Bertrand Russell: Czy matematyka to logika? (1900-1913)

Jego ojcem chrzestnym był John Stuart Mill i Bertrand „odziedziczył” po nim wiele poglądów. Nie było to wcale oczywiste: Mill umarł, gdy dziecko miało rok, odumarli go też wcześnie oboje liberalni rodzice, którzy przyjaźnili się z filozofem, a wychowanie przejęła wiktoriańska babka, unitarianka o bardzo rygorystycznej moralności, jak najdalsza od zachęcania do wolnomyślicielstwa. Mimo to młodzieniec po solennym rozpatrzeniu kwestii doszedł do wniosku, że Boga nie ma, uznając wszelkie formy kultu religijnego za pozbawione treści, a przy tym bardziej szkodliwe niż pożyteczne dla społeczeństwa.

Chcemy stać o własnych siłach i patrzeć na świat bez uprzedzeń, ale i bez złudzeń – na jego dobre i złe strony, jego piękno i brzydotę, chcemy widzieć świat takim, jakim jest, i nie odczuwać przed nim lęku. Powinniśmy podbijać świat inteligencją, a nie odnosić się doń z niewolniczą uległością wypływającą z przerażenia, jakie w nas budzi. Pojęcie Boga bierze swój początek ze starożytnych wschodnich despotyzmów. To pojęcie bezwarunkowo niegodne wolnych ludzi. (…)

Dobrze urządzony świat potrzebuje wiedzy, dobroci i odwagi. Nie potrzeba mu żalów i westchnień za przeszłością ani zakuwania w kajdany swobodnej inteligencji za pomocą słów wyrzeczonych niegdyś przez ignorantów. Potrzebuje on śmiałych poglądów i swobodnej inteligencji. Potrzebna mu jest nadzieja na przyszłość, a nie oglądanie się wstecz. (Dlaczego nie jestem chrześcijaninem?, 1927 r., przeł. A. Kurlandzka, przekład poprawiony)

Największym odkryciem jego młodości była matematyka. Wciąż jeszcze uczono jej, korzystając z Elementów Euklidesa.

W wieku lat jedenastu zabrałem się za Euklidesa, mając mojego brata jako nauczyciela. Było to jedno z wielkich  wydarzeń w moim życiu, równie olśniewające jak pierwsza miłość. Nie wyobrażałem sobie, że na świecie istnieje coś tak cudownego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie miałem z nim żadnych trudności. Wtedy to po raz pierwszy zaświtało mi w głowie, że może posiadam jaką taką inteligencję. (Autobiografia 1872-1914, przeł. B. Zieliński, przekład poprawiony)

W późniejszych latach Russell krytykował zresztą zwyczaj uczenia z Euklidesa, ponieważ starożytny podręcznik nie spełnia dzisiejszych wymagań logicznych. Logika i filozofia miały stać się głównymi dziedzinami wczesnej pracy naukowej Russella, choć niemal jednocześnie zajmował się polityką socjaldemokracji (niezbyt typowe zajęcie dla młodego lorda, przyszłego trzeciego earla Russella), ekonomią, filozofią Leibniza, podstawami geometrii. Jego wykształcenie z Cambridge, gdzie studiował, a później został członkiem Trinity College, było wprawdzie nierównej jakości, ale młody człowiek poczuł się tam nareszcie na swoim miejscu i zaczął odrabiać towarzysko lata samotnego przebywania z babką i rodziną. Zwrócono zresztą na niego uwagę od pierwszej chwili. Egzaminujący go filozof i matematyk Alfred North Whitehead postanowił przyjąć właśnie jego mimo gorszego wyniku punktowego, polecając go uwadze przyszłych kolegów. Whitehead został z czasem przyjacielem i współpracownikiem Russella.

Cambridge odegrało ważną rolę w moim życiu dzięki temu, że dało mi przyjaciół i pozwoliło zakosztować intelektualnych dyskusji, ale nie było ważne pod względem właściwego wykształcenia akademickiego. (…) Większość tego, czego nauczyłem się z filozofii, wydała mi się z czasem błędna i wiele następnych lat spędziłem na stopniowym oduczaniu się nawyków myślowych, których tam nabrałem. Jedynym takim nawykiem prawdziwie cennym była intelektualna uczciwość. Ta cnota z pewnością występowała nie tylko u moich kolegów, ale i u nauczycieli. (Autobiografia)

Portret pędzla Arthura Fry, 1923 r.

W roku 1900 Russell brał udział w Międzynarodowym Kongresie Filozoficznym w Paryżu. Wielkie wrażenie wywarły tam na nim osoba i prace Giuseppe Peano. Włoski matematyk był jednym z pionierów logiki matematycznej i teorii mnogości. Wprowadził m.in. symbolikę logiczną, która pozwalała sprowadzać twierdzenia matematyki do operacji na zdaniach logiki, np. \sim p oznaczało zaprzeczenie zdania p, p \lor q – alternatywę zdań p,q itd. Russell, który od lat interesował się tym, skąd się bierze pewność twierdzeń matematycznych, dostrzegł możliwość szczegółowego sprowadzenia podstaw matematyki do logiki.

