James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Reklamy

Czy Einstein zapowiadał się na geniusza? (1879-1894)

„Nie mam żadnych szczególnych uzdolnień. Cechuje mnie tylko niepohamowana ciekawość”.
Einstein napisał te słowa w liście do swego przyszłego biografa Carla Seeliga w roku 1952, a więc mając już przeszło siedemdziesiąt lat i spoglądając wstecz na całe minione życie. Nie sądzę, by powodowała nim skromność, raczej przedstawił trzeźwy osąd własnego talentu. Przez te lata znał wielu ludzi bardzo wybitnych, niektórych wręcz genialnych, miał więc skalę porównawczą. Nie był dużym dzieckiem, jakim się go – zwłaszcza dawniej – przedstawiało: oto geniusz zachowujący dziecięcą prostotę w świecie dorosłych, ktoś, kto potrafi, nic sobie nie robiąc ze społecznych ani filozoficznych konwencji, spojrzeć inaczej na kwestie tak fundamentalne, jak czas i przestrzeń. Dziecko z baśni Andersena, które woła: król jest nagi.

Rozwijał się dość szybko, nie miał jednak nic z wunderkinda. Mówił powoli, z rozwagą, zastanawiał się nad swymi odpowiedziami, nie miał powierzchownej łatwości i szybkiego refleksu, które często brane są za oznaki zdolności. Dorastał w zamożnej rodzinie. Dom w Monachium, niedaleko za bramą miejską, otoczony ogrodem i wygodny, stanowił miejsce jego pierwszych zabaw. Nawet zabawki były po mieszczańsku solidne: kamienne klocki firmy Anker, miniaturowa maszyna parowa podarowana przez wuja. Zadziwił go jednak kompas, którego igła uparcie trzymała się jednego kierunku, podlegając jakiejś niewidzialnej sile – dobry początek dla kogoś, kto całe życie poświęci teorii pola.

Grająca na fortepianie matka zauważyła, że ma słuch muzyczny. Zaczął więc przychodzić nauczyciel gry na skrzypcach, chłopiec uczył się, choć bez zapału. W szkole nie błyszczał, ale nauka przychodziła mu łatwo. Katolicka szkoła podstawowa wpłynęła na Alberta w nieoczekiwany sposób. Musiał tam uczyć się religii, szło mu to na tyle dobrze, że podpowiadał nawet katolickim kolegom. Jego rodzice, choć niezwiązani z religią i nie uczęszczający do synagogi, poczuli się w obowiązku zapewnić Albertowi dla równowagi lekcje judaizmu. W rezultacie Albert stał się niezwykle pobożny, przestał jeść wieprzowinę, układał hymny do Pana, które śpiewał sobie po drodze do szkoły. Tolerancyjni rodzice nie bardzo wiedzieli, co z tym począć. Ujawniła się w ten sposób istotna różnica między Albertem a jego ojcem, Hermannem, który lekceważąco wypowiadał się o żydowskiej religii, traktując ją jako nagromadzenie przesądów. Być może doszła tu do głosu różnica pokoleniowa: Hermann pragnął asymilacji i zatarcia różnic kulturowych, Albert natomiast wcześnie zdał sobie sprawę, że jako Żyd skazany jest w niemieckim społeczeństwie na alienację – zawsze bowiem będzie kimś obcym. Nie zetknął się w tym czasie z poważniejszymi przejawami antysemityzmu, nauczyciele starali się zachować neutralność, choć chłopcy, zwłaszcza w szkole podstawowej, przynosili z domu niechęć i lekceważenie wobec Żydów, objawiające się dokuczaniem i zaczepkami. Nie można wykluczyć, że religijność Alberta miała w sobie także motyw obronny. Nie tylko nie zaczął wstydzić się swego pochodzenia, lecz wręcz przeciwnie, pragnął je zaakcentować.

Wiara Alberta nie dotrwała do bar micwy, nim skończył trzynaście lat, jego nową wiarą stała się nauka. Zainteresowania naukowe Alberta jeszcze bardziej oddaliły go od szkoły. Uczęszczał teraz do klasycznego Gimnazjum Luitpolda. Rodzice chcieli, aby zdobył najlepsze wykształcenie. W ówczesnej Europie najbardziej prestiżowymi szkołami były gimnazja klasyczne, w których połowę czasu zajmowały łacina i greka. Wierzono, że czas spędzony nad językami klasycznymi służy rozwojowi umysłu, stanowiąc swego rodzaju gimnastykę mózgu. Ponadto warstewka kultury klasycznej pozwalała od razu poznać, kto przeszedł edukację tego rodzaju. „Najbardziej zdumiewającą cechą edukacji jest to, jak wielką ilość ignorancji udaje się w niej zmieścić pod postacią martwych faktów” (Henry Adams). Jak się zdaje, jedyne co Albert zawdzięczał szkole to lekcje niemieckiego w szóstej klasie gimnazjum. Zainteresowanie Goethem zostało mu na całe życie. Nie nauczył się natomiast w szkole niczego z matematyki i fizyki.

