Albert Einstein na dwóch fotografiach, czyli jak pionier został konserwatystą (1911, 1927)

Pierwsza fotografia pochodzi z roku 1911 i przedstawia uczestników I Kongresu Solvaya. Ernest Solvay, bogaty przemysłowiec, wzbogacił się na wynalezionej przez siebie metodzie produkcji sody. Nie miał akademickiego wykształcenia, lecz wykazywał pewne ambicje naukowe. Zwołany do Brukseli kongres zgromadził najwybitniejszych fizyków epoki, organizował go Hendrik Lorentz, który zaprosił m.in. Alberta Einsteina.

1911

Podpisana wersja tej fotografii

Trzydziestodwuletni Einstein stoi z cygarem w drugim rzędzie obok Paula Langevina, z którym szybko się zaprzyjaźnił (nb. w tym właśnie czasie wybuchł skandal prasowy w Paryżu wokół romansu żonatego Langevina ze starszą od niego Marią Skłodowską-Curie, jedyną kobietą na zdjęciu). Dla Einsteina był to pierwsza międzynarodowa konferencja naukowa i okazja do poznania sławnych fizyków spoza Niemiec. Zaledwie dwa lata wcześniej zaczął pracować na uczelni, do Brukseli przyjechał z Pragi, gdzie od wiosny tego roku był profesorem zwyczajnym. Okna jego gabinetu wychodziły na ogród szpitala psychiatrycznego. Einstein lubił pokazywać swoim gościom spacerujących alejkami pensjonariuszy tego zakładu ze słowami: „oto wariaci, którzy nie zajmują się kwantami”. Sam intensywnie pracował nad nową fizyką kwantową, m.in. odkrył, dlaczego ciepło właściwe diamentu maleje wraz z temperaturą. Zjawisko to jest kwantowe: drgania atomów węgla w krysztale diamentu mogą bowiem zachodzić tylko ze ściśle określonymi – skwantowanymi – energiami. W ten sposób okazało się, że nowa fizyka potrzebna jest do wyjaśnienia obserwowanych od dawna faktów. Dziś wiemy, że właśnie fizyka kwantowa wyjaśnia własności atomów, kryształów, cieczy – całą chemię i fizykę różnych materiałów, a także sporą część biologii. Inni uczeni zainteresowali się tym kręgiem zagadnień, szybko rosła więc liczba prac poświęconych kwantom. Tak więc stojący skromnie w drugim rzędzie Einstein reprezentował wówczas naukową awangardę, nie zawsze dobrze przyjmowaną przez starszych kolegów.

 

kwanty

Widzimy, jak szybko rosła liczba autorów idących w ślad za Einsteinem. Liczby nie wydają się może imponujące, ale ogólną liczbę fizyków w Europie w tamtej epoce szacuje się na 1000-1500, z czego nie wszyscy byli aktywni naukowo (Wykresy z T.S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894-1912, Clarendon Press, Oxford 1978, s. 217).

