Jak gęsta może być materia? Białe karły, Stoner i Chandrasekhar (1930-1931)

31 lipca 1930 roku z Mumbaju odpłynął parowiec „Lloyd Triestino”. Wśród pasażerów znajdował się dziewiętnastoletni Subrahmanyan Chandrasekhar, udający się do Anglii stypendysta rządu indyjskiego. Zdążył on opublikować już pierwszą pracę na temat statystyk kwantowych, dwa lata wcześniej dowiedział się od przebywającego gościnnie w Indiach Arnolda Sommerfelda, że całej fizyki mikroświata należy nauczyć się na nowo i wszystkie podręczniki sprzed kilku lat są już nieaktualne. Zaczął więc z zapałem czytać artykuły dotyczące mechaniki kwantowej i pierwszą swą pracę wysłał do Anglii do Ralpha Fowlera z Cambridge. Wiedział o nim tylko tyle, że uczony ten zaproponował kwantowe wyjaśnienie problemu tzw. białych karłów – niewielkich gwiazd zbudowanych z niezwykle gęstej materii nawet 100 000 razy gęstszej od wody. Astronomowie, którzy uzyskiwali tak wysokie szacowania gęstości, nie potrafili zrazu w nie uwierzyć, sądząc, że w obliczenia musiał wkraść się jakiś niezidentyfikowany błąd. W astronomii dość często się zdarza, że trzeba rewidować dotychczasowe założenia i wyniki. Podczas podróży Chandrasekhar unikał balów i wieczorków organizowanych na statku, był zresztą wegetarianinem i nie brał do ust wielu podawanych potraw. Pracował. Jego obliczenia wskazywały, że białe karły nie mogą być zbyt masywne, gdyż nie będą stabilne. Wynik ten stał w sprzeczności z dotychczasową wiedzą i Chandrasekhar miał stoczyć trudną wieloletnią walkę o uznanie prawdziwości jego obliczeń. Białe karły są ostatnim stadium ewolucji gwiazd i nie mogą być bardziej masywne niż 1,4 masy Słońca. Co w takim razie dzieje się z gwiazdami pięcio-, dziesięcio- i dwudziestokrotnie bardziej masywnymi? Czy jest możliwe, że pozbywają się one w jakiś sposób niemal całej swej masy, aby osiągnąć w końcu stadium białego karła? Jeśli tak, to czy może się to odbywać w długim czasie w sposób spokojny, czy też należy spodziewać się eksplozji? Wynik Chandrasekhara miał przełomowe znaczenie, bo wskazywał, że grawitacja może stać się siłą, która dosłownie kruszy materię. O jego wadze świadczy fakt, iż pół wieku później za tę pracę indyjski uczony otrzymał Nagrodę Nobla. Spędził długie i twórcze życie naukowe, stając się jednym z najbardziej znanych astrofizyków dwudziestego wieku, a jednak właśnie to młodzieńcze osiągnięcie wydawało się godne uhonorowania najważniejszą nagrodą.

W Londynie pierwszą książką, którą kupił Chandrasekhar, były Principles of Quantum Mechanics, fundamentalne, pomnikowe dzieło dwudziestoośmioletniego Paula Diraca, który zdążył już stać się klasykiem tej młodej dziedziny. W istocie były to lata zupełnie wyjątkowe w dziejach fizyki: niemal każda nowa praca miała szanse przejść do historii. Odkrywano bowiem kolejne zastosowania nowego formalizmu: w fizyce, w chemii, w astrofizyce. Zasady wprowadzone dla wyjaśnienia zjawisk atomowych okazały się w zasadniczym zrębie słuszne także w fizyce jąder atomowych, cząstek elementarnych, pozwalały też zrozumieć, jak przebiegają zjawiska we wszechświecie: od źródeł energii gwiazd, przez ich budowę oraz rodzaje wysyłanego promieniowania. Był to okres pionierski, gdy wyznaczano dopiero granice nowego terytorium i wciąż przesuwały się one dalej. Coś takiego zdarza się niezwykle rzadko, a w życiu uczonego najwyżej raz. Chandrasekhar znalazł się też w znakomitym miejscu: Trinity College w Cambridge, gdzie pracowali Fowler i jego niedawny doktorant Dirac, a także Arthur Stanley Eddington, astrofizyk, autor książki The Internal Constitution of the Stars, którą starannie przestudiował i z której korzystał podczas pracy na statku.

Na czym polegał problem białych karłów? W dostępnych nam eksperymentalnie warunkach materii nie można zbyt mocno ścisnąć. Atomy zachowują się bowiem jak sztywne kulki i nawet pod wielkim ciśnieniem gęstość ciał stałych niemal się nie zmniejsza się, ledwie przekraczając – w przypadku najcięższych metali – dwudziestokrotność gęstości wody. Większą gęstość – ponad sto gęstości wody – osiąga materia blisko centrum Słońca. Składa się ona głównie z produktów jonizacji wodoru: protonów i elektronów o bardzo wysokiej temperaturze. Mimo tak wielkich gęstości plazmę tę wciąż można traktować jak gaz doskonały. Przeskok do gęstości milion razy większych od gęstości wody nie wydawał się fizycznie możliwy bez temperatur sięgających miliony stopni, powierzchnia białego karła świeciła w zakresie widzialnym jak gwiazda, musiała więc mieć temperaturę liczoną w tysiącach stopni.

Kwantowe wyjaśnienie zaproponował Ralph Fowler, pod którego patronatem, lecz zupełnie samodzielnie, pracował Paul Dirac. Elektrony są, jak dziś mówimy, fermionami, tzn. podlegają szczególnemu ograniczeniu: w jednym stanie kwantowym może znajdować się jeden elektron (a jeśli ignorujemy stany spinowe, to dwa różniące się rzutem spinu). Właśnie Paul Dirac obok Enrico Fermiego pierwszy zaproponował kwantowomechaniczny opis takich cząstek (nazwa fermiony, a nie np. dirakiony, nie ma głębszego uzasadnienia historycznego, a prawdopodobnie jedynie fonetyczne). Samą zasadę jeden stan – jeden elektron zaproponował zresztą nieco wcześniej Wolfgang Pauli, jeszcze jeden z dwudziestoparolatków wywracających wtedy fizykę do góry nogami. Zasada ta wyjaśnia sposób zapełniania się powłok i podpowłok w atomach. Fowler wyobraził sobie, że biały karzeł cały jest jedną wielką cząsteczką, w której elektrony tworzą coś w rodzaju gazu. Było to pierwsze zastosowanie tej idei, nieco później Arnold Sommerfeld zastosował ją do elektronów w metalach.

W atomie stan określają liczby kwantowe. W przypadku elektronów zamkniętych w gwieździe niczym w pudle skwantowane są ich wartości pędu. Dozwolone wartości tworzą sieć punktów kratowych w przestrzeni pędu (bez początku, ponieważ pęd całkowity równy zeru jest zabroniony przez zasadę nieoznaczoności). Rysunek przedstawia takie  pudło w 2D. Elektrony będą stopniowo zapełniać dozwolone stany aż do pewnej maksymalnej wartości pędu p_F, zwanej pędem Fermiego.