Zwrot w kierunku nauki nastąpił pod wpływem osobliwej przyjaźni Alberta z przychodzącym do nich na obiady studentem medycyny z Polski, Maksem Talmudem. Chłopiec zapalił się do materializmu filozoficznego w stylu Georga Büchnera (nb. lekarza), który głosił, iż istnieje tylko siła i materia. Dzięki popularnym książkom Aarona Bernsteina zapoznał się z podstawami chemii, astronomii, fizyki, biologii. Bernstein, syn rabina z Gdańska, głosił pochwałę ludzkiego rozumu, nie był jednak ateistą jak Büchner.

Bardzo ważnym doświadczeniem Alberta stało się zetknięcie z geometrią. Częściowo dokonało się to dzięki rozmowom ze stryjem Jakobem, inżynierem, częściowo wpływ miał Max Talmud, przynosząc chłopcu odpowiednie książki. Zanim jeszcze ujrzał pierwszy podręcznik geometrii, udało mu się wykazać twierdzenie Pitagorasa.

Zauważył (po dłuższym zastanawianiu się nad tym problemem), że wysokość opuszczona z kąta prostego dzieli trójkąt na dwa mniejsze i podobne trójkąty. (Pojęcie podobieństwa trójkątów uznał za oczywiste. Zatem ich pola powierzchni są proporcjonalne do kwadratu długości przeciwprostokątnych, czyli kc^2=ka^2+kb^2, gdzie k jest wspólnym współczynnikiem proporcjonalności). Tym, co zrobiło na Einsteinie ogromne wrażenie, były nie tyle rozmaite twierdzenia, ile sam fakt, że można owe twierdzenia udowodnić, wychodząc z pewnych postulatów. Chodziło zatem o metodę postępowania, nie wyniki. Pierwszy swój podręcznik geometrii opisywał potem Einstein jako „świętą książeczkę”. Dziś zaniedbuje się nauczania geometrii, niewielu więc uczniów ma podobne doświadczenia. Klasyczna geometria nadaje się zresztą nadzwyczajnie do tego, by pokazać na czym polega prawdziwa matematyka, ponieważ już na poziomie szkolnym łatwo znaleźć zadania, które mogą stanowić wyzwanie intelektualne, a zarazem możliwe do rozwiązania bez wielkiej wiedzy i szczególnych technik.

Geometria Euklidesa była pierwszą historycznie dziedziną sformułowaną w sposób aksjomatyczny. Pewność takiej metody dedukcyjnej robiła wrażenie na wielu uczonych w przeszłości. Wielu też starało się tę metodę naśladować w innych dziedzinach, np. Kartezjusz albo Newton. Albert dopiero z czasem zdał sobie sprawę, że aksjomaty geometrii nie są bynajmniej oczywiste, tak samo jak i jej rezultaty. Przyjmując pewien zestaw aksjomatów, otrzymujemy teorię pewnego typu – nie ma jednak żadnych przesłanek, oprócz logicznej niesprzeczności, aby przyjąć ten zestaw aksjomatów raczej niż inny. Gdy zajmujemy się matematyką, kryterium wyboru może stanowić to, czy powstała teoria jest ciekawa, czy wiąże się z innymi teoriami matematycznymi itd. Fizyk musi wybrać postulaty, które nie prowadzą do sprzeczności z doświadczeniem.

Albert robił szybkie postępy w matematyce. W wieku piętnastu lat przerobił już podręcznik rachunku różniczkowego i całkowego H.B. Lübsena (jego autor sam był samoukiem, który okazał się dobrym nauczycielem). Einstein umiał dużo, jak na ówczesnego nastolatka, w przyszłości miał się nauczyć jeszcze więcej. Nie to jednak przesądziło o jego późniejszych osiągnięciach. Najważniejsza była ciekawość w połączeniu z upartym charakterem.