We wspomnieniu wydaje mi się, że każdy dzień owego miesiąca był ciepły i słoneczny. Whitehead przebywał z żoną u nas w Fernhurst i wyjaśniałem mu moje nowe pomysły. Co wieczór dyskusja kończyła się na jakiejś trudności, a co rano stwierdzałem, że trudność z poprzedniego wieczora rozwiązała się sama, podczas gdy spałem. Był to okres intelektualnego upojenia. Moje odczucia przypominały wrażenie, które odnosi się, kiedy po wspinaczce na górę we mgle docieramy do szczytu i mgła się nagle rozwiewa i wiadać całą okolicę na mil czterdzieści wokoło. Przez całe lata usiłowałem przeanalizować podstawowe pojęcia matematyczne, takie jak porządek i liczby kardynalne. I oto nagle, w ciągu paru tygodni, odkryłem coś, co wydawało się ostatecznymi odpowiedziami na problemy, które zastanawiały mnie od lat. A odkrywając te odpowiedzi, wprowadzałem nową technikę matematyczną, dzięki której regiony pozostawiane poprzednio mglistości filzofów zdobywane były dla precyzji ścisłych formuł. Pod względem intelektualnym wrzesień 1900 roku był punktem szczytowym mojego życia. Powtarzałem sobie, że teraz nareszcie uczyniłam coś wartego zachodu i doznawałem uczucia, że muszę uważać, aby mnie nie przejechano na ulicy, zanim to spiszę. (jw.)

Stan upojenia, czujemy to przecież, musiał się kiedyś skończyć. W tym przypadku było nim odkrycie paradoksu. Jedno z jego sformułowań jest następujące. Rozważmy zbiór S=\{A| A \mbox{  jest zbiorem }  \land A \notin A \}. Słowami: S jest zbiorem takich zbiorów, które nie są jednocześnie swoimi elementami. Zbiór S może albo być swoim elementem: S\in S, albo nim nie być: S\notin S. W pierwszym przypadku zbiór S spełnia warunki definicji A, a więc S\notin S. W drugim S spełnia warunek definicyjny, a więc S\in S. Zatem w obu przypadkach natrafiamy na sprzeczność.

Z początku sądziłem, że powinienem z łatwością ją przezwyciężyć i że prawdopodobnie tkwi tu jakiś banalny błąd w rozumowaniu. Burali-Forti wykrył już podobną sprzeczność i przy analizie logicznej wyszło na jaw, że istnieje tu pokrewieństwo ze starożytnym paradoskem greckim dotyczącym Epimenidesa Kreteńczyka, który powiedział, że wszyscy Kreteńczycy są kłamcami. (…)

Wydawało się rzeczą niegodną dorosłego człowieka trwonić czas na takie błahostki, ale cóż mogłem począć? Trywialna czy nie, sprawa ta stanowiła wyzwanie. Przez drugą połowę roku 1901 przypuszczałem, że rozwiązanie będzie łatwe, lecz po upływie tego czasu doszedłem do wniosku, że wymaga to dużej pracy.

Russell opublikował książkę w 1903 r. The Principles of Mathematics, a kilka lat później wziął się wraz z Whiteheadem do pracy nad ogromnym trzytomowym dziełem Principia Mathematica.

Nie był to oczywiście rodzaj rękopisu, który można by przepisać na maszynie czy choćby skopiować. Kiedy go w końcu zabraliśmy do wydawnictwa [Cambridge University Press], był tak ogromny, że musieliśmy w tym celu wynająć stary wózek. Ale nawet i wtedy nasze trudności się nie zakończyły. Wydawnictwo oceniło, że straci na tej książce 600 funtów, a syndycy byli wprawdzie gotowi ponieść stratę w wysokości 300 funtów, ale uważali, że poza tę sumę posunąć się nie mogą. Towarzystwo Królewskie nader wspaniałomyślnie wpłaciło 200 funtów, a pozostałe 100 musieliśmy znaleźć sami. Tym sposobem zarobiliśmy po minus 50 funtów za pracę dziesięciu lat.

Fragment początkowy dowodu, że 1+1=2 (s. 379, t. 1). Zakończenie tego dowodu znajduje się dopiero w t. 2 na s. 89 (pierwsze wydanie)

Rozwiązanie paradoksu zaproponowane przez Russella i Whiteheada, teoria typów, nie było całkiem zadowalające. Później, w roku 1931, Kurt Gödel wykazał, że nie istnieje taki zbiór aksjomatów, który pozwoliłby rozstrzygnąć prawdziwość każdego twierdzenia, jakie zostanie sformułowane na jego gruncie.

 

 

Elementy – Euklides (ok. 300 p.npe.)

