Einstein o Lukrecjuszu, 1924

PIOTR: Ktoś ty? DUCH: Lukrecy, Lewiatan, Voltaire, Alter Fritz, Legio sum.

[A. Mickiewicz, Dziady]

Dziś zajmiemy się diabłem zwanym przez wieszcza Lukrecy, czyli Lukrecjusz.

Żyjący w I w. p.n.e. Titus Lucretius Carus, autor poematu O rzeczywistości (in. O naturze rzeczy), był zarazem wybitnym poetą i zwolennikiem atomizmu w wersji Epikura. Idea, że świat zbudowany jest z atomów i nie jest kierowany przez osobowe bóstwa, przyjmowała się trudno i z oporami. Człowiek ma umysł, który chętnie postrzega rzeczywistość w kategoriach celu. Dlatego w różnych epokach od starożytności począwszy traktowano poglądy Lukrecjusza jako absurdalne i heretyckie. Nie wierzono, aby jako tako uładzony wszechświat mógł powstać bez czynnej interwencji bóstwa. Zderzające się w nieskończoności atomy wydawały się wizją jałową i ponurą, a do tego wielce nieprawdopodobną: no bo jak długo musiałyby się zderzać atomy, by utworzyć Einsteina? Wiemy jednak, że Einstein powstał nie z mgławicy gazowej, lecz jako człowiek, a człowiek od australopiteka itd. itp. Życie na Ziemi powstało (w skali kosmicznej) niemal nazajutrz po utworzeniu się planety, co wskazywałoby albo na to, że ewolucja od chemii do biologii nie jest aż tak nieprawdopodobna, albo wracamy do kapłanów i ich wyjaśnień na ten temat, które nic nie wyjaśniają.

Poniższy tekst jest wstępem Alberta Einsteina do poematu Lukrecjusza. Uczony zdobył w tym czasie światową sławę, choć nie wszystkich Niemców to cieszyło, albowiem był on Żydem. W kraju, po puczu monachijskim Adolfa Hitlera i wciąż w kryzysie gospodarczym, narastały kompleksy i nacjonalizm. Toteż Einstein czuł się tam, jak „ktoś, kto leży w dobrym łóżku, lecz oblazły go pluskwy”. Znamy to uczucie.

https://kierul.wordpress.com/2013/02/01/einstein-zydowski-prorok-we-wlasnym-kraju/

https://kierul.wordpress.com/2012/11/22/einstein-i-mann-koniec-wielkich-niemiec/

Każdy, kto nie idzie całkowicie z duchem naszego czasu i kto czuje się niekiedy obserwatorem otaczającego świata, a zwłaszcza duchowej postawy swych współczesnych, nie może pozostać obojętny na czar dzieła Lukrecjusza. Widzimy w nim bowiem, jak wyobraża sobie świat człowiek niezależny, wyposażony w żywe doznania zmysłowe i zdolność rozumowania, obdarzony naukową i spekulatywną ciekawością, człowiek, niemający najmniejszego pojęcia o osiągnięciach współczesnej nauki, które nam wpojono w dzieciństwie, nim jeszcze mogliśmy się z nimi skonfrontować w sposób świadomy i krytyczny.

Głębokie wrażenie robi na nas niezmącona pewność Lukrecjusza – wiernego ucznia Demokryta i Epikura – że świat jest zrozumiały, tzn. wszystko, co się w nim dzieje, powiązane jest łańcuchem przyczyn i skutków. Żywi on mocne przekonanie, a nawet sądzi, iż potrafi udowodnić, że wszystko bierze się z poddanego prawom ruchu niezmiennych atomów, którym nie przypisuje żadnych innych własności prócz geometrycznych i mechanicznych. Jakości zmysłowe, takie jak ciepło, zimno, barwa, zapach i smak, sprowadzają się do ruchu atomów; to samo dotyczy życia. Dusza i umysł są w jego mniemaniu zbudowane ze szczególnie lekkich atomów, wiąże on przy tym (niezbyt konsekwentnie) pewne szczególne własności materii z konkretnymi cechami doświadczenia.

Za najważniejszy cel swego dzieła uważa Lukrecjusz uwolnienie człowieka od niewolniczego strachu, wynikłego z religii i przesądów, a podsycanego i wykorzystywanego przez kapłanów dla własnych celów. Z pewnością jest to dla niego bardzo ważne. Wydaje się jednak, że powoduje nim przede wszystkim chęć przekonania czytelników do atomistyczno-mechanistycznego obrazu świata, choć nie odważa się tego powiedzieć wprost praktycznie nastawionym Rzymianom. Wzruszający jest też jego szacunek dla Epikura oraz języka i kultury Grecji, które uważa za znacznie doskonalsze niż język łaciński i kultura rzymska. Przynosi Rzymianom zaszczyt, że można było mówić im takie rzeczy. Czy któryś ze współczesnych narodów potrafiłby wypowiadać się tak szlachetnie o innym?

