, a także całych społeczeństw, to zapewne masz rację. Są tacy, jak przypuszczasz, albo i gorsi.

Przed cynizmem uchronił go pierwszy podręcznik geometrii i zachwyt dla niewzruszonej logiki rozumowań. Nie musimy sprawdzać, czy w każdym trójkącie prostokątnym kwadrat przeciwprostokątnej jest równy sumie kwadratów przyprostokątnych. Wystarczy to udowodnić raz na zawsze i ten dowód pozostanie słuszny, nawet dla trójkątów, których nikt jeszcze nie narysował albo takich, które ktoś już starł z tablicy. Myślał przez wiele dni, jak można udowodnić twierdzenie Pitagorasa, aż w końcu wpadł na pewien pomysł: trzeba wykorzystać podobieństwo trójkątów (dopiero później dowiedział się, że tak się to pojęcie nazywa). Podręcznik geometrii stał się jego „świętą książeczką”. Stryj Jakob, inżynier z głową pełną pomysłów, wprowadził go też w algebrę: „Gdy nie możemy znaleźć zwierzyny, na którą polujemy, chwilowo nazywamy ją x i kontynuujemy polowanie, póki nie wsadzimy jej do torby”. Albert z upodobaniem rozwiązywał zadania i zagadki podsunięte mu przez stryja.

Jeszcze bardziej cudowne było to, że wszechobecne i niewidzialne siły, mogące poruszać tłokiem maszyny parowej albo wytwarzać prąd elektryczny, jak w prądnicach stryja Jakoba, nie tylko dawały się zmierzyć i przewidzieć, lecz poddane były ścisłemu rygorowi matematyki! Jak święta książeczka geometrii stosowała się do mierzenia odległości gwiazd, tak samo prawa fizyki pozwalały obliczyć i zrozumieć ruch planet i komet, każdego atomu – cały wszechświat nabierał w ten sposób głębokiego sensu. I nie były to jedynie czcze urojenia fantastów z białymi brodami, wizjonerów, którym mylił się dzień z nocą i sen z jawą. Uczeni, wielka międzynarodowa wspólnota ludzi dokonujących dokładnych i cierpliwych pomiarów, analizujących zjawiska, przeprowadzających obliczenia – to oni byli byli prawdziwymi kapłanami, to oni poddawali się surowej regule nakazującej rzetelność, ścisłość i pokorę wobec tajemnic świata. To była prawdziwa świętość, której daremnie szukał w religii. Świat był świętością, choć ludzie tak często okazywali się świniami.

Ucieczka Alberta z Monachium była instynktowna, czuł, że w istocie nie ma wyboru. Dopiero potem przyszła pora na racjonalizację. Trzeba to było jakoś praktycznie urządzić. Rozum zazwyczaj lojalnie wspiera porywy uczuć, przedstawiając je w postaci zobiektywizowanej i możliwej do przyjęcia przez innych, niczym starszy brat lojalnie wstawiający się za młodszym. Nie chodziło przecież o brak rodziców, w życiu nastolatka rodzina stanowi raczej tło obrazu niż jego pierwszy plan. To prawda, od jesieni został w Monachium sam, jeśli nie liczyć wszystkich ciotek i znajomych matki, które należało odwiedzać w niedzielę. Rodzice i Maja wyjechali do Mediolanu. Ojciec poniósł klęskę w interesach i zmuszony został do zamknięcia firmy, sprzedaży jej wyposażenia, a nawet działki, na której mieściły się fabryka i ich dom rodzinny. Teren położony niedaleko Sendliger Tor kupił przedsiębiorca budowlany po to, żeby wszystko wyburzyć, miasto szybko się rozrastało i potrzebowało nowych kamienic. Koledzy w klasie nie znali szczegółów, można było udawać, że to nie bankructwo, lecz przeprowadzka. Prawda była jednak taka, że bracia Einstein nie otrzymali dużego zamówienia od miasta, mimo że byli jedyną fabryką z Monachium i mimo że to oni pierwsi zainstalowali elektryczne oświetlenie na Oktoberfest i zbudowali sieć elektryczną w Schwabing. Zamówienie trafiło do firmy Schukert i S-ka z Norymbergi, prowadzonej przez „prawdziwych Niemców”. Fabryczka braci Einstein nie miała zresztą szans w konkurencji z wielkimi firmami, które połykały mniejsze: Schukertwerke za kilka lat połączyły się z berlińskim potentatem Siemens & Halske, tworząc koncern funkcjonujący do dziś jako Siemens AG.