Myślimy często o starożytnej Grecji jako o cywilizacji, która dała nam filozofię, teatr, poezję, historię, sztukę, logikę, demokrację. Mniej dostrzegane są początki nauk ścisłych, które, wbrew wszelkiemu prawdopodobieństwu, osiągnęły u Greków niezwykle wysoki poziom. Dwa najważniejsze dzieła, Elementy i Almagestpowstały w Aleksandrii, pierwsze na początku świetności miasta, drugie już pod jej koniec. Oddzielone od siebie ponad czterema wiekami, skondensowały w sobie to, co najlepsze w starożytnym dorobku. A bez greckiej geometrii i astronomii nie do pomyślenia byłaby późniejsza nauka islamska, a także praca Mikołaja Kopernika i jego następców prowadząca do rewolucji naukowej XVII wieku.

Tekst Elementów, podzielony na trzynaście ksiąg, obejmuje w sposób systematyczny najważniejsze osiągnięcia matematyki greckiej przed Archimedesem. Napisane około roku 300 p.n.e. dzieło było przez wieki kopiowane zarówno w greckim oryginale, jak i w przekładach na hebrajski, arabski i łacinę, a od 1482 roku zaczęło ukazywać się drukiem w niezliczonych wydaniach książkowych, które liczbą ustępują tylko wydaniom Biblii. Aż do początku XIX wieku znano tekst Euklidesa jedynie w redakcji Teona z Aleksandrii, uczonego z IV w.n.e., ojca Hypatii. W 1808 r. François Peyrard, pierwszy bibliotekarz École Polytechnique w Paryżu, odkrył, iż rękopis Elementów zrabowany z Watykanu przez Napoleona (Vaticanus graecus 190, zwany też P) jest wcześniejszą wersją dzieła. Stała się ona później podstawą definitywnego wydania opracowanego przez duńskiego filologa Johana Ludviga Heiberga.

[Vaticanus graecus 190]

Dzieło Euklidesa nie było pierwszym noszącym ten tytuł, szybko stało się jednak klasyczne, czego pośrednim dowodem jest fakt, że nie zachowały się niemal żadne wcześniejsze teksty matematyczne – w czasach gdy kopiowanie książek było kosztowne i pracochłonne, następowała swoista selekcja naturalna rękopisów, w której te bardziej przydatne wypierały mniej użyteczne. Elementy są najwcześniejszym zachowanym greckim traktatem poświęconym matematyce, ponieważ stanowią one podręcznik, z którego można nauczyć się podstaw matematyki. Stosowane były w tej funkcji nie tylko w starożytności, ale i w czasach późniejszych aż po dziewiętnasty wiek.

Zadziwiająco mało wiemy o autorze tekstu, nawet jego istnienie podawano w wątpliwość, argumentując, że dzieło jest niejednorodne i różne jego księgi wykazują rozmaity stopień dojrzałości. Na ogół sądzi się jednak, że Euklides działał i prawdopodobnie także urodził się w Aleksandrii, mieście niedługo wcześniej założonym przez Aleksandra Wielkiego i przez długie wieki stanowiącym ośrodek nauki i kultury greckiej. Według Proklosa, neoplatończyka z V w.n.e., Euklides żył za panowania Ptolemeusza I i był młodszy niż krąg uczniów Platona, a starszy od Archimedesa i Eratostenesa. Miał być platonikiem i z tego powodu dzieło jego kulminowało konstrukcją i omówieniem pięciu brył platońskich, znanych z Timajosa. Euklidesa nie uważano nigdy za oryginalnego twórcę, sądzono, że zebrał on i usystematyzował osiągniecia poprzedników, w szczególności Eudoksosa i Teajteta. Elementy nie są jednak prostą kompilacją znanego już materiału, lecz próbą zbudowania dedukcyjnego systemu wiedzy matematycznej. Możliwe, że tak jak i w późniejszej historii matematyki, po okresach szybkich postępów następowały okresy systematyzacji i porządkowania wiedzy i Elementy są świadectwem takiego dążenia. Choć odkrycia późniejszych matematyków, takich jak Archimedes, Apoloniusz i Pappus, znacznie wykroczyły poza problematykę Elementów, dzieło to pozostało najszerzej używanym podręcznikiem w historii. Jego znaczenie nie ogranicza się do matematyki: dedukcyjny system wiedzy stał się ideałem wielu późniejszych filozofów i uczonych. W naukach ścisłych aż do dziś uważa się możliwość ustrukturyzowania wykładu na wzór greckiej geometrii za ważny sprawdzian dojrzałości danej dyscypliny. Wprowadzając postulaty, z których następnie wyprowadzamy twierdzenia, osiągamy pojęciową jasność i większą przejrzystość konstrukcji myślowych, musimy bowiem uświadomić sobie jasno przyjęte założenia.

Pamiętać też należy, iż grecka geometria nie była traktowana jako abstrakcyjna gra logiczna, lecz jako teoria wywodząca się z obserwacji dotyczących ciał w przestrzeni, stanowiła więc i nadal stanowi (wraz z nieeklidesowymi rozszerzeniami) podstawę fizyki. Można więc traktować ją jako pierwszą matematyczną teorię fizyczną. Kiedy niedługo później Archimedes w podobny sposób ujmował zasady równowagi ciał, rozszerzał niejako geometrię, tworząc zarazem pierwszą fizykę matematyczną.

