Joseph Louis Lagrange i „wektor Laplace’a-Rungego-Lenza” (1781)

Pisałem kiedyś o zasadzie Arnolda: „Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy”. Przykładem może tu być tzw. wektor Rungego-Lenza, niemal odkryty przez Jakoba Hermanna, a na pewno odkryty przez Josepha Lagrange’a.

Joseph Louis Lagrange jest mało znany poza kręgiem profesjonalnych matematyków i fizyków. Wiele jego dokonań weszło do języka nauki i stała się dobrem powszechnym, funkcjonującym często bezimiennie. Urodzony w Turynie jako Giuseppe Luigi Lagrangia, poddany królestwa Sardynii, syn urzędnika królewskiego francuskiego pochodzenia, odkrył w sobie talent matematyczny jako nastolatek-samouk. Ojciec stracił fortunę w ryzykownych spekulacjach i syn potrzebował płatnego zajęcia. Pod koniec życia uczony twierdził, że gdyby nie potrzeba zarabiania, pewne nie zostałby matematykiem. Zapewne przesadzał. Talent tej wielkości nie daje chyba możliwości wyboru. W każdym razie młody Lagrange zadziwił Leonharda Eulera, z którym zaczął korespondować na temat rachunku wariacyjnego. W wieku dziewiętnastu lat został też mianowany sostituto – „zastępcą” profesora matematyki w szkole artyleryjskiej w Turynie. Uczył tam młodzieńców starszych od siebie, artyleria była uczonym rodzajem wojsk – to ze szkoły artylerii Napoleon Bonaparte wyniósł swój szacunek do przedmiotów ścisłych. Niezbyt przedsiębiorczy i cichy Lagrange spędził w Turynie wiele lat. Dopiero w wieku trzydziestu lat dzięki protekcji Jeana d’Alemberta został powołany do Akademii Nauk w Berlinie w miejsce Eulera, który wolał carową Katarzynę II od Fryderyka II pruskiego. Piemontczyk spędził w Prusach dwie dekady, narzekając na chłody i pisząc wciąż nowe ważne prace. W Berlinie powstało jego największe dzieło Méchanique analitique (sic!), opublikowane w dwóch tomach już w Paryżu, gdzie spędził resztę życia. Tam podczas Rewolucji zajmował się wprowadzeniem metrycznego systemu miar oraz nowego kalendarza i nowego podziału doby. Metr zdefiniowano wtedy jako jedną czterdziestomilionową część południka paryskiego, lecz babiloński, sześćdziesiątkowy podział godzin i minut okazał się zbyt głęboko zakorzeniony i tutaj zmiany się nie przyjęły. Został też Lagrange pierwszym profesorem analizy w École polytechnique, elitarnej i bardzo nowoczesnej na swe czasy szkole wyższej, modelu dla licznych politechnik na całym świecie.

Książka Lagrange’a była, niemal równo sto lat po Zasadach matematycznych Isaaca Newtona, podsumowaniem dorobku Newtonowskiej mechaniki za pomocą metod analitycznych spod znaku Leibniza, Bernoullich i Eulera.

W książce tej nie znajdzie Czytelnik żadnych rysunków. Metody, jakie w niej wykładam, nie wymagają żadnych konstrukcji ani rozumowań geometrycznych bądź mechanicznych, lecz jedynie operacji algebraicznych poddanych regularnym i jednolitym procedurom. Ci, co kochają Analizę, z przyjemnością zobaczą, jak mechanika staje się jej kolejną gałęzią i będą mi wdzięczni za takie poszerzenie jej domeny.

