Johannes Kepler: III prawo ruchu planet (15 V 1618)

Niemal wszystkie wielkie odkrycia naukowe dla swych odkrywców znaczyły co innego niż dla potomnych. Z tego powodu dzisiejsza wiedza jest często mało przydatna, gdy chcemy dowiedzieć się, w jaki sposób zostały dokonane jakieś odkrycia. Przykład praw Keplera jest tu wielce pouczający: to, co dziś uważamy za trzy prawa Keplera, on sam uważał za istotne wprawdzie, ale trzy pojedyncze fakty w całym gmachu astronomii, który zbudował.

Johannes Kepler zdecydował się zająć astronomią, kiedy odkrył – jak mu się zdawało – ukryty sens geometryczny proporcji orbit planetarnych. Stwórca zrealizował bowiem w niebiosach wielce barokową konstrukcję geometryczną. Nastąpiły długie lata studiowania ruchów planet, szczęśliwym zbiegiem okoliczności mógł wykorzystać zbiór obserwacji Tychona Brahego, najdokładniejszych w dziejach i obejmujących najdłuższy przedział czasu. Ktoś porównał sytuację przed Tychonem i obserwacje Tychona do oddzielnych fotografii i długiego filmu: ruchy planet monitorowane były przez duńskiego astronoma nieomal z dnia na dzień. Kepler pierwszy zbudował w pełni heliocentryczną astronomię, w której Słońce było nie tylko wielką lampą oświetlającą wszechświat i umieszczoną centralnie, ale także źródłem ruchu sześciu znanych planet. Uzyskane przez niego wyniki podsumowuje się dziś w formie trzech praw ruchu. Pamiętać jednak należy, że zawarte one były w książkach Keplera wśród długich rozważań i nigdzie nie zostały sformułowane w taki właśnie sposób.

Dwa pierwsze prawa znalazły się w Astronomia nova z 1609 roku. Eliptyczny kształt orbit był najbardziej oczywistym wynikiem tej pracy, choć wielu nie dało się przekonać: astronomowie przyzwyczajeni byli do kół poruszających się po kołach i podejście Keplera wydawało się dziwaczne. Tym bardziej, że nawet obserwacje Brahego nie były na tyle dokładne, by jakoś zdecydowanie rozstrzygać, jaki jest właściwie kształt orbity – mogły to być rozmaite owale, a poza tym krzywe takie można skonstruować na różne sposoby, więc elipsy wydawały się wnioskiem zbyt silnym. Tak rozumiał to np. Isaac Newton, kiedy pisał: „Kepler wiedział, iż orbity planet nie są kołowe, lecz owalne, i odgadł, że są eliptyczne”. Kepler nie tyle zresztą zgadywał, ile kierował się tu (obok obserwacji) własną teorią ruchu planet – pierwszą mechaniką niebios – lecz z pozycji newtonowskich próba ta była chybiona, więc Newton mógł potraktować to jako zgadywanie. Elipsy z czasem znalazły sobie miejsce wśród uznanych faktów astronomicznych. Aż do czasów Newtona nie wiedziano jednak, co zrobić z Keplerowskim prawem pól – dzisiejszym II prawem Keplera. Teoretyczne wyjaśnienia samego Keplera nie przekonały jego następców, w dodatku prawo to jest niełatwe do praktycznego stosowania, gdyż prowadzi do równania przestępnego: t=E-e\sin E, gdzie t jest czasem, e mimośrodem orbity, a E tzw. anomalią mimośrodową, wielkością potrzebną do obliczenia położenia planety na elipsie. Równanie Keplera należało rozwiązywać metodami przybliżonymi, co w XVII wieku było trudne zarówno praktycznie, jak i pojęciowo. II prawo Keplera odrodziło się dopiero dzięki Newtonowi, który spostrzegł, że musi ono obowiązywać zawsze, gdy siły działają wzdłuż linii łączącej planetę i Słońce, bez względu na konkretną zależność sił od odległości. Dziś mówimy, że w ruchu pod wpływem sił centralnych zachowany jest moment pędu.

Kepler traktował własną pracę nad geometrycznym i mechanicznym opisem ruchu planet jako bardzo długi wstęp, rodzaj dygresji, właściwym celem było odkrycie, czemu Stwórca zbudował układ planet tak, a nie jakoś inaczej. Z jego perspektywy najciekawsze więc wydawało się wyjaśnienie odległości, okresów i ekscentryczności orbit, a więc nie tyle mechanika, co warunki początkowe – one bowiem mówiły nam coś o Bogu. Uczony, kiedy tylko mógł, wracał do rozważań na temat harmonii świata, one właśnie wydawały mu się najcenniejsze. Niosły mu też pociechę – to w czasie żałoby po śmierci córeczki zajął się pisaniem Harmonice mundi („Harmonii świata”). Do brył platońskich z młodzieńczej konstrukcji doszły teraz harmonie muzyczne – idea pitagorejska. Johannes Kepler stworzył najbardziej rozbudowaną i szczegółowo opracowaną wersję tej starej idei. Wszechświat był dla niego kosmosem, uładzoną i piękną całością. Sądził, że potrafi wyjaśnić ekscentryczności orbit planetarnych. Tym, co miało budować harmonie muzyczne kosmosu były prędkości kątowe planet widziane ze Słońca. Ich zakres odpowiadał pewnej skali muzycznej. Była to więc muzyka czysto matematyczna, którą obserwować mogły mieszkające na Słońcu anioły.

To, co przepowiedziałem dwadzieścia dwa lata temu, kiedy odkryłem pięć brył foremnych między sferami niebieskimi; to, o czym mocno byłem przekonany wewnętrznie, zanim jeszcze ujrzałem Harmonie Ptolemeusza; to, co obiecałem przyjaciołom w tytule tej piątej Księgi, nim jeszcze nabrałem całkowitej pewności; to, o czym szesnaście lat temu pisałem publicznie, nalegając, iż musi być zbadane; to, co skłoniło mnie, by spędzić najlepszą część życia na spekulacjach astronomicznych, wybrać się do Tychona Brahego do Pragi i samemu zamieszkać w Pradze; to, do czego Bóg Najlepszy i Największy nakłaniał mój umysł i rozbudzał pragnienie poznania, przedłużając me życie i siły umysłu, a także dostarczając innych środków dzięki hojności dwóch cesarzy oraz szlachty stanów Górnej Austrii; to w końcu, gdy wypełniłem swoje obowiązki astronomiczne w wystarczającym stopniu, mogłem wreszcie wydobyć na światło i stwierdziłem, że jest prawdą bardziej nawet, niż miałem nadzieję: odkryłem pośród ruchów niebieskich pełną naturę harmonii, w stopniu, w jakim ona występuje, wraz ze wszystkimi swymi częściami, objaśnionymi w Księdze III – wprawdzie nie w taki sposób, w jaki ją sobie wyobrażałem (co stanowi nie najmniejszą część mojej radości), ale w zupełnie inny sposób, najpiękniejszy i zarazem najdoskonalszy. (KGW t. VI, s. 289; )

Samo III prawo Keplera jest prostą zależnością ilościową: jeśli wyrazimy okres obiegu planety T w latach, a półoś orbity a (czyli średnią odległość od Słońca) w jednostkach orbity Ziemi, to przyjmuje ono postać: T^2=a^3. Prawo to znajduje się w Księdze piątej Harmonice mundi jako ósme twierdzenie rozdziału trzeciego, a więc wplecione w pitagorejskie rozważania.

