Josef Loschmidt i wielkość cząsteczek powietrza (1865)

Richard Feynman pisał, że gdyby cała obecna nauka miała ulec zniszczeniu w jakimś kataklizmie i można było ocalić tylko jedno zdanie, to powinno ono brzmieć: „Wszystko składa się z atomów – małych cząstek, poruszających się bezładnie, przyciągających się, gdy są od siebie nieco oddalone, odpychających się zaś, gdy je zbytnio ścieśnić”.

Pomysł istnienia takich cząstek, jak i ich nazwę: atomy, czyli „niepodzielne” (a to zaprzeczenie, tomos – cięty, tnący, dzielący się na części, stąd np. określenia anatomia i tomografia) zawdzięczamy starożytnym Grekom Leucypowi i Demokrytowi. Rzeczy zbudowane są z atomów jak słowa z liter. Pisma atomistów były już w starożytności atakowane za wizję świata bez bogów, poddanego tylko konieczności. Istniała w nim tylko materia, nawet dusze, czyli zasady ruchu, miały być bowiem materialne.

Żyjący w I w. p.n.e. Rzymianin Lukrecjusz opisał tę wizję w długim i dydaktycznym, i o dziwo poetycko wybitnym, poemacie heksametrem. Lukrecjusz był epikurejczykiem, a więc nie tylko atomistą, lecz także wyznawcą etyki opartej na wartościach doczesnych – bogowie nie zajmują się bowiem ludźmi, a ci powinni sami zadbać o swe szczęście, żyć tak, by o ile to możliwe szukać przyjemności i unikać cierpienia. Etyka epikurejska była rozsądna i wyważona, obce im było wszelkie zatracanie się w pogoni za szczęściem, jak i nadużycia zmysłowe. Ceniono natomiast proste przyjemności i czystą radość życia. Atomizm, objaśniając funkcjonowanie świata, miał dopomóc ludziom w uwolnieniu się od lęku przed śmiercią, zemstą bogów i wizją wiecznego cierpienia po śmierci. Z tego względu już w starożytności epikureizm uznawano za filozofię bezbożną.

Kanoniczny obraz atomizmu to drobinki pyłu wirujące w smudze światła słonecznego. W mikroskali tak miały wyglądać wszystkie zjawiska: wiecznie poruszające się i zderzające atomy. Niezmienność ukryta pod zmieniającą się powierzchnią zjawisk.

Bo spojrzyj jeno, gdy promienie słonecznego światła wedrą się i rozleją po mrocznym domostwie! Zobaczysz w tym promiennym snopie wiele maleńkich ciałek, mieszających się w próżni na wiele sposobów. Jakoby w wiekuistej wojnie staczają potyczki i bitwy, walczą całymi hufcami bez chwili spoczynku, w utrapieniu ustawicznych skupień i rozłączeń. Z tego więc możesz zmiarkować, jak wygląda wieczne miotanie się zarodków rzeczy w ogromie próżni, o ile mała rzecz może dać przykład i tropy poznania wielkich. A jeszcze z tego powodu winieneś zwrócić baczniejszą uwagę na owe ciałka, co wichrzą dostrzegalnie w promieniach słonecznych, że takie wichrzenia zdradzają nadto istnienie tajnych i niewidocznych ruchów materii. Zobaczysz tam bowiem, że wiele ciałek, podrażnionych niewidzialnymi ciosami, zmienia drogę i w tył zawraca po odepchnięciu, to tu to tam, na wszystkie zewsząd strony. (Lukrecjusz, ks. II, przeł. A. Krokiewicz) (*)

