Wzór Herona, Archimedes i zasada Arnolda

Heron z Aleksandrii żył gdzieś między datą śmierci Archimedesa (212 p.n.e.) a Pappusem, żyjącym w IV w.n.e. Jedyna informacja pozwalająca lepiej zlokalizować go w czasie, to zaćmienie Księżyca w roku 62 n.e., które opisał. Prawdopodobnie więc w owym roku zaliczał się między żywych, nim – jak wszyscy – przeszedł do krainy cieni. Nauczał w aleksandryjskim Muzeum (które było czymś w rodzaju elitarnej uczelni i instytutu badawczego), pozostawił wiele dzieł, i to one nas tu interesują.

Nastawiony praktycznie, w swej Pneumatyce opisał wiele urządzeń poruszanych siłą powietrza albo pary wodnej. Były tam urządzenia takie, jak wrota świątynne, które same się otwierały, gdy rozpalono ogień na ołtarzu. Trzeba było zaczekać, aż w naczyniu z prawej skondensuje się dostatecznie dużo pary, czas biegł wtedy wolniej, ludzie się nie spieszyli.

536px-Heron_-_automatische_Tempeltür

Samoczynne urządzenia zaspokajały potrzebę cudowności i podziwu, tę samą co dziś Gwiezdne wojny albo krwawiąca hostia w Legnicy, poza tym jednak nie służyły do niczego. Heron napisał podręcznik efektów specjalnych.

Zawartość [tego dzieła] stanowiła zawsze źródło konsternacji i rozpaczy dla poważnie myślących badaczy. Heron opisuje wprawdzie pewne użyteczne urządzenia, jak pompa strażacka albo organy wodne, ale cała reszta to zabawki, mechaniczne kukiełki albo przyrządy do salonowych sztuczek magicznych. Naczynia, które tryskają wodą bądź winem oddzielnie albo w stałych proporcjach, śpiewające ptaszki i grające trąbki, figurki poruszające się, gdy na ołtarzu rozpali się ogień, zwierzęta, które piją, gdy poda im się wodę – jak szanować autora, który poważnie zajmuje się tymi wszystkimi błahostkami? (A.G. Drachmann)

Napisał też Heron sporo dzieł geometrycznych, ale nastawionych inżyniersko, praktycznych. W jednym z nich, Metrikon, znajdują się metody obliczania pola powierzchni oraz objętości brył. W Egipcie, gdzie po każdym wylewie Nilu trzeba było od nowa wyznaczać granice działek rolnych, geometria praktyczna była w cenie. Geometria po grecku znaczy właśnie sztukę mierzenia ziemi.

Oto jeden z przykładów Herona. Mamy trójkąt o bokach 7, 8, 9. Znaleźć jego pole. Uczony podaje przepis: obliczamy najpierw długość obwodu i dzielimy ją przez dwa:

p=\dfrac{7+8+9}{2}=12.

Następnie od liczby tej odejmujemy długości poszczególnych boków a,b,c:

p-a=12-7=5,

p-b=12-8=4,

p-c=12-9=3,

Uzyskane w ten sposób cztery liczby mnożymy przez siebie i wyciągamy pierwiastek z wyniku:

S=\sqrt{p(p-a)(p-b)(p-c)}=\sqrt{720}.

Jest to tzw. wzór Herona. Uczony nie kończy jednak na zapisaniu pierwiastka – geodeta potrzebuje jakiegoś przybliżenia. Uczony podaje w tym celu pewien algorytm. Najbliższym pełnym kwadratem większym niż 720 jest liczba 729=27^2. Weźmy 27 jako pierwsze przybliżenie naszego pierwiastka. Wiemy, że to za dużo. Możemy podzielić 720 przez 27 – gdyby to była prawidłowa wartość pierwiastka, to otrzymalibyśmy tę samą liczbę. Nasze przybliżenie jest z nadmiarem, po podzieleniu dostaniemy wynik z niedomiarem: 26\frac{2}{3}. Bierzemy teraz średnią arytmetyczną obu przybliżeń i to będzie nasz wynik:

\dfrac{27+26\frac{2}{3}}{2}=26+\dfrac{1}{2}+\dfrac{1}{3}.

Heron kończy w tym miejscu, obliczając, że kwadrat ostatniej liczby jest trochę za duży. W postaci algebraicznej można by ten algorytm znajdowania \sqrt{A} zapisać następująco:

x_{n+1}=\dfrac{1}{2}\left(x_n+\dfrac{A}{x_n}\right).

