Oliver Heaviside i głuchy telefon (1886-1891)

Heaviside był człowiekiem trudnym w kontaktach, nie bardzo też interesowała go kariera zawodowa. Rodzina była zbyt biedna, aby mógł zdobyć solidne wykształcenie, toteż zakończył swą szkolną edukację w wieku szesnastu lat. Przebyta w dzieciństwie szkarlatyna upośledziła jego słuch, izolując go od rówieśników. Choć z czasem odzyskał w znacznej mierze słuch, to pozostał autsajderem na resztę życia. Krótko pracował jako telegrafista i pracownik techniczny u boku starszego brata Arthura w firmie zarządzającej kablem pomiędzy Danią i Anglią, lecz zwolnił się w wieku dwudziestu czterech lat i już nigdy później nie pracował zawodowo. Mieszkając w pokoju u rodziców, zajmował się eksperymentalnie i teoretycznie elektrycznością, jedyne pieniądze zarabiał z publikacji artykułów w fachowym piśmie „The Electrician”. Był jednym z pierwszych kontynuatorów Jamesa Clerka Maxwella, udało mu się uprościć i przejrzyściej zapisać równania elektromagnetyzmu. Odkrył rachunek operatorowy ułatwiający rozwiązywanie równań różniczkowych (posługiwał się funkcją δ na długo przed Dirakiem). Zastosował też zapis wektorowy, bez którego trudno dziś sobie wyobrazić teorię Maxwella. Dzięki bratu, pracującemu jako inżynier, znał praktyczne problemy telefonii i podał metodę zbudowania linii przesyłowej w taki sposób, aby nie zniekształcała sygnałów. Problem był palący, ponieważ telefonia rozwijała się burzliwie i wraz ze wzrostem odległości sygnał nie tylko był słabszy, ale też ulegał zniekształceniu. Dalsza historia tego odkrycia Heaviside’a była zapewne do przewidzenia: z początku nie chciano mu wierzyć, a później to inni zarobili miliony na wcieleniu jego idei w życie.

Biografia Heaviside’a skłania do zastanowienia nad rolą autorytetów w różnych dziedzinach. Będąc jednym z najwybitniejszych uczonych swoich czasów, postrzegany był jako jakiś niedouczony telegrafista, a przy tym dziwak. Jego artykuły w „The Electrician” były trudne do zrozumienia, a może po prostu nikt nie przykładał się do ich zrozumienia, ponieważ były autorstwa jakiegoś urzędnika, nie wiadomo właściwie kogo. Tymczasem stanowiły one oryginalny wykład do teorii elektromagnetyzmu. Gdy Heinrich Hertz odkrył fale elektromagnetyczne, w pracach Heaviside’a znaleźć można było nowocześniejsze i prostsze ujęcie teorii, która tak wspaniale się potwierdziła. Nasz „telegrafista” wyprzedził tu znacznie większość uczonych brytyjskich i kontynentalnych. W szczególności jego podejście górowało nad konserwatywnym i sceptycznym nastawieniem Williama Thomsona, późniejszego lorda Kelvina. Ten ostatni nie potrafił się przekonać do teorii Maxwella, co miało znaczenie, ponieważ był najsławniejszym uczonym Wielkiej Brytanii, zasiadał we wszystkich możliwych radach i towarzystwach, a każde jego słowo prasa traktowała jak wyrocznię. Tak było, gdy w 1888 roku, po odkryciu Hertza, Thomson orzekł, iż jego zastrzeżenia wobec teorii Maxwella nieco się zmniejszyły (uznał bowiem, że prąd przesunięcia – najważniejszy element pojęciowy zaproponowany przez Maxwella – z „zupełnie nie do utrzymania” awansował w jego oczach do kategorii „niezupełnie do utrzymania”). Thomson miał swoją wizję idealnej teorii elektromagnetyzmu, prawdopodobnie zresztą dlatego nie osiągnął końcowego sukcesu. W każdym razie to młodszy od niego James Clerk Maxwell rozwiązał problem, choć sir William nie chciał się z tym pogodzić.

 

Baron Kelvin of Largs

William Thomson umiał jednak zachowywać się fair i dzięki temu Oliver Heaviside doczekał się nieco uznania za życia. Wcześniej, w roku 1887, przeszedł swe najgorsze chwile, gdy stracił możliwość publikowania, a zarazem też skromne dochody, jakie ta działalność zapewniała. Za 40 funtów rocznie redakcja otrzymywała ciągły strumień oryginalnych publikacji z dziedziny elektromagnetyzmu. Kryzys nastąpił wtedy, gdy Oliver Heaviside wszedł w konflikt z Williamem Henry’m Preece’em, ważnym ekspertem brytyjskiej poczty. Preece starał się przeforsować kosztowną decyzję budowy linii telefonicznych z kablem miedzianym w miejsce żelaznego. Argumentował, że dzięki temu wzrośnie zasięg rozmów, ponieważ kable żelazne wytwarzają pole magnetyczne, a to prowadzi do strat energii (zmienne pole magnetyczne indukuje dodatkowe napięcie, mówi się o indukcyjności kabla: miedziane zmniejszały wg Preece’a indukcyjność i na tym polegała ich wyższość). Mało tego, Preece twierdził, że wykazał fałszywość teorii Maxwella. W tym samym czasie Arthur i  Oliver próbowali opublikować pracę, która podważała poglądy Preece’a, a nawet im przeczyła: otóż pole magnetyczne wcale nie musi przeszkadzać w przesyłaniu rozmów telefonicznych, a nawet może pomagać. Pewny siebie Preece zakazał publikacji. Obaj bracia zareagowali na to rozmaicie: Arthur jako podwładny Preece’a przestał się zajmować tym tematem, Oliver natomiast zaczął z upodobaniem dowodzić niekompetencji Preece’a, którego określał m.in. jako „the eminent scienticulist” – czyli coś w rodzaju „wybitnego mędrka”. Racja naukowa była całkowicie po stronie Heaviside’a, znalazł on warunek, jaki spełniać powinna linia przesyłowa, aby nie zniekształcała rozmów (chodzi o to, by składowe o różnych częstościach tłumione były w jednakowym stopniu, w ten sposób daleki odbiorca otrzymuje sygnał słabszy, lecz podobny do wysłanego). Ów warunek Heaviside’a był kontrintuicyjny, lecz prawdziwy i oznaczał, że należy w praktyce zwiększać indukcyjność linii, czyli wytwarzane przez nie pole magnetyczne. Nacisk Preece’a sprawił, że zmienił się redaktor naczelny „The Electrician” i nowy już nie chciał publikować artykułów Heaviside’a.

Karykatura z 1888 r.: Preece pod sztandarem wieloletnich doświadczeń pokonuje Olivera Lodge’a (który podawał w wątpliwość skuteczność używanych piorunochronów i krytykował jego teoretyczne rozważania, stając po stronie Heaviside’a)

Atmosfera wokół niego poprawiła się dopiero wówczas, gdy publicznie docenił jego teorię William Thomson. Otworzyło to drogę do przyjęcia Heaviside’a w roku 1891 na członka Towarzystwa Królewskiego, ułatwiło też publikację kolejnych prac. Zadziwiająco mało zmieniło się w życiu uczonego, który przywiązywał chyba większą wagę do możliwości publikacji niż do zarobku. Nadal pozostał prywatnym uczonym, po śmierci rodziców jego środki do życia mocno się skurczyły. Dzięki dyskretnym staraniom paru wybitnych uczonych zaczął Heaviside otrzymywać skromną emeryturę (dyskretnych, ponieważ drażliwy Heaviside nie chciał jałmużny). Żył dość długo, by widzieć, jak jego idea zwiększenia indukcyjności kabli telefonicznych została wcielona w życie jako pupinizacja albo krarupizacja. Zarówno Amerykanin serbskiego pochodzenia Mihajlo Pupin, jak i Duńczyk Karl Emil Krarup, wyciągnęli praktyczne wnioski z teorii Heaviside’a. Pupin po długiej batalii prawnej z firmą AT&T zarobił na swoim patencie 450 000 $ (blisko 30 mln $ obecnie). Jego rozwiązanie polegało na umieszczaniu w stałych odległościach cewek zwiększających indukcyjność. Krarup zastosował żelazne druty (zwiększające pole magnetyczne) oplatające miedziany rdzeń. Dzięki temu w pierwszych latach XX wieku wzrósł zasięg linii telefonicznych, a ich układanie stało się tańsze. Także kariera Preece’a, który nigdy nie przyznał się do błędu, nie doznała żadnego uszczerbku i rozwijała się pomyślnie, z czasem doczekał się on tytułu szlacheckiego. Tylko Heaviside dziwaczał coraz bardziej, mieszkał sam, pod koniec życia zastąpił meble blokami granitu, zaniedbał się i cierpiał na rodzaj manii prześladowczej. Nie dowiemy się już, czy dziwaczał, ponieważ nie osiągnął pozycji w społeczeństwie odpowiadającej jego talentowi, czy też odwrotnie: nie udało mu się zdobyć pozycji w bardzo konkurencyjnym wiktoriańskim społeczeństwie, ponieważ zbytnio odbiegał od przyjętych standardów zachowania i nawet talent nie mógł tu pomóc.

Die Vermittlungszentrale im Berliner Fernspreschamt II
Original: Frankfurt am Main, Deutsches Postmuseum
Foto: Berlin, 1894

Centrala telefoniczna w Berlinie, 1894 r.