Jest to tzw. zdegenerowany gaz elektronowy. W pierwszym przybliżeniu można ograniczyć się do temperatury zerowej, ponieważ energia elektronów w tej sytuacji wynika nie z wysokiej temperatury, ale stąd, że wszystkie niższe stany energetyczne są zajęte. Objętość komórki w przestrzeni pędów przypadająca na dwa elektrony o różnym spinie równa jest

\Delta p_x\Delta p_y\Delta p_z=\dfrac{h^3}{V},

gdzie h jest stałą Plancka, a V objętością gwiazdy/pudła z elektronami. Widzimy, że gdy objętość pudła maleje, komórki w przestrzeni pędu rosną i przy tej samej liczbie elektronów pęd Fermiego wzrośnie. Oznacza to, że wraz z gęstością gwiazdy rośnie energia kinetyczna elektronów (równa \frac{mv^2}{2}=\frac{p^2}{2m}). Gwiazda utrzymywana jest siłami grawitacyjnymi. Energia grawitacyjna kuli o masie M i promieniu R równa jest

E_p=-\alpha \dfrac{GM^2}{R},

gdzie \alpha jest współczynnikiem zależnym od rozkładu gęstości i równym \frac{3}{5} dla kuli jednorodnej. Grawitacja jest siłą przyciągającą, więc energia rośnie tu, gdy zwiększa się promień: gdyby działała jedynie grawitacja, materia skurczyłaby się do punktu. Można znaleźć punkt równowagi, gdy suma energii kinetycznej elektronów oraz energii potencjalnej grawitacji jest najmniejsza. Promień gwiazdy jest wówczas równy

R\approx 1,15 a_B \lambda \dfrac{1}{N_n^{1/3}},

gdzie a_B=0,5\cdot 10^{-10} m jest promieniem Bohra, \lambda=1,25\cdot 10^{36} to stosunek sił elektrostatycznych do sił grawitacyjnych między protonami, a N_n jest łączną liczbą nukleonów w gwieździe. Widzimy, że im większa gwiazda, tym mniejszy promień, a więc gęstość gwiazdy rośnie jak kwadrat masy, co jest zachowaniem dość osobliwym. Promień obliczony z powyższego wzoru okazuje się dla gwiazdy o masie Słońca tego samego rzędu co promień Ziemi: a więc ogromna masa Słońca skupiłaby się w objętości zbliżonej do Ziemi. Znaczy to, że materia gwiazdy osiąga ogromne gęstości. Rzeczywiste gęstości są jeszcze większe, niż sądzono w latach trzydziestych i przekraczają milion gęstości wody. Gaz elektronowy pozwalał też objaśnić, czemu biały karzeł nie skurczy się już więcej: w istocie temperatura ma niewielki wpływ na konfigurację elektronów i struktura taka jest stabilna nawet w zerze absolutnym.

Praca Fowlera uchodzi za najwybitniejszą pozycję w jego dorobku: była w zasadzie rzuceniem idei, ale idei znakomitej, podjętej potem nie tylko w astrofizyce, ale i w fizyce ciała stałego. Jedna tak płodna idea i jeden doktorant tej klasy co Dirac, to zdecydowanie wystarczy na spełnioną karierę naukową.

Obliczenia takie, jak zarysowane powyżej, wykonał Edmund Stoner w 1929 roku. Interesowało go pytanie, czy istnieje maksymalna gęstość materii? Stoner także należał do ludzi Cambridge, jednak jego doktorat był eksperymentalny i nie odebrał on matematycznego wykształcenia, które zawsze było mocną stroną tamtejszych absolwentów. Mimo to zajął się teorią i to z powodzeniem. Jego praca The distribution of electrons among atomic energy levels z 1924 roku zainspirowała Wolfganga Pauliego do sformułowania słynnej zasady wykluczania. W reakcji na artykuł Stonera mało znany fizyk Wilhelm Anderson, pracujący w Tartu w Estonii, zwrócił uwagę, że przy dużych gęstościach, duży będzie pęd Fermiego i nie można używać newtonowskiego wyrażenia na energię kinetyczną (\frac{1}{2}mv^2), lecz należy zastosować wyrażenie relatywistyczne

E=\sqrt{(pc)^2+(mc^2)^2}\approx pc.

W przypadku skrajnie relatywistycznym obowiązuje przybliżenie zapisane powyżej. Okazuje się, że teraz nie dla każdej masy istnieje rozwiązanie i biały karzeł musi mieć masę nieprzekraczającą pewnej wartości granicznej. Anderson wyznaczył tę granicę, choć jego praca nie była całkowicie poprawna. Stoner w następnym artykule uwzględnił relatywistyczne wyrażenie na energię elektronów i prawidłowo wyznaczył maksymalną liczbę nukleonów, a więc i masę białego karła:

N_n =0,77 \left(\dfrac{c\hbar}{Gm_n^2}\right)^{\frac{3}{2}} \sim \left(\dfrac{m_{P}}{m_n}\right)^3.

Po prawej stronie wyraziliśmy tę wielkość przez masę Plancka m_P: jest to kombinacja trzech fundamentalnych stałych fizycznych – stałej Plancka, prędkości światła i stałej grawitacyjnej. Maksymalna masa zwana jest granicą Chandrasekhara i po uwzględnieniu współczynników liczbowych równa jest 1,4 masy Słońca. Przyjmujemy, że na każdy elektron przypadają dwa nukleony.

Zależność promienia białego karła od masy (https://en.wikipedia.org/wiki/Chandrasekhar_limit)

Naszkicowane przez nas podejście zakłada minimalizację energii w jednorodnym gazie elektronowym. Tak właśnie obliczył to Stoner. Subrahmanyan Chandrasekhar wybrał podejście bardziej szczegółowe, w którym analizuje się warunki równowagi w gwieździe. Jego pierwsza praca, pisana podczas podróży do Anglii, była tylko krótkim zarysem, szczegółowe rozwinięcie podał w następnych latach. Prowadzi ono do podobnych wniosków, nieco różniących się liczbowo. Czemu więc granica ta związana została w historii jedynie z nazwiskiem Chandrasekhara? Jak się zdaje, Edmund Stoner nie walczył zbytnio o priorytet. Być może tematyka astrofizyczna nie była mu tak bliska jak Chandrasekharowi, stopniowo zajął się bowiem fizyką ciała stałego.

Także Lew Landau otrzymał graniczną wartość masy w bardzo eleganckiej krótkiej pracy z 1931 roku. Jednak graniczna wartość masy wydawała mu się wnioskiem absurdalnym. Pisał: „Ponieważ w rzeczywistości masy takie spokojnie sobie istnieją jako gwiazdy, nie wykazując żadnych takich absurdalnych tendencji, musimy wywnioskować, że wszystkie gwiazdy o masie przekraczającej 1,5 masy Słońca zawierają z pewnością obszary, w których prawa mechaniki kwantowej (a więc także statystyki kwantowej) są naruszone” (Neutron Stars, Black Holes and Binary X-Ray Sources, ed. H. Gursky, R. Ruffini, D. Reidel 1975, s. 272). Musimy zdawać sobie sprawę, że zarówno teoria względności, jak i mechanika kwantowa były względnie nowymi dziedzinami i nie było jasne, czy nie pojawią się nowe idee, które zmienią zasadniczo punkt widzenia. Dopiero z perspektywy dziesięcioleci widać, że zarówno teoria względności, jak i fizyka kwantowa zostały w fizyce na dobre i są niezmiernie odporne na wszelkie „poprawianie” – to dlatego trudno jest w fizyce o nowe pomysły, muszą one bowiem stanowić uogólnienie tego, co już znamy, a co zostało bardzo dokładnie przetestowane teoretycznie i przede wszystkim eksperymentalnie.

Chandrasekhar bardzo zaciekle bronił wniosku o maksymalnej masie białego karła. Arthur Eddington – podobnie jak Landau – uważał go za absurd. W ciągu kilku lat spór między Eddingtonem, uznanym autorytetem, a młodym uczonym z Indii stał się na tyle gorący, że Chandrasekhar nie mógł pozostać w Trinity College i wyjechał do Stanów Zjednoczonych.