Poniżej skoncentrujemy się na przedstawieniu metody postępowania Euklidesa, ograniczając się do tego, co było znane i czytane najszerzej i nie ograniczało się tylko do samej matematyki. Aksjomatyczna konstrukcja wiedzy jest osiągnięciem greckim nie mniejszym niż demokratyczne rządy albo rzeźba. Dzięki Euklidesowi nigdy już nie stracono z oczu, przynajmniej w kręgu śródziemnomorskim, owej metody uzyskiwania zdań niezbitych i pewnych. Jeśli prawdą jest, że (jak ujął to Alfred North Whitehead) filozofia europejska stanowi ciąg przypisów do Platona, to z niemniejszą dozą słuszności powiedzieć można, że nauki ścisłe – fizyka w nie mniejszym stopniu niż matematyka – stanowią rozbudowany komentarz do Elementów Euklidesa.

Każda z ksiąg (albo grup ksiąg) poprzedzona jest definicjami. Księga pierwsza zaczyna się od wymienienia pięciu postulatów geometrii oraz pięciu ogólniejszych prawidłowości odnoszących się do tego, co Euklides nazywa wielkościami – może tu chodzić (jak czytelnik dowiaduje się przy okazji kolejnych twierdzeń) o długość odcinka, wielkość kąta, pole powierzchni czy objętość pewnych brył. Następnie z owych dziesięciu założeń wyprowadzane są kolejne twierdzenia oraz konstrukcje. Księgi I-IV oraz VI, XI-XIII poświęcone są geometrii, sięga V zawiera wykład teorii proporcji Eudoksosa (odgrywały one w matematyce greckiej rolę dzisiejszych liczb rzeczywistych), księgi VII-IX dotyczą arytmetyki, w księdze X dyskutowane są rozmaite rodzaje liczb niewymiernych, zawsze jednak traktowanych jako proporcje długości pewnych odcinków. Ostatnia księga XIII kończy się twierdzeniem, że istnieje dokładnie pięć brył platońskich (sześcian oraz foremne: czworościan, ośmiościan, dwunastościan i dwudziestościan).

Podejście Euklidesa niewątpliwie wiele zawdzięcza istniejącej już tradycji matematycznej, a także platońskiemu rozróżnieniu między przedmiotami postrzeganymi przez zmysły a bytami idealnymi: korzystając z rysunków, traktuje je tylko jako pomoc w wyobrażeniu sobie, jak mają się do siebie idealne figury geometryczne. Koncepcję uporządkowania wiedzy, zaczynając od założeń, których prawdziwość przyjmuje się bez dowodu, znaleźć można u Arystotelesa, nie wiadomo jednak, czy występuje tu jakaś bezpośrednia zależność, czy tylko wspólna tradycja filozoficzna. Geometria stała się pierwszą wyspecjalizowaną dziedziną wiedzy, uprawianą nie ze względów praktycznych, lecz dla niej samej. Wysokie mniemanie o pedagogicznych wartościach geometrii żywił Platon, sądząc, że kieruje ona uwagę ku temu, co wieczne i niezmienne. Stobajos przytacza następującą anegdotę:

Ktoś zaczął się uczyć u Euklidesa i kiedy poznał pierwsze twierdzenie, spytał:
– Co mi przyjdzie z tego, żem się tego nauczył?

Na to Euklides zawołał niewolnika i powiedział:

– Daj mu trzy obole, jeśli musi mieć zysk z tego, czego się uczy.

Omówimy bliżej główne linie rozumowania księgi I Elementów. Tekst poprzedzają 23 definicje, np. „Punkt jest tym, co nie ma żadnych części”, „Linia zaś jest długością bez szerokości”, „Równoległe są proste, które będąc na tej samej płaszczyźnie rozciągają się bez kresu w obie strony, ale w żadnej części się nie przetną” (przeł. M. Roszkowski). Linia prosta u Euklidesa jest zawsze skończona, tzn. jest odcinkiem wedle dzisiejszej terminologii. Dzisiejsi matematycy nie definiują wszystkich pojęć danej teorii, część z nich muszą bowiem stanowić pojęcia pierwotne, które przyjmuje się bez definicji, a ich sens ujawnia się dopiero, gdy badamy, w jaki sposób pojęcia występują one w aksjomatach i twierdzeniach.

Pięć postulatów głosi kolejno, że

1. Z każdego punktu do każdego innego można poprowadzić prostą (odcinek).
2. Odcinek można (obustronnie) przedłużać.
3. Z dowolnego środka można zakreślić okrąg przechodzący przez dany punkt.
4. Wszystkie kąty proste są wzajemnie równe.
5. Jeśli prosta przecina dwie inne proste, tworząca dwa kąty wewnętrzne mniejsze (w sumie) od dwóch kątów prostych, to można owe dwie proste przedłużyć tak, aby się przecięły.

Kąt prosty zdefiniowany jest tak, jak to widać na rysunku: gdy oba kąty utworzone przez półprostą o początku leżącym na danej prostej są równe, to kąty są kątami prostymi. Postulat 4 głosi, że dowolne kąty proste są równe, co znaczy tyle, że są przystające – mogą być na siebie nałożone tak, aby ich wierzchołki oraz ramiona się pokrywały (Euklides nie mówi tego wprost).

