Czemu Ptolemeusz był wielkim astronomem?

Klaudiusz Ptolemeusz – jak wskazuje rzymskie Klaudiusz i greckie Ptolemeusz – był Grekiem żyjącym w czasach imperium rzymskiego. Pracował w kosmopolitycznej, handlowej i uczonej Aleksandrii, jednym z wielu miast założonych przez Aleksandra Macedońskiego. Zdobywca światów umarł młodo, lecz poszerzył zasięg greckiej kultury. Egipska Aleksandria stała się głównym ośrodkiem nauki tworzonej w języku greckim: Muzeum albo Musejon, przybytek muz, był czymś w rodzaju instytutu naukowego ze słynną biblioteką, obserwatorium astronomicznym, ogrodami botanicznymi i zoologicznymi. Od Euklidesa przez Apoloniusza, Hipparcha do Ptolemeusza rozwijały się tam nauki matematyczne. Sam Ptolemeusz jest autorem Geografii, traktatów o muzyce, optyce i astrologii oraz podstawowego dzieła astronomicznego Mathēmatikē Syntaxis („Zbiór matematyczny”– bezbarwne tytuły nie są wynalazkiem współczesnych uczonych), znanego też jako Megiste („Największy”), co przeszło w arabskie al-majisṭī, z czego wzięła się używana od średniowiecza do dziś nazwa Almagest. Już sama historia tego tytułu pokazuje skomplikowane dzieje przekazywania wiedzy greckiej do nowożytnej Europy.

Mapa świata wg Geografii Ptolemeusza narysowana w XV wieku (Wikimedia Commons)

Mapka rozpowszechnienia Almagestu do czasów Kopernika (В.А. Бронштэн, Клавдий Птолемей, 1988)

Z czasem dzieło Ptolemeusza zawędrowało nawet dalej niż sięgały zdobycze Aleksandra Macedońskiego, bo aż do Indii i do Chin. Co było w nim tak niezwykłego, że tłumaczono je na różne języki, pracowicie kopiowano, a potem drukowano? Almagest i Elementy to najważniejsze dzieła greckie dotyczące nauk ścisłych. Elementy były popularne aż do końca XIX wieku, ponieważ zawierały podstawy geometrii i nadawały się do nauczania w szkołach. Jednak późniejsi uczeni greccy, jak Archimedes, Apoloniusz czy Pappus znacznie powiększyli wiedzę matematyczną. Inaczej w przypadku Almagestu: stanowił on szczyt osiągnięć greckich i można odpowiedzialnie powiedzieć, że dopiero Johannes Kepler posunął dalej sztukę rozumienia ruchów planet, przekraczając poziom osiągnięty przez Ptolemeusza. A więc od II w.n.e. aż do początku wieku XVII ludzkość nie miała lepszej astronomii niż Ptolemeuszowa. Zmieniały się mapy polityczne, wierzenia, religie, języki, kultury, a dzieło Ptolemeusza wciąż stanowiło punkt odniesienia, szczyt kiedyś już zdobyty, ale wciąż trudny do ponownego zdobycia.

Teorie wykładane w Almageście nie są autorstwa Ptolemeusza. Konstrukcje geometryczne zawierające złożenia ruchów po okręgach zastosował już Apoloniusz. Wiele ważnych obserwacji dokonał Hipparch. Do Ptolemeusza jednak należy synteza całej tradycji i sformułowanie jej w postaci pewnego systemu wiedzy. Korzystał z nagromadzonych obserwacji, sam był aktywnym obserwatorem, poprawił też zastane rozwiązania. Almagest pozwala dla danej daty i godziny znaleźć położenie na niebie Słońca, Księżyca, a także pięciu znanych wówczas planet. Sądzono, że położenia te mają wpływ na los człowieka – astrologia była głównym motywem badań astronomicznych. Można wszakże sądzić, że matematyczne umysły w rodzaju Apoloniusza czy Ptolemeusza tak czy owak zgłębiałyby ruchy planet. Są one bowiem powtarzalne, ale niezupełnie, ich usytuowanie nigdy się naprawdę nie powtarza, choć w oczywisty sposób zawiera pewne cykle. Sądzę, że i bez astrologii ruch planet byłby wyzwaniem. Astrologia była raczej koniecznym dopowiedzeniem: skoro świat jest tak urządzony, że owe boskie ciała krążą w zawiły sposób po niebie, to musi to w jakiś sposób dotyczyć także naszego losu. Oczywiście, przeskok od matematyki do cech charakteru czy obliczenia daty odpowiedniej  np. na ślub był logicznie i empirycznie wadliwy, ale i zrozumiały: ludzie zawsze starają się znaleźć w świecie przede wszystkim to, co może ich dotyczyć. Egocentryzm jest postawą jeszcze bardziej naturalną niż geocentryzm.

Podstawowa idea modeli planetarnych była prosta. Mamy dwa okręgi: większy o środku O (deferent) i mniejszy o środku C (epicykl). Wektor \overrightarrow{OC} obraca się, unosząc epicykl, planeta P znajduje się na jego obwodzie, na końcu wektora \overrightarrow{CP}. Ziemia spoczywa w punkcie Z. Ruch zachodzi tu w jednej płaszczyźnie. Planety znajdują się na niebie zawsze w pobliżu ekliptyki, czyli rzutu płaszczyzny orbity Ziemi na sferą niebieską. A więc w pierwszym przybliżeniu możemy ich ruchy rzutować na tę jedną płaszczyznę – dla nas jest to płaszczyzna orbity Ziemi, dla starożytnych była to płaszczyzna orbity Słońca. Dzięki temu model płaski może opisywać najważniejszą część ruchu planet. Odchyleniami od ekliptyki zajmowano się również, ale było to niejako drugie przybliżenie, którego szczegóły tutaj sobie darujemy. Warto pamietać, że dopiero Johannes Kepler wpadł na pomysł, iż orbity planet leżą w płaszczyznach, które przecinają się w Słońcu. Nie wiedzieli o tym starożytni ani Mikołaj Kopernik.

Zazwyczaj dominuje ruch po deferencie w lewo i planeta porusza się względem gwiazd z zachodu na wschód. Czasem jednak zatrzymuje się i zaczyna poruszać się ruchem wstecznym, ze wschodu na zachód. Potem znów wraca do ruchu prostego, tzn. z zachodu na wschód. Pętla w naszym przybliżeniu powinna być spłaszczona: zostaje tylko zmieniający się ruch w płaszczyźnie ekliptyki. Epicykl potrzebny był właśnie do tego, by odtwarzać ruch wsteczny planety.