Wiersze Dielsa czyta się tak naturalnie, iż zapomina się, że to przekład.

Berlin, czerwiec 1924 roku

http://einsteinpapers.press.princeton.edu/vol14-doc/498

Reklamy

Jak Ptolemeusz nie odkrył prawa Snella

Klaudiusz Ptolemeusz był astronomem i astrologiem, wierzył zapewne w boskość ciał niebieskich i studiowanie ich ruchów traktował jako udział w pewnym misterium. Bo też zrozumienie każdej, nawet drobnej tajemnicy świata ma w sobie coś z misterium i z obrzędu wtajemniczenia. Nie trzeba do tego mieszać ludzi w szatach rytualnych, profesjonalistów, którzy zazwyczaj niczego nie rozumieją. Nie potrzeba pleść o Bogu, o którym wszyscy wiemy bardzo niewiele.

Wyjaśnienie ruchu planet musiało Ptolemeuszowi przynieść wielką satysfakcję: dokończył dzieła wielu pokoleń. My dzisiaj patrzymy na jego teorię jak na wstęp do Kopernika i Keplera, lecz przez czternaście wieków uważano ją za niedościgniony wzór. Geocentryzm nikomu właściwie nie przeszkadzał, był oczywisty, tak jak my uważamy za oczywistość, że Ziemia się porusza, choć nie każdy potrafiłby wskazać doświadczalne dowody tego faktu. Ptolemeusz zresztą doskonale sobie zdawał sprawę z możliwości ruchu Ziemi, odrzucał ją przedstawiając pewne argumenty, a więc nie z braku wyobraźni.

Był zawodowym uczonym, zajmował się całością nauk matematycznych, a więc także geografią i skalami muzycznymi oraz optyką. Pierwszy opisał ilościowo i doświadczalnie zbadał zjawisko załamania światła. Używał do tego następującego przyrządu.

ptolemy_refraction

Światło biegnie po łamanej ZEH, DEB jest linią rozdziału dwóch ośrodków, np. na dole mamy wodę albo szkło (w kształcie połowy walca), a u góry powietrze. Koło zaopatrzone jest w podziałkę w stopniach. Uczony mierzył kąty padania i oraz załamania r. Oto jego wyniki dla granicy powietrze-woda.

 

i r
10 8
20 15,5
30 22,5
40 29
50 35
60 40,5
70 45,5
80 50

Jest to rzadki przypadek starożytnej pracy eksperymentalnej poza astronomią. Optyka była przedłużeniem astronomii, więc dość naturalne było zainteresowanie zjawiskami świetlnymi. Tabelka Ptolemeusza nie jest jednak do końca wynikiem doświadczalnym, zauważymy to, analizując dokładniej wartości kątów załamania i ich różnice.

i r pierwsze różnice drugie różnice
10 8 8
20 15,5 7,5 -0,5
30 22,5 7 -0,5
40 29 6,5 -0,5
50 35 6 -0,5
60 40,5 5,5 -0,5
70 45,5 5 -0,5
80 50 4,5 -0,5

Uczony najwyraźniej „poprawiał” surowe dane eksperymentalne, być może nawet nie wykonał wszystkich pomiarów, zachował się jak niesumienny student podczas zajęć laboratoryjnych: i tak przecież wiadomo, co ma wyjść. Nie należy z tego powodu wszczynać larum, że przyłapaliśmy Ptolemeusza na oszustwie: w jego czasach i jeszcze bardzo długo potem starano się raczej uzyskać pewną formułę, jakiś rodzaj matematycznego zrozumienia zamiast relacjonować listę wyników obarczonych błędami. Teoria i eksperyment spotykały się w nieco innym miejscu niż dziś. Ptolemeusz zapewne chciał po inżyniersku rozumieć, skąd się biorą liczby w jego tabelce. Funkcja liniowa tu nie pasuje, bo wówczas różnice byłyby stałe. Jeśli drugie różnice (czyli różnice kolejnych różnic) są stałe, to znaczy, że opisujemy obserwowaną zależność funkcją kwadratową (*). Jej wykresem będzie parabola.

woda

Czerwone kropki są prawidłowymi wynikami dla kątów załamania w wodzie. Błędy nie są wielkie, choć znacznie przewyższają niedokładności tolerowane wówczas w astronomii. Podobne dane przedstawia Ptolemeusz dla szkła, także i one są dopasowane do paraboli.