Newton byłby zapewne wstrząśnięty lekturą dzieła Lagrange’a. Zwyciężyła w nim algebra, metody formalnego przekształcania równań. Algorytmy zwyciężyły z wyobraźnią, ponieważ do ich stosowania wystarczy trzymać się prostych reguł. W ten sposób druga zasada dynamiki stała się układem trzech (lub więcej, zależnie od problemu) równań różniczkowych. Zagadnienie trzech przyciągających się ciał – jeden z wielkich problemów epoki, wymaga dwunastu całkowań. Lagrange pokazał w jednej ze swych prac, jak z dwunastu potrzebnych całkowań, zostaje do wykonania tylko siedem. Osiągnięcia tego rodzaju musiały być elitarne, choć miały też szersze znaczenie. Wielkim problemem epoki ponewtonowskiej była stabilność Układu Słonecznego. Newton przypuszczał, że wzajemne przyciąganie planet doprowadzi z czasem do rozregulowania się kosmicznego zegara, co zresztą może leżeć w boskim planie stwórczym: jako gorliwy czytelnik i komentator Apokalipsy św. Jana traktował znaną nam postać świata jako przejściową, próbował nawet oszacować, kiedy nastąpi ponowne przyjście Chrystusa. Lagrange, a po nim Pierre Simon Laplace (obaj raczej indyferentni religijnie) podjęli zagadnienie stabilności Układu Słonecznego. Wyglądało na to, że system planetarny zmienia się jedynie okresowo i nie ma w nim jednokierunkowych zmian parametrów orbit takich, jak ich rozmiar czy mimośród – a zatem grawitacja nie musi prowadzić do katastrofy kosmicznej. Zagadnienie to okazało się zresztą bardziej skomplikowane, niż sądzili Lagrange i Laplace. Pokazał to pod koniec wieku XIX Henri Poincaré. W wieku XX zrozumiano, że w układach takich jak planetarne powszechnie występują zjawiska chaotyczne. Chaos nie jest jednak nieuchronny, niezbyt wielkie zaburzenia nie naruszają bowiem regularnego charakteru ruchu. Wielkim osiągnięciem dwudziestowiecznej mechaniki analitycznej jest teoria KAM, zwana tak od nazwisk jej twórców: Andrieja Kołmogorowa, Vladimira Arnolda (to jego nazwisko pojawia się w zasadzie Arnolda – sformułowanej oczywiście nie przez niego, lecz przez Michaela Berry’ego) i Jürgena Mosera.

Pokażemy, jak Lagrange wprowadził trzy stałe ruchu Keplerowskiego, które dziś nazywa się powszechnie wektorem (Laplace’a)-Rungego-Lenza. Było to w roku 1779, a dwa lata później zostało opublikowane w pracach Akademii Berlińskiej (w Oeuvres de Lagrange, t. 5, s. 127-133). Algebraiczne podejście Lagrange’a łatwo daje się uogólnić na przestrzeń n-wymiarową {\mathbb R}^n, dlatego tak je pokażemy, uwspółcześniając nieco zapis. Siła grawitacji jest odwrotnie proporcjonalna do kwadratu odległości od centrum, działa wzdłuż promienia wodzącego planety (wektor o współrzędnych x_i/r jest wektorem jednostkowym o kierunku promienia wodzącego). Przyspieszenie planety zapisane jako składowe kartezjańskie spełnia równania

\ddot{x}_i=-\dfrac{\mu x_i}{r^3},\,i=1\ldots n,

gdzie kropki oznaczają pochodne po czasie t, \mu jest iloczynem masy Słońca i stałej grawitacyjnej, a r=x_ix_i\equiv x_1^2+\ldots+x_n^2. Po powtarzających się wskaźnikach sumujemy – jest to konwencja sumacyjna Einsteina, którą uczony żartobliwie nazywał swoim największym odkryciem matematycznym (nigdy nie uważał się za matematyka, lecz za fizyka, któremu przyszło stosować nowe techniki matematyczne i który przychodził do matematyki z innej strony). Za czasów Lagrange’a i jeszcze długo później pisano po trzy równania dla współrzędnych x,y,z, co wydłużało (niepotrzebnie z naszego dzisiejszego punktu widzenia) prace. Sam zapis równań jako trzech składowych kartezjańskich nie był czymś oczywistym za życia Newtona, a więc nawet na początku XVIII wieku. Jakob Hermann uważał, iż wymaga to uzasadnienia.

Szukamy wyrażeń, kombinacji współrzędnych i prędkości, które pozostają stałe podczas ruchu (są to tzw. całki pierwsze). Znanym wyrażeniem tego rodzaju jest energia E będąca sumą energii kinetycznej i potencjalnej:

E=\dfrac{1}{2}\dot{x}_1^2-\dfrac{\mu}{r}.

Lagrange podał jeszcze inne całki ruchu Keplerowskiego (w istocie wystarczy, aby siła działająca ze strony centrum skierowana była radialnie, konkretna jej postać jest nieistotna):

L_{ij}=x_i\dot{x}_j-x_j\dot{x}_i.

