Galileo Galilei, Dialog o dwu najważniejszych układach świata, 1632 (2/2)

Galileuszowy Dialog rozgrywa się w pałacu Sagreda w Wenecji, dokąd przybywają na dyskusję Filippo Salviati i Simplicio (pedanterią byłoby w tym miejscu wytykanie autorowi, że Sagredo i Salviati nigdy się nie spotkali). Ich wymiana myśli odbywa się więc nie później niż w roku 1614, kiedy obaj przyjaciele uczonego jeszcze żyli, a więc przed ogłoszeniem dekretu Kongregacji Indeksu w sprawie Kopernika, w czasie gdy swobodna dyskusja była jeszcze możliwa. Rozmowy podzielone są na cztery kolejne dni i nie zawsze trzymają się ściśle wyznaczonego tematu. Przydaje to Dialogowi naturalności, a autorowi stwarza okazję, aby zatrącić o pewne kwestie, nie trzymając się zawsze ustalonego porządku. Ten pozorny chaos Galileuszowych dyskusji był zamierzony, choć niektórzy czytelnicy czuli się z tego powodu zagubieni. Osobisty ton rozważań miał do odegrania niezwykle ważną rolę: czytelnik uświadamia sobie, że zwolennicy nowej kosmologii nie są jakimiś ignorantami czy szaleńcami, wręcz przeciwnie: znają większość tradycyjnej nauki i argumentów geocentrycznych, lecz odrzucają je po dojrzałym namyśle. Salviati jest Simpliciem, który nauczył się matematyki, przemyślał swoje poglądy i opanował wiele nowych idei. Sagredo, mając do wyboru argumenty tradycjonalistów i nowe idee, przychyla się z reguły do tych nowych, nie dlatego wszakże, że są nowe, lecz dlatego, że lepiej objaśniają świat, kiedy im się przyjrzeć bez uprzedzeń. Największą wartością Dialogu był właśnie pewien eksperyment poznawczy: wyobrażenie sobie świata na wzór kopernikański i rozważenie różnych tego konsekwencji. Okazuje się, że nie tylko można być zwolennikiem Kopernika, nie tracąc zdrowego rozsądku, ale że nie sposób już być konsekwentnym zwolennikiem Ptolemeusza. Galileusz sprowadził rozważania do ostrej dychotomii: albo Ptolemeusz, albo Kopernik. Pominął całkiem układ Tychona, choć można twierdzić, że z jego punktu widzenia rozwiązanie Tychona nic nie wnosiło, zajmował się bowiem głównie pytaniem, czy Ziemia jest planetą i się porusza, a w tej kwestii duński astronom był równie konserwatywny jak starożytni Grecy.

Giovanni Francesco Sagredo (Ashmolean Museum)

Pierwszy dzień rozmów poświęcony jest tematowi jedności materii we wszechświecie. Wedle Arystotelesa niebiosa zbudowane są z eteru, takie też stanowisko obowiązywało w zasadzie jezuitów, choć, jak pamiętamy, ich największy teolog, Bellarmin, prywatnie uważał, że niebiosa mogą być z ognia. Tak czy inaczej, zwolennicy tradycji nie chcieli żadną miarą uznać, aby Ziemia miała w czymś przypominać ciała niebieskie. Galileusz przede wszystkim pokazuje, że powszechnie znane i nauczane na uniwersytetach argumenty Arystotelesa są nic niewarte. Poprawia zresztą greckiego filozofa z upodobaniem niemal w każdej sprawie. Gdy Simplicio, który jest skarbnicą książkowych mądrości, przytacza opinię Arystotelesa, że ciała mają trzy wymiary: długość, szerokość i głębokość, gdyż liczba trzy jest doskonała, Salviati zauważa natychmiast, że nie ma czegoś takiego jak doskonałość sama przez się, gdyż doskonałość służy zawsze jakiemuś celowi: zwierzęta np. mają parę nóg albo cztery nogi, a nigdy trzy. Co do geometrii, proponuje inny sposób podejścia. Można bowiem z dowolnego punktu wytyczyć trzy wzajemnie prostopadłe proste. Simplicio nie całkiem rozumie, czemu akurat trzy – winę ponosi tu jego brak edukacji matematycznej. Galileusz nie wiedział, że mogą istnieć geometrie wielowymiarowe, ale jego podejście zadowoliłoby współczesnego fizyka: wymiar przestrzeni należy do faktów empirycznych i określamy go sprawdzając, jaki rodzaj geometrii stosuje się do przestrzeni. I oczywiście doskonałość liczby trzy nie ma tu nic do rzeczy.

U Arystotelesa kierunki do góry i w dół miały sens absolutny i związane były z elementami ognia i powietrza – naturalnie wznoszącymi się w górę, oraz wody i ziemi – naturalnie spadającymi w dół. Z eterem związany był ruch kolisty – co objaśniać miało wieczność i niezmienność świata nadksiężycowego. Galileusz kwestionuje te rozumowania, zawierające jako założenie to, czego się dopiero chce dowieść. „Wszystko to wygląda tak, jakby celem Arystotelesa było przemieszanie nam kart w ręku i dostosowanie planu architektonicznego do świata już zbudowanego, a nie budowanie świata wedle wskazań architektury. Jeżeli bowiem oświadczę, że we wszechświecie istnieć mogą tysiące ruchów kołowych, a co za tym idzie, tysiące ośrodków, to otrzymamy też wówczas tysiące ruchów w górę i w dół” – stwierdza Sagredo. Uczony rozmontowuje i unieszkodliwia krok po kroku całą arystotelesowską machinę argumentów, stanowiącą wówczas podstawową wiedzę, jaką wynosiło się z uniwersytetów. Trudno sobie wyobrazić, aby zadania tego podjął się ktoś przepełniony respektem dla instytucji akademickich. Galileusz nie mógł zniszczyć tradycyjnej kosmologii w sposób łagodny, operacja ta musiała też wywoływać reakcje obronne u tych, którzy wychowali się w arystotelesowskiej wierze. Nie doceniamy dziś siły tamtej tradycji i Dialog nie wywołuje już u nas wstrząsu intelektualnego, wtedy jednak chodziło o zakwestionowanie całego systemu wyjaśniania i wyobrażania sobie świata.

W niektórych założeniach Galileusz nie odbiega jednak od Arystotelesa: obaj uważali świat za doskonale uporządkowaną całość – po grecku „kosmos”. W kosmosie Arystotelesa ruchy prostoliniowe ograniczone były do bezpośredniego sąsiedztwa Ziemi, dlatego ruch prostoliniowy i naturalny musiał mieć początek i koniec. Także Galileusz wzdraga się przed ruchem prostoliniowym: „W dodatku zważmy, że ruch po linii prostej z natury swojej jest nieskończony, gdyż sama linia prosta jest nieskończona i nieokreślona. Jest więc niepodobieństwem, by coś ruchomego miało z przyrodzenia swego właściwość poruszania się po linii prostej, to jest do celu, którego nie sposób osiągnąć, ponieważ nie posiada on kresu. Jak zresztą sam Arystoteles bardzo słusznie zaznacza, przyroda nie nakreśla sobie zadań, które nie mogą być osiągnięte, i nie zwykła jest zmierzać tam, dokąd dojść nie można”. Widzimy, że droga do sformułowania I zasady dynamiki była jeszcze długa – Isaac Newton urodził się w roku śmierci Galileusza.

Chcąc, aby kosmos był uporządkowany, Galileusz zakłada w nim istnienie ruchów kołowych. W odróżnieniu od Arystotelesa uważa, że nie potrzebują one jednak żadnego poruszyciela, mogą trwać niezakłócone w nieskończoność. By wyjaśnić początek układu planetarnego, odwołuje się do swej hipotezy, w myśl której Stwórca wypuścił na początku planety z jednego punktu i spadały one ku Słońcu ruchem przyspieszonym aż do chwili, gdy każda osiągnęła przepisaną odległość od Słońca. Wówczas ich ruch zmienił kierunek na obiegowy, ale wartości ich prędkości się nie zmieniła. Kosmogonia w wydaniu Galileusza przypomina nieco jego własne eksperymenty, w których zmieniał on kierunek prędkości – np. po stoczeniu się kulki z równi pochyłej na płaski stół – i obserwował, że jej wartość pozostaje taka sama. Uczony traktował te spekulacje jako pewne uzupełnienie Platońskiego Timajosa, gdzie opowiedziana jest historia o zbudowaniu świata przez demiurga. Wyniki jego obliczeń zdawały się zgodne z danymi na temat planet. Matematyk Wielkiego Księcia nie mówił o siłach i ciężkości, tym bardziej ciężkości powszechnej, jego mechanika była kinematyką. Hipoteza kosmogoniczna Galileusza była później rozważana z całą powagą przez Isaaca Newtona, który zauważył, że grawitacja Słońca musiałaby zostać podwojona w chwili zmiany kierunku prędkości.

Sagredo pyta, czy prędkość nie mogłaby zostać nadana planecie w sposób skokowy, po co to spadanie i przechodzenie kolejnych prędkości? „Ja nie powiedziałem i nie śmiałbym twierdzić, że dla natury i Boga byłoby niemożliwe nadanie takiej, jak mówicie, prędkości, i to natychmiast. Twierdzę jedynie, że de facto natura tego nie czyni. Takie rozwiązanie stałoby poza naturalnym biegiem rzeczy, a więc należałoby do dziedziny cudów” – odpowiada Salviati. Galileusz podkreśla, że nie ogranicza w ten sposób boskiej wszechmocy, bada jedynie świat taki, jaki dany jest nam w doświadczeniu, tak a nie inaczej stworzony. Koronny zarzut wobec niego będzie oparty na niezrozumieniu natury działalności naukowej. Florentyńczyk czuł się badaczem kosmosu już stworzonego, zupełnie nie interesowały go pytania o atrybuty samego Stwórcy. Rozważając choćby niezobowiązująco, jak mógł powstać układ planetarny, ryzykował oskarżenie, że wkracza na teren zastrzeżony dla Księgi Rodzaju. Spekulacje na temat puszczenia w ruch machiny kosmicznej prowadził zresztą także Kartezjusz, katolik z pewnością nie mniej liczący się z głosem Kościoła niż Galileusz. W miarę poznawania praw ruchu nieuniknione były tego rodzaju spekulacje, zaglądające niejako Stwórcy przez ramię.

Rozumowania Arystotelesa nie miały wartości: „Ani Arystoteles, ani wy sami nigdy nie będziecie w stanie dowieść, że Ziemia de facto znajduje się w środku wszechświata. A jeżeli może być mowa o określeniu jakiegoś środka wszechświata, to okaże się, że raczej Słońce może być w nim umieszczone”. W trakcie dalszych rozważań Galileusz podkreśla, że nie sposób ustalić, czy wszechświat w ogóle ma jakiś środek. Słońce jest środkiem ruchu planet, nie znaczy to jednak wcale, że musi być zarazem środkiem całego wszechświata. Urzędowi czytelnicy ze Świętego Oficjum nie zwrócili bądź woleli nie zwracać uwagi na te stwierdzenia Dialogu i przypisano Galileuszowi pogląd, że Słońce jest w środku świata. Jeśli ani Ziemia, ani Słońce nie były środkiem, to pozostawała wizja Bruna i Kartezjusza: nieskończonego wszechświata z nieskończoną mnogością „środków” w postaci gwiazd okrążanych przez planety.

Kosmos Galileusza nie musi być niezmienny. Podobnie jak Ziemia nie byłaby doskonalsza, gdyby „była cała jednym rozległym piaszczystym pustkowiem czy kulą z jaspisu, czy też gdyby w czasie potopu zamarzły pokrywające ją wody, a ona stała się olbrzymim globem zlodowaciałym; gdyby na niej nic się nie rodziło, nic nie przeobrażało i nie zmieniało (…) Im bardziej zagłębiam się w niedorzeczność rozpowszechnionych pojęć, tym bardziej stają się one dla mnie lekkomyślne i bezsensowne. Czyż można sobie wyobrazić większą głupotę aniżeli nazywanie rzadkich kamieni, srebra i złota kosztownościami – a ziemi i błota marnościami? I jakże tym ludziom nie przychodzi tu na myśl, że jeśliby ziemia należała do takich rzadkości jak klejnoty i najcenniejsze metale, to nie znalazłby się książę, który by nie poświęcił worka diamentów i rubinów oraz czterech wozów złota, by mieć przynajmniej garść ziemi, wystarczającą do posadzenia w małym wazoniku jaśminu czy zasiania pomarańczy chińskiej, aby przyglądać się, jak wschodzi, rośnie, okrywa się pięknymi liśćmi, pachnącymi kwiatami, wdzięcznymi owocami. (…) Ci, którzy egzaltują się niezniszczalnością, niezmiennością itd., dochodzą, jak sądzę, do wypowiadania podobnych stwierdzeń jedynie dlatego, że w obawie przed śmiercią pragną przetrwać jak najdłużej”. Dla Galileusza Ziemia – taka, jaka jest – nie jest niedoskonała. Wcale nie przeszkadza mu myśl, że podobne do niej mogą być inne ciała niebieskie. Przekonanie, że cały kosmos ma służyć jedynie Ziemi i jej mieszkańcom, wkłada w usta Simplicia: „Dla wygody człowieka rodzą się konie, dla żywienia koni ziemia wydaje trawę, a obłoki dostarczają jej wody. Dla wygody i wyżywienia ludzi rodzą się trawy, zboża, owoce, zwierzęta, ptaki, ryby, i w ogóle, jeśli starannie zbadamy i zgłębimy wszystkie te rzeczy, dojdziemy do wniosku, że cel, ku któremu wszystko to zmierza, to potrzeba, pożytek, wygoda i przyjemność człowieka. A jaki pożytek mogłyby mieć dla rodzaju ludzkiego płody powstające na Księżycu czy na innej planecie? Bo chyba nie chcielibyście mnie przekonywać, że na Księżycu są również ludzie, korzystający z rodzących się na nim owoców; myśl taka bądź trąci bajką, bądź jest bezbożna”. Z argumentami tego rodzaju spotykał się Galileusz nie raz. Odpowiada, że nie wydaje mu się prawdopodobne, by na Księżycu byli ludzie, ale to jeszcze wcale nie oznacza, że nie może tam być żadnych zmian. Naszą wyobraźnię kształtują doświadczenia; ktoś, kto mieszkałby w lesie i nie znał żadnych zbiorników wodnych, nie potrafiłby sobie wyobrazić ryb ani statków przepływających oceany. Wrażliwość Galileusza jest raczej panteistyczna niż antropocentryczna: różnorodność i porządek w naturze są dla niego źródłem zachwytu, Stwórca w jego pojęciu nie ograniczył się tylko do zapewnienia bytu ludziom, lecz stworzył naturę godną podziwu i badania dla niej samej.