 

Ptolemeusz ani jego koledzy nie wiedzieli prawie nic o odległościach planet. Wiadomo wprawdzie, że np. Mars jest najjaśniejszy w środku swego ruchu wstecznego, kiedy jest na niebie po przeciwnej stronie niż Słońce (jest w opozycji do Słońca, mówią astronomowie). Sugeruje to, że powinien wtedy być bliżej, ale epicykl ma taki, a nie inny kształt z przyczyn estetyczno-filozoficznych: co się porusza w cyklu, powinno się poruszać koliście. Kierunki przewidywane przez ten model są  opisane prawidłowo – tyle wiedział Ptolemeusz. Fakt, że również i odległości są opisane prawidłowo, jest dodatkową cechą modelu, z czego pierwszy zdał sobie sprawę Kopernik. Jeśli znamy kierunki obu wektorów \overrightarrow{OC}, \overrightarrow{CP}, to znamy i wektor położenia planety

\overrightarrow{ZP}=\overrightarrow{ZO}+\overrightarrow{OC}+\overrightarrow{CP}.

Pierwszy z wektorów po prawej stronie jest stały. Zauważył bowiem Hipparch, że Ziemię lepiej jest odsunąć nieco od środka deferentu O (dla każdej planety inaczej i w innym kierunku). Dwa ruchome wektory obracają się jednostajnie i ich kierunek dla danej chwili można zawsze obliczyć.

I w tym miejscu pojawia się z pozoru drobne ulepszenie autorstwa Ptolemeusza: ekwant. Miał on do dyspozycji więcej obserwacji niż Hipparch, minęły między nimi stulecia – postęp naukowy był wówczas niesłychanie powolny. Zresztą po Ptolemeuszu w zasadzie postępu nie było przez następne tysiąc pięćset lat. Piszę w zasadzie, ponieważ astronomowie islamscy i potem chrześcijańscy aż do Kopernika i do końca XVI wieku wprowadzali rozmaite udoskonalenia, które jednak niczego nie poprawiały. Na początku XVII wieku nadal najlepszą teorią była ta Ptolemeuszowa. Jej błędy dla Marsa zwykle nie przekraczały 1°.

Błędy w położeniach Marsa według efemeryd Origanusa (Ptolemeusz) i Keplera (źródło: O. Gingerich, Johannes Kepler and the Rudolphine Tables, „Sky and Telescope”, December, 1971, s. 328). Warto może dodać, że oprócz uczonych islamskich i Kopernika nikt nie dodawał epicykli do epicykli. Spotyka się czasem powiedzenie, że dalsze poprawianie jakiejś niezbyt udanej teorii to dodawanie kolejnych epicykli. Otóż takiego dodawania kolejnych epicykli w historii nie było. Teoria Ptolemeusza zestarzała się, by tak rzec moralnie (heliocentryzm itd.), ale matematycznie i pod względem zgodności z obserwacjami – wcale. Dalsze epicykle nie były potrzebne.

Gdy obserwuje się ruchy Marsa (w tym przypadku widać to najwyraźniej), okazuje się, że pętle ruchu wstecznego mają różne wielkości w różnych częściach nieba. Planeta w opozycji porusza się też raz szybciej, raz wolniej. Odsunięcie Ziemi od środka deferentu nie wystarczy. Dlatego Ptolemeusz wprowadził kontrowersyjne, ale znakomite rozwiązanie. Przyjął mianowicie, że punkt C  porusza się jednostajnie nie względem środka okręgu O, lecz względem pewnego innego punktu E (zwanego ekwantem) i położonego po drugiej stronie środka deferentu tak, że ZO=OE.

Teraz kąt M jest proporcjonalny do czasu, planeta nadal krąży jednostajnie po epicyklu (kąt \gamma=\angle{HCP} jest proporcjonalny do czasu). Teoria przewiduje następujące ruchy Marsa:

Z punktu widzenia obserwatora ziemskiego Mars zatacza skomplikowane spirale: ich pętle odpowiadają ruchowi wstecznemu. Widzimy, że ich wielkość zależy od miejsca, w którym planeta znajdzie się najbliżej Ziemi: opozycje bliskie ujemnemu kierunkowi osi x odpowiadają mniejszej odległości planety od Ziemi niż opozycje po przeciwnej stronie ekliptyki. Dobrą zgodność ilościową otrzymujemy, uwzględniając ekwant – kontrowersyjne, jako się rzekło, rozwiązanie Ptolemeusza. Popatrzmy jeszcze na pętle Wenus:

Na drugim wykresie widać, że tor planety podwaja się po ośmiu latach. Zjawisko to wynika ze szczególnej wartości stosunku okresów obiegu Ziemi i Wenus wokół Słońca i nie ma dotąd przekonującego wyjaśnienia.

Jak dobrym przybliżeniem rzeczywistości jest ekwant? W przypadku Marsa deferent odpowiada orbicie planety, epicykl – orbicie Ziemi. Ograniczmy się do deferentu.

Położenie punktu C, czyli heliocentrycznie rzecz biorąc, planety, dane jest odległością r i kątem v. Kąt M jest proporcjonalny do czasu. Można łatwo obliczyć, że w modelu Ptolemeusza dla R=1, otrzymujemy (pomijając wyrazy z potęgami e wyższymi niż druga):

\left\{\begin{array}{l}M-v=2e\sin M-e^2 \sin 2M\\[5pt] r=1+\frac{3}{4}e^2+e\cos M-\frac{3}{4}e^2\cos 2M.\end{array}\right.

Porównajmy to z wynikami dla ruchu keplerowskiego po elipsie z tą samą dokładnością:

\left\{ \begin{array}{l} M-v=2e\sin M-\frac{5}{4}e^2 \sin 2M \\[5pt] r=1+\frac{1}{2}e^2+e\cos M-\frac{1}{2}e^2 \cos 2M.\end{array}\right.

Zatem błędy równe są

\left\{\begin{array}{l}\Delta v=-\frac{1}{4}e^2 \sin 2M \\[5pt] \Delta r=-\frac{1}{4}e^2(1-\cos 2M).\end{array}\right.

Nawet dla Marsa, gdy e\approx 0,1, błędy są mniejsze niż \Delta v=0,0025 \mbox{ rd}=8,5', a \Delta r=0,0025. Teoria Ptolemeusza jest więc rewelacyjnie dokładna, biorąc pod uwagę ówczesny stan wiedzy i dokładność pomiarów. O takiej dokładności marzył Mikołaj Kopernik, ale jej nie osiągnął. Problemem była tu nie teoria, lecz dobór parametrów modelu na podstawie obserwacji.

Jeszcze na koniec powiedzmy, dlaczego pomysł z ekwantami był kontrowersyjny przez 1500 lat, zanim Kepler nie zrozumiał, jak świetne jest to przybliżenie rzeczywistych ruchów i nie poszedł dalej. Teoria geometryczna była znakomita, ale nie bardzo sobie wyobrażano, jak niebiosa realizują taki ruch. Planety były, jak wierzono, unoszone przez pewne sfery, rodzaj mechanizmu zegarowego. Można wyobrazić sobie, że ów mechanizm zawiera mniejsze i większe kółka. Można było nawet umieścić Ziemię ekscentrycznie. Jednak obrót, który nie jest jednostajny względem swego środka C, ale względem innego punktu E, wydawał się mechanicznie niewykonalny. Ludzie rozumieją zawsze tyle, ile potrafią wykonać albo przynajmniej wyobrazić sobie jako pewną idealną wersję tego, co działa tu na Ziemi. Ptolemeusz wykazał się niezwykłą odwagą, przedkładając zgodność z obserwacjami nad fizyczną realizację. Jego ekwant był ogniskiem elipsy w zarodku: w jednym ognisku mamy Słońce, wokół drugiego ogniska, które jest puste, prędkość kątowa jest niemal stała.

