Skąd się bierze Maxwellowski rozkład prędkości cząsteczek w gazie doskonałym?

James Clerk Maxwell podał w roku 1859 postać rozkładu prawdopodobieństwa prędkości cząsteczek w gazie doskonałym. Okazuje się, że prawdopodobieństwo, iż np. x-owa składowa prędkości losowo wybranej cząsteczki należy do przedziału (x, x+dx) równe jest

p(x)dx=C\exp(-\alpha x^2)dx,

gdzie C jest stałą normalizacyjną (wybraną tak, aby prawdopodobieństwo zdarzenia pewnego było równe 1). Jest to słynny rozkład Gaussa, zwany też rozkladem normalnym, gdyż pojawia się on w najróżniejszych kontekstach.

Składowa x-owa prędkości danej cząsteczki zmienia się wskutek zderzeń z innymi cząsteczkami w sposób przypadkowy i w rezultacie opisywana jest takim rozkładem o kształcie dzwonu. Jeśli całkowita energia gazu jest stała, to stała jest także suma kwadratów wszystkich prędkości:

E=\dfrac{m{\vec{v}_1}\,^2}{2}+\ldots+\dfrac{m\vec{v}_N\,^2}{2}=const.

(m jest masą cząseczki gazu). Kwadrat każdego wektora jest sumą trzech kwadratów jego współrzędnych. Oznaczając więc wszystkie składowe wszystkich prędkości cząsteczek gazu jako x_1,x_2, \ldots, x_{3N}, mamy 3N-wymiarową przestrzeń prędkości. Warunek stałości energii przyjmuje postać:

x_1^2+x_2^2+\ldots+x_{3N}^2=R^2,

co geometrycznie oznacza, że koniec wektora prędkości Y=[x_1, x_2,\ldots, x_{3N}] leży na powierzchni sfery S^{3N-1} o promieniu R (sfera ma o jeden wymiar mniej niż przestrzeń).

Aby wyprowadzić rozkład Maxwella, przyjmijmy najprostsze założenie: każde położenie końca wektora Y na sferze jest jednakowo prawdopodobne.

Szukamy teraz rozkładu prawdopodobieństwa którejkolwiek pojedynczej składowej np. x\equiv x_1 (jest ona jednocześnie x-ową składową prędkości cząsteczki nr 1). W przypadku sfery S^2 możemy to narysować.

Prawdopodobieństwo, że x bedzie leżeć w cienkim pasie sfery zaznaczonym na rysunku jest proporcjonalne do pola powierzchni pasa sferycznego równej iloczynowi długości razy szerokość:

\Delta S=2\pi R\sin\vartheta \times R\Delta \vartheta.

Sumując pola powierzchni takich pasów, czyli całkując, otrzymamy wzór na pole powierzchni sfery S^2:

S_2(R)={\displaystyle \int_{0}^{\pi} 2\pi R^2 \sin\vartheta d\vartheta}=4\pi R^2.

Prawdopodobieństwo znalezienia końca wektora Y w pasie sferycznym byłoby w takim razie równe ilorazowi obu tych wielkości

p(\vartheta)\Delta\vartheta=\dfrac{2\pi R \sin\vartheta}{4\pi R^2}\times R\Delta\vartheta= \dfrac{S_1(R\sin\vartheta)}{S_2(R)} R\Delta \vartheta.

Szerokość naszego pasa jest zarazem „polem” sfery S^1, tzn. długością okręgu o promieniu R\sin\vartheta (co widać z rysunku). Dla trójwymiarowego wektora Y rozkład ten nie jest szczególnie interesujący. Fizycznie odpowiadałby jednocząstkowemu gazowi doskonałemu. Prędkość tej jednej jedynej cząsteczki przyjmuje z równym prawdopodbieństwem dowolny kierunek w przestrzeni. Długość wektora jest określona przez energię tej cząstki.

Ostatnie wyrażenie dla prawdopodobieństwa można zastosować równie dobrze w przestrzeni 3N-wymiarowej. Możemy zawsze ustalić wartość jednej ze współrzędnych x_1\equiv x. Pozostałe współrzędne spełniają wtedy warunek

x_2^2+x_3^2+\ldots+x_{3N}^2=R^2-x^2

i jest to jedyne ograniczenie. Znaczy to, że pozostałe składowe leżą na sferze wymiarze o jeden mniejszym i mniejszym promieniu. Pole powierzchni sfery S^n jest równe pewnej stałej zależnej od wymiaru razy promień sfery do potęgi n-tej:

S_n(r)=C_n r^n.

Korzystając z tego faktu możemy szukane prawdopodobieństwo zapisać w postaci

p(x)dx=\dfrac{S_{3N-2}(\sqrt{R^2-x^2})}{S_{3N-1}(R)} R\Delta\vartheta \sim \left(1-\dfrac{x^2}{R^2}\right)^{\frac{3N}{2}}dx.

Ostatnie wyrażenie możemy dla dużych wartości N zapisać jako potęgę liczby e:

\left(1-\dfrac{x^2}{R^2}\right)^{R^2\cdot\frac{3N}{2R^2}}dx=\exp(-\alpha x^2) dx.

Parametr \alpha jest równy

\alpha=\dfrac{3N}{2R^2}=\dfrac{3Nm}{4E}=\dfrac{3m}{4\epsilon},

gdzie \epsilon jest energią przypadającą na jedną cząsteczkę gazu. Możemy wyrazić tę ostatnią energię za pomocą temperatury T:

\epsilon=\dfrac{3}{2}kT \Rightarrow \alpha=\dfrac{m}{2kT}.

Otrzymaliśmy rozkład Maxwella. Stałą C można znaleźć z warunku unormowania (można ją też obliczyć bezpośrednio, potrzeba jednak wówczas wiedzieć więcej nt. stałych C_n, czyli postaci wzoru na pole sfery S^n).

Rozkład Maxwella wynika więc z założenia o równomiernym rozkładzie prawdopodobieństwa na sferze w przestrzeni 3N-wymiarowej. Założenie to nazywane jest rozkładem mikrokanonicznym i jest jednym z postulatów fizyki statystycznej. Wyobrażamy sobie, że stan naszego układu, czyli wektor Y wędruje po dozwolonej powierzchni w taki sposób, że jego koniec może znaleźć się z jednakowym prawdopodobieństwem w otoczeniu każdego punktu sfery. Jest to założenie ergodyczności.

Oczywiście, nie znaczy to, że układ zderzających się cząstek gazu musi być ergodyczny. Jak to często bywa w fizyce: z jednej strony pośrednio sprawdzamy to założenie, badając rozmaite jego konsekwencje i porównując z doświadczeniem. Z drugiej strony, można badać pewne proste przypadki, aby sprawdzić, czy założenie ergodyczności jest prawdziwe w tych sytuacjach. W 1963 r. Yakov Sinai, wybitny matematyk rosyjski, udowodnił, że gaz doskonały sztywnych zderzających się kul jest ergodyczny.

W pewnej chwili zamieniliśmy R \Delta\vartheta wartoscią dx. Nie są one ściśle biorąc równe, mamy bowiem

dx=-R\sin\vartheta d \vartheta \Rightarrow Rd\vartheta=\dfrac{dx}{\sqrt{1-\frac{x^2}{R^2}}}.

Dodatkowy czynnik pod pierwiastkiem nie ma znaczenia, gdy wartości R są duże. Widać to też z rysunku: gdy |x|\ll R, to R d\vartheta \approx dx.

Reklamy

Elementy – Euklides (ok. 300 p.npe.)

Myślimy często o starożytnej Grecji jako o cywilizacji, która dała nam filozofię, teatr, poezję, historię, sztukę, logikę, demokrację. Mniej dostrzegane są początki nauk ścisłych, które, wbrew wszelkiemu prawdopodobieństwu, osiągnęły u Greków niezwykle wysoki poziom. Dwa najważniejsze dzieła, Elementy i Almagestpowstały w Aleksandrii, pierwsze na początku świetności miasta, drugie już pod jej koniec. Oddzielone od siebie ponad czterema wiekami, skondensowały w sobie to, co najlepsze w starożytnym dorobku. A bez greckiej geometrii i astronomii nie do pomyślenia byłaby późniejsza nauka islamska, a także praca Mikołaja Kopernika i jego następców prowadząca do rewolucji naukowej XVII wieku.

Tekst Elementów, podzielony na trzynaście ksiąg, obejmuje w sposób systematyczny najważniejsze osiągnięcia matematyki greckiej przed Archimedesem. Napisane około roku 300 p.n.e. dzieło było przez wieki kopiowane zarówno w greckim oryginale, jak i w przekładach na hebrajski, arabski i łacinę, a od 1482 roku zaczęło ukazywać się drukiem w niezliczonych wydaniach książkowych, które liczbą ustępują tylko wydaniom Biblii. Aż do początku XIX wieku znano tekst Euklidesa jedynie w redakcji Teona z Aleksandrii, uczonego z IV w.n.e., ojca Hypatii. W 1808 r. François Peyrard, pierwszy bibliotekarz École Polytechnique w Paryżu, odkrył, iż rękopis Elementów zrabowany z Watykanu przez Napoleona (Vaticanus graecus 190, zwany też P) jest wcześniejszą wersją dzieła. Stała się ona później podstawą definitywnego wydania opracowanego przez duńskiego filologa Johana Ludviga Heiberga.

[Vaticanus graecus 190]

Dzieło Euklidesa nie było pierwszym noszącym ten tytuł, szybko stało się jednak klasyczne, czego pośrednim dowodem jest fakt, że nie zachowały się niemal żadne wcześniejsze teksty matematyczne – w czasach gdy kopiowanie książek było kosztowne i pracochłonne, następowała swoista selekcja naturalna rękopisów, w której te bardziej przydatne wypierały mniej użyteczne. Elementy są najwcześniejszym zachowanym greckim traktatem poświęconym matematyce, ponieważ stanowią one podręcznik, z którego można nauczyć się podstaw matematyki. Stosowane były w tej funkcji nie tylko w starożytności, ale i w czasach późniejszych aż po dziewiętnasty wiek.

Zadziwiająco mało wiemy o autorze tekstu, nawet jego istnienie podawano w wątpliwość, argumentując, że dzieło jest niejednorodne i różne jego księgi wykazują rozmaity stopień dojrzałości. Na ogół sądzi się jednak, że Euklides działał i prawdopodobnie także urodził się w Aleksandrii, mieście niedługo wcześniej założonym przez Aleksandra Wielkiego i przez długie wieki stanowiącym ośrodek nauki i kultury greckiej. Według Proklosa, neoplatończyka z V w.n.e., Euklides żył za panowania Ptolemeusza I i był młodszy niż krąg uczniów Platona, a starszy od Archimedesa i Eratostenesa. Miał być platonikiem i z tego powodu dzieło jego kulminowało konstrukcją i omówieniem pięciu brył platońskich, znanych z Timajosa. Euklidesa nie uważano nigdy za oryginalnego twórcę, sądzono, że zebrał on i usystematyzował osiągniecia poprzedników, w szczególności Eudoksosa i Teajteta. Elementy nie są jednak prostą kompilacją znanego już materiału, lecz próbą zbudowania dedukcyjnego systemu wiedzy matematycznej. Możliwe, że tak jak i w późniejszej historii matematyki, po okresach szybkich postępów następowały okresy systematyzacji i porządkowania wiedzy i Elementy są świadectwem takiego dążenia. Choć odkrycia późniejszych matematyków, takich jak Archimedes, Apoloniusz i Pappus, znacznie wykroczyły poza problematykę Elementów, dzieło to pozostało najszerzej używanym podręcznikiem w historii. Jego znaczenie nie ogranicza się do matematyki: dedukcyjny system wiedzy stał się ideałem wielu późniejszych filozofów i uczonych. W naukach ścisłych aż do dziś uważa się możliwość ustrukturyzowania wykładu na wzór greckiej geometrii za ważny sprawdzian dojrzałości danej dyscypliny. Wprowadzając postulaty, z których następnie wyprowadzamy twierdzenia, osiągamy pojęciową jasność i większą przejrzystość konstrukcji myślowych, musimy bowiem uświadomić sobie jasno przyjęte założenia.

Pamiętać też należy, iż grecka geometria nie była traktowana jako abstrakcyjna gra logiczna, lecz jako teoria wywodząca się z obserwacji dotyczących ciał w przestrzeni, stanowiła więc i nadal stanowi (wraz z nieeklidesowymi rozszerzeniami) podstawę fizyki. Można więc traktować ją jako pierwszą matematyczną teorię fizyczną. Kiedy niedługo później Archimedes w podobny sposób ujmował zasady równowagi ciał, rozszerzał niejako geometrię, tworząc zarazem pierwszą fizykę matematyczną.

Poniżej skoncentrujemy się na przedstawieniu metody postępowania Euklidesa, ograniczając się do tego, co było znane i czytane najszerzej i nie ograniczało się tylko do samej matematyki. Aksjomatyczna konstrukcja wiedzy jest osiągnięciem greckim nie mniejszym niż demokratyczne rządy albo rzeźba. Dzięki Euklidesowi nigdy już nie stracono z oczu, przynajmniej w kręgu śródziemnomorskim, owej metody uzyskiwania zdań niezbitych i pewnych. Jeśli prawdą jest, że (jak ujął to Alfred North Whitehead) filozofia europejska stanowi ciąg przypisów do Platona, to z niemniejszą dozą słuszności powiedzieć można, że nauki ścisłe – fizyka w nie mniejszym stopniu niż matematyka – stanowią rozbudowany komentarz do Elementów Euklidesa.

Każda z ksiąg (albo grup ksiąg) poprzedzona jest definicjami. Księga pierwsza zaczyna się od wymienienia pięciu postulatów geometrii oraz pięciu ogólniejszych prawidłowości odnoszących się do tego, co Euklides nazywa wielkościami – może tu chodzić (jak czytelnik dowiaduje się przy okazji kolejnych twierdzeń) o długość odcinka, wielkość kąta, pole powierzchni czy objętość pewnych brył. Następnie z owych dziesięciu założeń wyprowadzane są kolejne twierdzenia oraz konstrukcje. Księgi I-IV oraz VI, XI-XIII poświęcone są geometrii, sięga V zawiera wykład teorii proporcji Eudoksosa (odgrywały one w matematyce greckiej rolę dzisiejszych liczb rzeczywistych), księgi VII-IX dotyczą arytmetyki, w księdze X dyskutowane są rozmaite rodzaje liczb niewymiernych, zawsze jednak traktowanych jako proporcje długości pewnych odcinków. Ostatnia księga XIII kończy się twierdzeniem, że istnieje dokładnie pięć brył platońskich (sześcian oraz foremne: czworościan, ośmiościan, dwunastościan i dwudziestościan).

Podejście Euklidesa niewątpliwie wiele zawdzięcza istniejącej już tradycji matematycznej, a także platońskiemu rozróżnieniu między przedmiotami postrzeganymi przez zmysły a bytami idealnymi: korzystając z rysunków, traktuje je tylko jako pomoc w wyobrażeniu sobie, jak mają się do siebie idealne figury geometryczne. Koncepcję uporządkowania wiedzy, zaczynając od założeń, których prawdziwość przyjmuje się bez dowodu, znaleźć można u Arystotelesa, nie wiadomo jednak, czy występuje tu jakaś bezpośrednia zależność, czy tylko wspólna tradycja filozoficzna. Geometria stała się pierwszą wyspecjalizowaną dziedziną wiedzy, uprawianą nie ze względów praktycznych, lecz dla niej samej. Wysokie mniemanie o pedagogicznych wartościach geometrii żywił Platon, sądząc, że kieruje ona uwagę ku temu, co wieczne i niezmienne. Stobajos przytacza następującą anegdotę:

Ktoś zaczął się uczyć u Euklidesa i kiedy poznał pierwsze twierdzenie, spytał:
– Co mi przyjdzie z tego, żem się tego nauczył?

Na to Euklides zawołał niewolnika i powiedział:

– Daj mu trzy obole, jeśli musi mieć zysk z tego, czego się uczy.

Omówimy bliżej główne linie rozumowania księgi I Elementów. Tekst poprzedzają 23 definicje, np. „Punkt jest tym, co nie ma żadnych części”, „Linia zaś jest długością bez szerokości”, „Równoległe są proste, które będąc na tej samej płaszczyźnie rozciągają się bez kresu w obie strony, ale w żadnej części się nie przetną” (przeł. M. Roszkowski). Linia prosta u Euklidesa jest zawsze skończona, tzn. jest odcinkiem wedle dzisiejszej terminologii. Dzisiejsi matematycy nie definiują wszystkich pojęć danej teorii, część z nich muszą bowiem stanowić pojęcia pierwotne, które przyjmuje się bez definicji, a ich sens ujawnia się dopiero, gdy badamy, w jaki sposób pojęcia występują one w aksjomatach i twierdzeniach.

Pięć postulatów głosi kolejno, że

1. Z każdego punktu do każdego innego można poprowadzić prostą (odcinek).
2. Odcinek można (obustronnie) przedłużać.
3. Z dowolnego środka można zakreślić okrąg przechodzący przez dany punkt.
4. Wszystkie kąty proste są wzajemnie równe.
5. Jeśli prosta przecina dwie inne proste, tworząca dwa kąty wewnętrzne mniejsze (w sumie) od dwóch kątów prostych, to można owe dwie proste przedłużyć tak, aby się przecięły.