Simplicio opisuje swym rozmówcom Księżyc i wychodzi mu z rozumowań, że musi on być zrobiony ze szczególnie twardej i nieprzenikliwej materii. „Jakżeż piękny byłby ten materiał niebieski do budowania pałaców, jeśliby można było nabyć coś równie twardego i przezroczystego” – wzdycha Sagredo, po czym obaj z Salviatim zastanawiają się, czy mieszkańcy obijaliby się o te niewidzialne ściany, czy też nie – biorąc pod uwagę, że materia niebios jest także niedotykalna. Galileusz przedstawia argumenty za tym, że także Ziemia widziana z daleka byłaby podobna do Księżyca. Charakterystyczna jest jednak ostrożność, z jaką uczony przedstawia wnioski dotyczące tak odległych światów, jak dalekie planety – ostrożność ta bardzo kontrastuje z beztroską pewnością siebie wszystkich Simpliciów, z którymi przychodziło mu się stykać. Galileusz cały czas podkreśla, że rozumiemy bardzo niewiele. Wprowadza tu rozróżnienie poznania ekstensywnego i intensywnego. W sensie ekstensywnym zawsze skazani jesteśmy na znajomość drobnego ułamka tego, co jest we wszechświecie. „Ale biorąc pod uwagę drogę intensywną – o ile pojęcie intensywności oznacza intensywne, a więc doskonałe zrozumienie – umysł ludzki poznaje, zdaniem moim, niektóre zagadnienia tak doskonale i z taką absolutną pewnością, jaką posiada tylko przyroda. Takimi są właśnie czyste nauki matematyczne, a więc geometria i arytmetyka – w których rozum boży zna nieskończenie większą liczbę prawd – gdyż zna je wszystkie – jednak z tych niewielu znanych rozumowi ludzkiemu mieści się, według mnie, poznanie równe bożemu w obiektywnej pewności, gdyż dochodzi do zrozumienia zawartej w nich konieczności – a nie może chyba istnieć większa pewność aniżeli właśnie ta”. Ta piękna intuicja platońska stała się jednym więcej kamieniem obrazy dla sędziów uczonego. Warto zwrócić uwagę, że podobne przekonania nie były wyłączną własnością Galileusza: tak samo myśleli Kepler i Kartezjusz, i większość tych, którzy w XVII wieku stworzyli nowożytną naukę.

Dzień drugi Dialogu poświęcony jest kwestii ruchu obrotowego Ziemi wokół osi. Galileusz przytacza (ustami Sagreda) charakterystyczną anegdotę: „Byłem pewnego dnia w domu bardzo szanowanego w Wenecji lekarza. Jedni odwiedzali go ze względu na swoje studia, a inni przez ciekawość, by zobaczyć sekcję, przeprowadzaną ręką tego równie uczonego, jak sumiennego i zręcznego anatoma. Tego dnia właśnie zdarzyło się, że poszukiwał on miejsca, skąd biorą początek nerwy, na temat których toczy się sławny spór między lekarzami-galenistami i perypatetykami. Anatom pokazał, jak wielki pęk nerwów, wychodząc z mózgu i idąc przez potylicę, schodzi wzdłuż stosu pacierzowego, rozgałęziając się na całe ciało, tak że jedno tylko włókno, cieniutkie jak nić, dochodzi do serca. Zwracając się następnie do pewnego szlachcica, którego znał jako filozofa-perypatetyka i gwoli którego ze szczególną dokładnością odsłonił i zademonstrował to wszystko, zapytał go, czy mu to wystarcza i czy nabrał pewności, że nerwy biorą początek w mózgu, a nie w sercu, na co ów filozof po krótkim namyśle odpowiedział: «Pokazaliście mi to wszystko w sposób tak jasny i dotykalny, że gdyby tekst Arystotelesa, według którego nerwy powstają w sercu, nie był z tym sprzeczny, to musiałbym siłą rzeczy uznać wasze twierdzenie za prawdę»”. Galileusz uwielbiał dworować z niesamodzielności intelektualnej zwolenników Arystotelesa, którzy uznawali greckiego filozofa za wyrocznię we wszystkich sprawach, choć po części rozumiał, skąd się to bierze. Simplicio tłumaczy, że pisma Arystotelesa tworzą wspaniały, skomplikowany gmach i trzeba znać je wszystkie, by rozumieć właściwie ich treść. Rzeczywiście gmach wiedzy zbudowany, czy raczej nadbudowany, przez średniowiecze nad naukami Greka mógł imponować i stwarzać wrażenie ostatecznej prawdy. W czasach Galileusza tacy filozofowie, jak Borro czy Cremonini, przez całe życie nie zajmowali się niczym innym jak komentowaniem tego korpusu wiedzy i dociekaniem, co Filozof naprawdę miał na myśli. Ludzie o takim nastawieniu, nawet słysząc o wynalazku teleskopu, potrafili znaleźć ustęp u Arystotelesa, gdzie się o nim wspomina. Oczywiście Sagredo i Salviati bawią się, przywołując anegdoty tego rodzaju. Także astrologia i alchemia traktowane są niezbyt serio: „W podobny sposób alchemicy, pod wpływem uporczywego maniactwa, utrzymują, że wszystkie najwznioślejsze umysły świata zajęte były jedynie opisywaniem sposobów wytwarzania złota (…) Jest rzeczą nadzwyczaj zabawną rozczytywanie się w ich komentarzach do poetów antycznych, u których dopatrują się największych tajemnic ukrytych pod osłoną baśni: co oznaczały miłostki bogini Księżyca i jej zejście na ziemię w pogoni za Endymionem, jej gniew na Akteona, przemiana Jowisza raz w złoty deszcz – to znów w palące się płomienie”. Czytając takie fragmenty, zaczynamy się zastanawiać, jak bardzo wiarygodne były dla Galileusza opisy cudów chrześcijańskich, czy jeśli w ogóle traktował je serio, to nie sądził, że należałoby je odrzeć z otoczki zbyt naiwnych stwierdzeń. Jak się zdaje, niedługo przed Dialogiem uczony napisał jakiś traktat poświęcony naturalistycznym wyjaśnieniom cudów, który się jednak nie zachował.

Wśród argumentów przemawiających za wirowaniem Ziemi był i ten, że łatwiej wyobrazić sobie nieruchomy wszechświat z niewielką wirującą Ziemią niż odwrotnie. Sagredo mówi: „Uważałbym tego, kto mniema, że słuszniej jest kazać poruszać się całemu światu, byle tylko utrzymać w bezruchu Ziemię, za mniej rozsądnego od kogoś, kto wzniósłby się na szczyt waszej kopuły (*) tylko po to, by spojrzeć na miasto wraz z otaczającymi je osiedlami, i domagał się, by cała okolica obracała się dokoła niego, byleby on nie ponosił trudu obracania głowy”. Simplicio widzi jednak sytuację inaczej: „O ile jednak chodzi o potęgę Tego, który wszystko wprawia w ruch – a przecież jest ona nieskończona – to nie mniej Mu łatwo poruszyć wszechświat aniżeli Ziemię czy słomkę. A skoro ta potęga jest nieskończona, to dlaczego nie miałaby raczej objawiać się większa jej część aniżeli mniejsza?”

Standardowy argument przemawiający za nieruchomością Ziemi był taki, że gdyby ona wirowała ciało swobodnie upuszczone ze szczytu wieży musiałoby spaść daleko na zachód od jej podnóża. Odmianami tego argumentu były doświadczenia z armatami: strzelając pionowo w górę, powinniśmy zaobserwować podobny efekt przesuwania się Ziemi pod pociskiem, który musiałby spaść daleko od miejsca wystrzału. Długości strzałów na wschód i na zachód powinny się różnić od siebie. „Jaka szkoda, że artyleria nie istniała za czasów Arystotelesa. Przy jej pomocy pokonałby on niewiedzę i mówił bez żadnego wahania o sprawach wszechświata” – stwierdza sarkastycznie Sagredo. Galileusz szczegółowo analizuje takie sytuacje, wykazując, że ruch Ziemi nie wpływa na obserwowany przebieg zjawisk.

Od czasu do czasu broniący wciąż stanowiska kopernikańskiego Salviati czuje się w obowiązku przypomnieć, że jest to jedynie jego rola w Dialogu, a nie wewnętrzne przekonanie. Ale zarówno zwolennicy, jak przeciwnicy Kopernika (i Galileusza) uznali, że gra toczy się bardziej serio, niż twierdziły persony Dialogu.

Badanie konsekwencji względności ruchu zajęło dużą część rozważań tego dnia. Pojawia się tam także dość osobliwy fragment, w którym Galileusz stara się spojrzeć na spadek swobodny na obracającej się Ziemi z punktu widzenia kogoś, kto się nie obraca razem z nią. Prędkość wirowania Ziemi udzieli się wówczas spadającemu ciału i jego tor będzie jakąś linią krzywą. Jaką konkretnie krzywą? Łukiem okręgu kończącym się w środku Ziemi – odpowiada Salviati. Sam Galileusz mówił o tym fragmencie bizzarrìa – czyli fantazja, i rzeczywiście koncepcja jest osobliwa (i nieprawdziwa). Dyskusje na takie wydumane tematy, jak tor spadku do środka Ziemi, miały już swoją tradycję i posunęły naprzód rozumienie fizyki ruchu; słynna wymiana listów na ten temat miała odbyć się w przyszłości między Robertem Hookiem a Isaakiem Newtonem i stała się ważnym bodźcem dla profesora z Cambridge.

Innym argumentem przeciwko ruchowi obrotowemu Ziemi był brak obserwowanej siły odśrodkowej. Galileusz stara się wykazać, że taka siła w ogóle w przypadku Ziemi nie występuje. Idzie tu zbyt daleko. Trzydzieści lat później Isaac Newton, nieznany wtedy jeszcze nikomu, czytając Dialog, obliczy wartość tej siły i udowodni, że jest ona wprawdzie znacznie mniejsza od siły ciążenia, ale różna od zera.

Dzieło Galileusza stanowiło raczej początek, wstęp do dalszych badań. Autor, wykazując cierpliwie, skutecznie i konsekwentnie, że Arystoteles nic nie wiedział o ruchu, działał na współczesnych mu konserwatystów zaiste jak artyleria.

Na celowniku uczonego znalazła się antykopernikańska książeczka Lochera, ucznia Christopha Scheinera, prawdopodobnie ich wspólne dzieło.

Spiralne spadanie ciał na obracającą się Ziemię ze sfery Księżyca. Trwa sześć dni (Johann Georg Locher, Disquisitiones mathematicae, de controversiis et novitatibus astronomicis, Ingolstadt 1614). Oś obrotu Ziemi νλ jest na rysunku pozioma; spadek kuli z punktu A nad równikiem odbywa się po spirali, która prostopadle przecina rysunek aż do punktu B. Linia przerywana zaczynająca się w γ jest torem kuli spadającej znad miejsca na Ziemi położonego w umiarkowanej szerokości geograficznej (tak jak Ingolstadt). Jezuici wyobrażali sobie, że cała sfera Księżyca musiałaby u Kopernika wirować w ciągu doby.

SAGREDO: Ach, jakież piękne rysunki, co za ptaki, co za kule – a co to za inne piękne rzeczy?

SIMPLICIO: To kule, które przybywają ze sfery księżycowej.

SAGREDO: A to, cóż to takiego?

SIMPLICIO: To małża, z gatunku tych, które u nas w Wenecji nazywają buovoli. I ona też przybywa ze sfery księżycowej.

SAGREDO: Tak jest istotnie. Oto dlaczego Księżyc wywiera tak wielki wpływ na pewne stwory morskie z gatunku ostrygowatych.

Otóż autorzy ci, chcąc zdyskredytować ideę ruchu Ziemi, postarali się wykonać pewne obliczenia: ile mil na godzinę przebywa punkt na równiku, a ile na innych równoleżnikach, a także jaką drogę przebędzie w ciągu minuty, a nawet sekundy. Cel propagandowy tych obliczeń był oczywisty: prędkość wirowania Ziemi jest porównywalna z prędkością dźwięku, a więc wydaje się ogromna nawet i dziś. Chodziło o to, by idea ruchu Ziemi wydała się absurdalna. Autorzy następnie wyobrażają sobie spadek kuli armatniej ze sfery Księżyca, co miałoby, ich zdaniem, trwać sześć dni.

„Otóż, jeśliby wszechmocą boską czy też za sprawą jakiegoś anioła cudownie została przeniesiona tam, wysoko, wielka kula armatnia, umieszczona w naszym zenicie i puszczona stamtąd swobodnie, to wówczas, zdaniem autora i moim – mówi Simplicio – byłoby rzeczą najbardziej niewiarygodną, by spadając w dół, utrzymywała się zawsze na linii naszego pionu, w ciągu tylu dni zachowując wciąż wraz z Ziemią ruch obrotowy naokoło jej środka, zakreślając na równiku linię spiralną w płaszczyźnie tego największego koła, podczas gdy na równoleżnikach zakreślałaby linie spiralne naokoło stożków, a na biegunach spadałaby po zwykłej linii prostej”. Salviati pyta o założenia dotyczące spadku ze sfery Księżyca na Ziemię. Jezuici wyobrażali sobie, że spadanie takie byłoby jednostajne, w dodatku popełnili prosty błąd obliczeniowy: skoro cała sfera Księżyca obraca się raz na dobę, to spadanie z taką prędkością do centrum powinno zająć 2π razy krócej, czyli mniej niż 4 godziny, a nie sześć dni. Już lepiej z geometrią radzą sobie bednarze – zauważa Salviati. Przy okazji przedstawia prawo spadku przyspieszonego: „Studiowałem wszystkie te sprawy z największą radością i zachwytem, widząc, że powstaje cała nowa dziedzina wiedzy. Dotyczy ona spraw, o których napisano już setki tomów, a żadne z nieskończenie wielu cudownych odkryć, które obejmuje, nie zostało zauważone i zrozumiane przez nikogo wcześniej, aż dopiero przez naszego przyjaciela [tj. Galileusza – J.K.]”. Galileusz oblicza, jak długo spadałaby kula z wysokości Księżyca, jeśli wiadomo, że z wysokości stu łokci spada w ciągu pięciu sekund. Oczywiście z punktu widzenia uczonego nie ma powodu, aby spadek następował po jakiejś linii spiralnej. Prawo spadku swobodnego i własności ruchu przyspieszonego po raz pierwszy pojawiają się tu w druku. Było to odkrycie rzeczywiście ogromnej wagi – jeszcze jedno z odkryć prowadzących w stronę mechaniki Newtona.

Prawo odkryte przez Galileusza stosować się miało do wszystkich ciał, bez rozróżnienia lekkich i ciężkich, inaczej niż u Arystotelesa, który ruch wiązał z naturą danego ciała. „Jeżeli wymienione tu rzeczy są z natury swej różne, a rzeczy z natury różne nie mogą mieć wspólnego ruchu, to należałoby (…) pomyśleć o czymś innym, aniżeli tylko o dwóch ruchach, w górę i w dół. Jeśli trzeba wynaleźć jeden ruch dla strzał, inny dla ślimaków, jeszcze inny dla kamieni – jakiś inny jeszcze dla ryb, to trzeba by pomyśleć również o dżdżownicach, topazach i grzybkach, które z przyrodzenia swego nie różnią się mniej jedne od drugich aniżeli grad i śnieg”. Książeczka Lochera i Scheinera zostaje wykpiona na wielu stronach, Galileusz zasłużenie traktuje ją jak stek głupstw. Bo też jezuiccy autorzy, gromadząc swe argumenty, nie próbowali w ogóle zrozumieć stanowiska strony kopernikańskiej. Straszyli katastrofami, jakie miałyby wynikać z ruchu Ziemi, nie zastanawiając się nad tym, że gdyby naprawdę teoria kopernikańska była taka łatwa do obalenia, to jej zwolennikami nie byliby najwybitniejsi uczeni epoki, Kepler i Galileusz. Istniała realna trudność przestawienia wyobraźni na kopernikanizm, nawet Galileusz miał z tym czasami kłopoty, było to dla ludzi tej epoki zadaniem trudnym. Ale istniał też opór przed kopernikanizmem wynikający ze złej nauki i złej naukowej wiary.