Tak więc część mojej Tajemnicy kosmosu, która została zawieszona dwadzieścia dwa lata temu, ponieważ nie była jeszcze jasna, zostaje dokończona i tutaj umieszczona. Bo kiedy znalezione zostały prawdziwe odległości sfer, poprzez obserwacje Brahego i ustawiczny długotrwały trud, to w końcu – w końcu – prawda co do stosunku okresów i wielkości sfer
choć późno, wejrzała na opieszalca,
Wejrzała jednak i w końcu, po długim czasie, nastała.(*)
a jeśli trzeba wam dokładnego czasu, zrodzona została w umyśle 8 marca tego roku 1618, lecz poddana rachunkowi w pechowy sposób i odrzucona jako fałsz, aż wreszcie powróciła 15 maja i przyjmując inną linię ataku, pokonała ciemności mego umysłu. Tak silne było wsparcie siedemnastu lat mojej pracy nad obserwacjami Brahego oraz obecnych badań, które połączyły swe siły, iż z początku myślałem, że śnię i gdzieś w założeniach wprowadzam moją konkluzję. Ale jest absolutnie pewne i ścisłe, że stosunek okresów dowolnych dwóch planet równa się dokładnie stosunkowi ich średnich odległości do potęgi 3/2 (Harmonice mundi, 1619, s. 189; KGW t. VI, s. 302)

Spośród praw Keplera to było najmniej kontrowersyjne, bo łatwe do sprawdzenia. Co więcej, pozwalało poprawić wielkości orbit, ponieważ okresy obiegu znane były znacznie dokładniej niż odległości, co pierwszy zauważył Jeremiah Horrocks, który, gdyby nie zabrała go śmierć w wieku dwudziestu dwóch lat, z pewnością zostałby jednym z najważniejszych astronomów XVII stulecia.

(*) Wykształconemu klasycznie Keplerowi przyszła tu na myśl pierwsza ekloga Wergiliusza:

Wolność, która, choć późno, wejrzała na opieszalca,
Kiedy już siwiejące spod brzytwy sypały się włosy,
Wejrzała jednak i w końcu, po długim czasie, nastała.
(przeł. Z. Kubiak, Literatura Greków i Rzymian, s. 430)

Reklamy

Pierre Bayle, Myśli różne o komecie (1683)

Chrześcijaństwo należy do tradycji Europy – to prawda, lecz pamiętać musimy, że jego kształt zmieniał się bardzo z czasem. Czym innym był np. arystotelizm św. Tomasza, a czym innym reformy Lutra i Kalwina. Protestantyzm starał się chrześcijaństwo oczyścić przez powrót do źródeł oraz odrzucenie magicznej obrzędowości, był surowy, wymagał dużo od wiernych, którzy ściślej musieli się pilnować w życiu codziennym, by dostąpić łaski. Takimi właśnie surowymi protestantami, przez lata rozmyślającymi nad podstawami swej wiary, byli zarówno Isaac Newton, jak i Pierre Bayle. Protestantyzm towarzyszył przemianom mentalności europejskiej w XVI i XVII wieku, kształtował także założycieli Stanów Zjednoczonych. Nie przypadkiem nowożytna nauka i nowoczesna gospodarka rozwinęły się najbardziej w krajach protestanckich.

Kometa z lat 1680/1681 została przez Isaaca Newtona uwieczniona pierwszym obliczeniem orbity na podstawie prawa powszechnego ciążenia. Przyczyniło się to do rozwiania astrologicznych fantazji na temat związku komet z wydarzeniami na Ziemi. Był to proces powolny zapoczątkowany sto lat wcześniej odkryciem Tychona Brahego, że komety są prawdziwymi ciałami niebieskimi, tzn. nie są jakimś wyziewem górnych warstw atmosfery ziemskiej, jak sądzono od czasów Arystotelesa. Astrologia w drugiej połowie XVII wieku nie była już traktowana poważnie przez uczonych, podciął jej korzenie kopernikanizm: no bo skoro Ziemia jest tylko jedną z planet i komety też są rodzajem planet, to nie ma powodu uważać, aby zdarzenia historyczne czy meteorologiczne na planecie Ziemia dyktowane były akurat zjawieniem się jakiejś komety. Młody Isaac Newton kupił sobie książkę o astrologii na jarmarku na błoniach Stourbridge, szybko wszakże doszedł do wniosku, że zawiera bzdury. Nie potrafiąc narysować jakiejś figury omawianej w książce, sięgnął do Euklidesa. Niebawem już czytał Geometrię Kartezjusza, dzieło trudne, które jednak przestudiował. W ciągu roku opanował samodzielnie znaną wówczas matematykę i zaczął twórczość oryginalną. Niemal wszystkiego nauczył się sam i osiem imponujących tomów jego Mathematical Papers pokazuje, że matematyka towarzyszyła potem stale jego innym zainteresowaniom. Jest to zapewne jedyny przykład, gdy astrologia do czegoś realnego się przydała.


Niezbyt wierzono, przynajmniej w kręgach ludzi wykształconych, by komety zwiastowały nieszczęścia lub zostały zesłane z nieba w celu naszej moralnej poprawy, ale spotykało się wciąż rozmaite opinie. Możliwy do pomyślenia był oczywiście jakiś ich wpływ naturalny, np. katastrofa kosmiczna albo oddziaływanie z ziemską atmosferą. Tak czy owak zjawiska kometarne przesuwały się ze sfery cudownej i nadprzyrodzonej w domenę ciekawostek natury.
Madame de Sévigné, której listy stanowią jedno z arcydzieł języka francuskiego, pisała w na początku stycznia 1681 r. do swego kuzyna hrabiego de Bussy-Rabutina:

Mamy tutaj wielce okazałą kometę, która ma najpiękniejszy warkocz, jaki można oglądać. Wszystkie ważne osobistości wpadły w popłoch, gdyż wierzą mocno, iż niebiosa tak przejęły się ich stratą, że powiadamiają o niej poprzez ową kometę. Mówi się, że kardynała Mazarin, któremu medycy nic już nie potrafią pomóc, dworzanie poinformowali o pojawieniu się wielkiej komety, budzącej w nich lęk, ponieważ byłaby ich zdaniem cudem stosownym dla uczczenia śmierci kogoś tak wybitnego. Kardynał znalazł siłę, aby to wyśmiać i stwierdził żartobliwie, że kometa wyświadczyłaby mu zbyt wielki honor.