Kąt prosty zdefiniowany jest tak, jak to widać na rysunku: gdy oba kąty utworzone przez półprostą o początku leżącym na danej prostej są równe, to kąty są kątami prostymi. Postulat 4 głosi, że dowolne kąty proste są równe, co znaczy tyle, że są przystające – mogą być na siebie nałożone tak, aby ich wierzchołki oraz ramiona się pokrywały (Euklides nie mówi tego wprost).

Pięć aksjomatów ogólnych stwierdza (w redakcji M. Kordosa):
1. Dwie wielkości równe trzeciej są równe.
2. Dodając do równych równe, dostajemy równe.
3. Odejmując od równych równe, dostajemy równe.
4. Wielkości dające się zamienić są równe.
5. Część jest mniejsza od całości.

Aksjomaty te stosowane są do porównania długości, kątów, figur, jak np. trójkąty. Mniejszy oznacza np. w przypadku odcinków, że po ich nałożeniu zostaje jeszcze jakaś niepokryta część większego (całości). Euklides nie posługuje się żadnymi miarami, porównuje tylko wielkości między sobą. Dlatego np. trójkąty są równe, gdy są przystające (można je na siebie nałożyć), ale także, gdy mają np. wspólną podstawę oraz jednakowe wysokości – dziś powiedzielibyśmy, że ich pola powierzchni są równe. Euklides nie myślał o długości jako liczbie, ani o polu prostokąta jako iloczynie długości boków, porównywał co najwyżej między sobą dwie wielkości.

Cały wykład podzielony jest na zagadnienia, które mogą być albo rozwiązaniem problemu konstrukcyjnego, albo twierdzeniem. W księdze I znajduje się 48 zagadnień, twierdzenie I,47 to twierdzenie dziś nazywane tw. Pitagorasa, I,48 to twierdzenie do niego odwrotne. Przyjrzyjmy się postępowaniu Euklidesa. Stosujemy dla przejrzystości nieco uwspółcześnioną terminologię, sformułowania nasze nie są wprawdzie dosłownym przekładem oryginału, ale też i nie odbiegają od niego zbyt daleko.

I,1 Mając dany odcinek AB, skonstruować na nim trójkąt równoboczny.

Konstrukcja sprowadza się do zakreślenia dwóch okręgów (Post. 3), które wyznaczą punkty przecięcia (co jednak nie wynika z aksjomatów Euklidesa, choć jest prawdą). Mając punkt przecięcia C, budujemy dwa odcinki AB oraz BC (Post. 1). Odcinki te są równe, ponieważ równe są odcinkowi AB (Aksj. 1). Trójkąt jest więc równoboczny. Warto zwrócić uwagę na eliminowanie kroków „oczywistych” i zastępowanie ich odwołaniami do postulatów i aksjomatów – w tym leży matematyczna siła Euklidesa, choć w oczach mniej matematycznie nastawionego czytelnika wywołuje to wrażenie (może nadmiernej) pedanterii.

I,2 Mając dany odcinek BC oraz punkt A nie leżący na nim, skonstruować odcinek AE=BC.

Łączymy w tym celu punkty AB (Post. 1) i budujemy trójkąt równoboczny za pomocą I,1. Promieniem BC zakreślamy okrąg o środku B (Post. 3). Przedłużamy następnie odcinek BD (Post. 2) do przecięcia z tym okręgiem H. Następnie promieniem HD zakreślamy okrąg o środku D. Przedłużenie AD (Post. 2) przetnie się z tym okręgiem w punkcie E. Odcinek AE (Post. 1) jest szukanym odcinkiem równym BC. Z aksjomatów ogólnych łatwo wnioskujemy, że odcinki te są równe, tzn. równe są ich długości (promień większego okręgu na rysunku to suma AB i boku trójkąta, odejmując potem bok trójkąta, otrzymujemy naszą tezę).
Warto zauważyć, że konstrukcje Euklidesa wykonywane są za pomocą linijki bez żadnej skali oraz cyrkla, który także nie pozwala przenosić odległości, lecz tylko poprwadzić okrąg z danego środka przez dany punkt (po przeniesieniu cyrkiel „nie pamięta” swego rozwarcia). Dzięki I,2 możemy uwolnić się od tego ograniczenia i odtwarzać odległość dwóch punktów w innym miejscu.

I,4 Dwa trójkąty, których dwa boki oraz zawarty między nimi kąt są równe, są przystające (równe).

Jest to cecha przystawania trójkątów bok-kąt-bok (bkb). Euklides dowodzi tego twierdzenia, nakładając na siebie oba trójkąty. Nie jest to postępowanie oczywiste, jeśli nie uważamy naszych figur za sztywne obiekty, które można przemieszczać bez zmiany kształtu i długości. David Hilbert przyjął w XIX w. to twierdzenie za jeden z aksjomatów w swoim wykładzie geometrii euklidesowej.

I,5 W trójkącie równoramiennym ABC, w którym AB=BC, kąty wewnętrzne przy podstawie są równe.

Przedłużamy ramiona trójkąta o jednakowe odcinki BF=CG. Trójkąty ABG i ACF są przystające na mocy poprzedniego twierdzenia, zatem także kąty ABG oraz ACF są równe. Trójkąty BFC i CGB są przystające na mocy tego samego twierdzenia (kąty BFC i BGC są równe, gdyż oba trójkąty pierwszej pary są przystające). Kąty ABC i BCA można przedstawić jako różnicę odpowiednio równych kątów (np. \sphericalangle ABC=\sphericalangle ABG-\sphericalangle CBG), muszą zatem być równe.
Twierdzenie to zyskało w średniowieczu nazwę Pons asinorum („ośli most”), nie wiadomo, czy z powodu kształtu towarzyszącego mu rysunku, czy też dlatego, że w tym miejscu ujawniał się już podział na tych, którzy rozumieją geometrię i na tych, którzy jej nie rozumieją. Pappus przedstawił prostszy dowód, w którym I,4 stosujemy do trójkątów BAC i CAB: ich boki są parami równe, a kąt przy wierzchołku jest tym samym kątem BAC, zatem oba trójkąty są przystające i kąty przy podstawie są równe. Euklides mógł mieć opory przeciwko takiemu potraktowaniu jednego trójkąta jako dwóch.

I,6 Jeśli kąty przy podstawie trójkąta są równe, to trójkąt jest równoramienny.

Euklides dowodzi tego twierdzenia przez sprowadzenie do niedorzeczności (reductio ad absurdum). Zakładamy, że teza twierdzenia jest fałszywa, a następnie staramy się wykazać, że wynika stąd zaprzeczenie założeń twierdzenia. Jeśli AB\neq AC, to któryś z odcinków jest większy, tzn. ma większą długość. Załóżmy, że AB>AC. Możemy wówczas na odcinku AB odłożyć odcinek AD=AC. Kąt DCB jest zatem mniejszy od kąta ACB. Jednocześnie trójkąt DBC jest równoboczny, a więc kąty DCB i DBC są równe na mocy poprzedniego twierdzenia. Kąt DBC jest tym samym, co kąt ABC, ergo ABC jest mniejszy od ACB wbrew założeniu.

I,9 Skonstruować dwusieczną danego kąta.

Na ramionach kąta odkładamy równe odcinki AD i AE. Następnie na odcinku AD konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek wraz z wierzchołkiem kąta wyznaczają szukaną dwusieczną, co można łatwo udowodnić: kąty ADE i AED są równe jako kąty przy podstawie trójkąta równoramiennego. W takim razie także kąty ADF i AEF są równe i oba trójkąty ADF i AEF są przystające. Wobec tego kąty DAF i FAE są równe c.n.d.

I,11 Skonstruować prostopadłą do danej prostej w punkcie D.

Wyznaczamy na prostej dwa punkty A i B w równych odległościach od D: AD=DB. Następnie na odcinku AB konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek C wraz z punktem D wyznaczają szukaną prostopadłą. Aby to udowodnić, zauważamy, że trójkąty ADC i BDC są przystające, a zatem kąty CDA i CDB są równe – spełniona jest więc definicja kąta prostego i oba te kąt są równe kątowi prostemu. Tym samym DC jest prostopadła do prostej AB.

I,20 (Nierówność trójkąta) Dwa boki trójkąta razem są dłuższe od trzeciego boku.

Niech będzie dany trójkąt CAB, chcemy dowieść, że odcinki AC wraz z CB są większe od AB. W tym celu na przedłużeniu AC odkładamy odcinek CD=CB. Kąt ABD jest większy od kąta CBD. Ten ostatni równy jest kątowi CDB, czyli ADB. W trójkącie ABD naprzeciwko większego kąta leży większy bok (I, 19; nie przytaczamy dowodu), a zatem AD=AC+CB>AB (stosując współczesny zapis).
Z twierdzenia tego wynika, że długość łamanej łączącej dwa punkty jest zawsze większa niż długość odcinka łączącego te punkty. W konsekwencji, jeśli połączymy oba punkty jakąś krzywą gładką, ale taką że zarówno samą krzywą, jak i jej długość można dowolnie przybliżać za pomocą łamanych, to długość łuku krzywej nie może być mniejsza niż długość odcinka łączącego dane punkty. Inaczej mówiąc, odcinek jest krzywą o najmniejszej długości (przy ustalonych obu końcach). Euklides nie dowodzi takiego twierdzenia, ale było ono znane greckim geometrom.
Dopiero blisko połowy księgi I staje się potrzebny Postulat 5.

I,29 Jeśli prosta EF przecina parę prostych równoległych AB i CD, to kąty naprzemianległe wewnętrzne są równe.

Wykażemy, że kąt AGF równy jest kątowi EHD. Załóżmy, że oba te kąty nie są równe. Niech np. AGF będzie większy od EHD. Ponieważ kąty AGF i BGF dopełniają się do dwóch kątów prostych (I,14; nie przytaczamy dowodu), więc suma kątów BGF i EHD jest mniejsza od dwóch kątów prostych. Z Post. 5 wynika, że proste AB i CD (po ewentualnym przedłużeniu) przetną się, nie są zatem – wbrew założeniu – prostymi równoległymi.
Postulat 5 sformułowany został tak, aby wygodnie się nim było posługiwać do wykazania, że dwie proste nie są równoległe. Nie wydawał się on tak oczywisty jak pozostałe i wzbudzał zawsze rozmaite wątpliwości. Jest on równoważny innemu postulatowi sformułowanemu przez Playfaira: Przez punkt nie leżący na danej prostej można przeprowadzić dokładnie jedną prostą równoległą do danej. Postulat 5 jest także równoważny twierdzeniu o sumie kątów wewnętrznych trójkąta.

I,32 Suma kątów wewnętrznych trójkąta równa jest dwóm kątom prostym.

Wystarczy zauważyć równość zaznaczonych kątów na rysunku (linia przerywana jest równoległa do boku trójkąta).

I,47 (Tw. Pitagorasa) W trójkącie prostokątnym suma kwadratów zbudowanych na przyprostokątnych jest równa kwadratowi zbudowanemu na przeciwprostokątnej.

Zwróćmy uwagę na sformułowanie: należy najpierw skonstruować kwadraty, o których mowa w twierdzeniu, a następnie wykazać, że suma (pól) dwóch mniejszych kwadratów jest równa polu kwadratu największego. Wysokość trójkąta opuszczona z kąta prostego po przedłużeniu dzieli kwadrat na dwa prostokąty. Euklides wykazuje, że dla trójkąta ABΓ oba pola zaznaczone na zielono oraz oba pola zaznaczone na niebiesko są równe.

Dowód Euklidesa korzysta z konstrukcji I,46 kwadratu na danym odcinku oraz linii równoległej do BΔ i ΓE przechodzącej przez dany punkt A (I,31). Wykazuje następnie, że AH jest przedłużeniem AΓ oraz AΘ jest przedłużeniem AB (I,14). Trójkąty ABΔ oraz ZBΓ są przystające na mocy twierdzenia I,4 (bkb). Prostokąt BΛ o podstawie BΔ ma tę samą wysokość co trójkąt ABΔ o tej samej podstawie. Na mocy I,41 prostokąt jest dwa razy większy od trójkąta (to wynik równoważny wzorowi na pole trójkąta, gdy określimy pole prostokąta). Kwadrat BH jest z tego samego powodu dwa razy większy od trójkąta ZBΓ o podstawie ZB. W analogiczny sposób pokazać można, że oba pola zaznaczone na niebiesko są równe, co kończy dowód.

W księdze VI Euklides przytacza inny dowód tw. Pitagorasa, oparty na podobieństwie mniejszych trójkątów na rysunku i trójkąta wyjściowego. Ten drugi dowód znany był prawdopodobnie wcześniej, dowód I,47, pochodzący zapewne od samego Euklidesa, jest bardziej zadowalający matematycznie, gdyż używa mniejszej liczby założeń: w księdze I daleko jeszcze jesteśmy od tak subtelnych konstrukcji jak figury podobne.
Ostatnie twierdzenie tej księgi I,48 jest odwrotne do tw. Pitagorasa: Jeśli spełniony jest warunek pól dla kwadratów zbudowanych na bokach trójkąta, to trójkąt ów jest prostokątny.

Elementy są podręcznikiem i były nim już w chwili powstania. Ścisłość rozumowań Euklidesa stała się wzorem dla przyszłych matematyków. Wybitny matematyk XX wieku André Weil pisał: „ [Elementy] Euklidesa to pierwszy zachowany tekst matematyczny, w którym pojęcie dowodu utożsamione zostało z łańcuchem wnioskowań pozbawionym luk; nie bez powodu ten sposób widzenia przedmiotu zachował swą aktualność do dziś”.

Nie sposób oczywiście przedstawić nawet pobieżnie wpływu książki czytanej w ciągu dwudziestu kilku wieków przez tysiące ludzi: wybitnych matematyków, jak i myślicieli czy po prostu uważnych czytelników mniej lub bardziej oddalonych od nauk ścisłych.

Greckie manuskrypty Elementów przechowywane były w Bizancjum. Od nich pochodziły przekłady arabskie, które z kolei dały początek rozpowszechnianiu się tekstu zarówno na Wschód (języki hebrajski, syryjski, perski), jak i na Zachód (łacina). W europejskim średniowieczu przekładano Euklidesa z arabskiego na łacinę wielokrotnie w wieku dwunastym i później. Już sama międzynarodowa lista tłumaczy daje pojęcie o zainteresowaniu Elementami: Adelard z Bath, Hermann z Karyntii, Gerard z Cremony, Robert z Chester, Campanus z Novary. Przekład tego ostatniego stał się podstawą pierwszego drukowanego wydania Elementów w Wenecji w roku 1482. W XVI wieku udało się też dotrzeć do tekstu greckiego (w wersji Teona). Od tamtej pory ukazały się niezliczone wydania oraz przekłady na języki narodowe (brak nadal kompletnego przekładu polskiego, choć już w 1808 Józef Czech, dyrektor Liceum Krzemienieckiego, przełożył osiem ksiąg, opierając się na angielskiej wersji Roberta Simonsa).

Twierdzenie Pitagorasa w weneckim wydaniu z 1482 r. (numeracja twierdzenia lekko w nim szwankowała)

Geometria oraz arytmetyka miały w średniowieczu mocną pozycję jako sztuki wyzwolone wchodzące w skład quadrivium („czterodroże”) wraz z astronomią i muzyką (która obejmowała głównie teoretyczną naukę o proporcjach dźwięków w różnych skalach). Także i później podstawy geometrii stanowiły nieodzowny element wykształcenia, Elementów długo jeszcze używano jako podręcznika. Bertrand Russell, logik i filozof, wspomina: „W wieku jedenastu lat zacząłem Euklidesa z moim bratem w roli tutora. Było to w moim życiu wielkie wydarzenie, równie olśniewające co pierwsza miłość. Wcześniej nie wyobrażałem sobie nawet, że istnieje na świecie coś tak zachwycającego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie napotkałem w nim żadnych trudności. To wtedy po raz pierwszy zaświtało w mej głowie, że może obdarzony zostałem jakąś inteligencją”. Kilka lat młodszy Albert Einstein nie uczył się wprawdzie z Elementów, lecz z podręcznika będącego ich zmodernizowaną wersją; także dla niego odkrycie geometrii było wielkim przeżyciem, wspominał potem podręcznik jako „świętą książeczkę”, co w jego ustach – uduchowionego niedowiarka i spinozisty – miało swoją wymowę. Einstein sądził wręcz, że głęboki wstrząs intelektualny, jaki wówczas przeżył, stanowi niejako rodzaj probierza, czy ktoś się do nauki nadaje, czy nie. Zanim jeszcze podręcznik trafił w jego ręce, udało mu się znaleźć dowód twierdzenia Pitagorasa oparty na podobieństwie trójkątów (VI,31).