Następnym omawianym autorem jest Scipione Chiaramonti. „Gdybym nie miał nadziei, że od tego drugiego autora usłyszę coś mądrzejszego, to niewiem, czy nie zdecydowałbym się raczej na przejażdżkę gondolą w poszukiwaniu świeżości” – stwierdza bez ogródek Sagredo. Galileusz udowadnia, że Chiaramonti nie zna teorii, którą zawzięcie krytykuje. Tenże autor wystąpił też niefortunnie w sprawie odległości gwiazdy nowej obserwowanej przez Tychona, dowodząc, że z pewnością leży ona poniżej Księżyca.

Rozważania te należały już do dnia trzeciego Dialogu. Był on poświęcony ruchowi rocznemu Ziemi. Arystoteles dowodził, że gwiazdy zajmują obszar sferyczny i obracają się raz na dobę wokół Ziemi – z tego powodu uważał wszechświat za skończony. Jeśli jednak odrzucić jego założenie, przyjąć ruch dobowy Ziemi i zgodzić się na nieruchome gwiazdy, to znika powód, by uważać świat za skończony. Równie dobrze może on być nieskończony i nie mieć żadnego kształtu.

Obserwacje wskazują, że planety mają swój środek ruchu w Słońcu – w tym punkcie zgodni byli Tycho Brahe i Kopernik. Pozostaje więc do rozstrzygnięcia, czy Słońce, czy raczej Ziemia poruszają się ruchem rocznym. Zdaniem Salviatiego-Galileusza więcej przemawia za nieruchomym Słońcem. Oprócz dawniej już znanych argumentów przedstawił on nowy, wywodzący się z obserwacji plam słonecznych. Ich przesuwanie pokazuje, że Słońce wiruje wokół osi. Okazuje się jednak, że w różnych porach roku tory plam na tle tarczy słonecznej mają różny kształt. W czerwcu i grudniu są prostoliniowe i tworzą ustalony kąt z ekliptyką, w marcu i wrześniu natomiast mają kształt łuków. Najprostsze wyjaśnienie zjawiska daje teoria Kopernika: oś Słońca ma stałe nachylenie do płaszczyzny orbity Ziemi i w ciągu roku oglądamy raz nieco więcej południowej półkuli Słońca, raz nieco więcej jego półkuli północnej. Nie potrzeba już żadnych innych ruchów, aby objaśnić to, co się obserwuje. Dla Galileusza takie wirowanie wokół osi nie wymagało podtrzymywania. Podobnie rzecz się ma z Ziemią: jej oś obrotu nachylona jest do płaszczyzny orbity – czego skutkiem są zmiany pór roku. Kopernik, aby zachować stałość kierunku osi ziemskiej, przyjmował jeszcze dodatkowy trzeci ruch Ziemi, Galileusz go nie potrzebował.

W Dialogu Galileusz twierdzi, że odkrył nachylenie osi Słońca do ekliptyki prowadząc obserwacje z willi Le Selve, a więc przed rokiem 1614. Wydaje się to mało prawdopodobne; dokładne obserwacje plam i ich ruchu pojawiły się w monumentalnej książce Christopha Scheinera Rosa Ursina, która ujrzała światło dzienne w czasie, gdy Galileusz pisał Dialog. Dopiero w 1629 roku dostrzegł kopernikańskie wyjaśnienie zjawiska i zamieścił w książce. Znowu okazało się, że herkulesowe trudy Scheinera zaowocowały zgrabnym argumentem przeciwko Ptolemeuszowemu układowi świata. Oczywiście można wyjaśnić każde zjawisko równie dobrze w ziemskim układzie odniesienia, trzeba jednak przypisać wtedy Słońcu wiele ruchów zamiast jednego ruchu obrotowego. Z kopernikańskiego punktu widzenia wszystko układało się w konsystentną całość: wszystkie ruchy obrotowe i obiegowe zachodzą bowiem w jednym kierunku i nie potrzeba z każdym nowo odkrytym zjawiskiem dopisywać wciąż jakichś nowych ruchów.

Co do osobistej uczciwości Galileusza, nie ma twardych dowodów, że korzystał on z obserwacji Scheinera, pewne jest natomiast, iż ponownie dostrzegł on więcej niż jezuicki astronom, który poświęcił znaczną część swego dzieła na jałowy z natury (choć pasjonujący dla uczestników) spór o pierwszeństwo odkrycia plam na Słońcu. Trudno oprzeć się wrażeniu, że mnogość i dokładność obserwacji, jakkolwiek potrzebne, ważne są tylko wtedy, gdy pozwalają nam coś więcej zrozumieć ze sposobu funkcjonowania świata. Jeden koń arabski pobiegnie szybciej niż sto koni fryzyjskich.

W dniu trzecim Dialogu Galileusz wraca też do książeczki Lochera i przytacza inne jeszcze wnioski, do których – wedle jezuity – prowadzić miał kopernikanizm: „W tak fantastycznym układzie świata trzeba głosić różne kapitalne bzdury, na przykład takie, że Słońce, Wenus i Merkury znajdują się pod Ziemią, że materie ciężkie ruchem naturalnym poruszają się ku górze, a lekkie w dół; że Chrystus, nasz Pan i Zbawiciel, wstąpił do piekieł i zstąpił na niebiosa, gdy zbliżał się ku Słońcu; że gdy Jozue rozkazał Słońcu, by się zatrzymało, to Ziemia się zatrzymała, bądź też Słoń-

ce poruszać się zaczęło w kierunku przeciwnym do Ziemi; że gdy Słońce jest w znaku Raka, to Ziemia biegnie przez Koziorożca, że zimowe znaki zodiaku wywołują lato, a letnie zimę; że nie gwiazdy wschodzą i zachodzą dla Ziemi, lecz Ziemia wschodzi i zachodzi dla gwiazd; że wschód zaczyna się na zachodzie, a zachód na wschodzie i że jednym słowem, wywraca się cały porządek świata”.

Najsłabszą częścią Dialogu jest dzień czwarty, mający w zamyśle autora dostarczyć najsilniejszego argumentu za ruchem Ziemi. Tym argumentem jest istnienie pływów na morzach. Simplicio odnosi się do pomysłu sceptycznie:

„SIMPLICIO: Powiem jednakże z tą swobodą, która wśród nas jest dozwolona, że wprowadzanie tu ruchu Ziemi i robienie go przyczyną przypływu i odpływu w nie mniejszej mierze wydaje mi się pomysłem z bajki niż wszystkie inne, o których dotąd słyszałem; a gdyby mi nie podano innych wyjaśnień, bardziej odpowiadających prawom przyrody, to bez obawy powziąłbym przeświadczenie, że ma się tu do czynienia ze zjawiskiem nadprzyrodzonym, a więc cudownym i niedostępnym dla umysłów ludzkich, jak zresztą i nieskończona liczba innych zjawisk, zależnych bezpośrednio od wszechmogącej ręki Boga.

SALVIATI: (…) wśród wszystkich przyczyn, które przytoczone były dotychczas jako prawdziwe, żadna, jakiekolwiek byśmy stosowali zabiegi, nie byłaby w stanie wyjaśnić podobnych zjawisk. Albowiem ani przy pomocy światła Księżyca czy Słońca, ani umiarkowanej ciepłoty, ani różnic głębiny nie zdoła się w sztuczny sposób spowodować, aby woda zawarta w nieruchomym naczyniu poruszała się tam i z powrotem, aby wznosiła się i opadała, i to w jednym miejscu tak, a w drugim inaczej. Jeśli jednak bez żadnych sztuczek i w najnaturalniejszy sposób, wprowadzając naczynie w ruch, potrafię dokładnie odtworzyć wszystkie te zmiany, które widzi się na wodach mórz, to dlaczego mielibyście odrzucić takie wyjaśnienie i uciekać się do cudu.

Cały ten fragment i jego dalszy ciąg wkraczają na ryzykowny temat cudów, przynajmniej werbalnie. Galileusz tłumaczy, że gdyby w sposób cudowny nadać Ziemi niejednostajny ruch, to w jego następstwie wody zaczną – w sposób najzupełniej naturalny – poruszać się tak, jak to widzimyw zjawisku pływów. Dalej zaś wyjaśnia, że zamiast cudownego poruszania Ziemią wystarczy jej ruch naturalny, taki jak u Kopernika. Rozumowanie uczonego nie tylko odzierało zjawisko pływów z wszelkiej cudowności, ale też sprawiało wrażenie, iż inne wyjaśnienie jest niemożliwe. W ten sposób istnienie pływów byłoby dowodem, że ruch Ziemi jest „prawdą absolutną” – wbrew najgłębszemu przekonaniu Maffeo Barberiniego. Swoistym dowodem uznania ze strony Kościoła był fakt, że nikt nie próbował argumentacji Galileusza kwestionować na gruncie naukowym, jakby zgadzano się z nim, że inne wyjaśnienie naukowe i naturalne jest niemożliwe.

Tymczasem teoria Galileusza była pod wieloma względami nieudana: nie tłumaczyła okresów powtarzania się przypływów i nie wyjaśniała, czemu występują one dwa razy na dobę. Uczony niewiele wiedział na temat samego zjawiska i niezbyt przejmował się tym, co wiedział. Znane są w nauce, i nie tylko w nauce, takie przypadki ślepego przywiązania do własnych idei. Galileusz, który niezmiernie łatwo popadał w mentorski ton wobec innych, tutaj sam nie potrafił sprostać wymaganiom, jakie należy postawić porządnej teorii.

Nie zmienia to jednak faktu, że Dialog jest książką wyjątkową, pierwszą tak dobrze pomyślaną i przeprowadzoną argumentacją na rzecz ruchu Ziemi. Choć z naukowego punktu widzenia nie zawiera żadnego absolutnego dowodu słuszności kopernikanizmu, pokazuje, że jest to pogląd naukowo spójny, nie prowadzący do sprzeczności i zupełnie prawdopodobny. Dowody na rzecz kopernikanizmu jeszcze długo później były jedynie pośrednie, ale świat stawał się zrozumiały, gdy patrzeć na niego z tej właśnie perspektywy. Dyskusja Galileusza, mimo polemicznej werwy, jest na ogół rzetelna; mało kto tak dogłębnie jak on przemyślał argumenty zwolenników Arystotelesa i nikt wcześniej nie poddał ich tak druzgocącej krytyce. Wielką zasługą historyczną kopernikanizmu była właśnie zmiana spojrzenia na usytuowanie Ziemi i człowieka w kosmosie, Galileusz bardziej niż ktokolwiek inny przyczynił się do przeprowadzenia tej przemiany obrazu świata.

(*) Chodzi o słynną kopułę na katedrze florenckiej autorstwa Filippa Brunelleschiego

Reklamy

Galileo Galiei, Dialog o dwu najważniejszych układach świata, 1632 (1/2): Początek i końcowy medykament

Dialog stanowi opus magnum Galileusza. Dobiegający siedemdziesiątki uczony uznał, że nadszedł w końcu czas, by ogłosić swoje poglądy na wszechświat i zagadnienie ruchu. Druk książki zakończył się w lutym 1632 roku. Jej pełny tytuł brzmiał: Dialog Galileo Galilei z Akademii Lincei, matematyka nadzwyczajnego uniwersytetu w Pizie, pierwszego filozofa i matematyka najjaśniejszego Wielkiego Księcia Toskanii, gdzie podczas spotkań w ciągu czterech dni dyskutuje się na temat dwóch największych układów świata: ptolemeuszowego i kopernikowego, proponując w sposób nierozstrzygający argumenty zarówno za jedną, jak i za drugą stroną. Frontispis przedstawiał trzech uczonych: Arystotelesa, Ptolemeusza i Kopernika (ten ostatni miał rysy przypominające raczej Galileusza), dyskutujących na temat układu świata. Natomiast strona tytułowa zawierała aż pięć różnych pozwoleń: dwa rzymskie bez daty i trzy florenckie z września 1630 roku.

Władze przywiązywały szczególną wagę do początku dzieła i końcowego argumentu, pochodzącego od samego Urbana VIII i nazywanego la medicina del fine – końcowym medykamentem, bo miał podważyć wszystko, co zostało wcześniej powiedziane, i tym samym niejako „uleczyć” chroniczną chorobę naukowych dociekań. Przypomina to nieco praktykę stosowaną w zupełnie innych czasach: w socjalistycznej Czechosłowacji filozofowie, chcąc zapewnić sobie minimum swobody naukowej, dodawali do swych prac wstępy i posłowia naszpikowane cytatami z Marksa, Engelsa i Lenina – nazywano je balkonami. W środku można było wówczas przemycić jakieś myśli zupełnie innej proweniencji.

Wstęp „Do wyrozumiałego Czytelnika” to tekst ociekający obłudą tak wielką, że aż ociera się o szyderstwo.

W latach ubiegłych, celem uniknięcia niebezpiecznego wzburzenia wśród współczesnych, ogłoszony został w Rzymie zbawienny dekret, nakazujący uzasadnione przemilczanie poglądów pitagorejczyków dotyczących ruchu Ziemi. Nie zbrakło takich, którzy zuchwale utrzymywali, że dekret ten nie został jakoby powzięty po rozważnym zbadaniu samego zagadnienia, ale jedynie pod wpływem nieuzasadnionych namiętności. Słyszało się też wyrzekania, że zgoła niebiegli w naukach astronomicznych konsultorzy nie powinni byli nagłymi zakazami podcinać skrzydeł umysłów badawczych.

Poczucie obowiązku nie pozwoliło mi milczeć, gdy doszły do mnie tak zuchwałe wyrzekania. W pełnym zrozumieniu tego tak bardzo roztropnego postanowienia uznałem za właściwe wystąpić publicznie na arenie świata jako świadek najszczerszej prawdy. Byłem podówczas w Rzymie (…) i nie bez uprzedniego zasięgnięcia mojej opinii nastąpiło ogłoszenie tego dekretu. Dlatego też zamiarem moim jest wykazanie pracą niniejszą narodom obcym, że o sprawach tych we Włoszech, a zwłaszcza w Rzymie, równie wiele wiadomo jak to, co w najśmielszych wyobrażeniach osiągnął wysiłek badawczy zagranicy; że zebrane przeze mnie owoce własnych rozmyślań odnoszące się do układu Kopernika podane były uprzednio do wiadomości cenzury rzymskiej, że zatem ze środowiska Wiecznego Miasta promieniują nie tylko dogmaty dla zbawienia duszy, ale i zdobycze wiedzy ku radości dociekających umysłów.

Naszkicowany w ten sposób zamysł pokazania, że władza absolutna nie tylko decyduje, bo ma siłę, ale jeszcze decyduje słusznie, bo ma także rację, i to nawet w marginalnych z jej punktu widzenia sprawach – jak kopernikanizm – nie wygląda przekonująco. Zwłaszcza że „radości dociekającego umysłu” bywały w Rzymie określane raczej jako zuchwalstwo i nowinkarstwo. Uroczysta obrona kwalifikacji astronomicznych konsultorów zwracała tylko niepotrzebnie uwagę na kulisy procesu decyzyjnego, które lepiej było trzymać w ukryciu: kiedy król jest nagi, głośny podziw dla jego szat wygląda dość podejrzanie. Przykre wrażenie robi też uwaga o zasięganiu opinii Galileusza – wygląda to tak, jakby starał się przekonać nie tylko innych, ale i samego siebie, że dekret z roku 1616 nie był porażką. Zdecydowanie robił dobrą minę do bardzo złej gry. Pragnął pokazać, że i on, i Kościół byli cały czas po właściwej stronie, choć być może nie wszyscy zewnętrzni obserwatorzy to dobrze rozumieli. Prawdopodobnie Galileusz próbował twórczo zinterpretować przeszłość, aby umożliwić pewną zmianę polityki przy zachowaniu pozorów niezmienności. Wiadomo było, że Kościół nie cofnie oficjalnej decyzji, ale to wcale nie oznaczało, iż nie można było zmienić sposobu jej rozumienia. Campanella przytoczył kiedyś w liście do Galileusza następujący przykład: sobór nicejski II zadekretował, że wolno malować anioły, gdyż są one cielesne. I nikt tej decyzji nigdy nie odwołał, choć wszyscy scholastycy byli zdania, iż anioły nie są cielesne. W sprawie kopernikańskiej pierwszy krok został już uczyniony: Urban VIII inaczej kładł akcenty w interpretacji dekretu z roku 1616, a nawet dał do zrozumienia, że dekret był niepotrzebny. Może więc była szansa na w miarę swobodną dyskusję przy zachowaniu pozorów? Zanim wybuchła „sprawa Galileusza”, taka możliwość istniała. Ponieważ dalsze wydarzenia potoczyły się w sposób dramatyczny, ta próba wypracowania kompromisu wydaje się niepotrzebna i zostawia jakiś cień na intencjach Galileusza.