Pięć aksjomatów ogólnych stwierdza (w redakcji M. Kordosa):
1. Dwie wielkości równe trzeciej są równe.
2. Dodając do równych równe, dostajemy równe.
3. Odejmując od równych równe, dostajemy równe.
4. Wielkości dające się zamienić są równe.
5. Część jest mniejsza od całości.

Aksjomaty te stosowane są do porównania długości, kątów, figur, jak np. trójkąty. Mniejszy oznacza np. w przypadku odcinków, że po ich nałożeniu zostaje jeszcze jakaś niepokryta część większego (całości). Euklides nie posługuje się żadnymi miarami, porównuje tylko wielkości między sobą. Dlatego np. trójkąty są równe, gdy są przystające (można je na siebie nałożyć), ale także, gdy mają np. wspólną podstawę oraz jednakowe wysokości – dziś powiedzielibyśmy, że ich pola powierzchni są równe. Euklides nie myślał o długości jako liczbie, ani o polu prostokąta jako iloczynie długości boków, porównywał co najwyżej między sobą dwie wielkości.

Cały wykład podzielony jest na zagadnienia, które mogą być albo rozwiązaniem problemu konstrukcyjnego, albo twierdzeniem. W księdze I znajduje się 48 zagadnień, twierdzenie I,47 to twierdzenie dziś nazywane tw. Pitagorasa, I,48 to twierdzenie do niego odwrotne. Przyjrzyjmy się postępowaniu Euklidesa. Stosujemy dla przejrzystości nieco uwspółcześnioną terminologię, sformułowania nasze nie są wprawdzie dosłownym przekładem oryginału, ale też i nie odbiegają od niego zbyt daleko.

I,1 Mając dany odcinek AB, skonstruować na nim trójkąt równoboczny.

Konstrukcja sprowadza się do zakreślenia dwóch okręgów (Post. 3), które wyznaczą punkty przecięcia (co jednak nie wynika z aksjomatów Euklidesa, choć jest prawdą). Mając punkt przecięcia C, budujemy dwa odcinki AB oraz BC (Post. 1). Odcinki te są równe, ponieważ równe są odcinkowi AB (Aksj. 1). Trójkąt jest więc równoboczny. Warto zwrócić uwagę na eliminowanie kroków „oczywistych” i zastępowanie ich odwołaniami do postulatów i aksjomatów – w tym leży matematyczna siła Euklidesa, choć w oczach mniej matematycznie nastawionego czytelnika wywołuje to wrażenie (może nadmiernej) pedanterii.

I,2 Mając dany odcinek BC oraz punkt A nie leżący na nim, skonstruować odcinek AE=BC.

Łączymy w tym celu punkty AB (Post. 1) i budujemy trójkąt równoboczny za pomocą I,1. Promieniem BC zakreślamy okrąg o środku B (Post. 3). Przedłużamy następnie odcinek BD (Post. 2) do przecięcia z tym okręgiem H. Następnie promieniem HD zakreślamy okrąg o środku D. Przedłużenie AD (Post. 2) przetnie się z tym okręgiem w punkcie E. Odcinek AE (Post. 1) jest szukanym odcinkiem równym BC. Z aksjomatów ogólnych łatwo wnioskujemy, że odcinki te są równe, tzn. równe są ich długości (promień większego okręgu na rysunku to suma AB i boku trójkąta, odejmując potem bok trójkąta, otrzymujemy naszą tezę).
Warto zauważyć, że konstrukcje Euklidesa wykonywane są za pomocą linijki bez żadnej skali oraz cyrkla, który także nie pozwala przenosić odległości, lecz tylko poprwadzić okrąg z danego środka przez dany punkt (po przeniesieniu cyrkiel „nie pamięta” swego rozwarcia). Dzięki I,2 możemy uwolnić się od tego ograniczenia i odtwarzać odległość dwóch punktów w innym miejscu.

I,4 Dwa trójkąty, których dwa boki oraz zawarty między nimi kąt są równe, są przystające (równe).

Jest to cecha przystawania trójkątów bok-kąt-bok (bkb). Euklides dowodzi tego twierdzenia, nakładając na siebie oba trójkąty. Nie jest to postępowanie oczywiste, jeśli nie uważamy naszych figur za sztywne obiekty, które można przemieszczać bez zmiany kształtu i długości. David Hilbert przyjął w XIX w. to twierdzenie za jeden z aksjomatów w swoim wykładzie geometrii euklidesowej.

I,5 W trójkącie równoramiennym ABC, w którym AB=BC, kąty wewnętrzne przy podstawie są równe.