Pokażemy jeszcze, jak w dzisiejszym języku opisać można Ptolemeuszowe tory planet i jak wyznaczyć M-v,r w funkcji M, czyli czasu.

Z trójkąta COE i twierdzenia sinusów dostajemy

\dfrac{\sin (\beta-M)}{e}=\dfrac{\sin M}{R} \Rightarrow \beta=M+\arcsin (\frac{e}{R}\sin M).

Wektor położenia planety jest zatem równy:

\overrightarrow{ZP}=[e+R\cos\beta+\varrho \cos\alpha,R\sin\beta+\varrho\cos\alpha],

gdzie \alpha jest kątem CP z osią x. Oba kąty M, \alpha zmieniają się liniowo z czasem:

 M=\dfrac{2\pi}{T_1}+M_0,\; \alpha=\dfrac{2\pi}{T_2}+\alpha_0,

gdzie T_1,T_2 są okresami obiegu deferentu i epicyklu. Linie zakreślane przez P narysowane zostały wyżej dla przypadku Marsa i Wenus.

Z rysunku tego łatwo wyznaczyć M-v,r w funkcji M, czyli czasu.

Mamy bowiem kolejno:

\mbox{tg}\,(M-v)=\dfrac{ZE''}{CE''}=\dfrac{2e\sin M}{CE'+E'E''},

CE'=1^2-e^2\sin^2 M,\, E'E''=e\cos M.

Ostatecznie więc

\mbox{tg}\, (M-v)=\dfrac{2e\sin M}{\sqrt{1-e^2\sin^2 M}+e\cos M}.

Odległość r znajdujemy z tw. Pitagorasa. Wynik dla ruchu keplerowskiego znaleźć można w podręcznikach mechaniki niebios, np. klasycznej książce F.R. Moultona. Nasza konwencja jest zgodna z tradycją dawnej astronomii: mierzymy kąty od apogeum. Obecnie panuje zwyczaj mierzenia ich od perigeum/perihelium, różnią się więc o 180º, co daje nieco inne znaki.

Elementy – Euklides (ok. 300 p.npe.)

Myślimy często o starożytnej Grecji jako o cywilizacji, która dała nam filozofię, teatr, poezję, historię, sztukę, logikę, demokrację. Mniej dostrzegane są początki nauk ścisłych, które, wbrew wszelkiemu prawdopodobieństwu, osiągnęły u Greków niezwykle wysoki poziom. Dwa najważniejsze dzieła, Elementy i Almagestpowstały w Aleksandrii, pierwsze na początku świetności miasta, drugie już pod jej koniec. Oddzielone od siebie ponad czterema wiekami, skondensowały w sobie to, co najlepsze w starożytnym dorobku. A bez greckiej geometrii i astronomii nie do pomyślenia byłaby późniejsza nauka islamska, a także praca Mikołaja Kopernika i jego następców prowadząca do rewolucji naukowej XVII wieku.

Tekst Elementów, podzielony na trzynaście ksiąg, obejmuje w sposób systematyczny najważniejsze osiągnięcia matematyki greckiej przed Archimedesem. Napisane około roku 300 p.n.e. dzieło było przez wieki kopiowane zarówno w greckim oryginale, jak i w przekładach na hebrajski, arabski i łacinę, a od 1482 roku zaczęło ukazywać się drukiem w niezliczonych wydaniach książkowych, które liczbą ustępują tylko wydaniom Biblii. Aż do początku XIX wieku znano tekst Euklidesa jedynie w redakcji Teona z Aleksandrii, uczonego z IV w.n.e., ojca Hypatii. W 1808 r. François Peyrard, pierwszy bibliotekarz École Polytechnique w Paryżu, odkrył, iż rękopis Elementów zrabowany z Watykanu przez Napoleona (Vaticanus graecus 190, zwany też P) jest wcześniejszą wersją dzieła. Stała się ona później podstawą definitywnego wydania opracowanego przez duńskiego filologa Johana Ludviga Heiberga.

[Vaticanus graecus 190]

Dzieło Euklidesa nie było pierwszym noszącym ten tytuł, szybko stało się jednak klasyczne, czego pośrednim dowodem jest fakt, że nie zachowały się niemal żadne wcześniejsze teksty matematyczne – w czasach gdy kopiowanie książek było kosztowne i pracochłonne, następowała swoista selekcja naturalna rękopisów, w której te bardziej przydatne wypierały mniej użyteczne. Elementy są najwcześniejszym zachowanym greckim traktatem poświęconym matematyce, ponieważ stanowią one podręcznik, z którego można nauczyć się podstaw matematyki. Stosowane były w tej funkcji nie tylko w starożytności, ale i w czasach późniejszych aż po dziewiętnasty wiek.

Zadziwiająco mało wiemy o autorze tekstu, nawet jego istnienie podawano w wątpliwość, argumentując, że dzieło jest niejednorodne i różne jego księgi wykazują rozmaity stopień dojrzałości. Na ogół sądzi się jednak, że Euklides działał i prawdopodobnie także urodził się w Aleksandrii, mieście niedługo wcześniej założonym przez Aleksandra Wielkiego i przez długie wieki stanowiącym ośrodek nauki i kultury greckiej. Według Proklosa, neoplatończyka z V w.n.e., Euklides żył za panowania Ptolemeusza I i był młodszy niż krąg uczniów Platona, a starszy od Archimedesa i Eratostenesa. Miał być platonikiem i z tego powodu dzieło jego kulminowało konstrukcją i omówieniem pięciu brył platońskich, znanych z Timajosa. Euklidesa nie uważano nigdy za oryginalnego twórcę, sądzono, że zebrał on i usystematyzował osiągniecia poprzedników, w szczególności Eudoksosa i Teajteta. Elementy nie są jednak prostą kompilacją znanego już materiału, lecz próbą zbudowania dedukcyjnego systemu wiedzy matematycznej. Możliwe, że tak jak i w późniejszej historii matematyki, po okresach szybkich postępów następowały okresy systematyzacji i porządkowania wiedzy i Elementy są świadectwem takiego dążenia. Choć odkrycia późniejszych matematyków, takich jak Archimedes, Apoloniusz i Pappus, znacznie wykroczyły poza problematykę Elementów, dzieło to pozostało najszerzej używanym podręcznikiem w historii. Jego znaczenie nie ogranicza się do matematyki: dedukcyjny system wiedzy stał się ideałem wielu późniejszych filozofów i uczonych. W naukach ścisłych aż do dziś uważa się możliwość ustrukturyzowania wykładu na wzór greckiej geometrii za ważny sprawdzian dojrzałości danej dyscypliny. Wprowadzając postulaty, z których następnie wyprowadzamy twierdzenia, osiągamy pojęciową jasność i większą przejrzystość konstrukcji myślowych, musimy bowiem uświadomić sobie jasno przyjęte założenia.