Metoda geometryczna kusiła też filozofów. Thomas Hobbes, mając już czterdzieści lat, natknął się w bibliotece znajomego gentlemana na egzemplarz Elementów, które otwarte były na stronie zawierającej twierdzenie Pitagorasa. Przeczytawszy jego treść, wykrzyknął: na Boga, to niemożliwe! Potem jednak cofając się stopniowo do twierdzeń, na których oparty był dowód, zrozumiał, że rozumowanie Euklidesa jest bez zarzutu. René Descartes sam był wybitnym matematykiem i z geometrią zapoznał się wcześnie w jezuickim kolegium w La Flèche. Właśnie na goemetrii wzorował się w swym podejściu do filozofii, która miała być nowym początkiem ludzkiej wiedzy. „Owe długie łańcuchy uzasadnień, zupełnie proste i łatwe, którymi zazwyczaj posługują się geometrzy, by dotrzeć do swych najtrudniejszych dowodzeń, dały mi sposobność do wyobrażenia sobie, że wszystkie rzeczy dostępne poznaniu ludzkiemu wynikają w taki sam sposób wzajemnie ze siebie, a także, że nie mogą istnieć tak odległe, do których byśmy wreszcie nie dotarli, i tak ukryte, których byśmy nie wykryli, bylebyśmy tylko nie przyjmowali za prawdziwą żadnej rzeczy, która by prawdziwą nie była, i zachowywali zawsze należyty porządek w wyprowadzaniu jednych z drugich” (przeł. W. Wojciechowska, Rozprawa o metodzie, PWN 1981, s. 23). Zdaniem Immanuela Kanta przedmioty, które bada matematyka: przestrzeń i czas nie pochodzą z doświadczenia, ale mają swe źródło w poznającym przedmiocie. Geometria stała się w ten sposób nauką o jedynie możliwej przestrzeni.

Tymczasem matematycy nabierali coraz więcej wątpliwości. Karl Friedrich Gauss już w roku 1813 rozmyślał nad geometrią nieuklidesową, lecz oportunistycznie nie zdecydował się na publikację swych wyników. Także Ferdinand Karl Schweikart, profesor prawa, rozwijał podobne idee w zaciszu gabinetu. Dopiero János Bolyai i Nikołaj Iwanowicz Łobaczewski, niezależnie od siebie zaryzykowali publikację prac sprzecznych z dotychczasową tradycją, nie były one przyjęte dobrze. Obaj zajmowali się geometrią hiperboliczną, w której istnieje nieskończenie wiele prostych równoległych do danej prostej. Postulat 5 Euklidesa jest bowiem niezależny od pozostałych i równie dobrze można zbudować konsekwentną geometrię, wychodząc z jego zaprzeczenia. Pod koniec XIX wieku David Hilbert podał ścisłe sformułowanie geometrii euklidesowej. Znalazło się w nim dwadzieścia aksjomatów, trzy pojęcia pierwotne (punkt, linia prosta, płaszczyzna) oraz cztery relacje pierwotne (leżenia pomiedzy, zawierania oraz przystawania odcinków oraz kątów). Różnica w podejściu między dawną geometrią a jej nowoczesnym, abstrakcyjnym sformułowaniem podkreślona została przez Hilberta następująco: „Powinno się w każdej chwili móc wstawić w miejsce punktów, linii i płaszczyzn – stoły, krzesła i kufle do piwa” (oczywiście pod warunkiem, że obiekty te spełniają aksjomaty geometrii).

Michele Angelo Besso, przyjaciel Einsteina

Historia zna wiele przypadków, kiedy tylko pesymiści mieli rację, a radosna większość beztrosko podążała ku zgubie. W roku 1936 większość Niemców zadowolona była z kanclerza Hitlera, który podniósł kraj z kolan i zlikwidował bezrobocie. Prawie nikt oprócz przeciwników reżimu nie myślał o nieuniknionym smutnym końcu tego państwa. Einstein, obserwując sytuację w Europie, pisał z Ameryki do Bessa:

Sprawy ludzkie w naszych czasach mniej niż kiedykolwiek napawają radością, by nie wspomnieć o tych głupcach z Niemiec. Teraz okazuje się w końcu, jak proroczym umysłem był prof. Winteler, który tak wcześnie rozpoznał całą powagę tego zagrożenia [Fölsing, s. 55].

Znali się z Bessem wówczas niemal czterdzieści lat i choć nie mieli się już nigdy spotkać osobiście, pisali do siebie regularnie. Albert Einstein miał dar zaprzyjaźniania się z ludźmi, i to na całe życie. Jedna z najdłuższych znajomości wiązała go z Michele Angelo Besso, starszym o sześć lat inżynierem budowy maszyn po Politechnice w Zurychu (późniejszej ETH). Poznali się na wieczorku muzycznym w salonie państwa Hüni, właścicieli sklepu muzycznego w Zurychu, obaj bowiem grali na skrzypcach. Czytając o ludziach z końca XIX wieku, ma się wrażenie, że niemal wszyscy muzykowali, a w każdym razie bywali na różnych domowych wydarzeniach muzycznych. Łączyło to ludzi w różnym wieku, różnych zawodów i upodobań. Osiemnastoletni Einstein kończył już zapewne pierwszy rok studiów na kierunku nauczycielskim tej samej uczelni. Można sądzić, że zbliżyło ich także i to, że uczyli się u tych samych profesorów fizyki: Heinricha Webera i Johanna Perneta i matematyki: Adolfa Hurwitza i Karla Geisera. Besso uzyskiwał zresztą lepsze stopnie niż Einstein, który chodził swoimi drogami, szybko przestał cenić wiedzę przekazywaną na uczelni i niezbyt się przykładał, zwłaszcza do matematyki. Besso zawdzięczał też Einsteinowi i owym wieczorkom muzycznym znajomość ze swą przyszłą żoną Anne Winteler.

Rodzina Wintelerów stała się wspólnym ogniwem łączącym ich życie. Einstein trafił do domu Josta i Pauline Winteler w Aarau w roku 1895 po oblanych egzaminach na Politechnikę. W tamtejszej szkole kantonalnej uzupełniać miał wiedzę z potrzebnych przedmiotów, mieszkając na stancji u Wintelerów. Jost Winteler, językoznawca, autor nowatorskiej dysertacji na temat jednego ze szwajcarskich dialektów, filolog, ornitolog i poeta, należał do grona nauczycielskiego szkoły. Jego żona Pauline szybko stała się dla Alberta kimś bliskim, niemalże drugą matką. Wintelerowie mieli też siódemkę dzieci, od najstarszej Anne, przez Josta Fridolina, Rosę, Marie, Mathiasa, Josta juniora do Paula. Swój pierwszy romans przeżył Albert z Marie Winteler. Odsunął się jednak od niej, kiedy podczas studiów poznał Milevę Marić, swą późniejszą żonę. Marie mocno to przeżyła i związki Alberta z Wintelerami przejściowo osłabły. Po kilku latach Marie wyszła za mąż za dyrektora fabryki zegarków. Wiadomo, że w późniejszych latach ich romans odżył w sekrecie. Kilka lat po Albercie również jego siostra, Maja, mieszkała przez czas nauki u Wintelerów i wyszła potem za mąż za najmłodszego ich syna Paula.

Rodzina Wintelerów: od lewej Marie, Maja Einstein, Paul, Anna, rodzice: Jost i Pauline, Rosa

Jost Winteler kultywował staroświecki liberalizm, ideały republikańskie, kształcił swoje dzieci (także córki), niechętnie myślał o niemieckim szowinizmie, który znał jeszcze swe swych studiów w Jenie i który docierał aż do Szwajcarii. Einstein zawdzięczał Jostowi wiele swych poglądów na świat polityki i historii. Podobne liberalne poglądy żywił Alfred Stern, profesor historii, u którego Albert bywał jako student na obiadach. Besso uczęszczał na jeden z jego wykładów. Szwajcarskie środowisko młodego Einsteina nie przywiązywało wagi do narodowości. Einstein dopiero w Berlinie wiele lat później poczuł się Żydem.

Jeszcze innym elementem łączącym Bessa i Alberta oraz Maję Einsteinów były Włochy. Besso, urodzony pod Zurychem, pochodził z rodziny wywodzącej się z Triestu. Mówił równie swobodnie po włosku i po niemiecku, znał też francuski i angielski. Rodzice Einsteinów mieszkali wówczas we Włoszech, więc Albert kursował między Pawią a Zurychem. Choć uczony nie znał dobrze włoskiego, lubił ten język i w korespondencji z Tulio Levi-Civitą podczas pierwszej wojny światowej, nalegał, by matematyk pisał do niego w swoim języku (odpowiadał mu jednak po niemiecku). Besso także w pewnych okresach życia mieszkał we Włoszech. We Florencji spędzili wiele lat Maja Einstein (doktor filologii romańskiej) z Paulem: ona usiłowała prowadzić pensjonat, on malował obrazy.

Namiętnością Bessa była wiedza. Przez całe życie, aż do późnej starości, pochłaniał książki, uczęszczał na wykłady, robił notatki, należał do towarzystw naukowych. Zajmował się przy tym dziedzinami tak różnymi, jak filozofia, neurofizjologia, polityka, psychologia, prawo przemysłowe, literatura angielska, różne dziedziny fizyki i matematyki. I nie były to zainteresowania powierzchowne: Besso chodził na wykłady takich uczonych, jak Einstein czy Hermann Weyl i był ich aktywnym uczestnikiem, zadającym pytania i starającym się zrozumieć różne kwestie. Przez kilka lat Albert i Michele pracowali razem w Urzędzie Patentowym w Bernie. To Einstein ściągnął tam przyjaciela, często razem wracali do domu, dyskutując nad zagadnieniami fizyki. Besso jest jedyną osobą, którą Einstein wymienia z wdzięcznością w swoim epokowym artykule na temat teorii względności.

Przyjaciele współpracowali też w czerwcu 1913 roku, gdy Besso (mieszkający wtedy w Gorycji) odwiedził Einsteina w Zurychu. Uczony ukończył wtedy ważną pracę wspólnie z Marcelem Grossmannem, w której podał równania pola grawitacyjnego. Była to tzw. teoria Entwurf (co znaczy tyle co zarys). Einstein przekonał wówczas sam siebie, iż jest to prawidłowa teoria. Nie była ona szczególnie elegancka, ale w końcu nikt nie powiedział, że równania fizyki muszą koniecznie być eleganckie. Mają prawidłowo opisywać zjawiska, i to wszystko. Kłopot w tym, że nie było zbyt wielu zjawisk możliwych wtedy do wykrycia. Inaczej mówiąc, stara teoria Newtona nawet po przeszło dwóch wiekach trzymała się dobrze. Czemu więc w ogóle ulepszać coś, co okazało się dobre? Einstein był fizykiem dobrze „słyszącym” pojęcia i wychwytującym świetnie wszelki fałsz i brak harmonii. To go zaprowadziło do szczególnej teorii względności. Ale szczególna teoria względności była niekompatybilna z grawitacją. Potrzebna była teoria traktująca grawitację jako pole, analogiczne do pola elektrycznego i magnetycznego. Do tego punktu Einstein nie był sam – wielu innych próbowało w tych latach zbudować teorię grawitacji jako pola. Einstein miał jednak inny punkt wyjścia: grawitacja, podobnie jak bezwładność, mierzona jest masą. Właściwie są to dwa różne pojęcia masy: można osobno mierzyć masę grawitacyjną i osobno bezwładną. Okazuje się, że są one równe. Z punktu widzenia teorii był to swoisty „cud”, arbitralne założenie, dodane, by opisać rzeczywistość. Toteż Einstein pracował nad teorią, w której bezwładność i grawitacja będą wymienne, a to zaprowadziło go do przestrzeni zakrzywionych i szukania pomocy u Marcela Grossmanna, matematyka i przyjaciela ze studiów.

Istniał niewielki efekt, którego astronomom nie udawało się wyjaśnić: orbita Merkurego, w pierwszym przybliżeniu eliptyczna, obraca się powoli. Większość tego obrotu (równego 570’’) wyjaśnić można przyciąganiem innych planet, pozostawała jednak niewielka różnica 41 sekund kątowych na stulecie. Zauważył to jeszcze w połowie XIX wieku Urbain Le Verrier i po półwieczu analiz różnica ta nadal się utrzymywała i nikt nie miał dobrego pomysłu na jej wyjaśnienie. Chwytano się pomysłów rozpaczliwych, np., że wykładnik w prawie grawitacji różni się troszeczkę od dwóch albo że są jakieś niewidoczne obłoki materii blisko Słońca, które wpływają na ruch Merkurego. Mając teorię Entwurf Einstein chciał sprawdzić, czy uda się za jej pomocą wyjaśnić obrót peryhelium Merkurego. Zachował się rękopis (Einstein Papers, t. 4, doc. 14), w którym obaj przyjaciele obliczali ową wielkość obrotu peryhelium. Jest on świadectwem, że w osobie Bessa Einstein miał nie tylko interlokutora, ale i do pewnego stopnia kolegę. Niewykluczone też, że uczony chciał wciągnąć w ten sposób Bessa do pracy naukowej i zachęcić do przeprowadzenia dalszych rozważań, które można by opublikować. Wielkość efektu, którą uzyskali równa była 1821’’, czyli około pół stopnia na stulecie. Musieli jednak później zdać sobie sprawę z błędu w rachunkach: wstawili do obliczeń przez pomyłkę sto razy za dużą masę Słońca. Efekt ów był naprawdę równy 18’’ na stulecie. Czyli nadal źle, ale w końcu nie było żadnej pewności, czy w ogóle owe 41’’ uda się wyjaśnić za pomocą innej teorii grawitacji. Astronomowie mogli się gdzieś po drodze pomylić albo nie wziąć pod uwagę jakichś istotnych faktów. Inne teorie grawitacji z tego okresu nie radziły sobie lepiej. Besso wrócił wkrótce do Włoch, zabierając ze sobą obliczenia. W następnym roku obliczenia podobne do Einsteina i Bessa opublikował Johannes Droste, holenderski nauczyciel matematyki, który później napisał doktorat poświęcony ogólnej teorii względności. Besso nigdy nie zrobił doktoratu, może czuł, że aktywna praca naukowa nie jest dla niego. W tamtych czasach nie było zresztą łatwo o płatną posadę naukową i często nawet wybitni uczeni musieli przez wiele lat zarabiać w inny sposób. Jak się zdaje, Besso nie był w dostatecznym stopniu skoncentrowany na jednym, interesowało go wiele rzeczy, a przy tym brakowało mu uporu, aby zmagać się z jednym zagadnieniem przez długi czas. Ludzie tacy jak Besso nie osiągają zaszczytnych stanowisk, choć może to dzięki nim świat wydaje się nieco lepszy. Einstein lubił idealistów, nawet dziwaków, niezwykle wysoko cenił też zawsze inteligencję Bessa, a przecież z biegiem lat poznał najwybitniejsze umysły epoki. Kiedy już obaj byli starzy, napisał przyjacielowi: „Nadal wierzę, że gdybyś był w większym stopniu monomaniakiem, mógłbyś osiągnąć coś naukowo wartościowego. Motyl nie jest kretem, ale żaden motyl nie pownien tego żałować” [6 I 1948].

Ostatecznie teoria Entwurf okazała się fałszywa, co Einstein zauważył dopiero we wrześniu 1915 roku. Jednak obliczenia przeprowadzone w roku 1913 wraz Michele Besso okazały się niezwykle pomocne, gdy w listopadzie sformułował nowe równania pola i powtórzył rachunki dla peryhelium Merkurego – tym razem dały one prawidłowy rezultat. Było to, jak Einstein później twierdził, jego najsilniejsze przeżycie naukowe: teoria zbudowana tak, by uzyskać większą przejrzystość pojęć, w oderwaniu od bezpośrednich danych eksperymentalnych, dała oto prawidłowy rezultat dla efektu znanego i niewyjaśnionego od dawna. A więc składając ze sobą starannie i uważnie idee oderwane, można wyjrzeć z platońskiej jaskini i lepiej zrozumieć ruch planet.

Później Besso, który znał także Milevę, służył często jako pośrednik w jej trudnych kontaktach z Einsteinem, czy nawet jako swego rodzaju zastępczy ojciec dla jego synów. Po I wojnie światowej zamieszkał znowu w Szwajcarii znajdował się więc znacznie bliżej dawnej rodziny Einsteina. Uczony żywił dużo szacunku dla moralnej postawy Bessa, ale chwilami trudno im się było porozumieć, zwłaszcza podczas bolesnego i wieloletniego konfliktu Alberta z Milevą zakończonego rozwodem. Ona walczyła zażarcie o pieniądze i pełne decydowanie o życiu synów. Jak się zdaje, w obu kwestiach osiągnęłaby to samo, nie stawiając spraw na ostrzu noża. Einstein chciał być dobrym ojcem i nie był też skąpy. Zapewne to urażona duma i zawiedziona miłość Milevy stały się główną przeszkodą w negocjacjach.

