Sny Kartezjusza (10/11 listopada 1619)

Z okazji czterechsetlecia snów Kartezjusz pozwalam sobie powtórzyć wpis sprzed ponad trzech lat.

Ludzie, a także i całe społeczeństwa robią sobie czasem wakacje od rozumu i popełniają błędy, mimo iż wiedzą, że postępują źle i nierozsądnie. Przedkładają jednak chwilowe upojenie bliskością innych, podobnie czujących, nad ustawiczny wysiłek chłodnego namysłu. Nie pomagają wówczas żadne argumenty ani statystyki. Na ekspertów patrzy się jak na błaznów bądź płatnych zdrajców. Ludzi mądrych uważa się za głupców albo sklerotyków. Największe głupstwa, a nawet szaleństwa prowadzące do zbrodni, zaczynały się wśród powszechnego entuzjazmu. Pod koniec czerwca 1914 roku serbski nacjonalista zastrzelił arcyksięcia Franciszka Ferdynanda i jego żonę Zofię. Uchroniło to być może Puszczę Białowieską przed wytrzebieniem zwierzyny (arcyksiążę był fanatykiem myślistwa), lecz incydent ten uruchomił międzynarodowe domino: wszyscy wszystkim zaczęli stawiać jakieś ultymatywne żądania i wypowiadać wojnę. Latem 1914 roku w całej Europie żegnano na dworcach kolejowych radosnych młodzieńców udających się na krótką – tak się wszystkim zdawało – męską przygodę wojenną.

 

Jesienią roku 1918 wracało ich o siedemnaście milionów mniej i nikt się już nie cieszył: ani zwycięzcy, ani pokonani. W roku 1933 entuzjazm milionów Niemców zagłuszył wszelkie wątpliwości i skrupuły, jakie powinien wzbudzić sposób rządzenia nazistów, jak i sama osoba ich paranoicznego Führera. Cierpieli zresztą „jedynie” Żydzi, komuniści, homoseksualiści i liberałowie – nie było się więc czym przejmować. Dumny naród niemiecki mógł wreszcie wziąć odwet na pogardzanej Europie. Nastrój udzielał się zresztą wszystkim, nawet w biednej, słabej i pełnej analfabetów Polsce wykrzykiwano, że nie oddamy ani guzika – i też bijano Żydów, bo byli bezbronni.

Być może znowu wchodzimy w okres „historii spuszczonej z łańcucha” i tańca na wulkanie. Ostatecznie okresy spokoju i choćby względnego dostatku nigdy nie były dniem powszednim historii, częstsze były plagi, wojny, choroby, zamieszki i głód. Niektórzy próbowali wśród powszechnego zamętu robić coś pożytecznego. Na przełomie roku 1916 i 1917 przebywający na froncie wschodnim astronom Karl Schwarzschild napisał dwie niezmiernie ważne prace na temat Einsteinowskiej teorii grawitacji. Rozwiązanie Schwarzschilda dotyczyło pola grawitacyjnego sferycznej masy, np. gwiazdy. Ani Einstein, ani Schwarzschild, który kilka miesięcy później umarł, nie rozumieli wówczas, jak wielkie znaczenie ma owo rozwiązanie – opisuje ono bowiem czarną dziurę, jeden z najosobliwszych obiektów w przyrodzie. Młody lekarz Tadeusz Żeleński, zajmował się w roku 1917 przekładaniem Kartezjusza na polski, starając się zaszczepić rodakom coś z francuskiej klarowności myślenia i prostej elegancji stylu.

 

Nie zapomnę tego wrażenia… Było to rok temu, w lecie, z początkiem czwartego roku wojny. Siedziałem w mojej izdebce dyżurnego lekarza wojskowej stacji opatrunkowej, i korzystając z chwilowej bezczynności, pracowałem nad pierwszymi rozdziałami tej książki. Tuż prawie pod oknami ochoczo rżnęła orkiestra, odprowadzając kilka marszkompanii, jadących, w ślicznych nowych butach, na „włoski front”. Na fali trywialnej melodii, myśl Descartes’a pędziła wartko, skocznie, radośnie, tak iż ledwo piórem mogłem jej nadążyć. Doznawałem szczególnego uczucia. Nigdy nie mam zbyt mocnego przeświadczenia o rzeczywistości zewnętrznego świata – w tej chwili miałem go mniej niż kiedykolwiek…