Pamiętać też należy, iż grecka geometria nie była traktowana jako abstrakcyjna gra logiczna, lecz jako teoria wywodząca się z obserwacji dotyczących ciał w przestrzeni, stanowiła więc i nadal stanowi (wraz z nieeklidesowymi rozszerzeniami) podstawę fizyki. Można więc traktować ją jako pierwszą matematyczną teorię fizyczną. Kiedy niedługo później Archimedes w podobny sposób ujmował zasady równowagi ciał, rozszerzał niejako geometrię, tworząc zarazem pierwszą fizykę matematyczną.

Poniżej skoncentrujemy się na przedstawieniu metody postępowania Euklidesa, ograniczając się do tego, co było znane i czytane najszerzej i nie ograniczało się tylko do samej matematyki. Aksjomatyczna konstrukcja wiedzy jest osiągnięciem greckim nie mniejszym niż demokratyczne rządy albo rzeźba. Dzięki Euklidesowi nigdy już nie stracono z oczu, przynajmniej w kręgu śródziemnomorskim, owej metody uzyskiwania zdań niezbitych i pewnych. Jeśli prawdą jest, że (jak ujął to Alfred North Whitehead) filozofia europejska stanowi ciąg przypisów do Platona, to z niemniejszą dozą słuszności powiedzieć można, że nauki ścisłe – fizyka w nie mniejszym stopniu niż matematyka – stanowią rozbudowany komentarz do Elementów Euklidesa.

Każda z ksiąg (albo grup ksiąg) poprzedzona jest definicjami. Księga pierwsza zaczyna się od wymienienia pięciu postulatów geometrii oraz pięciu ogólniejszych prawidłowości odnoszących się do tego, co Euklides nazywa wielkościami – może tu chodzić (jak czytelnik dowiaduje się przy okazji kolejnych twierdzeń) o długość odcinka, wielkość kąta, pole powierzchni czy objętość pewnych brył. Następnie z owych dziesięciu założeń wyprowadzane są kolejne twierdzenia oraz konstrukcje. Księgi I-IV oraz VI, XI-XIII poświęcone są geometrii, sięga V zawiera wykład teorii proporcji Eudoksosa (odgrywały one w matematyce greckiej rolę dzisiejszych liczb rzeczywistych), księgi VII-IX dotyczą arytmetyki, w księdze X dyskutowane są rozmaite rodzaje liczb niewymiernych, zawsze jednak traktowanych jako proporcje długości pewnych odcinków. Ostatnia księga XIII kończy się twierdzeniem, że istnieje dokładnie pięć brył platońskich (sześcian oraz foremne: czworościan, ośmiościan, dwunastościan i dwudziestościan).

Podejście Euklidesa niewątpliwie wiele zawdzięcza istniejącej już tradycji matematycznej, a także platońskiemu rozróżnieniu między przedmiotami postrzeganymi przez zmysły a bytami idealnymi: korzystając z rysunków, traktuje je tylko jako pomoc w wyobrażeniu sobie, jak mają się do siebie idealne figury geometryczne. Koncepcję uporządkowania wiedzy, zaczynając od założeń, których prawdziwość przyjmuje się bez dowodu, znaleźć można u Arystotelesa, nie wiadomo jednak, czy występuje tu jakaś bezpośrednia zależność, czy tylko wspólna tradycja filozoficzna. Geometria stała się pierwszą wyspecjalizowaną dziedziną wiedzy, uprawianą nie ze względów praktycznych, lecz dla niej samej. Wysokie mniemanie o pedagogicznych wartościach geometrii żywił Platon, sądząc, że kieruje ona uwagę ku temu, co wieczne i niezmienne. Stobajos przytacza następującą anegdotę:

Ktoś zaczął się uczyć u Euklidesa i kiedy poznał pierwsze twierdzenie, spytał:
– Co mi przyjdzie z tego, żem się tego nauczył?

Na to Euklides zawołał niewolnika i powiedział:

– Daj mu trzy obole, jeśli musi mieć zysk z tego, czego się uczy.

Omówimy bliżej główne linie rozumowania księgi I Elementów. Tekst poprzedzają 23 definicje, np. „Punkt jest tym, co nie ma żadnych części”, „Linia zaś jest długością bez szerokości”, „Równoległe są proste, które będąc na tej samej płaszczyźnie rozciągają się bez kresu w obie strony, ale w żadnej części się nie przetną” (przeł. M. Roszkowski). Linia prosta u Euklidesa jest zawsze skończona, tzn. jest odcinkiem wedle dzisiejszej terminologii. Dzisiejsi matematycy nie definiują wszystkich pojęć danej teorii, część z nich muszą bowiem stanowić pojęcia pierwotne, które przyjmuje się bez definicji, a ich sens ujawnia się dopiero, gdy badamy, w jaki sposób pojęcia występują one w aksjomatach i twierdzeniach.

Pięć postulatów głosi kolejno, że

1. Z każdego punktu do każdego innego można poprowadzić prostą (odcinek).
2. Odcinek można (obustronnie) przedłużać.
3. Z dowolnego środka można zakreślić okrąg przechodzący przez dany punkt.
4. Wszystkie kąty proste są wzajemnie równe.
5. Jeśli prosta przecina dwie inne proste, tworząca dwa kąty wewnętrzne mniejsze (w sumie) od dwóch kątów prostych, to można owe dwie proste przedłużyć tak, aby się przecięły.

Kąt prosty zdefiniowany jest tak, jak to widać na rysunku: gdy oba kąty utworzone przez półprostą o początku leżącym na danej prostej są równe, to kąty są kątami prostymi. Postulat 4 głosi, że dowolne kąty proste są równe, co znaczy tyle, że są przystające – mogą być na siebie nałożone tak, aby ich wierzchołki oraz ramiona się pokrywały (Euklides nie mówi tego wprost).

Pięć aksjomatów ogólnych stwierdza (w redakcji M. Kordosa):
1. Dwie wielkości równe trzeciej są równe.
2. Dodając do równych równe, dostajemy równe.
3. Odejmując od równych równe, dostajemy równe.
4. Wielkości dające się zamienić są równe.
5. Część jest mniejsza od całości.