Jeśli chodzi o podejście do omawianego zagadnienia, Galileusz przedstawia je następująco: „W niniejszej rozprawie zająłem stanowisko Kopernika, traktując je jako czystą hipotezę matematyczną i starając się za pomocą wszelkich sztuczek wykazać, że jest ono lepsze nie w porównaniu z twierdzeniem o spoczynku Ziemi traktowanym w sposób absolutny, lecz od tego, jakiego bronią niektórzy, uważający się za perypatetyków, lecz będący nimi tylko z nazwy, zadowoleni, że mogą tkwić w bezruchu* i oddawać hołd złudzie, niezdolni do samodzielnego filozofowania, posługujący się jedynie utrzymanymi w pamięci a przy tym źle zrozumianymi pojęciami czterech elementów”. W tym proustowskim zdaniu Galileusz deklaruje, że celem jego ataku są tacy perypatetycy, którzy nie potrafią dobrze filozofować. Niskie mniemanie o współczesnych sobie perypatetykach uczony powtarzał wielokrotnie, głosząc, że sam Arystoteles, który był dobrym filozofem, szanującym fakty i obserwacje, nie mógłby zajmować takiego stanowiska jak rozmaici uczeni z bożej łaski, używający wielkiego imienia jako listka figowego dla własnej ignorancji. Oczywiście dyskusja tego rodzaju nie mogła być czysto „matematyczna”, musiała być „filozoficzna” – w ówczesnym sensie, obejmującym fizykę i filozofię. W każdym razie deklarowanym zamysłem autora było prowadzenie debaty w sposób przyjęty od średniowiecza na uniwersytetach. W debatach takich wolno było bronić różnych, nawet mocno nieortodoksyjnych, kwestii, traktowano to jako swego rodzaju ćwiczenie czy eksperymentowanie myślowe.

Mowa tu będzie o trzech głównych zagadnieniach. Najpierw postaram się dowieść, że wszelkie doświadczenia, jakie można przeprowadzić na Ziemi, są niewystarczające, aby udowodnić jej ruch, i że równie dobrze odnosić się mogą do Ziemi ruchomej, jak i do Ziemi nieruchomej. Mam nadzieję, że w tych rozważaniach pojawi się wiele spostrzeżeń nieznanych starożytności.

Najogólniej mówiąc chodzi tu o zasadę względności, a więc twierdzenie, iż zjawiska fizyczne przebiegają tak samo na ruchomej Ziemi, jak przebiegałyby na Ziemi nieruchomej. Wysuwano od starożytności wiele różnych argumentów mających wykazać, że ruch Ziemi pociągałby za sobą jakieś dziwaczne, a nawet katastrofalne skutki: ptaki i chmury zostawałyby w tyle, wciąż wiałby wschodni wiatr, budynki musiałyby się walić itd. Tymczasem Galileusz, analizując szczegółowo te argumenty, potrafił wykazać, że z punktu widzenia fizyka nie ma (prawie) różnicy między Ziemią ruchomą a nieruchomą.

Dalej badane będą zjawiska niebieskie, przemawiające na korzyść hipotezy Kopernika, jak gdyby ona koniecznie miała się ostać zwycięsko – z dodatkiem nowych rozważań, zmierzających raczej ku ułatwieniu zadań astronomii, aniżeli ku wykryciu konieczności w przyrodzie.

Z wiadomych przyczyn Galileusz stara się podkreślić, że nie pretenduje do żadnych absolutnych stwierdzeń w kwestii kopernikańskiej.

Na trzecim miejscu mówić będę o różnych pomysłowych fantazjach. Powiedziałem wiele lat temu, że na nieznane zjawisko przypływów morskich można by rzucić pewne światło, zakładając ruch Ziemi. Wypowiedź ta moja, przechodząc z ust do ust, znalazła miłosiernych ojców, którzy przyjęli ją jak swoją, przedstawiając jako płód własnego umysłu.

Galileusz ze ślepym uporem trzymał się swojej teorii pływów, nie reagując na żadne fakty obserwacyjne, to znaczy z łatwością dostosowując ją do nich – co przypominało najgorsze praktyki perypatetyków, tak przez niego ganione. Uczony wciąż tropił i znajdował u innych jakieś zapożyczenia ze swych prac; niektóre wypowiedzi tego rodzaju sprawiają dziś wrażenie paranoi, rażąc swą niewątpliwą przesadą. Teoria pływów miała być punktem kulminacyjnym Dialogu, choć w istocie jej główną zaletą było to, że dostarczyła pretekstu do napisania znakomitej książki.

Po oddaniu cenzurze tego, co konieczne, Galileusz przedstawił pięćset stron rozważań ściśle naukowych w formie dialogu trzech interlokutorów. Na samym końcu, po omówieniu pływów, znajduje się następująca wymiana zdań:

SIMPLICIO: O ile chodzi o rozważania, które miały tu miejsce, a w szczególności o te ostatnie, o przyczynach przypływu i odpływu morza, to naprawdę nie powiem, bym je w zupełności rozumiał (…) jednakowoż nie mogę ich uznać za odpowiadające prawdzie i ostateczne we wnioskach; co więcej, mam wciąż przed oczyma mego umysłu najbardziej niewzruszoną naukę, przekazaną mi przez wielkiego i wybitnego uczonego, przed którą należy zamilknąć. Wiem, że wy obaj na pytanie, czy Bóg swoją nieskończoną wszechmocą i mądrością mógł przyznać elementowi wody owe ruchy zmienne, które w nim dostrzegamy, i to innym sposobem aniżeli wprawiając w ruch zawierające je zbiorniki, odpowiedzielibyście, jestem tego pewien, że i mógłby, i umiałby tego dokonać wieloma sposobami, dla naszego umysłu nawet niewyobrażalnymi. Na mocy tego wysnuwam bezpośredni wniosek, że byłoby zbytnią śmiałością chcieć ograniczać i zacieśniać potęgę i mądrość boską do poziomu ludzkich urojeń.

SALVIATI: Jest to zaprawdę cudowna i anielska nauka: a w zupełnej z nią zgodzie znajduje się również inna, również boska, która zezwala wprawdzie na roztrząsanie budowy wszechświata, ale poucza również (być może po to, by działanie ludzkie nie stępiło się i nie skostniało w lenistwie), że jeszcze dalecy jesteśmy od poznania istoty dzieł Jego ręki. (…)

SAGREDO: Niech to będzie ostatnim słowem naszych czterodniowych rozważań. (…) A teraz będziemy mogli, naszym zwyczajem, popłynąć oczekującą nas gondolą i zażyć świeżości wieczornej godziny.

Jednym z zarzutów wobec Galileusza miało być to, że „włożył końcowy medykament w usta głupka”, tj. Simplicia, który zresztą przedstawiany jest raczej jako chodzący worek komunałów i człowiek może nie nadzwyczajnie przenikliwy, ale dość pogodnego usposobienia, pozbawiony zjadliwości realnych przeciwników uczonego. Rzeczywiście argument papieski nie wypada najlepiej w kontekście Dialogu, wydaje się jednak, że Galileusz nie miał świadomego zamiaru szydzenia z jego wartości. Starał się raczej, ustami Salviatiego, inaczej go ukierunkować: boska wszechmoc objawia się także w niewyczerpanym bogactwie przyrody – tu Galileusz jest całkowicie szczery i wyraża swoje głębokie przekonanie. Jeśli w jego poglądach pojawiał się gdzieś Bóg, to chyba najbardziej bezpośrednio tam, gdzie ujawniały się tajniki przemyślnego urządzenia świata. Był to raczej Wielki Architekt niż Absolutny Władca z wizji Urbana VIII. Można powiedzieć, że dwaj wybitni Toskańczycy spotkali się w kwestiach kończących Dialog i żaden nie chciał ustąpić z racji bliskich swemu sercu.

Sformułowania Galileusza mogły razić pobożne uszy, nie było to jednak zamiarem uczonego, a wynikało raczej z jego chwilami zaskakującej niewrażliwości czy nawet braku słuchu na sposób myślenia ludzi reprezentujących tradycyjny Kościół. Ich argumenty docierały do niego tylko na poziomie intelektualnym, nie rozumiał jednak postawy, jaka się za tym kryła; wydaje się, że i oni w zetknięciu z nim odczuwali jakąś obcość – nie mogło to skończyć się dobrze.

* Galileusz robi tu aluzję do nazwy szkoły filozoficznej: „perypatetycy” tzn. chodzący, więc nieruchomy perypatetyk to oksymoron.

Cytaty z polskiego przekładu Dialogu E. Ligockiego przy współudziale K. Giustiniani-Kępińskiej (PWN Warszawa 1953)

Johannes Kepler: III prawo ruchu planet (15 V 1618)

Niemal wszystkie wielkie odkrycia naukowe dla swych odkrywców znaczyły co innego niż dla potomnych. Z tego powodu dzisiejsza wiedza jest często mało przydatna, gdy chcemy dowiedzieć się, w jaki sposób zostały dokonane jakieś odkrycia. Przykład praw Keplera jest tu wielce pouczający: to, co dziś uważamy za trzy prawa Keplera, on sam uważał za istotne wprawdzie, ale trzy pojedyncze fakty w całym gmachu astronomii, który zbudował.

Johannes Kepler zdecydował się zająć astronomią, kiedy odkrył – jak mu się zdawało – ukryty sens geometryczny proporcji orbit planetarnych. Stwórca zrealizował bowiem w niebiosach wielce barokową konstrukcję geometryczną. Nastąpiły długie lata studiowania ruchów planet, szczęśliwym zbiegiem okoliczności mógł wykorzystać zbiór obserwacji Tychona Brahego, najdokładniejszych w dziejach i obejmujących najdłuższy przedział czasu. Ktoś porównał sytuację przed Tychonem i obserwacje Tychona do oddzielnych fotografii i długiego filmu: ruchy planet monitorowane były przez duńskiego astronoma nieomal z dnia na dzień. Kepler pierwszy zbudował w pełni heliocentryczną astronomię, w której Słońce było nie tylko wielką lampą oświetlającą wszechświat i umieszczoną centralnie, ale także źródłem ruchu sześciu znanych planet. Uzyskane przez niego wyniki podsumowuje się dziś w formie trzech praw ruchu. Pamiętać jednak należy, że zawarte one były w książkach Keplera wśród długich rozważań i nigdzie nie zostały sformułowane w taki właśnie sposób.

Dwa pierwsze prawa znalazły się w Astronomia nova z 1609 roku. Eliptyczny kształt orbit był najbardziej oczywistym wynikiem tej pracy, choć wielu nie dało się przekonać: astronomowie przyzwyczajeni byli do kół poruszających się po kołach i podejście Keplera wydawało się dziwaczne. Tym bardziej, że nawet obserwacje Brahego nie były na tyle dokładne, by jakoś zdecydowanie rozstrzygać, jaki jest właściwie kształt orbity – mogły to być rozmaite owale, a poza tym krzywe takie można skonstruować na różne sposoby, więc elipsy wydawały się wnioskiem zbyt silnym. Tak rozumiał to np. Isaac Newton, kiedy pisał: „Kepler wiedział, iż orbity planet nie są kołowe, lecz owalne, i odgadł, że są eliptyczne”. Kepler nie tyle zresztą zgadywał, ile kierował się tu (obok obserwacji) własną teorią ruchu planet – pierwszą mechaniką niebios – lecz z pozycji newtonowskich próba ta była chybiona, więc Newton mógł potraktować to jako zgadywanie. Elipsy z czasem znalazły sobie miejsce wśród uznanych faktów astronomicznych. Aż do czasów Newtona nie wiedziano jednak, co zrobić z Keplerowskim prawem pól – dzisiejszym II prawem Keplera. Teoretyczne wyjaśnienia samego Keplera nie przekonały jego następców, w dodatku prawo to jest niełatwe do praktycznego stosowania, gdyż prowadzi do równania przestępnego: t=E-e\sin E, gdzie t jest czasem, e mimośrodem orbity, a E tzw. anomalią mimośrodową, wielkością potrzebną do obliczenia położenia planety na elipsie. Równanie Keplera należało rozwiązywać metodami przybliżonymi, co w XVII wieku było trudne zarówno praktycznie, jak i pojęciowo. II prawo Keplera odrodziło się dopiero dzięki Newtonowi, który spostrzegł, że musi ono obowiązywać zawsze, gdy siły działają wzdłuż linii łączącej planetę i Słońce, bez względu na konkretną zależność sił od odległości. Dziś mówimy, że w ruchu pod wpływem sił centralnych zachowany jest moment pędu.

Kepler traktował własną pracę nad geometrycznym i mechanicznym opisem ruchu planet jako bardzo długi wstęp, rodzaj dygresji, właściwym celem było odkrycie, czemu Stwórca zbudował układ planet tak, a nie jakoś inaczej. Z jego perspektywy najciekawsze więc wydawało się wyjaśnienie odległości, okresów i ekscentryczności orbit, a więc nie tyle mechanika, co warunki początkowe – one bowiem mówiły nam coś o Bogu. Uczony, kiedy tylko mógł, wracał do rozważań na temat harmonii świata, one właśnie wydawały mu się najcenniejsze. Niosły mu też pociechę – to w czasie żałoby po śmierci córeczki zajął się pisaniem Harmonice mundi („Harmonii świata”). Do brył platońskich z młodzieńczej konstrukcji doszły teraz harmonie muzyczne – idea pitagorejska. Johannes Kepler stworzył najbardziej rozbudowaną i szczegółowo opracowaną wersję tej starej idei. Wszechświat był dla niego kosmosem, uładzoną i piękną całością. Sądził, że potrafi wyjaśnić ekscentryczności orbit planetarnych. Tym, co miało budować harmonie muzyczne kosmosu były prędkości kątowe planet widziane ze Słońca. Ich zakres odpowiadał pewnej skali muzycznej. Była to więc muzyka czysto matematyczna, którą obserwować mogły mieszkające na Słońcu anioły.