Technika telefoniczna rozwijała się szybko. Kolejnym krokiem było skonstruowanie wzmacniacza na triodach (regeneratora sygnałów), który zaczął być stosowany komercyjnie tuż przed pierwszą wojną światową. Heaviside zdążył jeszcze przewidzieć istnienie jonosfery, dzięki której fale radiowe rozchodzą się wzdłuż powierzchni Ziemi, umożliwiając np. międzykontynentalne przekazywanie sygnału radiowego.

Pokażemy na przykładzie, jak Heaviside potraktował kwestię przesyłania sygnałów bez zniekształceń. Linia przesyłowa to rozciągnięty bardzo obwód. Można uważać, że każdy jego fragment o długości \Delta x składa się z podstawowych elementów obwodu: oporu R\Delta x, indukcyjności L\Delta x oraz połączonych równolegle pojemności C\Delta x oraz przewodnictwa G\Delta x. Dla pierwszego i ostatniego elementu obowiązuje prawo Ohma (przewodnictwo jest odwrotnością oporu):

\dfrac{U}{I}=R.

Napięcie na końcach indukcyjności równe jest

U=L\dfrac{dI}{dt},

co Heaviside w swoim języku symbolicznym zapisywał jako U=LpI (p oznaczało branie pochodnej po czasie). Dla pojemności mamy natomiast

I=\dfrac{dQ}{dt}=C\dfrac{dU}{dt}=CpU.

gdzie Q jest ładunkiem.

Stosunki napięcia do natężenia są zastępczymi oporami, mamy więc dla indukcyjności Lp, a dla pojemności 1/pC. Ponieważ możemy podzielić naszą linię transmisyjną na dowolnie dużą liczbę powtarzających się segmentów o długości \Delta x, więc dodanie kolejnego segmentu nie powinno zmieniać zastępczego oporu. Opór zastępczy całej linii Z (wejściowy) musi w takim razie być tym samym, co połączenie równoległe elementów G\Delta x, C\Delta x oraz (R+Lp)\Delta x + Z na końcu. W połączeniu równoległym dodają się odwrotności oporów, mamy więc

\dfrac{1}{Z}=(G+pC)\Delta x+\dfrac{1}{(R+pL)\Delta x+Z}.

Po przekształceniach dostajemy równanie kwadratowe na opór zastępczy:

Z^2+(R+pL)\Delta x Z=\dfrac{R+pL}{G+pC}.

Jeśli teraz przyjmiemy, że \Delta x\rightarrow 0, to otrzymamy

Z^2=\dfrac{R+pL}{G+pC}.

Otrzymany wynik wygląda odrobinę dziwnie, jeśli przypomnimy sobie, że p to różniczkowanie. Nie jest jasne, jak powinniśmy dzielić przez p i jak wyciągać pierwiastek. Heaviside szedł za swoim formalizmem tak daleko, jak tylko się dało i rozpatrywał wyrażenia takie, jak np. p^{\frac{1}{2}}. Uważał on matematykę za naukę empiryczną i jak mówił: „Czy mam odmówić zjedzenia obiadu, ponieważ nie znam wszystkich szczegółów trawienia?” My nie musimy iść aż tak daleko. Widać z ostatniego wyrażenia, że gdy spełniony będzie warunek

\dfrac{R}{G}=\dfrac{L}{C},

nasz ułamek się skróci (cokolwiek to znaczy) i nie będzie zawierał p, w takiej sytuacji sygnał o dowolnym kształcie nie ulegnie zmianie. Jest to warunek Heaviside’a. W praktyce znaczył tyle, że indukcyjność L należy powiększyć, czego nie rozumiał Preece. Dodać należy, że Heaviside formułował tę swoją matematykę także w konwencjonalny sposób – był może dziwakiem, ale w kwestii technik matematycznych zachowywał się całkiem racjonalnie. Obecnie stosuje się transformaty Laplace’a albo można sobie wyobrażać, że zależność od czasu ma postać \exp(i\omega t) (gdzie \omega to częstość kołowa), wówczas różniczkowanie sprowadza się do mnożenia i mamy po prostu p=i\omega.

 

 

 

Reklamy

Walter Ritz, rówieśnik Einsteina (1878-1909)

Nauka jest przedsięwzięciem zbiorowym, ostatecznie to społeczność uczonych – niczym chór greckiej tragedii – osądza protagonistów i komunikuje boskie wyroki. Jest przedsięwzięciem zbiorowym także w bardziej trywialnym i współczesnym znaczeniu mrowiska, w którym nie należy przeceniać roli poszczególnych mrówczych jednostek. Jednak „lawina bieg od tego zmienia, po jakich toczy się kamieniach”, a tragedia byłaby niemożliwa bez głównych postaci. Z jednej więc strony mamy etos mrówek trudzących się dla kolektywnego dobra, z drugiej – kult bohaterów, herosów wyobraźni i intelektu.

Walter Ritz był człowiekiem niezwykle utalentowanym i zdążył wnieść oryginalny wkład do nauki, mimo że cierpiał na gruźlicę, która odbierała mu siły, a po kilku latach odebrała także i życie. Nie osiągnął tyle, ile by chciał i potrafił, ale zdążył już zaznaczyć swoją indywidualność. Chciałbym zestawić jego drogę naukową z biegiem życia i dorobkiem młodszego niemal dokładnie o rok Alberta Einsteina. Przed rokiem 1909 Einstein nie był jeszcze sławny, wręcz przeciwnie: słyszało o nim niewielu i jego kariera dopiero się zaczynała. Dopiero jesienią tego roku wziął po raz pierwszy udział w konferencji naukowej, zamienił także posadę w Biurze Patentowym w Bernie na stanowisko profesora nadzwyczajnego uniwersytetu w Zurychu. Pensja na obu stanowiskach była dokładnie jednakowa. Konkurentem Einsteina do posady był Walter Ritz, uczelnia by go wolała, „ponieważ jest Szwajcarem i według zdania naszego kolegi Kleinera jego prace wykazują nadzwyczajny talent graniczący z geniuszem”. Choroba nie pozwoliła jednak Ritzowi objąć tego stanowiska. Einstein otrzymał więc swoje pierwsze stanowisko naukowe niejako w zastępstwie za kolegę. Wcześniej ze starań o tę posadę wycofał się Friedrich Adler, który tak jak Einstein, zrobił doktorat u Alfreda Kleinera, profesora zwyczajnego na uniwersytecie w Zurychu. Drugi etat profesorski dla fizyka był skutkiem jego zabiegów, tak to się wówczas odbywało: mógł być jeden Ordinarius z danej dziedziny, ewentualnie tworzono także pomocniczy, nie tak prestiżowy i gorzej płatny, etat Extraordinariusa. Adler wszakże niezbyt walczył o stanowisko, bardziej interesowała go filozofia nauki i działalność socjalistyczna (był synem znanego psychologa i przywódcy austriackich socjalistów Victora Adlera). Pisał w roku 1908 do ojca: „Zapomniałem powiedzieć, kto prawdopodobnie otrzyma profesurę: człowiek, któremu z punktu widzenia społeczeństwa należy się ona znacznie bardziej niż mnie i kiedy ją otrzyma, będę się z tego bardzo cieszył mimo pewnej przykrości. Nazywa się Einstein, studiował w tym samym czasie co ja, chodziliśmy razem na niektóre wykłady. (…) Ludzie z jednej strony odczuwają wyrzuty sumienia z powodu tego, jak go wcześniej potraktowano, z drugiej zaś strony skandal jest szerszy i dotyczy całych Niemiec: żeby ktoś taki musiał tkwić w biurze patentowym”.

Walter Ritz był w tym czasie Privatdozentem w Getyndze. Pochodził ze Sionu w Szwajcarii, ojciec, malarz pejzaży i scen rodzajowych, przyrodnik, geolog, etnograf i alpinista, zmarł w 1894 roku po długiej chorobie. Walter uczęszczał w tym czasie do liceum i uchodził za nader utalentowanego. W 1897 zaczął studia na politechnice w Zurychu, był więc o rok niżej niż Einstein. Ritz z początku miał być inżynierem, lecz zmienił wydział na nauczycielski (jak Einstein). Obaj chodzili na wykłady tych samych profesorów. Albert Einstein nie cieszył się jednak dobrą opinią: profesor fizyki Heinrich Weber uważał go za przemądrzałego i aroganckiego i nie miał najmniejszej chęci zostawiać go na uczelni. Weber nie był wybitnym uczonym, ale Politechnika miała znakomitych matematyków, wśród nich dwóch wielkich: Hermanna Minkowskiego i Adolfa Hurwitza. Einstein w tamtym okresie niezbyt pasjonował się matematyką, toteż i na wykłady chodził rzadko. Minkowski, który później stworzył matematyczne sformułowanie teorii względności, nie spodziewał się zbyt wiele po Einsteinie: „Byłem niezwykle zdumiony, gdyż wcześniej Einstein był zwykłym wałkoniem. O matematykę w ogóle się nie troszczył” [C. Seelig, Albert Einstein, s. 45]. Nie lepszą opinię miał zapewne Hurwitz, kiedy Einstein, nie mogąc nigdzie znaleźć pracy, w akcie rozpaczy, zwrócił się do niego o asystenturę, spotkała go milcząca odmowa, choć nie prosił o wiele: Politechnika stale potrzebowała asystentów do prowadzenia ćwiczeń i sprawdzania prac studenckich.