Aksjomaty te stosowane są do porównania długości, kątów, figur, jak np. trójkąty. Mniejszy oznacza np. w przypadku odcinków, że po ich nałożeniu zostaje jeszcze jakaś niepokryta część większego (całości). Euklides nie posługuje się żadnymi miarami, porównuje tylko wielkości między sobą. Dlatego np. trójkąty są równe, gdy są przystające (można je na siebie nałożyć), ale także, gdy mają np. wspólną podstawę oraz jednakowe wysokości – dziś powiedzielibyśmy, że ich pola powierzchni są równe. Euklides nie myślał o długości jako liczbie, ani o polu prostokąta jako iloczynie długości boków, porównywał co najwyżej między sobą dwie wielkości.

Cały wykład podzielony jest na zagadnienia, które mogą być albo rozwiązaniem problemu konstrukcyjnego, albo twierdzeniem. W księdze I znajduje się 48 zagadnień, twierdzenie I,47 to twierdzenie dziś nazywane tw. Pitagorasa, I,48 to twierdzenie do niego odwrotne. Przyjrzyjmy się postępowaniu Euklidesa. Stosujemy dla przejrzystości nieco uwspółcześnioną terminologię, sformułowania nasze nie są wprawdzie dosłownym przekładem oryginału, ale też i nie odbiegają od niego zbyt daleko.

I,1 Mając dany odcinek AB, skonstruować na nim trójkąt równoboczny.

Konstrukcja sprowadza się do zakreślenia dwóch okręgów (Post. 3), które wyznaczą punkty przecięcia (co jednak nie wynika z aksjomatów Euklidesa, choć jest prawdą). Mając punkt przecięcia C, budujemy dwa odcinki AB oraz BC (Post. 1). Odcinki te są równe, ponieważ równe są odcinkowi AB (Aksj. 1). Trójkąt jest więc równoboczny. Warto zwrócić uwagę na eliminowanie kroków „oczywistych” i zastępowanie ich odwołaniami do postulatów i aksjomatów – w tym leży matematyczna siła Euklidesa, choć w oczach mniej matematycznie nastawionego czytelnika wywołuje to wrażenie (może nadmiernej) pedanterii.

I,2 Mając dany odcinek BC oraz punkt A nie leżący na nim, skonstruować odcinek AE=BC.

Łączymy w tym celu punkty AB (Post. 1) i budujemy trójkąt równoboczny za pomocą I,1. Promieniem BC zakreślamy okrąg o środku B (Post. 3). Przedłużamy następnie odcinek BD (Post. 2) do przecięcia z tym okręgiem H. Następnie promieniem HD zakreślamy okrąg o środku D. Przedłużenie AD (Post. 2) przetnie się z tym okręgiem w punkcie E. Odcinek AE (Post. 1) jest szukanym odcinkiem równym BC. Z aksjomatów ogólnych łatwo wnioskujemy, że odcinki te są równe, tzn. równe są ich długości (promień większego okręgu na rysunku to suma AB i boku trójkąta, odejmując potem bok trójkąta, otrzymujemy naszą tezę).
Warto zauważyć, że konstrukcje Euklidesa wykonywane są za pomocą linijki bez żadnej skali oraz cyrkla, który także nie pozwala przenosić odległości, lecz tylko poprwadzić okrąg z danego środka przez dany punkt (po przeniesieniu cyrkiel „nie pamięta” swego rozwarcia). Dzięki I,2 możemy uwolnić się od tego ograniczenia i odtwarzać odległość dwóch punktów w innym miejscu.

I,4 Dwa trójkąty, których dwa boki oraz zawarty między nimi kąt są równe, są przystające (równe).

Jest to cecha przystawania trójkątów bok-kąt-bok (bkb). Euklides dowodzi tego twierdzenia, nakładając na siebie oba trójkąty. Nie jest to postępowanie oczywiste, jeśli nie uważamy naszych figur za sztywne obiekty, które można przemieszczać bez zmiany kształtu i długości. David Hilbert przyjął w XIX w. to twierdzenie za jeden z aksjomatów w swoim wykładzie geometrii euklidesowej.

I,5 W trójkącie równoramiennym ABC, w którym AB=BC, kąty wewnętrzne przy podstawie są równe.

Przedłużamy ramiona trójkąta o jednakowe odcinki BF=CG. Trójkąty ABG i ACF są przystające na mocy poprzedniego twierdzenia, zatem także kąty ABG oraz ACF są równe. Trójkąty BFC i CGB są przystające na mocy tego samego twierdzenia (kąty BFC i BGC są równe, gdyż oba trójkąty pierwszej pary są przystające). Kąty ABC i BCA można przedstawić jako różnicę odpowiednio równych kątów (np. \sphericalangle ABC=\sphericalangle ABG-\sphericalangle CBG), muszą zatem być równe.
Twierdzenie to zyskało w średniowieczu nazwę Pons asinorum („ośli most”), nie wiadomo, czy z powodu kształtu towarzyszącego mu rysunku, czy też dlatego, że w tym miejscu ujawniał się już podział na tych, którzy rozumieją geometrię i na tych, którzy jej nie rozumieją. Pappus przedstawił prostszy dowód, w którym I,4 stosujemy do trójkątów BAC i CAB: ich boki są parami równe, a kąt przy wierzchołku jest tym samym kątem BAC, zatem oba trójkąty są przystające i kąty przy podstawie są równe. Euklides mógł mieć opory przeciwko takiemu potraktowaniu jednego trójkąta jako dwóch.

I,6 Jeśli kąty przy podstawie trójkąta są równe, to trójkąt jest równoramienny.

Euklides dowodzi tego twierdzenia przez sprowadzenie do niedorzeczności (reductio ad absurdum). Zakładamy, że teza twierdzenia jest fałszywa, a następnie staramy się wykazać, że wynika stąd zaprzeczenie założeń twierdzenia. Jeśli AB\neq AC, to któryś z odcinków jest większy, tzn. ma większą długość. Załóżmy, że AB>AC. Możemy wówczas na odcinku AB odłożyć odcinek AD=AC. Kąt DCB jest zatem mniejszy od kąta ACB. Jednocześnie trójkąt DBC jest równoboczny, a więc kąty DCB i DBC są równe na mocy poprzedniego twierdzenia. Kąt DBC jest tym samym, co kąt ABC, ergo ABC jest mniejszy od ACB wbrew założeniu.

I,9 Skonstruować dwusieczną danego kąta.

Na ramionach kąta odkładamy równe odcinki AD i AE. Następnie na odcinku AD konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek wraz z wierzchołkiem kąta wyznaczają szukaną dwusieczną, co można łatwo udowodnić: kąty ADE i AED są równe jako kąty przy podstawie trójkąta równoramiennego. W takim razie także kąty ADF i AEF są równe i oba trójkąty ADF i AEF są przystające. Wobec tego kąty DAF i FAE są równe c.n.d.

I,11 Skonstruować prostopadłą do danej prostej w punkcie D.