To, co przepowiedziałem dwadzieścia dwa lata temu, kiedy odkryłem pięć brył foremnych między sferami niebieskimi; to, o czym mocno byłem przekonany wewnętrznie, zanim jeszcze ujrzałem Harmonie Ptolemeusza; to, co obiecałem przyjaciołom w tytule tej piątej Księgi, nim jeszcze nabrałem całkowitej pewności; to, o czym szesnaście lat temu pisałem publicznie, nalegając, iż musi być zbadane; to, co skłoniło mnie, by spędzić najlepszą część życia na spekulacjach astronomicznych, wybrać się do Tychona Brahego do Pragi i samemu zamieszkać w Pradze; to, do czego Bóg Najlepszy i Największy nakłaniał mój umysł i rozbudzał pragnienie poznania, przedłużając me życie i siły umysłu, a także dostarczając innych środków dzięki hojności dwóch cesarzy oraz szlachty stanów Górnej Austrii; to w końcu, gdy wypełniłem swoje obowiązki astronomiczne w wystarczającym stopniu, mogłem wreszcie wydobyć na światło i stwierdziłem, że jest prawdą bardziej nawet, niż miałem nadzieję: odkryłem pośród ruchów niebieskich pełną naturę harmonii, w stopniu, w jakim ona występuje, wraz ze wszystkimi swymi częściami, objaśnionymi w Księdze III – wprawdzie nie w taki sposób, w jaki ją sobie wyobrażałem (co stanowi nie najmniejszą część mojej radości), ale w zupełnie inny sposób, najpiękniejszy i zarazem najdoskonalszy. (KGW t. VI, s. 289; )

Samo III prawo Keplera jest prostą zależnością ilościową: jeśli wyrazimy okres obiegu planety T w latach, a półoś orbity a (czyli średnią odległość od Słońca) w jednostkach orbity Ziemi, to przyjmuje ono postać: T^2=a^3. Prawo to znajduje się w Księdze piątej Harmonice mundi jako ósme twierdzenie rozdziału trzeciego, a więc wplecione w pitagorejskie rozważania.

Tak więc część mojej Tajemnicy kosmosu, która została zawieszona dwadzieścia dwa lata temu, ponieważ nie była jeszcze jasna, zostaje dokończona i tutaj umieszczona. Bo kiedy znalezione zostały prawdziwe odległości sfer, poprzez obserwacje Brahego i ustawiczny długotrwały trud, to w końcu – w końcu – prawda co do stosunku okresów i wielkości sfer
choć późno, wejrzała na opieszalca,
Wejrzała jednak i w końcu, po długim czasie, nastała.(*)
a jeśli trzeba wam dokładnego czasu, zrodzona została w umyśle 8 marca tego roku 1618, lecz poddana rachunkowi w pechowy sposób i odrzucona jako fałsz, aż wreszcie powróciła 15 maja i przyjmując inną linię ataku, pokonała ciemności mego umysłu. Tak silne było wsparcie siedemnastu lat mojej pracy nad obserwacjami Brahego oraz obecnych badań, które połączyły swe siły, iż z początku myślałem, że śnię i gdzieś w założeniach wprowadzam moją konkluzję. Ale jest absolutnie pewne i ścisłe, że stosunek okresów dowolnych dwóch planet równa się dokładnie stosunkowi ich średnich odległości do potęgi 3/2 (Harmonice mundi, 1619, s. 189; KGW t. VI, s. 302)

Spośród praw Keplera to było najmniej kontrowersyjne, bo łatwe do sprawdzenia. Co więcej, pozwalało poprawić wielkości orbit, ponieważ okresy obiegu znane były znacznie dokładniej niż odległości, co pierwszy zauważył Jeremiah Horrocks, który, gdyby nie zabrała go śmierć w wieku dwudziestu dwóch lat, z pewnością zostałby jednym z najważniejszych astronomów XVII stulecia.

(*) Wykształconemu klasycznie Keplerowi przyszła tu na myśl pierwsza ekloga Wergiliusza:

Wolność, która, choć późno, wejrzała na opieszalca,
Kiedy już siwiejące spod brzytwy sypały się włosy,
Wejrzała jednak i w końcu, po długim czasie, nastała.
(przeł. Z. Kubiak, Literatura Greków i Rzymian, s. 430)

Pierre Bayle, Myśli różne o komecie (1683)

Chrześcijaństwo należy do tradycji Europy – to prawda, lecz pamiętać musimy, że jego kształt zmieniał się bardzo z czasem. Czym innym był np. arystotelizm św. Tomasza, a czym innym reformy Lutra i Kalwina. Protestantyzm starał się chrześcijaństwo oczyścić przez powrót do źródeł oraz odrzucenie magicznej obrzędowości, był surowy, wymagał dużo od wiernych, którzy ściślej musieli się pilnować w życiu codziennym, by dostąpić łaski. Takimi właśnie surowymi protestantami, przez lata rozmyślającymi nad podstawami swej wiary, byli zarówno Isaac Newton, jak i Pierre Bayle. Protestantyzm towarzyszył przemianom mentalności europejskiej w XVI i XVII wieku, kształtował także założycieli Stanów Zjednoczonych. Nie przypadkiem nowożytna nauka i nowoczesna gospodarka rozwinęły się najbardziej w krajach protestanckich.

Kometa z lat 1680/1681 została przez Isaaca Newtona uwieczniona pierwszym obliczeniem orbity na podstawie prawa powszechnego ciążenia. Przyczyniło się to do rozwiania astrologicznych fantazji na temat związku komet z wydarzeniami na Ziemi. Był to proces powolny zapoczątkowany sto lat wcześniej odkryciem Tychona Brahego, że komety są prawdziwymi ciałami niebieskimi, tzn. nie są jakimś wyziewem górnych warstw atmosfery ziemskiej, jak sądzono od czasów Arystotelesa. Astrologia w drugiej połowie XVII wieku nie była już traktowana poważnie przez uczonych, podciął jej korzenie kopernikanizm: no bo skoro Ziemia jest tylko jedną z planet i komety też są rodzajem planet, to nie ma powodu uważać, aby zdarzenia historyczne czy meteorologiczne na planecie Ziemia dyktowane były akurat zjawieniem się jakiejś komety. Młody Isaac Newton kupił sobie książkę o astrologii na jarmarku na błoniach Stourbridge, szybko wszakże doszedł do wniosku, że zawiera bzdury. Nie potrafiąc narysować jakiejś figury omawianej w książce, sięgnął do Euklidesa. Niebawem już czytał Geometrię Kartezjusza, dzieło trudne, które jednak przestudiował. W ciągu roku opanował samodzielnie znaną wówczas matematykę i zaczął twórczość oryginalną. Niemal wszystkiego nauczył się sam i osiem imponujących tomów jego Mathematical Papers pokazuje, że matematyka towarzyszyła potem stale jego innym zainteresowaniom. Jest to zapewne jedyny przykład, gdy astrologia do czegoś realnego się przydała.


Niezbyt wierzono, przynajmniej w kręgach ludzi wykształconych, by komety zwiastowały nieszczęścia lub zostały zesłane z nieba w celu naszej moralnej poprawy, ale spotykało się wciąż rozmaite opinie. Możliwy do pomyślenia był oczywiście jakiś ich wpływ naturalny, np. katastrofa kosmiczna albo oddziaływanie z ziemską atmosferą. Tak czy owak zjawiska kometarne przesuwały się ze sfery cudownej i nadprzyrodzonej w domenę ciekawostek natury.
Madame de Sévigné, której listy stanowią jedno z arcydzieł języka francuskiego, pisała w na początku stycznia 1681 r. do swego kuzyna hrabiego de Bussy-Rabutina:

Mamy tutaj wielce okazałą kometę, która ma najpiękniejszy warkocz, jaki można oglądać. Wszystkie ważne osobistości wpadły w popłoch, gdyż wierzą mocno, iż niebiosa tak przejęły się ich stratą, że powiadamiają o niej poprzez ową kometę. Mówi się, że kardynała Mazarin, któremu medycy nic już nie potrafią pomóc, dworzanie poinformowali o pojawieniu się wielkiej komety, budzącej w nich lęk, ponieważ byłaby ich zdaniem cudem stosownym dla uczczenia śmierci kogoś tak wybitnego. Kardynał znalazł siłę, aby to wyśmiać i stwierdził żartobliwie, że kometa wyświadczyłaby mu zbyt wielki honor.

De Bussy-Rabutin odpisał z Burgundii, że i tam różne lokalne znakomitości obawiają się w związku z kometą o siebie. „Mercure galant” pokpiwał, że kometa najwyraźniej zapowiadała śmierć jakiejś wielkiej istoty, ponieważ umarł słoń trzymany w Wersalu.

Wykładowca hugonockiego kolegium w Sedanie, Pierre Bayle, zainteresował się nie tyle samą kometą z 1680/1681 r., ile mechanizmem społecznej wiary i niewiary, a także sensem religijnym tego zjawiska. Rozważaniom tym poświęcił książkę, wydaną anonimowo w roku 1683. Można by gorzko stwierdzić, iż w jego przypadku kometa była zapowiedzią znacznych zmian: w lipcu 1681 roku kolegium zamknięto. Było to jedno z posunięć króla Ludwika XIV w zbożnym dziele oczyszczania Francji z heretyków, tzn. z protestantów. Bayle spędził resztę życia w Rotterdamie, pisząc i stając się jednym z prekursorów Oświecenia. Obawiał się o swoją rodzinę we Francji, młodszy jego brat nie wytrzymał pobytu w lochach arcykatolickiego władcy, gdzie znalazł się wyłącznie z powodu swej wiary. Bayle pisał:

Gdyby wiedziano, jak ostrego sensu nabrało obecnie to słowo, nie zazdroszczono by Francji, że jest całkowicie katolicka pod panowaniem Ludwika XIV. Już od dawna bowiem ci, którzy mają się za wcielenie katolicyzmu, postępują w sposób budzący zgrozę, że uczciwy człowiek powinien miano katolika uważać za obelgę; a po tym, co zrobiliście ostatnio w owym arcykatolickim królestwie, powinno być teraz wszystko jedno, czy mówi się: religia katolicka, czy też: religia ludzi niegodziwych (przeł. J. Lalewicz).

Okoliczności zewnętrzne, a także daleko posunięta uczciwość intelektualna, skłaniały Bayle’a do sceptycyzmu wobec utartych mniemań. Podważał rolę tradycji, która ostatecznie zasadza się na tym, że powtarzamy czyjąś opinię, nie zadawszy sobie trudu jej przemyślenia. Gdyby więc trochę dokładniej przyjrzeć się temu, skąd biorą się różne tradycje, mogłoby się okazać, że w gruncie rzeczy powtarza się bezkrytycznie pogląd jednego czy dwóch autorów. Ta prosta myśl mogła podważyć nie tylko wierzenia dotyczące komet, ale i jeden z filarów Kościoła katolickiego, który z poszanowania tradycji robił swój wyróżnik, swoją differentia specifica, pośród doktryn chrześcijańskich.
Nie należy więc specjalnie wierzyć w argumenty z tradycji:

Tak więc świadectwa historyków dowodzą tego jedynie, że komety się pojawiały i że po nich występowały rozmaite niepokoje w świecie – niezmiernie stąd daleko do udowodnienia, iż jedna z tych rzeczy stanowi przyczynę bądź prognostyk drugiej, jeśli nie chcemy być jak owa kobieta z ulicy Saint Honoré [w Paryżu], która widzi przejeżdżające karety, ilekroć wyjrzy z okna i wyobraża sobie, że to ona jest przyczyną ich pojawiania się lub przynajmniej jej ukazanie się w oknie stanowi dla całej dzielnicy prognostyk, iż wkrótce przejedzie kareta (§5).

Bayle tak daleko zaszedł w intelektualnym sceptycyzmie, że wyrażano często wątpliwości, czy nie stał się ateistą. Głosił w każdym razie radykalne oddzielenie religii – domeny wiary, od filozofii – domeny rozumu. „Jeśli sprawiedliwy żyje swą wiarą, to filozof także powinien żyć swoją; znaczy to, że w swym osądzie rzeczy powinien być niezależny od tego, co sądzą inni. Powinien badać głęboko swoje przedmioty [roztrząsań]”.

Bóg zdaniem Bayle’a nie mógł być kapryśnym władcą, swego rodzaju Królem-Słońce na niebiesiech, kierującym się przesądami i gniewem. Filozof żadną miarą nie potrafił wierzyć w Boga, który posługuje się teatralną maszynerią przyrody: kometami, by siać lęk i przerażenie, wykorzystując do swoich celów ludzką łatwowierność i skłonność do doszukiwania się magicznych powiązań w świecie. Nie chciał być jak jezuici z upodobaniem sięgający po światło, dźwięk i dekoracje dla wzmocnienia wymowy religijnego przesłania. Ludzkość zbyt łatwo ulega rozmaitym złudzeniom, zbyt łatwo daje się oszukiwać i dobry nauczyciel nie powinien się uciekać do tego rodzaju tanich sztuczek nawet w dobrej intencji. Jego Bóg był wyższy ponad moralne kuglarstwo. Nie powinien też rozbudzać pychy, która i tak jest właściwa ludziom:

Im dłużej zgłębia się człowieka, tym lepiej się poznaje, iż pycha jest jego dominującą namiętnością i że sili się on na wielkość w najbardziej nawet żałosnej nędzy. Będąc stworzeniem tak lichym i znikomym, zdołał przecież sobie wmówić, że jego śmierć nie może nie wstrząsnąć całą przyrodą i nie zmusić Niebios do specjalnych zachodów dla uświetnienia jego pogrzebu. Głupia i śmieszna to próżność. Gdybyśmy mieli właściwe pojęcie o wszechświecie, rychło zrozumielibyśmy, że śmierć lub narodzenie jakiegoś władcy to rzecz tak znikoma w odniesieniu do całej natury, iż nie ma powodu, by się nią w niebie wzruszano (przeł. J. Lalewicz, §83).

Zabobonność, idolatria: w oczach Bayle’a były to najgorsze cechy nierozumu. Protestantyzm pragnął chrześcijaństwo oczyścić z magii, z kultu obrazów, posągów i relikwii. Sama religia może bowiem rozbudzać w ludziach absurdalne wierzenia i uprzedzenia:

By powrócić do zabobonnego usposobienia, które Szatan znalazł w ludzkim umyśle – twierdzę, że ten wróg Boga i naszego zbawienia tak się przyłożył i tak dobrze wykorzystał okazję, że to, co jest na świecie najlepsze, a mianowicie religię, uczynił zbiorem niewiarygodnych dziwactw, niedorzeczności i niesłychanych zbrodni; a co gorsze, za pośrednictwem takich skłonności wciągnął ludzi w najśmieszniejsze i najbardziej odrażające bałwochwalstwo, jakie sobie można wyobrazić” (przeł. J. Lalewicz, §67)

Bayle mówił tu o religii pogańskiej, ale oczywiście chodziło mu o to, by nie sprowadzać wiary do uczestnictwa w obrządkach i nie urządzać procesji i modłów z okazji komety, praktykując jednocześnie najróżniejsze występki. „Wiara, iż religia, w której zostało się wychowanym, jest jak najlepsza, nader często idzie w parze z praktykowaniem wszelkich  zakazanych przez nią występków, i to zarówno wśród wielkiego świata, jak wśród ludu”.
Powiedział wreszcie Bayle, że można sobie wyobrazić społeczeństwo ateistów, które bynajmniej nie składałoby się z samych potworów, a nawet może byłoby lepsze od społeczeństwa chrześcijan. Ateizm w oczach Boga wcale nie jest gorszy od zabobonu. Wręcz przeciwnie, ateiści, którzy potrafili porzucić zabobony i idolatrię, mogą być ludźmi lepszymi niż pełen uprzedzeń tłum, dostrzegający w religii jedynie magię.

Poglądy Bayle’a raziły wielu, nie tylko katolików, ale także i protestantów. Gwałtownie polemizował z nim Pierre Jurieu, niecierpliwie wyglądający znaków upadku Antychrysta, tzn. papieża. Swoistą polemiką z Bayle’em była także Teodycea Gottfrieda Wilhelma Leibniza. Bayle twierdził bowiem, iż zło i grzech są dla nas niezrozumiałe, są tajemnicą, jeśli wierzymy we wszechmocnego i najlepszego Boga. Nie może bowiem być wyjaśnieniem zdanie, że Bóg dopuszcza grzech, aby z móc z niego potem z Jego pomocą wyjść.