Rację miał Chandrasekhar (i Stoner). Gwiazdy o dużych masach nie mogą stać się białymi karłami. Mogą zostać gwiazdami neutronowymi, w których materia ma gęstość zbliżoną do materii jądrowej. Znów jednak pojawia się graniczna wartość masy, powyżej której niemożliwe jest stabilne istnienie gwiazdy neutronowej. Przy dużych masach grawitacja zwycięża i jedyną możliwością staje się utworzenie czarnej dziury. Granica Chandrasekhara była pierwszą wskazówką, że struktura materii nie jest odporna na grawitacyjne zapadanie się. Być może zaakceptowanie tej sytuacji było trudne także dlatego, że intuicyjnie chcemy wierzyć w stabilny świat, dający nam metafizyczne i psychologiczne oparcie. Dlatego kłopoty miał Galileusz, z tego samego powodu zwalczano teorię ewolucji, a także niechętnie uznano teorię Wielkiego Wybuchu. Uświadomienie sobie, że zamieszkujemy narażony na rozmaite kataklizmy kawałek skalnej skorupy pływający w ciekłym podłożu i krążący po niezbyt stabilnej orbicie w zmieniającym się ciągle i katastroficznym wszechświecie, nie poprawia, by tak rzec, filozoficznego samopoczucia.

Reklamy

Kopenhaga 1941: spotkanie Wernera Heisenberga z Nielsem Bohrem

Czy obłąkańcze ideologie zawsze są samoniszczące? I jakie są ich koszty społeczne? Gdzie kończy się patriotyzm, a zaczyna oportunizm i łajdactwo? Czy uczonym wolno zamykać się w wieży z kości słoniowej? Jacy naprawdę są ludzie, których znamy? Czy historia jest w ogóle możliwa inaczej niż jako rozmowa duchów na Polach Elizejskich?
Sztuka Michaela Frayna Copenhagen jest dialogiem trzech duchów: Wernera Heisenberga, Nielsa Bohra i jego żony Margharete. Chyba nie wystawiona nigdy w Polsce, odniosła wielki sukces w Londynie, Nowym Jorku i w innych miejscach świata.

Spotkanie owych trzech duchów poprzedzone było wieloma latami ziemskiej znajomości. Bohr pierwszy raz zetknął się z Heisenbergiem, gdy wygłaszał w Getyndze w czerwcu 1922 roku swe słynne wykłady, zwane potem Festiwalem Bohra. Dwudziestolatek o chłopięcym wyglądzie zwrócił publicznie uwagę na pomyłkę Bohra i tym go zaintrygował. Trzeba rozumieć kontekst: Niels Bohr był wtedy najbardziej znanym fizykiem atomowym, w listopadzie miano ogłosić, że otrzymuje Nagrodę Nobla. Tak się złożyło, że Bohr otrzymał ją jednocześnie z Albertem Einsteinem, który został laureatem za rok 1921. W grudniu 1922 Svante Arrhenius, przewodniczący Komitetu Noblowskiego z fizyki zaprezentował osiągnięcia obu uczonych: w ten sposób Einstein, najwybitniejszy fizyk pierwszej ćwierci wieku XX, został symbolicznie złączony z Bohrem, patronem intelektualnym nurtu, który za kilka lat miał przynieść mechanikę kwantową. Sytuacja niecodzienna nawet jak na uroczystości noblowskie (nie spotkali się jednak przy tej okazji, ponieważ Einstein był w Japonii). Teoria względności i mechanika kwantowa do dziś są dwoma najważniejszymi osiągnięciami ostatniego stulecia. Rok 1922 stanowił też początek powojennego przełamywania lodów w nauce: wizyta Bohra w Getyndze i Einsteina w Paryżu były pierwszymi zapowiedziami powrotu do międzynarodowej współpracy po latach pierwszej wojny światowej, o której dziś rzadko mówimy, bo niebawem wybuchła następna wojna, jeszcze bardziej brutalna i bezwzględna.

Heisenberg był asystentem Maksa Borna i okazał się najzdolniejszym spośród tamtych chłopaków, ich fizykę nazywano czasem Knabenphysik – fizyką chłopców. Rewolucje robią ludzie młodzi: zarówno Einstein, jak i twórcy mechaniki kwantowej, zaczynali jako dwudziestoparolatkowie, a po trzydziestce już raczej kontynuowali poprzednie osiągnięcia (czasem tak wielkie jak teoria grawitacji). Bohr zaczął wkrótce współpracować z Heisenbergiem, i to podczas stażu w Danii wiosną roku 1925 powstała pierwsza przełomowa praca z mechaniki kwantowej. Max Born, pełen wątpliwości, pisał do Einsteina: „Moi młodzi ludzie: [Werner] Heisenberg, [Pascual] Jordan, [Friedrich] Hund są znakomici. Muszę się czasem poważnie wysilić, aby nadążyć za ich rozważaniami. Wprost bajecznie opanowali tak zwaną zoologię termów [chodzi o termy atomowe, pojęcie z dziedziny spektroskopii, widma pierwiastków są skomplikowane, lecz ich szczegółowa znajomość okazała się kluczem do fizyki mikroświata]. Najnowsza praca Heisenberga, która się niebawem ukaże, wygląda bardzo mistycznie, ale jest prawdziwa i głęboka”. Praca Heisenberga była zupełnie samodzielna, miał on silną osobowość i umiał się przeciwstawić apodyktycznemu Bohrowi. Duński uczony był wprawdzie kimś w rodzaju duchowego ojca mechaniki kwantowej, ale jego wpływ na młodszych bywał szkodliwy: kilku naukowców miało za złe Bohrowi, że odwiódł ich od słusznych myśli, przez co przeszło im koło nosa jakieś odkrycie. Jednocześnie jednak Bohr troszczył się o wszystkich swoich pupilów i z nimi przyjaźnił, wspólnie pływali żaglówką, jeździli na nartach albo odbywali długie, nawet kilkudniowe spacery.

Gdy Hitler został kanclerzem Niemiec, Werner Heisenberg był już sławny. W grudniu tego roku otrzymał Nagrodę Nobla za rok 1932 razem ze swoimi dwoma konkurentami w tworzeniu mechaniki kwantowej: Erwinem Schrödingerem i Paulem Dirakiem, którzy podzieli się Nagrodą za rok 1933. Trzydziestodwuletni profesor był wielką nadzieją nauki niemieckiej, nie miał Żydów w rodzinie i czuł się gorącym patriotą, choć może z lekka brzydził go NSDAP-owski sztafaż. Orszak studentów z pochodniami przeszedł ulicami Lipska pod dom laureata. Heisenberg zdecydowany był nie wyjeżdżać z Niemiec, chciał też pracować dla ojczyzny, kultywując swoją dziedzinę, czyli fizykę teoretyczną. Okazało się to nieproste. W 1937 roku został publicznie zaatakowany w organie prasowym SS jako „biały Żyd”, tzn. ktoś, kto głosi idee fizyki żydowskiej wśród niemieckiej młodzieży. Porównano go nawet do Carla von Ossietzky’ego, działacza pokojowego i laureata pokojowej Nagrody Nobla, niebawem zamęczonego w Dachau. Do fizyki żydowskiej zaliczano oczywiście teorię względności, ale także mechanikę kwantową. W tym drugim przypadku kryterium było całkowicie polityczne (to ja decyduję, kto jest Żydem): akurat ani Heisenberg, ani Schrödinger, ani Dirac nie byli Żydami. Pół-Żydem był Niels Bohr, co wkrótce zaczęło mieć znaczenie. Przez następny rok Heisenberg starał się „oczyścić” z zarzutów, jego list dotarł do samego Heinricha Himmlera, który zarządził śledztwo. Badano w nim życie fizyka, sprawdzano m.in. czy aby nie jest homoseksualistą (ożenił się bowiem niedawno i dotąd miał raczej przyjaciół mężczyzn, choć homoseksualistą nie był) i dlaczego nie wykazywał entuzjazmu wobec nazistów. Przesłuchiwano go też w podziemiach SS w Berlinie naprzeciwko napisu: „Oddychaj głęboko i spokojnie”. W końcu dano mu spokój i uznano, że jest nieszkodliwym profesorem, trzymającym się swojej dziedziny i być może przydatnym reżimowi. Zaczęto go potrzebować szybciej, niż ktokolwiek sądził. Podjęto bowiem w Niemczech prace nad projektem uranowym, który miał prowadzić do zbudowania reaktora, a może także bomby nuklearnej. Najważniejszym uczonym pracującym nad tym projektem został w naturalny sposób Werner Heisenberg.