Zetknął się wcześnie z najnowocześniejszą wtedy techniką: elektrycznością. Stryj i ojciec prowadzili do spółki firmę produkującą generatory elektryczne, fabryka była nieopodal domu, Albert bywał tam często, wiedział, jak działają różne urządzenia, widział na ich przykładzie, jak niewidzialne siły pola elektromagnetycznego można przesyłać przewodami, jak można ich energię wykorzystać do oświetlenia albo do rozmów telefonicznych. Rozumiał technikę, ale nie upajał się jej osiągnięciami, dość szybko zauważył, że interesują go zasady działania tych urządzeń, a nie ich praktyczna realizacja czy ewentualne zyski. Ciekawość Alberta kierowała się ku fundamentalnym wyjaśnieniom, miała charakter teoretyczny.
Po rozczarowaniu religijnym, kiedy zrozumiał, że biblijne przypowieści nie mogą być prawdziwe w sensie dosłownym i że istniejące religie stanowią przedłużenie władzy państwowej, służąc raczej spętaniu jednostek niż ich wyzwoleniu, zaczął krytycznie obserwować wszystkich wokół: rodziców, nauczycieli gimnazjalnych. Jego cierpki krytycyzm potrafił ranić, a jego pewny siebie uśmieszek doprowadzał niektórych do wściekłości. Dawał odczuć, że jego prawdziwy świat znajduje się gdzie indziej i że jego królestwo niewiele ma wspólnego z codziennymi zabiegami i staraniami ludzi, którzy nie potrafią go dosięgnąć. Nie wiemy, kiedy dokładnie postanowił, że nie zostanie inżynierem – czy było to przed, czy raczej wskutek niepowodzeń ojca w interesach. Mała fabryczka braci Einstein nie miała szans w konkurencji z gigantami takimi, jak Siemens czy AEG (kapitał 20 milionów marek).

Po kolejnym niepowodzeniu bracia postanowili przenieść się do Włoch. Albert miał zostać w Monachium: czekały go jeszcze trzy lata gimnazjum, dopiero wtedy mógł zdać maturę i myśleć o uniwersytecie.

Ci, którzy go znali, pamiętali jego śmiech przypominający szczekanie foki. Philipp Frank pisał: „[Einstein] widział sprawy codzienne w nieco komicznym świetle i coś z tego nastawienia wyzierało z jego słów; jego poczucie humoru rzucało się w oczy. Kiedy ktoś powiedział coś zabawnego, intencjonalnie albo niechcący, Einstein reagował bardzo żywiołowo. Wydobywający się z głębi jego jestestwa śmiech był jedną z jego charakterystycznych cech, które natychmiast zwracały uwagę. Dla ludzi dookoła był ów śmiech źródłem radości i ożywienia. Czasem jednak dawało się w nim wyczuć krytycyzm, który nie każdemu przypadał do gustu. Ludziom o wysokiej pozycji społecznej niezbyt się podobało, że Einstein uważa ich świat za śmiechu warty w porównaniu z wielkimi problemami, którymi sam się zajmuje. Jednak ludzie o niższej pozycji społecznej czerpali zawsze przyjemność z obcowania z Einsteinem. Jego sposób prowadzenia rozmowy sytuował się gdzieś między dziecinnymi żartami a gryzącym szyderstwem, tak że niektórzy nie wiedzieli, czy powinni się śmiać, czy obrazić. (…) Toteż wrażenie, jakie Einstein wywierał na otoczeniu, oscylowało między dziecinną wesołością a cynizmem”.

Albert zamknął się w swoim świecie fizyki, matematyki, wyobraźni i pojęć, nauczył się też skutecznie go chronić, zaczął prowadzić coś w rodzaju podwójnego życia. W tym ważniejszym, niedostępnym dla innych, rządziła ciekawość, inżynierska dociekliwość: jak to jest zbudowane i jak działa. Jego ciekawość skierowana była wszakże w stronę, by tak rzec, euklidesową: w stronę poszukiwania zasad, na których opiera się świat. Zapewne ta ogromna ciekawość sprawiła, że spędził lata i dziesiątki lat na zastanawianiu się nad fizyką. Kiedy mówimy o uporze albo wytrwałości, akcentujemy cechy charakteru ważne, ale w jakiś sposób wtórne. W jego przypadku wytrwałość była dopełnieniem ciekawości, była napędzana kolejnymi pytaniami, jakie się wyłaniały w miarę znajdywania odpowiedzi na poprzednie pytania. Jego siostra Maja zapamiętała, że w dzieciństwie Albert cierpliwie budował domki z kart, osiągające nawet czternaście kondygnacji. Jakby już wtedy ujawniła się jego wielka cierpliwość oraz pogodna łatwość burzenia i zaczynania od nowa.