Besso, namawiany wielokrotnie do napisania biografii przyjaciela, miał na tyle dużo taktu, aby tego nie robić, choć postać Einsteina gwarantowała finansowy sukces przedsięwzięcia. Po dojściu Hitlera do władzy Einstein wyjechał na stałe do Stanów Zjednoczonych i nawet po wojnie nie odwiedził Europy, szczególnie unikając kontaktów z Niemcami. Besso mieszkał w Bernie, potem w Genewie. Na początku roku 1955 Einstein dowiedział się o śmierci przyjaciela. Odpisał wtedy jego synowi (któremu kiedyś zbudował pierwszego latawca), podkreślając harmonię życia zmarłego, jego udane życie rodzinne, którego sam nie osiągnął, a także jego niezawodny zmysł moralny.

Teraz znowu, raz jeszcze, wyprzedził mnie, żegnając ten dziwny świat. To nie ma żadnego znaczenia. Dla nas, wierzących fizyków, podział na przeszłość, teraźniejszość i przyszłość jest jedynie iluzją, nawet jeśli mocno zakorzenioną [A. Einstein do Vero i Bice Besso, 15 III 1955].

Rękopis Einsteina-Bessa znajduje się w Einstein Papers, t. 4.

François Arago i prędkość światła (1810)

W roku 1809 dwudziestotrzyletni Arago został przyjęty do Akademii Nauk (przejściowo zwanej Instytutem Francji, uczeni należeli do jego pierwszego wydziału). Młody człowiek zdążył już przepracować kilka lat w Obserwatorium Paryskim i wziąć udział w trzyletniej podróży naukowej, której celem był dokładniejszy pomiar długości południka – czyli obwodu Ziemi. Rewolucja Francuska oprócz zmian politycznych przyniosła też system dziesiętny, nawet w kalendarzu: należało pracować dziewięć dni, by wypoczywać w dziesiątym, a kąt pełny miał mieć odtąd 400°, a nie 360°. Planowano też wprowadzić podział doby na dziesięć godzin po sto minut, lecz zapał rewolucyjny minął zbyt szybko. Zdążono natomiast wprowadzić jako jednostkę długości metr, równy jednej czterdziestomilionowej długości południka paryskiego. Pomiar południka oznaczał zatem dokładniejsze wyznaczenie metra. Ponieważ czasie pomiarów wojska francuskie dokonały inwazji Hiszpanii, więc ludność Balearów, widząc, jak Arago każe rozpalać ogniska na szczytach gór i w ogóle zachowuje się podejrzanie, uznała go za szpiega. Uwięziony w fortecy Bellver w Palma de Mallorca, zdołał z niej zbiec w łódce rybackiej, zabierając wyniki pomiarów, a nawet przyrządy geodezyjne. Trafił do Algieru, skąd popłynął do Marsylii, lecz niedaleko celu podróży hiszpańscy korsarze napadli na statek, co spowodowało dalsze uwięzienie, tym razem na wybrzeżu Katalonii, skąd trafił znowu do Algieru, w następnej przeprawie do Marsylii przeszkodziły wiatry północne. Wreszcie po kolejnych kilku miesiącach uczony dotarł tam wreszcie i musiał odbyć jeszcze długą kwarantannę w lazarecie. Mógł jednak zawiadomić bliskich, że żyje, w co nikt już nie wierzył. Otrzymał też niebawem list od poruszonego tymi przygodami sławnego przyrodnika Alexandra von Humboldta. Tak zaczęła się ich przyjaźń (choć starszy i homoseksualny Humboldt miał ochotę na coś więcej).

Niewątpliwie młody człowiek wykazał, że ma głowę na karku, choć można się zastanawiać, czy to wystarczy, by zostać członkiem Instytutu. Przeciwny kandydaturze Arago był wielce wpływowy Pierre Simon Laplace, który miał własnego kandydata, nieco starszego Siméona Poissona (tego od równania Poissona). Laplace wysuwał argument, że Arago niczego wielkiego jeszcze nie dokonał i jest za wcześnie, by go przyjmować do tego elitarnego grona. Odpowiedział mu podobno Joseph Lagrange, jedyna osoba, która mogła z Laplace’em mówić jak równy z równym: „Pan także, Laplace, przed wejściem do Akademii nie dokonał niczego godnego uwagi, można było jedynie pokładać w panu nadzieję. Pańskie wielkie odkrycia przyszły dopiero później” [Arago, Oeuvres complètes, t. 1, Histoire de ma jeunesse] Rzeczywiście, Laplace przyjęty został w wieku dwudziestu czterech lat, będąc dopiero u progu ważnych odkryć z mechaniki niebios. To odwieczny dylemat: czy stabilizacja finansowa powinna ułatwiać osiągnięcia, czy być za nie nagrodą. Francja miała silny państwowy system popierania nauki, który w tamtych czasach funkcjonował znakomicie, wystarczy popatrzeć na nazwiska członków Akademii z początku XIX wieku. Cesarz Napoleon I był autokratą, ale nie był idiotą i zatwierdził nominację Arago, zaprzysięgłego republikanina, a pod koniec życia chronił go przed represjami także następny cesarz, Napoleon III. Arago był przez wiele lat deputowanym do parlamentu, gdzie zajmował się popieraniem nowych wynalazków w rodzaju kolei żelaznych czy fotografii.

W grudniu 1810 roku jako świeżo upieczony członek Instytutu Arago przedstawił pracę poświęconą prędkości światła. Przyjmował w niej założenie, że światło ma naturę cząstkową. Francuz czytał pracę Michella i znał jego przewidywania, że prędkość światła emitowanego przez masywne gwiazdy może być znacznie mniejsza niż obserwowana w pobliżu Ziemi. Także Laplace przeprowadził podobne rachunki, wyszło mu, że ciało gęstości Słońca stałoby się ciemną gwiazdą, gdyby jego promień przekraczał 250 promieni Słońca. Prawdopodobnie także on zasugerował astronomowi sprawdzenie, czy różnice prędkości światła odbijają się jakoś na zjawisku aberracji światła gwiazd. Maksymalny kąt aberracji równy jest v/c, gdzie v – jest prędkością orbitalną Ziemi, a c – prędkością światła. Kąt ten jest mały i równy mniej więcej 10^{-4} \mbox{ rd} \approx 20'' , jak odkrył na początku XVIII w. James Bradley. Jeśli światło gwiazd dociera do nas z różną prędkością, to kąty aberracji powinny się indywidualnie różnić w zależności od gwiazdy. Efekty te powinny także zależeć od kierunku ruchu Ziemi, a więc zmieniać się w rytmie rocznym. Ponieważ najmniejsze kąty możliwe do zmierzenia były rzędu kilku sekund, więc tą drogą można by wykryć tylko bardzo znaczne zmiany prędkości światła.

Bardziej obiecujące wydawało się zjawisko załamania światła, którego wielkość także zależy od prędkości promieni w próżni. Światło różnych gwiazd powinno się więc załamywać w różnym stopniu. Arago starał się wykryć te różnice, umieszczając przed obiektywem teleskopu pryzmat. Aby obrazy gwiazd nie rozmyły się wskutek rozszczepienia światła w pryzmacie, używał dwóch sklejonych ze sobą pryzmatów ze szkła ołowiowego i zwykłego, które tworzyły układ achromatyczny – odchylający światło (w przybliżeniu) niezależnie od jego barwy. Astronom mierzył różnicę kąta między promieniem światła przepuszczonym obok pryzmatu i załamanym przez pryzmat dla szeregu gwiazd. Kąty odchylenia promienia były jednak praktycznie takie same, różniąc się najwyżej o kilka sekund, najwyraźniej w sposób przypadkowy – należało zatem przypisać je błędom pomiaru. Według obliczeń Arago zmiana prędkości światła o 1/10000 powinna skutkować różnicą kierunku promienia nawet o 14’’ – a więc znacznie więcej niż jego błędy pomiarowe. Ponieważ Ziemia porusza się z prędkością 1/10000 prędkości światła, więc obserwacje Arago powinny być wrażliwe na kąt między kierunkiem prędkości Ziemi a kierunkiem ku gwieździe. Żadnej tego typu zależności nie udało mu się wykryć. Jak napisał w swoim wystąpieniu przed Instytutem: „Na pierwszy rzut oka wynik ten wydaje się być w jawnej sprzeczności z Newtonowską teorią załamania [światła], ponieważ rzeczywiste nierówności między prędkościami promieni nie wywołują żadnych nierówności w ich odchyleniu”. Jeśli wierzyć Popperowi, teoria Newtona została tym samym obalona: jeśli z teorii wynika wniosek niezgodny z obserwacjami, to tym samym założenia teorii są nieprawdziwe. Obserwacje Arago były kłopotliwe, zwłaszcza dla ludzi takich, jak Laplace czy patronujący młodemu astronomowi Jean Baptiste Biot – zaprzysięgłych zwolenników teorii korpuskularnej światła. Obaj uczeni nie dali się przekonać nie tylko wynikom Arago, ale także i falowej teorii światła.

Arago zaproponował dziwaczne i dość desperackie wyjście z sytuacji: może promienie świetlne różnią się prędkościami, ale oko ludzkie reaguje tylko na wąski przedział prędkości. Wiedziano już od niedawna, że istnieje promieniowanie podczerwone, które przenosi ciepło, a także nadfioletowe, które zaczernia chlorek srebra (ten ostatni fakt otworzył drogę do wynalezienia fotografii). Może więc to prędkość decyduje o tym, czy widzimy dane cząstki światła, czy nie. Praca Arago nie została opublikowana, uczony poprzestał na jej odczytaniu. Można przypuszczać, że astronom sam nie wiedział, jak wytłumaczyć uzyskane wyniki. Choć na jego rezultaty powoływali się inni uczeni, to praca ukazała się drukiem dopiero czterdzieści lat później.

Wtedy kontekst był już inny. Pojawił się bowiem w nauce francuskiej Augustin Fresnel i jego wersja teorii falowej (wcześniejsza teoria falowa Thomasa Younga we Francji zrobiła jeszcze mniejsze wrażenie niż w Anglii). Arago należał do wczesnych zwolenników teorii falowej. Nic jednak nie jest proste na tym świecie: także w teorii falowej wyjaśnienie obserwacji Arago nie było zbyt naturalne: trzeba założyć, że eter świetlny jest wleczony, ale tylko częściowo, przez poruszający się ośrodek. Dopiero teoria względności wyjaśniła w roku 1905 rezultaty Arago w sposób naturalny: prędkość światła padającego na pryzmat z próżni równa jest zawsze c, bez względu na ruch pryzmatu, gwiazdy i Ziemi. Arago nie wykrył zmian odchylenia, bo ich po prostu nie ma.

Istota teorii względności (1923) – Albert Einstein

Ślepy żuk pełznący po powierzchni globusa nie wie, że tor, po którym się porusza, jest zakrzywiony. Ja miałem szczęście to zauważyć [A. Einstein]

Ta niewielka książeczka jest jedynym kompletnym przedstawieniem teorii przez jej twórcę, adresowanym do zawodowych uczonych, stanowiąc coś pośredniego między monografią a podręcznikiem. Ukazała się najpierw w 1923 roku w wersji angielskiej nakładem Princeton University Press oraz w wersji niemieckiej w wydawnictwie Vieweg & Sohn (z datą roczną 1922). Od tamtej pory doczekała się niezliczonych wydań w wielu językach. Uczony nie zmieniał głównego tekstu, choć z czasem dołączył kilka dodatków traktujących o późniejszych osiągnięciach.

Podstawą książki były wykłady wygłoszone w maju 1921 roku na uniwersytecie w Princeton. Czterdziestodwuletni Einstein wybrał się w swą pierwszą podróż za ocean, towarzysząc Chaimowi Weizmannowi i delegacji syjonistów. Ich celem było zebranie funduszy na założenie uniwersytetu w Jerozolimie. Uczony, który w kilku poprzednich latach z odrazą obserwował antysemityzm narastający w społeczeństwie niemieckim i który sam stał się ofiarą niewybrednych ataków z rasistowskimi podtekstami, zgodził się na ten wyjazd, rezygnując z udziału w pierwszym po wojnie Kongresie Solvaya, konferencji gromadzącej szczupłe grono najwybitniejszych fizyków świata. Po raz pierwszy wystąpił więc Einstein w roli działacza społecznego, wykorzystując autorytet naukowy do propagowania bliskich mu poglądów. Uczony witany był w Ameryce owacyjnie, zwłaszcza przez społeczność żydowską w Nowym Jorku, Bostonie, Cleveland. Niektórzy koledzy Einsteina, jak Fritz Haber, wybitny chemik, Żyd i niemiecki szowinista, mieli mu za złe podróż do Stanów Zjednoczonych, kraju niedawnego wroga. Rany wojenne nie zdążyły się jeszcze zabliźnić, zwłaszcza w Niemczech dźwigających ciężar przegranej wojny. Wielu niemieckich Żydów sądziło też, iż nie należy prowokować antysemityzmu i lepiej siedzieć cicho. Einstein, czy to dlatego, że spędził wiele lat w Szwajcarii, czy też z racji swego charakteru, nie podzielał takiego nastawienia, przeciwnie, to właśnie antysemityzm przyspieszył dojrzewanie jego żydowskiej tożsamości.

Podróż po Stanach Zjednoczonych miała też ważną część naukową. Einstein miał wykłady na Columbia University i w City College w Nowym Jorku, na uniwersytecie w Chicago oraz uniwersytecie Harvarda. W Princeton otrzymał stopień honorowy i wygłosił sławne zdanie, które później wyryto nad kominkiem w sali Wydziału Matematyki: „Pan Bóg jest wyrafinowany, lecz nie jest złośliwy” (odnosiło się ono do pewnych wyników eksperymentalnych zaprzeczających jego teorii). Bezpośrednio po uroczystościach rozpoczął się cykl pięciu wykładów odbywających się w kolejne dni tygodnia. Dwa pierwsze były popularne, następne bardziej techniczne. Wykładu inauguracyjnego słuchało około czterystu osób, podczas drugiego audytorium znacznie się przerzedziło, a kolejne odbywały się już w mniejszej sali dla niewielkiego grona słuchaczy. Na początku pobytu w Princeton uczony podpisał umowę z wydawnictwem uniwersytetu na publikację tekstu jego wystąpień. Ponieważ odbywały się one po niemiecku, wydawnictwo wynajęło niemiecką stenografkę, która notowała na żywo. Każdy z wykładów był na koniec podsumowywany po angielsku przez profesora fizyki Edwina Plimptona Adamsa, który został też tłumaczem wersji książkowej. Dopiero w styczniu 1922 roku uczony przesłał niemiecki tekst książki do wydawnictwa Vieweg & Sohn, wydrukowane przez nie korekty stały się podstawą angielskiego przekładu. Prace te wraz z poprawkami autorskimi zajęły cały rok 1922. Pod jego koniec wydrukowano wydanie niemieckie, a w styczniu ukończono druk wydania angielskiego. W trakcie tych prac ogłoszono wiadomość, że Albert Einstein został laureatem Nagrody Nobla za rok 1921. Laureat przebywał w tym czasie w Azji w drodze do Japonii.

Uczony spodziewał się otrzymać Nagrodę Nobla, w istocie przyszła ona dość późno i z istotnym zastrzeżeniem. Jak pisał Christopher Aurivillius, sekretarz Królewskiej Szwedzkiej Akademii Nauk, w liście do laureata: „Akademia (…) postanowiła przyznać panu Nagrodę Nobla w dziedzinie fizyki za ubiegły rok w uznaniu Pana dokonań w fizyce teoretycznej, w szczególności odkrycia teoretycznych podstaw zjawiska fotoelektrycznego, lecz z pominięciem zasług, które staną się Pana udziałem, gdy potwierdzą się sformułowane przez Pana teorie względności i grawitacji”. Teoria względności była więc w oczach szwedzkich akademików osiągnięciem kontrowersyjnym, podobnie myślało wielu uczonych.