De Bussy-Rabutin odpisał z Burgundii, że i tam różne lokalne znakomitości obawiają się w związku z kometą o siebie. „Mercure galant” pokpiwał, że kometa najwyraźniej zapowiadała śmierć jakiejś wielkiej istoty, ponieważ umarł słoń trzymany w Wersalu.

Wykładowca hugonockiego kolegium w Sedanie, Pierre Bayle, zainteresował się nie tyle samą kometą z 1680/1681 r., ile mechanizmem społecznej wiary i niewiary, a także sensem religijnym tego zjawiska. Rozważaniom tym poświęcił książkę, wydaną anonimowo w roku 1683. Można by gorzko stwierdzić, iż w jego przypadku kometa była zapowiedzią znacznych zmian: w lipcu 1681 roku kolegium zamknięto. Było to jedno z posunięć króla Ludwika XIV w zbożnym dziele oczyszczania Francji z heretyków, tzn. z protestantów. Bayle spędził resztę życia w Rotterdamie, pisząc i stając się jednym z prekursorów Oświecenia. Obawiał się o swoją rodzinę we Francji, młodszy jego brat nie wytrzymał pobytu w lochach arcykatolickiego władcy, gdzie znalazł się wyłącznie z powodu swej wiary. Bayle pisał:

Gdyby wiedziano, jak ostrego sensu nabrało obecnie to słowo, nie zazdroszczono by Francji, że jest całkowicie katolicka pod panowaniem Ludwika XIV. Już od dawna bowiem ci, którzy mają się za wcielenie katolicyzmu, postępują w sposób budzący zgrozę, że uczciwy człowiek powinien miano katolika uważać za obelgę; a po tym, co zrobiliście ostatnio w owym arcykatolickim królestwie, powinno być teraz wszystko jedno, czy mówi się: religia katolicka, czy też: religia ludzi niegodziwych (przeł. J. Lalewicz).

Okoliczności zewnętrzne, a także daleko posunięta uczciwość intelektualna, skłaniały Bayle’a do sceptycyzmu wobec utartych mniemań. Podważał rolę tradycji, która ostatecznie zasadza się na tym, że powtarzamy czyjąś opinię, nie zadawszy sobie trudu jej przemyślenia. Gdyby więc trochę dokładniej przyjrzeć się temu, skąd biorą się różne tradycje, mogłoby się okazać, że w gruncie rzeczy powtarza się bezkrytycznie pogląd jednego czy dwóch autorów. Ta prosta myśl mogła podważyć nie tylko wierzenia dotyczące komet, ale i jeden z filarów Kościoła katolickiego, który z poszanowania tradycji robił swój wyróżnik, swoją differentia specifica, pośród doktryn chrześcijańskich.
Nie należy więc specjalnie wierzyć w argumenty z tradycji:

Tak więc świadectwa historyków dowodzą tego jedynie, że komety się pojawiały i że po nich występowały rozmaite niepokoje w świecie – niezmiernie stąd daleko do udowodnienia, iż jedna z tych rzeczy stanowi przyczynę bądź prognostyk drugiej, jeśli nie chcemy być jak owa kobieta z ulicy Saint Honoré [w Paryżu], która widzi przejeżdżające karety, ilekroć wyjrzy z okna i wyobraża sobie, że to ona jest przyczyną ich pojawiania się lub przynajmniej jej ukazanie się w oknie stanowi dla całej dzielnicy prognostyk, iż wkrótce przejedzie kareta (§5).

Bayle tak daleko zaszedł w intelektualnym sceptycyzmie, że wyrażano często wątpliwości, czy nie stał się ateistą. Głosił w każdym razie radykalne oddzielenie religii – domeny wiary, od filozofii – domeny rozumu. „Jeśli sprawiedliwy żyje swą wiarą, to filozof także powinien żyć swoją; znaczy to, że w swym osądzie rzeczy powinien być niezależny od tego, co sądzą inni. Powinien badać głęboko swoje przedmioty [roztrząsań]”.

Bóg zdaniem Bayle’a nie mógł być kapryśnym władcą, swego rodzaju Królem-Słońce na niebiesiech, kierującym się przesądami i gniewem. Filozof żadną miarą nie potrafił wierzyć w Boga, który posługuje się teatralną maszynerią przyrody: kometami, by siać lęk i przerażenie, wykorzystując do swoich celów ludzką łatwowierność i skłonność do doszukiwania się magicznych powiązań w świecie. Nie chciał być jak jezuici z upodobaniem sięgający po światło, dźwięk i dekoracje dla wzmocnienia wymowy religijnego przesłania. Ludzkość zbyt łatwo ulega rozmaitym złudzeniom, zbyt łatwo daje się oszukiwać i dobry nauczyciel nie powinien się uciekać do tego rodzaju tanich sztuczek nawet w dobrej intencji. Jego Bóg był wyższy ponad moralne kuglarstwo. Nie powinien też rozbudzać pychy, która i tak jest właściwa ludziom:

Im dłużej zgłębia się człowieka, tym lepiej się poznaje, iż pycha jest jego dominującą namiętnością i że sili się on na wielkość w najbardziej nawet żałosnej nędzy. Będąc stworzeniem tak lichym i znikomym, zdołał przecież sobie wmówić, że jego śmierć nie może nie wstrząsnąć całą przyrodą i nie zmusić Niebios do specjalnych zachodów dla uświetnienia jego pogrzebu. Głupia i śmieszna to próżność. Gdybyśmy mieli właściwe pojęcie o wszechświecie, rychło zrozumielibyśmy, że śmierć lub narodzenie jakiegoś władcy to rzecz tak znikoma w odniesieniu do całej natury, iż nie ma powodu, by się nią w niebie wzruszano (przeł. J. Lalewicz, §83).