Rozprawa o metodzie ukazała się wraz z końcem wojny, pod opaską: „Tylko dla dorosłych”. Był to żarcik tłumacza, który chciał w ten sposób dotrzeć do niefilozoficznych czytelników. Rozmyślania swe Kartezjusz rozpoczął w roku 1619, podczas zupełnie innej wojny. Także i tamta wojna rozpoczęła się od zdarzenia dość małej wagi: oto z zamku na Hradczanach w Pradze rozeźleni protestanci wyrzucili przez okno dwóch przedstawicieli cesarza, którzy nie chcieli się zgodzić na budowanie kościołów, mimo że formalnie zagwarantowana była swoboda wyznania. Nieszczęśni wysłannicy przeżyli upadek z wysokości kilkunastu metrów – wedle katolików stało się to dzięki aniołom, które działając w czasie rzeczywistym, złagodziły skutki grawitacji, natomiast nieokrzesani protestanci przypisywali ten efekt kupie gnijących odpadków, nagromadzonych pod oknami wielkiej sali jadalnej zamku. Wojna nie zakończyła się żadnym miękkim lądowaniem, toczyła się przez trzydzieści lat, pustosząc znaczną część środkowej Europy. W zasadzie było to starcie dwóch głównych odmian chrześcijaństwa walczących o to, która z nich bliższa jest nauce Jezusa Chrystusa: czy katolicy przechowujący tradycję, w której niezmienność święcie wierzyli, czy protestanci, starający się samodzielnie zgłębiać tekst Pisma św. i odrzucający takie magiczne atrybuty religii, jak święte obrazy, relikwie, czy kult świętych. Kiedy obie strony wierzą niezachwianie we własne racje, tylko wyczerpanie zasobów może położyć kres konfliktowi. O początkach swoich rozmyślań pisał Kartezjusz następująco:

Byłem wówczas w Niemczech, dokąd powołały mnie wojny, które ciągną się tam jeszcze. Kiedy wracałem z koronacji cesarza [Ferdynanda II we Frankfurcie we wrześniu 1619 r.] do armii, początek zimy zatrzymał mnie na kwaterze, gdzie, nie znajdując żadnego towarzystwa, które by mi odpowiadało, i nie mając zresztą, na szczęście, trosk ani namiętności, które by mnie mąciły, siedziałem przez cały dzień zamknięty sam w ciepłej izbie, za jedyną rozrywkę zabawiając się z własnymi myślami. Jedną z pierwszych myśli było spostrzeżenie, że często dzieła złożone z rozmaitych części i wykonane ręką rozmaitych mistrzów mniej są doskonałe niż te, nad którymi pracował tylko jeden człowiek. Tak widzimy, że budowle, które jeden architekt podjął i wykonał, są zazwyczaj piękniejsze i lepiej rozmieszczone niż te, które wielu ludzi starało się skleić, posługując się starymi murami zbudowanymi w innych celach. (przeł. T. Żeleński-Boy)

Kartezjuszowi marzyła się więc nauka będąca dziełem jednego autora, jak poemat albo dzieło historyczne. Po części wynikało to chyba z jego temperamentu, trochę może ze swoistej wielkopańskiej wyniosłości w sferze intelektu – nie dopuszczał bowiem myśli, by ktokolwiek inny mógł dokonać czegoś ważnego w obszarze, który jego samego zajmował. Dlatego np. lekceważył dokonania Galileusza na polu mechaniki ani nie uważał za stosowne wspomnieć o tym, co zawdzięczał Willebrordowi Snellowi (prawo załamania światła) albo Isaakowi Beeckmanowi. Francis Bacon wyobrażał sobie naukę jako wielkie biuro patentowe użytecznych wynalazków, Kartezjusz sądził, że liczą się wybitne jednostki i ich myśli, a więc raczej konstrukcja niż detale. Znalazł naśladowców, pycha filozofów tworzących systemy osłabnąć miała dopiero w XX wieku. Podział na naukę i humanistykę przebiega zresztą do dziś w tym samym miejscu: jeśli ważniejszy jest indywidualny styl autora niż to, co mówi, i jeśli może on wybierać z tradycji dowolne elementy, które samodzielnie interpretuje, to mamy do czynienia z humanistyką. W nauce rządzą znacznie surowsze reguły: musimy znać ściśle określony kanon uznanej wiedzy (zazwyczaj z drugiej ręki), liczą się natomiast bezosobowe dokonania, dowód matematyczny czy eksperyment geniusza powtórzyć może każdy wykształcony specjalista i stanowi to wręcz warunek, aby praca była akceptowalna. Zapewne dlatego w nauce tak zażarcie toczą się spory o priorytet: inne cechy indywidualne roztapiają się w podręcznikach i z czasem coraz trudniej odróżnić wkład konkretnych uczonych. Kartezjusz miał nadzieję połączyć oba rodzaje działalności i stworzyć gmach wiedzy, którego żaden sceptycyzm nie mógłby zburzyć. Prawda jest tylko jedna, zatem i jej odkrywca w zasadzie musi być jeden, inni skazani są na pisanie gloss i uzupełnień. W listopadzie 1619 roku dwudziestotrzyletni uczony kwaterował w Neuburgu. Był żołnierzem zaciężnym księcia Bawarii, nie bardzo mu zależało na wygranej jednej albo drugiej strony, przedtem służył w Holandii. Czekano na cieplejszą porę roku, by na nowo podjąć działania zbrojne.