Po Rzymianach rzeczywiście wydarzył się kataklizm: starożytna cywilizacja upadła, o atomistach wiedziano niewiele więcej niż to, że Arystoteles ich zwalczał. Ich pisma przepadły. Półtora tysiąca lat później, w 1417 r., osobliwy poemat Lukrecjusza odnalazł humanista i „łowca rękopisów”, papieski sekretarz, Poggio Bracciolini, prawdopodobnie w alzackim klasztorze w Murbach, gdzie dobrzy mnisi nie bardzo rozumieli, co za tekst przechowują na półkach. Przez następne wieki poemat był wielokrotnie wydawany i tłumaczony na języki narodowe, w tym na język angielski po raz pierwszy w XVII wieku. Atomizm nadal wzbudzał lęk: zderzające się atomy trudno było pogodzić z Opatrznością, choć niektórzy uczeni, jak Isaac Newton, potrafili zbudować jakąś chwiejną syntezę obu koncepcji. Jego Bóg był jednak surowym Pantokratorem, Wszechwładnym Ojcem, nie znoszącym sprzeciwu.

Benjamin Franklin, bystry i zaradny drukarz z Filadelfii, jeden z ojców założycieli Stanów Zjednoczonych, nie był zawodowym uczonym, nigdy nie miał takich ambicji. Ze swoim sposobem uprawiania nauki mieścił się zresztą znakomicie w tradycji Towarzystwa Królewskiego, które od samego początku zrzeszało przede wszystkim hobbystów i amatorów: lekarzy, pastorów, wiejskich dżentelmenów, podróżników (co zresztą nie przeszkadzało niektórym z nich dokonać ważnych odkryć).

Interesował się on legendarnym zjawiskiem uśmierzania fal przez rozlewanie oleju i poczynił w związku z tym pewne obserwacje. Wyniki doświadczeń Franklina przedstawione zostały w listach wymienianych między nim a medykiem Williamem Brownriggiem oraz wielebnym Farishem, opublikowanych w „Philosophical Transactions”. Po opisaniu swych wcześniejszych obserwacji podczas podróży morskich Franklin relacjonuje:

Będąc w Clapham, gdzie na wspólnych gruntach znajduje się duży staw, i widząc pewnego dnia, iż jego powierzchnia jest bardzo wzburzona wiatrem, przyniosłem ampułkę oleju i wylałem go trochę na wodę. Widziałem, jak rozprzestrzenia się on ze zdumiewającą szybkością po powierzchni; lecz efekt uspokojenia fal nie powstał, gdyż zastosowałem go początkowo po nawietrznej stronie stawu, gdzie fale były największe i wiatr zwiewał mój olej z powrotem na brzeg. Następnie przeszedłem na stronę zawietrzną, gdzie [fale] się tworzyły, i tam olej, w ilości nie większej niż łyżeczka do herbaty, spowodował natychmiastowe uspokojenie na obszarze wielu jardów kwadratowych; poszerzało się ono stopniowo w zadziwiający sposób, aż dotarło do przeciwnego brzegu, czyniąc jedną czwartą stawu, jakieś pół akra, gładką jak zwierciadło.

Franklin zwrócił uwagę na zdumiewająco wielką powierzchnię plamy oleju na wodzie.

Jeśli upuścić kroplę oleju na gładki marmurowy stół czy na zwierciadło, kropla pozostanie na swoim miejscu, tylko nieznacznie się rozszerzając. Lecz gdy upuścić ją na wodę, rozprzestrzenia się na wiele stóp dookoła i staje się tak cienka, że na znacznym obszarze wytwarza barwy pryzmatyczne, a jeszcze dalej staje się tak cienka, że aż niewidoczna, prócz efektu wygładzania fal na znacznie większych odległościach. Wydaje się, że wzajemne odpychanie cząsteczek pojawia się, kiedy tylko dotkną one wody, i że jest ono tak silne, iż działa także na inne ciała znajdujące się na powierzchni, takie jak słomki, liście, wióry itp., zmuszając je do ustąpienia ze wszystkich stron wokół kropli niczym centrum i pozostawiając duży pusty obszar.