Mamy tych całek tyle, ile możliwości wyboru dwóch różnych wskaźników spośród n, czyli {n\choose 2}=\frac{n(n-1}{2}. Naprawdę jest to Keplerowskie prawo pól w przebraniu, a właściwie prawo pól plus stwierdzenie, że ruch zachodzi w płaszczyźnie (to ostatnie bywa nazywane zerowym prawem Keplera, co jest o tyle słuszne historycznie, że od niego Johannes Kepler zaczął swoje badania – przyjął je jako założenie. Kopernik nie wiedział, że tory planet są płaskie!). Zawsze możemy wybrać współrzędne tak, żeby co najwyżej dwie były różne od zera podczas ruchu, np. x_1, x_2. W przypadku 3D trzy całki (L_{23},L_{31},L_{12}) zachowują się jak wektor, jest to wektor momentu pędu.

Trzecia grupa całek, odkryta przez Lagrange’a i właściwa tylko siłom grawitacji, daje się zapisać w postaci

\mu e_i=-\dfrac{\mu x_i}{r}+\dot{x}_j L_{ij},\,i=1 \ldots n.

Wartości e_i są stałe. Jest to wektor zwany powszechnie w literaturze wektorem Rungego-Lenza. Lepiej poinformowani piszą o wektorze Laplace’a-Rungego-Lenza. W istocie jest to wektor Lagrange’a, którego szczególny przypadek podał Jakob Hermann, o czym Lagrange zapewne nie wiedział. Nie interesował go zresztą fakt, że jest to wektor, ważne dla niego były trzy całki ruchu. Laplace zaczerpnął te całki z pracy Lagrange’a i spopularyzował je, umieszczając w słynnym traktacie o mechanice niebios: Traité de mécanique céleste. Laplace, który uczył się pracy naukowej, czytając Lagrange’a, nie zawsze był lojalny wobec starszego kolegi. Ten zaś był chyba zbyt dumny, aby stale jak kupiec podkreślać swoje zasługi, co czyniła większość uczonych, konkurujących między sobą o niewielką pulę płatnych posad. Całki Lagrange’a z dzieł Laplace’a czerpali później inni bądź też sami odkrywali je niezależnie, jak William Rowan Hamilton. Runge i Lenz trafili do historii przypadkiem, z lenistwa późniejszych autorów, zbyt zajętych bieżącą pracą, aby włożyć wysiłek w przypisy.

Zobaczmy jeszcze, jak z wektora Lagrange’a wynika kształt toru planety. Mnożąc obie strony ostatniego równania przez x_i i sumując po powtarzającym się wskaźniku i, otrzymujemy

r +e_i x_i=L^2, 

gdzie L^2= \frac{1}{2} L_{ij}L_{ij}.Jest to równanie stożkowej o mimośrodzie e=\sqrt{e_i e_i}.

Trzeba podkreślić, że dla Lagrange’a nie było to jakieś szczególne osiągnięcie, lecz jedynie punkt wyjścia do pracy nad bardziej skomplikowanym zagadnieniem, gdy do problemu Keplera dodamy jeszcze siłę zaburzającą, jak w rzeczywistym problemie ruchu planet przyciąganych nie tylko przez Słońce, ale także przez inne planety.

Pokażemy jeszcze powyższe wyniki w zapisie wektorowym. Mamy wówczas

{\bf \ddot{r}}=-\dfrac{\mu {\bf r}}{r^3}.

Moment pędu równa się

{\bf L = r\times\dot{r}},

a wektor Lagrange’a:

\mu {\bf e}=-\dfrac{\mu {\bf r}}{r}+{\bf \dot{r}\times L}.

Mnożąc obie strony skalarnie przez {\bf r}, otrzymamy

r+{\bf e\cdot r}=\dfrac{L^2}{\mu}.

Uwaga techniczna. Łatwo sprawdzić, że podane wielkości są całkami pierwszymi, trudniej było je oczywiście odgadnąć. Kluczem jest tutaj obliczenie pochodnej po czasie z wektora jednostkowego, co Lagrange robi pozornie bez powodu, to znaczy powód wyjaśnia się po chwili. Mamy bowiem

\dfrac{d}{dt}\left(\dfrac{x_i}{r}\right)=\dfrac{\dot{x}_i r-\dot{r} x_i}{r^2}=\dfrac{x_jL_{ji}}{r^3}.

Korzystamy z faktu, że r\dot{r}=x_i\dot{x}_i (jest to zróżniczkowane tw. Pitagorasa: r^2=\sum_i x^2_i). Postać wektorowa jest przejrzysta, lecz ograniczona do {\bf R}^3.

 

 

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google

Komentujesz korzystając z konta Google. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

Połączenie z %s