A co ze światem ludzi i jego wymaganiami? Wszyscy musimy w jakimś stopniu brać udział w jego oczekiwaniach i rytuałach. Albert nie nadawał się na buntownika, był na to zbyt racjonalny. Nauczył się jednak chronić swą wewnętrzną niezależność – i ta umiejętność odegrała wielką rolę w jego życiu naukowym. Pierwszą oznaką owej niezależności stał się banalny konflikt szkolny. W siódmej klasie gimnazjum pojawił się nowy wychowawca, doktor Joseph Degenhart. Podobnie jak inni nauczyciele w tym gimnazjum był człowiekiem dobrze wykształconym. Uczył greki, do której Albert nie pałał wielkim entuzjazmem, jak zresztą do wszelkiej nauki pamięciowej. Miał on bowiem zawsze tę wadę inteligentnych ludzi, że trudno go było zmusić do robienia czegoś, co uważał za bezsensowne. Nie znamy szczegółów konfliktu między Degenhartem i Einsteinem. Prawdopodobnie wychowawca starał się klasie zaszczepić współzawodnictwo w nauce greki, chciał, by uczniowie w zdyscyplinowany sposób podążali za nim, niczym za swoim dowódcą – porównanie bynajmniej nie nonsensowne – szkoły starano się zmilitaryzować, zaprowadzając dyscyplinę i ćwicząc w cnocie posłuszeństwa wobec przełożonych. Degenhart napotkał opór ze strony Alberta. Uczeń nie miał zamiaru spędzać zbyt wiele czasu nad greką, traktował ten przedmiot jako zło konieczne. Zirytowany Degenhart pozwolił sobie na publiczną uwagę, że z Einsteina nic nie będzie. Piętnastolatek odwzajemnił mu się milczącym szyderstwem. Ta psychomachia trwała jakiś czas, aż w końcu oznajmiono mu, że powinien zmienić szkołę, gdyż sama jego obecność podrywa autorytet profesora wobec klasy. Wkrótce Einstein zdobył zaświadczenie lekarskie, iż powinien odpocząć z powodu wyczerpania nerwowego i opuścił na zawsze szkołę oraz Monachium. Nie chciał mieszkać w Niemczech, nie chciał być dłużej obywatelem królestwa Wirtembergii (jakim był z racji urodzenia w Ulm) i nie chciał służyć w niemieckiej armii. „Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby”. Nie przypuszczał wtedy, iż kiedykolwiek wróci do Niemiec, choć wiedział przecież, ile znaczy niemiecka nauka i niemieckie uniwersytety. W szkolnych latach Einsteina na uniwersytecie w Monachium wykładał najwybitniejszy ówczesny fizyk, Ludwig Boltzmann, co oczywiście nie miało jeszcze żadnego znaczenia dla ucznia gimnazjum. Jednak już za niewiele lat Einstein miał twórczo rozwinąć prace Boltzmanna. Psychologowie podają regułę dziesięciu lat: tyle mniej więcej trzeba, aby ktoś zdolny doszedł do mistrzostwa w trudnej wyspecjalizowanej dziedzinie, jak gra w szachy, gra na instrumencie albo fizyka. Albert Einstein był na początku swojej dekady pogłębiania wiedzy i odkrywania jej dla siebie.

Porzucenie szkoły dwa i pół roku przed maturą nie było rozważne, decyzję podjął sam, nie uprzedzając o niej rodziców. Ale tak samo mało „rozważne” były niemal wszystkie prace Einsteina. Nigdy nie dążył do łatwo osiągalnego celu. Nie zadowalały go kompromisy i częściowe sukcesy, tak jak nie przejmował się tym, co inni sądzą na temat jego osoby czy pracy. Właśnie ta silna osobowość w połączeniu z ciekawością zapowiadała w nim kogoś nietuzinkowego. W owym czasie ani on sam, ani nikt inny nie mógł przepowiedzieć, jak bardzo niezwykłe będzie twórcze życie Einsteina. „Wielkość naukowa jest w zasadzie kwestią charakteru. Najważniejsze to nie iść na zgniłe kompromisy”.

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Jak długo spadał Lucyfer?

Nie tylko Wielki Wybuch głosi chwałę Pana. Także i obecność szatanów, co wszędzie są czynni. Najlepszym dowodem ich siły jest dzisiejsze radosne zgromadzenie na Stadionie Narodowym w stolicy naszego kraju. Ojciec John Bashobora oraz arcypasterz Pragi wraz z setkami duchownych wypędzać tam będą diabły na oczach 40 000 wiernych (bilety po 60 zł). Może i tym razem o. Bashobora kogoś wskrzesi, co mu się już nieraz zdarzało. Z całą pewnością uzdrowi wielu, dzięki czemu poprawią się finanse NFZ.

W środku świata przebywa Lucyfer, dlatego świat nasz zwiemy diablocentrycznym. Jaki był jednak fizyczny sposób, by strącić tam Księcia Tego Świata? Ciężkość. Wyobraźmy sobie tunel przewiercony przez Ziemię na wskroś. Gdyby wrzucić doń Lucyfera, to jak długo bestia by spadał? I czy zatrzymałby się w środku Ziemi, czy też przeleciał dalej, aż na antypody? Zdania były tu podzielone. Bartolomeus Amicus SJ, rówieśnik Galileusza, sądził, że kamień wrzucony do takiego tunelu doleci do środka Ziemi i świata, gdzie się zatrzyma. Pogląd ten był wypowiadany i wcześniej, stąd zapewne u Dantego w Boskiej Komedii mamy obraz Lucyfera zarytego w środku świata, z trzema paszczami, w każdej po jednym słynnym zdrajcy. Inaczej uważał Nicole Oresme, zwolennik impetusu. Jego zdaniem kamień (albo Lucyfer) w środku Ziemi osiągnie największy impetus, dzięki czemu przeleci dalej aż do antypodów. I będzie tak sobie oscylować, aż mu się impetus całkiem wyczerpie. Ostatecznie zalegnie Lucyfer w środku Ziemi, lecz po iluś zabawnych oscylacjach.

