Drgania struny: najprostsza teoria pola

Drgania struny, badane jeszcze przez Pitagorasa, są rzeczywiście archetypem fizyki matematycznej.

Przyjrzyjmy się im z punktu widzenia zasady najmniejszego działania. W problemie liny mieliśmy już do czynienia z energią sprężystą liny albo struny. Jeśli w punkcie x wychylenie równe jest y(x), to energia potencjalna całej struny jest równa

{\displaystyle V=\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2 dx.}

Oznaczyliśmy napięcie struny T, pochodną zapisujemy jako cząstkową, bo chcemy, by nasza zmienna y mogła zależeć także od czasu t, co opisuje poprzeczne drgania struny. Zachowujemy tylko energię sprężystości, w przypadku drgań struny grawitacja nie gra roli. Sens fizyczny tego wyrażenia jest dość oczywisty: im bardziej kierunek struny odbiega od kierunku poziomego, tym większa jest energia sprężystości. Odkształcając strunę zmieniamy lokalnie jej kierunek.

Potrzebujemy także energii kinetycznej struny. Jeśli jej liniowa gęstość masy wynosi \varrho, to całkowita energia kinetyczna jest równa:

{\displaystyle E_k=\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2 dx.}

Działanie, tak jak poprzednio, równa się

{\displaystyle S=\int_{0}^{\tau} (E_k-V)dt= \int_{0}^{\tau}\left[\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2\right] dx dt. }

 

Działanie jest teraz całką po czasie i przestrzeni z funkcji w nawiasie kwadratowym, którą nazywa się gęstością lagranżianu albo lagranżianem, jeśli ktoś nie przejmuje się bardzo precyzją języka.

{\displaystyle S=\int_{0}^{\tau} {\cal L}dx dt, \mbox{ gdzie }  {\cal L}=\dfrac{\varrho}{2}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\left(\dfrac{\partial y}{\partial x}\right)^2 }

 

Podobnie jak przedtem, możemy z zasady najmniejszego działania otrzymać równania ruchu. W tym celu wyobrażamy sobie, że zamiast y(x,t) wstawiamy pod całkę y(x,t)+\delta y(x,t), gdzie wariacja \delta y jest dowolną, lecz niewielką funkcją położenia i czasu, która znika na końcach struny, dla x=0 oraz x=L i na końcach przedziału czasu: t=0 oraz t=\tau. Liniowa część przyrostu działania to wariacja działania (wyrazy kwadratowe w \delta y odrzucamy, podobnie jak przy obliczaniu pochodnej z definicji):

{\displaystyle \delta S=\int \rho \dfrac{\partial y}{\partial t}\cdot \dfrac{\partial \delta y}{\partial t} dx dt-\int T \dfrac{\partial y}{\partial x}\cdot \dfrac{\partial \delta y}{\partial x} dx dt.}

Całkując oba składniki przez części i korzystając ze znikania wariacji na brzegach naszego obszaru w czasoprzestrzeni (dwuwymiarowej: jeden wymiar przestrzenny i jeden czasowy), dostajemy

{\displaystyle \delta S=0=\int \left[-\rho \dfrac{\partial^2 y}{\partial t^2}{\partial t} + T \dfrac{\partial^2 y}{\partial x^2}\right] \delta y dx dt}.

Wyrażenie w nawiasie kwadratowym musi być wobec tego równe zeru dla dowolnych wartości x i t. Otrzymujemy tzw. równanie falowe:

\dfrac{\partial^2 y}{\partial x^2}=\dfrac{\varrho}{T}\dfrac{\partial^2 y}{\partial t^2}.

Równanie to zależy od jednego parametru, nazwijmy go c:

c=\sqrt{\dfrac{T}{\varrho}}.