szklo

W istocie Ptolemeusz stracił okazję do odkrycia prawa bardziej zadowalającego pod względem matematycznym. Podał on bowiem także wyniki dla załamania z wody do szkła. Także i tym razem dopasował je do funkcji kwadratowej, choć z pewnymi anomaliami. Nie zauważył jednak, że skoro ma dane dla granic ośrodków powietrze-woda oraz szkło-woda, to kąty dla załamania z wody do szkła powinny już wynikać z poprzednich danych. Wystarczy bowiem wyobrazić sobie następującą sekwencję ośrodków: woda-powietrze-szkło. Dla obu granic znamy zależności miedzy kątami po obu stronach (Ptolemeusz wiedział, że kierunek biegu promieni nie ma znaczenia w załamaniu, wyobrażał sobie zresztą nie promienie świetlne, lecz promienie wzrokowe, które wybiegają z oka). Możemy sobie następnie wyobrazić, że warstwa powietrza staje się coraz cieńsza: kąty w wodzie i w szkle cały czas są takie same, logicznie jest więc przypuścić, że pierwsze dwie zależności dają nam tę trzecią (woda-szkło). Ptolemeusz nie poszedł tą drogą i chyba nie zauważył, że przybliżenie kwadratowe jest nie do utrzymania dla trzeciej pary ośrodków. W gruncie rzeczy prawo Snella, choć takie proste, wymaga spojrzenia na zjawisko załamania w odpowiedni sposób, mieści w sobie od razu pewną teorię. Nie miejmy za złe Ptolemeuszowi w II w.n.e., że nie poradził sobie z problemem, który jeszcze na początku wieku XVII okazał się za trudny dla samego Johannesa Keplera. Ostatecznie prawo załamania odkrył Ibn Sahl, żyjący w X wieku, kiedy nasi przodkowie kryli się po lasach, a w XVII wieku niezależnie od siebie Thomas Harriot, Willebrord Snell i René Descartes. Tylko ten trzeci opublikował to prawo, a także jego mechaniczne uzasadnienie, zresztą fałszywe.

(*) Łatwo zauważyć, że różnice dla funkcji kwadratowej są liniową funkcją argumentu. W przypadku biegu promieni z powietrza do wody Ptolemeusz stosuje (niejawnie) funkcję

r=\dfrac{33}{40}i-\dfrac{1}{400}i^2.

Funkcja odwrotna nie jest już kwadratowa (musimy rozwiązać ostatnią równość względem i). Zatem złożenie tej funkcji odwrotnej z funkcją kwadratową nie może nam dać funkcji kwadratowej dla trzeciej pary ośrodków.

Dane Ptolemeusza

 

Wzór Herona, Archimedes i zasada Arnolda

Heron z Aleksandrii żył gdzieś między datą śmierci Archimedesa (212 p.n.e.) a Pappusem, żyjącym w IV w.n.e. Jedyna informacja pozwalająca lepiej zlokalizować go w czasie, to zaćmienie Księżyca w roku 62 n.e., które opisał. Prawdopodobnie więc w owym roku zaliczał się między żywych, nim – jak wszyscy – przeszedł do krainy cieni. Nauczał w aleksandryjskim Muzeum (które było czymś w rodzaju elitarnej uczelni i instytutu badawczego), pozostawił wiele dzieł, i to one nas tu interesują.

Nastawiony praktycznie, w swej Pneumatyce opisał wiele urządzeń poruszanych siłą powietrza albo pary wodnej. Były tam urządzenia takie, jak wrota świątynne, które same się otwierały, gdy rozpalono ogień na ołtarzu. Trzeba było zaczekać, aż w naczyniu z prawej skondensuje się dostatecznie dużo pary, czas biegł wtedy wolniej, ludzie się nie spieszyli.

536px-Heron_-_automatische_Tempeltür

Samoczynne urządzenia zaspokajały potrzebę cudowności i podziwu, tę samą co dziś Gwiezdne wojny albo krwawiąca hostia w Legnicy, poza tym jednak nie służyły do niczego. Heron napisał podręcznik efektów specjalnych.

Zawartość [tego dzieła] stanowiła zawsze źródło konsternacji i rozpaczy dla poważnie myślących badaczy. Heron opisuje wprawdzie pewne użyteczne urządzenia, jak pompa strażacka albo organy wodne, ale cała reszta to zabawki, mechaniczne kukiełki albo przyrządy do salonowych sztuczek magicznych. Naczynia, które tryskają wodą bądź winem oddzielnie albo w stałych proporcjach, śpiewające ptaszki i grające trąbki, figurki poruszające się, gdy na ołtarzu rozpali się ogień, zwierzęta, które piją, gdy poda im się wodę – jak szanować autora, który poważnie zajmuje się tymi wszystkimi błahostkami? (A.G. Drachmann)

Napisał też Heron sporo dzieł geometrycznych, ale nastawionych inżyniersko, praktycznych. W jednym z nich, Metrikon, znajdują się metody obliczania pola powierzchni oraz objętości brył. W Egipcie, gdzie po każdym wylewie Nilu trzeba było od nowa wyznaczać granice działek rolnych, geometria praktyczna była w cenie. Geometria po grecku znaczy właśnie sztukę mierzenia ziemi.