Znacznie wyżej oceniany był Walter Ritz. W roku 1901 wyjechał on na dalsze studia do Getyngi. Minkowski, który był w stałym kontakcie ze swym przyjacielem Davidem Hilbertem, pisał: „W następnym semestrze będziesz miał u siebie matematyka stąd, W. Ritza, który wykazuje dużo zapału, ale jak dotąd wyszukiwał sobie same nierozwiązywalne problemy”. [List do Davida Hilberta, 11 III 1901, Briefe an Hilbert, s. 139] Uniwersytet w Getyndze stał się w tamtych latach najważniejszym ośrodkiem matematycznym, nie brakowało tam także fizyków teoretycznych i doświadczalnych. Centrum stanowili Felix Klein i David Hilbert, dwaj przyjaciele i znakomici matematycy, wytyczający kierunki badań w swej ukochanej dziedzinie. Niedługo dołączyć miał do nich Hermann Minkowski. Walter Ritz uczęszczał na wykłady Hilberta, a także zaczął pracować nad doktoratem pod kierunkiem fizyka teoretycznego i znawcy twórczości Bacha, Woldemara Voigta. Oprócz ważnych nauczycieli poznał Ritz w Getyndze także wybitnych rówieśników. Zaprzyjaźnił się niemal od razu z Paulem Ehrenfestem, a także z Tatianą Afanasevą, Rosjanką, przyszłą żoną Paula, także studiującą fizykę. Ehrenfest był studentem Ludwiga Boltzmanna w Wiedniu i do Getyngi przyjechał, gdy Boltzmann wywędrował z Wiednia.

Doktorat Ritza dotyczył spektroskopii atomowej. Chodziło o wyjaśnienie obserwowanych serii widmowych. Np. częstości widzialnych linii wodoru opisać można wzorem Balmera:

\nu=N\left( \dfrac{1}{4}-\dfrac{1}{n^2} \right), \mbox{ gdzie } n=3,4, 5, \ldots

Stosując mianowniki typu (n+\alpha)^2 można było opisać także inne serie widmowe, np. metali alkalicznych. Serie częstości nasuwały myśl o falach stojących, a więc układzie przypominającym strunę albo membranę. Ładunek drgający z częstością \nu wysyła falę elektromagnetyczną o takiej właśnie częstości. W przypadku kwadratowej membrany równanie ruchu ma postać:

\dfrac{1}{v^2}\dfrac{\partial^2 f}{\partial t^2}=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}.

Jest to po prostu dwuwymiarowe równanie falowe (t,x,y są odpowiednio czasem i współrzędnymi kartezjańskimi w płaszczyźnie membrany, f opisuje wychylenie membrany, stała v jest prędkością fal w membranie). Łatwo stwierdzić, że dozwolone częstości własne opisane są wyrażeniem

\nu^2=A(n^2+m^2), \mbox{ gdzie }n,m=1,2,3,\ldots

Zakładamy tu, że krawędzie membrany pozostają cały czas nieruchome. Ritz spróbował znaleźć równania, które mogłyby opisać wzór Balmera i inne podobne przypadki. W przypadku wzoru Balmera odpowiednim równaniem okazało się

\partial_{t}^2\partial_{x}^4 \partial_{y}^4 f=B(\partial_{x}^2-\partial_{y}^2)^2 f.

Oznaczyliśmy tu pochodne cząstkowe po odpowiednich zmiennych przez \partial_{i}, gdzie i=x,y, t. Dobierając odpowiednio warunki brzegowe, udało się Ritzowi znaleźć także bardziej skomplikowane wzory na częstości linii widmowych. Równania te były wysokiego rzędu (tutaj dziesiątego), w dodatku o niespotykanej w fizyce postaci. Znak minus po prawej stronie oznacza, że zamiast laplasjanu (który wynika z symetrii obrotowej) do opisu membrany stosujemy pewne niestandardowe wyrażenie. Ritz pokazał, że jego równania wynikały z zasady wariacyjnej, formalnie więc były w porządku. Słabość tego podejścia tkwiła w braku jakiegokolwiek wyobrażenia drgającego atomu: po prostu bierzemy do obliczeń membranę, która nie może być czymś istniejącym w przyrodzie. Nikt wówczas nie miał pojęcia, jak wyglądają atomy, dopiero niedawno ustalono, że istnieją elektrony – naładowane cząstki o masie tysiące razy mniejszej niż masy atomów. Serie częstości w fizyce klasycznej odpowiadały zawsze falom stojącym, wystarczy pomyśleć o instrumentach muzycznych, które z punktu widzenia fizyka są rozmaicie zbudowanymi generatorami fal opartymi na falach stojących w strunie czy w słupie powietrza.

Model Ritza odniósł pewien sukces: przewidział, że w serii rozmytej potasu powinna istnieć linia widmowa odpowiadająca długości fali \lambda=6964 Å. W następnym roku, udało mu się tę linię zidentyfikować w widmie. Po doktoracie Ritz zaczął podróże naukowe: lato 1903 spędził w Lejdzie, gdzie słuchał wykładów H. Lorentza, potem znalazł się w Bonn, gdzie odkrył „swoją” linię potasu, w listopadzie pracował już w laboratorium profesora Aimé Cottona w École Normale w Paryżu. Zima paryska dała mu się we znaki, jakiś czas musiał spędzić w sanatorium w Sankt Blasien w Schwarzwaldzie. Gdy poczuł się lepiej, pojechał do Zurychu, aby wywołać swe klisze z widmami w podczerwieni naświetlone w Paryżu. Jakiś czas przemieszkał w Sion pod opieką matki. Lekarze zabraniali mu pracować, twierdząc, że to szkodzi jego zdrowiu. Zimą 1906/1907 pisał z Nicei do przyjaciela:

Zgodzi się pan ze mną, że nie mogę w takim stopniu co inni wierzyć w przyszłość, która miałaby mi wynagrodzić stan obecny. Pozostało mi zapewne niewiele czasu i jestem mocno zdeterminowany, aby spędzić go w środowiskach naukowych i intelektualnych, bo tylko tak znaleźć mogę zadowolenie i poczucie, że żyję, a może właśnie to stanowi warunek mojego wyzdrowienia? Drogi przyjacielu, nie mogę mieć nadziei ani na szczęście rodzinne, ani na dobre samopoczucie starego kawalera cieszącego się zdrowiem, pozostaje mi jedynie Nauka i życie intelektualne, i doprawdy nie mam siły zakopywać się tutaj w imię bardzo niepewnego celu.

Wrócił do pracy, zimę 1907/1908 spędził w Tybindze, gdzie współpracował z Friedrichem Paschenem, badającym eksperymentalnie widma pierwiastków. Ritz miał nowe pomysły na temat budowy atomu i mogli wymieniać się pomysłami oraz wynikami. Następnie wrócił do Getyngi, gdzie został Privatdozentem, choć nie prowadził zajęć ze względu na stan zdrowia. Henri Poincaré interesował się jego pracami i odwiedzając Getyngę, spotkał się z nim i ogłosił zamiar przyznania mu nagrody Lecomte’a przez francuską Akademię Nauk. Był to już ostatni rok życia Ritza.

Co robiło tak wielkie wrażenie na jego współczesnych? Badania nad seriami linii widmowych – po doktoracie Ritz zaproponował jeszcze jeden model atomowy: była to drgająca i obracająca się wokół osi naładowana struna. Także i ten model stanowić miał jedynie matematyczne uzasadnienie dla obserwowanych prawidłowości widm, nie mówił nic na temat np. własności chemicznych czy budowy wewnętrznej atomu. Próbował za pomocą swego modelu wyjaśnić anomalny efekt Zeemana: zjawisko rozszczepiania linii widmowych w silnym polu magnetycznym. Cząstkową teorię tego zjawiska podał Hendrik Lorentz, za co otrzymał wraz z Peterem Zeemanem Nagrodę Nobla w roku 1902. Teoria Lorentza nie opisuje jednak wszystkich obserwowanych przypadków, te niewyjaśnione objęto określeniem: anomalny efekt Zeemana – jak to często bywa, za normalne uznajemy to, co dobrze rozumiemy. Prace Ritza zawierały jeden istotny szczegół techniczny: częstości linii widmowych były w nich różnicami dwóch wyrażeń. W istocie chodzi o zasadę zachowania energii:

h\nu=E_{n}-E_{m}.

(Stała h jest stałą Plancka). Ritz nie napisał jednak takiego równania i uznałby je za bezsensowne. Jego rozważania opierały się na klasycznej teorii drgań i nie było w nich miejsca na fotony. Równanie takie znalazło się po raz pierwszy u Bohra, choć on także nie wierzył w fotony. Duński uczony sądził, że energie po prawej stronie określone były warunkami kwantowania (zawierającymi stałą Plancka – sygnał, że mamy do czynienia z fizyką kwantową), ale przejścia miedzy poziomami energetycznymi prowadziły do wysłania fali o energii danej powyższym równaniem. Sama postać tego równania, nawet jeśli nie rozumiemy różnych stałych, może być przydatna. Np. dodając stronami dwa takie równania otrzymać możemy:

\nu_{nm}+\nu_{mk}=\nu_{nk}.

Jest to związek między wielkościami obserwowanymi, mówi się w tym kontekście o zasadzie kombinacji, wcześniej zauważonej przez Janne Rydberga. Ritz znalazł dla tej zasady wyjaśnienie, choć fałszywe. Postęp w rozumieniu budowy atomów oraz wyjaśnieniu widm nastąpił dopiero za kilka lat, po odkryciu przez Ernesta Rutherforda jądra atomowego i sformułowaniu przez Nielsa Bohra znanego modelu, który stanowił przełom w badaniach. Sam Bohr opowiadał później, że o widmach dowiedział się z książki Johannesa Starka Prinzipien der Atomdynamik (cz. 2), gdzie znalazły się wzory Balmera, jak i informacje o różnych pracach na ten temat, m.in. Waltera Ritza. Z kolejnych teorii atomu szwajcarskiego fizyka nie zostało nic. Nie da się zbudować teorii atomu bez fizyki kwantowej.