Łatwo sprawdzić, że rozwiązaniem naszego równania są dowolne funkcje postaci y=f(x-ct) oraz y=g(x+ct), gdzie funkcje f, g mogą być w zasadzie dowolne (różniczkowalne dwa razy). Opisują one fale poruszające się z prędkością c w prawo albo w lewo. W dwuwymiarowej czasoprzestrzeni są to wszystkie możliwe rozwiązania. Równanie falowe jest liniowe: suma dwóch rozwiązań stanowi także dopuszczalne rozwiązanie.

W problemie drgającej struny występują tzw. fale stojące, będące złożeniem takich fal poruszających się w lewo i w prawo. Można je zapisać jako

y(x,t)=A \sin 2\pi \dfrac{x}{\lambda}\cdot \sin 2\pi \nu t.

Pierwszy sinus automatycznie znika w x=0, warunek aby funkcja znikała też w x=L daje nam równanie

2\pi \dfrac{L}{\lambda}=n\pi\Rightarrow \lambda=\dfrac{2L}{n},

gdzie n jest liczbą całkowitą. Geometrycznie oznacza to, że całkowita liczba połówek sinusoidy musi zmieścić się na odcinku (0,L):

Łatwo sprawdzić, podstawiając nasze rozwiązanie do równania falowego, że dopuszczalne częstości drgań są równe

\nu=\dfrac{nc}{2L}.

Mamy tu uzasadnienie zależności odkrytej przez Vincenza Galilei. Częstości dozwolone są wielokrotnościami częstości podstawowej. W instrumentach muzycznych wzbudzane są nie tylko drgania o wartości n=1, ale także jej wielokrotności, tzw. składowe harmoniczne. Matematycznie oznacza to, że dźwięk opisać trzeba jako sumę drgań o wielu częstościach. Częstość podstawowa decyduje o wysokości dźwięku. Obecność wyższych składowych harmonicznych słyszymy jako barwę dźwięku: w ten sposób odróżniamy tę samą nutę zagraną np. na skrzypcach i fortepianie.

Piękną cechą matematyki (a przez to i fizyki) jest możliwość zmiany problemu na inny równoważny. Zamiast struny możemy wziąć działanie postaci jak wyżej i zawsze otrzymamy z niego równanie falowe. Okazuje się, że np. drgania pola elektromagnetycznego miedzy dwiema płaszczyznami odległymi o L będą także miały tę postać. Oczywiście stała c będzie wówczas prędkością światła. Teraz nie ma już struny, drga pole elektromagnetyczne, czyli byt zupełnie pitagorejski: coś, czego nie można dotknąć, ale mimo to jest bardzo realne. Można się spodziewać, że działanie dla pola elektromagnetycznego powinno przypominać nasze wyrażenie dla struny. To, co tu opisaliśmy to jednowymiarowa (przestrzennie) teoria pola tzw. skalarnego (opisywanego jedną liczbą). Pole elektromagnetyczne jest nieco bogatsze, ponieważ możliwe są różne polaryzacje fal.

Nasza jednowymiarowa teoria pola traktuje w równoprawny sposób zmienne czasowe i przestrzenne. Jeśli c jest prędkością światła, teoria jest relatywistyczna, tzn. zgodna ze szczególną teorią względności, w której czas i przestrzeń są nierozerwalnie związane ze sobą, choć nietożsame. Był to w istocie problem rozwiązany przez Einsteina: teoria elektromagnetyzmu, która prowadzi do równania falowego, jest nie do pogodzenia z mechaniką Newtona. W elektromagnetyzmie zawsze otrzymujemy fale biegnące z prędkością c w próżni. W mechanice Newtona ich mierzona prędkość powinna zależeć od ruchu obserwatora. Można np. dogonić falę akustyczną, nie ma jednak sposobu, aby dogonić falę elektromagnetyczną – zawsze będzie ona od nas uciekała z prędkością światła. Taki prosty eksperyment myślowy przyciągnął uwagę Einsteina, kiedy uczył się on w Aarau do matury po oblanych (ale nie z fizyki) egzaminach na Politechnikę w Zurychu.