Jest on bardzo szybko zbieżny kolejne wartości to: 27; 26,83333333; 26,83281573 – w trzecim przybliżeniu wszystkie cyfry są dokładne!

Heron nie tylko podał przepis na obliczanie pola trójkąta, ale także zamieścił jego dowód. Jak się zdaje, wyrażenie to znał już Archimedes, Heron nie przypisuje sobie zresztą pierwszeństwa. Ponieważ to jego praca się zachowała, mówimy o wzorze Herona. W dziejach nauki jest mnóstwo takich mylnie przypisywanych określeń. Tak wiele, że Michael Berry, znakomity fizyk matematyczny, sformułował kiedyś dwie następujące żartobliwe zasady:

Zasada Arnolda. Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy.

Zasada Berry’ego. Zasada Arnolda stosuje się do samej siebie.

(Chodzi o Vladimira Arnolda, też znakomitego matematyka.)

Podamy trzy dowody. Pierwszy, algebraiczny, znaleziony został przez uczonych arabskich i podawany był także przez Leonarda Pisano, zwanego Fibonacci (od filius Bonacci – syn Bonacciego) w XIII w. oraz Niccolò Fontanę, zwanego Tartaglia (Jąkała) w XVI w. Drugi będzie współczesny trygonometryczny. Trzeci, geometryczny, podany przez Herona, jest najmniej przejrzysty dla dzisiejszego czytelnika.

  • Jest to właściwie dowód „siłowy”, wywodzący się z przekształceń formalnych.

heron4

Obliczamy brakującą wysokość trójkąta, wyrażając ją przez u=b\cos\alpha i korzystając z twierdzenia cosinusów. Można tu nie wprowadzać funkcji cosinus i korzystać wyłącznie z twierdzeń zawartych w Elementach Euklidesa.

16S^2=4c^2h^2=4c^2(b^2-u^2)=4c^2b^2-4c^2u^2.

Z tw. cosinusów mamy

a^2=b^2+c^2-2bc\cos\alpha=b^2+c^2-2cu \Rightarrow 2cu=b^2+c^2-a^2.

Podstawiając to do wyrażenia wyżej i korzystając ze wzorów skróconego mnożenia, otrzymujemy wynik w postaci

16S^2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c).

  • Punktem wyjścia dwóch pozostałych dowodów jest następująca obserwacja. Środek okręgu wpisanego w trójkąt leży na przecięciu dwusiecznych kątów trójkąta. Ponieważ dwie styczne poprowadzone z pewnego punktu na zewnątrz okręgu są tej samej długości, możemy łatwo wyrazić pole trójkąta jako sumę trzech prostokątów.

heron

Wynika stąd, że pole trójkąta równe jest

S=p\rho.

Należy więc wyrazić \rho przez długości boków.

Podejście trygonometryczne. Korzystamy z następującej tożsamości słusznej, gdy trzy kąty \alpha, \beta, \gamma dają w sumie kąt prosty:

1=\mbox{ tg }\alpha \mbox{ tg }\beta+\mbox{ tg }\alpha\mbox{ tg }\gamma+\mbox{ tg }\beta\mbox{ tg }\gamma.

Do wykazania tego faktu wystarczy poniższy rysunek.

heron2

Zaczynamy od lewego niebieskiego trójkąta, potem dorysowujemy ten sam trójkąt, lecz przeskalowany (wszystkie boki razy \mbox{tg}\beta ). Uzupełniamy rysunek do prostokąta. Trójkąt wewnątrz musi mieć kąt \beta, a stąd wynika, że trzeci zaznaczony kąt równy jest \alpha. Możemy więc długości boków zapisać jak w wyrażeniach z prawej strony prostokąta. Równość obu boków prostokąta daje nam szukaną tożsamość (*).

Wracając do rysunku trójkąta z okręgiem wpisanym, łatwo zauważyć, że tangensy połowy kątów trójkąta znaleźć możemy z odpowiednich trójkątów prostokątnych, np. w niebieskim trójkącie, mamy

\mbox{tg }\beta=\dfrac{\rho}{y}=\dfrac{\rho}{p-b}.

Wstawiając te wyrażenia do powyższej tożsamości, otrzymuje się wyrażenie na promień okręgu wpisanego, a stąd pole trójkąta.