Te obserwacje z roku 1773 zostały podjęte po przeszło stu latach przez wybitnego fizyka brytyjskiego lorda Rayleigha, w celu oszacowania rozmiarów cząsteczek oleju. Jeśli przyjąć, że zgodnie z tym, co spostrzegł Franklin, 2 cm3 oleju rozprzestrzeniają się na powierzchni pół akra, czyli 2000 m2, otrzymujemy grubość warstwy równą 1 nm. Wiemy obecnie, że olej tworzy na wodzie warstwę o grubości jednej cząsteczki, więc dane te pozwalają oszacować jej rozmiary. Amerykanin nie wykonał jednak tego rachunku, zadowolił się samą obserwacją.

Atomy zaczęły odgrywać bardziej konkretną rolę dzięki chemii Johna Daltona. W drugiej połowie XIX wieku fizycy tacy, jak James Clerk Maxwell i Rudolf Clausius, zauważyli, że obraz zderzających się molekuł można rozwinąć w teorię kinetyczną gazów. Ciśnienie gazu było objaśniane bombardowaniem ścianek naczynia przez jego cząsteczki poruszające się z ogromnymi prędkościami (rzędu prędkości dźwięku w danym gazie). Teoria ta dawała też zaskakujący wynik: otóż lepkość gazu miała być niezależna od jego gęstości. Maxwell z pomocą żony przeprowadził odpowiednie pomiary, które potwierdziły teorię. Znając lepkość, można było obliczyć średnią drogę swobodną cząsteczek. W powietrzu w warunkach normalnych wynosiła ona wg Maxwella \lambda=620 \mbox{ nm} .

Pierwszym fizykiem, który wyznaczył wielkość cząsteczek powietrza, był Josef Loschmidt. Urodzony w 1821 r. niedaleko Karlsbadu (dziś Karlovy Vary) w rodzinie chłopskiej, przeszedł długą i nieoczywistą drogę do działalności naukowej, pracował nad zagadnieniami z pogranicza matematyki i psychologii, skończył studia politechniczne w Wiedniu, założył własną firmę, zbankrutował, potem był nauczycielem i dopiero w 1866 r., a więc dobrze po czterdziestce, zaczął uczyć na Uniwersytecie Wiedeńskim, zrobił doktorat i został profesorem. Z młodym Ludwigiem Boltzmannem chodzili na koncerty i spierali się o Eroikę Beethovena.

Praca dotycząca wielkości cząsteczek była pionierska, do dziś mówi się czasem o liczbie Loschmidta (liczba cząsteczek gazu w 1 cm3 w warunkach normalnych), choć sam uczony nie podał jej wartości w swej pracy. Znany był związek między koncentracją n, drogą swobodną \lambda oraz przekrojem czynnym cząsteczek \sigma:

n\sigma \lambda=\dfrac{1}{\sqrt{2}}. \mbox{ (**)}

Zakładając, że cząsteczki są kuliste o średnicy s, przekrój czynny zapisać można jako pole powierzchni koła o  średnicy 2s (cząsteczki zderzają się, gdy ich środki są w odległości s od siebie). Nie znamy koncentracji ani promienia, potrzebne jest więc jeszcze jedno równanie. Loschmidt przyjął, że w stanie ciekłym cząsteczki upakowane są ciasno, a więc porównując objętość grama cieczy do objętości gazu, możemy określić, jaką część \varepsilon objętości gazu zajmują cząsteczki. Mamy więc

\varepsilon=n \dfrac{\pi s^3}{6}.

Wyznaczając z obu równań s, otrzymujemy

s=6\sqrt{2}\varepsilon \lambda.

W przypadku powietrza, które nie było jeszcze wtedy skroplone (Wróblewski, Olszewski 1883 r.), Loschmidt wyznaczył wartość \varepsilon pośrednio, uzyskując 0,000866 zamiast 0,0014. Wyznaczona przez niego średnica cząsteczki równa była około 1 nm, a więc nieco za dużo. Drugą nieznaną wielkością w tym układzie równań jest koncentracja powietrza w warunkach normalnych, czyli właśnie liczba Loschmidta.