Zabobonność, idolatria: w oczach Bayle’a były to najgorsze cechy nierozumu. Protestantyzm pragnął chrześcijaństwo oczyścić z magii, z kultu obrazów, posągów i relikwii. Sama religia może bowiem rozbudzać w ludziach absurdalne wierzenia i uprzedzenia:

By powrócić do zabobonnego usposobienia, które Szatan znalazł w ludzkim umyśle – twierdzę, że ten wróg Boga i naszego zbawienia tak się przyłożył i tak dobrze wykorzystał okazję, że to, co jest na świecie najlepsze, a mianowicie religię, uczynił zbiorem niewiarygodnych dziwactw, niedorzeczności i niesłychanych zbrodni; a co gorsze, za pośrednictwem takich skłonności wciągnął ludzi w najśmieszniejsze i najbardziej odrażające bałwochwalstwo, jakie sobie można wyobrazić” (przeł. J. Lalewicz, §67)

Bayle mówił tu o religii pogańskiej, ale oczywiście chodziło mu o to, by nie sprowadzać wiary do uczestnictwa w obrządkach i nie urządzać procesji i modłów z okazji komety, praktykując jednocześnie najróżniejsze występki. „Wiara, iż religia, w której zostało się wychowanym, jest jak najlepsza, nader często idzie w parze z praktykowaniem wszelkich  zakazanych przez nią występków, i to zarówno wśród wielkiego świata, jak wśród ludu”.
Powiedział wreszcie Bayle, że można sobie wyobrazić społeczeństwo ateistów, które bynajmniej nie składałoby się z samych potworów, a nawet może byłoby lepsze od społeczeństwa chrześcijan. Ateizm w oczach Boga wcale nie jest gorszy od zabobonu. Wręcz przeciwnie, ateiści, którzy potrafili porzucić zabobony i idolatrię, mogą być ludźmi lepszymi niż pełen uprzedzeń tłum, dostrzegający w religii jedynie magię.

Poglądy Bayle’a raziły wielu, nie tylko katolików, ale także i protestantów. Gwałtownie polemizował z nim Pierre Jurieu, niecierpliwie wyglądający znaków upadku Antychrysta, tzn. papieża. Swoistą polemiką z Bayle’em była także Teodycea Gottfrieda Wilhelma Leibniza. Bayle twierdził bowiem, iż zło i grzech są dla nas niezrozumiałe, są tajemnicą, jeśli wierzymy we wszechmocnego i najlepszego Boga. Nie może bowiem być wyjaśnieniem zdanie, że Bóg dopuszcza grzech, aby z móc z niego potem z Jego pomocą wyjść.

Bóg byłby wówczas jak ojciec rodziny, który pozwala swym dzieciom połamać nogi tylko po to, aby przed całym miastem ukazać swą zręczność w nastawianiu kości; albo jak monarcha, który pozwalałby rozkwitać buntom i zamieszkom w swoim państwie, by zyskać chwałę tego, który je stłumił” (Dictionnaire, 1725, t. 3: N-Z, Pauliciens, przyp. g, s. 160).

Leibniz podjął się uzasadnienia, iż świat, jaki znamy, jest zarazem najlepszym z możliwych: gdyby zmienić w nim cokolwiek, byłby jeszcze gorszy – Bóg stosuje swego rodzaju zasadę najlepszych skutków, optymalizując bieg zdarzeń. Jeśli zdaje się nam, że nie żyjemy na najlepszym ze światów, to tylko z powodu ograniczonej perspektywy, gdybyśmy mogli widzieć całość, zrozumielibyśmy wielki boży zamysł.

Ciąg dalszy napisał Voltaire, zresztą wielki czytelnik Bayle’a:

Po trzęsieniu ziemi, które zniszczyło trzy czwarte Lizbony, mędrcy owej krainy nie znaleźli skuteczniejszego środka przeciw całkowitej ruinie, jak dać ludowi piękne autodafé. Uniwersytet w Coimbre orzekł, iż widowisko kilku osób spalonych uroczyście na wolnym ogniu jest niezawodnym sekretem przeciwko trzęsieniu ziemi.
W myśl tego zapatrywania pochwycono jakiegoś Biskajczyka, któremu dowiedziono, iż zaślubił swą kumę, oraz dwóch Portugalczyków, którzy, jedząc kuraka, oddzielili tłustość (…)
Kandyd, przerażony, oszołomiony, odurzony, cały zakrwawiony i drżący, powiadał sam do siebie: „Jeżeli to jest najlepszy z możliwych światów, jakież są inne? mniejsza jeszcze, gdyby mnie tylko oćwiczono, toż samo zdarzyło mi się u Bułgarów; ale, o drogi Panglossie! największy z filozofów, trzebaż, bym patrzał, jak dyndasz, nie wiadomo za co! o, drogi anabaptysto, najlepszy z ludzi, trzebaż było ci utonąć w porcie! o, panno Kunegundo! perło dziewic, trzebaż, aby ci rozpruto żołądek! (przeł. T. Boy-Żeleński)

 

James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Czy Einstein zapowiadał się na geniusza? (1879-1894)

„Nie mam żadnych szczególnych uzdolnień. Cechuje mnie tylko niepohamowana ciekawość”.
Einstein napisał te słowa w liście do swego przyszłego biografa Carla Seeliga w roku 1952, a więc mając już przeszło siedemdziesiąt lat i spoglądając wstecz na całe minione życie. Nie sądzę, by powodowała nim skromność, raczej przedstawił trzeźwy osąd własnego talentu. Przez te lata znał wielu ludzi bardzo wybitnych, niektórych wręcz genialnych, miał więc skalę porównawczą. Nie był dużym dzieckiem, jakim się go – zwłaszcza dawniej – przedstawiało: oto geniusz zachowujący dziecięcą prostotę w świecie dorosłych, ktoś, kto potrafi, nic sobie nie robiąc ze społecznych ani filozoficznych konwencji, spojrzeć inaczej na kwestie tak fundamentalne, jak czas i przestrzeń. Dziecko z baśni Andersena, które woła: król jest nagi.

Rozwijał się dość szybko, nie miał jednak nic z wunderkinda. Mówił powoli, z rozwagą, zastanawiał się nad swymi odpowiedziami, nie miał powierzchownej łatwości i szybkiego refleksu, które często brane są za oznaki zdolności. Dorastał w zamożnej rodzinie. Dom w Monachium, niedaleko za bramą miejską, otoczony ogrodem i wygodny, stanowił miejsce jego pierwszych zabaw. Nawet zabawki były po mieszczańsku solidne: kamienne klocki firmy Anker, miniaturowa maszyna parowa podarowana przez wuja. Zadziwił go jednak kompas, którego igła uparcie trzymała się jednego kierunku, podlegając jakiejś niewidzialnej sile – dobry początek dla kogoś, kto całe życie poświęci teorii pola.