Wyjaśnienie anomalnego efektu Zeemana udało się dopiero po wprowadzeniu pojęcia spinu elektronu w 1925 r. Nie wiemy, co Walter Ritz potrafiłby wnieść do tych prac, gdyby nadal żył. Wiemy natomiast, że musiałby zmienić podejście, bo tą drogą nie doszedłby do sukcesu. Widać jednak ambicję młodego fizyka, by zmierzyć się z jednym z najtrudniejszych problemów fizyki.

Jedynym fizykiem, który mógłby zapisać równanie na różnicę energii, był w tym czasie Einstein. Energia fotonu to był jego pomysł, traktowany przez kolegów jako aberracja. Ritz nie wierzył ani w prace kwantowe Einsteina, ani w teorię względności. Najwyraźniej on także nie traktował serio pomysłów kolegi ze studiów. Teoria względności zastępowała pojęcia czasu i przestrzeni jedną wspólną rozmaitością: czasoprzestrzenią, co zauważył Hermann Minkowski, który od roku 1902  pracował już w Getyndze. Nienaruszona była przy tym elektrodynamika Maxwella w postaci nadanej jej przez Hendrika Lorentza. Ritz wybrał inną drogę: też nie wierzył w eter i uznawał zasadę względności, ale postulował, aby zmienić elektrodynamikę. Jego podejście oznaczałoby zarzucenie koncepcji pola elektromagnetycznego. Elektrodynamika Ritza została jedynie zarysowana, byłaby ona teorią bardzo skomplikowaną matematycznie i nieelegancką. Gdy źródło światła się poruszało, to jego prędkość powinna się dodawać do c. Einstein dyskutował na temat elektrodynamiki z Ritzem, ogłosili nawet razem króciutki protokół rozbieżności w tej sprawie. Zdaniem Einsteina należy startować z pojęcia pola – cała jego dalsza kariera była z tym pojęciem związana.

Innym osiągnięciem Ritza było sformułowanie eleganckiej metody przybliżonej dla opisu drgań, za jej pomocą rozwiązał zagadnienie figur Chladniego.

Osiągnięcia Ritza są niepełne i niedokończone za sprawą choroby. Jednak w chwili śmierci Ritza i on, i Einstein mieli dorobek porównywalny ilościowo: jeden solidny, pięćsetstronicowy tom dzieł. Einstein ceniony był w Berlinie, gdzie pracowali Max Planck, Max Laue i Walther Nernst. Inni zachowywali dystans wobec jego prac i albo o nich nic nie wiedzieli, albo nie wiedzieli, co myśleć. Hermann Minkowski też niezbyt często wymieniał nazwisko Einsteina, może wciąż go pamiętał jako leniwego studenta? Ritz również zajmował się problemami fundamentalnymi i był chyba lepiej rozumiany przez kolegów. W jego przypadku doktorat był początkiem kontaktów z wieloma uczonymi, niewątpliwie działała tu opinia doktoratu z Getyngi, jeśli nie miał wprost jakichś listów polecających. Można się zastanawiać nad tym, jak potoczyłaby się kariera naukowa Einsteina, gdyby mniej zrażał ludzi do siebie i nie był taki arogancki? Przecież on także mógłby trafić do Getyngi i poddać się czarowi eleganckiej, choć częstokroć jałowej fizyki matematycznej. Pomogłoby mu to niewątpliwie w dalszej karierze, chyba że nie przekonałby Minkowskiego. Czy nie zaszkodziłoby mu to jednak w sensie naukowym? Ritz spędził sporo czasu w naukowym odosobnieniu z powodu choroby, ale był już mimo młodego wieku szanowanym uczonym i miał kontakty. Einstein był w tym czasie niemal całkowicie izolowany. Pracował osiem godzin dziennie w biurze przez sześć dni w tygodniu i zadowolony był, że mają z Milevą co jeść i że zostają mu wieczory oraz niedziele na pracę naukową. Opowiadał potem Infeldowi, że do trzydziestki nie widział prawdziwego fizyka teoretyka. Nie jest to prawda w sensie ścisłym, bo poznał np. Maksa Lauego, ale z pewnością zaczynał jako kompletny autsajder, który niemal wszystkiego nauczył się sam z książek i artykułów.

Do Getyngi trafił Einstein znacznie później, już jako samodzielny mistrz. Przedstawił tam swoją teorię grawitacji w czerwcu roku 1915. Skończyło się to zresztą dwuznacznym incydentem, gdyż praca ta spodobała się Hilbertowi, co miało ten skutek, że pod koniec roku obaj pracowali nad nią równolegle i mało brakowało, a Einstein zostałby pozbawiony satysfakcji postawienia kropki nad i, tzn. zapisania równań pola. W Getyndze bowiem uczeni nie mieli oporów przed korzystaniem z wyników kolegów, traktując je jako rodzaj dobra wspólnego. Nazywało się to u nich „nostryfikacją” cudzych wyników.

Prace Einsteina cechuje ogromna intuicja: zazwyczaj miał on dobre wyczucie, czego należy się trzymać i w którą stronę zmierzać. Tak było np. z polem elektromagnetycznym. Einstein wiedział, że teoria Maxwella ma ograniczenia kwantowe, ale samo pojęcie pola traktował jako fundament. Cenił bardzo dorobek Lorentza (znany mu wyłącznie z publikacji), który na Ritzu nie zrobił wielkiego wrażenia, mimo że znał jego autora. Einstein przed rokiem 1905 rozpatrywał możliwość innej elektrodynamiki, zgodnej z mechaniką Newtona, była ona podobna do późniejszej propozycji Ritza. Dlatego później nie tracił już czasu na koncepcje, które kiedyś odrzucił po starannym namyśle. Prawdopodobnie właśnie przez to, że Ritz był umysłem o wiele mniej rewolucyjnym, współcześni cenili go wyżej, osiągnięcia Einsteina od początku wydawały się kontrowersyjne, niektórzy wielcy uczeni, jak Henri Poincaré podchodzili do nich bardzo sceptycznie. Nie wiemy, jak rozwinąłby się Walter Ritz, gdyby wcześniej odkryto penicylinę, ale można przypuszczać, że był już ukształtowany intelektualnie i nie stać by go było na żaden rewolucyjny skok w nieznane. Teoretycy rzadko robią coś rewolucyjnego po trzydziestce, chyba że kontynuują coś, co już wcześniej sami zaczęli. Dorobek Einsteina z tamtych lat jest bardzo mało techniczny, nie ma tam właściwie wcale skomplikowanych obliczeń, są raczej proste rozumowania i pomysłowe argumenty. W porównaniu prace Waltera Ritza wydają się znacznie bardziej zaawansowane. A jednak: „Ten piękny wysiłek w porównaniu z geniuszem jest tym, czym urywany lot świerszcza w porównaniu z lotem jaskółki” (A. Camus).

Jak można odtworzyć wzór Balmera? Szukając rozwiązań w postaci sinusów wzdłuż x i y oraz o częstości \nu, otrzymamy (a jest długością boku kwadratu):

f(x,y,t)=A \sin \dfrac{n\pi x}{a}\sin\dfrac{m\pi y}{a}\sin 2\pi\nu t.

Drugie pochodne sprowadzają się teraz do mnożenia przez odpowiedni czynnik, podstawiając do równania Ritza, otrzymamy

\nu^2 m^4 n^4 \sim (n^2-m^2)^2,

skąd przy m=2 dostajemy wzór Balmera.

Ernst Chladni: czy można zobaczyć dźwięk? (1787)

Że przedsięwzięcie to, mianowicie doświadczanie natury, wywoływanie jej fenomenów, „kuszenie” jej przez ujawnianie jej działalności przy pomocy eksperymentów – że wszystko to jest już całkiem bliskie czarnoksięstwa, ba, należy już nawet do jego zakresu i samo jest dziełem „kusiciela”, było przeświadczeniem minionych epok; przeświadczeniem godnym szacunku, jeśli mam tu wyrazić swe zdanie. Chciałbym wiedzieć, jakimi oczami spoglądano by wówczas na owego człowieka z Wittenbergi, który (…) przed stu kilkudziesięciu laty dokonał był eksperymentu z widzialną muzyką, co i nam niekiedy pokazywano. Do nielicznych przyrządów fizycznych, jakimi rozporządzał ojciec Adriana, należała okrągła i w środku jedynie na kolcu swobodnie oparta szklana płyta, na której się ów cud dokonywał. Płyta owa była mianowicie posypana drobniutkim piaskiem i ojciec przy pomocy starego smyczka od wiolonczeli, którym po jej brzegu z góry na dół przeciągał, wprawiał ją w drgania, poruszany zaś piasek przesuwał się i układał w zdumiewająco precyzyjne a różnorakie arabeski i figury. Ta wizualna akustyka, w której oczywistość i tajemnica, prawo i osobliwość, nader uroczo wspólnie występowały, bardzo się nam, chłopcom, podobała… [Th. Mann, Doktor Faustus, przeł. M. Kurecka i W. Wirpsza]

Adrian Leverkühn, kompozytor, będący dwudziestowiecznym wcieleniem doktora Fausta, zaprawiał się w ten sposób w początkach muzycznego czarnoksięstwa. Nie były to sztuczki błahe, gdy pamiętać, że śmierć jest mistrzem z Niemiec – u ich końca znajdowały się zniszczona i spustoszona Europa oraz klęska zarówno tych, co popierali, jak i tych, co nie potrafili się przeciwstawić szaleńczym wizjom tysiącletniej Rzeszy. A człowiekiem z Wittenbergi (tam niegdyś przybił Marcin Luter do kościelnych drzwi swoje tezy o zepsuciu kościoła) był Ernst Florens Friedrich Chladni, prawnik i przyrodnik, któremu ojciec surowo zabronił zajmować się muzyką przed dziewiętnastym rokiem życia. Profesor prawa nie życzył sobie najwyraźniej, by syn zarabiał na życie publicznymi występami. Ojciec zmarł, a syn zarabiał na życie nie jako muzyk wprawdzie – na to było za późno, ale jako objazdowy przyrodnik demonstrujący rozmaite zjawiska akustyczne oraz instrumenty muzyczne własnej konstrukcji.