Na kwaterze unikał rozmów i pijatyk, którym oddawali się jego kompani, mało wychodził, całymi dniami rozmyślał nad nową podstawą wiedzy. Nie stworzył jej od razu, zapamiętał jednak i zapisał trzy sny, jakie miał w nocy z 10 na 11 listopada 1619 roku. Zarys racjonalnej filozofii objawił się więc w sposób zgoła nieracjonalny, uczony wierzył, że sny mogą być zsyłane przez Boga albo demony, to Stwórca w ostatecznym rachunku miał gwarantować, że wszystko to, co tu widzimy i przeżywamy nie jest tylko jakimś uporczywym sennym majakiem. W pierwszym śnie pojawiły się jakieś zjawy tak straszne, że zmuszony był kroczyć mocno przechylony na lewą stronę, gdyż z prawej strony czuł niezmierną słabość. Zawstydzony sytuacją, młodzieniec spróbował się wyprostować, wtedy jednak zawiał potężny wiatr w formie wiru i okręcił go kilkakroć na lewej nodze. Na swej drodze spostrzegł kolegium (może La Flèche, gdzie się uczył?) i zapragnął się w nim schronić. Miał zamiar dotrzeć do kościoła, aby się pomodlić. Minął znajomą osobę, lecz jej nie pozdrowił; kiedy chciał naprawić ten lapsus, nie mógł się cofnąć, ponieważ znowu zaczął wiać silny wiatr w kierunku kościoła. Spotkał też innego znajomego, który przekazał mu dla pana N. zamorski owoc, przypominający melona. Wszyscy inni widziani we śnie poruszali się i zachowywali normalnie, jedynie on jeden doświadczał trudności w utrzymaniu równowagi. Niebawem się ocknął i spostrzegł, że leży na lewym boku. Sądząc, że sen może być dziełem złego demona, uczony obrócił się na prawy bok i jął się modlić, pamiętając, iż w oczach Boga winny jest wielu grzechów, które popełniał w skrytości, tak aby ludzie ich nie widzieli. Po mniej więcej dwóch godzinach rozmyślań nad dobrem i złem zasnął znowu. We śnie usłyszał wielki huk, który wziął za grzmot pioruna. Natychmiast obudził się ze strachu i dostrzegł mrowie drobnych iskierek ognia wypełniających pokój. Zdarzało mu się już wcześniej doświadczać takiego zjawiska, teraz jednak zdecydowany był zaobserwować jego przyczyny i zamykając oraz otwierając oczy, śledził swoje wrażenia. Filozoficzny namysł rozproszył lęk i uczony zasnął po raz trzeci. Tym razem nie było się czego bać. Znalazł na stole książkę, o której nie pamiętał, by ją wcześniej tam położył. Otworzył ją, stwierdzając zaś, że to słownik, ucieszył się, ponieważ książka mogła się przydać. W tej samej chwili odkrył też obok inną książkę, także dla niego nową, nie mając pojęcia, skąd się wzięła. Była to antologia Corpus poetarum, otwarła mu się na wierszu zawierającym słowa: Quod vitae sectabor iter? (Jaką drogę życia wybiorę?). W tej samej chwili spostrzegł nieznanego mu męża, który wręczył mu, zachwalając jako znakomity, wiersz zaczynający się od słów Est et Non (Tak i nie). Zaczęli rozmawiać o tym wierszu, w którym Kartezjusz rozpoznał jedną z idylli Auzoniusza. Po chwili książki i dziwny interlokutor rozpłynęli się, a uczony, wciąż się nie budząc, uznał, że śni; ów słownik oznacza wszelką wiedzę zgromadzoną w jednym miejscu, antologia poezji, Corpus poetarum zaś – filozofię oraz mądrość złączone w jedno.