Czy trudniej być Żydem, czy synem bankruta? Jako jedyny Żyd w klasie chodził wprawdzie na lekcje judaizmu, lecz nie czuł się potomkiem proroków. Edukacja była liberalna, nikt nie wymagał od niego deklaracji wiary. Owszem, przeszedł parę lat temu okres przypływu uczuć religijnych, chwilami graniczyło to z ekstazą. Ku zdumieniu całej postępowej rodziny przestał jeść wieprzowinę i zaczął układać hymny na cześć Pana, które nucił po drodze do szkoły i z powrotem. Ku niekłamanej uldze ojca, ta faza religijna szybko minęła, jeszcze przed bar micwą, nie powstał więc kłopotliwy problem praktykującego syna przy pokpiwającym z ortodoksji ojcu. Żydostwo było zatem nie tyle religią, ile specyficznym rodzajem obcości wśród Niemców, jakimś oddzielnym rodzajem niemieckości. W gimnazjum na ogół mu tego nie wytykano, ponieważ obowiązywało tu dobre wychowanie. Profesorowie zazwyczaj zachowywali się grzecznie, jak na oficerów przystało. Uczniowie także starali się im dorównać, Albert nie reagował zresztą na krzywe uśmieszki i grube aluzje. Co innego w szkole podstawowej. Zetknął się tam z drobnym ludkiem katolickim i wracając ze szkoły musiał dobrze uważać, żeby nie popędziła za nim banda uliczników z okrzykami: „Żyd, Żyd…” Nie były to prawdziwe prześladowania, raczej wybryki pospólstwa ogłupianego przez równie przesądnych księży, bredzących o zabójcach Pana Jezusa. Ponieważ najlepsza jest nauka poglądowa, katecheta przyniósł kiedyś ogromny gwóźdź, oświadczając, że właśnie takie posłużyły do ukrzyżowania Chrystusa. Na szczęście nikt nie pokazał go przy tym palcem, ale wystarczało to, aby czuć się obco, mimo że nie miał żadnej innej ojczyzny. Rodziny Kochów i Einsteinów mieszkały w Wirtembergii od wieków, wszyscy mówili tym samym językiem, jego szwabska odmiana była mową jego dzieciństwa. Przyzwyczaił się, że jest jedynym Żydem w klasie. Być może wzmocniło to tylko jego naturalne samotnictwo.

Einstein twierdził, że właściwie nie zetknął się w Bawarii z poważniejszym antysemityzmem. Żydowskie pochodzenie sprawiało tylko, że czuł się kimś trochę innym niż reszta Niemców. W mniejszym stopniu utożsamiał się też z państwem, które przeżywało wówczas upojenie nacjonalizmem. Powstanie II Rzeszy Niemcy odczuwali jako wielki akt dziejowej sprawiedliwości. Albert nie poddawał się tym uniesieniom, patrzył z boku. W jego oczach szkoła jawiła się jako przedłużenie cesarstwa niemieckiego, choć w nieco łagodniejszej wersji bawarskiej. Według słynnej i wielokrotnie powtarzanej oceny uczonego nauczyciele szkoły podstawowej przypominali feldfebli, a profesorowie gimnazjum – poruczników. Pruscy feldfeble uchodzili za okrutnych nadzorców dyscypliny, porucznicy dokładali do tego pewną zimną ogładę. Trzeba nam wiedzieć, czym w ówczesnych Niemczech był porucznik: „Pruski porucznik szedł przez świat jak młodszy bóg, a mieszczanin porucznik rezerwy – niczym półbóg”. Oficerami w armii byli niemal wyłącznie dobrze urodzeni. Dla młodzieńców z rodzin mieszczańskich (choć z wyjątkiem Żydów, ateistów, socjaldemokratów i katolików) stopień porucznika rezerwy był awansem i zbliżeniem się do elity. Einstein po latach wspominał, że jeden z jego nauczycieli był porucznikiem rezerwy i bardzo się tym szczycił. Lubowano się w uniformach i defilowaniu paradnym krokiem (od ćwiczenia owego kroku Thomas Mann dostał zapalenia ścięgna i jego służba wojskowa zakończyła się przedwcześnie po kilku miesiącach). Był to częsty widok – Monachium było także miastem garnizonowym. Może ta wszechobecność wojskowego drylu skłoniła Alberta do następującej refleksji: „Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby”. Nie były to poglądy popularne w kraju, w którym starano się upodobnić klasy szkolne do oddziałów wojska, a stosunki nauczycieli i uczniów kształtować na wzór dyscypliny militarnej. Obchodzono uroczyści Dzień Sedanu – rocznicę zwycięstwa nad Francuzami, zmarłemu kanclerzowi Bismarckowi stawiano pomniki, a także poświęcone mu kolumny, jak kraj długi i szeroki. Cesarz Wilhelm II publicznie oświadczał, że szkoły powinny kształtować żołnierską krzepę i wychowywać młodzież na Niemców, a nie na Greków czy Rzymian.