Oto jeden z przykładów Herona. Mamy trójkąt o bokach 7, 8, 9. Znaleźć jego pole. Uczony podaje przepis: obliczamy najpierw długość obwodu i dzielimy ją przez dwa:

p=\dfrac{7+8+9}{2}=12.

Następnie od liczby tej odejmujemy długości poszczególnych boków a,b,c:

p-a=12-7=5,

p-b=12-8=4,

p-c=12-9=3,

Uzyskane w ten sposób cztery liczby mnożymy przez siebie i wyciągamy pierwiastek z wyniku:

S=\sqrt{p(p-a)(p-b)(p-c)}=\sqrt{720}.

Jest to tzw. wzór Herona. Uczony nie kończy jednak na zapisaniu pierwiastka – geodeta potrzebuje jakiegoś przybliżenia. Uczony podaje w tym celu pewien algorytm. Najbliższym pełnym kwadratem większym niż 720 jest liczba 729=27^2. Weźmy 27 jako pierwsze przybliżenie naszego pierwiastka. Wiemy, że to za dużo. Możemy podzielić 720 przez 27 – gdyby to była prawidłowa wartość pierwiastka, to otrzymalibyśmy tę samą liczbę. Nasze przybliżenie jest z nadmiarem, po podzieleniu dostaniemy wynik z niedomiarem: 26\frac{2}{3}. Bierzemy teraz średnią arytmetyczną obu przybliżeń i to będzie nasz wynik:

\dfrac{27+26\frac{2}{3}}{2}=26+\dfrac{1}{2}+\dfrac{1}{3}.

Heron kończy w tym miejscu, obliczając, że kwadrat ostatniej liczby jest trochę za duży. W postaci algebraicznej można by ten algorytm znajdowania \sqrt{A} zapisać następująco:

x_{n+1}=\dfrac{1}{2}\left(x_n+\dfrac{A}{x_n}\right).

Jest on bardzo szybko zbieżny kolejne wartości to: 27; 26,83333333; 26,83281573 – w trzecim przybliżeniu wszystkie cyfry są dokładne!

Heron nie tylko podał przepis na obliczanie pola trójkąta, ale także zamieścił jego dowód. Jak się zdaje, wyrażenie to znał już Archimedes, Heron nie przypisuje sobie zresztą pierwszeństwa. Ponieważ to jego praca się zachowała, mówimy o wzorze Herona. W dziejach nauki jest mnóstwo takich mylnie przypisywanych określeń. Tak wiele, że Michael Berry, znakomity fizyk matematyczny, sformułował kiedyś dwie następujące żartobliwe zasady:

Zasada Arnolda. Jeśli jakieś pojęcie nazwano czyimś imieniem, to nie jest to imię odkrywcy.

Zasada Berry’ego. Zasada Arnolda stosuje się do samej siebie.

(Chodzi o Vladimira Arnolda, też znakomitego matematyka.)

Podamy trzy dowody. Pierwszy, algebraiczny, znaleziony został przez uczonych arabskich i podawany był także przez Leonarda Pisano, zwanego Fibonacci (od filius Bonacci – syn Bonacciego) w XIII w. oraz Niccolò Fontanę, zwanego Tartaglia (Jąkała) w XVI w. Drugi będzie współczesny trygonometryczny. Trzeci, geometryczny, podany przez Herona, jest najmniej przejrzysty dla dzisiejszego czytelnika.

  • Jest to właściwie dowód „siłowy”, wywodzący się z przekształceń formalnych.

heron4

Obliczamy brakującą wysokość trójkąta, wyrażając ją przez u=b\cos\alpha i korzystając z twierdzenia cosinusów. Można tu nie wprowadzać funkcji cosinus i korzystać wyłącznie z twierdzeń zawartych w Elementach Euklidesa.

16S^2=4c^2h^2=4c^2(b^2-u^2)=4c^2b^2-4c^2u^2.

Z tw. cosinusów mamy

a^2=b^2+c^2-2bc\cos\alpha=b^2+c^2-2cu \Rightarrow 2cu=b^2+c^2-a^2.

Podstawiając to do wyrażenia wyżej i korzystając ze wzorów skróconego mnożenia, otrzymujemy wynik w postaci

16S^2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c).

  • Punktem wyjścia dwóch pozostałych dowodów jest następująca obserwacja. Środek okręgu wpisanego w trójkąt leży na przecięciu dwusiecznych kątów trójkąta. Ponieważ dwie styczne poprowadzone z pewnego punktu na zewnątrz okręgu są tej samej długości, możemy łatwo wyrazić pole trójkąta jako sumę trzech prostokątów.

heron

Wynika stąd, że pole trójkąta równe jest

S=p\rho.

Należy więc wyrazić \rho przez długości boków.