Niels Bohr między Elisabeth i Wernerem Heisenbergiem, z tyłu Victor Weisskopf (1937, pewnie przy okazji ślubu Heisenberga)

I właśnie jako szef prac nad uzyskaniem energii z uranu Heisenberg pojawił się w Kopenhadze. W zasadzie pracowano nad reaktorem, który mógłby wytwarzać w dalekiej przyszłości pluton. Ale możliwość bomby rysowała się nad horyzontem i, jak się zdaje, Heisenberg ciężko pracował, aby wykazać swoją przydatność dla ojczyzny. Nie przejawiał zbyt wiele inteligencji emocjonalnej: pojawił się w Kopenhadze jako przedstawiciel nauki niemieckiej, miał wygłosić wykład w Instytucie Kulturalnym Niemiec. Duńczycy, poddani okupacji (wprawdzie stosunkowo łagodnej) dużego sąsiada, niezbyt garnęli się do kontaktów z Niemcami, zwłaszcza że w praktyce chodziło o propagandę III Rzeszy. Na wykładzie nie pojawili się najważniejsi naukowcy duńscy. Heisenberg spotkał się natomiast z Bohrem prywatnie, odbyli też wspólny spacer, aby porozmawiać (obaj, słusznie, obawiali się podsłuchów). O swojej wizycie Heisenberg pisał do swej żony, Elisabeth:

Moja droga Li,
oto znowu jestem w tym tak dobrze mi znanym mieście, gdzie pozostała cząstka mego serca od tamtego czasu sprzed piętnastu lat. Kiedy usłyszałem znowu kuranty z wieży ratuszowej, zamknąłem okno mego hotelowego pokoju i coś ścisnęło mnie mocno w środku: wszystko było tak samo, jakby nic się na świecie nie zmieniło. To takie dziwne, napotkać własną przeszłość, to tak jakby spotkało się samego siebie. (…) Późnym wieczorem poszedłem pieszo pod jasnym rozgwieżdżonym niebem przez zaciemnione miasto do Bohra.
Bohr i jego rodzina mają się dobrze; on sam się trochę postarzał, jego synowie są już całkiem dorośli. Rozmowa szybko zeszła na ludzkie zmartwienia i nieszczęsne wypadki ostatnich czasów; w sprawach ludzkich konsensus jest oczywisty; w kwestiach politycznych stwierdziłem, że nawet tak wielki człowiek jak Bohr nie potrafi całkowicie rozdzielić myślenia, odczuwania oraz nienawiści. Ale może nie powinno się ich nigdy rozdzielać. (…)
Wczoraj znowu spędziłem cały wieczór z Bohrem; oprócz pani Bohr i dzieci była też młoda Angielka, która mieszka u nich, ponieważ nie może wrócić do Anglii. Trochę dziwnie jest rozmawiać teraz z Angielką. Podczas nieuniknionych rozmów politycznych, podczas których ja broniłem naturalnie i automatycznie naszego systemu, wyszła i pomyślałem, że w sumie to całkiem miłe z jej strony. – Dziś rano byłem na molo z [Carlem Friedrichem] Weizsäckerem, wiesz, tam przy porcie, gdzie znajduje się Langelinie. Teraz stoją tam na kotwicy niemieckie okręty wojenne, kutry torpedowe, krążowniki pomocnicze i tym podobne. Był pierwszy ciepły dzień, port i niebo ponad nim zabarwione bardzo jasnym lekkim błękitem. Dwa duże frachtowce odpłynęły w stronę Elsynoru; przypłynął węglowiec, prawdopodobnie z Niemiec, dwie łodzie żaglowe, pewnie takiej wielkości, jak ta, którą pływaliśmy dawniej wypływały z portu, pewnie na popołudniową wycieczkę. W pawilonie na Langelinie zjedliśmy obiad, wszędzie dokoła byli sami szczęśliwi i radośni ludzie, a przynajmniej takie robili na nas wrażenie. W ogóle ludzie tu wyglądają na szczęśliwych. Wieczorem na ulicach widzi się promieniejące szczęściem młode pary, idące na dancing, nie myślące o niczym innym. Trudno o coś bardziej odmiennego niż życie na ulicach tutaj i w Lipsku.
(…) Pierwszy oficjalny wykład jest mój, jutro wieczorem. Niestety, członkowie Instytutu Bohra nie przyjdą z powodów politycznych. Jeśli wziąć pod uwagę, że Duńczycy żyją bez jakichkolwiek restrykcji i żyją wyjątkowo dobrze, to zadziwiające jest, że wzbudzone tu zostało tak wiele nienawiści i strachu, iż nawet współpraca w dziedzinie kultury, kiedyś tak oczywista, teraz stała się prawie niemożliwa. (list z końca września 1941 roku)

Bohra doszły słuchy, jak Heisenberg opowiada, że okupacja Danii i Norwegii to przykra konieczność, w odróżnieniu od okupacji wschodniej Europy, która jest niezbędna, gdyż kraje te nie potrafią same się rządzić (było to przed Stalingradem). Z perspektywy Danii wyglądało to oczywiście inaczej, tym bardziej że należało się spodziewać dalszych kroków niemieckich władz okupacyjnych. Dotąd aresztowali oni komunistów, dwa lata później przyszła kolej na Żydów i Bohr sam musiał się ratować przeprawą przez Bałtyk (na szczęście znalazł się w niemieckiej ambasadzie przyzwoity człowiek, Georg Ferdinand Duckwitz, który uprzedził o zamiarach nazistów i praktycznie wszyscy Żydzi duńscy zostali w porę przetransportowani łodziami rybackimi do Szwecji). Heisenberg wspomniał Bohrowi, że pracuje nad energią z uranu i nawet spytał go, co należy zrobić z moralnego punktu widzenia. Nie chciał chyba jednak słuchać odpowiedzi. Elisabeth Heisenberg opowiadała, że mąż bardzo się bał, iż alianci zbudują broń nuklearną wcześniej niż Niemcy. Oczywiście reszta świata obawiała się czegoś dokładnie odwrotnego. Rozmowa zostawiła nieprzyjemny osad w pamięci Bohra. Ich dawna przyjaźń z Heisenbergiem nigdy już się nie odrodziła, choć po wojnie spotykali się czasem.

„Był tu Werner Heisenberg, fizyk teoretyczny z Niemiec, kiedyś wielki nazista. Z niego jest wielki uczony, lecz niezbyt przyjemny człowiek” – stwierdził Einstein w 1954 roku. Einstein najprawdopodobniej uważał za nazistów tych, którzy pracowali dla reżimu Hitlera bez względu na to, czy należeli do NSDAP albo innych organizacji nazistowskich.