Bóg byłby wówczas jak ojciec rodziny, który pozwala swym dzieciom połamać nogi tylko po to, aby przed całym miastem ukazać swą zręczność w nastawianiu kości; albo jak monarcha, który pozwalałby rozkwitać buntom i zamieszkom w swoim państwie, by zyskać chwałę tego, który je stłumił” (Dictionnaire, 1725, t. 3: N-Z, Pauliciens, przyp. g, s. 160).

Leibniz podjął się uzasadnienia, iż świat, jaki znamy, jest zarazem najlepszym z możliwych: gdyby zmienić w nim cokolwiek, byłby jeszcze gorszy – Bóg stosuje swego rodzaju zasadę najlepszych skutków, optymalizując bieg zdarzeń. Jeśli zdaje się nam, że nie żyjemy na najlepszym ze światów, to tylko z powodu ograniczonej perspektywy, gdybyśmy mogli widzieć całość, zrozumielibyśmy wielki boży zamysł.

Ciąg dalszy napisał Voltaire, zresztą wielki czytelnik Bayle’a:

Po trzęsieniu ziemi, które zniszczyło trzy czwarte Lizbony, mędrcy owej krainy nie znaleźli skuteczniejszego środka przeciw całkowitej ruinie, jak dać ludowi piękne autodafé. Uniwersytet w Coimbre orzekł, iż widowisko kilku osób spalonych uroczyście na wolnym ogniu jest niezawodnym sekretem przeciwko trzęsieniu ziemi.
W myśl tego zapatrywania pochwycono jakiegoś Biskajczyka, któremu dowiedziono, iż zaślubił swą kumę, oraz dwóch Portugalczyków, którzy, jedząc kuraka, oddzielili tłustość (…)
Kandyd, przerażony, oszołomiony, odurzony, cały zakrwawiony i drżący, powiadał sam do siebie: „Jeżeli to jest najlepszy z możliwych światów, jakież są inne? mniejsza jeszcze, gdyby mnie tylko oćwiczono, toż samo zdarzyło mi się u Bułgarów; ale, o drogi Panglossie! największy z filozofów, trzebaż, bym patrzał, jak dyndasz, nie wiadomo za co! o, drogi anabaptysto, najlepszy z ludzi, trzebaż było ci utonąć w porcie! o, panno Kunegundo! perło dziewic, trzebaż, aby ci rozpruto żołądek! (przeł. T. Boy-Żeleński)

 

James Clerk Maxwell: Pole magnetyczne jako wiry materii (1862)

Mody intelektualne przychodzą i odchodzą podobnie jak wszelkie inne mody. W XVII wieku starano się wszystkie zjawiska fizyczne wyjaśniać za pomocą ruchu jakichś niewidzialnych cząstek, które miały się zderzać i przekazywać sobie ruch. Chodziło głównie o to, by wyeliminować z nauki wszelkie oddziaływanie na odległość: cząstki oddziaływały tylko podczas zderzeń i nie działały pomiędzy nimi żadne siły spójności. René Descartes, zwany u nas Kartezjuszem, tak sobie wyobrażał działanie magnesu.

(Principia Philosophiae, 1644)

Świat składał się u niego z krążących strumieni cząstek, a ponieważ przestrzeń miała być tym samym co rozciągłość, cząstki owe krążyły wśród drobniejszych cząstek tak, aby nie pozostawiać nigdzie pustego miejsca (tak mu bowiem wyszło z rozumowań: że nie ma próżni, pusta przestrzeń to oksymoron, jak czarny śnieg albo zimny wrzątek). Wiry cząstek objaśniały rzeczy wielkie, jak ruch planet, a także małe, jak przyciąganie magnesu i żelaza. W przypadku magnetycznym cząstki owe przypominały makaron świderki, były skręcone i mogły się albo wkręcać, albo wykręcać z nagwintowanych porów magnesu. Nie wiemy, jak bardzo Kartezjusz wierzył w słuszność tego wyjaśnienia. Na szczęście filozofowie i uczeni nie muszą (zazwyczaj) umierać za swoje teorie, wystarczy, że to one, wiodąc żywot niezależny od swych autorów, giną albo zwyciężają w ich imieniu.

Jednak do połowy XVIII wieku Kartezjusz panował we Francji i z tego powodu nawet Newtonowska grawitacja – przyciągająca i działająca na odległość – przyjmowała się z trudem. Większość uczonych akademików i prowincjonalnych amatorów z upodobaniem wymyślała coraz to nowe cząstki i wiry, np. objaśniające elektryczność. Inaczej do sprawy podchodził Benjamin Franklin, który nie lubił zbyt skomplikowanych teorii i uznał elektryczność za rodzaj fluidu zawartego w ciałach. W naładowanym kondensatorze inne miało być stężenie owego fluidu po obu stronach izolatora. Franklin zauważył, że naładowany kondensator można rozładować za pomocą wahadełka, które przenosi ładunek od okładki do okładki – zawarty jest w tym pewien obraz elektryczności jako czegoś, co może się przenosić od jednego ciała do drugiego, jak jakiś specjalny płyn, nieważki, lecz rzeczywisty.

Butelka lejdejska (czyli kondensator) rozładowywana za pomocą wahadełka z korka

Wariant tego urządzenia zamontowany był w domu Franklina w Filadelfii: między piorunochronem a uziemieniem biegnie drut przerwany dwoma dzwonkami. Wahadełko umieszczone pomiędzy obu dzwonkami poruszało się, gdy pojawiał się w układzie ładunek. Żona badacza, Deborah, w słusznym odruchu twierdziła, że boi się tego dzwonienia podczas burzy czy wtedy, gdy się ma na burzę. Małżonek, przebywający w Londynie, zezwolił jej wówczas na zdemontowanie dzwonków.

W XIX wieku wierzono już w świat wypełniony nie sypkim piaskiem, ale raczej galaretowatym eterem. Wiedziano, że światło to fale poprzeczne, a więc i ośrodek musiał wykazywać pewną sprężystość kształtu, nie mógł przelewać się jak ciecz albo gaz. Trzeba to było jakoś pogodzić np. z ruchem ciał niebieskich, które poruszają się, nie napotykając oporu eteru. Rozwinęły się w związku z tym techniki równań różniczkowych cząstkowych oraz rozmaite fantastyczne idee na temat eteru. Michael Faraday wprowadził do nauki pojęcie linii sił. Wyobrażał sobie, że owe linie się wzajemnie odpychają, dążąc zarazem do skrócenia się, jakby były z gumy, dając w efekcie siły przyciągania bądź odpychania. Jako niematematyk wyobrażał je sobie jako pewne dość konkretne, choć niewidoczne byty. Ładunki elektryczne były dla niego w zasadzie zakończeniami owych linii sił, a nie czymś istniejącym samodzielnie. Fluid Franklina i inne tego rodzaju pomysły trafiły do lamusa. Wahadełko Franklina miało być przyciągane właśnie tymi elastycznymi i odpychającymi się liniami sił (na obrazku kulka przyciągana jest do lewej okładki kondensatora; kulka naładowana jest tak, jak prawa okładka).

W styczniu roku 1862 James Clerk Maxwell opublikował trzecią część pracy On Physical Lines of Force, w której zajmował się m.in. wyjaśnieniem pola magnetycznego za pomocą wirów w eterze. Eter wypełniać miały wielościenne, zbliżone do kul elastyczne cząstki („wiry molekularne”), a pomiędzy nimi była jeszcze pojedyncza warstwa drobniejszych cząstek kulistych.

Pole magnetyczne polegać miało na wirowaniu cząstek wielościennych – im silniejsze ple, tym większa prędkość kątowa. Obraz tych „wirów molekularnych” wiązał się z obserwacją Faradaya, że płaszczyzna polaryzacji światła obraca się, gdy fala biegnie wzdłuż kierunku pola magnetycznego. Efekt Faradaya wskazywał na związek pola magnetycznego i fali świetlnej. Aby sąsiednie wiry mogły obracać się w tym samym kierunku, potrzebna była dodatkowa warstwa cząstek przekazujących ruch i obracających się bez tarcia, nieco podobnie jak w łożysku kulkowym.

Gdy prędkość sąsiednich wirów była taka sama, owe dodatkowe kulki jedynie się obracały (lewa część rysunku), gdy natomiast prędkości wirowania się różniły, kulki dodatkowe przemieszczały się, odpowiadając za prąd elektryczny. Jednak według Maxwella nie były one nośnikami ładunku, inaczej niż to wyobrażamy sobie dziś. Włączając do modelu sprężystość wirów molekularnych, które mogły nie tylko się obracać, ale i odkształcać, Maxwell wprowadził do swej teorii prąd przesunięcia i efekty elektrostatyczne. W tej samej pracy obliczył prędkość rozchodzenia się sprężystych fal poprzecznych w swoim modelu eteru. Okazała się ona równa prędkości światła. Tak naprawdę jego model nie był do końca ściśle określony i dokładna zgodność z prędkością światła była do jakiegoś stopnia przypadkowa. Maxwell uwierzył jednak, że ma ona znaczenie i zainteresował się pomiarami elektrycznymi i magnetycznymi, które mogły dostarczyć dokładniejszej wartości stałych do modelu. Fale poprzeczne w tym eterze nie były jeszcze falami elektromagnetycznymi: pola elektryczne i magnetyczne nie zmieniały się w nich tak, jak w fali elektromagnetycznej. Dalsze prace Maxwella stopniowo oddalały się od tego modelu. Spełnił on jednak ważną rolę heurystyczną. Większość uczonych XIX wieku wierzyła, że zjawiska elektromagnetyczne w taki czy inny sposób należy sprowadzić do ruchów eteru. Mechanika była ich sposobem myślenia, był to wiek pary i urządzeń mechanicznych: przekładni, tłoków, łożysk, regulatorów itd.
Pierre Duhem, ważny filozof nauki i znacznie słabszy uczony, dostrzegał te inżynierskie parantele i patrzył na nie z pewnym politowaniem. Pisał, rozróżniając fizykę angielską i niemiecko-francuską (było to przed I wojną światową, zanim Niemcy przestali być jego faworytami):

Fizyk francuski bądź niemiecki przyjmował w przestrzeni dzielącej dwa przewodniki abstrakcyjne linie sił bez grubości, bez realnego istnienia; fizyk angielski uzna te linie za materialne, przyda im grubości, by stały się rozmiarów rurki, którą wypełni zwulkanizowanym kauczukiem; w miejsce idealnych linii sił, możliwych do pojęcia jedynie rozumowo, pojawi się u niego wiązka elastycznych strun, widzialnych i dotykalnych, mocno przyklejonych swymi końcami do powierzchni obu przewodników, naciągniętych, dążących do skrócenia się i pogrubienia zarazem (…) Tak przedstawia się słynny model oddziaływań elektrostatycznych wyobrażony przez Faraday i podziwiany jako owoc geniuszu przez Maxwella oraz całą szkołę angielską.
(…) Oto książka, która ma na celu przedstawienie nowoczesnej teorii elektryczności, przedstawienie nowej teorii; a mowa w niej wyłącznie o sznurach poruszających kołami obracającymi się w bębnach, poruszających kulkami, podnoszącymi ciężary; o rurach pompujących wodę i rurach skracających się i poszerzających, kołach zębatych sprzęgniętych ze sobą i z zębatkami; sądziliśmy, że wkraczamy do spokojnego i starannie zaprojektowanego gmachu dedukcyjnego rozumu, a trafiliśmy do fabryki”. [La Théorie physique: Son objet et sa structure, Paris 1906, s. 110-111]

Duhem ma tu na myśli książkę Olivera Lodge’a Modern views of electricity, ale i całą brytyjską szkołę naukową. Zabawnie pomyśleć, że Francuz, potomek Kartezjusza, tak bardzo gorszył się wyjaśnieniami mechanicznymi. Filozof słabo rozumiał swoje czasy, był bardzo konserwatywnym katolikiem, który starał się wykazać, że Galileusz niezbyt się przyczynił do rozwoju nauki; mniej w każdym razie niż kardynał Bellarmine, który spalił Giordana Bruna i wciągnął Kopernika na Indeks ksiąg zakazanych. Prawdopodobnie główną winą Galileusza oczach Duhema był fakt, że naraził się Kościołowi, a ten z zasady jest nieomylny. Oliver Lodge rzeczywiście miał przesadne upodobanie do mechanicznych wynalazków ilustrujących elektryczność i magnetyzm. Takie upodobanie miał także i Boltzmann, najważniejszy fizyk europejski między Maxwellem a Einsteinem. Można przypuszczać, że James Clerk Maxwell nie wykonałby swej ogromnej wieloletniej pracy nad teorią elektromagnetyzmu, gdyby nie mechaniczne modele. Odegrały one ważną rolę, bo pomagały mu w myśleniu. Duhem, podobnie jak wielu filozofów i wielu katolików, obszczekiwał nie to drzewo.

Wiry molekularne Maxwella znalazły jakiś rodzaj kontynuacji we współczesnym opracowaniu matematycznym jego teorii. Pole magnetyczne okazuje się 2-formą, czymś, co w naturalny sposób daje się całkować po powierzchni. Obiekt taki geometrycznie przedstawia się jako rurkę z pewną skrętnością. Pole elektryczne jest 1-formą, czyli czymś, co daje się naturalnie całkować wzdłuż krzywej. Obiekt taki można przedstawić jako układ płaszczyzn czy powierzchni dwuwymiarowych, które przecinamy idąc w pewnym kierunku.

Rozważania Maxwella nie były więc tak bardzo od rzeczy, jak moglibyśmy dziś sądzić, słysząc o wirach molekularnych w eterze. Opisu świata dostarczają więc raczej obiekty matematyczne niż dziewiętnastowieczne przekładnie i zębatki.

Wydaje się, że ludzie najlepiej wyobrażają sobie to, co sami potrafią w danej epoce zbudować: dawniej były to mechanizmy zegarowe i urządzenia hydrauliczne, w wieku XIX różne pomysłowe maszyny, od końca wieku XX na wyobraźnię wpływają komputery. Wyobraźnia typu inżynierskiego, obrazowego, miała zawsze duże znaczenie w nauce: od Galileusza i Kartezjusza, przez Newtona aż do lorda Kelvina, Maxwella i Einsteina – wszyscy oni mieli spore kompetencje praktyczne. W tym sensie świat jednak bardziej jest fabryką niż świątynią dogmatycznego albo tylko matematycznego rozumu. Dziś co chwila pojawiają się „komputerowe” teorie świata, np. czy zamieszkujemy wszyscy jakiś program komputerowy, którego założenia poznajemy tylko przez obserwację? Jeden z największych sporów w fizyce dotyczy tego, co dzieje się z informacją wpadającą do czarnej dziury. Z jednej strony teoria grawitacji Einsteina mówi bowiem, że informacja ta ginie razem ze swym nośnikiem pod horyzontem dziury. Z drugiej strony teoria kwantów wymaga, aby informacja nigdy nie ginęła na dobre – może być praktycznie nie do odzyskania, ale co do zasady powinno być to możliwe. Promieniowanie Hawkinga nie rozwiązuje sprawy, ponieważ dziura nie jest wprawdzie absolutnie czarna, ale jej promieniowanie jest termiczne, a więc chaotyczne, nie zawierające informacji. Stworzono gigabajty prac na ten temat, lecz wciąż nie wiadomo, czy w którejś z nich zawarta jest poszukiwana informacja.