Podejście trygonometryczne. Korzystamy z następującej tożsamości słusznej, gdy trzy kąty \alpha, \beta, \gamma dają w sumie kąt prosty:

1=\mbox{ tg }\alpha \mbox{ tg }\beta+\mbox{ tg }\alpha\mbox{ tg }\gamma+\mbox{ tg }\beta\mbox{ tg }\gamma.

Do wykazania tego faktu wystarczy poniższy rysunek.

heron2

Zaczynamy od lewego niebieskiego trójkąta, potem dorysowujemy ten sam trójkąt, lecz przeskalowany (wszystkie boki razy \mbox{tg}\beta ). Uzupełniamy rysunek do prostokąta. Trójkąt wewnątrz musi mieć kąt \beta, a stąd wynika, że trzeci zaznaczony kąt równy jest \alpha. Możemy więc długości boków zapisać jak w wyrażeniach z prawej strony prostokąta. Równość obu boków prostokąta daje nam szukaną tożsamość (*).

Wracając do rysunku trójkąta z okręgiem wpisanym, łatwo zauważyć, że tangensy połowy kątów trójkąta znaleźć możemy z odpowiednich trójkątów prostokątnych, np. w niebieskim trójkącie, mamy

\mbox{tg }\beta=\dfrac{\rho}{y}=\dfrac{\rho}{p-b}.

Wstawiając te wyrażenia do powyższej tożsamości, otrzymuje się wyrażenie na promień okręgu wpisanego, a stąd pole trójkąta.

  • Na koniec przedstawimy oryginalny dowód Herona. Wiadomo, że nie jest to dowód samego Archimedesa, ponieważ uczony z Syrakuz nie używał pewnych środków technicznych tu użytych. Oto rysunek z pracy Herona w wydaniu filologicznym oraz jego przejrzystsza wersja z książki Geometry by Its History, A. Ostermanna i G. Wannera.

metrikon

geometry by its history

Mamy trójkąt ABC z dwusiecznymi BI, AI, CI. Rysujemy dwie prostopadłe: do BC w wierzchołku C oraz do BI w punkcie I. BL jest w ten sposób przeciwprostokątną dwóch trójkątów prostokątnych BLC oraz BLI. Możemy więc na obu opisać wspólny łuk okręgu zaznaczony linią przerywaną. Rozważamy teraz kąty o wierzchołku w punkcie M. Dwa z nich to \gamma i \beta, co wynika z twierdzenia o kacie środkowym i kacie wpisanym opartym na tym samym łuku. Zatem kąt CML musi być równy \alpha, bo suma trzech kątów trójkąta równa się kątowi półpełnemu. Wobec tego kąt CBL jest równy  \alpha/2. Mamy więc dwa podobne trójkąty prostokątne: BLC oraz AID. Mamy stąd równość

\dfrac{l}{\rho}=\dfrac{z+y}{x}.

Także trójkąty IKE oraz KLC są podobne (kąty wierzchołkowe w K). A więc

\dfrac{l}{\rho}=\dfrac{z-m}{m} =\dfrac{z}{m}-1.

Porównując oba równania, wyznaczamy m:

m=\dfrac{xz}{p}.

Promień \rho jest wysokością trójkąta prostokątnego BIK opuszczoną na przeciwprostokątną, mamy zatem

\rho^2=ym=\dfrac{xyz}{p},

co pozwala natychmiast znaleźć pole trójkąta.

(*) Tożsamość, z której tu korzystamy, można także wyprowadzić w sposób czysto formalny bez żadnych rysunków. Mamy bowiem

\cos(\alpha+\beta+\gamma)=0,

korzystając najpierw ze wzoru na cosinus sumy, a następnie ze wzorów na cosinus oraz sinus sumy, dostaniemy:

\cos\alpha\cos(\beta+\gamma)-\sin\alpha\sin(\beta+\gamma)=

\cos\alpha\cos\beta\cos\gamma-\cos\alpha\sin\beta\sin\gamma-\sin\alpha\sin\beta\cos\gamma-\sin\alpha\cos\beta\sin\gamma=0.

Wystarczy teraz obie strony podzielić przez \cos\alpha\cos\beta\cos\gamma, aby uzyskać wynik.

Arystarch z Samos (przed 230 r. p.n.e.)

Archimedes wspomina o jego osobliwym poglądzie na wszechświat:

Wedle jego hipotez gwiazdy stałe oraz Słońce są nieruchome, Ziemia unoszona jest po kole wokół centralnie położonego Słońca, a sfera gwiazd stałych (mająca ten sam środek co Słońce) jest tak ogromna, iż koło, po którym według niego unoszona jest Ziemia, ma się do odległości gwiazd stałych jak środek sfery do jej powierzchni.