Fizyka Newtona pozwala obliczyć, jak długo spadałby Lucyfer do środka Ziemi. Rozpatrzymy dwa skrajne przypadki: gdyby Ziemia wypełniona była materią jednorodnej gęstości oraz gdyby jej cała masa skupiona była w punkcie centralnym. Prawda zawiera się gdzieś pośrodku: gęstość rośnie ku centrum Ziemi, lecz stopniowo, nie skokowo, jak w drugim przypadku.

Przypadek jednorodnej Ziemi

Przyspieszenie grawitacyjne naszego Lucyfera w odległości r od środka Ziemi byłoby równe

g(r)=\dfrac{Gm(r)}{r^2},

gdzie m(r) to masa małej kuli o promieniu r. Przyjmujemy, że gęstość materii ziemskiej jest wszędzie taka sama, masa jest więc proporcjonalna do objętości i przyspieszenie grawitacyjne będzie ostatecznie proporcjonalne do r:

g(r)=\dfrac{GMr)}{R^3}=\dfrac{g}{R}r \Rightarrow T=2\pi\sqrt{\dfrac{R}{g}}.

Przez G, M, R oznaczyliśmy odpowiednio stałą grawitacji oraz masę i promień Ziemi; g to przyspieszenie ziemskie na powierzchni Ziemi. Przyspieszenie Lucyfera jest więc proporcjonalne do odległości i równanie to jest takie samo jak dla wahadła matematycznego, promień Ziemi odgrywa tu rolę długości. Zatem będzie nasz Lucyfer oscylował z okresem opisanym wzorem dla wahadła matematycznego. Do środka Ziemi będzie to ćwierć oscylacji, co zajmie niecałe dwadzieścia jeden minut.

Przypadek całej masy skupionej w centrum

W tym przypadku przyspieszenie ziemskie rośnie w miarę zbliżania się do środka:

g(r)=\dfrac{GM}{r^2},

Czas spadku znaleźć można, tak jak zrobił to Newton, wyobrażając sobie najpierw ruch po elipsie o długości dużej półosi a=\frac{1}{2}R. Jeśli elipsę tę będziemy stopniowo spłaszczać (zachowując długość dużej półosi) okres się nie zmieni (III prawo Keplera). Ognisko elipsy będzie się przybliżać do jej wierzchołka. Czas spadku będzie połową okresu obiegu takiej elipsy.

Korzystając z III prawa Keplera mamy

T^2=\dfrac{4\pi^2 a^3}{GM}\Rightarrow T=2\pi\sqrt{\dfrac{R3}{8GM}}=\pi\sqrt{\dfrac{R}{2g}}.

Połowa tego okresu jest szukanym czasem, a więc w tej wersji Lucyfer będzie spadał niecałe piętnaście minut.

Dla rzeczywistej zależności m(r) dla Ziemi przyspieszenie ziemskie najpierw nieco rośnie w głąb planety, a potem zaczyna spadać mniej więcej liniowo, kiedy znajdziemy się w żelazowo-niklowym jądrze.

Rozważania średniowiecznych filozofów w rodzaju takiego hipotetycznego kamienia w hipotetycznym tunelu przez Ziemię przyczyniały się do zrozumienia zagadnień ruchu i grawitacji, były to ówczesne Gedankenexperimente. Oresme w XIV wieku miał jednak nowocześniejszą teorię niż Amicus w XVII. Pojęcie impetus, choć dalekie jeszcze od dzisiejszego pędu, miało przed sobą przyszłość. Samo jednak wyostrzanie pojęć jest na nic, dopóki nic nie można obliczyć, przynajmniej w fizyce.

Einstein o Lukrecjuszu, 1924

PIOTR: Ktoś ty? DUCH: Lukrecy, Lewiatan, Voltaire, Alter Fritz, Legio sum.

[A. Mickiewicz, Dziady]

Dziś zajmiemy się diabłem zwanym przez wieszcza Lukrecy, czyli Lukrecjusz.

Żyjący w I w. p.n.e. Titus Lucretius Carus, autor poematu O rzeczywistości (in. O naturze rzeczy), był zarazem wybitnym poetą i zwolennikiem atomizmu w wersji Epikura. Idea, że świat zbudowany jest z atomów i nie jest kierowany przez osobowe bóstwa, przyjmowała się trudno i z oporami. Człowiek ma umysł, który chętnie postrzega rzeczywistość w kategoriach celu. Dlatego w różnych epokach od starożytności począwszy traktowano poglądy Lukrecjusza jako absurdalne i heretyckie. Nie wierzono, aby jako tako uładzony wszechświat mógł powstać bez czynnej interwencji bóstwa. Zderzające się w nieskończoności atomy wydawały się wizją jałową i ponurą, a do tego wielce nieprawdopodobną: no bo jak długo musiałyby się zderzać atomy, by utworzyć Einsteina? Wiemy jednak, że Einstein powstał nie z mgławicy gazowej, lecz jako człowiek, a człowiek od australopiteka itd. itp. Życie na Ziemi powstało (w skali kosmicznej) niemal nazajutrz po utworzeniu się planety, co wskazywałoby albo na to, że ewolucja od chemii do biologii nie jest aż tak nieprawdopodobna, albo wracamy do kapłanów i ich wyjaśnień na ten temat, które nic nie wyjaśniają.