Grająca na fortepianie matka zauważyła, że ma słuch muzyczny. Zaczął więc przychodzić nauczyciel gry na skrzypcach, chłopiec uczył się, choć bez zapału. W szkole nie błyszczał, ale nauka przychodziła mu łatwo. Katolicka szkoła podstawowa wpłynęła na Alberta w nieoczekiwany sposób. Musiał tam uczyć się religii, szło mu to na tyle dobrze, że podpowiadał nawet katolickim kolegom. Jego rodzice, choć niezwiązani z religią i nie uczęszczający do synagogi, poczuli się w obowiązku zapewnić Albertowi dla równowagi lekcje judaizmu. W rezultacie Albert stał się niezwykle pobożny, przestał jeść wieprzowinę, układał hymny do Pana, które śpiewał sobie po drodze do szkoły. Tolerancyjni rodzice nie bardzo wiedzieli, co z tym począć. Ujawniła się w ten sposób istotna różnica między Albertem a jego ojcem, Hermannem, który lekceważąco wypowiadał się o żydowskiej religii, traktując ją jako nagromadzenie przesądów. Być może doszła tu do głosu różnica pokoleniowa: Hermann pragnął asymilacji i zatarcia różnic kulturowych, Albert natomiast wcześnie zdał sobie sprawę, że jako Żyd skazany jest w niemieckim społeczeństwie na alienację – zawsze bowiem będzie kimś obcym. Nie zetknął się w tym czasie z poważniejszymi przejawami antysemityzmu, nauczyciele starali się zachować neutralność, choć chłopcy, zwłaszcza w szkole podstawowej, przynosili z domu niechęć i lekceważenie wobec Żydów, objawiające się dokuczaniem i zaczepkami. Nie można wykluczyć, że religijność Alberta miała w sobie także motyw obronny. Nie tylko nie zaczął wstydzić się swego pochodzenia, lecz wręcz przeciwnie, pragnął je zaakcentować.

Wiara Alberta nie dotrwała do bar micwy, nim skończył trzynaście lat, jego nową wiarą stała się nauka. Zainteresowania naukowe Alberta jeszcze bardziej oddaliły go od szkoły. Uczęszczał teraz do klasycznego Gimnazjum Luitpolda. Rodzice chcieli, aby zdobył najlepsze wykształcenie. W ówczesnej Europie najbardziej prestiżowymi szkołami były gimnazja klasyczne, w których połowę czasu zajmowały łacina i greka. Wierzono, że czas spędzony nad językami klasycznymi służy rozwojowi umysłu, stanowiąc swego rodzaju gimnastykę mózgu. Ponadto warstewka kultury klasycznej pozwalała od razu poznać, kto przeszedł edukację tego rodzaju. „Najbardziej zdumiewającą cechą edukacji jest to, jak wielką ilość ignorancji udaje się w niej zmieścić pod postacią martwych faktów” (Henry Adams). Jak się zdaje, jedyne co Albert zawdzięczał szkole to lekcje niemieckiego w szóstej klasie gimnazjum. Zainteresowanie Goethem zostało mu na całe życie. Nie nauczył się natomiast w szkole niczego z matematyki i fizyki.

Zwrot w kierunku nauki nastąpił pod wpływem osobliwej przyjaźni Alberta z przychodzącym do nich na obiady studentem medycyny z Polski, Maksem Talmudem. Chłopiec zapalił się do materializmu filozoficznego w stylu Georga Büchnera (nb. lekarza), który głosił, iż istnieje tylko siła i materia. Dzięki popularnym książkom Aarona Bernsteina zapoznał się z podstawami chemii, astronomii, fizyki, biologii. Bernstein, syn rabina z Gdańska, głosił pochwałę ludzkiego rozumu, nie był jednak ateistą jak Büchner.

Bardzo ważnym doświadczeniem Alberta stało się zetknięcie z geometrią. Częściowo dokonało się to dzięki rozmowom ze stryjem Jakobem, inżynierem, częściowo wpływ miał Max Talmud, przynosząc chłopcu odpowiednie książki. Zanim jeszcze ujrzał pierwszy podręcznik geometrii, udało mu się wykazać twierdzenie Pitagorasa.

Zauważył (po dłuższym zastanawianiu się nad tym problemem), że wysokość opuszczona z kąta prostego dzieli trójkąt na dwa mniejsze i podobne trójkąty. (Pojęcie podobieństwa trójkątów uznał za oczywiste. Zatem ich pola powierzchni są proporcjonalne do kwadratu długości przeciwprostokątnych, czyli kc^2=ka^2+kb^2, gdzie k jest wspólnym współczynnikiem proporcjonalności). Tym, co zrobiło na Einsteinie ogromne wrażenie, były nie tyle rozmaite twierdzenia, ile sam fakt, że można owe twierdzenia udowodnić, wychodząc z pewnych postulatów. Chodziło zatem o metodę postępowania, nie wyniki. Pierwszy swój podręcznik geometrii opisywał potem Einstein jako „świętą książeczkę”. Dziś zaniedbuje się nauczania geometrii, niewielu więc uczniów ma podobne doświadczenia. Klasyczna geometria nadaje się zresztą nadzwyczajnie do tego, by pokazać na czym polega prawdziwa matematyka, ponieważ już na poziomie szkolnym łatwo znaleźć zadania, które mogą stanowić wyzwanie intelektualne, a zarazem możliwe do rozwiązania bez wielkiej wiedzy i szczególnych technik.

Geometria Euklidesa była pierwszą historycznie dziedziną sformułowaną w sposób aksjomatyczny. Pewność takiej metody dedukcyjnej robiła wrażenie na wielu uczonych w przeszłości. Wielu też starało się tę metodę naśladować w innych dziedzinach, np. Kartezjusz albo Newton. Albert dopiero z czasem zdał sobie sprawę, że aksjomaty geometrii nie są bynajmniej oczywiste, tak samo jak i jej rezultaty. Przyjmując pewien zestaw aksjomatów, otrzymujemy teorię pewnego typu – nie ma jednak żadnych przesłanek, oprócz logicznej niesprzeczności, aby przyjąć ten zestaw aksjomatów raczej niż inny. Gdy zajmujemy się matematyką, kryterium wyboru może stanowić to, czy powstała teoria jest ciekawa, czy wiąże się z innymi teoriami matematycznymi itd. Fizyk musi wybrać postulaty, które nie prowadzą do sprzeczności z doświadczeniem.