Niewykluczone, że Einstein pragnął swoją książką przekonać część kolegów po fachu. Na początku lat dwudziestych obie teorie względności: szczególną z roku 1905 oraz ogólną z roku 1915 można było uznać za zakończony etap. Dzięki pracy Einsteina, ale także szeregu innych fizyków i matematyków, jak Max Planck, Max von Laue, David Hilbert, Felix Klein, Emmy Noether, Max Born, Hermann Weyl, Tullio Levi-Civita, Karl Schwarzschild, Hans Thirring, Josef Lense, Willem de Sitter, Hendrik Lorentz, Gunnar Nordström, Erich Kretschmann, Arthur Eddington, Paul Ehrenfest, Johannes Droste, Paul Langevin udało się wyjaśnić wiele aspektów nowej teorii – już sama lista nazwisk wskazuje, że praca Einsteina nie przebiegała w próżni, a ranga tych uczonych świadczy o poważnym traktowaniu osiągnięć Einsteina. Miał on jednak także sporo przeciwników, którzy z rozmaitych powodów odmawiali jego teorii naukowej wartości, a często także kwestionowali intelektualną uczciwość jej twórcy. Berliński profesor optyki Ernst Gehrcke uznawał teorię Einsteina za skutek zbiorowej sugestii, wybitni eksperymentatorzy (i laureaci Nagrody Nobla) Philipp Lenard i Johannes Stark nie potrafili się pogodzić ze światem nowych pojęć i widzieli w teorii względności produkt reklamy oraz sprytne pomieszanie elementów filozofii, matematyki i fizyki tak, by trudno było znaleźć uczonego zdolnego ją krytykować bez wykraczania poza ramy swej specjalności. Obaj ostatni nie ukrywali też swego antysemityzmu i stali się zwolennikami Adolfa Hitlera jeszcze we wczesnych latach dwudziestych, na długo przed rządami nazistów. Niektórzy, jak szwedzki oftalmolog i laureat Nagrody Nobla Allvar Gullstrand, sądzili, że teoria względności jest pusta wewnętrznie i może prowadzić do różnych wyników w tej samej sytuacji. Dochodziły do tego ostre podziały wśród filozofów, niektórzy jak Hans Reichenbach i Moritz Schlick mocno ją popierali, wielu jednak, jak Oskar Kraus czy Henri Bergson, wyrażało sceptycyzm, jeśli nie wrogość, wobec nowej teorii.
Większość uczonych była na ogół wciąż zdezorientowana, nie wiedząc, co sądzić. Toteż książka Einsteina skupiła się na podkreślaniu ciągłości w rozwoju fizyki, uwydatnieniu pewnej linii rozwoju, w której teoria względności stawała się naturalnym ogniwem. Nie sposób jednak ukryć, że teorie Einsteina zrywały z pojęciami absolutnej przestrzeni i absolutnego czasu, stanowiącymi fundament mechaniki, a z nią całej fizyki od czasów Isaaca Newtona. Kwestionowanie uświęconych tradycją zdobyczy nauki w oczach wielu było gestem obrazoburczym i świętokradczym. To, co starszych przejmowało zgrozą i oburzeniem, w oczach ówczesnych ludzi młodych stawało się fascynującą rewolucją. Karl Popper wspominał, jak wielką rolę w jego myśleniu o nauce odegrała teoria Einsteina, już sam fakt, że można było stworzyć realną alternatywę wobec królującej mechaniki Newtona miał dla niego rangę intelektualnego objawienia.

Zacząć wypada od samej nazwy: teoria względności. Z początku mówiło się o zasadzie względności, potem określać tak zaczęto teorię Einsteina z roku 1905 (szczególną teorię względności), a później Einstein zaczął mówić o uogólnionej bądź ogólnej teorii względności. W dyskursie potocznym zaczęto nazwy tę wiązać z zanegowaniem absolutnego czasu, a nawet szerzej z zanegowaniem dotychczasowej fizyki czy wręcz obowiązującej logiki albo etyki. Oczywiście, teoria względności, tak jak żadna udana teoria fizyczna, nie zmienia świata doświadczenia, ponieważ musi być zgodna z dotychczasowymi danymi eksperymentalnymi. Zmienia jedynie nasz sposób widzenia świata, przewidując nowe zjawiska i rozszerzając tym samym granice wiedzy. Mechanika newtonowska nadal obowiązuje, znamy tylko dokładniej jej ograniczenia. Max Planck, jeden z najwcześniejszych zwolenników teorii Einsteina, przekonuje w swej autobiografii naukowej, że jego zainteresowanie teorią względności wynikło właśnie z szukania w fizyce absolutu, ponieważ w świecie teorii względności są także wielkości oraz pojęcia niezmienne i absolutne. Dlatego nazwa ta bywa myląca.

W czerwcu 1905 roku redakcja „Annalen der Physik” otrzymała pracę nikomu nieznanego urzędnika Biura Patentowego w Bernie zatytułowaną O elektrodynamice ciał w ruchu. Rzecz dotyczyła jednego z najważniejszych zagadnień fizyki teoretycznej, którym w poprzednim dziesięcioleciu zajmowali się dwaj uznani luminarze Henri Poincaré i Hendrik Lorentz. Chodziło o eter – hipotetyczny ośrodek wypełniający świat. Na początku XIX stulecia Thomas Young i Augustin Fresnel wykazali, że światło jest falą. Wyobrażano sobie, że musi ono być falą sprężystą w eterze, czyli drganiem, które propaguje się na wszystkie strony podobnie jak fale akustyczne w powietrzu bądź innych ośrodkach sprężystych. Eter ów charakteryzować się musiał dość osobliwymi własnościami, gdyż z jednej strony był na tyle rzadki, by nie hamować ruchów planet, z drugiej zaś musiał być niezmiernie sprężysty, gdyż prędkość światła jest niewyobrażalnie duża w porównaniu np. z prędkością dźwięku. W przypadku dźwięku wiemy, że jego prędkość dodaje się wektorowo do prędkości powietrza: zmierzona prędkość będzie więc zależeć od prędkości ruchu powietrza. Podobne zjawisko zachodzić powinno także w przypadku światła. Ruch roczny Ziemi po orbicie wokół Słońca zachodzi z prędkością około 30 km/s, co stanowi 1/10 000 prędkości światła. Precyzyjne pomiary powinny wykryć zmiany obserwowanej prędkości światła. Przez cały wiek XIX szereg eksperymentatorów od François Arago w roku 1810 aż do Alberta Michelsona i Edwarda Morleya w roku 1887 starało się za pomocą różnych metod optycznych wykryć ruch Ziemi w eterze. Wyniki wszystkich tych doświadczeń były negatywne. Wyglądało to tak, jakby eter poruszał się razem z Ziemią, ale taka hipoteza rodziła sprzeczności z innymi obserwacjami.

Obok optyki innym wielkim tematem dziewiętnastowiecznej fizyki były elektryczność i magnetyzm. W latach sześćdziesiątych XIX wieku James Clerk Maxwell podsumował te wszystkie badania, podając jednolitą matematyczną teorię zjawisk elektrycznych, magnetycznych oraz optycznych – okazało się bowiem, że powinny istnieć fale elektromagnetyczne. Ich prędkość wynikająca z teorii Maxwella była bliska prędkości światła w próżni. Maxwell wysnuł więc wniosek, że światło jest rodzajem fal elektromagnetycznych. W latach 1887-1888 Heinrich Hertz wykazał, że można w laboratorium wytworzyć fale elektromagnetyczne o długości kilku metrów, które także rozchodzą się z prędkością światła. Teoria Maxwella została potwierdzona, stając się praktycznym narzędziem pracy inżynierów. Niemal równocześnie rozwijały się bowiem techniczne zastosowania elektromagnetyzmu: oświetlenie elektryczne, telefon i pierwsze elektrownie. Ojciec i stryj Einsteina, bracia Rudolf i Jakob, prowadzili najpierw w Monachium, później w północnych Włoszech firmę elektryczną i Albert niemal od dziecka miał do czynienia z techniką elektryczną. Elektrodynamika była także ważnym tematem zajęć laboratoryjnych i wykładów na Politechnice w Zurychu. Einstein jednak od początku nie chciał zostać inżynierem i narzekał, że program studiów nie obejmuje teorii Maxwella.

Teoria Maxwella pozwalała w jednolity sposób opisać ogromny obszar zjawisk. Czyniła to za pomocą pojęć pola elektrycznego oraz magnetycznego. W każdym punkcie przestrzeni i w każdej chwili można było za pomocą dwóch wektorów scharakteryzować stan pola. Wydawało się, że eter z początku wieku zyskał teraz nową funkcję, nośnika pola. Ważną cechą nowego podejścia była lokalność: to, co dzieje się z polem elektrycznym i magnetycznym w danym punkcie zależy od ładunków i prądów w tym samym punkcie. Zaburzenia pola rozchodzą się jako fale elektromagnetyczne. Była to więc fizyka pojęciowo odmienna od Newtonowskiej grawitacji, w której dwie masy oddziałują na siebie na odległość w sposób natychmiastowy. W teorii Maxwella ładunek jest źródłem pola w otaczającej go przestrzeni i pole to z kolei oddziałuje na inne ładunki. Prędkość rozchodzenia się zmian pola jest wielka, ale nie nieskończona. Choć Maxwell dokonał najważniejszej pracy, formułując teorię w sposób logicznie zamknięty, to dopiero jego następcy, m.in. Oliver Heaviside i Hendrik Lorentz, znaleźli prostsze i bardziej eleganckie jej wersje. Okazało się np., że każdy prąd elektryczny jest jedynie ruchem ładunków. Mamy więc dwa rodzaje ładunków, których położenia i prędkości określają stan pola w różnych miejscach – są to równania pola, czyli równania Maxwella. Znając zaś wartość pola elektrycznego i magnetycznego, możemy obliczyć siłę działającą na ładunek – są to równania ruchu (siła Lorentza).

Teoria Maxwella wyrastała z modelu pewnego ośrodka sprężystego i uczony, podobnie jak większość współczesnych, uważał, że jego rolą jest sprowadzenie zjawisk elektrycznych i magnetycznych do zjawisk mechanicznych. W odróżnieniu od teorii Newtona, w której mamy pojedyncze punkty materialne, tutaj substratem jest eter, który wyobrażano sobie jako pewien sprężysty materiał. Paradoksalny status eteru opisał na zjeździe Brytyjskiego Towarzystwa Krzewienia Nauk w Oksfordzie w roku 1894 markiz Salisbury, stwierdzając, że „główną, jeśli nie wyłączną, własnością słowa eter było dostarczanie rzeczownika do czasownika falować”.

Problem wykrycia ruchu Ziemi w eterze stał się tym bardziej palący. Wiadomo było wprawdzie, że inżynier stosować może równania Maxwella, nie przejmując się takimi subtelnościami, ale należało wyjaśnić negatywne wyniki doświadczeń. Hendrik Lorentz spróbował podejść do tego problemu w sposób systematyczny i wykazał, że każdemu stanowi pól w nieruchomym eterze odpowiada pewien stan pól w eterze ruchomym. Chciał w ten sposób podać ogólny dowód, że wszelkie zjawiska elektromagnetyczne przebiegają w taki sposób, aby nie można było ruchu Ziemi wykryć. Wprowadził przy tym dość szczególną konstrukcję matematyczną: w poruszającym się układzie należało zdefiniować czas w taki sposób, że zależał on od współrzędnej przestrzennej. Był to zdaniem Lorentza czas fikcyjny, potrzebny do dowodu niemożliwości wykrycia ruchu przez eter. Okazało się też, że należy założyć coś osobliwego na temat długości obiektów poruszających się: powinny one ulec nieznacznemu skróceniu o czynnik \sqrt{1-v^2/c^2}, gdzie v jest prędkością ruchu obiektu, a c – prędkością światła.

Praca Alberta Einsteina, eksperta technicznego III klasy z Berna, proponowała już we wstępie krok decydujący: pojęcie eteru świetlnego jest w fizyce „zbyteczne”. W ten sposób cała dziedzina badań nad zjawiskami w poruszającym się eterze przechodziła do historii, rozpoczynała się natomiast era szczególnej teorii względności.

Fizycy znali wcześniej zasadę względności. Dotyczyła ona mechaniki. I zasada dynamiki, czyli zasada bezwładności, mówi, że gdy żadne siły nie działają na ciało, to porusza się ono ruchem jednostajnym i prostoliniowym bądź spoczywa. Zasada ta nie dotyczy każdego układu współrzędnych (in. układu odniesienia). Obserwator w hamującym pociągu widzi, jak przewracają się przedmioty, które dotąd spokojnie sobie tkwiły w bezruchu. Hamujący pociąg nie jest więc układem odniesienia, w którym zasada bezwładności ma zastosowanie. Fizycy mówią: nie jest układem inercjalnym (tzn. takim, w którym obowiązuje zasada bezwładności). Pociąg jadący ruchem jednostajnym jest dobrym przybliżeniem układu inercjalnego, podobnie jak powierzchnia Ziemi. Wiemy jednak, że także powierzchnia Ziemi nie jest idealnym układem inercjalnym, ponieważ Ziemia wiruje wokół osi, a także porusza się ruchem rocznym wokół Słońca. Układ inercjalny jest więc pewnym ideałem teoretycznym. Zasady dynamiki mają w takim układzie szczególnie prostą postać i zazwyczaj tak są domyślnie sformułowane.

Ważną cechą układów inercjalnych jest to, że każdy układ odniesienia poruszający się ruchem jednostajnym i prostoliniowym względem jednego z nich jest także układem inercjalnym. mamy więc do czynienia z klasą równoważnych fizycznie układów odniesienia. W każdym z nich obowiązują zasady dynamiki w zwykłej postaci. Nie znaczy to, że nie możemy opisywać ruchu np. w odniesieniu do hamującego pociągu, musimy jednak wtedy uwzględnić dodatkowe siły, które nie wynikają z żadnych oddziaływań, lecz są skutkiem ruchu układu: w hamującym pociągu pasażerowie odczuwają siłę zwróconą ku jego przodowi, która znika, gdy pociąg się zatrzyma.

Isaac Newton sformułował w Matematycznych zasadach filozofii przyrody pojęcia absolutnej przestrzeni – czegoś w rodzaju nieskończonego pojemnika na wszystkie obiekty w świecie oraz absolutnego czasu. Prawa dynamiki obowiązywać miały, gdy ruch odnosimy do owej przestrzeni absolutnej, ale także w każdym układzie odniesienia poruszającym się ruchem jednostajnym i prostoliniowym. W rezultacie w fizyce Newtona nie ma sposobu na ustalenie, który z nieskończonego zbioru układów inercjalnych jest absolutną przestrzenią albo w języku dziewiętnastego wieku: eterem. Nie możemy więc ustalić absolutnego położenia żadnego przedmiotu w sposób empiryczny: dwa zdarzenia zachodzące w odstępie jednej minuty w tym samym punkcie (inercjalnego) pociągu zachodzą w różnych miejscach przestrzeni zdaniem obserwatora na peronie. Fizycznie oba punkty widzenia są równoprawne, a także punkty widzenia wszelkich innych obserwatorów inercjalnych. Absolutna przestrzeń należy więc do założeń metafizycznych Newtona, żadne eksperymenty nie pozwalają jej zlokalizować. Inaczej można powiedzieć, że w fizyce Newtona obowiązuje zasada względności: prawa fizyki są takie same w każdym układzie inercjalnym.

Czas w fizyce Newtona jest rzeczywiście absolutny, to znaczy, można zawsze ustalić, czy zdarzenia są równoczesne, nawet gdy zachodzą one daleko od siebie (zresztą dla pewnego obserwatora inercjalnego będą one równoczesne i zarazem w tym samym punkcie przestrzeni).

Einstein uważał, iż zasadę względności należy rozciągnąć także na zjawiska elektromagnetyczne i zaproponował, aby obowiązywała ona jako nowe prawo fizyki: wszelkie prawa fizyki mają taką samą postać w każdym układzie inercjalnym. Drugim postulatem jego teorii było przyjecie, że prędkość światła w próżni jest dla każdego obserwatora inercjalnego równa tej samej wartości c (wynikającej z teorii Maxwella). Zamiast analizować szczegóły zaproponował więc dwie zasady ogólne, które jego współczesnym wydawały się przeczyć sobie wzajemnie. Rozszerzenie zasady względności na całą fizykę byłoby wprawdzie eleganckim wyjaśnieniem, dlaczego nie obserwujemy ruchu Ziemi w eterze (bo eteru nie ma), ale pojawia się trudność z drugim postulatem. Znaczy on bowiem, że nie tylko prędkość światła zawsze jest równa c, bez względu na ruch źródła światła, ale także równa jest c bez względu na to, czy obserwator goni falę świetlną, czy też porusza się jej naprzeciw. Przeczy to prawu składania prędkości, a przecież eksperymenty potwierdzają je na co dzień: gdy pasażer porusza się z prędkością u (względem pociągu) w kierunku do przodu pociągu jadącego z prędkością v (względem peronu), to jego prędkość względem peronu jest sumą u+v. Dlaczego prawo to nie działa, gdy jednym z obiektów jest światło?

Czyniono często zarzut Einsteinowi, że prędkość światła w próżni jest w jego teorii jakoś szczególnie wyróżniona. Rzeczywiście, istnieje w tej teorii graniczna prędkość poruszania się obiektów materialnych, np. przekazywania energii albo informacji, i to jest właśnie c. Można powiedzieć, że światło ma tę szczególną własność, iż porusza się z ową maksymalną prędkością. Nie ma jednak żadnych przeszkód, aby istniały inne obiekty poruszające się z prędkością c. Wiemy, że światło składa się z fotonów (było to treścią innej pracy Einsteina z tego samego roku, nie bez powodu nazywanego jego „cudownym rokiem”), cząstek poruszających się z prędkością c. Podobnie poruszają się inne cząstki, odkryte później, jak gluony, albo wciąż czekające na odkrycie, jak grawitony. Cząstki takie nie istnieją w stanie spoczynku, lecz zawsze poruszają się z prędkością c.

Istnienie maksymalnej prędkości, i to w dodatku zawsze jednakowej, pozwala na eksperymentalne badanie równoczesności dwóch zjawisk. Obserwator inercjalny może rozmieścić w swoim układzie odniesienia zegary w różnych punktach. Znając odległość tych puntów oraz prędkość światła, może te zegary zsynchronizować. Gdy jego zegar wskazuje czas t, wysyła sygnał do punktu odległego o r i umawia się z kolegą, który tam przebywa, że moment odebrania sygnału będzie czasem t+r/c. Dzięki temu przepisowi wszystkie zegary zostaną zsynchronizowane i można będzie ustalić zawsze czas danego zdarzenia, obserwując go na pobliskim zegarze. Metoda ta zastosowana w innym układzie inercjalnym może dać inne wyniki w odniesieniu do tej samej pary zdarzeń.