  • Na koniec przedstawimy oryginalny dowód Herona. Wiadomo, że nie jest to dowód samego Archimedesa, ponieważ uczony z Syrakuz nie używał pewnych środków technicznych tu użytych. Oto rysunek z pracy Herona w wydaniu filologicznym oraz jego przejrzystsza wersja z książki Geometry by Its History, A. Ostermanna i G. Wannera.

metrikon

geometry by its history

Mamy trójkąt ABC z dwusiecznymi BI, AI, CI. Rysujemy dwie prostopadłe: do BC w wierzchołku C oraz do BI w punkcie I. BL jest w ten sposób przeciwprostokątną dwóch trójkątów prostokątnych BLC oraz BLI. Możemy więc na obu opisać wspólny łuk okręgu zaznaczony linią przerywaną. Rozważamy teraz kąty o wierzchołku w punkcie M. Dwa z nich to \gamma i \beta, co wynika z twierdzenia o kacie środkowym i kacie wpisanym opartym na tym samym łuku. Zatem kąt CML musi być równy \alpha, bo suma trzech kątów trójkąta równa się kątowi półpełnemu. Wobec tego kąt CBL jest równy  \alpha/2. Mamy więc dwa podobne trójkąty prostokątne: BLC oraz AID. Mamy stąd równość

\dfrac{l}{\rho}=\dfrac{z+y}{x}.

Także trójkąty IKE oraz KLC są podobne (kąty wierzchołkowe w K). A więc

\dfrac{l}{\rho}=\dfrac{z-m}{m} =\dfrac{z}{m}-1.

Porównując oba równania, wyznaczamy m:

m=\dfrac{xz}{p}.

Promień \rho jest wysokością trójkąta prostokątnego BIK opuszczoną na przeciwprostokątną, mamy zatem

\rho^2=ym=\dfrac{xyz}{p},

co pozwala natychmiast znaleźć pole trójkąta.

(*) Tożsamość, z której tu korzystamy, można także wyprowadzić w sposób czysto formalny bez żadnych rysunków. Mamy bowiem

\cos(\alpha+\beta+\gamma)=0,

korzystając najpierw ze wzoru na cosinus sumy, a następnie ze wzorów na cosinus oraz sinus sumy, dostaniemy:

\cos\alpha\cos(\beta+\gamma)-\sin\alpha\sin(\beta+\gamma)=

\cos\alpha\cos\beta\cos\gamma-\cos\alpha\sin\beta\sin\gamma-\sin\alpha\sin\beta\cos\gamma-\sin\alpha\cos\beta\sin\gamma=0.

Wystarczy teraz obie strony podzielić przez \cos\alpha\cos\beta\cos\gamma, aby uzyskać wynik.

Arystarch z Samos (przed 230 r. p.n.e.)

Archimedes wspomina o jego osobliwym poglądzie na wszechświat:

Wedle jego hipotez gwiazdy stałe oraz Słońce są nieruchome, Ziemia unoszona jest po kole wokół centralnie położonego Słońca, a sfera gwiazd stałych (mająca ten sam środek co Słońce) jest tak ogromna, iż koło, po którym według niego unoszona jest Ziemia, ma się do odległości gwiazd stałych jak środek sfery do jej powierzchni.

Następnie Archimedes udaje, że nie rozumie, o co chodzi: środek sfery to punkt, a więc nie jest w żadnej proporcji do promienia sfery. Arystarch najwyraźniej miał na myśli tylko tyle, że sfera gwiazd stałych musi być ogromna w porównaniu do orbity Ziemi, inaczej dostrzeglibyśmy, że gwiazdy przesuwają się w cyklu rocznym. Wymaganie takie było konieczne w każdej teorii heliocentrycznej, paralaksę roczną odkryto bowiem dopiero w 1838 roku, wcześniej było to technicznie niemożliwe. Pogląd Arystarcha nie przyjął się wśród greckich astronomów, można tylko spekulować, dlaczego tak się stało. Ścisła astronomia matematyczna Greków miała dopiero powstać. Najprawdopodobniej system geocentryczny pozwalał zdać sprawę z obserwowanych zjawisk, nie prowadząc do żadnych paradoksów i nie zmuszając naszej wyobraźni do gwałtownego przeskoku. Toteż poczekaliśmy na ów przeskok jeszcze trochę, bo aż do Kopernika, a właściwie Keplera i Galileusza.