Czemu więc Albert Einstein uciekł z Monachium – miasta, w którym się wychował, jedynego, jakie znał? Nie był sentymentalny, ale mimo to może nas dziwić, że uczony, który później tak wiele podróżował i często zmieniał miejsca pobytu, omijał zawsze Monachium. Czy jeszcze po latach dokuczała mu pamięć banalnych szkolnych powikłań, czy chodziło raczej o głębszą niechęć wobec tego, co już jako chłopak dostrzegł w Niemcach, świadomość, że Monachium nie było i nie mogło być jego ojczystym miastem? Ponieważ niemieckość była zadrą, do której nie chciał się przyznać, więc wolał nie pamiętać o rodzinnym mieście? Bo przecież obiektywnie – gdyby w ludzkim świecie mogło istnieć coś obiektywnego – Monachium to jedno z najświetniejszych miast europejskich, nie miało może splendoru Paryża, energii Londynu czy starożytności Rzymu, ale kwitło tu autentyczne życie kulturalne, artystyczne, naukowe. Gdyby nie był Żydem, w jakimś wszechświecie alternatywnym, spojrzałby może na stolicę Bawarii przychylniej, tak jak widział ją (choć nie bez iskierki ironii) w roku 1902 Thomas Mann:

Monachium jaśniało. Nad paradnymi placami i białymi kolumnami świątyń, nad klasycyzującymi pomnikami i barokowymi pałacami, nad tryskającymi fontannami, nad pałacami i ogrodami rezydencji rozpościerało się promienne niebo z błękitnego jedwabiu, a szerokie, jasne, objęte zielenią i doskonale rozplanowane arterie uliczne zalane były słonecznym żarem pierwszego pięknego czerwcowego dnia.
Szczebiot ptaków i utajona radość nad wszystkimi ulicami. A na placach i w zaułkach turkoce, wzbiera i szumi niespieszne, wesołe życie tego pięknego i dostojnego miasta. Podróżni wszelakiej narodowości jeżdżą po nim małymi powolnymi dorożkami wybiegając z niewybredną ciekawością spojrzeniem w prawo i w lewo na ściany domów i wstępując na szerokie zewnętrzne schody, wiodące do muzeów.
Wiele okien jest otwartych i z wielu wybiega na ulice muzyka, ćwiczenia na fortepianie, skrzypcach lub wiolonczeli, rzetelne i pełne dobrej woli wysiłki dyletantów. W «Odeonie» jednak, jak słychać, odbywają się poważne studia przy wielu fortepianach.
Młodzi ludzie gwiżdżąc motyw Nothunga i zapełniając wieczorem ostatnie rzędy modnego teatru wchodzą i wychodzą przez drzwi uniwersytetu i biblioteki państwowej z pismami literackimi w bocznych kieszeniach kurtek. (…) Młodzi malarze w okrągłych kapelusikach, zsuniętych w tył głowy, luźno zawiązanych krawatach i bez laski, beztroskie chłopaki, co opłacają komorne kolorowymi szkicami, idą oto na spacer, chcąc, aby to błękitne przedpołudnie wywołało w nich nastrój.

Urodzony w Lubece, Thomas Mann właśnie w Monachium rozpoczynał swoją pisarską karierę, obracał się wśród pisarzy, artystów, uczonych, przedstawicieli cyganerii i akademików, korzystał z bogatego życia koncertowego i teatralnego. Pisarz ożenił się tu, wychowywał dzieci, założył dom i gdyby nie naziści, prawdopodobnie nadal Monachium stanowiłoby centrum jego pracowitego życia.

Tymczasem Albert Einstein zjawił się u rodziców w Mediolanie, przekonując, że teraz będzie uczył się sam i że będzie zdawać na Politechnikę w Zurychu, która nie wymagała matury, jeśli się zdało egzamin wstępny. Zaczął uczyć się włoskiego i wszystko go we Włoszech zachwycało: galerie obrazów, życie uliczne, słońce. Nic nie wiemy o jego wizytach w monachijskich przybytkach sztuki, tamtejsze muzea, teatry i koncerty nie pozostawiły żadnych śladów. Może był za młody, nie miał jeszcze szesnastu lat. Ale przecież ktoś, kto czytał Kanta, musiał także z pewnością słyszeć o Wagnerze, o artystach, o uniwersytecie. Wydaje się, jakby młody Albert Einstein dopiero w Mediolanie odkrywał to, co mógłby z powodzeniem znaleźć także w swym rodzinnym Monachium, mieście z pewnością nie mniej europejskim.