 

Pitagoras i Vincenzo Galilei: początek i koniec tradycji pitagorejskiej (VI w. p.n.e., 1588)

Pitagoras pierwszy nazwał się filozofem, lecz stał się założycielem sekty na poły religijnej, która przekazywała sobie wierzenia, obyczaje, obrządki i nie dopuszczała nikogo bez długiego procesu formowania charakteru i umysłu. Pitagorejczycy wierzyli w wędrówkę dusz, obejmującą także dusze zwierzęce, więc nie składali ofiar ze zwierząt i starali się nie jeść mięsa, zazwyczaj zadowalali się warzywami, kaszą i przyprawami. Mieli też osobliwą na tle ówczesnej Grecji koncepcję piękna:

Piękny jest więc widok całego nieba i poruszających się po nim gwiazd, jeśli ktoś potrafi dostrzec ich porządek; a piękne jest to wszystko przez uczestniczenie w tym, co pierwsze i dostrzegalne umysłem. Pierwsza zaś jest dla Pitagorasa natura liczb i stosunków liczbowych, ogarniająca całość rzeczywistości, zgodnie z nimi bowiem wszechświat jest mądrze zbudowany i prawidłowo uporządkowany; mądrość zaś jest wiedzą o tym, co piękne i pierwsze, boskie i niezniszczalne, zawsze takie samo i podlegające takiemu samemu porządkowi (…) filozofia natomiast to umiłowanie takiej kontemplacji [Jamblich, O życiu pitagorejskim, przeł. J. Gajda-Krynicka].

Wszechświat postrzegali pitagorejczycy jako κόσμος – kosmos, czyli pięknie złożoną harmonijną całość. Pitagoras odkrył, że prostym proporcjom liczbowym, takim jak 2:1; 3:2 oraz 4:3 odpowiadają harmonijnie współbrzmiące interwały dźwięków: oktawa, kwinta i kwarta. Fakt ten stał się punktem wyjścia całej jego filozofii i kosmologii. Odgrywały w nich rolę muzyka i matematyka, ich związek był fundamentalny. Muzyka miała bowiem swe odbicie w strukturze wszechświata, nie była jedynie sztuką wydawania sugestywnych dźwięków. W ten sposób, po raz pierwszy, wszechświat stał się matematyczny.

Pitagorejczycy uzasadniali owe proporcje dźwięków w sposób numerologiczny. Ich zdaniem liczby 1, 2, 3, 4, były wieloznacznymi symbolami. Suma tych czterech liczb nazywana była tetraktys – arcyczwórką. Arytmetyka miała być także podstawą geometrii: przestrzeń wyobrażali sobie pitagorejczycy jako „skwantowaną”, złożoną z dyskretnych wielkości. Doprowadziło to do kryzysu: zgodnie bowiem z twierdzeniem Pitagorasa długość przekątnej kwadratu o boku równym 1 wynosi \sqrt{2}. Jeśli przyjąć, że można tę liczbę zapisać jako stosunek liczb całkowitych (jak powinno być w dyskretnej przestrzeni), dochodzi się do sprzeczności. Dziś mówimy, że \sqrt{2} jest liczbą niewymierną. Odkrycie tego faktu wstrząsnęło pitagorejczykami.

Wróćmy jednak do harmonii dźwięków. Mamy tu początek fizyki matematycznej – oto pewne stosunki w przyrodzie poddane są zasadom matematyki. Z czasem miało się okazać, że jest to prawda w odniesieniu do całej przyrody, choć uznanie tego faktu zajęło ludzkości ponad dwa tysiące lat. Dziś nie mamy wątpliwości co do nadzwyczajnej skuteczności matematyki w badaniu przyrody. Niektórzy uważają nawet, że w każdej nauce tyle jest prawdy, ile jest w niej matematyki.