Arystarch pochodził z Samos, tak jak Pitagoras, Azja Mniejsza i pobliskie wyspy (obecnie wybrzeże Turcji i wyspy greckie – okolice pojawiające się w newsach z powodu imigrantów) to kolebka naszej cywilizacji naukowej. W czasach Arystarcha, w pierwszej połowie III w.p.n.e., upłynęły już trzy wieki od Talesa z Miletu, nauka przeniosła się do Aleksandrii. Dwa pokolenia przed Arystarchem Euklides zebrał większość znanej wiedzy geometrycznej w Elementy, jedną z najważniejszych książek w dziejach ludzkości. Arystarch także przebywał w Aleksandrii, ale nie znamy szczegółów. To, co wiemy o tych greckich uczonych: ich najważniejsze dzieła, nie zawsze w całości, i prawie żadnych szczegółów biograficznych, bliskie jest ideałowi Alberta Einsteina. Sądził on, że liczą się tylko osiągnięcia, a błędy i biografia to rzeczy nieistotne.

Znany był jako Arystarch Matematyk, zapewne dla odróżnienia od imienników o odmiennych zainteresowaniach. Zachowała się jedna tylko jego praca: O rozmiarach i odległościach Słońca i Księżyca. Jak na matematyka przystało, szacuje on owe odległości z góry i z dołu. Największe znaczenie miało jego oszacowanie odległości Ziemia-Słońce w porównaniu do odległości Ziemia-Księżyc. Wyszło mu, że Słońce jest od nas 18 do 20 razy dalej niż Księżyc, a tym samym, że musi ono być mniej więcej tyle samo razy większe od naszego satelity, gdyż średnice kątowe obu ciał są jednakowe – wiemy to z przebiegu zaćmień Słońca. Liczby podane przez Arystarcha są mniej więcej 20 razy zaniżone, ale wynik ten przyjmowali wszyscy astronomowie aż do Kopernika. Kepler nieco je poprawił, ale też właściwie nic pewnego nie wiedział. Odległość Ziemia-Słońce wyznaczono poprawnie dopiero w drugiej połowie XVII wieku.

arystarch0

Istotę rozumowania Arystarcha przedstawia rysunek. Przyjął on założenie, że kiedy widzimy dokładnie połowę Księżyca, kąt między nim a Słońcem równy jest 87º. Dokładnie biorąc, nie używano wtedy stopni, Arystarch mówi, że kąt jest mniejszy od kąta prostego o 1/30 kąta prostego. Według naszej wiedzy trygonometrycznej, stosunek obu odległości równy jest

\dfrac{d}{r}=\dfrac{1}{\sin 3^{\circ}}

Co trzeba zrobić? Wystarczy wpisać w Google’a: sin(3 deg), a otrzymamy wynik: 0.0523359562. Wartość 1/sin(3 deg) jest równa mniej więcej 19. Oczywiście, w czasach Arystarcha nie było Google’a, nie było też pojęcia funkcji sinus, które z Indii przeszło do Arabów i następnie do Europy, ale dużo później. Używali go dopiero Regiomontanus i Kopernik, który pierwszy ogłosił tablice sinusów. Grecka trygonometria powstała dużo później niż działał Arystarch. A więc jak oszacować wielkość sinusa (my dla wygody będziemy używać funkcji trygonometrycznych i kątów wyrażonych w stopniach), kiedy nie mamy nic? Arystarch wiedział, jak szybko rosną sinusy i tangensy wraz z kątem. Można to przedstawić rysunkiem.

arystarch

Widzimy z niego, że dodając takie same kąty, dodajemy coraz mniejsze wartości do sinusa (z lewej strony) i coraz większe odcinki do tangensa (z prawej strony). Nie wiemy, czy umiał tego dowieść, zachowane dowody tych faktów są dużo późniejsze. Intuicyjnie rzecz jest jednak jasna. Mamy nierówności:

\dfrac{\sin n\alpha}{\sin\alpha} < n<\dfrac{\mbox{tg}\: n\alpha}{\mbox{tg}\: \alpha}.

 

Jedno oszacowanie jest proste:

\dfrac{\sin 30^{\circ}}{\sin 3^{\circ}}<10\Rightarrow \dfrac{1}{\sin 3^{\circ}}<20.

Skorzystaliśmy z wartości sinusa 30º – a tę ostatnią można znaleźć, przepoławiając trójkąt równoboczny.