solvay_conference_1927_

Druga fotografia przedstawia uczestników V Kongresu Solvaya w roku 1927. Nosił on tytuł Elektrony i fotony. Fotony, cząstki światła, zostały zapostulowane przez Einsteina w roku 1905, teraz niejako oficjalnie uznano, że miał rację. A więc niewątpliwy triumf. Nikt przez dwadzieścia lat nie chciał wierzyć w owe kwanty światła, po eksperymentach Comptona i innych, wreszcie w nie uwierzono. Triumf zabarwiony był jednak goryczą. W latach 1925-1926 młodzi fizycy przedstawili mechanikę kwantową, z którą Einstein nie potrafił się zgodzić ani wtedy, ani nigdy później. Był nadal sprawny intelektualnie, nie zapomniał fizyki, ale należało wyjść poza krąg dotychczasowych idei, rozstać się z pewnym ideałem nauki. Rewolucji dokonali ludzie młodzi, mówiono o tym Knabenphysik – fizyka chłopców.
Fotografia ilustruje wymownie, jak wzrosła pozycja Einsteina w środowisku naukowym w ciągu tych kilkunastu lat. Teraz on zajmuje miejsce centralne. Siedzi między starym Lorentzem a posiwiałym Langevinem z nawoskowanymi wąsami, niczym rewolucjonista uwięziony w świecie XIX wieku. Obok Lorentza mocno postarzała, surowa i niepobłażająca Maria Skłodowska-Curie i znużony Max Planck. Dopiero w drugim rzędzie znajdujemy chudego, jakby wyjętego z dramatu Becketta Paula Diraca, arystokratycznego, rasowego Louisa de Broglie’a, uprzejmego i skromnego Maksa Borna, wychowawcę siedmiu noblistów, i wreszcie silnego i skupionego Nielsa Bohra. Elegancki Erwin Schrödinger, sceptyczny Wolfgang Pauli i szelmowsko chłopięcy Werner Heisenberg stoją skromnie w trzecim rzędzie. Trudno o bardziej symboliczny obraz zmiany warty: Einstein stał się teraz kimś podobnym do Lorentza czy Plancka, a więc wybitnym uczonym, którego należy szanować, ale od którego nie można się zbyt wiele nauczyć. Liczyli się młodzi ludzie z drugiego i trzeciego rzędu oraz ich duchowi przewodnicy, Bohr i Born. W ciągu następnych kilku lat twórcy mechaniki kwantowej otrzymali Nagrody Nobla, wszyscy oprócz Diraca nominowani byli zresztą także przez Einsteina. Najwybitniejszy spośród nich, Paul Dirac, musiał zadowolić się Nagrodą Nobla wraz ze Schrödingerem. Właśnie Paul Dirac w latach 1927-1928 pokazał, jak można sformułować kwantową teorię elektronów i fotonów. Było to otwarcie drogi, która zakończyła się dwadzieścia lat później zbudowaniem konsekwentnej elektrodynamiki kwantowej przez Richarda Feynmana, Freemana Dysona, Juliana Schwingera i Shin’itiro Tomonagę.

Reklamy

Einstein i jednolita teoria pola: zmarnowane trzydzieści lat?

W roku 1915 Einstein przedstawił ostateczną wersję równań pola grawitacyjnego. No, może prawie ostateczną, bo niebawem dopisał jeszcze do nich człon kosmologiczny – z czysto matematycznego punktu widzenia wyraz ten może się tam znaleźć, choć nie musi, z fizycznego punktu widzenia nie było wówczas powodu, by to zrobić (dzięki stałej kosmologicznej mógł zbudować wszechświat, w którym przestrzeń trójwymiarowa nie ma brzegu, odpadał więc problem warunków brzegowych, jego motywy były matematyczno-filozoficzne, znane już wtedy obserwacje Sliphera nie zgadzały się z tym modelem). Taki powód istnieje dziś: obserwacje wskazują, że ekspansja wszechświata przyspiesza i człon kosmologiczny opisuje ten fakt (mówimy dziś o ciemnej energii, ale to tylko nowa nazwa dla starej wielkości).

Droga Einsteina do teorii grawitacji, którą nazywał ogólną teorią względności (OTW, dla odróżnienia od szczególnej STW z roku 1905), była wielce zagmatwana, pełna błędów i fałszywych objawień. Jednak ostateczny wynik – równania pola – są praktycznie jedyne możliwe. Zamiast pola grawitacyjnego mamy w OTW wielkość zwaną tensorem metrycznym, jest to dziesięć funkcji współrzędnych i czasu. Znając je, możemy analizować stosunki przestrzenne i czasowe w danej sytuacji fizycznej, obliczać tory cząstek itp. Mamy 10 równań dla tych 10 funkcji, przy czym tylko sześć równań jest niezależnych, bo układ współrzędnych można sobie dość dowolnie wybierać i matematyka nie może tego za nas rozstrzygać. Równania te nie mogą być inne (z dokładnością do członu kosmologicznego). Sama matematyka narzuca ich postać. Einstein nie wiedział o tym przed odkryciem, dopiero po fakcie zorientował się, że w gruncie rzeczy nie miał wielkiego wyboru. Jego droga była tak zagmatwana, ponieważ nie znał dostatecznie głęboko matematyki, którą się posługiwał. Nie on jeden zresztą: David Hilbert czy Felix Klein, wielcy matematycy z Getyngi, też nad nim nie górowali w owym czasie (choć Hilbert próbował się z nim ścigać i przegrał). Geometria różniczkowa, czyli dział matematyki zajmujący się zakrzywionymi przestrzeniami, zaczęła się szybciej rozwijać w następstwie teorii Einsteina, przedtem była to ezoteryczna dziedzina dla kilku wtajemniczonych, jak np. Tullio Levi Civita, z którym Einstein lubił korespondować podczas I wojny światowej, prosił nawet, by Włoch pisał do niego w ojczystym języku, bo przypominało mu to młodość, gdy często bywał we Włoszech u rodziców.

einstein_smalldynamiclead_dynamic_lead_slide

Einstein wypisujący na tablicy równania OTW w próżni: R_{ik}=0.