Czy Einstein zapowiadał się na geniusza? (1879-1894)

„Nie mam żadnych szczególnych uzdolnień. Cechuje mnie tylko niepohamowana ciekawość”.
Einstein napisał te słowa w liście do swego przyszłego biografa Carla Seeliga w roku 1952, a więc mając już przeszło siedemdziesiąt lat i spoglądając wstecz na całe minione życie. Nie sądzę, by powodowała nim skromność, raczej przedstawił trzeźwy osąd własnego talentu. Przez te lata znał wielu ludzi bardzo wybitnych, niektórych wręcz genialnych, miał więc skalę porównawczą. Nie był dużym dzieckiem, jakim się go – zwłaszcza dawniej – przedstawiało: oto geniusz zachowujący dziecięcą prostotę w świecie dorosłych, ktoś, kto potrafi, nic sobie nie robiąc ze społecznych ani filozoficznych konwencji, spojrzeć inaczej na kwestie tak fundamentalne, jak czas i przestrzeń. Dziecko z baśni Andersena, które woła: król jest nagi.

Rozwijał się dość szybko, nie miał jednak nic z wunderkinda. Mówił powoli, z rozwagą, zastanawiał się nad swymi odpowiedziami, nie miał powierzchownej łatwości i szybkiego refleksu, które często brane są za oznaki zdolności. Dorastał w zamożnej rodzinie. Dom w Monachium, niedaleko za bramą miejską, otoczony ogrodem i wygodny, stanowił miejsce jego pierwszych zabaw. Nawet zabawki były po mieszczańsku solidne: kamienne klocki firmy Anker, miniaturowa maszyna parowa podarowana przez wuja. Zadziwił go jednak kompas, którego igła uparcie trzymała się jednego kierunku, podlegając jakiejś niewidzialnej sile – dobry początek dla kogoś, kto całe życie poświęci teorii pola.

Grająca na fortepianie matka zauważyła, że ma słuch muzyczny. Zaczął więc przychodzić nauczyciel gry na skrzypcach, chłopiec uczył się, choć bez zapału. W szkole nie błyszczał, ale nauka przychodziła mu łatwo. Katolicka szkoła podstawowa wpłynęła na Alberta w nieoczekiwany sposób. Musiał tam uczyć się religii, szło mu to na tyle dobrze, że podpowiadał nawet katolickim kolegom. Jego rodzice, choć niezwiązani z religią i nie uczęszczający do synagogi, poczuli się w obowiązku zapewnić Albertowi dla równowagi lekcje judaizmu. W rezultacie Albert stał się niezwykle pobożny, przestał jeść wieprzowinę, układał hymny do Pana, które śpiewał sobie po drodze do szkoły. Tolerancyjni rodzice nie bardzo wiedzieli, co z tym począć. Ujawniła się w ten sposób istotna różnica między Albertem a jego ojcem, Hermannem, który lekceważąco wypowiadał się o żydowskiej religii, traktując ją jako nagromadzenie przesądów. Być może doszła tu do głosu różnica pokoleniowa: Hermann pragnął asymilacji i zatarcia różnic kulturowych, Albert natomiast wcześnie zdał sobie sprawę, że jako Żyd skazany jest w niemieckim społeczeństwie na alienację – zawsze bowiem będzie kimś obcym. Nie zetknął się w tym czasie z poważniejszymi przejawami antysemityzmu, nauczyciele starali się zachować neutralność, choć chłopcy, zwłaszcza w szkole podstawowej, przynosili z domu niechęć i lekceważenie wobec Żydów, objawiające się dokuczaniem i zaczepkami. Nie można wykluczyć, że religijność Alberta miała w sobie także motyw obronny. Nie tylko nie zaczął wstydzić się swego pochodzenia, lecz wręcz przeciwnie, pragnął je zaakcentować.

Wiara Alberta nie dotrwała do bar micwy, nim skończył trzynaście lat, jego nową wiarą stała się nauka. Zainteresowania naukowe Alberta jeszcze bardziej oddaliły go od szkoły. Uczęszczał teraz do klasycznego Gimnazjum Luitpolda. Rodzice chcieli, aby zdobył najlepsze wykształcenie. W ówczesnej Europie najbardziej prestiżowymi szkołami były gimnazja klasyczne, w których połowę czasu zajmowały łacina i greka. Wierzono, że czas spędzony nad językami klasycznymi służy rozwojowi umysłu, stanowiąc swego rodzaju gimnastykę mózgu. Ponadto warstewka kultury klasycznej pozwalała od razu poznać, kto przeszedł edukację tego rodzaju. „Najbardziej zdumiewającą cechą edukacji jest to, jak wielką ilość ignorancji udaje się w niej zmieścić pod postacią martwych faktów” (Henry Adams). Jak się zdaje, jedyne co Albert zawdzięczał szkole to lekcje niemieckiego w szóstej klasie gimnazjum. Zainteresowanie Goethem zostało mu na całe życie. Nie nauczył się natomiast w szkole niczego z matematyki i fizyki.

Zwrot w kierunku nauki nastąpił pod wpływem osobliwej przyjaźni Alberta z przychodzącym do nich na obiady studentem medycyny z Polski, Maksem Talmudem. Chłopiec zapalił się do materializmu filozoficznego w stylu Georga Büchnera (nb. lekarza), który głosił, iż istnieje tylko siła i materia. Dzięki popularnym książkom Aarona Bernsteina zapoznał się z podstawami chemii, astronomii, fizyki, biologii. Bernstein, syn rabina z Gdańska, głosił pochwałę ludzkiego rozumu, nie był jednak ateistą jak Büchner.

Bardzo ważnym doświadczeniem Alberta stało się zetknięcie z geometrią. Częściowo dokonało się to dzięki rozmowom ze stryjem Jakobem, inżynierem, częściowo wpływ miał Max Talmud, przynosząc chłopcu odpowiednie książki. Zanim jeszcze ujrzał pierwszy podręcznik geometrii, udało mu się wykazać twierdzenie Pitagorasa.

Zauważył (po dłuższym zastanawianiu się nad tym problemem), że wysokość opuszczona z kąta prostego dzieli trójkąt na dwa mniejsze i podobne trójkąty. (Pojęcie podobieństwa trójkątów uznał za oczywiste. Zatem ich pola powierzchni są proporcjonalne do kwadratu długości przeciwprostokątnych, czyli kc^2=ka^2+kb^2, gdzie k jest wspólnym współczynnikiem proporcjonalności). Tym, co zrobiło na Einsteinie ogromne wrażenie, były nie tyle rozmaite twierdzenia, ile sam fakt, że można owe twierdzenia udowodnić, wychodząc z pewnych postulatów. Chodziło zatem o metodę postępowania, nie wyniki. Pierwszy swój podręcznik geometrii opisywał potem Einstein jako „świętą książeczkę”. Dziś zaniedbuje się nauczania geometrii, niewielu więc uczniów ma podobne doświadczenia. Klasyczna geometria nadaje się zresztą nadzwyczajnie do tego, by pokazać na czym polega prawdziwa matematyka, ponieważ już na poziomie szkolnym łatwo znaleźć zadania, które mogą stanowić wyzwanie intelektualne, a zarazem możliwe do rozwiązania bez wielkiej wiedzy i szczególnych technik.

Geometria Euklidesa była pierwszą historycznie dziedziną sformułowaną w sposób aksjomatyczny. Pewność takiej metody dedukcyjnej robiła wrażenie na wielu uczonych w przeszłości. Wielu też starało się tę metodę naśladować w innych dziedzinach, np. Kartezjusz albo Newton. Albert dopiero z czasem zdał sobie sprawę, że aksjomaty geometrii nie są bynajmniej oczywiste, tak samo jak i jej rezultaty. Przyjmując pewien zestaw aksjomatów, otrzymujemy teorię pewnego typu – nie ma jednak żadnych przesłanek, oprócz logicznej niesprzeczności, aby przyjąć ten zestaw aksjomatów raczej niż inny. Gdy zajmujemy się matematyką, kryterium wyboru może stanowić to, czy powstała teoria jest ciekawa, czy wiąże się z innymi teoriami matematycznymi itd. Fizyk musi wybrać postulaty, które nie prowadzą do sprzeczności z doświadczeniem.

Albert robił szybkie postępy w matematyce. W wieku piętnastu lat przerobił już podręcznik rachunku różniczkowego i całkowego H.B. Lübsena (jego autor sam był samoukiem, który okazał się dobrym nauczycielem). Einstein umiał dużo, jak na ówczesnego nastolatka, w przyszłości miał się nauczyć jeszcze więcej. Nie to jednak przesądziło o jego późniejszych osiągnięciach. Najważniejsza była ciekawość w połączeniu z upartym charakterem.

Zetknął się wcześnie z najnowocześniejszą wtedy techniką: elektrycznością. Stryj i ojciec prowadzili do spółki firmę produkującą generatory elektryczne, fabryka była nieopodal domu, Albert bywał tam często, wiedział, jak działają różne urządzenia, widział na ich przykładzie, jak niewidzialne siły pola elektromagnetycznego można przesyłać przewodami, jak można ich energię wykorzystać do oświetlenia albo do rozmów telefonicznych. Rozumiał technikę, ale nie upajał się jej osiągnięciami, dość szybko zauważył, że interesują go zasady działania tych urządzeń, a nie ich praktyczna realizacja czy ewentualne zyski. Ciekawość Alberta kierowała się ku fundamentalnym wyjaśnieniom, miała charakter teoretyczny.
Po rozczarowaniu religijnym, kiedy zrozumiał, że biblijne przypowieści nie mogą być prawdziwe w sensie dosłownym i że istniejące religie stanowią przedłużenie władzy państwowej, służąc raczej spętaniu jednostek niż ich wyzwoleniu, zaczął krytycznie obserwować wszystkich wokół: rodziców, nauczycieli gimnazjalnych. Jego cierpki krytycyzm potrafił ranić, a jego pewny siebie uśmieszek doprowadzał niektórych do wściekłości. Dawał odczuć, że jego prawdziwy świat znajduje się gdzie indziej i że jego królestwo niewiele ma wspólnego z codziennymi zabiegami i staraniami ludzi, którzy nie potrafią go dosięgnąć. Nie wiemy, kiedy dokładnie postanowił, że nie zostanie inżynierem – czy było to przed, czy raczej wskutek niepowodzeń ojca w interesach. Mała fabryczka braci Einstein nie miała szans w konkurencji z gigantami takimi, jak Siemens czy AEG (kapitał 20 milionów marek).

Po kolejnym niepowodzeniu bracia postanowili przenieść się do Włoch. Albert miał zostać w Monachium: czekały go jeszcze trzy lata gimnazjum, dopiero wtedy mógł zdać maturę i myśleć o uniwersytecie.

Ci, którzy go znali, pamiętali jego śmiech przypominający szczekanie foki. Philipp Frank pisał: „[Einstein] widział sprawy codzienne w nieco komicznym świetle i coś z tego nastawienia wyzierało z jego słów; jego poczucie humoru rzucało się w oczy. Kiedy ktoś powiedział coś zabawnego, intencjonalnie albo niechcący, Einstein reagował bardzo żywiołowo. Wydobywający się z głębi jego jestestwa śmiech był jedną z jego charakterystycznych cech, które natychmiast zwracały uwagę. Dla ludzi dookoła był ów śmiech źródłem radości i ożywienia. Czasem jednak dawało się w nim wyczuć krytycyzm, który nie każdemu przypadał do gustu. Ludziom o wysokiej pozycji społecznej niezbyt się podobało, że Einstein uważa ich świat za śmiechu warty w porównaniu z wielkimi problemami, którymi sam się zajmuje. Jednak ludzie o niższej pozycji społecznej czerpali zawsze przyjemność z obcowania z Einsteinem. Jego sposób prowadzenia rozmowy sytuował się gdzieś między dziecinnymi żartami a gryzącym szyderstwem, tak że niektórzy nie wiedzieli, czy powinni się śmiać, czy obrazić. (…) Toteż wrażenie, jakie Einstein wywierał na otoczeniu, oscylowało między dziecinną wesołością a cynizmem”.

Albert zamknął się w swoim świecie fizyki, matematyki, wyobraźni i pojęć, nauczył się też skutecznie go chronić, zaczął prowadzić coś w rodzaju podwójnego życia. W tym ważniejszym, niedostępnym dla innych, rządziła ciekawość, inżynierska dociekliwość: jak to jest zbudowane i jak działa. Jego ciekawość skierowana była wszakże w stronę, by tak rzec, euklidesową: w stronę poszukiwania zasad, na których opiera się świat. Zapewne ta ogromna ciekawość sprawiła, że spędził lata i dziesiątki lat na zastanawianiu się nad fizyką. Kiedy mówimy o uporze albo wytrwałości, akcentujemy cechy charakteru ważne, ale w jakiś sposób wtórne. W jego przypadku wytrwałość była dopełnieniem ciekawości, była napędzana kolejnymi pytaniami, jakie się wyłaniały w miarę znajdywania odpowiedzi na poprzednie pytania. Jego siostra Maja zapamiętała, że w dzieciństwie Albert cierpliwie budował domki z kart, osiągające nawet czternaście kondygnacji. Jakby już wtedy ujawniła się jego wielka cierpliwość oraz pogodna łatwość burzenia i zaczynania od nowa.

A co ze światem ludzi i jego wymaganiami? Wszyscy musimy w jakimś stopniu brać udział w jego oczekiwaniach i rytuałach. Albert nie nadawał się na buntownika, był na to zbyt racjonalny. Nauczył się jednak chronić swą wewnętrzną niezależność – i ta umiejętność odegrała wielką rolę w jego życiu naukowym. Pierwszą oznaką owej niezależności stał się banalny konflikt szkolny. W siódmej klasie gimnazjum pojawił się nowy wychowawca, doktor Joseph Degenhart. Podobnie jak inni nauczyciele w tym gimnazjum był człowiekiem dobrze wykształconym. Uczył greki, do której Albert nie pałał wielkim entuzjazmem, jak zresztą do wszelkiej nauki pamięciowej. Miał on bowiem zawsze tę wadę inteligentnych ludzi, że trudno go było zmusić do robienia czegoś, co uważał za bezsensowne. Nie znamy szczegółów konfliktu między Degenhartem i Einsteinem. Prawdopodobnie wychowawca starał się klasie zaszczepić współzawodnictwo w nauce greki, chciał, by uczniowie w zdyscyplinowany sposób podążali za nim, niczym za swoim dowódcą – porównanie bynajmniej nie nonsensowne – szkoły starano się zmilitaryzować, zaprowadzając dyscyplinę i ćwicząc w cnocie posłuszeństwa wobec przełożonych. Degenhart napotkał opór ze strony Alberta. Uczeń nie miał zamiaru spędzać zbyt wiele czasu nad greką, traktował ten przedmiot jako zło konieczne. Zirytowany Degenhart pozwolił sobie na publiczną uwagę, że z Einsteina nic nie będzie. Piętnastolatek odwzajemnił mu się milczącym szyderstwem. Ta psychomachia trwała jakiś czas, aż w końcu oznajmiono mu, że powinien zmienić szkołę, gdyż sama jego obecność podrywa autorytet profesora wobec klasy. Wkrótce Einstein zdobył zaświadczenie lekarskie, iż powinien odpocząć z powodu wyczerpania nerwowego i opuścił na zawsze szkołę oraz Monachium. Nie chciał mieszkać w Niemczech, nie chciał być dłużej obywatelem królestwa Wirtembergii (jakim był z racji urodzenia w Ulm) i nie chciał służyć w niemieckiej armii. „Każdy, komu sprawia przyjemność maszerowanie w szeregu przy dźwiękach muzyki, już przez to samo wywołuje we mnie uczucie pogardy; jedynie przez przypadek obdarzono go wielką mózgownicą, gdyż mlecz pacierzowy wystarczyłby najzupełniej na jego potrzeby”. Nie przypuszczał wtedy, iż kiedykolwiek wróci do Niemiec, choć wiedział przecież, ile znaczy niemiecka nauka i niemieckie uniwersytety. W szkolnych latach Einsteina na uniwersytecie w Monachium wykładał najwybitniejszy ówczesny fizyk, Ludwig Boltzmann, co oczywiście nie miało jeszcze żadnego znaczenia dla ucznia gimnazjum. Jednak już za niewiele lat Einstein miał twórczo rozwinąć prace Boltzmanna. Psychologowie podają regułę dziesięciu lat: tyle mniej więcej trzeba, aby ktoś zdolny doszedł do mistrzostwa w trudnej wyspecjalizowanej dziedzinie, jak gra w szachy, gra na instrumencie albo fizyka. Albert Einstein był na początku swojej dekady pogłębiania wiedzy i odkrywania jej dla siebie.