Wyznaczamy na prostej dwa punkty A i B w równych odległościach od D: AD=DB. Następnie na odcinku AB konstruujemy trójkąt równoboczny. Jego trzeci wierzchołek C wraz z punktem D wyznaczają szukaną prostopadłą. Aby to udowodnić, zauważamy, że trójkąty ADC i BDC są przystające, a zatem kąty CDA i CDB są równe – spełniona jest więc definicja kąta prostego i oba te kąt są równe kątowi prostemu. Tym samym DC jest prostopadła do prostej AB.

I,20 (Nierówność trójkąta) Dwa boki trójkąta razem są dłuższe od trzeciego boku.

Niech będzie dany trójkąt CAB, chcemy dowieść, że odcinki AC wraz z CB są większe od AB. W tym celu na przedłużeniu AC odkładamy odcinek CD=CB. Kąt ABD jest większy od kąta CBD. Ten ostatni równy jest kątowi CDB, czyli ADB. W trójkącie ABD naprzeciwko większego kąta leży większy bok (I, 19; nie przytaczamy dowodu), a zatem AD=AC+CB>AB (stosując współczesny zapis).
Z twierdzenia tego wynika, że długość łamanej łączącej dwa punkty jest zawsze większa niż długość odcinka łączącego te punkty. W konsekwencji, jeśli połączymy oba punkty jakąś krzywą gładką, ale taką że zarówno samą krzywą, jak i jej długość można dowolnie przybliżać za pomocą łamanych, to długość łuku krzywej nie może być mniejsza niż długość odcinka łączącego dane punkty. Inaczej mówiąc, odcinek jest krzywą o najmniejszej długości (przy ustalonych obu końcach). Euklides nie dowodzi takiego twierdzenia, ale było ono znane greckim geometrom.
Dopiero blisko połowy księgi I staje się potrzebny Postulat 5.

I,29 Jeśli prosta EF przecina parę prostych równoległych AB i CD, to kąty naprzemianległe wewnętrzne są równe.

Wykażemy, że kąt AGF równy jest kątowi EHD. Załóżmy, że oba te kąty nie są równe. Niech np. AGF będzie większy od EHD. Ponieważ kąty AGF i BGF dopełniają się do dwóch kątów prostych (I,14; nie przytaczamy dowodu), więc suma kątów BGF i EHD jest mniejsza od dwóch kątów prostych. Z Post. 5 wynika, że proste AB i CD (po ewentualnym przedłużeniu) przetną się, nie są zatem – wbrew założeniu – prostymi równoległymi.
Postulat 5 sformułowany został tak, aby wygodnie się nim było posługiwać do wykazania, że dwie proste nie są równoległe. Nie wydawał się on tak oczywisty jak pozostałe i wzbudzał zawsze rozmaite wątpliwości. Jest on równoważny innemu postulatowi sformułowanemu przez Playfaira: Przez punkt nie leżący na danej prostej można przeprowadzić dokładnie jedną prostą równoległą do danej. Postulat 5 jest także równoważny twierdzeniu o sumie kątów wewnętrznych trójkąta.

I,32 Suma kątów wewnętrznych trójkąta równa jest dwóm kątom prostym.

Wystarczy zauważyć równość zaznaczonych kątów na rysunku (linia przerywana jest równoległa do boku trójkąta).

I,47 (Tw. Pitagorasa) W trójkącie prostokątnym suma kwadratów zbudowanych na przyprostokątnych jest równa kwadratowi zbudowanemu na przeciwprostokątnej.

Zwróćmy uwagę na sformułowanie: należy najpierw skonstruować kwadraty, o których mowa w twierdzeniu, a następnie wykazać, że suma (pól) dwóch mniejszych kwadratów jest równa polu kwadratu największego. Wysokość trójkąta opuszczona z kąta prostego po przedłużeniu dzieli kwadrat na dwa prostokąty. Euklides wykazuje, że dla trójkąta ABΓ oba pola zaznaczone na zielono oraz oba pola zaznaczone na niebiesko są równe.

Dowód Euklidesa korzysta z konstrukcji I,46 kwadratu na danym odcinku oraz linii równoległej do BΔ i ΓE przechodzącej przez dany punkt A (I,31). Wykazuje następnie, że AH jest przedłużeniem AΓ oraz AΘ jest przedłużeniem AB (I,14). Trójkąty ABΔ oraz ZBΓ są przystające na mocy twierdzenia I,4 (bkb). Prostokąt BΛ o podstawie BΔ ma tę samą wysokość co trójkąt ABΔ o tej samej podstawie. Na mocy I,41 prostokąt jest dwa razy większy od trójkąta (to wynik równoważny wzorowi na pole trójkąta, gdy określimy pole prostokąta). Kwadrat BH jest z tego samego powodu dwa razy większy od trójkąta ZBΓ o podstawie ZB. W analogiczny sposób pokazać można, że oba pola zaznaczone na niebiesko są równe, co kończy dowód.

W księdze VI Euklides przytacza inny dowód tw. Pitagorasa, oparty na podobieństwie mniejszych trójkątów na rysunku i trójkąta wyjściowego. Ten drugi dowód znany był prawdopodobnie wcześniej, dowód I,47, pochodzący zapewne od samego Euklidesa, jest bardziej zadowalający matematycznie, gdyż używa mniejszej liczby założeń: w księdze I daleko jeszcze jesteśmy od tak subtelnych konstrukcji jak figury podobne.
Ostatnie twierdzenie tej księgi I,48 jest odwrotne do tw. Pitagorasa: Jeśli spełniony jest warunek pól dla kwadratów zbudowanych na bokach trójkąta, to trójkąt ów jest prostokątny.

Elementy są podręcznikiem i były nim już w chwili powstania. Ścisłość rozumowań Euklidesa stała się wzorem dla przyszłych matematyków. Wybitny matematyk XX wieku André Weil pisał: „ [Elementy] Euklidesa to pierwszy zachowany tekst matematyczny, w którym pojęcie dowodu utożsamione zostało z łańcuchem wnioskowań pozbawionym luk; nie bez powodu ten sposób widzenia przedmiotu zachował swą aktualność do dziś”.

Nie sposób oczywiście przedstawić nawet pobieżnie wpływu książki czytanej w ciągu dwudziestu kilku wieków przez tysiące ludzi: wybitnych matematyków, jak i myślicieli czy po prostu uważnych czytelników mniej lub bardziej oddalonych od nauk ścisłych.

Greckie manuskrypty Elementów przechowywane były w Bizancjum. Od nich pochodziły przekłady arabskie, które z kolei dały początek rozpowszechnianiu się tekstu zarówno na Wschód (języki hebrajski, syryjski, perski), jak i na Zachód (łacina). W europejskim średniowieczu przekładano Euklidesa z arabskiego na łacinę wielokrotnie w wieku dwunastym i później. Już sama międzynarodowa lista tłumaczy daje pojęcie o zainteresowaniu Elementami: Adelard z Bath, Hermann z Karyntii, Gerard z Cremony, Robert z Chester, Campanus z Novary. Przekład tego ostatniego stał się podstawą pierwszego drukowanego wydania Elementów w Wenecji w roku 1482. W XVI wieku udało się też dotrzeć do tekstu greckiego (w wersji Teona). Od tamtej pory ukazały się niezliczone wydania oraz przekłady na języki narodowe (brak nadal kompletnego przekładu polskiego, choć już w 1808 Józef Czech, dyrektor Liceum Krzemienieckiego, przełożył osiem ksiąg, opierając się na angielskiej wersji Roberta Simonsa).