OTW rozwiązywała problem, którego prawie nikt nie stawiał. Owszem, przypuszczano, że stara teoria grawitacji Newtona musi zostać zmodyfikowana. W XIX wieku James Clerk Maxwell połączył całą naukę o elektryczności, magnetyzmie i optyce w jedną teorię. Było to wielkie osiągnięcie i jest nim do dziś: najróżniejsi specjaliści: od energetyki, prądnic, silników elektrycznych, łączności radiowej, kuchenek mikrofalowych, radarów, optyki, światłowodów, elektroniki itd. uczą się swego fachu startując z czterech równań Maxwella. Ogromny obszar zjawisk daje się zrozumieć w jednolity sposób. Jest to nie tylko eleganckie matematycznie, lecz także nadzwyczaj skuteczne w praktyce. Dlatego się mówi, że nie ma nic bardziej praktycznego niż porządna teoria. Otóż po Maxwellu podejrzewano, że także grawitacja powinna zostać zmodyfikowana, że np. pole grawitacyjne nie powinno rozchodzić się momentalnie, lecz ze skończoną prędkością – gdyby Księżyc znikł w danej chwili, to wody oceanów powinny to odczuć z opóźnieniem około sekundy. Ogólnie jednak biorąc, stara teoria Newtona radziła sobie świetnie, astronomowie potrafili z niezwykłą precyzją obliczać ruchy ciał niebieskich, astronomia stała się synonimem precyzyjnej nauki ścisłej aż nudnej w tym przywiązaniu do drobnych efektów, których nikt nie zauważa. Za czasów Einsteina OTW była piękną teorią zjawisk bardzo trudno mierzalnych. Grawitacja jest najsłabszym ze znanych oddziaływań i dlatego trudnym do badań w laboratorium czy bliskim kosmosie. W sumie OTW nie jest bynajmniej nauką o drobnych efektach, choć okazało się to już w bliższych nam czasach, gdy zaczęto obserwować ekstremalne zjawiska w kosmosie i badać czarne dziury.

Einstein zbudował więc grawitacyjny odpowiednik teorii Maxwella. Kiedy w roku 1919 okazało się, że OTW znajduje potwierdzenie w obserwacjach, stał się z jakiegoś kaprysu zbiorowej wyobraźni pierwszym naukowym celebrytą, może tylko Stephen Hawking cieszy się podobną, lecz zapewne mniejszą sławą. Fizycy w tamtych latach zajmowali się głównie zjawiskami atomowymi i kwantowymi. Czynił to także i Einstein, choć jego punkt widzenia różnił się zasadniczo od tego, co wypracowali Bohr, Born, Heisenberg, Dirac i inni twórcy mechaniki kwantowej. Tamtych interesowały przede wszystkim zjawiska atomowe: widma, zachowanie linii widmowych w polu elektrycznym albo magnetycznym, moment magnetyczny atomów itd. Einstein myślał raczej na poziomie ogólnym: pragnął połączyć swoją teorię grawitacji z elektrodynamiką Maxwella. Połączyć w sposób nietrywialny, bo można po prostu złożyć obie teorie „mechanicznie” w jedną. Nie było żadnych eksperymentów, które wskazywałyby, że pole elektromagnetyczne oraz grawitacyjne mają ze sobą cokolwiek wspólnego. Do dziś zresztą nie ma takich danych eksperymentalnych. Einstein sądził, że skoro brak eksperymentów, to tym gorzej dla faktów: on poszuka syntezy obu teorii i tak. Pozostawała mu jedynie droga matematyczna. Można przypuszczać, że wielkie wrażenie zrobił na nim fakt, iż OTW jest określona jednoznacznie przez ogólne założenia matematyczne i fizyczne, bez szczegółowego zagłębiania się w eksperymentalną kuchnię. Gdyby wiedział o tym przed rokiem 1915, znacznie szybciej znalazłby równania OTW.