Przedłużamy ramiona trójkąta o jednakowe odcinki BF=CG. Trójkąty ABG i ACF są przystające na mocy poprzedniego twierdzenia, zatem także kąty ABG oraz ACF są równe. Trójkąty BFC i CGB są przystające na mocy tego samego twierdzenia (kąty BFC i BGC są równe, gdyż oba trójkąty pierwszej pary są przystające). Kąty ABC i BCA można przedstawić jako różnicę odpowiednio równych kątów (np. \sphericalangle ABC=\sphericalangle ABG-\sphericalangle CBG), muszą zatem być równe.
Twierdzenie to zyskało w średniowieczu nazwę Pons asinorum („ośli most”), nie wiadomo, czy z powodu kształtu towarzyszącego mu rysunku, czy też dlatego, że w tym miejscu ujawniał się już podział na tych, którzy rozumieją geometrię i na tych, którzy jej nie rozumieją. Pappus przedstawił prostszy dowód, w którym I,4 stosujemy do trójkątów BAC i CAB: ich boki są parami równe, a kąt przy wierzchołku jest tym samym kątem BAC, zatem oba trójkąty są przystające i kąty przy podstawie są równe. Euklides mógł mieć opory przeciwko takiemu potraktowaniu jednego trójkąta jako dwóch.

I,6 Jeśli kąty przy podstawie trójkąta są równe, to trójkąt jest równoramienny.

Euklides dowodzi tego twierdzenia przez sprowadzenie do niedorzeczności (reductio ad absurdum). Zakładamy, że teza twierdzenia jest fałszywa, a następnie staramy się wykazać, że wynika stąd zaprzeczenie założeń twierdzenia. Jeśli AB\neq AC, to któryś z odcinków jest większy, tzn. ma większą długość. Załóżmy, że AB>AC. Możemy wówczas na odcinku AB odłożyć odcinek AD=AC. Kąt DCB jest zatem mniejszy od kąta ACB. Jednocześnie trójkąt DBC jest równoboczny, a więc kąty DCB i DBC są równe na mocy poprzedniego twierdzenia. Kąt DBC jest tym samym, co kąt ABC, ergo ABC jest mniejszy od ACB wbrew założeniu.

I,9 Skonstruować dwusieczną danego kąta.

Na ramionach kąta odkładamy równe odcinki AD i AE. Następnie na odcinku AD konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek wraz z wierzchołkiem kąta wyznaczają szukaną dwusieczną, co można łatwo udowodnić: kąty ADE i AED są równe jako kąty przy podstawie trójkąta równoramiennego. W takim razie także kąty ADF i AEF są równe i oba trójkąty ADF i AEF są przystające. Wobec tego kąty DAF i FAE są równe c.n.d.

I,11 Skonstruować prostopadłą do danej prostej w punkcie D.

Wyznaczamy na prostej dwa punkty A i B w równych odległościach od D: AD=DB. Następnie na odcinku AB konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek C wraz z punktem D wyznaczają szukaną prostopadłą. Aby to udowodnić, zauważamy, że trójkąty ADC i BDC są przystające, a zatem kąty CDA i CDB są równe – spełniona jest więc definicja kąta prostego i oba te kąt są równe kątowi prostemu. Tym samym DC jest prostopadła do prostej AB.

I,20 (Nierówność trójkąta) Dwa boki trójkąta razem są dłuższe od trzeciego boku.

Niech będzie dany trójkąt CAB, chcemy dowieść, że odcinki AC wraz z CB są większe od AB. W tym celu na przedłużeniu AC odkładamy odcinek CD=CB. Kąt ABD jest większy od kąta CBD. Ten ostatni równy jest kątowi CDB, czyli ADB. W trójkącie ABD naprzeciwko większego kąta leży większy bok (I, 19; nie przytaczamy dowodu), a zatem AD=AC+CB>AB (stosując współczesny zapis).
Z twierdzenia tego wynika, że długość łamanej łączącej dwa punkty jest zawsze większa niż długość odcinka łączącego te punkty. W konsekwencji, jeśli połączymy oba punkty jakąś krzywą gładką, ale taką że zarówno samą krzywą, jak i jej długość można dowolnie przybliżać za pomocą łamanych, to długość łuku krzywej nie może być mniejsza niż długość odcinka łączącego dane punkty. Inaczej mówiąc, odcinek jest krzywą o najmniejszej długości (przy ustalonych obu końcach). Euklides nie dowodzi takiego twierdzenia, ale było ono znane greckim geometrom.
Dopiero blisko połowy księgi I staje się potrzebny Postulat 5.

I,29 Jeśli prosta EF przecina parę prostych równoległych AB i CD, to kąty naprzemianległe wewnętrzne są równe.

Wykażemy, że kąt AGF równy jest kątowi EHD. Załóżmy, że oba te kąty nie są równe. Niech np. AGF będzie większy od EHD. Ponieważ kąty AGF i BGF dopełniają się do dwóch kątów prostych (I,14; nie przytaczamy dowodu), więc suma kątów BGF i EHD jest mniejsza od dwóch kątów prostych. Z Post. 5 wynika, że proste AB i CD (po ewentualnym przedłużeniu) przetną się, nie są zatem – wbrew założeniu – prostymi równoległymi.
Postulat 5 sformułowany został tak, aby wygodnie się nim było posługiwać do wykazania, że dwie proste nie są równoległe. Nie wydawał się on tak oczywisty jak pozostałe i wzbudzał zawsze rozmaite wątpliwości. Jest on równoważny innemu postulatowi sformułowanemu przez Playfaira: Przez punkt nie leżący na danej prostej można przeprowadzić dokładnie jedną prostą równoległą do danej. Postulat 5 jest także równoważny twierdzeniu o sumie kątów wewnętrznych trójkąta.