Pokaz Chladniego w salonie księcia Thurn und Taxis, Ratyzbona, 1800 r.

Public Domain Review

Owe Klangfiguren albo figury Chladniego przyniosły uczonemu sławę. Doszedł on do wielkiej biegłości w ich demonstrowaniu, przytrzymując palcami drgającą płytkę w odpowiednio dobranych miejscach. Pokaz ten fascynował publiczność w całej Europie znacznie bardziej niż wynalezione przez niego eufon i klawicylinder. W zasadzie Chladni nie był odkrywcą tego zjawiska, wspominał o czymś podobnym Leonardo da Vinci, a także Galileusz, który przytacza nie do końca wiarygodny opis doświadczenia, mającego wykazać związek długości fali drgania z wysokością dźwięku. Galileo, syn muzyka Vincenza, widział zapewne takie drgania, trudno to dziś przesądzić. Z fizycznego punktu widzenia chodzi o fale stojące, czyli drgania, których zależność przestrzenna jest ustalona: w pewnych miejscach amplituda jest większa, w innych spada do zera – te ostatnie tworzą w dwuwymiarowym przypadku linie węzłów (albo bardziej uczenie: linie nodalne). Przytrzymując płytkę w odpowiednich miejscach, można taką linię węzłów niejako „przytrzymać”.

Jednym ze szczytowych punktów kariery Chladniego były lata pobytu w Paryżu. Został tam w lutym 1809 roku przyjęty przez cesarza Francuzów Napoleona Wielkiego, który od czasu swoich studiów szkole artylerii żywił szczególne uznanie dla wiedzy fizycznej i matematycznej. Chladni otrzymał od cesarza subwencję na przetłumaczenie swego traktatu o akustyce na francuski. Cesarz raczył też ogłosić konkurs na matematyczną teorię owego zjawiska. Nagrodę 3000 franków przyznano ostatecznie, po pewnych perypetiach, w roku 1816 Sophie Germain, która z racji płci skazana była na pozostawanie na obrzeżach świata naukowego. Jej rozwiązanie nie było całkiem poprawne. Problem drgań poprzecznych dwuwymiarowej sprężystej płytki okazał się trudniejszy, niż początkowo sądzono. Dopiero w 1850 r. Gustav Kirchhoff rozwiązał to zagadnienie dla przypadku kolistej płytki. Rozwiązania przybliżone dla płytki prostokątnej podał Walter Ritz na początku wieku XX. Wbrew pozorom nie są to subtelności, które mogą zaciekawić jedynie matematyków. Jeden ze słynnych wypadków zawalenia się wiszącego mostu w Tacoma (USA) w r. 1940 związany był właśnie z drganiami przypominającymi figury Chladniego, a wywołanymi przez wiatr.

James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Od zasady najdłuższego czasu do równań Maxwella III

W poprzednich dwóch częściach rozpatrzyliśmy zasadę wariacyjną dla cząstki w polu, które okazało się elektromagnetyczne (przy okazji otrzymaliśmy siłę Lorentza) oraz zasadę wariacyjną dla pola elektromagnetycznego. Skoro zaszło się tak daleko, warto może pokazać jeszcze kilka prostych konsekwencji tego, co uzyskaliśmy. Dwa równania Maxwella (prawo Gaussa i prawo Ampère’a) mają u nas postać:

\partial^{\mu}F_{\mu\nu}=\mu_0 j_{\nu},\mbox{(1)}

gdzie j_{\nu}=(c\rho,-\vec{j}) jest czterowektorem gęstości ładunku oraz gęstości prądu; nie wprowadzaliśmy ich poprzednio, ponieważ ominęliśmy obliczenie wariacji lagranżianu oddziaływania pola z cząstkami, wyraz taki ma postać -\int j^{\mu}A_{\mu} d^{4}x. Jasne jest, że muszą pojawić się jakieś źródła: ładunki i prądy.

Dwa pozostałe równania Maxwella (prawo Faradaya oraz magnetyczny odpowiednik prawa Gaussa) wyglądają następująco:

\partial_{\mu}F_{\nu\rho}+\partial_{\rho}F_{\mu\nu}+\partial_{\nu}F_{\rho\mu}=0.\mbox{(2)}

Z równości tej otrzymujemy cztery równania skalarne, gdy trzy wskaźniki są różne. Jednak samo równanie jest prawdziwe dla dowolnego zestawu wskaźników, przy powtarzających się dostajemy tożsamościowo zero, np.

\partial_{0}F_{01}+\partial_{1}F_{00}+\partial_{0}F_{10}=0,

gdyż wyraz środkowy równy jest zeru, a dwa skrajne mają przeciwne znaki (bo F_{\mu\nu}=-F_{\nu\mu}).

Pokażemy trzy krótkie wnioski z równań zapisanych w tej postaci:

  1. Równania Maxwella w próżni sprowadzają się do równania falowego, a to znaczy, że pole elektromagnetyczne może wędrować w przestrzeni jako fala.
  2. Możemy zapisać te równania za pomocą czteropotencjału A_{\mu}.
  3. Spełniona jest zasada zachowania ładunku.

Ad 1 Obliczmy pochodną \partial^{\mu} z naszego równania (2):

\partial^{\mu}\partial_{\mu}F_{\nu\rho}+\partial^{\mu}\partial_{\rho}F_{\mu\nu}+\partial^{\mu}\partial_{\nu}F_{\rho\mu}=0.

Należy to sobie wyobrażać jako wzięcie pochodnej, a następnie wysumowanie po powtarzającym się wskaźniku. Dwa ostatnie wyrazy są w próżni równe zeru na mocy równania (1). Wyraz pierwszy to

\partial^{\mu}\partial_{\mu}=\dfrac{1}{c^2}\dfrac{\partial^2}{\partial t^2}-\dfrac{\partial^2}{\partial x^2}-\dfrac{\partial^2}{\partial y^2}-\dfrac{\partial^2}{\partial z^2}\equiv \square.

Taki operator nazywa się dalambercjanem (od Jeana Le Ronda d’Alemberta, który zajmował się jeszcze w XVIII wieku równaniem falowym) przez analogię do laplasjanu. Otrzymany wynik można więc krótko zapisać:

\square F_{\mu\nu}=0.

A więc teoria przewiduje fale w próżni.

Ad 2 Tensor pola wyraża się przez czteropotencjał następująco:

F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}.

Wartości pola elektromagnetycznego otrzymujemy przez różniczkowanie, więc jasne jest, iż wybór czteropotencjału nie jest jednoznaczny. Równanie (2) zapisane za pomocą czteropotencjału daje tożsamościowo zero:

\partial_{\mu}(\partial_{\nu}A_{\rho}-\partial_{\rho} A_{\nu})+\partial_{\rho}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})+ \partial_{\nu}(\partial_{\rho}A_{\mu}-\partial_{\mu}A_{\rho})=0.

Łatwo zauważyć, że mamy pary wyrazów różniących się tylko znakiem (kolejność różniczkowania wolno zawsze zmienić). W bardziej rozbudowanej matematycznie teorii jest to tzw. tożsamość Bianchiego (od matematyka włoskiego z przełomu XIX i XX wieku, pierwszy zresztą tę tożsamość zapisał Ricci-Curbastro, a potem odkrywana była jeszcze wiele razy na nowo). Wstawiając potencjał do równania (1), otrzymujemy

\partial^{\mu}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})=\square A_{\nu}-\partial_{\nu}(\partial^{\mu}A_{\mu})=\mu_{0}j_{\nu}.

Ostatnie równanie można uprościć, korzystając ze swobody cechowania. Możemy bowiem zażądać, żeby ostatni wyraz w nawiasie po lewej stronie był równy zeru. Ograniczamy w ten sposób dowolność wyboru czteropotencjału. Warunek ten nazywa się cechowaniem Lorenza (od duńskiego uczonego Ludwiga Lorenza, którego nie należy mylić z Holendrem Hendrikiem Lorentzem od transformacji Lorentza). Jeśli go nałożymy, to nasz czteropotencjał spełnia niejednorodne równanie falowe:

\square A_{\mu}=\mu_{0}j_{\mu}.

Tam gdzie nie ma ładunków ani prądów, otrzymujemy równanie falowe dla czteropotencjału. W tej formie równania Maxwella wyglądają więc następująco:

\begin{cases} \square A_{\mu}=\mu_{0}j_{\mu}\\ \partial^{\mu}A_{\mu}=0.\end{cases}

W tej postaci mamy tylko jedno równanie na czterowektor plus warunek cechowania. Czyli w istocie pole elektromagnetyczne nie potrzebuje sześciu składowych (po trzy dla pola elektrycznego i magnetycznego), wystarczą cztery, a nawet nieco mniej, ze względu na warunek cechowania, który ogranicza możliwości.