Przykład podany przez Einsteina pomaga to zrozumieć. Wyobraźmy sobie jadący pociąg i obserwatora na peronie. W chwili, gdy mija go środek pociągu, w jego początek i koniec uderzają równocześnie dwa pioruny. Ich uderzenia są równoczesne, ponieważ światło obu błyskawic dociera do naszego obserwatora w jednej chwili, a wiadomo, że odległość obu końców pociągu od obserwatora była w tym momencie taka sama. Inaczej opisze te zdarzenia obserwator siedzący w środku pociągu. Jego zdaniem piorun najpierw uderzył w przód pociągu, a dopiero później w jego tył (linia świata pasażera jest na rysunku zakreskowana, jest to zarazem jego oś czasu). Skoro równoczesność dwóch zdarzeń zależy od układu odniesienia, to znaczy, że czas absolutny nie istnieje. Wbrew pozorom nie burzy to jednak naszych koncepcji przyczyny i skutku. Musimy tylko precyzyjnie opisywać zdarzenia, podając ich położenie oraz czas. Zdarzenia takie, jak jednoczesne uderzenia dwóch piorunów w dwóch różnych punktach nie są z pewnością połączone związkiem przyczynowo-skutkowym, ponieważ wymagałoby to oddziaływania przenoszącego się natychmiastowo, z nieskończoną prędkością. Wszystkie zaś oddziaływania fizyczne mogą przenosić się co najwyżej z prędkością światła w próżni. Dlatego zmiana kolejności czasowej obu uderzeń pioruna nie burzy fizyki. Jeśli natomiast jakieś zdarzenie A może potencjalnie być przyczyną innego zdarzenia B, to dla każdego obserwatora ich kolejność czasowa będzie taka sama: t_A<t_B. Obalenie koncepcji absolutnego czasu nie oznacza zatem wprowadzenia anarchii w relacjach czasoprzestrzennych, lecz zaprowadzenie innego ładu niż dotąd.

Był to najważniejszy wniosek Einsteina. Oznaczał konieczność przebudowy samych podstaw fizyki: pojęć czasu i przestrzeni. Okazywało się, że teoria Maxwella zgodna jest z teorią względności, nie wymaga więc żadnej przebudowy. Przeciwnie, fikcyjny czas lokalny Lorentza należy interpretować jako czas rzeczywisty mierzony przez innego obserwatora. Póki znajdujemy się w jednym ustalonym układzie inercjalnym czas wydaje nam się absolutny. Rewolucja dotyczyła porównywania wyników pomiarów dokonywanych przez różnych obserwatorów. W przypadku elektrodynamiki oznaczało to względność pól elektrycznych i magnetycznych. Jeśli np. w jednym układzie odniesienia mamy spoczywający ładunek wytwarzający pole elektryczne, to w innym układzie ładunek ten będzie się poruszać – będziemy więc mieli do czynienia z prądem, i obserwować będziemy zarówno pole elektryczne, jak i magnetyczne. Oba wektory pola elektromagnetycznego stanowią więc z punktu widzenia teorii względności jedną całość, jeden obiekt matematyczny, którego składowe w różnych układach są różne, podobnie jak składowe zwykłego wektora w różnych układach współrzędnych.

Równania Maxwella są takie same w każdym układzie inercjalnym, więc i prędkość fali świetlnej będzie w każdym układzie taka sama. Większej przebudowy wymagała mechanika. Jej newtonowska wersja nadal pozostaje słuszna, gdy ciała poruszają się wolno w porównaniu do prędkości światła. Najważniejszą konsekwencją nowej mechaniki stało się słynne równanie E=mc^2, które pozwala zrozumieć m.in. reakcje, w których powstają albo giną cząstki, oraz skąd gwiazdy czerpią energię na świecenie przez miliardy lat.

Szczególna teoria względności rozwiązywała problemy, które od lat uciążliwie towarzyszyły fizykom, choć były one głównie natury pojęciowej. Można było na co dzień nie zaprzątać sobie głowy ruchem Ziemi w eterze i uprawiać fizykę tak, jakby Ziemia była nieruchoma. Także narzędzia do rozwiązania owych problemów zostały już wypracowane, głównie przez Lorentza i Poincarégo, Einstein je tylko radykalnie zreinterpretował. Pierwszy z fizyków pogodził się z sytuacją i zaprzyjaźnił z Einsteinem, drugi starał się ignorować prace młodszego kolegi (być może zresztą jego stosunek do Einsteina uległby z czasem zmianie, Poincaré zmarł w roku 1912, a więc przed stworzeniem ogólnej teorii względności). Ostatecznie elektrodynamika ciał w ruchu przeszła do historii, a podstawą fizyki stała się szczególna teoria względności.
Natomiast jej uogólnienie, czyli Einsteinowska teoria grawitacji, było praktycznie dziełem jednego tylko autora, stworzonym w latach 1907-1915.

Pojęciowym punktem wyjścia była prosty eksperyment myślowy: obserwator swobodnie spadający w polu grawitacyjnym nie będzie odczuwał grawitacji – będzie w stanie nieważkości, dziś dobrze znanym z lotów kosmicznych. Einstein uznał tę obserwację za „najszczęśliwsza myśl swego życia”. Z punktu widzenia fizyki Newtonowskiej istnieją dwa rodzaje masy: grawitacyjna i bezwładna. Pierwsza określa siłę, z jaką na ciało będzie oddziaływać grawitacja. Druga określa przyspieszenie ciała. Ponieważ obie te masy są jednakowe, więc przyspieszenie dowolnego ciała w danym polu grawitacyjnym jest takie same. Ilustruje to się czasem, demonstrując spadanie różnych ciał w rurze próżniowej. Obie masy skracają się zawsze, kiedy obliczamy przyspieszenie. Zdaniem Einsteina należało tę tożsamość wbudować w strukturę fizyki, zamiast ją tylko postulować jako dodatkowy warunek. Uczony sformułował zasadę równoważności pola grawitacyjnego i przyspieszenia. Znajdując się w zamkniętej kapsule, nie potrafilibyśmy odróżnić, czy nasza kapsuła porusza się ruchem przyspieszonym, czy spoczywa w polu grawitacyjnym (możliwe byłyby także kombinacje obu stanów). Grawitacja jest więc w fundamentalny sposób związana z bezwładnością. Einstein dążył do stworzenia teorii, która objaśniałaby jednocześnie grawitację oraz bezwładność. Argumentował przy tym, że układy inercjalne są sztucznym ograniczeniem dla fizyki, powinniśmy więc dopuścić także układy przyspieszone, nieinercjalne. Podobnie jak w szczególnej teorii względności każda prędkość ma zawsze charakter względny, w teorii uogólnionej także przyspieszenie miało stać się pojęciem względnym. Nawiązywał tu do rozważań Ernsta Macha, który sądził, że przyspieszenie jest względne. W swoim czasie Isaac Newton posłużył się przykładem wiadra z wodą wirującego na skręconym sznurze. Gdy wiadro przekaże ruch wirowy wodzie, jej powierzchnia staje się wklęsła, co jest skutkiem sił odśrodkowych. Możemy w ten sposób stwierdzić, czy woda wiruje względem absolutnej przestrzeni. Zdaniem Macha eksperyment ten dowodzi tylko tego, że woda obraca się względem dalekich gwiazd. Gdyby to owe gwiazdy zaczęły się obracać, skutek byłby ten sam, a przestrzeń absolutna nie istnieje.

Droga Einsteina do ogólnej teorii względności była zawikłana, lecz z perspektywy roku 1921 jej struktura matematyczna została już wyjaśniona. Rolę układów inercjalnych odgrywały teraz swobodnie spadające układy odniesienia. Obserwator znajdujący się w jednym z nich może stosować szczególną teorię względności. Różnica fizyczna między obiema teoriami polega jednak na tym, że szczególną teorię względności stosować można jedynie lokalnie. Nawet bowiem w spadającym swobodnie laboratorium można wykryć niewielkie zmiany przyspieszenia między różnymi jego punktami – są to siły przypływowe (poznane historycznie na przykładzie zjawiska przypływów i odpływów w oceanach, które są z różnymi siłami przyciągane grawitacyjnie przez Księżyc oraz Słońce). Oznacza to, że nie można wprowadzić jednego układu inercjalnego dla całego wszechświata, można tylko wprowadzać je lokalnie. Matematycznie rzecz biorąc, różnica między teorią ogólną i szczególną polega na geometrii: zakrzywionej w pierwszym przypadku, płaskiej w drugim. Einstein posłużył się czterowymiarowym sformułowaniem swej teorii szczególnej podanym przez Hermanna Minkowskiego. Czas i przestrzeń stanowią tu pewną całość, czasoprzestrzeń. W przypadku dwuwymiarowym w każdym punkcie powierzchni możemy zbudować płaszczyznę styczną. Jest ona zarazem dobrym przybliżeniem geometrii w otoczeniu danego punktu: w taki sposób posługujemy się planami miast, mimo że Ziemia nie jest płaska.

Teorię dwuwymiarowych powierzchni zawartych w trójwymiarowej przestrzeni zbudował Karl Friedrich Gauss. Zauważył przy tym, że wystarczy posługiwać się wielkościami dostępnymi bez wychodzenia poza powierzchnię. Można np. w ten sposób ustalić, czy jest ona zakrzywiona. Podejście Gaussa uogólnił później Bernhard Riemann, a inni matematycy rozwinęli je w systematyczne procedury dla powierzchni o dowolnej liczbie wymiarów.

W geometrii Riemanna współrzędne można wybrać w sposób dowolny, w przypadku zakrzywionych przestrzeni nie istnieje na ogół żaden szczególnie prosty układ współrzędnych, który mógłby odegrać taką rolę jak współrzędne kartezjańskie w przestrzeni euklidesowej. Nadal decydującą rolę odgrywa tu pojęcie odległości. Dla pary bliskich punktów możemy ją zawsze obliczyć w sposób euklidesowy, a długość dowolnej krzywej uzyskać przez sumowanie takich elementarnych odległości. Zamiast równania ds^2=dx^2+dy^2 na płaszczyźnie, mamy teraz równanie nieco bardziej skomplikowane

ds^2=g_{11}dx_1^2+2g_{12}dx_1dx_2+g_{22}dx_2^2.

Geometrię przestrzeni określa więc zbiór funkcji g_{\mu\nu} pozwalających obliczyć odległość punktów. Funkcje g_{\mu\nu} noszą nazwę tensora metrycznego (albo metryki). Można za ich pomocą wyrazić wszelkie własności geometryczne danej przestrzeni. W przypadku dwuwymiarowym wystarczą trzy takie funkcje, w przypadku czterowymiarowym należy znać ich dziesięć.

W zakrzywionej przestrzeni nie ma linii prostych, można jednak znaleźć ich odpowiedniki. Są to linie geodezyjne (albo geodetyki). Mają one niektóre własności linii prostych w geometrii euklidesowej: są np. najkrótszą drogą łączącą dwa punkty. Krzywe geodezyjne w teorii Einsteina są liniami świata cząstek poruszających się pod wpływem grawitacji. Metryka określa więc, jak poruszają się cząstki – grawitacja nie jest z punktu widzenia Einsteina siłą, lecz własnością czasoprzestrzeni. Należy dodać, że inne rodzaje sił działających na dane ciało sprawią, że przestanie się ono poruszać po geodezyjnej. Jedynie grawitacja wiąże się tak ściśle z geometrią. Jest to zgodne z faktem, że grawitacja jest powszechna, tzn. dotyczy wszystkich cząstek, a także działa na wszystkie w taki sam sposób – dzięki czemu można ją opisać jako własność czasoprzestrzeni. W teorii Einsteina nie potrzeba osobnej masy grawitacyjnej i bezwładnej.

Znając metrykę czasoprzestrzeni, możemy wyznaczyć geodezyjne, czyli obliczyć, jak poruszają się ciała pod wpływem grawitacji. Są to równania ruchu, zastępujące zasady dynamiki Newtona. Aby jednak wyznaczyć metrykę, potrzebne są równania, które musi ona spełniać. Są to równania pola, największe osiągnięcie Einsteina jako fizyka. Przystępując do pracy nad ogólną teorią względności uczony wiedział jedynie, że powinna ona zawierać teorię szczególną a także Newtonowską teorię grawitacji. Równania pola powinny mieć postać znaną z teorii Maxwella: (pewne kombinacje pochodnych pól)=(źródła pola). W przypadku grawitacyjnym źródłem powinna być masa, ale to także znaczy: energia. W teorii szczególnej opisuje się energię i pęd zbioru cząstek jako tensor energii pędu T_{\mu\nu}, zbiór dziesięciu wielkości danych w każdym punkcie czasoprzestrzeni. Masy powinny decydować o krzywiźnie czasoprzestrzeni. Zatem po lewej stronie równań pola powinna znaleźć się wielkość informująca o krzywiźnie. Okazuje się, że praktycznie jedyną możliwością jest tu tzw. tensor Einsteina, G_{\mu\nu} zbiór dziesięciu pochodnych metryki. Równania muszą więc przybrać postać

G_{\mu\nu}=\kappa T_{\mu\nu}.

gdzie \kappa jest odpowiednio dobraną stałą związaną ze stałą grawitacyjną. Sama postać zapisu tych równań zapewnia, że możemy w dowolny sposób wybrać współrzędne, a równania nadal pozostaną słuszne. Znalezienie prawidłowych równań pola pod koniec listopada 1915 roku zakończyło odyseję Einsteina: ogólna teoria względności została zbudowana.

Jeszcze w listopadzie 1915 roku uzyskał Einstein dla swej teorii pierwsze potwierdzenie obserwacyjne. Obliczył bowiem wielkość obrotu orbity Merkurego wokół Słońca – niewielkiej rozbieżności między obserwacjami a teorią Newtona nie udawało się wyjaśnić od półwiecza. Teraz okazało się, że przyczyną rozbieżności było niedokładne prawo grawitacji. Przewidział też Einstein, że promienie gwiazd biegnące blisko powierzchni Słońca powinny uginać się o kąt 1,74’’. Efekt ten został w roku 1919 potwierdzony podczas całkowitego zaćmienia Słońca przez dwie ekspedycje brytyjskie. Teoria grawitacji Einsteina okazała się ogromnym sukcesem, jest powszechnie uważana za najpiękniejszą teorię w fizyce. Nie wszystko jednak poszło po myśli jej twórcy. Okazało się np., że choć wprawdzie grawitacja i bezwładność zostały ze sobą zespolone, to nie udało się jednak zrealizować idei Macha. W teorii Einsteina wirowanie całego wszechświata jest czym innym niż wirowanie wiadra Newtona. Einstein z pewnym uporem trzymał się zasady Macha nawet wówczas, gdy wykazano, że nie obowiązuje ona w jego teorii. Wbrew przewidywaniom twórcy grawitacja może prowadzić do zapadania się materii i tworzenia czarnych dziur, w których zamknięta jest osobliwość czasoprzestrzeni. Einstein zmieniał w ciągu swej późniejszej kariery zdanie na temat tego, czy istnieją fale grawitacyjne: początkowo je przewidywał, później nabrał wątpliwości. Jego początkowe przybliżone podejście okazało się słuszne i fale grawitacyjne zostały odkryte w roku 2015.

Oliver Heaviside i głuchy telefon (1886-1891)

Heaviside był człowiekiem trudnym w kontaktach, nie bardzo też interesowała go kariera zawodowa. Rodzina była zbyt biedna, aby mógł zdobyć solidne wykształcenie, toteż zakończył swą szkolną edukację w wieku szesnastu lat. Przebyta w dzieciństwie szkarlatyna upośledziła jego słuch, izolując go od rówieśników. Choć z czasem odzyskał w znacznej mierze słuch, to pozostał autsajderem na resztę życia. Krótko pracował jako telegrafista i pracownik techniczny u boku starszego brata Arthura w firmie zarządzającej kablem pomiędzy Danią i Anglią, lecz zwolnił się w wieku dwudziestu czterech lat i już nigdy później nie pracował zawodowo. Mieszkając w pokoju u rodziców, zajmował się eksperymentalnie i teoretycznie elektrycznością, jedyne pieniądze zarabiał z publikacji artykułów w fachowym piśmie „The Electrician”. Był jednym z pierwszych kontynuatorów Jamesa Clerka Maxwella, udało mu się uprościć i przejrzyściej zapisać równania elektromagnetyzmu. Odkrył rachunek operatorowy ułatwiający rozwiązywanie równań różniczkowych (posługiwał się funkcją δ na długo przed Dirakiem). Zastosował też zapis wektorowy, bez którego trudno dziś sobie wyobrazić teorię Maxwella. Dzięki bratu, pracującemu jako inżynier, znał praktyczne problemy telefonii i podał metodę zbudowania linii przesyłowej w taki sposób, aby nie zniekształcała sygnałów. Problem był palący, ponieważ telefonia rozwijała się burzliwie i wraz ze wzrostem odległości sygnał nie tylko był słabszy, ale też ulegał zniekształceniu. Dalsza historia tego odkrycia Heaviside’a była zapewne do przewidzenia: z początku nie chciano mu wierzyć, a później to inni zarobili miliony na wcieleniu jego idei w życie.