Albert robił szybkie postępy w matematyce. W wieku piętnastu lat przerobił już podręcznik rachunku różniczkowego i całkowego H.B. Lübsena (jego autor sam był samoukiem, który okazał się dobrym nauczycielem). Einstein umiał dużo, jak na ówczesnego nastolatka, w przyszłości miał się nauczyć jeszcze więcej. Nie to jednak przesądziło o jego późniejszych osiągnięciach. Najważniejsza była ciekawość w połączeniu z upartym charakterem.

Zetknął się wcześnie z najnowocześniejszą wtedy techniką: elektrycznością. Stryj i ojciec prowadzili do spółki firmę produkującą generatory elektryczne, fabryka była nieopodal domu, Albert bywał tam często, wiedział, jak działają różne urządzenia, widział na ich przykładzie, jak niewidzialne siły pola elektromagnetycznego można przesyłać przewodami, jak można ich energię wykorzystać do oświetlenia albo do rozmów telefonicznych. Rozumiał technikę, ale nie upajał się jej osiągnięciami, dość szybko zauważył, że interesują go zasady działania tych urządzeń, a nie ich praktyczna realizacja czy ewentualne zyski. Ciekawość Alberta kierowała się ku fundamentalnym wyjaśnieniom, miała charakter teoretyczny.
Po rozczarowaniu religijnym, kiedy zrozumiał, że biblijne przypowieści nie mogą być prawdziwe w sensie dosłownym i że istniejące religie stanowią przedłużenie władzy państwowej, służąc raczej spętaniu jednostek niż ich wyzwoleniu, zaczął krytycznie obserwować wszystkich wokół: rodziców, nauczycieli gimnazjalnych. Jego cierpki krytycyzm potrafił ranić, a jego pewny siebie uśmieszek doprowadzał niektórych do wściekłości. Dawał odczuć, że jego prawdziwy świat znajduje się gdzie indziej i że jego królestwo niewiele ma wspólnego z codziennymi zabiegami i staraniami ludzi, którzy nie potrafią go dosięgnąć. Nie wiemy, kiedy dokładnie postanowił, że nie zostanie inżynierem – czy było to przed, czy raczej wskutek niepowodzeń ojca w interesach. Mała fabryczka braci Einstein nie miała szans w konkurencji z gigantami takimi, jak Siemens czy AEG (kapitał 20 milionów marek).

Po kolejnym niepowodzeniu bracia postanowili przenieść się do Włoch. Albert miał zostać w Monachium: czekały go jeszcze trzy lata gimnazjum, dopiero wtedy mógł zdać maturę i myśleć o uniwersytecie.

Ci, którzy go znali, pamiętali jego śmiech przypominający szczekanie foki. Philipp Frank pisał: „[Einstein] widział sprawy codzienne w nieco komicznym świetle i coś z tego nastawienia wyzierało z jego słów; jego poczucie humoru rzucało się w oczy. Kiedy ktoś powiedział coś zabawnego, intencjonalnie albo niechcący, Einstein reagował bardzo żywiołowo. Wydobywający się z głębi jego jestestwa śmiech był jedną z jego charakterystycznych cech, które natychmiast zwracały uwagę. Dla ludzi dookoła był ów śmiech źródłem radości i ożywienia. Czasem jednak dawało się w nim wyczuć krytycyzm, który nie każdemu przypadał do gustu. Ludziom o wysokiej pozycji społecznej niezbyt się podobało, że Einstein uważa ich świat za śmiechu warty w porównaniu z wielkimi problemami, którymi sam się zajmuje. Jednak ludzie o niższej pozycji społecznej czerpali zawsze przyjemność z obcowania z Einsteinem. Jego sposób prowadzenia rozmowy sytuował się gdzieś między dziecinnymi żartami a gryzącym szyderstwem, tak że niektórzy nie wiedzieli, czy powinni się śmiać, czy obrazić. (…) Toteż wrażenie, jakie Einstein wywierał na otoczeniu, oscylowało między dziecinną wesołością a cynizmem”.

Albert zamknął się w swoim świecie fizyki, matematyki, wyobraźni i pojęć, nauczył się też skutecznie go chronić, zaczął prowadzić coś w rodzaju podwójnego życia. W tym ważniejszym, niedostępnym dla innych, rządziła ciekawość, inżynierska dociekliwość: jak to jest zbudowane i jak działa. Jego ciekawość skierowana była wszakże w stronę, by tak rzec, euklidesową: w stronę poszukiwania zasad, na których opiera się świat. Zapewne ta ogromna ciekawość sprawiła, że spędził lata i dziesiątki lat na zastanawianiu się nad fizyką. Kiedy mówimy o uporze albo wytrwałości, akcentujemy cechy charakteru ważne, ale w jakiś sposób wtórne. W jego przypadku wytrwałość była dopełnieniem ciekawości, była napędzana kolejnymi pytaniami, jakie się wyłaniały w miarę znajdywania odpowiedzi na poprzednie pytania. Jego siostra Maja zapamiętała, że w dzieciństwie Albert cierpliwie budował domki z kart, osiągające nawet czternaście kondygnacji. Jakby już wtedy ujawniła się jego wielka cierpliwość oraz pogodna łatwość burzenia i zaczynania od nowa.