Poniższy tekst jest wstępem Alberta Einsteina do poematu Lukrecjusza. Uczony zdobył w tym czasie światową sławę, choć nie wszystkich Niemców to cieszyło, albowiem był on Żydem. W kraju, po puczu monachijskim Adolfa Hitlera i wciąż w kryzysie gospodarczym, narastały kompleksy i nacjonalizm. Toteż Einstein czuł się tam, jak „ktoś, kto leży w dobrym łóżku, lecz oblazły go pluskwy”. Znamy to uczucie.

https://kierul.wordpress.com/2013/02/01/einstein-zydowski-prorok-we-wlasnym-kraju/

https://kierul.wordpress.com/2012/11/22/einstein-i-mann-koniec-wielkich-niemiec/

Każdy, kto nie idzie całkowicie z duchem naszego czasu i kto czuje się niekiedy obserwatorem otaczającego świata, a zwłaszcza duchowej postawy swych współczesnych, nie może pozostać obojętny na czar dzieła Lukrecjusza. Widzimy w nim bowiem, jak wyobraża sobie świat człowiek niezależny, wyposażony w żywe doznania zmysłowe i zdolność rozumowania, obdarzony naukową i spekulatywną ciekawością, człowiek, niemający najmniejszego pojęcia o osiągnięciach współczesnej nauki, które nam wpojono w dzieciństwie, nim jeszcze mogliśmy się z nimi skonfrontować w sposób świadomy i krytyczny.

Głębokie wrażenie robi na nas niezmącona pewność Lukrecjusza – wiernego ucznia Demokryta i Epikura – że świat jest zrozumiały, tzn. wszystko, co się w nim dzieje, powiązane jest łańcuchem przyczyn i skutków. Żywi on mocne przekonanie, a nawet sądzi, iż potrafi udowodnić, że wszystko bierze się z poddanego prawom ruchu niezmiennych atomów, którym nie przypisuje żadnych innych własności prócz geometrycznych i mechanicznych. Jakości zmysłowe, takie jak ciepło, zimno, barwa, zapach i smak, sprowadzają się do ruchu atomów; to samo dotyczy życia. Dusza i umysł są w jego mniemaniu zbudowane ze szczególnie lekkich atomów, wiąże on przy tym (niezbyt konsekwentnie) pewne szczególne własności materii z konkretnymi cechami doświadczenia.

Za najważniejszy cel swego dzieła uważa Lukrecjusz uwolnienie człowieka od niewolniczego strachu, wynikłego z religii i przesądów, a podsycanego i wykorzystywanego przez kapłanów dla własnych celów. Z pewnością jest to dla niego bardzo ważne. Wydaje się jednak, że powoduje nim przede wszystkim chęć przekonania czytelników do atomistyczno-mechanistycznego obrazu świata, choć nie odważa się tego powiedzieć wprost praktycznie nastawionym Rzymianom. Wzruszający jest też jego szacunek dla Epikura oraz języka i kultury Grecji, które uważa za znacznie doskonalsze niż język łaciński i kultura rzymska. Przynosi Rzymianom zaszczyt, że można było mówić im takie rzeczy. Czy któryś ze współczesnych narodów potrafiłby wypowiadać się tak szlachetnie o innym?

Wiersze Dielsa czyta się tak naturalnie, iż zapomina się, że to przekład.

Berlin, czerwiec 1924 roku

http://einsteinpapers.press.princeton.edu/vol14-doc/498

Naukowy idiotyzm roku 2016

714248_bced_51_34

Nie będę się znęcał nad tym artykułem Gościa niedzielnego (sprzedaż ponad 120 000 egzemplarzy!). Nieczuli manipulatorzy trzymają w ciekłym azocie piękne aryjskie bobaski. Dodam tylko z podziwem, że trzeba mieć naprawdę czułe sumienie, aby w dniach, gdy w Aleppo giną tysiącami ludzie, przejąć się dramatem mrozaczków. Katholikos po grecku znaczy powszechny.