Następnie Archimedes udaje, że nie rozumie, o co chodzi: środek sfery to punkt, a więc nie jest w żadnej proporcji do promienia sfery. Arystarch najwyraźniej miał na myśli tylko tyle, że sfera gwiazd stałych musi być ogromna w porównaniu do orbity Ziemi, inaczej dostrzeglibyśmy, że gwiazdy przesuwają się w cyklu rocznym. Wymaganie takie było konieczne w każdej teorii heliocentrycznej, paralaksę roczną odkryto bowiem dopiero w 1838 roku, wcześniej było to technicznie niemożliwe. Pogląd Arystarcha nie przyjął się wśród greckich astronomów, można tylko spekulować, dlaczego tak się stało. Ścisła astronomia matematyczna Greków miała dopiero powstać. Najprawdopodobniej system geocentryczny pozwalał zdać sprawę z obserwowanych zjawisk, nie prowadząc do żadnych paradoksów i nie zmuszając naszej wyobraźni do gwałtownego przeskoku. Toteż poczekaliśmy na ów przeskok jeszcze trochę, bo aż do Kopernika, a właściwie Keplera i Galileusza.

Arystarch pochodził z Samos, tak jak Pitagoras, Azja Mniejsza i pobliskie wyspy (obecnie wybrzeże Turcji i wyspy greckie – okolice pojawiające się w newsach z powodu imigrantów) to kolebka naszej cywilizacji naukowej. W czasach Arystarcha, w pierwszej połowie III w.p.n.e., upłynęły już trzy wieki od Talesa z Miletu, nauka przeniosła się do Aleksandrii. Dwa pokolenia przed Arystarchem Euklides zebrał większość znanej wiedzy geometrycznej w Elementy, jedną z najważniejszych książek w dziejach ludzkości. Arystarch także przebywał w Aleksandrii, ale nie znamy szczegółów. To, co wiemy o tych greckich uczonych: ich najważniejsze dzieła, nie zawsze w całości, i prawie żadnych szczegółów biograficznych, bliskie jest ideałowi Alberta Einsteina. Sądził on, że liczą się tylko osiągnięcia, a błędy i biografia to rzeczy nieistotne.

Znany był jako Arystarch Matematyk, zapewne dla odróżnienia od imienników o odmiennych zainteresowaniach. Zachowała się jedna tylko jego praca: O rozmiarach i odległościach Słońca i Księżyca. Jak na matematyka przystało, szacuje on owe odległości z góry i z dołu. Największe znaczenie miało jego oszacowanie odległości Ziemia-Słońce w porównaniu do odległości Ziemia-Księżyc. Wyszło mu, że Słońce jest od nas 18 do 20 razy dalej niż Księżyc, a tym samym, że musi ono być mniej więcej tyle samo razy większe od naszego satelity, gdyż średnice kątowe obu ciał są jednakowe – wiemy to z przebiegu zaćmień Słońca. Liczby podane przez Arystarcha są mniej więcej 20 razy zaniżone, ale wynik ten przyjmowali wszyscy astronomowie aż do Kopernika. Kepler nieco je poprawił, ale też właściwie nic pewnego nie wiedział. Odległość Ziemia-Słońce wyznaczono poprawnie dopiero w drugiej połowie XVII wieku.

arystarch0

Istotę rozumowania Arystarcha przedstawia rysunek. Przyjął on założenie, że kiedy widzimy dokładnie połowę Księżyca, kąt między nim a Słońcem równy jest 87º. Dokładnie biorąc, nie używano wtedy stopni, Arystarch mówi, że kąt jest mniejszy od kąta prostego o 1/30 kąta prostego. Według naszej wiedzy trygonometrycznej, stosunek obu odległości równy jest

\dfrac{d}{r}=\dfrac{1}{\sin 3^{\circ}}

Co trzeba zrobić? Wystarczy wpisać w Google’a: sin(3 deg), a otrzymamy wynik: 0.0523359562. Wartość 1/sin(3 deg) jest równa mniej więcej 19. Oczywiście, w czasach Arystarcha nie było Google’a, nie było też pojęcia funkcji sinus, które z Indii przeszło do Arabów i następnie do Europy, ale dużo później. Używali go dopiero Regiomontanus i Kopernik, który pierwszy ogłosił tablice sinusów. Grecka trygonometria powstała dużo później niż działał Arystarch. A więc jak oszacować wielkość sinusa (my dla wygody będziemy używać funkcji trygonometrycznych i kątów wyrażonych w stopniach), kiedy nie mamy nic? Arystarch wiedział, jak szybko rosną sinusy i tangensy wraz z kątem. Można to przedstawić rysunkiem.

arystarch

Widzimy z niego, że dodając takie same kąty, dodajemy coraz mniejsze wartości do sinusa (z lewej strony) i coraz większe odcinki do tangensa (z prawej strony). Nie wiemy, czy umiał tego dowieść, zachowane dowody tych faktów są dużo późniejsze. Intuicyjnie rzecz jest jednak jasna. Mamy nierówności:

\dfrac{\sin n\alpha}{\sin\alpha} < n<\dfrac{\mbox{tg}\: n\alpha}{\mbox{tg}\: \alpha}.