W jakim sensie proporcje związane są z parami dźwięków?

Jamblich tak pisze o okolicznościach dokonania owego odkrycia przez Pitagorasa:

Rozmyślał kiedyś i zastanawiał się, czy da się wymyślić dla słuchu jakieś pomocnicze narzędzie, pewne i nieomylne, jakie ma wzrok w cyrklu, w miarce (…), dotyk zaś w wadze i w wynalazku miar; a przechadzając się w pobliżu warsztatu kowalskiego, jakimś boskim zrządzeniem losu usłyszał młoty kujące żelazo na kowadle i wydające dźwięki zgodne ze sobą, z wyjątkiem jednej kombinacji. Rozpoznał zaś w nich współbrzmienie oktawy, kwinty i kwarty. Dostrzegł natomiast, że dźwięk pośredni między oktawą a kwintą sam w sobie pozbawiony jest harmonii, lecz uzupełnia to, czego w innych jest w nadmiarze. Zadowolony zatem, ponieważ została mu zesłana pomoc od boga, poszedł do warsztatu i po wielu rozmaitych próbach odkrył, iż różnica dźwięków rodzi się z ciężaru młotów, nie z siły uderzających, nie z kształtu narzędzi ani też nie z przekształceń kutego żelaza; a zbadawszy dokładnie odpowiednie wagi i ciężary młotów, poszedł do domu i wbił między ściany, od kąta do kąta, jeden kołek, jeden by z wielości kołków albo też z różnej ich natury nie zrodziła się jakaś różnica; następnie przywiesił do kołka w równym od siebie oddaleniu cztery struny z jednakowej materii, jednakowej długości, grubości i jednakowo sporządzone, przywiązawszy do każdej z dołu ciężar i wyrównawszy całkowicie długość strun. Następnie uderzając jednocześnie w dwie struny na przemian, odnalazł wymienione wyżej współbrzmienia, inne w każdym ze związków. Odkrył bowiem, że ta, która obciążona była największym ciężarem wraz z tą, która miała ciężar najmniejszy, razem uderzone tworzą stosunek oktawy. Jedna bowiem miała dwanaście ciężarków, druga zaś sześć; w podwójnej proporcji ujawniła się oktawa, jak to wskazywały same ciężarki. [przeł. J. Gajda-Krynicka]

Jamblich był syryjskim pitagorejczykiem żyjącym w III/IV w. n.e., a więc niemal tysiąc lat po filozofie z Samos. Dlatego, jak to się zdarza zwolennikom bardziej entuzjastycznym niż rozumiejącym, poplątał to i owo w tej historii. Wiemy, że pragnął swymi opowieściami przewyższyć zdobywające sobie popularność historie o innym mistrzu, Jezusie Chrystusie.

Jamblich przedstawia nam etapy odkrycia: mamy więc problem (jak proporcje mogą być odwzorowane dźwiękami?), iluminację pod wpływem przypadkowego bodźca (młoty kowalskie), analizę i wyjaśnienie sensu owej iluminacji, a następnie przeprowadzenie eksperymentu, w którym początkowa sytuacja zostaje sprowadzona do najważniejszej istotnej zależności: chodzi nie młoty, lecz dźwięki; można je badać za pomocą jednakowych strun pod działaniem różnych sił naciągu.

Mamy właściwie przepis, jak należy odkrywać matematyczne prawa przyrody, oczywiście w stosownej chwili musimy otrzymać pomoc od boga, inaczej wkroczymy w jedną z tych niezliczonych ścieżek, które nigdy nie zawiodły do żadnego rozsądnego punktu. Bywa i tak, że ciąg dalszy odnajduje się po wielu latach – w tym sensie z oceną wartości pewnych prac naukowych należy poczekać.