Einsteina właściwie nie interesowała fizyka, tzn. rozwiązywanie kolejnych szczegółowych problemów. Oczywiście, lubił od czasu do czasu pokazać, jak się to robi, ale konkretne zagadnienia były dla niego przykładami czegoś bardziej ogólnego. Zawsze spoza drzew widział las i właściwie tylko las go naprawdę interesował. Psychiczną przykrość sprawiał mu brak logicznej spójności, dlatego sytuacja, gdy mamy w fizyce kilka różnych teorii, które niewiele ze sobą mają wspólnego, wydawała mu się zupełnie nieznośna. Natura jest jednolita i my powinniśmy zbudować jednolitą jej teorię. Lubił przywoływać Spinozę z jego bezwzględnie obowiązującą przyczynowością, sam był postacią w jakiś sposób siedemnastowieczną – to w epoce Kartezjusza, Spinozy i Leibniza tak mocno wierzono w racjonalny ład świata. Pogląd, że ze zjawiskiem fizycznym mamy do czynienia dopiero wtedy, gdy dokonamy jego pomiaru (takie było stanowisko Bohra), dla Einsteina było naigrawaniem się z racjonalnej wiary, nieomal świętokradztwem. Wszechświat rządzi się swoimi prawami, Księżyc istnieje także wtedy, gdy nikt na niego nie patrzy, a mysz nie zmienia swym spojrzeniem stanu wszechświata. Element subiektywności wprowadzony przez mechanikę kwantową był dla niego nie do przyjęcia. Dlatego mechanikę kwantową traktował jak szczególnie udaną teorię fenomenologiczną, tj. opisującą doświadczenia, ale bez ambicji dotarcia głębiej. Uważał, że prawidłowości statystyczne to nie nauka, lecz w najlepszym razie wstęp do nauki. Kiedy już poznamy te prawidłowości, to należy starać się zrozumieć, skąd się biorą.

Sądził, że musi istnieć teoria bardziej podstawowa, w ramach której wyjaśni się, z jakich cząstek zbudowany jest świat, a nawet czym jest cząstka. Według niego nie powinno być dwóch elementów teorii: cząstek (np. elektronów) oraz pól przez te cząstki wytwarzanych. Wszystko powinno być opisywane jako pola, cząstka to po prostu zlokalizowany obszar szczególnie silnego pola (coś w rodzaju solitonu – ale Einstein nie znał jeszcze tego pojęcia). Miał też nadzieję, że ruch owych cząstek także będzie wynikał z równań pola. OTW jest nieliniowa: suma dwóch rozwiązań nie jest w niej rozwiązaniem. W teoriach nieliniowych dwa ruchome „zgrubienia” pola będą jakoś ze sobą oddziaływać. W ten sposób spodziewał się zrozumieć zjawiska kwantowe. Z jego punktu widzenia trzeba było tylko znaleźć dobry punkt wyjścia. Jednolita teoria pola miała być połączeniem OTW i elektrodynamiki w nietrywialny matematycznie sposób.

Zaczął nad nią pracować niemal od razu po stworzeniu OTW, a w latach dwudziestych zaczął już publikować na ten temat. Sięgał po różne środki, pracowali z nim coraz to inni asystenci, cel pozostawał wciąż niezmienny. Co parę lat Einstein przekonany był, że najnowsza wersja równań jest właśnie tym, czego szuka. Potem zaczynał dostrzegać trudności, wreszcie zarzucał dane podejście. Jak to wyglądało, opisuje Ernst Gabor Straus, który pracował z Einsteinem w latach 1944-1948. Straus został później wybitnym matematykiem, opublikował 21 prac z Paulem Erdösem (co jest swego rodzaju tytułem szlacheckim) i zajmował się wieloma dziedzinami matematyki. Straus zapisywał różne charakterystyczne wypowiedzi Einsteina. „Do naszej pracy konieczne są dwie rzeczy: niezmordowana wytrwałość i gotowość, aby wyrzucić to, na co się poświęciło wiele czasu i pracy”. Sam był dwukrotnie świadkiem takiej sytuacji, za każdym razem Einstein na drugi dzień przychodził i jakby nigdy nic zaczynali pracę od nowa, stosując zupełnie inne podejście.