Po wojnie uczeni niemieccy starali się przekuć swoje niepowodzenie w sukces moralny, lecz wydaje się, że po prostu (i na całe szczęście) zabrakło im wizji i możliwości technicznych.
David C. Cassidy wyliczył techniczne powody niepowodzenia ekipy Heisenberga:

  • Nie obliczyli masy krytycznej uranu 235: nie sądzili, że wystarczą kilogramy, nie tony
  • Nie umieli przeprowadzić separacji izotopów: metodę separacji gazów znał w Niemczech Gustav Hertz, ale jako nieczysty rasowo pracował w prywatnym laboratorium
  • Moderator: ekipa Heisenberga nie wiedziała, że nadaje się do tego grafit, ale musi zostać oczyszczony z domieszek boru, co zauważył Leo Szilard, Żyd oczywiście i emigrant. Z kolei ciężka woda z Norwegii nie docierała dzięki sabotażowi.
  • Reaktor Heisenberga składał się z płaskich płyt uranu w zbiorniku z ciężką wodą, co było wygodne do obliczeń teoretycznych, lecz marne jako rozwiązanie inżynierskie.
  • Projekt wymagał połączonej wiedzy i znakomitej organizacji: amerykańskie zasoby i poziom techniki oraz europejscy uczeni, przeważnie Żydzi albo ofiary antysemityzmu: Bohr, Oppenheimer, Feynman, Bethe, Wigner, von Neumann, Fermi, Peierls, Compton, Ulam, praktycznie jest to słownik wielkich fizyków
  • Przebieg wojny: po początkowych sukcesach zaczęły się niemieckie porażki i coraz trudniej było zmobilizować zasoby na projekt nierokujący natychmiastowych sukcesów

W sumie po stronie naukowo-inżynierskiej zemściła się na nazistach ich obłąkańcza ideologia antysemicka, rządy idiotów, którzy przez rok sprawdzali, czy Heisenberg się nadaje na profesora w ich Rzeszy.

Albert Einstein na dwóch fotografiach, czyli jak pionier został konserwatystą (1911, 1927)

Pierwsza fotografia pochodzi z roku 1911 i przedstawia uczestników I Kongresu Solvaya. Ernest Solvay, bogaty przemysłowiec, wzbogacił się na wynalezionej przez siebie metodzie produkcji sody. Nie miał akademickiego wykształcenia, lecz wykazywał pewne ambicje naukowe. Zwołany do Brukseli kongres zgromadził najwybitniejszych fizyków epoki, organizował go Hendrik Lorentz, który zaprosił m.in. Alberta Einsteina.

1911

Podpisana wersja tej fotografii

Trzydziestodwuletni Einstein stoi z cygarem w drugim rzędzie obok Paula Langevina, z którym szybko się zaprzyjaźnił (nb. w tym właśnie czasie wybuchł skandal prasowy w Paryżu wokół romansu żonatego Langevina ze starszą od niego Marią Skłodowską-Curie, jedyną kobietą na zdjęciu). Dla Einsteina był to pierwsza międzynarodowa konferencja naukowa i okazja do poznania sławnych fizyków spoza Niemiec. Zaledwie dwa lata wcześniej zaczął pracować na uczelni, do Brukseli przyjechał z Pragi, gdzie od wiosny tego roku był profesorem zwyczajnym. Okna jego gabinetu wychodziły na ogród szpitala psychiatrycznego. Einstein lubił pokazywać swoim gościom spacerujących alejkami pensjonariuszy tego zakładu ze słowami: „oto wariaci, którzy nie zajmują się kwantami”. Sam intensywnie pracował nad nową fizyką kwantową, m.in. odkrył, dlaczego ciepło właściwe diamentu maleje wraz z temperaturą. Zjawisko to jest kwantowe: drgania atomów węgla w krysztale diamentu mogą bowiem zachodzić tylko ze ściśle określonymi – skwantowanymi – energiami. W ten sposób okazało się, że nowa fizyka potrzebna jest do wyjaśnienia obserwowanych od dawna faktów. Dziś wiemy, że właśnie fizyka kwantowa wyjaśnia własności atomów, kryształów, cieczy – całą chemię i fizykę różnych materiałów, a także sporą część biologii. Inni uczeni zainteresowali się tym kręgiem zagadnień, szybko rosła więc liczba prac poświęconych kwantom. Tak więc stojący skromnie w drugim rzędzie Einstein reprezentował wówczas naukową awangardę, nie zawsze dobrze przyjmowaną przez starszych kolegów.

 

kwanty

Widzimy, jak szybko rosła liczba autorów idących w ślad za Einsteinem. Liczby nie wydają się może imponujące, ale ogólną liczbę fizyków w Europie w tamtej epoce szacuje się na 1000-1500, z czego nie wszyscy byli aktywni naukowo (Wykresy z T.S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894-1912, Clarendon Press, Oxford 1978, s. 217).

solvay_conference_1927_

Druga fotografia przedstawia uczestników V Kongresu Solvaya w roku 1927. Nosił on tytuł Elektrony i fotony. Fotony, cząstki światła, zostały zapostulowane przez Einsteina w roku 1905, teraz niejako oficjalnie uznano, że miał rację. A więc niewątpliwy triumf. Nikt przez dwadzieścia lat nie chciał wierzyć w owe kwanty światła, po eksperymentach Comptona i innych, wreszcie w nie uwierzono. Triumf zabarwiony był jednak goryczą. W latach 1925-1926 młodzi fizycy przedstawili mechanikę kwantową, z którą Einstein nie potrafił się zgodzić ani wtedy, ani nigdy później. Był nadal sprawny intelektualnie, nie zapomniał fizyki, ale należało wyjść poza krąg dotychczasowych idei, rozstać się z pewnym ideałem nauki. Rewolucji dokonali ludzie młodzi, mówiono o tym Knabenphysik – fizyka chłopców.
Fotografia ilustruje wymownie, jak wzrosła pozycja Einsteina w środowisku naukowym w ciągu tych kilkunastu lat. Teraz on zajmuje miejsce centralne. Siedzi między starym Lorentzem a posiwiałym Langevinem z nawoskowanymi wąsami, niczym rewolucjonista uwięziony w świecie XIX wieku. Obok Lorentza mocno postarzała, surowa i niepobłażająca Maria Skłodowska-Curie i znużony Max Planck. Dopiero w drugim rzędzie znajdujemy chudego, jakby wyjętego z dramatu Becketta Paula Diraca, arystokratycznego, rasowego Louisa de Broglie’a, uprzejmego i skromnego Maksa Borna, wychowawcę siedmiu noblistów, i wreszcie silnego i skupionego Nielsa Bohra. Elegancki Erwin Schrödinger, sceptyczny Wolfgang Pauli i szelmowsko chłopięcy Werner Heisenberg stoją skromnie w trzecim rzędzie. Trudno o bardziej symboliczny obraz zmiany warty: Einstein stał się teraz kimś podobnym do Lorentza czy Plancka, a więc wybitnym uczonym, którego należy szanować, ale od którego nie można się zbyt wiele nauczyć. Liczyli się młodzi ludzie z drugiego i trzeciego rzędu oraz ich duchowi przewodnicy, Bohr i Born. W ciągu następnych kilku lat twórcy mechaniki kwantowej otrzymali Nagrody Nobla, wszyscy oprócz Diraca nominowani byli zresztą także przez Einsteina. Najwybitniejszy spośród nich, Paul Dirac, musiał zadowolić się Nagrodą Nobla wraz ze Schrödingerem. Właśnie Paul Dirac w latach 1927-1928 pokazał, jak można sformułować kwantową teorię elektronów i fotonów. Było to otwarcie drogi, która zakończyła się dwadzieścia lat później zbudowaniem konsekwentnej elektrodynamiki kwantowej przez Richarda Feynmana, Freemana Dysona, Juliana Schwingera i Shin’itiro Tomonagę.

Einstein i jednolita teoria pola: zmarnowane trzydzieści lat?

W roku 1915 Einstein przedstawił ostateczną wersję równań pola grawitacyjnego. No, może prawie ostateczną, bo niebawem dopisał jeszcze do nich człon kosmologiczny – z czysto matematycznego punktu widzenia wyraz ten może się tam znaleźć, choć nie musi, z fizycznego punktu widzenia nie było wówczas powodu, by to zrobić (dzięki stałej kosmologicznej mógł zbudować wszechświat, w którym przestrzeń trójwymiarowa nie ma brzegu, odpadał więc problem warunków brzegowych, jego motywy były matematyczno-filozoficzne, znane już wtedy obserwacje Sliphera nie zgadzały się z tym modelem). Taki powód istnieje dziś: obserwacje wskazują, że ekspansja wszechświata przyspiesza i człon kosmologiczny opisuje ten fakt (mówimy dziś o ciemnej energii, ale to tylko nowa nazwa dla starej wielkości).