 

Jedno oszacowanie jest proste:

\dfrac{\sin 30^{\circ}}{\sin 3^{\circ}}<10\Rightarrow \dfrac{1}{\sin 3^{\circ}}<20.

Skorzystaliśmy z wartości sinusa 30º – a tę ostatnią można znaleźć, przepoławiając trójkąt równoboczny.

Do drugiego oszacowania można użyć funkcji tangens (oczywiście Arystarch mówił o pewnych proporcjach). Np.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{\cos 3^{\circ}}{\sin 3^{\circ}}=\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{15}{\mbox{tg}\: 45^{\circ}}=15.

Arystarch nie poszedł jednak na łatwiznę i znalazł oszacowanie dla \mbox{tg}\: 22,5^{\circ}, co pozwala ulepszyć wynik. Oto, jak rozumował, szukając tej wartości.

arystarch2

Mamy tu łuk okręgu o promieniu równym 1. Rysujemy dwusieczną kąta prostego, a potem jeszcze raz dwusieczną (linia kropkowana), szukaną wartość x możemy odnaleźć w trójkącie prostokątnym ABC, który jest także równoramienny. Stosując twierdzenie Pitagorasa (rodaka z Samos), otrzymamy równanie kwadratowe, które pozwala wyrazić x przez \sqrt{2}. Arystarch szukał czegoś prostszego, napisał więc następujące szacowanie:

(1-x)^2=2x^2>\dfrac{49}{25}x^2=\left(\dfrac{7}{5}x\right)^2,

opuszczając kwadraty po obu stronach i wyznaczając x, dostajemy

x=\mbox{tg}\: 22,5^{\circ}<\dfrac{5}{12}\Rightarrow \dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>\dfrac{12}{5}.

\dfrac{1}{\sin 3^{\circ}}>\dfrac{1}{\mbox{tg}\: 3^{\circ}}>\dfrac{22,5}{3}\dfrac{1}{\mbox{tg}\: 22,5^{\circ}}>18.

Mamy więc wynik Arystarcha. Znaczył on, że Słońce jest wielkie w porównaniu z Księżycem, a także z Ziemią (oszacował on też odległość Księżyca od Ziemi). Być może z powodu wielkości Słońca, Arystarch zaczął rozważać hipotezę heliocentryczną: naturalniej wygląda, gdy mniejsze ciało krąży wokół większego niż odwrotnie. Wartość kąta 87º przyjęta była najprawdopodobniej tylko po to, żeby pokazać, że nawet jak się weźmie jakiś mały kąt, to można oszacować stosunki boków w trójkącie. Jak na matematyka przystało, nie przejmował się bardzo rzeczywistymi wartościami liczbowymi, jeśli nie są całkowite albo nie mają jakichś szczególnych własności. Ironią historii niedbałe szacowanie Arystarcha przetrwało aż po XVII wiek. Już po Arystarchu wyznaczono odległość Księżyca od Ziemi na 60 promieni ziemskich. Słońce byłoby więc w odległości 1200 promieni ziemskich. Przyjmując jeszcze, ze sfery planet powinny do siebie przylegać, wyznaczano wielkość wszystkich sfer aż do gwiazd stałych. Oczywiście, nic to nie miało wspólnego z rzeczywistością.

Nawiasem mówiąc wartość \sin 3^{\circ} daje się wyrazić przez ułamki i pierwiastki z liczb całkowitych, co oznacza, że można ją uzyskać za pomocą jakiejś konstrukcji geometrycznej. Dokładne wyrażenie wygląda następująco:

\sin(3^{\circ})=-\frac{\sqrt{\frac{3}{2}}}{8}-\frac{1}{8 \sqrt{2}}+\frac{\sqrt{\frac{5}{2}}}{8}+\frac{\sqrt{\frac{15}{2}}}{8}+\frac{1}{2} \sqrt{\frac{1}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}-\frac{1}{2} \sqrt{\frac{3}{2} \left(\frac{5}{8}+\frac{\sqrt{5}}{8}\right)}ˆ

Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Grób Archimedesa (212 p.n.e.)

Najwybitniejszy matematyk starożytności, Archimedes, w roku swej śmierci był starym, siedemdziesięciopięcioletnim człowiekiem. Nie znaczy to jednak, że przestały go obchodzić sprawy ojczystych Syrakuz. Już dwa lata oblegali je bez skutku Rzymianie, później opowiadano, że machiny wojenne pomysłu Archimedesa bardzo przyczyniły się do obrony miasta, które w końcu zostało zdobyte podstępem, a nie frontalnym atakiem. Mimo wyraźnego rozkazu konsula Marcellusa wśród zamętu plądrowania i grabieży zginął także uczony. Przedstawiano później często tę scenę chwilowego triumfu siły nad duchem, którego zabić nie sposób.