Antonie van Leeuwenhoek: Delft, czyli wszechświat

W XVII wieku podróże po Europie stały się modne, choć mieszkając w kraju takim, jak Holandia, można było wiedzieć sporo o świecie, nawet nie ruszając się z domu. Antonie van Leeuwenhoek, kupiec bławatny i pasmanteryjny, terminował w Amsterdamie, podróżował do Anglii, większość jednak swego długiego, dziewięćdziesięcioletniego życia spędził w rodzinnym Delft. Nauką zajął się późno, bo grubo po trzydziestce, kiedy porzucił już handel i został urzędnikiem miejskim, służąc na wielu stanowiskach, m.in. geodety i kontrolera sprowadzanych win i innych trunków. Liczące przeszło dwadzieścia tysięcy mieszkańców Delft nigdy nie było tak dużym ośrodkiem, jak pobliska Haga (barki do stolicy odpływały co pół godziny), słynęło jednak ze swych niebieskich, ręcznie malowanych fajansów, miało też własną gildię malarzy. W Delft pracował przez całe życie, znany wówczas jedynie znawcom, Johannes Vermeer, rówieśnik Leeuwenhoeka. Wpis chrztu malarza datowany pięć dni wcześniej od chrztu uczonego znajduje się na tej samej stronie księgi parafialnej z roku 1632. Z pewnością znali się jako wybitni obywatele tego samego miasta, tak niezrównanie przedstawionego przez malarza.

view_of_delft

To o tym obrazie pisał Marcel Proust: „Odkąd w haskim muzeum zobaczyłem Widok Delft, wiem, że widziałem obraz najpiękniejszy na świecie”Niezrównany i subtelny kolorysta, cyzelował długo każdy szczegół swoich płócien. Namalował ich w rezultacie niewiele i mimo bogatego ożenku zmarł pogrążony w długach. Leeuwenhoeka wyznaczono na kuratora spadku po artyście. Nie przyjaźnili się zapewne i fakt ten dowodzi raczej tylko wysokiego mniemania władz miasta o uczciwości Leeuwenhoeka. Zadanie było delikatne i niewdzięczne, zostało jednak pomyślnie przeprowadzone do końca. Francuski szlachcic, Balthasar de Monconys, dziwił się bardzo, znajdując później u piekarza z Delft pewien obraz Vermeera, za który zapłacono sześćset liwrów, a za który podróżnik nie dałby więcej niż sześć pistoli. Mistrz piekarski z Delft znał się więc dużo lepiej na sztuce niż francuski szlachcic.

f1-large

Nie znamy upodobań Leeuwenhoeka, był człowiekiem niewykształconym, nie znał żadnego języka prócz własnego i sam przyznawał, że niechętnie pisze. Jeśli coś mogło zbliżyć tych dwóch ludzi, to upodobanie do wnikliwej obserwacji i mistyczna niemal adoracja światła. Tkaniny u Vermeera oddane są z niezwykłym pietyzmem, a być może właśnie od przyglądania się detalom tkanin za pomocą szkła powiększającego zaczęła się pasja Leeuwenhoeka. Musiał być człowiekiem niezwykle sumiennym i cierpliwym, gdyż wytrwale doskonalił kunszt szlifowania szkieł i zdołał zbudować mikroskopy lepsze niż ktokolwiek inny.

Używane przez niego mikroskopy miały tylko jedną kulistą soczewkę. Kula taka jest soczewką skupiającą i przy typowym współczynniku załamania szkła jej ognisko leży o pół promienia za powierzchnią (a więc w odległości \frac{3}{2}r od jej środka, patrz poniżej). Używając soczewki możemy przedmiot przybliżyć do oka znacznie bliżej niż wynosi odległość dobrego widzenia, równa zwykle D=25 \mbox{ cm}. Dzięki temu widzimy szczegóły pod większym kątem.

oko

Powiększenie kątowe równe jest

\dfrac{\beta}{\alpha}=\dfrac{h}{d}\dfrac{D}{h}=\dfrac{D}{d}.

Zastępujemy tu kąty (w radianach) ich tangensami, co stanowi dobre przybliżenie, gdy kąty są niewielkie. Odległość d w przypadku soczewki kulistej równa się \frac{3}{2}r. Należy więc używać jak najmniejszych kulek szklanych, powiększenia uzyskiwane przez Leeuwenhoeka sięgały kilkuset razy. Tak wygląda współczesna rekonstrukcja jego mikroskopu.

hl1

Strona Hansa Loncke

Holender prowadził dziennik obserwacji, jego fragmenty wysyłał do Towarzystwa Królewskiego do Londynu. Tłumaczone na angielski lub łacinę, ukazywały się przez wiele lat w „Philosophical Transactions”. Zrazu uczeni byli nieufni, z czasem jednak zaczęto Leewenhoeka i jego odkrycia traktować serio. Zaczęli go odwiedzać inni badacze, którzy mogli się naocznie przekonać, że Holender jest rzeczywiście wytrawnym obserwatorem i niczego nie zmyśla. Niektóre z jego odkryć zostały niezależnie powtórzone, ogólnie jednak był z tym kłopot: nikomu nie udawało się sporządzać tak małych kulek szklanych dobrej jakości optycznej. Angielski autorytet w dziedzinie optyki Robert Hooke, autor zdumiewających rysunków mikroskopowych, takich jak poniższa pchła, używał mikroskopu z dwóch soczewek i nie był przekonany do metody Leeuwenhoeka.