Einstein pracował nad jednolitą teorią pola aż do śmierci w roku 1955. Kiedy zaczynał, uchodził za największego fizyka świata, wszyscy czekali na jego kolejne prace, kończył jako zupełny outsider, dinozaur z innej epoki. Trzydzieści lat bez wyników. Byłoby to tragiczne, gdyby sam Einstein traktował swą pracę w sposób, by tak rzec romantyczny i ambicjonalny. Nie wierzył on jednak w rzeczy powstające tylko z ambicji. Niewiele znaczyły dla niego różne wyróżnienia. Kiedy dostał Medal Maksa Plancka schował go i nawet nie otworzył pudełeczka, żeby go obejrzeć. Potrafił całymi latami z jednakową koncentracją robić swoje, nie oglądając się na kolegów. Zaczynał działalność naukową jako urzędnik Biura Patentowego i przez wiele lat fizyka była dla niego zajęciem niezwiązanym z zarabianiem pieniędzy. Uważał nawet, że taka sytuacja jest przejrzystsza, bo inaczej człowiek żyje pod presją uzyskiwania wyników, a wyniki przychodzą albo nie. Nie należy drążyć deski w najcieńszym miejscu tylko dlatego, że tak jest najłatwiej.

Starzejący się uczeni często popadają w naukowe dziwactwa. Praca Einsteina nad jednolitą teorią pola nie całkiem pasuje do tego schematu, była raczej konsekwencją jego poglądów niż aberracją. Uczony nie odszedł od zmysłów, potrafił się uczyć (jeśli tylko chciał), nie przestał być twórczy ani nie zapomniał, jak się uprawia naukę.

Z dzisiejszego punktu widzenia jednolita teoria pola była zapewne pomyłką. Fizyka rozwinęła się zupełnie inaczej: najpierw cofnęła się do epoki sprzed teorii względności szczególnej (STW). Równanie Schrödingera z roku 1926 jest nierelatywistyczne. Potem stopniowo nauczono się łączyć STW z mechaniką kwantową – wynikiem jest kwantowa teoria pola. Einstein świadomie ją ignorował, choć za jego życia, mniej więcej w okresie asystentury Strausa, powstała elektrodynamika kwantowa. Już po śmierci Einsteina zbudowano jej uogólnienie – teorię oddziaływań elektrosłabych (tę od bozonu Higgsa). Ostatecznie mamy dziś nie do końca satysfakcjonujący, lecz zgodny z doświadczeniem, Model Standardowy cząstek. Zawiera on mnóstwo parametrów eksperymentalnych i oparty jest na kwantowej teorii pola. Mamy więc połączenie STW i fizyki kwantowej. I mamy też spory impas, ponieważ od czterdziestu lat nie udało się znaleźć teorii bardziej zadowalającej teoretycznie oraz zgodnej z eksperymentem. Może ulepszony LHC pozwoli uzyskać istotnie nowe dane eksperymentalne.

Natomiast OTW nie udało się połączyć z żadną teorią kwantową aż do dziś, mimo różnych cząstkowych osiągnięć. Chyba nikt nie stara się już kontynuować programu jednolitej teorii pola w sensie Einsteina: tzn. zbudowania wspólnej niekwantowej teorii oddziaływań. Wydaje się, że Einstein zaczął nie od tej strony, bo OTW jest marnym punktem wyjścia do badania zjawisk atomowych.

Niepowodzenie Einsteina trzeba widzieć na tle całości. Nauka wbrew pozorom jest bardziej historią niepowodzeń niż sukcesów, tzn. niepowodzenia są chlebem powszednim, sukcesy – świętem. Dzisiejsza fizyka fundamentalna, sześćdziesiąt lat po śmierci Einsteina, wygląda raczej na zagubioną. Ogromny program superstrun, angażujący od paru dziesiątków lat najzdolniejszych teoretyków świata z Edwardem Wittenem na czele (indeks Hirscha 150 i nadal rośnie), ugrzązł zdaje się na dobre, w każdym razie wymierne korzyści przyniósł do tej pory raczej matematyce niż fizyce. Uczeni pracujący w tej dziedzinie powtórzyli podobny błąd co Einstein: dali się uwieść matematyce i wylądowali w tzw. krajobrazie superstrun, w którym udowodnić można wszystko i niczego nie można przewidzieć.