Porzucenie szkoły dwa i pół roku przed maturą nie było rozważne, decyzję podjął sam, nie uprzedzając o niej rodziców. Ale tak samo mało „rozważne” były niemal wszystkie prace Einsteina. Nigdy nie dążył do łatwo osiągalnego celu. Nie zadowalały go kompromisy i częściowe sukcesy, tak jak nie przejmował się tym, co inni sądzą na temat jego osoby czy pracy. Właśnie ta silna osobowość w połączeniu z ciekawością zapowiadała w nim kogoś nietuzinkowego. W owym czasie ani on sam, ani nikt inny nie mógł przepowiedzieć, jak bardzo niezwykłe będzie twórcze życie Einsteina. „Wielkość naukowa jest w zasadzie kwestią charakteru. Najważniejsze to nie iść na zgniłe kompromisy”.

Thomas Wright: kosmos jako ogród Boga (1750)

Kopernik odebrał Ziemi wyjątkowy status ciała centralnego, ciężkiego i bezwładnego, zbudowanego z innej materii niż świetliste i lekkie ciała niebieskie. Bardzo to uwierało rzymską Kongregację Indeksu, która w 1620 roku ogłosiła „korektę” dzieła, zalecając na użytek wiernych poprawki, np. „Ziemia nie jest gwiazdą (tzn. ciałem niebieskim), jaką ją czyni Kopernik”. Autor nie żył już od niemal osiemdziesięciu lat, ale nic to: poprawki mogli wprowadzić samodzielnie czytelnicy, by ich własne oko nie musiało się gorszyć (a przyjaciele nie donieśli komu trzeba). Jak wykazała kwerenda Owena Gingericha do zaleceń tych zastosowano się jednak niechętnie, nawet w Italii i Hiszpanii, a więc krajach ultrakatolickich, nieskażonych zarazą protestantyzmu. Poza tym im dalej od Rzymu, tym gorzej.

Zakazy kościelne okazały się patetycznie bezsilne wobec fali nowej nauki wzbierającej nawet w Italii, gdzie po skazaniu Galileusza należało uciekać się do rozmaitych wybiegów. Np. Giovanni Alfonso Borelli ogłosił teorię ruchu księżyców Jowisza, choć w oczywisty sposób chodziło mu o ruch planet wokół Słońca. Matematycznie było to to samo, a nie drażniło się inkwizycji. Nauki ścisłe i eksperymentalne opuszczały jednak Italię i rozkwitały głównie w Anglii, Holandii i Francji, dokąd nie sięgały zakazy teologów rzymskich. Protestanci z upodobaniem głosili poglądy sprzeczne z tym, co głosili „papiści”. Korelacja wyznania i wkładu do rewolucji naukowej w XVII i XVIII wieku jest wyraźna. Różnica kulturowa między Europą północno-zachodnią a południowo-wschodnią stawała się coraz głębsza. Protestantyzm był tu zresztą raczej symptomem niż przyczyną. Chrześcijaństwo Lutra i Kalwina było oczyszczone i odnowione, starało się „odczarować” świat, odrzucając magiczne aspekty religii. Tamten podział Europy istnieje do dziś, podobnie jak w badaniach społecznych widać granice zaborów w Polsce.

Uznanie wszechświata za nieskończony a Słońca za jedną gwiazd (w dzisiejszym znaczeniu tego słowa, a więc ciała niebieskiego, które świeci w zakresie widzialnym) nie wynikało z kopernikanizmu w sensie logicznym, ale było jego naturalną konsekwencją. Galileusz bardzo podkreślał, że nie tylko Ziemia nie spoczywa w środku świata, ale wszechświat zapewne nie ma w ogóle żadnego środka. Nie zgadzał się z tym jego największy współczesny Johannes Kepler, który wierzył, że Słońce spoczywa w centrum świata, a gwiazdy są światłami na nieruchomej sferze niebieskiej. Po Isaacu Newtonie nieskończony wszechświat wydawał się jedyną realną możliwością: gwiazdy w skończonym i statycznym wszechświecie musiałyby się zapaść grawitacyjnie do wspólnego środka masy. Nieskończony wszechświat mógłby teoretycznie znajdować się w stanie równowagi nietrwałej. Sytuację taką zasugerował teolog Richard Bentley w listownej dyskusji z Newtonem, a ten niechętnie uznał to za możliwe. Sam raczej sądził, że grawitacja wywołuje rzeczywiście niestabilność, ale Stwórca od czasu do czasu daje prztyczka ciałom niebieskim, aby je przywołać do porządku bądź zbudować nowy porządek. Na przykład księżyce Jowisza mogłyby być zapasowymi planetami trzymanymi na przyszłość. Hipoteza nieskończonego wszechświata prowadziła też niektórych do wniosku, że niebo w nocy powinno świecić jak powierzchnia Słońca. To poważne zastrzeżenie, które Newton, a właściwie Halley starał się obalić niezbyt przekonującymi argumentami.

Protestancka swoboda spekulacji kosmologicznych zaowocowała sporą liczbą różnych traktatów, w których starano się pogodzić prawo ciążenia i dane astronomiczne z Pismem św. Nie było tu mrożącego efektu inkwizycji. Nie tylko teologowie, ale różnego rodzaju samoucy zastanawiali się nad budową i dziejami wszechświata. Do tej ostatniej kategorii zaliczał się Thomas Wright, który niewiele chodził do szkoły. Jako syn cieśli nie mógł liczyć na głębszą edukację, tym bardziej że rozgniewany ojciec spalił mu kiedyś książki, nad którymi jego zdaniem syn spędzał zbyt wiele czasu. Terminował w zawodzie zegarmistrza, potem w sztuce budowania przyrządów nawigacyjnych. Uczył nawigacji marynarzy spędzających zimy na handlu węglem i czekaniu na sezon żeglugowy. Z czasem uczył także nauk matematycznych w domach arystokratycznych, zaczął też projektować ogrody, na co był spory popyt.

W roku 1750 Wright ogłosił książkę pt. An original theory or new hypothesis of the Universe. Obiecywał w niej wyjaśnić ni mniej, ni więcej tylko budowę wszechświata, trzymając się praw natury i zasad matematycznych – zwłaszcza te ostatnie po Newtonie były w cenie. Dzięki tej modzie wiele dam spośród arystokracji pragnęło poznać tajniki nauk ścisłych i interesowało się astronomią. Szczególną wagę przywiązywał Wright do wyjaśnienia „zjawiska Via Lactea” – czyli Drogi Mlecznej na niebie. Można przypuszczać, że słuchaczki zadawały mu często pytanie, czym jest owa Droga Mleczna. W tamtych czasach marnego oświetlenia nie sposób było nie znać widoku nocnego nieba.

Już Galileusz po pierwszych obserwacjach przez teleskop twierdził, że Droga Mleczna to nagromadzenie słabych gwiazdek, które zlewają się w jednolitą poświatę. W czasach Wrighta wiedziano więcej na temat odległości gwiazd. Przede wszystkim starano się wykryć paralaksę roczną – zjawisko pozornego przemieszczania się gwiazd po sferze niebieskiej w rytmie obiegów Ziemi wokół Słońca. Albo Kopernik nie miał racji, albo gwiazdy były bardzo daleko. Ponieważ po Newtonie system heliocentryczny nabrał sensu fizycznego, więc należało przyznać, że odległości gwiazd od Słońca są niewiarygodnie wielkie. Paralaksa roczna z pewnością nie przekraczała 20”, na co wskazywały obserwacje Jamesa Bradleya. Oznaczałoby to, że gwiazdy są dalej niż 1000 odległości Saturna od Słońca. Można też było oszacować tę odległość na podstawie obserwowanej jasności. Należało wówczas założyć, że gwiazdy są takie jak Słońce i ich obserwowana jasność jest wyłącznie skutkiem ich oddalenia od nas. Newton szacował na tej podstawie, że odległość jasnych gwiazd jest rzędu 100 000 odległości Saturn-Słońce (*). Wszechświat był zatem bardzo pusty i gdyby nawet miał się zapaść, to nie nastąpiłoby to zbyt szybko – musimy pamiętać, że wiek świata liczono w tysiącach lat, zgodnie z Biblią. Newton (nb. fundamentalista biblijny) podał jednak oszacowanie wieku Ziemi na podstawie eksperymentów z czasem stygnięcia na co najmniej 50 000 lat. Wright następująco przedstawił znany wówczas Układ Słoneczny wraz z wydłużonymi orbitami komet (w roku 1750 nie zaobserwowano jeszcze żadnego przypadku komety okresowej).

Odległość do Syriusza, najjaśniejszej gwiazdy na niebie, a więc zapewne także najbliższej przedstawił Wright na środkowym rysunku poniżej (nie udało mu się zachować proporcji). Na dolnym mamy proporcje orbit planetarnych, ukazujące, jak pusto jest nawet w samym Układzie Słonecznym.

Najważniejsze wszakże miało być objaśnienie, czemu widzimy Drogę Mleczną. Najlepiej przedstawia to rysunek.

Jeśli Słońce jest gwiazdą A na rysunku i znajduje się wewnątrz płaskiego zbiorowiska gwiazd, to patrząc w kierunku H albo D widzimy wiele gwiazd, a w kierunku B i C niezbyt wiele. W ten sposób układ gwiazd będzie nam się jawił jako pas wokół sfery niebieskiej.

Mniej więcej w tym miejscu kończy się wkład Wrighta do kosmologii i astronomii. Recenzję z jego książki, bez rysunków, przeczytał w pewnym czasopiśmie pewien zupełnie nieznany magister na prowincjonalnym uniwersytecie w Królewcu. Nazywał się Immanuel Kant i kilka lat później zainspirowany pomysłami Wrighta napisał całą książkę na temat wszechświata. Długo pozostawała ona nieznana, właściwie zwrócono na nią uwagę dopiero po latach, kiedy Kant zdobył sławę, lecz nie jako astronom, tylko jako twórca systemu filozofii.

Thomas Wright nie ograniczył się do tego, co wiadomo z obserwacji i teorii naukowych. Pragnął przede wszystkim zbudować model wszechświata, w którym jest przestrzenne miejsce dla Zbawienia i Potępienia. Jak niemal wszyscy wówczas, traktował dane religijne jako równie pewne jak naukowe. Tradycyjny średniowieczny model świata zawierał Piekło w środku Ziemi i Raj poza sferą gwiazd stałych. Wright spróbował niejako przenicować ten model: w środku miał się znajdować Raj, na zewnątrz, w ciemnościach, Piekło.

Pomysł Wrighta polegał na tym, że wszechświat jest trwały, bo gwiazdy poruszają się po orbitach wokół centrum. Nieporządek wśród gwiazd jest pozorny, patrzymy po prostu z niewłaściwego miejsca. Wcześniej o czymś takim rozmyślał Johannes Kepler, który pisał:

Musielibyśmy bowiem uznać, że Bóg uczynił coś w świecie bez powodu, nie kierując się najlepszymi racjami. Nikt nie przekona mnie do takiego poglądu, gdyż sądzę, że [rozumny ład] panuje nawet wśród gwiazd stałych, których położenia wydają nam się zupełnie bezładne, niczym ziarno rzucone przypadkiem w zasiewie. (Tajemnica kosmosu, rozdz. 2)

Wright go chyba nie czytał, zaczerpnął pomysł zapewne od Williama Whistona, arianina i następcy Newtona na katedrze Lucasa w Cambridge (Whiston miał poglądy religijne zbliżone do Newtona, lecz w odróżnieniu od swego poprzednika głosił je otwarcie, toteż go zwolniono).

Gdyby nasza perspektywa była taka jak Stwórcy, dostrzeglibyśmy ład.

Rzeczywisty obraz wszechświata jest bowiem taki

Słońce A zawarte byłoby wewnątrz ogromnej cienkiej powłoki kulistej. Inną rozpatrywaną przez śmiałego ogrodnika możliwość przedstawia rysunek poniżej:

Takich systemów gwiezdnych miało być nieskończenie wiele.

Oczywiście, wszystko to było czystą fantazją Thomasa Wrighta, który z upodobaniem mieszał rozmaite symbole chrześcijańskie, masońskie i starożytne. Zachował się następujący plan ogrodu kuchennego autorstwa Wrighta, wzorowany na kosmosie.

(*) Interesujące są szczegóły oszacowania odległości do gwiazd. Newton podał je w swoim De mundi systemate liber, czyli popularnej wersji III księgi Matematycznych zasad filozofii przyrody. Metoda opublikowana została w 1668 roku przez szkockiego matematyka Davida Gregory’ego. Co zabawne, oszacowanie to znalazło się w książce opublikowanej w Padwie, a więc za zgodą władz kościelnych, które widocznie nie przyglądały się zbyt dokładnie zawartości książki albo cenzor uznał, że formalnie jest to tylko hipoteza, a więc nie twierdzenie i nie może przeczyć prawdzie natchnionego tekstu. Trudność była w porównaniu jasności Słońca z jasnością jakiejś gwiazdy, nikt nie potrafił wówczas mierzyć jasności. Tak się jednak składa, że planeta Saturn ma średnicę kątową 17” albo 18”. Saturn świeci dla oka niezuzbrojonego jak gwiazda pierwszej wielkości. Znaczy to, że na tę planetę pada 1/(21\cdot 10^8) światła słonecznego, bo w takiej proporcji jest pole powierzchni dysku planety \pi r^2 do pola powierzchni sfery o promieniu R równym wielkości orbity Saturna. mamy

\dfrac{\pi r^2}{4\pi R^2}=\dfrac{1}{4}\left(\dfrac{r}{R}\right)^2.

Wielkość w nawiasie to promień dysku Saturna w radianach. Jeśli przyjmiemy, że jedna czwarta światła słonecznego jest odbijana od powierzchni Saturna, to znaczy, że dysk Saturna świeci 42\cdot 10^8 razy słabiej niż Słońce. A więc gwiazda pierwszej wielkości jest \sqrt(42)\cdot 10^4 razy dalej niż Saturn. Zaokrąglając w górę, otrzymał Newton wartość 100 000. Gregory otrzymał z podobnego rachunku 83 190 jednostek astronomicznych, czyli odległości Ziemia-Słońce, a więc o rząd wielkości mniej. Istniało też oszacowanie Huygensa 27 664 jednostek astronomicznych.

Statyczny wszechświat nie może być stabilny, ten problem przenosi się na teorię grawitacji Einsteina. W przypadku Newtonowskim można łatwo oszacować z III prawa Keplera czas spadku gwiazdy na Słońce, byłby on dla danych Newtona rzędu 30\cdot 10^{5\cdot 3/2}\approx 10^9, liczba 30 to okres obiegu Saturna w latach.