Twierdzenie Pitagorasa w weneckim wydaniu z 1482 r. (numeracja twierdzenia lekko w nim szwankowała)

Geometria oraz arytmetyka miały w średniowieczu mocną pozycję jako sztuki wyzwolone wchodzące w skład quadrivium („czterodroże”) wraz z astronomią i muzyką (która obejmowała głównie teoretyczną naukę o proporcjach dźwięków w różnych skalach). Także i później podstawy geometrii stanowiły nieodzowny element wykształcenia, Elementów długo jeszcze używano jako podręcznika. Bertrand Russell, logik i filozof, wspomina: „W wieku jedenastu lat zacząłem Euklidesa z moim bratem w roli tutora. Było to w moim życiu wielkie wydarzenie, równie olśniewające co pierwsza miłość. Wcześniej nie wyobrażałem sobie nawet, że istnieje na świecie coś tak zachwycającego. Kiedy przeszedłem Zagadnienie 5 (Pons asinorum), brat powiedział mi, że powszechnie uchodzi ono za trudne, ja jednak nie napotkałem w nim żadnych trudności. To wtedy po raz pierwszy zaświtało w mej głowie, że może obdarzony zostałem jakąś inteligencją”. Kilka lat młodszy Albert Einstein nie uczył się wprawdzie z Elementów, lecz z podręcznika będącego ich zmodernizowaną wersją; także dla niego odkrycie geometrii było wielkim przeżyciem, wspominał potem podręcznik jako „świętą książeczkę”, co w jego ustach – uduchowionego niedowiarka i spinozisty – miało swoją wymowę. Einstein sądził wręcz, że głęboki wstrząs intelektualny, jaki wówczas przeżył, stanowi niejako rodzaj probierza, czy ktoś się do nauki nadaje, czy nie. Zanim jeszcze podręcznik trafił w jego ręce, udało mu się znaleźć dowód twierdzenia Pitagorasa oparty na podobieństwie trójkątów (VI,31).

Metoda geometryczna kusiła też filozofów. Thomas Hobbes, mając już czterdzieści lat, natknął się w bibliotece znajomego gentlemana na egzemplarz Elementów, które otwarte były na stronie zawierającej twierdzenie Pitagorasa. Przeczytawszy jego treść, wykrzyknął: na Boga, to niemożliwe! Potem jednak cofając się stopniowo do twierdzeń, na których oparty był dowód, zrozumiał, że rozumowanie Euklidesa jest bez zarzutu. René Descartes sam był wybitnym matematykiem i z geometrią zapoznał się wcześnie w jezuickim kolegium w La Flèche. Właśnie na goemetrii wzorował się w swym podejściu do filozofii, która miała być nowym początkiem ludzkiej wiedzy. „Owe długie łańcuchy uzasadnień, zupełnie proste i łatwe, którymi zazwyczaj posługują się geometrzy, by dotrzeć do swych najtrudniejszych dowodzeń, dały mi sposobność do wyobrażenia sobie, że wszystkie rzeczy dostępne poznaniu ludzkiemu wynikają w taki sam sposób wzajemnie ze siebie, a także, że nie mogą istnieć tak odległe, do których byśmy wreszcie nie dotarli, i tak ukryte, których byśmy nie wykryli, bylebyśmy tylko nie przyjmowali za prawdziwą żadnej rzeczy, która by prawdziwą nie była, i zachowywali zawsze należyty porządek w wyprowadzaniu jednych z drugich” (przeł. W. Wojciechowska, Rozprawa o metodzie, PWN 1981, s. 23). Zdaniem Immanuela Kanta przedmioty, które bada matematyka: przestrzeń i czas nie pochodzą z doświadczenia, ale mają swe źródło w poznającym przedmiocie. Geometria stała się w ten sposób nauką o jedynie możliwej przestrzeni.

Tymczasem matematycy nabierali coraz więcej wątpliwości. Karl Friedrich Gauss już w roku 1813 rozmyślał nad geometrią nieuklidesową, lecz oportunistycznie nie zdecydował się na publikację swych wyników. Także Ferdinand Karl Schweikart, profesor prawa, rozwijał podobne idee w zaciszu gabinetu. Dopiero János Bolyai i Nikołaj Iwanowicz Łobaczewski, niezależnie od siebie zaryzykowali publikację prac sprzecznych z dotychczasową tradycją, nie były one przyjęte dobrze. Obaj zajmowali się geometrią hiperboliczną, w której istnieje nieskończenie wiele prostych równoległych do danej prostej. Postulat 5 Euklidesa jest bowiem niezależny od pozostałych i równie dobrze można zbudować konsekwentną geometrię, wychodząc z jego zaprzeczenia. Pod koniec XIX wieku David Hilbert podał ścisłe sformułowanie geometrii euklidesowej. Znalazło się w nim dwadzieścia aksjomatów, trzy pojęcia pierwotne (punkt, linia prosta, płaszczyzna) oraz cztery relacje pierwotne (leżenia pomiedzy, zawierania oraz przystawania odcinków oraz kątów). Różnica w podejściu między dawną geometrią a jej nowoczesnym, abstrakcyjnym sformułowaniem podkreślona została przez Hilberta następująco: „Powinno się w każdej chwili móc wstawić w miejsce punktów, linii i płaszczyzn – stoły, krzesła i kufle do piwa” (oczywiście pod warunkiem, że obiekty te spełniają aksjomaty geometrii).

Śmierć Hypatii: rok 415 po narodzeniu Chrystusa

Aleksandria słynęła swoją biblioteką i swoim uczonymi – tutaj powstała większość znanych osiągnięć nauki greckiej – miasto było zhellenizowane, kto chciał uprawiać naukę, musiał uczyć się greki. D. J. de Solla Price wysunął kiedyś tezę, że bez aleksandryjskiej nauki niemożliwa byłaby rewolucja naukowa XVII wieku, a więc w konsekwencji nasza współczesna cywilizacja. Pewne jest w każdym razie, że w Aleksandrii uprawiano najlepszą naukę w ówczesnym świecie.

Miasto u ujścia Nilu było bogate i wielonarodowe, oprócz Egipcjan wiele do powiedzenia mieli w nim Grecy, znajdowała się tu także największa kolonia żydowska poza ziemiami Izraela.