Einstein miał oczywiście nadzieję, że któregoś dnia okaże się, iż w sprawie jednolitej teorii słuszność jest po jego stronie. Z biegiem lat ta nadzieja odsuwała się w coraz dalszą przyszłość. Bardzo niewielu uczonych tak głęboko utożsamiało się z tym, co robi i w co wierzy. Nauka nie była dla niego pracą, lecz sposobem realizacji powołania. Ta sama ścisła przyczynowość, która obowiązywała w jego fizyce, kształtowała także jego wyobrażenia o miejscu człowieka w świecie. Einstein wypowiadał się nieraz, że gdyby wiedział, iż ma umrzeć w ciągu godziny, to wcale by się tym nie przejął, gdyż wierzy w porządek świata, w którym człowiek jest tylko małą cząstką całości, a osobowość czymś w rodzaju złudzenia optycznego. Można mu wierzyć, bo potem rzeczywiście żył z wyrokiem śmierci. Ostatnie siedem lat życia przeżył z dużym zdiagnozowanym tętniakiem aorty brzusznej – nie można było wówczas zrobić operacji, uczony wiedział, że pewnego dnia tętniak pęknie. Kiedy to się stało, nie pozwolił się dręczyć lekarzom, sądził, że lepiej umrzeć, skoro nadszedł czas. Spokojnie porozmawiał z pasierbicą Margot, z synem Hansem Albertem, próbował nawet kontynuować jakieś zaczęte rachunki. Uprzednio zadbał, aby po śmierci jego ciało spalono, a prochy rozrzucono w nieznanym miejscu. Za coś w złym guście uważał pielgrzymki do grobów sławnych ludzi. Piękny przykład, że można obejść się bez magii i bez samozwańczych przedstawicieli Boga na ziemi nawet w obliczu śmierci.

Nie czuł się pokonany ani przegrany. Dwa tygodnie przed śmiercią rozmawiał z nim na różne tematy historyk nauki I.B. Cohen. Wspomina on: „Ogromny kontrast zachodził między jego cichą mową a dudniącym śmiechem. Lubił żartować, za każdym razem, gdy powiedział coś, co mu się podobało, albo usłyszał coś, co do niego przemówiło, wybuchał grzmiącym śmiechem, który odbijał się od ścian”. Jego śmiech wspominało wielu ludzi, którzy go znali. Hedwig Born, żona Maksa, po długich latach niewidzenia pisała do niego: „Chciałabym móc usłyszeć jeszcze raz twój potężny śmiech”.

Einstein_laughing

Erwin Schrödinger, kwanty i amory, 1926

Stworzenie mechaniki kwantowej było zapewne największym osiągnięciem wieku XX w fizyce, pozwalając – jeśli nie rozumieć – to w każdym razie obliczać, jak zachowują się cząstki mikroświata. Dzisiejszy postęp technologii, genetyki molekularnej, nanotechnologii byłby bez tej teorii zupełnie niemożliwy. Żałować wypada, iż zasad mechaniki kwantowej nie uczy się w szkole – to wcale nie musi być trudne, a z pewnością jest ciekawsze niż równie pochyłe i bloczki zaśmiecające egzaminy maturalne z fizyki i w konsekwencji programy szkolne.

W roku 1925 Werner Heisenberg (23 lata) i niezależnie od niego Paul Dirac (22 lata) sformułowali abstrakcyjne zasady mechaniki kwantowej. Mówiło się o Knabenphysik – fizyce tworzonej przez chłopców. Z początku nie było jasne, jak stosować i jak rozumieć owe dziwne zasady. Formalizm był mądrzejszy od jego autorów. Sytuacja zmieniała się jednak z miesiąca na miesiąc. Już w styczniu 1926 roku było jasne, że mechanika kwantowa ma sens: udało się zastosować formalizm Heisenberga do atomu wodoru i obliczyć skwantowane energie elektronu (Wolfgang Pauli, 25 lat). To samo uzyskał Bohr w 1913 roku, ale jego model był niekonsekwentny: trochę klasyczny, trochę ad hoc. Teraz teoria była na tyle zwariowana, że mogła być prawdziwa.