Ad 3 Ostatni punkt: zasada zachowania ładunku. Wynika ona z równania (1), gdy weźmiemy jego pochodną:

\partial^{\nu}\partial^{\mu}F_{\mu\nu}=0=\mu_{0} (\partial^{\nu}j_{\nu}).

Pierwsza równość pochodzi stąd, że pochodne możemy przestawiać bez zmiany znaku, natomiast tensor F_{\mu\nu} jest antysymetryczny. Tak przy okazji, nazywa się często F_{\mu\nu} tensorem Faradaya, oczywiście Michael Faraday nie miał pojęcia o tensorach, odkrył jednak, że zmienne pole magnetyczne generuje pole elektryczne. Ostatnie wyrażenie to uogólnienie dywergencji na cztery wymiary:

\dfrac{\partial\rho}{\partial t}+\nabla\cdot\vec{j}=0.

Ostatnie równanie znaczy tyle, że jeśli w danym punkcie prąd wypływa, to gęstość ładunku musi odpowiednio maleć. Ładunek jest zachowany, i to lokalnie: aby wypłynął z danej objętości, musi przeciąć powierzchnię, która tę objętość ogranicza. Jeśli był, a teraz go nie ma, to znaczy, że musiał przejść przez granicę.

Równania Maxwella zapisane jak wyżej nie tylko wyglądają prościej, ale wskazują jawnie, że teoria jest relatywistycznie kowariantna, tzn. zgodna z teorią względności. To nie koniec zalet takiego podejścia: okazuje się, że w teorii grawitacji Einsteina postać równań Maxwella jest właściwie taka sama.

Międzynarodowa Wystawa Elektryczna w Paryżu (1881)

W 1831 roku Michael Faraday odkrył zjawisko indukcji elektromagnetycznej, tzn. sposób wytwarzania prądu elektrycznego ze zmiennego pola magnetycznego. Było to odkrycie ogromnej wagi teoretycznej, ujawniając nieznane dotąd powiązania w przyrodzie. Pytano nawet wtedy Faradaya, jaki jest pożytek z jego odkrycia. Odpowiedział tak, jak wcześniej Benjamin Franklin: A jaki jest pożytek z nowo narodzonego dziecka?

Pięćdziesiąt lat później, w roku 1881, sensacją Paryża stała się wielka międzynarodowa wystawa poświęcona wyłącznie elektryczności. Zwiedziło ją od sierpnia do listopada ponad 750 000 widzów. Znanym i od lat powszechnie stosowanym wynalazkiem był telegraf, produkcja rozmaitych urządzeń z nim związanych i łączenie coraz to nowych miejscowości liniami telegraficznymi stanowiło impuls do powstania całego przemysłu. Pod koniec lat siedemdziesiątych pojawiły się jednak zupełnie nowe zastosowania. Jednym z nich był telefon, opatentowany w roku 1876 przez Alexandra Grahama Bella i szybko zdobywający sobie popularność. W roku 1881 w Paryżu było około trzystu abonentów tej usługi. Dzięki wystawie wynalazek zdobył ogromną popularność, pokazywano tam m.in. „teatrofon”, tzn. muzyczną transmisję teatralną na żywo, której można było słuchać przez słuchawki. Powszechnie zachwycano się znakomitą jakością dźwięku, pozwalającą rozpoznać artystów po głosie, a nawet usłyszeć szmer na widowni.

Telefony wykorzystywały istniejące już linie telegraficzne, mogły więc stosunkowo szybko się rozwijać. Gości paryskiej wystawy woził elektryczny tramwaj konstrukcji Siemensa, ilustrując jeszcze jedną z możliwości nowej technologii.

Zaprezentowano też różne rodzaje lamp elektrycznych. Coraz szerzej wprowadzano lampy łukowe, w których źródłem światła było ciągłe wyładowanie elektryczne pomiędzy dwiema elektrodami węglowymi. Oślepiająco jasne z bliska, nie nadawały się one do zastosowań domowych, mogły jednak służyć do oświetlania miejsc publicznych. Trzy lampy Siemensa na wystawie w Paryżu zdołały oświetlić teren pół hektara, dając światło niczym podczas pełni księżyca. Chwalono oświetlenie tego rodzaju w teatrach: powietrze było czystsze i nie było tak duszno jak przy oświetleniu gazowym. Często łączono oświetlenie gazowe z elektrycznym: w Operze Paryskiej oprócz gazowych kandelabrów umieszczono też plafony z kręgami „elektrycznych diamentów”. Jednym z popularnych wtedy rozwiązań były tzw. świece Jabłoczkowa; w lampach tych elektrody węglowe ustawione były równolegle do siebie, dzięki czemu spalając się podczas świecenia, skracały się równomiernie i łuk elektryczny był stale tej samej długości. Umieszczano je w matowych kloszach, by nie raziły wzroku.

W latarniach zastosowanych w Paryżu i Londynie jedna świeca Jabłoczkowa starczała na półtorej godziny, instalowano je w zestawach po sześć w jednej latarni, otrzymując w ten sposób dziewięć godzin świecenia.
Innym wynalazkiem oświetleniowym, który pojawił się niemal jednocześnie w różnych wersjach była żarówka. Amerykanie Thomas Alva Edison i Hiram S. Maxim oraz Anglik sir Joseph Wilson Swan zaprezentowali w latach 1879-1880 swoje odmiany wynalazku, trwał wyścig w ulepszaniu technologii oraz w ich opatentowywaniu.

Głównym trudnością było wytworzenie cienkiego włókna, które mogło się równomiernie żarzyć przez dłuższy czas. Początkowo stosowano włókna węglowe, później zaczęto używać metali takich, jak tantal, osm czy wolfram.

Etapy produkcji włókna węglowego z bambusa japońskiego oraz produkcji samej żarówki, najlepsze egzemplarze świeciły wówczas do 1200 godzin (technologia Th. A. Edisona)

Żarówki dawały żółtoczerwone, niezbyt silne światło odpowiednie do zastosowań domowych. Rosnące zapotrzebowanie na prąd elektryczny wymagało budowy elektrowni i linii przesyłowych, z początku niewielkich i na skalę lokalną. Można było oczekiwać, że nowa technologia rozpowszechni się i stworzy cały rynek związany z produkcją oraz instalacją urządzeń: od generatorów i mierników, przez okablowanie i produkty końcowe w rodzaju lamp czy silników elektrycznych. Duże firmy europejskie i amerykańskie starały się rozwijać całe zespoły uzupełniających się urządzeń, tak aby dotrzeć do odbiorcy końcowego i obniżyć koszty jednostkowe. Nawet Edison myślał jednak zbyt zachowawczo, ponieważ tworzył urządzenia na prąd stały, których można było używać niedaleko od miejsca wytworzenia prądu. Chciał elektryfikować dzielnice, co w pierwszych latach było nowatorskie, ale potem okazało się, że opłaca się budowa wielkich sieci i oddalonych od siebie dużych elektrowni. Wygrał prąd zmienny, który można transformować, zmniejszając straty podczas przesyłania.

Generator Edisona z Wystawy Paryskiej (moc 120 KM zapewniała maszyna parowa, masa urządzenia 17 t, wirowało 325 obrotów na minutę, pozwalając na pracę 1000 żarówek jednocześnie).

Jak czuli się ludzie, stając po raz pierwszy wobec tak wielkich przeobrażeń świata wokół nich? Henry Adams, amerykański historyk, potomek dwóch prezydentów, opisał swoje wrażenia z Wystawy światowej w Paryżu w roku 1900:

„Aż do zamknięcia Wielkiej Wystawy w listopadzie roku 1900, Adams wciąż ją odwiedzał, boleśnie pragnąc wiedzy, niezdolny jednak jej znaleźć. Pragnąłby wiedzieć, ile potrafiłby z niej zrozumieć najlepiej poinformowany człowiek na świecie. Kiedy tak rozmyślał nad chaosem, przypadkiem spotkał Langleya, który go po niej oprowadził. Na życzenie Langleya Wystawa zrzuciła zbędne szatki i ukazała nagą skórę, ponieważ Langley wiedział, co należy studiować, a także dlaczego i w jaki sposób, podczas gdy Adams mógłby równie dobrze stać całą noc na dworze i gapić się na Drogę Mleczną. A przecież Langley nie powiedział niczego nowego ani nie nauczał niczego, czego by się nie można było nauczyć trzysta lat temu od lorda Bacona. (…) Najbardziej zdumiewającą cechą edukacji jest to, jak wielką ilość ignorancji udaje się w niej zmieścić pod postacią martwych faktów. Adams oglądał większość z owych magazynów sztuki zwanych muzeami, a jednak nie wiedział, jak patrzeć na eksponaty artystyczne z roku 1900. Z głęboką uwagą studiował Karola Marksa i jego doktryny dotyczące historii, lecz nie potrafił ich zastosować w Paryżu. Langley z łatwością wielkiego mistrza eksperymentu odsuwał na bok każdy przedmiot, który nie odsłaniał nowego zastosowania siły, a więc w naturalny sposób odrzucał każde niemal dzieło sztuki. Podobnie jak ignorował niemal wszystkie produkty przemysłowe. Prowadził swego ucznia prosto do sił. Głównym przedmiotem jego zainteresowania były nowe silniki, które mogłyby znaleźć zastosowanie w jego statkach powietrznych i uczył Adamsa zadziwiających subtelności o nowym silniku Daimlera i automobilu, który od 1893 roku, przy szybkości 100 kilometrów na godzinę, stał się koszmarem niemal tak samo destrukcyjnym jak tylko o dziesięć lat od niego starszy elektryczny tramwaj i który mógł stać się równie straszny jak lokomotywa parowa, która była niemal w tym samym wieku co Adams.