Biografia Heaviside’a skłania do zastanowienia nad rolą autorytetów w różnych dziedzinach. Będąc jednym z najwybitniejszych uczonych swoich czasów, postrzegany był jako jakiś niedouczony telegrafista, a przy tym dziwak. Jego artykuły w „The Electrician” były trudne do zrozumienia, a może po prostu nikt nie przykładał się do ich zrozumienia, ponieważ były autorstwa jakiegoś urzędnika, nie wiadomo właściwie kogo. Tymczasem stanowiły one oryginalny wykład do teorii elektromagnetyzmu. Gdy Heinrich Hertz odkrył fale elektromagnetyczne, w pracach Heaviside’a znaleźć można było nowocześniejsze i prostsze ujęcie teorii, która tak wspaniale się potwierdziła. Nasz „telegrafista” wyprzedził tu znacznie większość uczonych brytyjskich i kontynentalnych. W szczególności jego podejście górowało nad konserwatywnym i sceptycznym nastawieniem Williama Thomsona, późniejszego lorda Kelvina. Ten ostatni nie potrafił się przekonać do teorii Maxwella, co miało znaczenie, ponieważ był najsławniejszym uczonym Wielkiej Brytanii, zasiadał we wszystkich możliwych radach i towarzystwach, a każde jego słowo prasa traktowała jak wyrocznię. Tak było, gdy w 1888 roku, po odkryciu Hertza, Thomson orzekł, iż jego zastrzeżenia wobec teorii Maxwella nieco się zmniejszyły (uznał bowiem, że prąd przesunięcia – najważniejszy element pojęciowy zaproponowany przez Maxwella – z „zupełnie nie do utrzymania” awansował w jego oczach do kategorii „niezupełnie do utrzymania”). Thomson miał swoją wizję idealnej teorii elektromagnetyzmu, prawdopodobnie zresztą dlatego nie osiągnął końcowego sukcesu. W każdym razie to młodszy od niego James Clerk Maxwell rozwiązał problem, choć sir William nie chciał się z tym pogodzić.

 

Baron Kelvin of Largs

William Thomson umiał jednak zachowywać się fair i dzięki temu Oliver Heaviside doczekał się nieco uznania za życia. Wcześniej, w roku 1887, przeszedł swe najgorsze chwile, gdy stracił możliwość publikowania, a zarazem też skromne dochody, jakie ta działalność zapewniała. Za 40 funtów rocznie redakcja otrzymywała ciągły strumień oryginalnych publikacji z dziedziny elektromagnetyzmu. Kryzys nastąpił wtedy, gdy Oliver Heaviside wszedł w konflikt z Williamem Henry’m Preece’em, ważnym ekspertem brytyjskiej poczty. Preece starał się przeforsować kosztowną decyzję budowy linii telefonicznych z kablem miedzianym w miejsce żelaznego. Argumentował, że dzięki temu wzrośnie zasięg rozmów, ponieważ kable żelazne wytwarzają pole magnetyczne, a to prowadzi do strat energii (zmienne pole magnetyczne indukuje dodatkowe napięcie, mówi się o indukcyjności kabla: miedziane zmniejszały wg Preece’a indukcyjność i na tym polegała ich wyższość). Mało tego, Preece twierdził, że wykazał fałszywość teorii Maxwella. W tym samym czasie Arthur i  Oliver próbowali opublikować pracę, która podważała poglądy Preece’a, a nawet im przeczyła: otóż pole magnetyczne wcale nie musi przeszkadzać w przesyłaniu rozmów telefonicznych, a nawet może pomagać. Pewny siebie Preece zakazał publikacji. Obaj bracia zareagowali na to rozmaicie: Arthur jako podwładny Preece’a przestał się zajmować tym tematem, Oliver natomiast zaczął z upodobaniem dowodzić niekompetencji Preece’a, którego określał m.in. jako „the eminent scienticulist” – czyli coś w rodzaju „wybitnego mędrka”. Racja naukowa była całkowicie po stronie Heaviside’a, znalazł on warunek, jaki spełniać powinna linia przesyłowa, aby nie zniekształcała rozmów (chodzi o to, by składowe o różnych częstościach tłumione były w jednakowym stopniu, w ten sposób daleki odbiorca otrzymuje sygnał słabszy, lecz podobny do wysłanego). Ów warunek Heaviside’a był kontrintuicyjny, lecz prawdziwy i oznaczał, że należy w praktyce zwiększać indukcyjność linii, czyli wytwarzane przez nie pole magnetyczne. Nacisk Preece’a sprawił, że zmienił się redaktor naczelny „The Electrician” i nowy już nie chciał publikować artykułów Heaviside’a.

Karykatura z 1888 r.: Preece pod sztandarem wieloletnich doświadczeń pokonuje Olivera Lodge’a (który podawał w wątpliwość skuteczność używanych piorunochronów i krytykował jego teoretyczne rozważania, stając po stronie Heaviside’a)

Atmosfera wokół niego poprawiła się dopiero wówczas, gdy publicznie docenił jego teorię William Thomson. Otworzyło to drogę do przyjęcia Heaviside’a w roku 1891 na członka Towarzystwa Królewskiego, ułatwiło też publikację kolejnych prac. Zadziwiająco mało zmieniło się w życiu uczonego, który przywiązywał chyba większą wagę do możliwości publikacji niż do zarobku. Nadal pozostał prywatnym uczonym, po śmierci rodziców jego środki do życia mocno się skurczyły. Dzięki dyskretnym staraniom paru wybitnych uczonych zaczął Heaviside otrzymywać skromną emeryturę (dyskretnych, ponieważ drażliwy Heaviside nie chciał jałmużny). Żył dość długo, by widzieć, jak jego idea zwiększenia indukcyjności kabli telefonicznych została wcielona w życie jako pupinizacja albo krarupizacja. Zarówno Amerykanin serbskiego pochodzenia Mihajlo Pupin, jak i Duńczyk Karl Emil Krarup, wyciągnęli praktyczne wnioski z teorii Heaviside’a. Pupin po długiej batalii prawnej z firmą AT&T zarobił na swoim patencie 450 000 $ (blisko 30 mln $ obecnie). Jego rozwiązanie polegało na umieszczaniu w stałych odległościach cewek zwiększających indukcyjność. Krarup zastosował żelazne druty (zwiększające pole magnetyczne) oplatające miedziany rdzeń. Dzięki temu w pierwszych latach XX wieku wzrósł zasięg linii telefonicznych, a ich układanie stało się tańsze. Także kariera Preece’a, który nigdy nie przyznał się do błędu, nie doznała żadnego uszczerbku i rozwijała się pomyślnie, z czasem doczekał się on tytułu szlacheckiego. Tylko Heaviside dziwaczał coraz bardziej, mieszkał sam, pod koniec życia zastąpił meble blokami granitu, zaniedbał się i cierpiał na rodzaj manii prześladowczej. Nie dowiemy się już, czy dziwaczał, ponieważ nie osiągnął pozycji w społeczeństwie odpowiadającej jego talentowi, czy też odwrotnie: nie udało mu się zdobyć pozycji w bardzo konkurencyjnym wiktoriańskim społeczeństwie, ponieważ zbytnio odbiegał od przyjętych standardów zachowania i nawet talent nie mógł tu pomóc.

Die Vermittlungszentrale im Berliner Fernspreschamt II
Original: Frankfurt am Main, Deutsches Postmuseum
Foto: Berlin, 1894

Centrala telefoniczna w Berlinie, 1894 r.

Technika telefoniczna rozwijała się szybko. Kolejnym krokiem było skonstruowanie wzmacniacza na triodach (regeneratora sygnałów), który zaczął być stosowany komercyjnie tuż przed pierwszą wojną światową. Heaviside zdążył jeszcze przewidzieć istnienie jonosfery, dzięki której fale radiowe rozchodzą się wzdłuż powierzchni Ziemi, umożliwiając np. międzykontynentalne przekazywanie sygnału radiowego.

Pokażemy na przykładzie, jak Heaviside potraktował kwestię przesyłania sygnałów bez zniekształceń. Linia przesyłowa to rozciągnięty bardzo obwód. Można uważać, że każdy jego fragment o długości \Delta x składa się z podstawowych elementów obwodu: oporu R\Delta x, indukcyjności L\Delta x oraz połączonych równolegle pojemności C\Delta x oraz przewodnictwa G\Delta x. Dla pierwszego i ostatniego elementu obowiązuje prawo Ohma (przewodnictwo jest odwrotnością oporu):

\dfrac{U}{I}=R.

Napięcie na końcach indukcyjności równe jest

U=L\dfrac{dI}{dt},

co Heaviside w swoim języku symbolicznym zapisywał jako U=LpI (p oznaczało branie pochodnej po czasie). Dla pojemności mamy natomiast

I=\dfrac{dQ}{dt}=C\dfrac{dU}{dt}=CpU.

gdzie Q jest ładunkiem.

Stosunki napięcia do natężenia są zastępczymi oporami, mamy więc dla indukcyjności Lp, a dla pojemności 1/pC. Ponieważ możemy podzielić naszą linię transmisyjną na dowolnie dużą liczbę powtarzających się segmentów o długości \Delta x, więc dodanie kolejnego segmentu nie powinno zmieniać zastępczego oporu. Opór zastępczy całej linii Z (wejściowy) musi w takim razie być tym samym, co połączenie równoległe elementów G\Delta x, C\Delta x oraz (R+Lp)\Delta x + Z na końcu. W połączeniu równoległym dodają się odwrotności oporów, mamy więc

\dfrac{1}{Z}=(G+pC)\Delta x+\dfrac{1}{(R+pL)\Delta x+Z}.

Po przekształceniach dostajemy równanie kwadratowe na opór zastępczy:

Z^2+(R+pL)\Delta x Z=\dfrac{R+pL}{G+pC}.

Jeśli teraz przyjmiemy, że \Delta x\rightarrow 0, to otrzymamy

Z^2=\dfrac{R+pL}{G+pC}.

Otrzymany wynik wygląda odrobinę dziwnie, jeśli przypomnimy sobie, że p to różniczkowanie. Nie jest jasne, jak powinniśmy dzielić przez p i jak wyciągać pierwiastek. Heaviside szedł za swoim formalizmem tak daleko, jak tylko się dało i rozpatrywał wyrażenia takie, jak np. p^{\frac{1}{2}}. Uważał on matematykę za naukę empiryczną i jak mówił: „Czy mam odmówić zjedzenia obiadu, ponieważ nie znam wszystkich szczegółów trawienia?” My nie musimy iść aż tak daleko. Widać z ostatniego wyrażenia, że gdy spełniony będzie warunek

\dfrac{R}{G}=\dfrac{L}{C},

nasz ułamek się skróci (cokolwiek to znaczy) i nie będzie zawierał p, w takiej sytuacji sygnał o dowolnym kształcie nie ulegnie zmianie. Jest to warunek Heaviside’a. W praktyce znaczył tyle, że indukcyjność L należy powiększyć, czego nie rozumiał Preece. Dodać należy, że Heaviside formułował tę swoją matematykę także w konwencjonalny sposób – był może dziwakiem, ale w kwestii technik matematycznych zachowywał się całkiem racjonalnie. Obecnie stosuje się transformaty Laplace’a albo można sobie wyobrażać, że zależność od czasu ma postać \exp(i\omega t) (gdzie \omega to częstość kołowa), wówczas różniczkowanie sprowadza się do mnożenia i mamy po prostu p=i\omega.

 

 

 

Walter Ritz, rówieśnik Einsteina (1878-1909)

Nauka jest przedsięwzięciem zbiorowym, ostatecznie to społeczność uczonych – niczym chór greckiej tragedii – osądza protagonistów i komunikuje boskie wyroki. Jest przedsięwzięciem zbiorowym także w bardziej trywialnym i współczesnym znaczeniu mrowiska, w którym nie należy przeceniać roli poszczególnych mrówczych jednostek. Jednak „lawina bieg od tego zmienia, po jakich toczy się kamieniach”, a tragedia byłaby niemożliwa bez głównych postaci. Z jednej więc strony mamy etos mrówek trudzących się dla kolektywnego dobra, z drugiej – kult bohaterów, herosów wyobraźni i intelektu.

Walter Ritz był człowiekiem niezwykle utalentowanym i zdążył wnieść oryginalny wkład do nauki, mimo że cierpiał na gruźlicę, która odbierała mu siły, a po kilku latach odebrała także i życie. Nie osiągnął tyle, ile by chciał i potrafił, ale zdążył już zaznaczyć swoją indywidualność. Chciałbym zestawić jego drogę naukową z biegiem życia i dorobkiem młodszego niemal dokładnie o rok Alberta Einsteina. Przed rokiem 1909 Einstein nie był jeszcze sławny, wręcz przeciwnie: słyszało o nim niewielu i jego kariera dopiero się zaczynała. Dopiero jesienią tego roku wziął po raz pierwszy udział w konferencji naukowej, zamienił także posadę w Biurze Patentowym w Bernie na stanowisko profesora nadzwyczajnego uniwersytetu w Zurychu. Pensja na obu stanowiskach była dokładnie jednakowa. Konkurentem Einsteina do posady był Walter Ritz, uczelnia by go wolała, „ponieważ jest Szwajcarem i według zdania naszego kolegi Kleinera jego prace wykazują nadzwyczajny talent graniczący z geniuszem”. Choroba nie pozwoliła jednak Ritzowi objąć tego stanowiska. Einstein otrzymał więc swoje pierwsze stanowisko naukowe niejako w zastępstwie za kolegę. Wcześniej ze starań o tę posadę wycofał się Friedrich Adler, który tak jak Einstein, zrobił doktorat u Alfreda Kleinera, profesora zwyczajnego na uniwersytecie w Zurychu. Drugi etat profesorski dla fizyka był skutkiem jego zabiegów, tak to się wówczas odbywało: mógł być jeden Ordinarius z danej dziedziny, ewentualnie tworzono także pomocniczy, nie tak prestiżowy i gorzej płatny, etat Extraordinariusa. Adler wszakże niezbyt walczył o stanowisko, bardziej interesowała go filozofia nauki i działalność socjalistyczna (był synem znanego psychologa i przywódcy austriackich socjalistów Victora Adlera). Pisał w roku 1908 do ojca: „Zapomniałem powiedzieć, kto prawdopodobnie otrzyma profesurę: człowiek, któremu z punktu widzenia społeczeństwa należy się ona znacznie bardziej niż mnie i kiedy ją otrzyma, będę się z tego bardzo cieszył mimo pewnej przykrości. Nazywa się Einstein, studiował w tym samym czasie co ja, chodziliśmy razem na niektóre wykłady. (…) Ludzie z jednej strony odczuwają wyrzuty sumienia z powodu tego, jak go wcześniej potraktowano, z drugiej zaś strony skandal jest szerszy i dotyczy całych Niemiec: żeby ktoś taki musiał tkwić w biurze patentowym”.

Walter Ritz był w tym czasie Privatdozentem w Getyndze. Pochodził ze Sionu w Szwajcarii, ojciec, malarz pejzaży i scen rodzajowych, przyrodnik, geolog, etnograf i alpinista, zmarł w 1894 roku po długiej chorobie. Walter uczęszczał w tym czasie do liceum i uchodził za nader utalentowanego. W 1897 zaczął studia na politechnice w Zurychu, był więc o rok niżej niż Einstein. Ritz z początku miał być inżynierem, lecz zmienił wydział na nauczycielski (jak Einstein). Obaj chodzili na wykłady tych samych profesorów. Albert Einstein nie cieszył się jednak dobrą opinią: profesor fizyki Heinrich Weber uważał go za przemądrzałego i aroganckiego i nie miał najmniejszej chęci zostawiać go na uczelni. Weber nie był wybitnym uczonym, ale Politechnika miała znakomitych matematyków, wśród nich dwóch wielkich: Hermanna Minkowskiego i Adolfa Hurwitza. Einstein w tamtym okresie niezbyt pasjonował się matematyką, toteż i na wykłady chodził rzadko. Minkowski, który później stworzył matematyczne sformułowanie teorii względności, nie spodziewał się zbyt wiele po Einsteinie: „Byłem niezwykle zdumiony, gdyż wcześniej Einstein był zwykłym wałkoniem. O matematykę w ogóle się nie troszczył” [C. Seelig, Albert Einstein, s. 45]. Nie lepszą opinię miał zapewne Hurwitz, kiedy Einstein, nie mogąc nigdzie znaleźć pracy, w akcie rozpaczy, zwrócił się do niego o asystenturę, spotkała go milcząca odmowa, choć nie prosił o wiele: Politechnika stale potrzebowała asystentów do prowadzenia ćwiczeń i sprawdzania prac studenckich.