Do drugiego oszacowania można użyć funkcji tangens (oczywiście Arystarch mówił o pewnych proporcjach). Np.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{\cos 3^{\circ}}{\sin 3^{\circ}}=\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{15}{\mbox{tg}\: 45^{\circ}}=15.

Arystarch nie poszedł jednak na łatwiznę i znalazł oszacowanie dla \mbox{tg}\: 22,5^{\circ}, co pozwala ulepszyć wynik. Oto, jak rozumował, szukając tej wartości.

arystarch2

Mamy tu łuk okręgu o promieniu równym 1. Rysujemy dwusieczną kąta prostego, a potem jeszcze raz dwusieczną (linia kropkowana), szukaną wartość x możemy odnaleźć w trójkącie prostokątnym ABC, który jest także równoramienny. Stosując twierdzenie Pitagorasa (rodaka z Samos), otrzymamy równanie kwadratowe, które pozwala wyrazić x przez \sqrt{2}. Arystarch szukał czegoś prostszego, napisał więc następujące szacowanie:

(1-x)^2=2x^2>\dfrac{49}{25}x^2=\left(\dfrac{7}{5}x\right)^2,

opuszczając kwadraty po obu stronach i wyznaczając x, dostajemy

x=\mbox{tg}\: 22,5^{\circ}<\dfrac{5}{12}\Rightarrow \dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>\dfrac{12}{5}.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{22,5}{3}\dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>18.

Mamy więc wynik Arystarcha. Znaczył on, że Słońce jest wielkie w porównaniu z Księżycem, a także z Ziemią (oszacował on też odległość Księżyca od Ziemi). Być może z powodu wielkości Słońca, Arystarch zaczął rozważać hipotezę heliocentryczną: naturalniej wygląda, gdy mniejsze ciało krąży wokół większego niż odwrotnie. Wartość kąta 87º przyjęta była najprawdopodobniej tylko po to, żeby pokazać, że nawet jak się weźmie jakiś mały kąt, to można oszacować stosunki boków w trójkącie. Jak na matematyka przystało, nie przejmował się bardzo rzeczywistymi wartościami liczbowymi, jeśli nie są całkowite albo nie mają jakichś szczególnych własności. Ironią historii niedbałe szacowanie Arystarcha przetrwało aż po XVII wiek. Już po Arystarchu wyznaczono odległość Księżyca od Ziemi na 60 promieni ziemskich. Słońce byłoby więc w odległości 1200 promieni ziemskich. Przyjmując jeszcze, ze sfery planet powinny do siebie przylegać, wyznaczano wielkość wszystkich sfer aż do gwiazd stałych. Oczywiście, nic to nie miało wspólnego z rzeczywistością.

Nawiasem mówiąc wartość \sin 3^{\circ} daje się wyrazić przez ułamki i pierwiastki z liczb całkowitych, co oznacza, że można ją uzyskać za pomocą jakiejś konstrukcji geometrycznej. Dokładne wyrażenie wygląda następująco:

\sin(3^{\circ})=-\frac{\sqrt{\frac{3}{2}}}{8}-\frac{1}{8 \sqrt{2}}+\frac{\sqrt{\frac{5}{2}}}{8}+\frac{\sqrt{\frac{15}{2}}}{8}+\frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}-\frac{1}{2} \sqrt{\frac{3}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}ˆ

Grób Archimedesa (212 p.n.e.)

Najwybitniejszy matematyk starożytności, Archimedes, w roku swej śmierci był starym, siedemdziesięciopięcioletnim człowiekiem. Nie znaczy to jednak, że przestały go obchodzić sprawy ojczystych Syrakuz. Już dwa lata oblegali je bez skutku Rzymianie, później opowiadano, że machiny wojenne pomysłu Archimedesa bardzo przyczyniły się do obrony miasta, które w końcu zostało zdobyte podstępem, a nie frontalnym atakiem. Mimo wyraźnego rozkazu konsula Marcellusa wśród zamętu plądrowania i grabieży zginął także uczony. Przedstawiano później często tę scenę chwilowego triumfu siły nad duchem, którego zabić nie sposób.