Ludwig Boltzmann po śmierci przyjaciela wygłosił wspomnienie o nim. Znalazły się w nim słowa:

Ciało Loschmidta rozpadło się już na atomy: na ile konkretnie atomów – możemy obliczyć, korzystając z ustanowionych przez niego zasad. I aby w przemówieniu dotyczącym fizyka eksperymentatora, nie obyło się bez pokazu, poprosiłem, by napisano tę liczbę na tablicy: 10^{25}. (***)

Sprawa istnienia atomów nie była wszakże wtedy przesądzona. Boltzmann wierzył w ich istnienie, ale Ernst Mach, fizyk i filozof z tego samego uniwersytetu w nie nie wierzył. Dopiero doświadczenia Jeana Perrina przypieczętowały tę kwestię już w XX wieku.

(*) W przekładzie wierszowanym fragment ten brzmi następująco:

Przypatrz się bowiem promieniom słonecznym, kiedy wtargnęły

Do domu i rozlewają światło po ciemnych zakątkach:

Zobaczysz w strumieniu światła bez liku drobniutkich pyłków,

Które mieszają się z sobą w próżni na wiele sposobów;

I jakby ścierał się zastęp z zastępem w wieczystej wojnie,

Wiodąc potyczki i bitwy bez jednej chwili wytchnienia,

Tak one na przemian ciągle to schodzą się, to rozchodzą;

Gdyś widział to, możesz sobie przedstawić, jak w wielkiej próżni

Miotają się bez żadnego przestanku zarodki rzeczy –

O ile rzecz drobna może wystarczyć za podobiznę

Rzeczy ogromnych i wskazać drogę do ich zrozumienia.

Z jednego jeszcze powodu winieneś zwrócić uwagę

Na pyłki, które widomie się kłębią w promieniach słońca:

Ich pomieszanie oznacza, że również wewnątrz materii

Istnieją ruchy, tajemne dla oczu, niedostrzegalne.

Zobaczysz, że wiele pyłków, niedostrzegalnie rażonych,

Odmienia drogę, że wiele pchniętych do tyłu zawraca,

Pędzą to w jedną, to w drugą stronę, we wszystkich kierunkach.

(przeł. G. Żurek, T. Lucretius Carus, O naturze rzeczy, ks. II, w. 113-141)

(**) Sens tego równania jest bardzo prosty: cząsteczka poruszając się, zakreśla w ruchu miedzy zderzeniami walec o objętości \sigma\lambda , średnia liczba cząsteczke w takim walcu równa jest n\sigma\lambda i powinna być rzędu jedności, dokładny współczynnik dają ściślejsze rozważania, nb. Loschmidt użył w tym miejscu współczynnika \frac{3}{4} wynikającego z pracy Clausiusa.

(***) Ciało ludzkie liczy jakieś 7\cdot 10^{27} atomów. Boltzmann nie był tu zbyt precyzyjny.

 

Einstein o Lukrecjuszu, 1924

PIOTR: Ktoś ty? DUCH: Lukrecy, Lewiatan, Voltaire, Alter Fritz, Legio sum.

[A. Mickiewicz, Dziady]

Dziś zajmiemy się diabłem zwanym przez wieszcza Lukrecy, czyli Lukrecjusz.

Żyjący w I w. p.n.e. Titus Lucretius Carus, autor poematu O rzeczywistości (in. O naturze rzeczy), był zarazem wybitnym poetą i zwolennikiem atomizmu w wersji Epikura. Idea, że świat zbudowany jest z atomów i nie jest kierowany przez osobowe bóstwa, przyjmowała się trudno i z oporami. Człowiek ma umysł, który chętnie postrzega rzeczywistość w kategoriach celu. Dlatego w różnych epokach od starożytności począwszy traktowano poglądy Lukrecjusza jako absurdalne i heretyckie. Nie wierzono, aby jako tako uładzony wszechświat mógł powstać bez czynnej interwencji bóstwa. Zderzające się w nieskończoności atomy wydawały się wizją jałową i ponurą, a do tego wielce nieprawdopodobną: no bo jak długo musiałyby się zderzać atomy, by utworzyć Einsteina? Wiemy jednak, że Einstein powstał nie z mgławicy gazowej, lecz jako człowiek, a człowiek od australopiteka itd. itp. Życie na Ziemi powstało (w skali kosmicznej) niemal nazajutrz po utworzeniu się planety, co wskazywałoby albo na to, że ewolucja od chemii do biologii nie jest aż tak nieprawdopodobna, albo wracamy do kapłanów i ich wyjaśnień na ten temat, które nic nie wyjaśniają.