Droga Einsteina do teorii grawitacji, którą nazywał ogólną teorią względności (OTW, dla odróżnienia od szczególnej STW z roku 1905), była wielce zagmatwana, pełna błędów i fałszywych objawień. Jednak ostateczny wynik – równania pola – są praktycznie jedyne możliwe. Zamiast pola grawitacyjnego mamy w OTW wielkość zwaną tensorem metrycznym, jest to dziesięć funkcji współrzędnych i czasu. Znając je, możemy analizować stosunki przestrzenne i czasowe w danej sytuacji fizycznej, obliczać tory cząstek itp. Mamy 10 równań dla tych 10 funkcji, przy czym tylko sześć równań jest niezależnych, bo układ współrzędnych można sobie dość dowolnie wybierać i matematyka nie może tego za nas rozstrzygać. Równania te nie mogą być inne (z dokładnością do członu kosmologicznego). Sama matematyka narzuca ich postać. Einstein nie wiedział o tym przed odkryciem, dopiero po fakcie zorientował się, że w gruncie rzeczy nie miał wielkiego wyboru. Jego droga była tak zagmatwana, ponieważ nie znał dostatecznie głęboko matematyki, którą się posługiwał. Nie on jeden zresztą: David Hilbert czy Felix Klein, wielcy matematycy z Getyngi, też nad nim nie górowali w owym czasie (choć Hilbert próbował się z nim ścigać i przegrał). Geometria różniczkowa, czyli dział matematyki zajmujący się zakrzywionymi przestrzeniami, zaczęła się szybciej rozwijać w następstwie teorii Einsteina, przedtem była to ezoteryczna dziedzina dla kilku wtajemniczonych, jak np. Tullio Levi Civita, z którym Einstein lubił korespondować podczas I wojny światowej, prosił nawet, by Włoch pisał do niego w ojczystym języku, bo przypominało mu to młodość, gdy często bywał we Włoszech u rodziców.

einstein_smalldynamiclead_dynamic_lead_slide

Einstein wypisujący na tablicy równania OTW w próżni: R_{ik}=0.

OTW rozwiązywała problem, którego prawie nikt nie stawiał. Owszem, przypuszczano, że stara teoria grawitacji Newtona musi zostać zmodyfikowana. W XIX wieku James Clerk Maxwell połączył całą naukę o elektryczności, magnetyzmie i optyce w jedną teorię. Było to wielkie osiągnięcie i jest nim do dziś: najróżniejsi specjaliści: od energetyki, prądnic, silników elektrycznych, łączności radiowej, kuchenek mikrofalowych, radarów, optyki, światłowodów, elektroniki itd. uczą się swego fachu startując z czterech równań Maxwella. Ogromny obszar zjawisk daje się zrozumieć w jednolity sposób. Jest to nie tylko eleganckie matematycznie, lecz także nadzwyczaj skuteczne w praktyce. Dlatego się mówi, że nie ma nic bardziej praktycznego niż porządna teoria. Otóż po Maxwellu podejrzewano, że także grawitacja powinna zostać zmodyfikowana, że np. pole grawitacyjne nie powinno rozchodzić się momentalnie, lecz ze skończoną prędkością – gdyby Księżyc znikł w danej chwili, to wody oceanów powinny to odczuć z opóźnieniem około sekundy. Ogólnie jednak biorąc, stara teoria Newtona radziła sobie świetnie, astronomowie potrafili z niezwykłą precyzją obliczać ruchy ciał niebieskich, astronomia stała się synonimem precyzyjnej nauki ścisłej aż nudnej w tym przywiązaniu do drobnych efektów, których nikt nie zauważa. Za czasów Einsteina OTW była piękną teorią zjawisk bardzo trudno mierzalnych. Grawitacja jest najsłabszym ze znanych oddziaływań i dlatego trudnym do badań w laboratorium czy bliskim kosmosie. W sumie OTW nie jest bynajmniej nauką o drobnych efektach, choć okazało się to już w bliższych nam czasach, gdy zaczęto obserwować ekstremalne zjawiska w kosmosie i badać czarne dziury.

Einstein zbudował więc grawitacyjny odpowiednik teorii Maxwella. Kiedy w roku 1919 okazało się, że OTW znajduje potwierdzenie w obserwacjach, stał się z jakiegoś kaprysu zbiorowej wyobraźni pierwszym naukowym celebrytą, może tylko Stephen Hawking cieszy się podobną, lecz zapewne mniejszą sławą. Fizycy w tamtych latach zajmowali się głównie zjawiskami atomowymi i kwantowymi. Czynił to także i Einstein, choć jego punkt widzenia różnił się zasadniczo od tego, co wypracowali Bohr, Born, Heisenberg, Dirac i inni twórcy mechaniki kwantowej. Tamtych interesowały przede wszystkim zjawiska atomowe: widma, zachowanie linii widmowych w polu elektrycznym albo magnetycznym, moment magnetyczny atomów itd. Einstein myślał raczej na poziomie ogólnym: pragnął połączyć swoją teorię grawitacji z elektrodynamiką Maxwella. Połączyć w sposób nietrywialny, bo można po prostu złożyć obie teorie „mechanicznie” w jedną. Nie było żadnych eksperymentów, które wskazywałyby, że pole elektromagnetyczne oraz grawitacyjne mają ze sobą cokolwiek wspólnego. Do dziś zresztą nie ma takich danych eksperymentalnych. Einstein sądził, że skoro brak eksperymentów, to tym gorzej dla faktów: on poszuka syntezy obu teorii i tak. Pozostawała mu jedynie droga matematyczna. Można przypuszczać, że wielkie wrażenie zrobił na nim fakt, iż OTW jest określona jednoznacznie przez ogólne założenia matematyczne i fizyczne, bez szczegółowego zagłębiania się w eksperymentalną kuchnię. Gdyby wiedział o tym przed rokiem 1915, znacznie szybciej znalazłby równania OTW.

Einsteina właściwie nie interesowała fizyka, tzn. rozwiązywanie kolejnych szczegółowych problemów. Oczywiście, lubił od czasu do czasu pokazać, jak się to robi, ale konkretne zagadnienia były dla niego przykładami czegoś bardziej ogólnego. Zawsze spoza drzew widział las i właściwie tylko las go naprawdę interesował. Psychiczną przykrość sprawiał mu brak logicznej spójności, dlatego sytuacja, gdy mamy w fizyce kilka różnych teorii, które niewiele ze sobą mają wspólnego, wydawała mu się zupełnie nieznośna. Natura jest jednolita i my powinniśmy zbudować jednolitą jej teorię. Lubił przywoływać Spinozę z jego bezwzględnie obowiązującą przyczynowością, sam był postacią w jakiś sposób siedemnastowieczną – to w epoce Kartezjusza, Spinozy i Leibniza tak mocno wierzono w racjonalny ład świata. Pogląd, że ze zjawiskiem fizycznym mamy do czynienia dopiero wtedy, gdy dokonamy jego pomiaru (takie było stanowisko Bohra), dla Einsteina było naigrawaniem się z racjonalnej wiary, nieomal świętokradztwem. Wszechświat rządzi się swoimi prawami, Księżyc istnieje także wtedy, gdy nikt na niego nie patrzy, a mysz nie zmienia swym spojrzeniem stanu wszechświata. Element subiektywności wprowadzony przez mechanikę kwantową był dla niego nie do przyjęcia. Dlatego mechanikę kwantową traktował jak szczególnie udaną teorię fenomenologiczną, tj. opisującą doświadczenia, ale bez ambicji dotarcia głębiej. Uważał, że prawidłowości statystyczne to nie nauka, lecz w najlepszym razie wstęp do nauki. Kiedy już poznamy te prawidłowości, to należy starać się zrozumieć, skąd się biorą.