DeathMosaic

Wyglądało to zapewne tak, jak na tej mozaice. Uczony używał do kreślenia figur specjalnego drobnego piasku, zwanego pulvis – proch, trzymanego w płaskim pojemniku. Nie rysował figur na ziemi. Cyceron pisze:

Wskrzeszę z prochu i przywołam do mierniczego pręta człowieka niepozornego, pochodzącego z tego samego miasta [Syrakuz] (…) mianowicie Archimedesa. Gdy byłem kwestorem, odszukałem jego grób, którego Syrakuzańczycy nie znali i twierdzili, że w ogóle go nie ma; grób zewsząd otoczony ciernistymi krzakami i gęstwiną. Wiedziałem bowiem, że na jego nagrobku wypisanych było kilka wierszy sześciostopowych, które pamiętałem i które mówiły, iż na szczycie nagrobka znajduje się kula i walec. [przeł. J. Śmigaj]

Grobu tego dziś już nie ma. Wynikiem, z którego Archimedes był tak dumny, że kazał go umieścić na swoim nagrobku, było znalezienie objętości oraz pola powierzchni kuli. Wpiszmy kulę w walec, jak poniżej.

426px-Archimedes_sphere_and_cylinder.svg

Objętość kuli to 2/3 objętości walca. Nie jest to twierdzenie oczywiste. W jednym ze swych traktatów, Metodzie, Archimedes sformułował rozumowanie mechaniczne pozwalające obliczyć objętość kuli.

Wyobraźmy sobie, że na nieważkiej dźwigni zawieszamy z jednej strony stożek i kulę, a z drugiej walec o wskazanych wymiarach (kierunek dźwigni pokrywa się z osią walca, jest on na nią niejako „nadziany”). Wszystkie trzy bryły są wykonane z tego samego materiału. Twierdzimy, że dźwignia jest w równowadze. Kiedy to wykażemy, łatwo już będzie ustalić objętość kuli.

archimedes

Dzielimy nasze bryły na wąskie paski jednakowej grubości (czerwone na rysunku). Położenie każdego paska opisać można współrzędną x, która zmienia się we wszystkich trzech przypadkach od 0 do 2r. Wyróżnione paski mają wszystkie przekrój kołowy o promieniach odpowiednio x (stożek), y (kula) oraz 2r (walec). Ich pola powierzchni są proporcjonalne do kwadratu promienia. Do równowagi na dźwigni potrzeba, aby iloczyny objętości paska i poziomej odległości od punktu podparcia dźwigni były jednakowe z obu stron. Ponieważ grubości wszystkich trzech pasków są takie same, więc możemy je zastąpić polami powierzchni, a te kwadratami promieni. Czerwone paski po obu stronach będą w równowadze, jeśli zachodzi równość

(x^2+y^2)2r=(2r)^2 x.

Wartość y^2 znajdujemy z twierdzenia Pitagorasa:

y^2=r^2-(r-x)^2=-x^2+2rx.

Podstawiając tę wartość do pierwszej równości, otrzymujemy tożsamość. A zatem czerwone paski się równoważą i w konsekwencji, złożone z nich bryły także będą w równowadze. Możemy teraz spojrzeć na równowagę całych brył. Stożek ma objętość \frac{1}{3}\pi (2r)^2 2r=\frac{8}{3}\pi r^3. Kula ma szukaną objętość V, walec po prawej stronie ma objętość \pi(2r)^2 2r=8\pi r^3. Stożek i kula mają środki masy w odległości 2r od punktu podparcia dźwigni, środek masy walca znajduje się w połowie jego osi, w odległości r od punktu podparcia. Mamy więc równość

(\frac{8}{3}\pi r^3+V)2r=8\pi r^3\cdot r,

skąd natychmiast znajdujemy objętość kuli V.

Archimedes wiedział także, że pole powierzchni kuli to 2/3 pola powierzchni opisanego na niej walca. Metoda zastosowana powyżej nie była przez niego uważana za ścisłą, lecz za sposób uzyskiwania wyników, które później można udowodnić bardziej precyzyjnie. Bardzo podobną metodę stosował znacznie później, bo już w XVII wieku, włoski matematyk, członek zakonu jezuatów, Bonaventura Cavalieri. Od wyników Archimedesa jest już tylko krok do rachunku całkowego, lecz zrobienie go zajęło ludzkości ponad 1800 lat. Isaac Newton, który pierwszy odkrył rachunek różniczkowy i całkowy, tak wysoko cenił geometrię Greków, że starał się swoje własne odkrycia sformułować na nowo w języku, który byłby zrozumiały dla Archimedesa. Można to uznać za swoisty hołd dla greckiej matematyki, tym cenniejszy, że Newton ze wszystkich ludzi był może najmniej skłonny do pochwał cudzych prac, niemal zawsze wynajdując w nich jakieś słabe strony.