Poniższy tekst jest wstępem Alberta Einsteina do poematu Lukrecjusza. Uczony zdobył w tym czasie światową sławę, choć nie wszystkich Niemców to cieszyło, albowiem był on Żydem. W kraju, po puczu monachijskim Adolfa Hitlera i wciąż w kryzysie gospodarczym, narastały kompleksy i nacjonalizm. Toteż Einstein czuł się tam, jak „ktoś, kto leży w dobrym łóżku, lecz oblazły go pluskwy”. Znamy to uczucie.

https://kierul.wordpress.com/2013/02/01/einstein-zydowski-prorok-we-wlasnym-kraju/

https://kierul.wordpress.com/2012/11/22/einstein-i-mann-koniec-wielkich-niemiec/

Każdy, kto nie idzie całkowicie z duchem naszego czasu i kto czuje się niekiedy obserwatorem otaczającego świata, a zwłaszcza duchowej postawy swych współczesnych, nie może pozostać obojętny na czar dzieła Lukrecjusza. Widzimy w nim bowiem, jak wyobraża sobie świat człowiek niezależny, wyposażony w żywe doznania zmysłowe i zdolność rozumowania, obdarzony naukową i spekulatywną ciekawością, człowiek, niemający najmniejszego pojęcia o osiągnięciach współczesnej nauki, które nam wpojono w dzieciństwie, nim jeszcze mogliśmy się z nimi skonfrontować w sposób świadomy i krytyczny.

Głębokie wrażenie robi na nas niezmącona pewność Lukrecjusza – wiernego ucznia Demokryta i Epikura – że świat jest zrozumiały, tzn. wszystko, co się w nim dzieje, powiązane jest łańcuchem przyczyn i skutków. Żywi on mocne przekonanie, a nawet sądzi, iż potrafi udowodnić, że wszystko bierze się z poddanego prawom ruchu niezmiennych atomów, którym nie przypisuje żadnych innych własności prócz geometrycznych i mechanicznych. Jakości zmysłowe, takie jak ciepło, zimno, barwa, zapach i smak, sprowadzają się do ruchu atomów; to samo dotyczy życia. Dusza i umysł są w jego mniemaniu zbudowane ze szczególnie lekkich atomów, wiąże on przy tym (niezbyt konsekwentnie) pewne szczególne własności materii z konkretnymi cechami doświadczenia.

Za najważniejszy cel swego dzieła uważa Lukrecjusz uwolnienie człowieka od niewolniczego strachu, wynikłego z religii i przesądów, a podsycanego i wykorzystywanego przez kapłanów dla własnych celów. Z pewnością jest to dla niego bardzo ważne. Wydaje się jednak, że powoduje nim przede wszystkim chęć przekonania czytelników do atomistyczno-mechanistycznego obrazu świata, choć nie odważa się tego powiedzieć wprost praktycznie nastawionym Rzymianom. Wzruszający jest też jego szacunek dla Epikura oraz języka i kultury Grecji, które uważa za znacznie doskonalsze niż język łaciński i kultura rzymska. Przynosi Rzymianom zaszczyt, że można było mówić im takie rzeczy. Czy któryś ze współczesnych narodów potrafiłby wypowiadać się tak szlachetnie o innym?

Wiersze Dielsa czyta się tak naturalnie, iż zapomina się, że to przekład.

Berlin, czerwiec 1924 roku

http://einsteinpapers.press.princeton.edu/vol14-doc/498