A co ze światem ludzi i jego wymaganiami? Wszyscy musimy w jakimś stopniu brać udział w jego oczekiwaniach i rytuałach. Albert nie nadawał się na buntownika, był na to zbyt racjonalny. Nauczył się jednak chronić swą wewnętrzną niezależność – i ta umiejętność odegrała wielką rolę w jego życiu naukowym. Pierwszą oznaką owej niezależności stał się banalny konflikt szkolny. W siódmej klasie gimnazjum pojawił się nowy wychowawca, doktor Joseph Degenhart. Podobnie jak inni nauczyciele w tym gimnazjum był człowiekiem dobrze wykształconym. Uczył greki, do której Albert nie pałał wielkim entuzjazmem, jak zresztą do wszelkiej nauki pamięciowej. Miał on bowiem zawsze tę wadę inteligentnych ludzi, że trudno go było zmusić do robienia czegoś, co uważał za bezsensowne. Nie znamy szczegółów konfliktu między Degenhartem i Einsteinem. Prawdopodobnie wychowawca starał się klasie zaszczepić współzawodnictwo w nauce greki, chciał, by uczniowie w zdyscyplinowany sposób podążali za nim, niczym za swoim dowódcą – porównanie bynajmniej nie nonsensowne – szkoły starano się zmilitaryzować, zaprowadzając dyscyplinę i ćwicząc w cnocie posłuszeństwa wobec przełożonych. Degenhart napotkał opór ze strony Alberta. Uczeń nie miał zamiaru spędzać zbyt wiele czasu nad greką, traktował ten przedmiot jako zło konieczne. Zirytowany Degenhart pozwolił sobie na publiczną uwagę, że z Einsteina nic nie będzie. Piętnastolatek odwzajemnił mu się milczącym szyderstwem. Ta psychomachia trwała jakiś czas, aż w końcu oznajmiono mu, że powinien zmienić szkołę, gdyż sama jego obecność podrywa autorytet profesora wobec klasy. Wkrótce Einstein zdobył zaświadczenie lekarskie, iż powinien odpocząć z powodu wyczerpania nerwowego i opuścił na zawsze szkołę oraz Monachium. Nie chciał mieszkać w Niemczech, nie chciał być dłużej obywatelem królestwa Wirtembergii (jakim był z racji urodzenia w Ulm) i nie chciał służyć w niemieckiej armii. „Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby”. Nie przypuszczał wtedy, iż kiedykolwiek wróci do Niemiec, choć wiedział przecież, ile znaczy niemiecka nauka i niemieckie uniwersytety. W szkolnych latach Einsteina na uniwersytecie w Monachium wykładał najwybitniejszy ówczesny fizyk, Ludwig Boltzmann, co oczywiście nie miało jeszcze żadnego znaczenia dla ucznia gimnazjum. Jednak już za niewiele lat Einstein miał twórczo rozwinąć prace Boltzmanna. Psychologowie podają regułę dziesięciu lat: tyle mniej więcej trzeba, aby ktoś zdolny doszedł do mistrzostwa w trudnej wyspecjalizowanej dziedzinie, jak gra w szachy, gra na instrumencie albo fizyka. Albert Einstein był na początku swojej dekady pogłębiania wiedzy i odkrywania jej dla siebie.

Porzucenie szkoły dwa i pół roku przed maturą nie było rozważne, decyzję podjął sam, nie uprzedzając o niej rodziców. Ale tak samo mało „rozważne” były niemal wszystkie prace Einsteina. Nigdy nie dążył do łatwo osiągalnego celu. Nie zadowalały go kompromisy i częściowe sukcesy, tak jak nie przejmował się tym, co inni sądzą na temat jego osoby czy pracy. Właśnie ta silna osobowość w połączeniu z ciekawością zapowiadała w nim kogoś nietuzinkowego. W owym czasie ani on sam, ani nikt inny nie mógł przepowiedzieć, jak bardzo niezwykłe będzie twórcze życie Einsteina. „Wielkość naukowa jest w zasadzie kwestią charakteru. Najważniejsze to nie iść na zgniłe kompromisy”.

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.

Jak długo spadał Lucyfer?

Nie tylko Wielki Wybuch głosi chwałę Pana. Także i obecność szatanów, co wszędzie są czynni. Najlepszym dowodem ich siły jest dzisiejsze radosne zgromadzenie na Stadionie Narodowym w stolicy naszego kraju. Ojciec John Bashobora oraz arcypasterz Pragi wraz z setkami duchownych wypędzać tam będą diabły na oczach 40 000 wiernych (bilety po 60 zł). Może i tym razem o. Bashobora kogoś wskrzesi, co mu się już nieraz zdarzało. Z całą pewnością uzdrowi wielu, dzięki czemu poprawią się finanse NFZ.

W środku świata przebywa Lucyfer, dlatego świat nasz zwiemy diablocentrycznym. Jaki był jednak fizyczny sposób, by strącić tam Księcia Tego Świata? Ciężkość. Wyobraźmy sobie tunel przewiercony przez Ziemię na wskroś. Gdyby wrzucić doń Lucyfera, to jak długo bestia by spadał? I czy zatrzymałby się w środku Ziemi, czy też przeleciał dalej, aż na antypody? Zdania były tu podzielone. Bartolomeus Amicus SJ, rówieśnik Galileusza, sądził, że kamień wrzucony do takiego tunelu doleci do środka Ziemi i świata, gdzie się zatrzyma. Pogląd ten był wypowiadany i wcześniej, stąd zapewne u Dantego w Boskiej Komedii mamy obraz Lucyfera zarytego w środku świata, z trzema paszczami, w każdej po jednym słynnym zdrajcy. Inaczej uważał Nicole Oresme, zwolennik impetusu. Jego zdaniem kamień (albo Lucyfer) w środku Ziemi osiągnie największy impetus, dzięki czemu przeleci dalej aż do antypodów. I będzie tak sobie oscylować, aż mu się impetus całkiem wyczerpie. Ostatecznie zalegnie Lucyfer w środku Ziemi, lecz po iluś zabawnych oscylacjach.

Fizyka Newtona pozwala obliczyć, jak długo spadałby Lucyfer do środka Ziemi. Rozpatrzymy dwa skrajne przypadki: gdyby Ziemia wypełniona była materią jednorodnej gęstości oraz gdyby jej cała masa skupiona była w punkcie centralnym. Prawda zawiera się gdzieś pośrodku: gęstość rośnie ku centrum Ziemi, lecz stopniowo, nie skokowo, jak w drugim przypadku.

Przypadek jednorodnej Ziemi

Przyspieszenie grawitacyjne naszego Lucyfera w odległości r od środka Ziemi byłoby równe

g(r)=\dfrac{Gm(r)}{r^2},

gdzie m(r) to masa małej kuli o promieniu r. Przyjmujemy, że gęstość materii ziemskiej jest wszędzie taka sama, masa jest więc proporcjonalna do objętości i przyspieszenie grawitacyjne będzie ostatecznie proporcjonalne do r:

g(r)=\dfrac{GMr)}{R^3}=\dfrac{g}{R}r \Rightarrow T=2\pi\sqrt{\dfrac{R}{g}}.

Przez G, M, R oznaczyliśmy odpowiednio stałą grawitacji oraz masę i promień Ziemi; g to przyspieszenie ziemskie na powierzchni Ziemi. Przyspieszenie Lucyfera jest więc proporcjonalne do odległości i równanie to jest takie samo jak dla wahadła matematycznego, promień Ziemi odgrywa tu rolę długości. Zatem będzie nasz Lucyfer oscylował z okresem opisanym wzorem dla wahadła matematycznego. Do środka Ziemi będzie to ćwierć oscylacji, co zajmie niecałe dwadzieścia jeden minut.

Przypadek całej masy skupionej w centrum

W tym przypadku przyspieszenie ziemskie rośnie w miarę zbliżania się do środka:

g(r)=\dfrac{GM}{r^2},

Czas spadku znaleźć można, tak jak zrobił to Newton, wyobrażając sobie najpierw ruch po elipsie o długości dużej półosi a=\frac{1}{2}R. Jeśli elipsę tę będziemy stopniowo spłaszczać (zachowując długość dużej półosi) okres się nie zmieni (III prawo Keplera). Ognisko elipsy będzie się przybliżać do jej wierzchołka. Czas spadku będzie połową okresu obiegu takiej elipsy.