4879769

Odkrycia Holendra nie były aż tak spektakularne, gdyż dotyczyły żyjątek niezwykle drobnych, wręcz nieprawdopodobnie małych, o rozmiarach niewielu mikrometrów. Leeuwenhoek odkrył cały świat mikroflory bakteryjnej, obserwował przejawy życia w kroplach wody i w najróżniejszych płynach ustrojowych, jak krew i sperma. Tak wyglądały np. bakterie z jamy ustnej (specjaliści zidentyfikowali je później).

drawings-of-animalcules-form-leeuwenhoeks-letter-dr-jeremy-byrgess

Nasienie zwierząt i ludzi pełne było zadziwiających, żywo poruszających się stworów, przypominających kijanki. Leeuwenhoek odkrył w ten sposób plemniki. Badania tego rodzaju nieco go krępowały, tłumaczył, że spermę uzyskał bez grzechu jako skutek stosunku małżeńskiego. Sądził jednak, że odkrycie to jest w najwyższym stopniu godne uwagi.

lind006gesc01ill24

Ówcześni uczeni przypuszczali, że początkiem życia człowieka jest komórka jajowa (w istocie to, co brali za komórkę jajową było pęcherzykami jajnikowymi). Sądzono, że pramatka Ewa nosiła w sobie jajeczka wszystkich ludzi, którzy później przyszli na świat. Obserwacje Leeuwenhoeka wskazywały na coś zupełnie innego: to plemniki odgrywają decydującą rolę, podczas gdy komórka jajowa dostarcza jedynie pożywienia wzrastającemu organizmowi. Nicolas Hartsoeker, lekarz i rodak Leewuwenhoeka, przekonywał, że to plemnik zawiera całego człowieka w miniaturze (słówko homunculus pojawiło się dwa wieki później). Jak się zdaje, podobnego mniemania był także Leeuwenhoek.

human-sperm-17th-century-granger

Zapłodnienie zdaniem Hartsoekera nie polegało na tym, że najsilniejszy plemnik (powiedzmy Donald Trump) przebija się do środka komórki jajowej. Sądził on, że plemnik przyczepia się do jajeczka ogonkiem, przez który czerpie substancje odżywcze i który z czasem zamienia się w pępowinę łączącą zarodek z organizmem matki. Interpretując te poglądy w duchu tzw. obrońców życia: nie tylko zygota ludzka byłaby święta, ale należałoby jak osoby ludzkie traktować także wszystkie plemniki, które także byłyby święte. Oczywiście, wszystkie one powinny koniecznie mieć imiona, zanim umrą.

Leeuwenhoek był pionierem, jego badań nikt nie kontynuował. Częściowo sam sobie był winien, ponieważ nie ujawniał swojej metody wytwarzania soczewek i nikt inny tego nie potrafił. Nauka nie była przygotowana na cały ten zawrotny świat mikroorganizmów, kiedy nie można zrozumieć pewnych faktów, spycha się je po prostu na bok. Z czasem Leewenhoek spostrzegł, że młodzi ludzie nie są zainteresowani nauczeniem się jego sekretów i kontynuacją jego badań. Pisał: „Większość studentów idzie tam [na uniwersytet w Lejdzie], aby zarabiać pieniądze dzięki wiedzy albo zdobyć reputację w świecie uczonych. Lecz szlifowanie soczewek i odkrywanie rzeczy ukrytych przed wzrokiem nie ma z tym nic wspólnego”. Trzeba przyznać, że i dziś ten podział nie całkiem się zatarł: na tych, co odnoszą korzyści z nauki i tych, z których korzyść odnosi nauka.

kula
Kąt \beta, jak widać z rysunku, równy jest

\beta=\dfrac{h}{r+f}.

Ogniskową f znajdujemy, rozpatrując dwukrotne załamanie promienia bliskiego środka kuli (w ten sposób wszystkie kąty są małe, zostały na rysunku powiększone dla przejrzystości). Odchylenie na pierwszej powierzchni równe jest \delta-\varepsilon; oba kąty spełniają prawo załamania

\dfrac{\delta}{\varepsilon}=n,

gdzie n jest współczynnikiem załamania.

leeuwenhoek

Odchylenie na drugiej powierzchni jest takie samo. Należy uwzględnić fakt, że nasza soczewka jest gruba, tzn. promień zbliża się do osi z odległości x na odległość y. Ostatecznie, wartość ogniskowej równa jest

f=\dfrac{r}{2}\cdot \dfrac{2-n}{n-1}.

Przy n=1,5 otrzymamy f=\dfrac{1}{2}r.