Następnie pokazał swemu studentowi wielką halę silników, wyjaśniając mu, jak niewiele sam wie na temat elektryczności oraz wszelkich innych sił, a nawet na temat Słońca, które wypluwa z siebie trudną do pojęcia ilość ciepła i które według jego najpewniejszej wiedzy mogłoby jej wypluwać mniej albo więcej w dowolnym czasie. Dla niego silnik był tylko pomysłowym kanałem służącym do przekazania gdzie indziej ciepła utajonego w paru tonach kiepskiego węgla schowanego w brudnej maszynowni starannie ukrytej przed wzrokiem. Dla Adamsa wszakże silnik stał się symbolem nieskończoności. W miarę jak przywykał do wielkiej galerii maszyn, zaczynał postrzegać czterdziestostopowe silniki jako siłę moralną, taką jaką wczesnym chrześcijanom wydawał się krzyż. Nawet glob ziemski robił mniejsze wrażenie w swoim staromodnym miarowym obrocie rocznym czy dziennym niż to ogromne koło obracające się na wyciągnięcie ręki z zawrotną szybkością i niemal bezgłośnie, buczące swoje ledwie słyszalne ostrzeżenie, by trzymać się o włos dalej z respektu dla jego mocy, lecz tak cicho, że nie zbudziłoby dziecka śpiącego na jego obudowie. W końcu zaczynało się do niego modlić, jak uczył odziedziczony instynkt, taką postawę powinien człowiek przyjąć wobec milczącej i nieskończonej siły. Wśród tysięcy symboli ostatecznej energii silnik nie był może znakiem najbardziej ludzkim, lecz z pewnością najbardziej ekspresyjnym”.

Samuel Pierpoint Langley był fizykiem, astronomem i jednym z pionierów lotnictwa.

Czy Einstein zapowiadał się na geniusza? (1879-1894)

„Nie mam żadnych szczególnych uzdolnień. Cechuje mnie tylko niepohamowana ciekawość”.
Einstein napisał te słowa w liście do swego przyszłego biografa Carla Seeliga w roku 1952, a więc mając już przeszło siedemdziesiąt lat i spoglądając wstecz na całe minione życie. Nie sądzę, by powodowała nim skromność, raczej przedstawił trzeźwy osąd własnego talentu. Przez te lata znał wielu ludzi bardzo wybitnych, niektórych wręcz genialnych, miał więc skalę porównawczą. Nie był dużym dzieckiem, jakim się go – zwłaszcza dawniej – przedstawiało: oto geniusz zachowujący dziecięcą prostotę w świecie dorosłych, ktoś, kto potrafi, nic sobie nie robiąc ze społecznych ani filozoficznych konwencji, spojrzeć inaczej na kwestie tak fundamentalne, jak czas i przestrzeń. Dziecko z baśni Andersena, które woła: król jest nagi.

Rozwijał się dość szybko, nie miał jednak nic z wunderkinda. Mówił powoli, z rozwagą, zastanawiał się nad swymi odpowiedziami, nie miał powierzchownej łatwości i szybkiego refleksu, które często brane są za oznaki zdolności. Dorastał w zamożnej rodzinie. Dom w Monachium, niedaleko za bramą miejską, otoczony ogrodem i wygodny, stanowił miejsce jego pierwszych zabaw. Nawet zabawki były po mieszczańsku solidne: kamienne klocki firmy Anker, miniaturowa maszyna parowa podarowana przez wuja. Zadziwił go jednak kompas, którego igła uparcie trzymała się jednego kierunku, podlegając jakiejś niewidzialnej sile – dobry początek dla kogoś, kto całe życie poświęci teorii pola.

Grająca na fortepianie matka zauważyła, że ma słuch muzyczny. Zaczął więc przychodzić nauczyciel gry na skrzypcach, chłopiec uczył się, choć bez zapału. W szkole nie błyszczał, ale nauka przychodziła mu łatwo. Katolicka szkoła podstawowa wpłynęła na Alberta w nieoczekiwany sposób. Musiał tam uczyć się religii, szło mu to na tyle dobrze, że podpowiadał nawet katolickim kolegom. Jego rodzice, choć niezwiązani z religią i nie uczęszczający do synagogi, poczuli się w obowiązku zapewnić Albertowi dla równowagi lekcje judaizmu. W rezultacie Albert stał się niezwykle pobożny, przestał jeść wieprzowinę, układał hymny do Pana, które śpiewał sobie po drodze do szkoły. Tolerancyjni rodzice nie bardzo wiedzieli, co z tym począć. Ujawniła się w ten sposób istotna różnica między Albertem a jego ojcem, Hermannem, który lekceważąco wypowiadał się o żydowskiej religii, traktując ją jako nagromadzenie przesądów. Być może doszła tu do głosu różnica pokoleniowa: Hermann pragnął asymilacji i zatarcia różnic kulturowych, Albert natomiast wcześnie zdał sobie sprawę, że jako Żyd skazany jest w niemieckim społeczeństwie na alienację – zawsze bowiem będzie kimś obcym. Nie zetknął się w tym czasie z poważniejszymi przejawami antysemityzmu, nauczyciele starali się zachować neutralność, choć chłopcy, zwłaszcza w szkole podstawowej, przynosili z domu niechęć i lekceważenie wobec Żydów, objawiające się dokuczaniem i zaczepkami. Nie można wykluczyć, że religijność Alberta miała w sobie także motyw obronny. Nie tylko nie zaczął wstydzić się swego pochodzenia, lecz wręcz przeciwnie, pragnął je zaakcentować.

Wiara Alberta nie dotrwała do bar micwy, nim skończył trzynaście lat, jego nową wiarą stała się nauka. Zainteresowania naukowe Alberta jeszcze bardziej oddaliły go od szkoły. Uczęszczał teraz do klasycznego Gimnazjum Luitpolda. Rodzice chcieli, aby zdobył najlepsze wykształcenie. W ówczesnej Europie najbardziej prestiżowymi szkołami były gimnazja klasyczne, w których połowę czasu zajmowały łacina i greka. Wierzono, że czas spędzony nad językami klasycznymi służy rozwojowi umysłu, stanowiąc swego rodzaju gimnastykę mózgu. Ponadto warstewka kultury klasycznej pozwalała od razu poznać, kto przeszedł edukację tego rodzaju. „Najbardziej zdumiewającą cechą edukacji jest to, jak wielką ilość ignorancji udaje się w niej zmieścić pod postacią martwych faktów” (Henry Adams). Jak się zdaje, jedyne co Albert zawdzięczał szkole to lekcje niemieckiego w szóstej klasie gimnazjum. Zainteresowanie Goethem zostało mu na całe życie. Nie nauczył się natomiast w szkole niczego z matematyki i fizyki.

Zwrot w kierunku nauki nastąpił pod wpływem osobliwej przyjaźni Alberta z przychodzącym do nich na obiady studentem medycyny z Polski, Maksem Talmudem. Chłopiec zapalił się do materializmu filozoficznego w stylu Georga Büchnera (nb. lekarza), który głosił, iż istnieje tylko siła i materia. Dzięki popularnym książkom Aarona Bernsteina zapoznał się z podstawami chemii, astronomii, fizyki, biologii. Bernstein, syn rabina z Gdańska, głosił pochwałę ludzkiego rozumu, nie był jednak ateistą jak Büchner.

Bardzo ważnym doświadczeniem Alberta stało się zetknięcie z geometrią. Częściowo dokonało się to dzięki rozmowom ze stryjem Jakobem, inżynierem, częściowo wpływ miał Max Talmud, przynosząc chłopcu odpowiednie książki. Zanim jeszcze ujrzał pierwszy podręcznik geometrii, udało mu się wykazać twierdzenie Pitagorasa.

Zauważył (po dłuższym zastanawianiu się nad tym problemem), że wysokość opuszczona z kąta prostego dzieli trójkąt na dwa mniejsze i podobne trójkąty. (Pojęcie podobieństwa trójkątów uznał za oczywiste. Zatem ich pola powierzchni są proporcjonalne do kwadratu długości przeciwprostokątnych, czyli kc^2=ka^2+kb^2, gdzie k jest wspólnym współczynnikiem proporcjonalności). Tym, co zrobiło na Einsteinie ogromne wrażenie, były nie tyle rozmaite twierdzenia, ile sam fakt, że można owe twierdzenia udowodnić, wychodząc z pewnych postulatów. Chodziło zatem o metodę postępowania, nie wyniki. Pierwszy swój podręcznik geometrii opisywał potem Einstein jako „świętą książeczkę”. Dziś zaniedbuje się nauczania geometrii, niewielu więc uczniów ma podobne doświadczenia. Klasyczna geometria nadaje się zresztą nadzwyczajnie do tego, by pokazać na czym polega prawdziwa matematyka, ponieważ już na poziomie szkolnym łatwo znaleźć zadania, które mogą stanowić wyzwanie intelektualne, a zarazem możliwe do rozwiązania bez wielkiej wiedzy i szczególnych technik.

Geometria Euklidesa była pierwszą historycznie dziedziną sformułowaną w sposób aksjomatyczny. Pewność takiej metody dedukcyjnej robiła wrażenie na wielu uczonych w przeszłości. Wielu też starało się tę metodę naśladować w innych dziedzinach, np. Kartezjusz albo Newton. Albert dopiero z czasem zdał sobie sprawę, że aksjomaty geometrii nie są bynajmniej oczywiste, tak samo jak i jej rezultaty. Przyjmując pewien zestaw aksjomatów, otrzymujemy teorię pewnego typu – nie ma jednak żadnych przesłanek, oprócz logicznej niesprzeczności, aby przyjąć ten zestaw aksjomatów raczej niż inny. Gdy zajmujemy się matematyką, kryterium wyboru może stanowić to, czy powstała teoria jest ciekawa, czy wiąże się z innymi teoriami matematycznymi itd. Fizyk musi wybrać postulaty, które nie prowadzą do sprzeczności z doświadczeniem.