Niestety, ciąg dalszy opowieści Jamblicha dowodzi, że nie zrozumiał on odkrycia mistrza. Nie chodzi bowiem o siły naciągu, lecz długości strun. To one muszą być w odpowiedniej proporcji. Np. kwintę otrzymamy, biorąc taką samą strunę z takim samym naciągiem, lecz o długości krótszej w proporcji 2:3. Przez wieki powtarzano błąd Jamblicha, nie zadając sobie trudu mierzenia czegokolwiek. Powszechnie sądzono, że owe proporcje zawarte są we wszystkich sposobach wydobywania dźwięków tak, jak to widzimy na ilustracji poniżej, pochodzącej z przełomu XV i XVI wieku.

W XVI wieku powiększono listę dźwięków współbrzmiących harmonijnie, uzasadniając to zresztą także na sposób pitagorejski. Gioseffo Zarlino, maestro di capella San Marco w Wenecji, proponował dołączenie 5 i 6 do starożytnego zestawu. Uzasadniał to rozmaitymi „nadzwyczajnymi” własnościami liczby sześć: jest liczbą doskonałą (równą sumie swych podzielników), sześć było dni Stworzenia itd.

Empiryczne podejście do tego zagadnienia zawdzięczamy sceptycyzmowi i jadowitemu charakterowi Vincenza Galilei, muzyka i teoretyka muzyki z Florencji. Był on uczniem Zarlina, lecz zaatakował go bezpardonowo w wydanym w roku 1589 traktacie. Uważał wszelką numerologię za nonsens i postanowił wykazać to doświadczalnie. Stosunki dźwięków nie są bowiem związane jednoznacznie ze stosunkami liczbowymi. Np. kwintę możemy uzyskać nie tylko skracając strunę w stosunku 3/2, ale także zwiększając siłę naciągu w proporcji (3/2)^2=9/4. Mamy więc następujące prawo: chcąc otrzymać dany wyższy dźwięk możemy albo skrócić strunę x razy, albo zwiększyć siłę naciągu x^2 razy. Było to pierwsze w ogóle nowożytne prawo fizyki matematycznej.
W ten sposób numerologia została pogrążona, gdyż widzimy, że równie dobrze można by wiązać kwintę z proporcją 9/4. Był to tylko jeden z wielu argumentów wysuwanych w traktacie przeciwko Zarlinowi. Vincenzo Galilei miał zdolnego syna o imieniu Galileo, któremu przekazał swój choleryczny temperament i namiętną pogardę dla umysłowej niższości. Niewykluczone, że eksperymenty nad tą kwestią prowadzili zresztą obaj razem, zapewne w roku 1588. W roku następnym Galileo uzyskał skromną posadę na uniwersytecie w Pizie. Napisał tam poemat na temat noszenia togi, w którym drwił z księży (wrogowie wszelkiej niewygody), uczonych kolegów (są jak flaszki wina: nieraz we wspaniale oplecionych butelkach zamiast bukietu czuje się wiatr albo perfumowaną wodę i nadają się tylko do tego, by do nich nasikać), a także twierdził, że chodzenie nago jest największym dobrem. Zajął się też poważnie mechaniką. Możliwe, że to ciężarki zawieszone na końcu struny w eksperymentach prowadzonych z ojcem, a nie kandelabr w katedrze, nasunęły mu myśl o wahadle.

Prawo odkryte przez Vincenza Galileo łatwo uzasadnić. Prędkość rozchodzenia się dźwięku v w strunie naciągniętej siłą T, która ma gęstość liniową (masa na jednostkę długości) \varrho równa się

v=\sqrt{\dfrac{T}{\varrho}}.

Jeśli końce struny są nieruchome, to długość powstającej fali \lambda jest dwa razy większa niż długość struny L: \lambda=2L. Zatem częstość drgań struny \nu jest równa

\nu=\dfrac{1}{2L}\sqrt{\dfrac{T}{\varrho}}.

Napięcie struny wchodzi więc w potędze 1/2, stąd wynik Vinzenza Galileo.