Sądził, że musi istnieć teoria bardziej podstawowa, w ramach której wyjaśni się, z jakich cząstek zbudowany jest świat, a nawet czym jest cząstka. Według niego nie powinno być dwóch elementów teorii: cząstek (np. elektronów) oraz pól przez te cząstki wytwarzanych. Wszystko powinno być opisywane jako pola, cząstka to po prostu zlokalizowany obszar szczególnie silnego pola (coś w rodzaju solitonu – ale Einstein nie znał jeszcze tego pojęcia). Miał też nadzieję, że ruch owych cząstek także będzie wynikał z równań pola. OTW jest nieliniowa: suma dwóch rozwiązań nie jest w niej rozwiązaniem. W teoriach nieliniowych dwa ruchome „zgrubienia” pola będą jakoś ze sobą oddziaływać. W ten sposób spodziewał się zrozumieć zjawiska kwantowe. Z jego punktu widzenia trzeba było tylko znaleźć dobry punkt wyjścia. Jednolita teoria pola miała być połączeniem OTW i elektrodynamiki w nietrywialny matematycznie sposób.

Zaczął nad nią pracować niemal od razu po stworzeniu OTW, a w latach dwudziestych zaczął już publikować na ten temat. Sięgał po różne środki, pracowali z nim coraz to inni asystenci, cel pozostawał wciąż niezmienny. Co parę lat Einstein przekonany był, że najnowsza wersja równań jest właśnie tym, czego szuka. Potem zaczynał dostrzegać trudności, wreszcie zarzucał dane podejście. Jak to wyglądało, opisuje Ernst Gabor Straus, który pracował z Einsteinem w latach 1944-1948. Straus został później wybitnym matematykiem, opublikował 21 prac z Paulem Erdösem (co jest swego rodzaju tytułem szlacheckim) i zajmował się wieloma dziedzinami matematyki. Straus zapisywał różne charakterystyczne wypowiedzi Einsteina. „Do naszej pracy konieczne są dwie rzeczy: niezmordowana wytrwałość i gotowość, aby wyrzucić to, na co się poświęciło wiele czasu i pracy”. Sam był dwukrotnie świadkiem takiej sytuacji, za każdym razem Einstein na drugi dzień przychodził i jakby nigdy nic zaczynali pracę od nowa, stosując zupełnie inne podejście.

Einstein pracował nad jednolitą teorią pola aż do śmierci w roku 1955. Kiedy zaczynał, uchodził za największego fizyka świata, wszyscy czekali na jego kolejne prace, kończył jako zupełny outsider, dinozaur z innej epoki. Trzydzieści lat bez wyników. Byłoby to tragiczne, gdyby sam Einstein traktował swą pracę w sposób, by tak rzec romantyczny i ambicjonalny. Nie wierzył on jednak w rzeczy powstające tylko z ambicji. Niewiele znaczyły dla niego różne wyróżnienia. Kiedy dostał Medal Maksa Plancka schował go i nawet nie otworzył pudełeczka, żeby go obejrzeć. Potrafił całymi latami z jednakową koncentracją robić swoje, nie oglądając się na kolegów. Zaczynał działalność naukową jako urzędnik Biura Patentowego i przez wiele lat fizyka była dla niego zajęciem niezwiązanym z zarabianiem pieniędzy. Uważał nawet, że taka sytuacja jest przejrzystsza, bo inaczej człowiek żyje pod presją uzyskiwania wyników, a wyniki przychodzą albo nie. Nie należy drążyć deski w najcieńszym miejscu tylko dlatego, że tak jest najłatwiej.

Starzejący się uczeni często popadają w naukowe dziwactwa. Praca Einsteina nad jednolitą teorią pola nie całkiem pasuje do tego schematu, była raczej konsekwencją jego poglądów niż aberracją. Uczony nie odszedł od zmysłów, potrafił się uczyć (jeśli tylko chciał), nie przestał być twórczy ani nie zapomniał, jak się uprawia naukę.

Z dzisiejszego punktu widzenia jednolita teoria pola była zapewne pomyłką. Fizyka rozwinęła się zupełnie inaczej: najpierw cofnęła się do epoki sprzed teorii względności szczególnej (STW). Równanie Schrödingera z roku 1926 jest nierelatywistyczne. Potem stopniowo nauczono się łączyć STW z mechaniką kwantową – wynikiem jest kwantowa teoria pola. Einstein świadomie ją ignorował, choć za jego życia, mniej więcej w okresie asystentury Strausa, powstała elektrodynamika kwantowa. Już po śmierci Einsteina zbudowano jej uogólnienie – teorię oddziaływań elektrosłabych (tę od bozonu Higgsa). Ostatecznie mamy dziś nie do końca satysfakcjonujący, lecz zgodny z doświadczeniem, Model Standardowy cząstek. Zawiera on mnóstwo parametrów eksperymentalnych i oparty jest na kwantowej teorii pola. Mamy więc połączenie STW i fizyki kwantowej. I mamy też spory impas, ponieważ od czterdziestu lat nie udało się znaleźć teorii bardziej zadowalającej teoretycznie oraz zgodnej z eksperymentem. Może ulepszony LHC pozwoli uzyskać istotnie nowe dane eksperymentalne.

Natomiast OTW nie udało się połączyć z żadną teorią kwantową aż do dziś, mimo różnych cząstkowych osiągnięć. Chyba nikt nie stara się już kontynuować programu jednolitej teorii pola w sensie Einsteina: tzn. zbudowania wspólnej niekwantowej teorii oddziaływań. Wydaje się, że Einstein zaczął nie od tej strony, bo OTW jest marnym punktem wyjścia do badania zjawisk atomowych.

Niepowodzenie Einsteina trzeba widzieć na tle całości. Nauka wbrew pozorom jest bardziej historią niepowodzeń niż sukcesów, tzn. niepowodzenia są chlebem powszednim, sukcesy – świętem. Dzisiejsza fizyka fundamentalna, sześćdziesiąt lat po śmierci Einsteina, wygląda raczej na zagubioną. Ogromny program superstrun, angażujący od paru dziesiątków lat najzdolniejszych teoretyków świata z Edwardem Wittenem na czele (indeks Hirscha 150 i nadal rośnie), ugrzązł zdaje się na dobre, w każdym razie wymierne korzyści przyniósł do tej pory raczej matematyce niż fizyce. Uczeni pracujący w tej dziedzinie powtórzyli podobny błąd co Einstein: dali się uwieść matematyce i wylądowali w tzw. krajobrazie superstrun, w którym udowodnić można wszystko i niczego nie można przewidzieć.

Einstein miał oczywiście nadzieję, że któregoś dnia okaże się, iż w sprawie jednolitej teorii słuszność jest po jego stronie. Z biegiem lat ta nadzieja odsuwała się w coraz dalszą przyszłość. Bardzo niewielu uczonych tak głęboko utożsamiało się z tym, co robi i w co wierzy. Nauka nie była dla niego pracą, lecz sposobem realizacji powołania. Ta sama ścisła przyczynowość, która obowiązywała w jego fizyce, kształtowała także jego wyobrażenia o miejscu człowieka w świecie. Einstein wypowiadał się nieraz, że gdyby wiedział, iż ma umrzeć w ciągu godziny, to wcale by się tym nie przejął, gdyż wierzy w porządek świata, w którym człowiek jest tylko małą cząstką całości, a osobowość czymś w rodzaju złudzenia optycznego. Można mu wierzyć, bo potem rzeczywiście żył z wyrokiem śmierci. Ostatnie siedem lat życia przeżył z dużym zdiagnozowanym tętniakiem aorty brzusznej – nie można było wówczas zrobić operacji, uczony wiedział, że pewnego dnia tętniak pęknie. Kiedy to się stało, nie pozwolił się dręczyć lekarzom, sądził, że lepiej umrzeć, skoro nadszedł czas. Spokojnie porozmawiał z pasierbicą Margot, z synem Hansem Albertem, próbował nawet kontynuować jakieś zaczęte rachunki. Uprzednio zadbał, aby po śmierci jego ciało spalono, a prochy rozrzucono w nieznanym miejscu. Za coś w złym guście uważał pielgrzymki do grobów sławnych ludzi. Piękny przykład, że można obejść się bez magii i bez samozwańczych przedstawicieli Boga na ziemi nawet w obliczu śmierci.