Korzystając z III prawa Keplera mamy

T^2=\dfrac{4\pi^2 a^3}{GM}\Rightarrow T=2\pi\sqrt{\dfrac{R3}{8GM}}=\pi\sqrt{\dfrac{R}{2g}}.

Połowa tego okresu jest szukanym czasem, a więc w tej wersji Lucyfer będzie spadał niecałe piętnaście minut.

Dla rzeczywistej zależności m(r) dla Ziemi przyspieszenie ziemskie najpierw nieco rośnie w głąb planety, a potem zaczyna spadać mniej więcej liniowo, kiedy znajdziemy się w żelazowo-niklowym jądrze.

Rozważania średniowiecznych filozofów w rodzaju takiego hipotetycznego kamienia w hipotetycznym tunelu przez Ziemię przyczyniały się do zrozumienia zagadnień ruchu i grawitacji, były to ówczesne Gedankenexperimente. Oresme w XIV wieku miał jednak nowocześniejszą teorię niż Amicus w XVII. Pojęcie impetus, choć dalekie jeszcze od dzisiejszego pędu, miało przed sobą przyszłość. Samo jednak wyostrzanie pojęć jest na nic, dopóki nic nie można obliczyć, przynajmniej w fizyce.

Einstein o Lukrecjuszu, 1924

PIOTR: Ktoś ty? DUCH: Lukrecy, Lewiatan, Voltaire, Alter Fritz, Legio sum.

[A. Mickiewicz, Dziady]

Dziś zajmiemy się diabłem zwanym przez wieszcza Lukrecy, czyli Lukrecjusz.

Żyjący w I w. p.n.e. Titus Lucretius Carus, autor poematu O rzeczywistości (in. O naturze rzeczy), był zarazem wybitnym poetą i zwolennikiem atomizmu w wersji Epikura. Idea, że świat zbudowany jest z atomów i nie jest kierowany przez osobowe bóstwa, przyjmowała się trudno i z oporami. Człowiek ma umysł, który chętnie postrzega rzeczywistość w kategoriach celu. Dlatego w różnych epokach od starożytności począwszy traktowano poglądy Lukrecjusza jako absurdalne i heretyckie. Nie wierzono, aby jako tako uładzony wszechświat mógł powstać bez czynnej interwencji bóstwa. Zderzające się w nieskończoności atomy wydawały się wizją jałową i ponurą, a do tego wielce nieprawdopodobną: no bo jak długo musiałyby się zderzać atomy, by utworzyć Einsteina? Wiemy jednak, że Einstein powstał nie z mgławicy gazowej, lecz jako człowiek, a człowiek od australopiteka itd. itp. Życie na Ziemi powstało (w skali kosmicznej) niemal nazajutrz po utworzeniu się planety, co wskazywałoby albo na to, że ewolucja od chemii do biologii nie jest aż tak nieprawdopodobna, albo wracamy do kapłanów i ich wyjaśnień na ten temat, które nic nie wyjaśniają.

Poniższy tekst jest wstępem Alberta Einsteina do poematu Lukrecjusza. Uczony zdobył w tym czasie światową sławę, choć nie wszystkich Niemców to cieszyło, albowiem był on Żydem. W kraju, po puczu monachijskim Adolfa Hitlera i wciąż w kryzysie gospodarczym, narastały kompleksy i nacjonalizm. Toteż Einstein czuł się tam, jak „ktoś, kto leży w dobrym łóżku, lecz oblazły go pluskwy”. Znamy to uczucie.

https://kierul.wordpress.com/2013/02/01/einstein-zydowski-prorok-we-wlasnym-kraju/

https://kierul.wordpress.com/2012/11/22/einstein-i-mann-koniec-wielkich-niemiec/

Każdy, kto nie idzie całkowicie z duchem naszego czasu i kto czuje się niekiedy obserwatorem otaczającego świata, a zwłaszcza duchowej postawy swych współczesnych, nie może pozostać obojętny na czar dzieła Lukrecjusza. Widzimy w nim bowiem, jak wyobraża sobie świat człowiek niezależny, wyposażony w żywe doznania zmysłowe i zdolność rozumowania, obdarzony naukową i spekulatywną ciekawością, człowiek, niemający najmniejszego pojęcia o osiągnięciach współczesnej nauki, które nam wpojono w dzieciństwie, nim jeszcze mogliśmy się z nimi skonfrontować w sposób świadomy i krytyczny.

Głębokie wrażenie robi na nas niezmącona pewność Lukrecjusza – wiernego ucznia Demokryta i Epikura – że świat jest zrozumiały, tzn. wszystko, co się w nim dzieje, powiązane jest łańcuchem przyczyn i skutków. Żywi on mocne przekonanie, a nawet sądzi, iż potrafi udowodnić, że wszystko bierze się z poddanego prawom ruchu niezmiennych atomów, którym nie przypisuje żadnych innych własności prócz geometrycznych i mechanicznych. Jakości zmysłowe, takie jak ciepło, zimno, barwa, zapach i smak, sprowadzają się do ruchu atomów; to samo dotyczy życia. Dusza i umysł są w jego mniemaniu zbudowane ze szczególnie lekkich atomów, wiąże on przy tym (niezbyt konsekwentnie) pewne szczególne własności materii z konkretnymi cechami doświadczenia.

Za najważniejszy cel swego dzieła uważa Lukrecjusz uwolnienie człowieka od niewolniczego strachu, wynikłego z religii i przesądów, a podsycanego i wykorzystywanego przez kapłanów dla własnych celów. Z pewnością jest to dla niego bardzo ważne. Wydaje się jednak, że powoduje nim przede wszystkim chęć przekonania czytelników do atomistyczno-mechanistycznego obrazu świata, choć nie odważa się tego powiedzieć wprost praktycznie nastawionym Rzymianom. Wzruszający jest też jego szacunek dla Epikura oraz języka i kultury Grecji, które uważa za znacznie doskonalsze niż język łaciński i kultura rzymska. Przynosi Rzymianom zaszczyt, że można było mówić im takie rzeczy. Czy któryś ze współczesnych narodów potrafiłby wypowiadać się tak szlachetnie o innym?

Wiersze Dielsa czyta się tak naturalnie, iż zapomina się, że to przekład.

Berlin, czerwiec 1924 roku

http://einsteinpapers.press.princeton.edu/vol14-doc/498