Oczywiście, mogło tu swoje zrobić odkrycie Południa, co dla przybyszy z mniej nasłonecznionych krain bywało przeżyciem nieledwie mistycznym. Pisał Friedrich Nietzsche: „Nie mam dość siły na Północ – królują tam ciężkie i przemyślne dusze, pracujące tak wytrwale i koniecznie nad środkami ostrożności, niczym bóbr przy swej tamie. I pomyśleć, że spędziłem wśród nich całą młodość!” Także na Albercie Einsteinie Włochy wywarły wrażenie, chętnie wracał później do wspomnień, a nawet do języka włoskiego, którego nieźle się zdążył nauczyć, mimo że zawsze deklarował brak zdolności językowych, tłumacząc tym nawet swoją niechęć do programu klasycznego gimnazjum w Monachium. Odkrycie Południa rozciągnęło się też chyba dla niego na dłuższy czas: pod koniec grudnia Mediolan niekoniecznie jest dużo jaśniejszy od Monachium. Albert nie widział zresztą zbyt wiele Włoch oprócz Mediolanu, Pawii i Genui, krótkiego pobytu w Wenecji. Nie starał się też nigdy o zamieszkanie we Włoszech na stałe, nie myślał, aby tam studiować. Wracał jedynie na okresy wolne od zajęć na Politechnice w Zurychu, wcześnie też zaczął odkładać pieniądze na uzyskanie obywatelstwa szwajcarskiego.

Ucieczka z Monachium stała się dla młodego Alberta wyzwoleniem. Podobała mu się włoska bezpośredniość w obcowaniu z ludźmi, pod tym względem był raczej impulsywnym południowcem. Rzecz była jednak głębsza: on także nie należał do bobrów pracowicie wznoszących tamy, już prędzej był falą, która owe tamy przerywa. Włochy mogły też przemawiać do artystycznej strony jego osobowości, choć nigdy później nie interesował się szczególnie architekturą, rzeźbą czy malarstwem. Cenił ideał prostego życia ludzi wolnych, codzienną kulturę Włoch, ale bliższa stała mu się Szwajcaria i zapewne nie tylko z racji języka. W miarę jak kształtowały się jego poglądy polityczne, zaczął przeciwstawiać liberalną i demokratyczną Szwajcarię autorytarnym i zmilitaryzowanym Niemcom.

Jego ojczyzna i mała ojczyzna, Heimat, dały mu język: zarówno rubaszny szwabski dialekt, jak subtelny i dobitny środek wyrazu pisarzy i filozofów, uczył się coraz lepiej nim posługiwać, w nim formułował myśli, nie zmieniły tego nawet lata pobytu w Ameryce. Trudniejszym darem był trwały i głęboki głęboki sceptycyzm wobec obiegowych opinii. Postawy takiej nie nabywa się dobrowolnie i bezboleśnie, kto jednak potrafi z nią żyć i odnaleźć równowagę, ten nie będzie chciał się karmić łatwymi złudzeniami i nie zabraknie mu odwagi, by zrywać nawet silne więzy, kiedy wymaga tego wierność sobie. Albert Einstein nie mieścił się w żadnym opresyjnym systemie: to nie przypadek, że będzie jednym z nieprzejednanych przeciwników narodowego socjalizmu. Można sądzić, że nigdy by się z nim nie pogodził, nawet gdyby nie był Żydem.
Sceptycyzm łatwo prowadzi do zwątpienia. Einstein był jednak człowiekiem wiary. Dziecięcy zapał religijny przeniósł się na naukę i nigdy nie osłabł, nawet wtedy, gdy jego praca latami nie przynosiła owoców. Niezachwianie wierzył w bezosobowy i ponadosobisty ład świata i można by do niego zastosować, z większą może trafnością, to, co mówiono o Heinem: iż jest on Unglaubengenosse Spinozy – towarzyszem Spinozy w niewierze. Była to bowiem niewiara gorąca i żarliwa, a zarazem chłodna i poddana rozumowi i Albert gotów był jej służyć już w tamtej chwili, kiedy po raz pierwszy zadecydował o swym losie i na zawsze porzucił Monachium.