Hypatia była córką matematyka Teona. Razem z ojcem pracowała nad komentarzem do Optyki Euklidesa i nad wydaniem Almagestu Ptolemeusza, sama napisała komentarze do Stożkowych Apoloniusza, a także do pierwszych sześciu ksiąg Arytmetyki Diofantosa – samych dzieł stworzonych w Aleksandrii wystarczało aż nadto na pracowite życie. Prawdopodobnie dzięki zainteresowaniu Hypatii sześć pierwszych ksiąg Diofantosa zachowało się do naszych czasów, teksty trwały wówczas dopóty, dopóki ktoś uznawał je za warte trudu przepisywania. Dzieła aleksandryjskie stały się później podstawą nauki islamskiej, a także europejskiej w XVI i XVII wieku. Nie było właściwie uczonego, który nie czytałby swoich greckich poprzedników i nie nawiązywał z nimi swoistego dialogu. Tak było z Kopernikiem i Newtonem. Właśnie czytając Diofantosa Pierre de Fermat wpadł na pomysł swego wielkiego twierdzenia.

Dioph3

Stronica Diofantosa ze słynnym dopiskiem Fermata (oryginał się nie zachował, dysponujemy jedynie wydaniem z roku 1670 przygotowanym przez syna uczonego Clémenta-Samuela de Fermat). „Sześcian natomiast na dwa sześciany ani czwarta potęga na sumę dwóch czwartych potęg, ani ogólnie żadna inna potęga prócz kwadratu na sumę dwóch takich samych nie może zostać rozłożona, czego dowód zaprawdę cudowny odkryłem, nie starczy nań jednak miejsca na tym marginesie”.

Życie Hypatii przypadło na schyłek kultury antycznej. Chrześcijanie nie potrzebowali pogańskiej nauki, której nie znali i nie rozumieli. Tępili też zawzięcie wszystkie inne religie – bo przecież tylko ich religia mogła być prawdziwa. Pogańskie świątynie burzono bądź zamieniano na kościoły. Osławiony był pod tym względem patriarcha Teofil, „wieczny nieprzyjaciel pokoju i cnoty, człowiek zuchwały i zły, którego ręce zbrukane były na przemian złotem i krwią” (Edward Gibbon, The Decline and Fall of the Roman Empire, rozdz. 28). Przypisuje mu się także niszczenie resztek „pogańskiej” biblioteki aleksandryjskiej. Nie wiadomo, czy było jeszcze co niszczyć, z pewnością jednak Teofil nie widziałby szczególnego powodu, by ją chronić.

Sytuacja w mieście zaogniła się jeszcze bardziej, gdy po śmierci Teofila patriarchą i biskupem został jego siostrzeniec Cyryl – późniejszy święty, jeden z ojców i doktorów Kościoła – hierarcha nie mniej wojowniczy i równie ograniczony. Po poganach przyszła kolej na Żydów. Ponieważ chrześcijanie byli w większości, więc ostatecznie „mnóstwo Żydów opuściło miasto i to wydarzenie na pewno odbiło się na gospodarce miasta. Cyryl zaś niewątpliwie wykorzystał te wypadki, aby pozbyć się z Aleksandrii jak największej liczby Żydów. Wiedział bowiem, że osłabi to tradycyjną wrogość między wyznaniami i zmniejszy grono przeciwników polityki Kościoła w mieście” (M. Dzielska, Hypatia). Ta niezawodna metoda rozładowywania konfliktów nieraz jeszcze była z powodzeniem stosowana.

W wyniku zamieszek splądrowano mienie żydowskie i jedną z synagog zamieniono ku bożej chwale na kościół pod wezwaniem św. Jerzego. Prefekt Egiptu Orestes, podejrzewany o niechęć do chrześcijan, napadnięty został na ulicy przez chrześcijańskich fanatyków, jego gwardia przyboczna uciekła, a jeden z mnichów, niejaki Ammoniusz, trafił Orestesa kamieniem w głowę. Został później pojmany i zmarł w trakcie tortur. Biskup Cyryl przyznał mu palmę męczeńską za obronę wiary.

Hypatia nie była ani Żydówką, ani chrześcijanką. Maria Dzielska stawia tezę, że Hypatia miała wpływ na Orestesa i dlatego ją zabito. Autorytet Hypatii był jednak wyłącznie duchowy, a politykę w mieście uprawiało się, organizując bojówki i kontrbojówki. Zapewne oboje wraz z Orestesem starali się obronić miasto przed jedynowładztwem duchownych, w dodatku tak skrajnych i nieprzejednanych jak Cyryl.

Nietrudno było podburzyć przeciwko niej tłuszczę, skoro nawet świątobliwy historyk, biskup Jan z Nikiu, stwierdza: „Była w tym czasie w Aleksandrii pogańska filozofka o imieniu Hypatia; zajmowała się stale magią, astrolabiami i instrumentami muzycznymi i omamiła wielu ludzi szatańskimi sztuczkami. Nadzwyczajnie szanował ją prefekt miasta [Orestes], gdyż omamiła go swoją magią. Przestał uczęszczać do kościoła, jak zwykł to dotychczas czynić”. Dalej następuje opis prowokacji żydowskich i chrześcijańskiej odpowiedzi w postaci pogromu. Nie tłumacząc, jaki związek miały te wszystkie sprawy z Hypatią, Jan z Nikiu kontynuuje z wyraźną satysfakcją: „Następnie tłum wiernych Pańskich pod przewodnictwem urzędnika Piotra – który był doskonałym sługą Jezusa Chrystusa – zabrał się za szukanie owej pogańskiej kobiety, która swymi magicznymi sztuczkami omamiła mieszkańców miasta oraz prefekta. A gdy dowiedzieli się, gdzie przebywa, udali się po nią i zastali ją siedzącą na wysokim krześle. Zmusili ją do zejścia i wlekli ją po ziemi, aż zawlekli do wielkiego kościoła, zwanego Cezarejon. Było to podczas postu. I zdarli z niej szaty, i wlekli ją po ulicach miasta, aż umarła. I zanieśli ją do miejsca zwanego Kinaron, i spalili jej ciało w ogniu. Cały lud otoczył patriarchę Cyryla, obwołując go «nowym Teofilem», który zniszczył pozostałości pogaństwa w mieście”.

Wygląda więc na to, że gdy tłum spalił, co mógł żydowskiego, zajął się Hypatią, możliwe, że stało się to w trakcie jej wykładu. Ów „doskonały sługa Jezusa Chrystusa” Piotr, urzędnik, a może, jak piszą inni, kościelny lektor, mający niższe święcenia – sprawia, że ciarki przebiegają po krzyżu…

index

Frontispis Indeksu ksiąg zakazanych papieża Benedykta XIV z roku 1758. Podpis głosi: „I wielu też z tych, co uprawiali magię, poznosiło księgi i paliło je wobec wszystkich. Wartość ich obliczono na pięćdziesiąt tysięcy denarów w srebrze” (Dz 19,19). Indeks ten jako pierwszy nie powtarzał ogólnego zakazu ksiąg nauczających o ruchu Ziemi i nieruchomości Słońca, choć utrzymał szczegółowy zakaz czytania dzieł Kopernika, Keplera i Galileusza.