Nie czuł się pokonany ani przegrany. Dwa tygodnie przed śmiercią rozmawiał z nim na różne tematy historyk nauki I.B. Cohen. Wspomina on: „Ogromny kontrast zachodził między jego cichą mową a dudniącym śmiechem. Lubił żartować, za każdym razem, gdy powiedział coś, co mu się podobało, albo usłyszał coś, co do niego przemówiło, wybuchał grzmiącym śmiechem, który odbijał się od ścian”. Jego śmiech wspominało wielu ludzi, którzy go znali. Hedwig Born, żona Maksa, po długich latach niewidzenia pisała do niego: „Chciałabym móc usłyszeć jeszcze raz twój potężny śmiech”.

Einstein_laughing

Erwin Schrödinger, kwanty i amory, 1926

Stworzenie mechaniki kwantowej było zapewne największym osiągnięciem wieku XX w fizyce, pozwalając – jeśli nie rozumieć – to w każdym razie obliczać, jak zachowują się cząstki mikroświata. Dzisiejszy postęp technologii, genetyki molekularnej, nanotechnologii byłby bez tej teorii zupełnie niemożliwy. Żałować wypada, iż zasad mechaniki kwantowej nie uczy się w szkole – to wcale nie musi być trudne, a z pewnością jest ciekawsze niż równie pochyłe i bloczki zaśmiecające egzaminy maturalne z fizyki i w konsekwencji programy szkolne.

W roku 1925 Werner Heisenberg (23 lata) i niezależnie od niego Paul Dirac (22 lata) sformułowali abstrakcyjne zasady mechaniki kwantowej. Mówiło się o Knabenphysik – fizyce tworzonej przez chłopców. Z początku nie było jasne, jak stosować i jak rozumieć owe dziwne zasady. Formalizm był mądrzejszy od jego autorów. Sytuacja zmieniała się jednak z miesiąca na miesiąc. Już w styczniu 1926 roku było jasne, że mechanika kwantowa ma sens: udało się zastosować formalizm Heisenberga do atomu wodoru i obliczyć skwantowane energie elektronu (Wolfgang Pauli, 25 lat). To samo uzyskał Bohr w 1913 roku, ale jego model był niekonsekwentny: trochę klasyczny, trochę ad hoc. Teraz teoria była na tyle zwariowana, że mogła być prawdziwa.

W zestawieniu z innymi twórcami mechaniki kwantowej trzydziestosiedmioletni Erwin Schrödinger może wydawać się człowiekiem bardzo już dojrzałym.erwin

Jednak to on napisał najpopularniejsze równanie teorii – nazwane jego imieniem i do dziś niezwykle ważne w różnych zastosowaniach. Jego podejście było całkowicie oryginalne i zupełnie różne od wspomnianych „chłopców” z Getyngi i Cambridge, zamiast kwantów Schrödinger mówił o falach. Reguły Bohra określały dozwolone orbity w atomie, orbity te były numerowane kolejnymi liczbami naturalnymi (słowo „kwantowanie” znaczy właśnie to, że nie wszystkie wartości są dozwolone, lecz jedynie pewien ich ciąg). Schrödinger zadał sobie pytanie, skąd mogą się brać takie liczby naturalne? W fizyce klasycznej znane są takie zagadnienia: mówi się wówczas o falach stojących. Są to np. różne drgania struny zamocowanej na końcach: dopuszczalne są tylko takie sinusoidy, które na końcach mają zera. Dzięki temu struna emituje dźwięk podstawowy i jego wielokrotności (w sensie częstotliwości).

Standing_waves_on_a_string

Fale stojące mają ściśle określone częstotliwości, różne instrumenty muzyczne wykorzystują ten fakt na wiele pomysłowych sposobów. Zawsze mamy tam do czynienia z ograniczonym obszarem przestrzennym, w którym powstaje dźwięk – np. piszczałka organów albo układ trębacz+trąbka.

Czy można elektron w atomie wodoru potraktować jako taką falę stojącą? Problem był oczywiście trójwymiarowy – bardziej skomplikowany niż struna, ale komplikacje były wyłącznie natury matematycznej. W dodatku fale były już dobrze znane i zbadane przez poprzednie generacje matematyków i fizyków. Rzeczywiście, elektron w atomie wodoru można uznać za związany przyciąganiem elektrostatycznym. Przyciąganie to sprawia, że jest on zamknięty w czymś, co nazywamy studnią potencjału. Schrödinger obliczył kształt dozwolonych funkcji falowych elektronu – muszą one mieć tę cechę, że maleją asymptotycznie do zera wraz z odległością od protonu. Obliczył też dozwolone wartości – okazały się prawidłowe. Wynik Bohra po raz trzeci został uzyskany z jeszcze innych założeń.

hydrogen_functions

Nasuwało się pytanie, co znaczy sama funkcja falowa, oznaczana odtąd tradycyjnie grecką literą ψ (psi)? W dodatku równanie Schrödingera jest zespolone, więc i funkcja falowa ψ też powinna być zespolona. Liczba zespolona to para liczb rzeczywistych: np. długość wektora na płaszczyźnie i jego kąt z osią Ox. Schrödinger wyobrażał sobie, że kwadrat modułu (długości zespolonego wektora) opisuje rozmycie ładunku elektronu w przestrzeni. Nie miał racji, ów kwadrat opisuje prawdopodobieństwo znalezienia elektronu w danym obszarze, ale sam elektron nie jest w żaden sposób rozmyty: albo obserwujemy cały elektron, albo nie ma go wcale.

W zasadzie od razu było jasne, że cykl prac Schrödingera z roku 1926 wart jest Nagrody Nobla i rzeczywiście uczony otrzymał ją kilka lat później razem z Dirakiem, a rok po Heisenbergu.

Zastanawiano się nieraz nad tym wybuchem kreatywności profesora, który dotąd był szanowanym fizykiem, lecz nie uchodził za geniusza. Herman Weyl, znakomity matematyk, twierdził, że ów przypływ energii twórczej Schrödingera związany był z jego ówczesnymi sukcesami erotycznymi. Weyl zapewne wiedział, co mówi, był bowiem kochankiem żony Schrödingera, Anny. Pierwszą pracę na temat atomu wodoru pisał Schrödinger podczas urlopu bożonarodzeniowego 1925 w Arosie. Towarzyszyła mu tam jedna z jego dawnych flam, jej nazwisko pozostaje nieznane historykom. W trakcie roku 1926 Schrödinger poznał (dzięki żonie) czternastoletnią Ithi Junger, której pomagał w matematyce i w której się zakochał. Ich związek trwał kilka lat, został zresztą w pełni skonsumowany dopiero po ukończeniu przez Ithi lat siedemnastu. Na zdjęciu z lewej strony Ithi, w środku Hilde March, żona kolegi Schrödingera i matka jego nieślubnego dziecka, z prawej Anny. Tryb życia uczonego oburzał niektórych, choć najbardziej zainteresowana, Anny Schrödinger, nie wydawała się nim szczególnie zbulwersowana, Weyl nie był zresztą jej jedynym kochankiem.

women