I,32 Suma kątów wewnętrznych trójkąta równa jest dwóm kątom prostym.

Wystarczy zauważyć równość zaznaczonych kątów na rysunku (linia przerywana jest równoległa do boku trójkąta).

I,47 (Tw. Pitagorasa) W trójkącie prostokątnym suma kwadratów zbudowanych na przyprostokątnych jest równa kwadratowi zbudowanemu na przeciwprostokątnej.

Zwróćmy uwagę na sformułowanie: należy najpierw skonstruować kwadraty, o których mowa w twierdzeniu, a następnie wykazać, że suma (pól) dwóch mniejszych kwadratów jest równa polu kwadratu największego. Wysokość trójkąta opuszczona z kąta prostego po przedłużeniu dzieli kwadrat na dwa prostokąty. Euklides wykazuje, że dla trójkąta ABΓ oba pola zaznaczone na zielono oraz oba pola zaznaczone na niebiesko są równe.

Dowód Euklidesa korzysta z konstrukcji I,46 kwadratu na danym odcinku oraz linii równoległej do BΔ i ΓE przechodzącej przez dany punkt A (I,31). Wykazuje następnie, że AH jest przedłużeniem AΓ oraz AΘ jest przedłużeniem AB (I,14). Trójkąty ABΔ oraz ZBΓ są przystające na mocy twierdzenia I,4 (bkb). Prostokąt BΛ o podstawie BΔ ma tę samą wysokość co trójkąt ABΔ o tej samej podstawie. Na mocy I,41 prostokąt jest dwa razy większy od trójkąta (to wynik równoważny wzorowi na pole trójkąta, gdy określimy pole prostokąta). Kwadrat BH jest z tego samego powodu dwa razy większy od trójkąta ZBΓ o podstawie ZB. W analogiczny sposób pokazać można, że oba pola zaznaczone na niebiesko są równe, co kończy dowód.

W księdze VI Euklides przytacza inny dowód tw. Pitagorasa, oparty na podobieństwie mniejszych trójkątów na rysunku i trójkąta wyjściowego. Ten drugi dowód znany był prawdopodobnie wcześniej, dowód I,47, pochodzący zapewne od samego Euklidesa, jest bardziej zadowalający matematycznie, gdyż używa mniejszej liczby założeń: w księdze I daleko jeszcze jesteśmy od tak subtelnych konstrukcji jak figury podobne.
Ostatnie twierdzenie tej księgi I,48 jest odwrotne do tw. Pitagorasa: Jeśli spełniony jest warunek pól dla kwadratów zbudowanych na bokach trójkąta, to trójkąt ów jest prostokątny.

Elementy są podręcznikiem i były nim już w chwili powstania. Ścisłość rozumowań Euklidesa stała się wzorem dla przyszłych matematyków. Wybitny matematyk XX wieku André Weil pisał: „ [Elementy] Euklidesa to pierwszy zachowany tekst matematyczny, w którym pojęcie dowodu utożsamione zostało z łańcuchem wnioskowań pozbawionym luk; nie bez powodu ten sposób widzenia przedmiotu zachował swą aktualność do dziś”.

Nie sposób oczywiście przedstawić nawet pobieżnie wpływu książki czytanej w ciągu dwudziestu kilku wieków przez tysiące ludzi: wybitnych matematyków, jak i myślicieli czy po prostu uważnych czytelników mniej lub bardziej oddalonych od nauk ścisłych.

Greckie manuskrypty Elementów przechowywane były w Bizancjum. Od nich pochodziły przekłady arabskie, które z kolei dały początek rozpowszechnianiu się tekstu zarówno na Wschód (języki hebrajski, syryjski, perski), jak i na Zachód (łacina). W europejskim średniowieczu przekładano Euklidesa z arabskiego na łacinę wielokrotnie w wieku dwunastym i później. Już sama międzynarodowa lista tłumaczy daje pojęcie o zainteresowaniu Elementami: Adelard z Bath, Hermann z Karyntii, Gerard z Cremony, Robert z Chester, Campanus z Novary. Przekład tego ostatniego stał się podstawą pierwszego drukowanego wydania Elementów w Wenecji w roku 1482. W XVI wieku udało się też dotrzeć do tekstu greckiego (w wersji Teona). Od tamtej pory ukazały się niezliczone wydania oraz przekłady na języki narodowe (brak nadal kompletnego przekładu polskiego, choć już w 1808 Józef Czech, dyrektor Liceum Krzemienieckiego, przełożył osiem ksiąg, opierając się na angielskiej wersji Roberta Simonsa).