Znacznie wyżej oceniany był Walter Ritz. W roku 1901 wyjechał on na dalsze studia do Getyngi. Minkowski, który był w stałym kontakcie ze swym przyjacielem Davidem Hilbertem, pisał: „W następnym semestrze będziesz miał u siebie matematyka stąd, W. Ritza, który wykazuje dużo zapału, ale jak dotąd wyszukiwał sobie same nierozwiązywalne problemy”. [List do Davida Hilberta, 11 III 1901, Briefe an Hilbert, s. 139] Uniwersytet w Getyndze stał się w tamtych latach najważniejszym ośrodkiem matematycznym, nie brakowało tam także fizyków teoretycznych i doświadczalnych. Centrum stanowili Felix Klein i David Hilbert, dwaj przyjaciele i znakomici matematycy, wytyczający kierunki badań w swej ukochanej dziedzinie. Niedługo dołączyć miał do nich Hermann Minkowski. Walter Ritz uczęszczał na wykłady Hilberta, a także zaczął pracować nad doktoratem pod kierunkiem fizyka teoretycznego i znawcy twórczości Bacha, Woldemara Voigta. Oprócz ważnych nauczycieli poznał Ritz w Getyndze także wybitnych rówieśników. Zaprzyjaźnił się niemal od razu z Paulem Ehrenfestem, a także z Tatianą Afanasevą, Rosjanką, przyszłą żoną Paula, także studiującą fizykę. Ehrenfest był studentem Ludwiga Boltzmanna w Wiedniu i do Getyngi przyjechał, gdy Boltzmann wywędrował z Wiednia.

Doktorat Ritza dotyczył spektroskopii atomowej. Chodziło o wyjaśnienie obserwowanych serii widmowych. Np. częstości widzialnych linii wodoru opisać można wzorem Balmera:

\nu=N\left( \dfrac{1}{4}-\dfrac{1}{n^2} \right), \mbox{ gdzie } n=3,4, 5, \ldots

Stosując mianowniki typu (n+\alpha)^2 można było opisać także inne serie widmowe, np. metali alkalicznych. Serie częstości nasuwały myśl o falach stojących, a więc układzie przypominającym strunę albo membranę. Ładunek drgający z częstością \nu wysyła falę elektromagnetyczną o takiej właśnie częstości. W przypadku kwadratowej membrany równanie ruchu ma postać:

\dfrac{1}{v^2}\dfrac{\partial^2 f}{\partial t^2}=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}.

Jest to po prostu dwuwymiarowe równanie falowe (t,x,y są odpowiednio czasem i współrzędnymi kartezjańskimi w płaszczyźnie membrany, f opisuje wychylenie membrany, stała v jest prędkością fal w membranie). Łatwo stwierdzić, że dozwolone częstości własne opisane są wyrażeniem

\nu^2=A(n^2+m^2), \mbox{ gdzie }n,m=1,2,3,\ldots

Zakładamy tu, że krawędzie membrany pozostają cały czas nieruchome. Ritz spróbował znaleźć równania, które mogłyby opisać wzór Balmera i inne podobne przypadki. W przypadku wzoru Balmera odpowiednim równaniem okazało się

\partial_{t}^2\partial_{x}^4 \partial_{y}^4 f=B(\partial_{x}^2-\partial_{y}^2)^2 f.

Oznaczyliśmy tu pochodne cząstkowe po odpowiednich zmiennych przez \partial_{i}, gdzie i=x,y, t. Dobierając odpowiednio warunki brzegowe, udało się Ritzowi znaleźć także bardziej skomplikowane wzory na częstości linii widmowych. Równania te były wysokiego rzędu (tutaj dziesiątego), w dodatku o niespotykanej w fizyce postaci. Znak minus po prawej stronie oznacza, że zamiast laplasjanu (który wynika z symetrii obrotowej) do opisu membrany stosujemy pewne niestandardowe wyrażenie. Ritz pokazał, że jego równania wynikały z zasady wariacyjnej, formalnie więc były w porządku. Słabość tego podejścia tkwiła w braku jakiegokolwiek wyobrażenia drgającego atomu: po prostu bierzemy do obliczeń membranę, która nie może być czymś istniejącym w przyrodzie. Nikt wówczas nie miał pojęcia, jak wyglądają atomy, dopiero niedawno ustalono, że istnieją elektrony – naładowane cząstki o masie tysiące razy mniejszej niż masy atomów. Serie częstości w fizyce klasycznej odpowiadały zawsze falom stojącym, wystarczy pomyśleć o instrumentach muzycznych, które z punktu widzenia fizyka są rozmaicie zbudowanymi generatorami fal opartymi na falach stojących w strunie czy w słupie powietrza.

Model Ritza odniósł pewien sukces: przewidział, że w serii rozmytej potasu powinna istnieć linia widmowa odpowiadająca długości fali \lambda=6964 Å. W następnym roku, udało mu się tę linię zidentyfikować w widmie. Po doktoracie Ritz zaczął podróże naukowe: lato 1903 spędził w Lejdzie, gdzie słuchał wykładów H. Lorentza, potem znalazł się w Bonn, gdzie odkrył „swoją” linię potasu, w listopadzie pracował już w laboratorium profesora Aimé Cottona w École Normale w Paryżu. Zima paryska dała mu się we znaki, jakiś czas musiał spędzić w sanatorium w Sankt Blasien w Schwarzwaldzie. Gdy poczuł się lepiej, pojechał do Zurychu, aby wywołać swe klisze z widmami w podczerwieni naświetlone w Paryżu. Jakiś czas przemieszkał w Sion pod opieką matki. Lekarze zabraniali mu pracować, twierdząc, że to szkodzi jego zdrowiu. Zimą 1906/1907 pisał z Nicei do przyjaciela:

Zgodzi się pan ze mną, że nie mogę w takim stopniu co inni wierzyć w przyszłość, która miałaby mi wynagrodzić stan obecny. Pozostało mi zapewne niewiele czasu i jestem mocno zdeterminowany, aby spędzić go w środowiskach naukowych i intelektualnych, bo tylko tak znaleźć mogę zadowolenie i poczucie, że żyję, a może właśnie to stanowi warunek mojego wyzdrowienia? Drogi przyjacielu, nie mogę mieć nadziei ani na szczęście rodzinne, ani na dobre samopoczucie starego kawalera cieszącego się zdrowiem, pozostaje mi jedynie Nauka i życie intelektualne, i doprawdy nie mam siły zakopywać się tutaj w imię bardzo niepewnego celu.

Wrócił do pracy, zimę 1907/1908 spędził w Tybindze, gdzie współpracował z Friedrichem Paschenem, badającym eksperymentalnie widma pierwiastków. Ritz miał nowe pomysły na temat budowy atomu i mogli wymieniać się pomysłami oraz wynikami. Następnie wrócił do Getyngi, gdzie został Privatdozentem, choć nie prowadził zajęć ze względu na stan zdrowia. Henri Poincaré interesował się jego pracami i odwiedzając Getyngę, spotkał się z nim i ogłosił zamiar przyznania mu nagrody Lecomte’a przez francuską Akademię Nauk. Był to już ostatni rok życia Ritza.

Co robiło tak wielkie wrażenie na jego współczesnych? Badania nad seriami linii widmowych – po doktoracie Ritz zaproponował jeszcze jeden model atomowy: była to drgająca i obracająca się wokół osi naładowana struna. Także i ten model stanowić miał jedynie matematyczne uzasadnienie dla obserwowanych prawidłowości widm, nie mówił nic na temat np. własności chemicznych czy budowy wewnętrznej atomu. Próbował za pomocą swego modelu wyjaśnić anomalny efekt Zeemana: zjawisko rozszczepiania linii widmowych w silnym polu magnetycznym. Cząstkową teorię tego zjawiska podał Hendrik Lorentz, za co otrzymał wraz z Peterem Zeemanem Nagrodę Nobla w roku 1902. Teoria Lorentza nie opisuje jednak wszystkich obserwowanych przypadków, te niewyjaśnione objęto określeniem: anomalny efekt Zeemana – jak to często bywa, za normalne uznajemy to, co dobrze rozumiemy. Prace Ritza zawierały jeden istotny szczegół techniczny: częstości linii widmowych były w nich różnicami dwóch wyrażeń. W istocie chodzi o zasadę zachowania energii:

h\nu=E_{n}-E_{m}.

(Stała h jest stałą Plancka). Ritz nie napisał jednak takiego równania i uznałby je za bezsensowne. Jego rozważania opierały się na klasycznej teorii drgań i nie było w nich miejsca na fotony. Równanie takie znalazło się po raz pierwszy u Bohra, choć on także nie wierzył w fotony. Duński uczony sądził, że energie po prawej stronie określone były warunkami kwantowania (zawierającymi stałą Plancka – sygnał, że mamy do czynienia z fizyką kwantową), ale przejścia miedzy poziomami energetycznymi prowadziły do wysłania fali o energii danej powyższym równaniem. Sama postać tego równania, nawet jeśli nie rozumiemy różnych stałych, może być przydatna. Np. dodając stronami dwa takie równania otrzymać możemy:

\nu_{nm}+\nu_{mk}=\nu_{nk}.

Jest to związek między wielkościami obserwowanymi, mówi się w tym kontekście o zasadzie kombinacji, wcześniej zauważonej przez Janne Rydberga. Ritz znalazł dla tej zasady wyjaśnienie, choć fałszywe. Postęp w rozumieniu budowy atomów oraz wyjaśnieniu widm nastąpił dopiero za kilka lat, po odkryciu przez Ernesta Rutherforda jądra atomowego i sformułowaniu przez Nielsa Bohra znanego modelu, który stanowił przełom w badaniach. Sam Bohr opowiadał później, że o widmach dowiedział się z książki Johannesa Starka Prinzipien der Atomdynamik (cz. 2), gdzie znalazły się wzory Balmera, jak i informacje o różnych pracach na ten temat, m.in. Waltera Ritza. Z kolejnych teorii atomu szwajcarskiego fizyka nie zostało nic. Nie da się zbudować teorii atomu bez fizyki kwantowej.

Wyjaśnienie anomalnego efektu Zeemana udało się dopiero po wprowadzeniu pojęcia spinu elektronu w 1925 r. Nie wiemy, co Walter Ritz potrafiłby wnieść do tych prac, gdyby nadal żył. Wiemy natomiast, że musiałby zmienić podejście, bo tą drogą nie doszedłby do sukcesu. Widać jednak ambicję młodego fizyka, by zmierzyć się z jednym z najtrudniejszych problemów fizyki.

Jedynym fizykiem, który mógłby zapisać równanie na różnicę energii, był w tym czasie Einstein. Energia fotonu to był jego pomysł, traktowany przez kolegów jako aberracja. Ritz nie wierzył ani w prace kwantowe Einsteina, ani w teorię względności. Najwyraźniej on także nie traktował serio pomysłów kolegi ze studiów. Teoria względności zastępowała pojęcia czasu i przestrzeni jedną wspólną rozmaitością: czasoprzestrzenią, co zauważył Hermann Minkowski, który od roku 1902  pracował już w Getyndze. Nienaruszona była przy tym elektrodynamika Maxwella w postaci nadanej jej przez Hendrika Lorentza. Ritz wybrał inną drogę: też nie wierzył w eter i uznawał zasadę względności, ale postulował, aby zmienić elektrodynamikę. Jego podejście oznaczałoby zarzucenie koncepcji pola elektromagnetycznego. Elektrodynamika Ritza została jedynie zarysowana, byłaby ona teorią bardzo skomplikowaną matematycznie i nieelegancką. Gdy źródło światła się poruszało, to jego prędkość powinna się dodawać do c. Einstein dyskutował na temat elektrodynamiki z Ritzem, ogłosili nawet razem króciutki protokół rozbieżności w tej sprawie. Zdaniem Einsteina należy startować z pojęcia pola – cała jego dalsza kariera była z tym pojęciem związana.

Innym osiągnięciem Ritza było sformułowanie eleganckiej metody przybliżonej dla opisu drgań, za jej pomocą rozwiązał zagadnienie figur Chladniego.

Osiągnięcia Ritza są niepełne i niedokończone za sprawą choroby. Jednak w chwili śmierci Ritza i on, i Einstein mieli dorobek porównywalny ilościowo: jeden solidny, pięćsetstronicowy tom dzieł. Einstein ceniony był w Berlinie, gdzie pracowali Max Planck, Max Laue i Walther Nernst. Inni zachowywali dystans wobec jego prac i albo o nich nic nie wiedzieli, albo nie wiedzieli, co myśleć. Hermann Minkowski też niezbyt często wymieniał nazwisko Einsteina, może wciąż go pamiętał jako leniwego studenta? Ritz również zajmował się problemami fundamentalnymi i był chyba lepiej rozumiany przez kolegów. W jego przypadku doktorat był początkiem kontaktów z wieloma uczonymi, niewątpliwie działała tu opinia doktoratu z Getyngi, jeśli nie miał wprost jakichś listów polecających. Można się zastanawiać nad tym, jak potoczyłaby się kariera naukowa Einsteina, gdyby mniej zrażał ludzi do siebie i nie był taki arogancki? Przecież on także mógłby trafić do Getyngi i poddać się czarowi eleganckiej, choć częstokroć jałowej fizyki matematycznej. Pomogłoby mu to niewątpliwie w dalszej karierze, chyba że nie przekonałby Minkowskiego. Czy nie zaszkodziłoby mu to jednak w sensie naukowym? Ritz spędził sporo czasu w naukowym odosobnieniu z powodu choroby, ale był już mimo młodego wieku szanowanym uczonym i miał kontakty. Einstein był w tym czasie niemal całkowicie izolowany. Pracował osiem godzin dziennie w biurze przez sześć dni w tygodniu i zadowolony był, że mają z Milevą co jeść i że zostają mu wieczory oraz niedziele na pracę naukową. Opowiadał potem Infeldowi, że do trzydziestki nie widział prawdziwego fizyka teoretyka. Nie jest to prawda w sensie ścisłym, bo poznał np. Maksa Lauego, ale z pewnością zaczynał jako kompletny autsajder, który niemal wszystkiego nauczył się sam z książek i artykułów.

Do Getyngi trafił Einstein znacznie później, już jako samodzielny mistrz. Przedstawił tam swoją teorię grawitacji w czerwcu roku 1915. Skończyło się to zresztą dwuznacznym incydentem, gdyż praca ta spodobała się Hilbertowi, co miało ten skutek, że pod koniec roku obaj pracowali nad nią równolegle i mało brakowało, a Einstein zostałby pozbawiony satysfakcji postawienia kropki nad i, tzn. zapisania równań pola. W Getyndze bowiem uczeni nie mieli oporów przed korzystaniem z wyników kolegów, traktując je jako rodzaj dobra wspólnego. Nazywało się to u nich „nostryfikacją” cudzych wyników.

Prace Einsteina cechuje ogromna intuicja: zazwyczaj miał on dobre wyczucie, czego należy się trzymać i w którą stronę zmierzać. Tak było np. z polem elektromagnetycznym. Einstein wiedział, że teoria Maxwella ma ograniczenia kwantowe, ale samo pojęcie pola traktował jako fundament. Cenił bardzo dorobek Lorentza (znany mu wyłącznie z publikacji), który na Ritzu nie zrobił wielkiego wrażenia, mimo że znał jego autora. Einstein przed rokiem 1905 rozpatrywał możliwość innej elektrodynamiki, zgodnej z mechaniką Newtona, była ona podobna do późniejszej propozycji Ritza. Dlatego później nie tracił już czasu na koncepcje, które kiedyś odrzucił po starannym namyśle. Prawdopodobnie właśnie przez to, że Ritz był umysłem o wiele mniej rewolucyjnym, współcześni cenili go wyżej, osiągnięcia Einsteina od początku wydawały się kontrowersyjne, niektórzy wielcy uczeni, jak Henri Poincaré podchodzili do nich bardzo sceptycznie. Nie wiemy, jak rozwinąłby się Walter Ritz, gdyby wcześniej odkryto penicylinę, ale można przypuszczać, że był już ukształtowany intelektualnie i nie stać by go było na żaden rewolucyjny skok w nieznane. Teoretycy rzadko robią coś rewolucyjnego po trzydziestce, chyba że kontynuują coś, co już wcześniej sami zaczęli. Dorobek Einsteina z tamtych lat jest bardzo mało techniczny, nie ma tam właściwie wcale skomplikowanych obliczeń, są raczej proste rozumowania i pomysłowe argumenty. W porównaniu prace Waltera Ritza wydają się znacznie bardziej zaawansowane. A jednak: „Ten piękny wysiłek w porównaniu z geniuszem jest tym, czym urywany lot świerszcza w porównaniu z lotem jaskółki” (A. Camus).

Jak można odtworzyć wzór Balmera? Szukając rozwiązań w postaci sinusów wzdłuż x i y oraz o częstości \nu, otrzymamy (a jest długością boku kwadratu):

f(x,y,t)=A \sin \dfrac{n\pi x}{a}\sin\dfrac{m\pi y}{a}\sin 2\pi\nu t.

Drugie pochodne sprowadzają się teraz do mnożenia przez odpowiedni czynnik, podstawiając do równania Ritza, otrzymamy

\nu^2 m^4 n^4 \sim (n^2-m^2)^2,

skąd przy m=2 dostajemy wzór Balmera.