W zestawieniu z innymi twórcami mechaniki kwantowej trzydziestosiedmioletni Erwin Schrödinger może wydawać się człowiekiem bardzo już dojrzałym.erwin

Jednak to on napisał najpopularniejsze równanie teorii – nazwane jego imieniem i do dziś niezwykle ważne w różnych zastosowaniach. Jego podejście było całkowicie oryginalne i zupełnie różne od wspomnianych „chłopców” z Getyngi i Cambridge, zamiast kwantów Schrödinger mówił o falach. Reguły Bohra określały dozwolone orbity w atomie, orbity te były numerowane kolejnymi liczbami naturalnymi (słowo „kwantowanie” znaczy właśnie to, że nie wszystkie wartości są dozwolone, lecz jedynie pewien ich ciąg). Schrödinger zadał sobie pytanie, skąd mogą się brać takie liczby naturalne? W fizyce klasycznej znane są takie zagadnienia: mówi się wówczas o falach stojących. Są to np. różne drgania struny zamocowanej na końcach: dopuszczalne są tylko takie sinusoidy, które na końcach mają zera. Dzięki temu struna emituje dźwięk podstawowy i jego wielokrotności (w sensie częstotliwości).

Standing_waves_on_a_string

Fale stojące mają ściśle określone częstotliwości, różne instrumenty muzyczne wykorzystują ten fakt na wiele pomysłowych sposobów. Zawsze mamy tam do czynienia z ograniczonym obszarem przestrzennym, w którym powstaje dźwięk – np. piszczałka organów albo układ trębacz+trąbka.

Czy można elektron w atomie wodoru potraktować jako taką falę stojącą? Problem był oczywiście trójwymiarowy – bardziej skomplikowany niż struna, ale komplikacje były wyłącznie natury matematycznej. W dodatku fale były już dobrze znane i zbadane przez poprzednie generacje matematyków i fizyków. Rzeczywiście, elektron w atomie wodoru można uznać za związany przyciąganiem elektrostatycznym. Przyciąganie to sprawia, że jest on zamknięty w czymś, co nazywamy studnią potencjału. Schrödinger obliczył kształt dozwolonych funkcji falowych elektronu – muszą one mieć tę cechę, że maleją asymptotycznie do zera wraz z odległością od protonu. Obliczył też dozwolone wartości – okazały się prawidłowe. Wynik Bohra po raz trzeci został uzyskany z jeszcze innych założeń.

hydrogen_functions

Nasuwało się pytanie, co znaczy sama funkcja falowa, oznaczana odtąd tradycyjnie grecką literą ψ (psi)? W dodatku równanie Schrödingera jest zespolone, więc i funkcja falowa ψ też powinna być zespolona. Liczba zespolona to para liczb rzeczywistych: np. długość wektora na płaszczyźnie i jego kąt z osią Ox. Schrödinger wyobrażał sobie, że kwadrat modułu (długości zespolonego wektora) opisuje rozmycie ładunku elektronu w przestrzeni. Nie miał racji, ów kwadrat opisuje prawdopodobieństwo znalezienia elektronu w danym obszarze, ale sam elektron nie jest w żaden sposób rozmyty: albo obserwujemy cały elektron, albo nie ma go wcale.

W zasadzie od razu było jasne, że cykl prac Schrödingera z roku 1926 wart jest Nagrody Nobla i rzeczywiście uczony otrzymał ją kilka lat później razem z Dirakiem, a rok po Heisenbergu.

Zastanawiano się nieraz nad tym wybuchem kreatywności profesora, który dotąd był szanowanym fizykiem, lecz nie uchodził za geniusza. Herman Weyl, znakomity matematyk, twierdził, że ów przypływ energii twórczej Schrödingera związany był z jego ówczesnymi sukcesami erotycznymi. Weyl zapewne wiedział, co mówi, był bowiem kochankiem żony Schrödingera, Anny. Pierwszą pracę na temat atomu wodoru pisał Schrödinger podczas urlopu bożonarodzeniowego 1925 w Arosie. Towarzyszyła mu tam jedna z jego dawnych flam, jej nazwisko pozostaje nieznane historykom. W trakcie roku 1926 Schrödinger poznał (dzięki żonie) czternastoletnią Ithi Junger, której pomagał w matematyce i w której się zakochał. Ich związek trwał kilka lat, został zresztą w pełni skonsumowany dopiero po ukończeniu przez Ithi lat siedemnastu. Na zdjęciu z lewej strony Ithi, w środku Hilde March, żona kolegi Schrödingera i matka jego nieślubnego dziecka, z prawej Anny. Tryb życia uczonego oburzał niektórych, choć najbardziej zainteresowana, Anny Schrödinger, nie wydawała się nim szczególnie zbulwersowana, Weyl nie był zresztą jej jedynym kochankiem.

women