Twierdzenie Pitagorasa w weneckim wydaniu z 1482 r. (numeracja twierdzenia lekko w nim szwankowała)

Geometria oraz arytmetyka miały w średniowieczu mocną pozycję jako sztuki wyzwolone wchodzące w skład quadrivium („czterodroże”) wraz z astronomią i muzyką (która obejmowała głównie teoretyczną naukę o proporcjach dźwięków w różnych skalach). Także i później podstawy geometrii stanowiły nieodzowny element wykształcenia, Elementów długo jeszcze używano jako podręcznika. Bertrand Russell, logik i filozof, wspomina: „W wieku jedenastu lat zacząłem Euklidesa z moim bratem w roli tutora. Było to w moim życiu wielkie wydarzenie, równie olśniewające co pierwsza miłość. Wcześniej nie wyobrażałem sobie nawet, że istnieje na świecie coś tak zachwycającego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie napotkałem w nim żadnych trudności. To wtedy po raz pierwszy zaświtało w mej głowie, że może obdarzony zostałem jakąś inteligencją”. Kilka lat młodszy Albert Einstein nie uczył się wprawdzie z Elementów, lecz z podręcznika będącego ich zmodernizowaną wersją; także dla niego odkrycie geometrii było wielkim przeżyciem, wspominał potem podręcznik jako „świętą książeczkę”, co w jego ustach – uduchowionego niedowiarka i spinozisty – miało swoją wymowę. Einstein sądził wręcz, że głęboki wstrząs intelektualny, jaki wówczas przeżył, stanowi niejako rodzaj probierza, czy ktoś się do nauki nadaje, czy nie. Zanim jeszcze podręcznik trafił w jego ręce, udało mu się znaleźć dowód twierdzenia Pitagorasa oparty na podobieństwie trójkątów (VI,31).

Metoda geometryczna kusiła też filozofów. Thomas Hobbes, mając już czterdzieści lat, natknął się w bibliotece znajomego gentlemana na egzemplarz Elementów, które otwarte były na stronie zawierającej twierdzenie Pitagorasa. Przeczytawszy jego treść, wykrzyknął: na Boga, to niemożliwe! Potem jednak cofając się stopniowo do twierdzeń, na których oparty był dowód, zrozumiał, że rozumowanie Euklidesa jest bez zarzutu. René Descartes sam był wybitnym matematykiem i z geometrią zapoznał się wcześnie w jezuickim kolegium w La Flèche. Właśnie na goemetrii wzorował się w swym podejściu do filozofii, która miała być nowym początkiem ludzkiej wiedzy. „Owe długie łańcuchy uzasadnień, zupełnie proste i łatwe, którymi zazwyczaj posługują się geometrzy, by dotrzeć do swych najtrudniejszych dowodzeń, dały mi sposobność do wyobrażenia sobie, że wszystkie rzeczy dostępne poznaniu ludzkiemu wynikają w taki sam sposób wzajemnie ze siebie, a także, że nie mogą istnieć tak odległe, do których byśmy wreszcie nie dotarli, i tak ukryte, których byśmy nie wykryli, bylebyśmy tylko nie przyjmowali za prawdziwą żadnej rzeczy, która by prawdziwą nie była, i zachowywali zawsze należyty porządek w wyprowadzaniu jednych z drugich” (przeł. W. Wojciechowska, Rozprawa o metodzie, PWN 1981, s. 23). Zdaniem Immanuela Kanta przedmioty, które bada matematyka: przestrzeń i czas nie pochodzą z doświadczenia, ale mają swe źródło w poznającym przedmiocie. Geometria stała się w ten sposób nauką o jedynie możliwej przestrzeni.

Tymczasem matematycy nabierali coraz więcej wątpliwości. Karl Friedrich Gauss już w roku 1813 rozmyślał nad geometrią nieuklidesową, lecz oportunistycznie nie zdecydował się na publikację swych wyników. Także Ferdinand Karl Schweikart, profesor prawa, rozwijał podobne idee w zaciszu gabinetu. Dopiero János Bolyai i Nikołaj Iwanowicz Łobaczewski, niezależnie od siebie zaryzykowali publikację prac sprzecznych z dotychczasową tradycją, nie były one przyjęte dobrze. Obaj zajmowali się geometrią hiperboliczną, w której istnieje nieskończenie wiele prostych równoległych do danej prostej. Postulat 5 Euklidesa jest bowiem niezależny od pozostałych i równie dobrze można zbudować konsekwentną geometrię, wychodząc z jego zaprzeczenia. Pod koniec XIX wieku David Hilbert podał ścisłe sformułowanie geometrii euklidesowej. Znalazło się w nim dwadzieścia aksjomatów, trzy pojęcia pierwotne (punkt, linia prosta, płaszczyzna) oraz cztery relacje pierwotne (leżenia pomiedzy, zawierania oraz przystawania odcinków oraz kątów). Różnica w podejściu między dawną geometrią a jej nowoczesnym, abstrakcyjnym sformułowaniem podkreślona została przez Hilberta następująco: „Powinno się w każdej chwili móc wstawić w miejsce punktów, linii i płaszczyzn – stoły, krzesła i kufle do piwa” (oczywiście pod warunkiem, że obiekty te spełniają aksjomaty geometrii).