Albert robił szybkie postępy w matematyce. W wieku piętnastu lat przerobił już podręcznik rachunku różniczkowego i całkowego H.B. Lübsena (jego autor sam był samoukiem, który okazał się dobrym nauczycielem). Einstein umiał dużo, jak na ówczesnego nastolatka, w przyszłości miał się nauczyć jeszcze więcej. Nie to jednak przesądziło o jego późniejszych osiągnięciach. Najważniejsza była ciekawość w połączeniu z upartym charakterem.

Zetknął się wcześnie z najnowocześniejszą wtedy techniką: elektrycznością. Stryj i ojciec prowadzili do spółki firmę produkującą generatory elektryczne, fabryka była nieopodal domu, Albert bywał tam często, wiedział, jak działają różne urządzenia, widział na ich przykładzie, jak niewidzialne siły pola elektromagnetycznego można przesyłać przewodami, jak można ich energię wykorzystać do oświetlenia albo do rozmów telefonicznych. Rozumiał technikę, ale nie upajał się jej osiągnięciami, dość szybko zauważył, że interesują go zasady działania tych urządzeń, a nie ich praktyczna realizacja czy ewentualne zyski. Ciekawość Alberta kierowała się ku fundamentalnym wyjaśnieniom, miała charakter teoretyczny.
Po rozczarowaniu religijnym, kiedy zrozumiał, że biblijne przypowieści nie mogą być prawdziwe w sensie dosłownym i że istniejące religie stanowią przedłużenie władzy państwowej, służąc raczej spętaniu jednostek niż ich wyzwoleniu, zaczął krytycznie obserwować wszystkich wokół: rodziców, nauczycieli gimnazjalnych. Jego cierpki krytycyzm potrafił ranić, a jego pewny siebie uśmieszek doprowadzał niektórych do wściekłości. Dawał odczuć, że jego prawdziwy świat znajduje się gdzie indziej i że jego królestwo niewiele ma wspólnego z codziennymi zabiegami i staraniami ludzi, którzy nie potrafią go dosięgnąć. Nie wiemy, kiedy dokładnie postanowił, że nie zostanie inżynierem – czy było to przed, czy raczej wskutek niepowodzeń ojca w interesach. Mała fabryczka braci Einstein nie miała szans w konkurencji z gigantami takimi, jak Siemens czy AEG (kapitał 20 milionów marek).

Po kolejnym niepowodzeniu bracia postanowili przenieść się do Włoch. Albert miał zostać w Monachium: czekały go jeszcze trzy lata gimnazjum, dopiero wtedy mógł zdać maturę i myśleć o uniwersytecie.

Ci, którzy go znali, pamiętali jego śmiech przypominający szczekanie foki. Philipp Frank pisał: „[Einstein] widział sprawy codzienne w nieco komicznym świetle i coś z tego nastawienia wyzierało z jego słów; jego poczucie humoru rzucało się w oczy. Kiedy ktoś powiedział coś zabawnego, intencjonalnie albo niechcący, Einstein reagował bardzo żywiołowo. Wydobywający się z głębi jego jestestwa śmiech był jedną z jego charakterystycznych cech, które natychmiast zwracały uwagę. Dla ludzi dookoła był ów śmiech źródłem radości i ożywienia. Czasem jednak dawało się w nim wyczuć krytycyzm, który nie każdemu przypadał do gustu. Ludziom o wysokiej pozycji społecznej niezbyt się podobało, że Einstein uważa ich świat za śmiechu warty w porównaniu z wielkimi problemami, którymi sam się zajmuje. Jednak ludzie o niższej pozycji społecznej czerpali zawsze przyjemność z obcowania z Einsteinem. Jego sposób prowadzenia rozmowy sytuował się gdzieś między dziecinnymi żartami a gryzącym szyderstwem, tak że niektórzy nie wiedzieli, czy powinni się śmiać, czy obrazić. (…) Toteż wrażenie, jakie Einstein wywierał na otoczeniu, oscylowało między dziecinną wesołością a cynizmem”.

Albert zamknął się w swoim świecie fizyki, matematyki, wyobraźni i pojęć, nauczył się też skutecznie go chronić, zaczął prowadzić coś w rodzaju podwójnego życia. W tym ważniejszym, niedostępnym dla innych, rządziła ciekawość, inżynierska dociekliwość: jak to jest zbudowane i jak działa. Jego ciekawość skierowana była wszakże w stronę, by tak rzec, euklidesową: w stronę poszukiwania zasad, na których opiera się świat. Zapewne ta ogromna ciekawość sprawiła, że spędził lata i dziesiątki lat na zastanawianiu się nad fizyką. Kiedy mówimy o uporze albo wytrwałości, akcentujemy cechy charakteru ważne, ale w jakiś sposób wtórne. W jego przypadku wytrwałość była dopełnieniem ciekawości, była napędzana kolejnymi pytaniami, jakie się wyłaniały w miarę znajdywania odpowiedzi na poprzednie pytania. Jego siostra Maja zapamiętała, że w dzieciństwie Albert cierpliwie budował domki z kart, osiągające nawet czternaście kondygnacji. Jakby już wtedy ujawniła się jego wielka cierpliwość oraz pogodna łatwość burzenia i zaczynania od nowa.

A co ze światem ludzi i jego wymaganiami? Wszyscy musimy w jakimś stopniu brać udział w jego oczekiwaniach i rytuałach. Albert nie nadawał się na buntownika, był na to zbyt racjonalny. Nauczył się jednak chronić swą wewnętrzną niezależność – i ta umiejętność odegrała wielką rolę w jego życiu naukowym. Pierwszą oznaką owej niezależności stał się banalny konflikt szkolny. W siódmej klasie gimnazjum pojawił się nowy wychowawca, doktor Joseph Degenhart. Podobnie jak inni nauczyciele w tym gimnazjum był człowiekiem dobrze wykształconym. Uczył greki, do której Albert nie pałał wielkim entuzjazmem, jak zresztą do wszelkiej nauki pamięciowej. Miał on bowiem zawsze tę wadę inteligentnych ludzi, że trudno go było zmusić do robienia czegoś, co uważał za bezsensowne. Nie znamy szczegółów konfliktu między Degenhartem i Einsteinem. Prawdopodobnie wychowawca starał się klasie zaszczepić współzawodnictwo w nauce greki, chciał, by uczniowie w zdyscyplinowany sposób podążali za nim, niczym za swoim dowódcą – porównanie bynajmniej nie nonsensowne – szkoły starano się zmilitaryzować, zaprowadzając dyscyplinę i ćwicząc w cnocie posłuszeństwa wobec przełożonych. Degenhart napotkał opór ze strony Alberta. Uczeń nie miał zamiaru spędzać zbyt wiele czasu nad greką, traktował ten przedmiot jako zło konieczne. Zirytowany Degenhart pozwolił sobie na publiczną uwagę, że z Einsteina nic nie będzie. Piętnastolatek odwzajemnił mu się milczącym szyderstwem. Ta psychomachia trwała jakiś czas, aż w końcu oznajmiono mu, że powinien zmienić szkołę, gdyż sama jego obecność podrywa autorytet profesora wobec klasy. Wkrótce Einstein zdobył zaświadczenie lekarskie, iż powinien odpocząć z powodu wyczerpania nerwowego i opuścił na zawsze szkołę oraz Monachium. Nie chciał mieszkać w Niemczech, nie chciał być dłużej obywatelem królestwa Wirtembergii (jakim był z racji urodzenia w Ulm) i nie chciał służyć w niemieckiej armii. „Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby”. Nie przypuszczał wtedy, iż kiedykolwiek wróci do Niemiec, choć wiedział przecież, ile znaczy niemiecka nauka i niemieckie uniwersytety. W szkolnych latach Einsteina na uniwersytecie w Monachium wykładał najwybitniejszy ówczesny fizyk, Ludwig Boltzmann, co oczywiście nie miało jeszcze żadnego znaczenia dla ucznia gimnazjum. Jednak już za niewiele lat Einstein miał twórczo rozwinąć prace Boltzmanna. Psychologowie podają regułę dziesięciu lat: tyle mniej więcej trzeba, aby ktoś zdolny doszedł do mistrzostwa w trudnej wyspecjalizowanej dziedzinie, jak gra w szachy, gra na instrumencie albo fizyka. Albert Einstein był na początku swojej dekady pogłębiania wiedzy i odkrywania jej dla siebie.

Porzucenie szkoły dwa i pół roku przed maturą nie było rozważne, decyzję podjął sam, nie uprzedzając o niej rodziców. Ale tak samo mało „rozważne” były niemal wszystkie prace Einsteina. Nigdy nie dążył do łatwo osiągalnego celu. Nie zadowalały go kompromisy i częściowe sukcesy, tak jak nie przejmował się tym, co inni sądzą na temat jego osoby czy pracy. Właśnie ta silna osobowość w połączeniu z ciekawością zapowiadała w nim kogoś nietuzinkowego. W owym czasie ani on sam, ani nikt inny nie mógł przepowiedzieć, jak bardzo niezwykłe będzie twórcze życie Einsteina. „Wielkość naukowa jest w zasadzie kwestią charakteru. Najważniejsze to nie iść na zgniłe kompromisy”.