DeathMosaic

Wyglądało to zapewne tak, jak na tej mozaice. Uczony używał do kreślenia figur specjalnego drobnego piasku, zwanego pulvis – proch, trzymanego w płaskim pojemniku. Nie rysował figur na ziemi. Cyceron pisze:

Wskrzeszę z prochu i przywołam do mierniczego pręta człowieka niepozornego, pochodzącego z tego samego miasta [Syrakuz] (…) mianowicie Archimedesa. Gdy byłem kwestorem, odszukałem jego grób, którego Syrakuzańczycy nie znali i twierdzili, że w ogóle go nie ma; grób zewsząd otoczony ciernistymi krzakami i gęstwiną. Wiedziałem bowiem, że na jego nagrobku wypisanych było kilka wierszy sześciostopowych, które pamiętałem i które mówiły, iż na szczycie nagrobka znajduje się kula i walec. [przeł. J. Śmigaj]

Grobu tego dziś już nie ma. Wynikiem, z którego Archimedes był tak dumny, że kazał go umieścić na swoim nagrobku, było znalezienie objętości oraz pola powierzchni kuli. Wpiszmy kulę w walec, jak poniżej.

426px-Archimedes_sphere_and_cylinder.svg

Objętość kuli to 2/3 objętości walca. Nie jest to twierdzenie oczywiste. W jednym ze swych traktatów, Metodzie, Archimedes sformułował rozumowanie mechaniczne pozwalające obliczyć objętość kuli.

Wyobraźmy sobie, że na nieważkiej dźwigni zawieszamy z jednej strony stożek i kulę, a z drugiej walec o wskazanych wymiarach (kierunek dźwigni pokrywa się z osią walca, jest on na nią niejako „nadziany”). Wszystkie trzy bryły są wykonane z tego samego materiału. Twierdzimy, że dźwignia jest w równowadze. Kiedy to wykażemy, łatwo już będzie ustalić objętość kuli.

archimedes

Dzielimy nasze bryły na wąskie paski jednakowej grubości (czerwone na rysunku). Położenie każdego paska opisać można współrzędną x, która zmienia się we wszystkich trzech przypadkach od 0 do 2r. Wyróżnione paski mają wszystkie przekrój kołowy o promieniach odpowiednio x (stożek), y (kula) oraz 2r (walec). Ich pola powierzchni są proporcjonalne do kwadratu promienia. Do równowagi na dźwigni potrzeba, aby iloczyny objętości paska i poziomej odległości od punktu podparcia dźwigni były jednakowe z obu stron. Ponieważ grubości wszystkich trzech pasków są takie same, więc możemy je zastąpić polami powierzchni, a te kwadratami promieni. Czerwone paski po obu stronach będą w równowadze, jeśli zachodzi równość

(x^2+y^2)2r=(2r)^2 x.

Wartość y^2 znajdujemy z twierdzenia Pitagorasa:

y^2=r^2-(r-x)^2=-x^2+2rx.

Podstawiając tę wartość do pierwszej równości, otrzymujemy tożsamość. A zatem czerwone paski się równoważą i w konsekwencji, złożone z nich bryły także będą w równowadze. Możemy teraz spojrzeć na równowagę całych brył. Stożek ma objętość \frac{1}{3}\pi (2r)^2 2r=\frac{8}{3}\pi r^3. Kula ma szukaną objętość V, walec po prawej stronie ma objętość \pi(2r)^2 2r=8\pi r^3. Stożek i kula mają środki masy w odległości 2r od punktu podparcia dźwigni, środek masy walca znajduje się w połowie jego osi, w odległości r od punktu podparcia. Mamy więc równość

(\frac{8}{3}\pi r^3+V)2r=8\pi r^3\cdot r,

skąd natychmiast znajdujemy objętość kuli V.

Archimedes wiedział także, że pole powierzchni kuli to 2/3 pola powierzchni opisanego na niej walca. Metoda zastosowana powyżej nie była przez niego uważana za ścisłą, lecz za sposób uzyskiwania wyników, które później można udowodnić bardziej precyzyjnie. Bardzo podobną metodę stosował znacznie później, bo już w XVII wieku, włoski matematyk, członek zakonu jezuatów, Bonaventura Cavalieri. Od wyników Archimedesa jest już tylko krok do rachunku całkowego, lecz zrobienie go zajęło ludzkości ponad 1800 lat. Isaac Newton, który pierwszy odkrył rachunek różniczkowy i całkowy, tak wysoko cenił geometrię Greków, że starał się swoje własne odkrycia sformułować na nowo w języku, który byłby zrozumiały dla Archimedesa. Można to uznać za swoisty hołd dla greckiej matematyki, tym cenniejszy, że Newton ze wszystkich ludzi był może najmniej skłonny do pochwał cudzych prac, niemal zawsze wynajdując w nich jakieś słabe strony.