Wierzył bowiem, że wcale nie należy się dziwić, iż poeci, nawet bawiąc się płochymi rzeczami, wypowiadają wiele zdań poważniejszych, bardziej sensownych i lepiej wyrażonych niż to, co mówią filozofowie. Przypisywał to boskiemu natchnieniu oraz sile wyobraźni, która wydobywa zarodki mądrości (zawarte w umyśle każdego człowieka niczym iskry w krzemieniu) z większą łatwością i błyskotliwiej, niż czyni to rozum filozofów.

Rozmyślał też (ciągle we śnie) nad słowami Quod vitae sectabor iter? Po czym zbudził się, nie przestając się zastanawiać nad symboliką swoich snów. Sen trzeci, przechodzący w jawę, zapowiadać miał życie filozofa, który przezwycięży pokusy płynące z różnych stron. Nazajutrz filozof modlił się gorąco do Boga, by zechciał mu odsłonić swoją wolę, oświecić go i prowadzić w poszukiwaniu prawdy. Potem zwrócił się do Matki Bożej, polecając jej tę sprawę, najważniejszą w swym życiu, złożył też ślub, że przy okazji podróży do Italii, którą planował w najbliższym czasie, odbędzie pielgrzymkę do Loreto. Później zobowiązał się nawet, że od Wenecji odbędzie tę pielgrzymkę pieszo. Religijno-filozoficzny entuzjazm po kilku dniach opadł. Ostatecznie filozof nie wybrał się tej zimy do Italii. Nie znaczy to bynajmniej, że kiedy później ochłonął, przestał wierzyć w natchnienie płynące z owych snów. Epizod ten odegrał, jak się zdaje, ważną rolę w duchowym rozwoju Kartezjusza, choć trudno treść owych snów powiązać z jakimiś uchwytnymi etapami jego poglądów. Najprawdopodobniej rzecz dotyczy pewnych głębszych skojarzeń, poetyckiej strony filozofii, dopiero później umiał ją wyrazić w terminach jasnych, jak sądził, dla każdego człowieka obdarzonego rozsądkiem.

Wziąwszy pod rozwagę, iż zasady tych nauk winny być wszystkie zaczerpnięte z filozofii, w której nie znajdowałem jeszcze pewnych podstaw, pomyślałem, iż trzeba mi przede wszystkim starać się ustalić takowe, i że – wobec tego, iż jest to rzecz najważniejsza w świecie i w której najbardziej należało się obawiać pośpiechu i uprzedzenia – nie powinienem podejmować dzieła tego wprzódy, aż osiągnę wiek o wiele dojrzalszy niż dwadzieścia trzy lat, które wówczas liczyłem, i aż zużyję wiele czasu na przygotowanie się do tych zadań, tak wykorzeniając z umysłu wszystkie błędne mniemania, jakie przyjąłem weń przed tym czasem, jak też gromadząc rozmaite doświadczenia, aby zbierać materię dla moich rozumowań i ćwicząc się ciągle w metodzie, jaką obrałem, aby umocnić się w niej coraz więcej. (przeł. T. Żeleński-Boy)

Jeśli wierzyć wspomnieniom filozofa, rozpoczął on wtedy swego rodzaju eksperyment poznawczy, traktując życie i jego przypadki jako spektakl odbywający się na jego oczach i dostarczający materiału do przyszłej pracy filozoficznej. Ustalił sobie na okres przejściowy pewne reguły postępowania, ponieważ nie można zanegować wszystkiego jednocześnie. Sceptyczny po to, aby się ze sceptycyzmu raz na zawsze wydobyć, traktował te lata wędrówki jak prolog.

Upewniwszy się w ten sposób co do tych zasad i odłożywszy je na stronę wraz z prawdami wiary, które zawsze były na pierwszym miejscu w moich wierzeniach, osądziłem, iż, co do reszty mniemań, mogę swobodnie przystąpić do ich uprzątnięcia. Otóż, spodziewałem się lepiej z tym uporać, obcując z ludźmi, niż pozostając dłużej zamknięty w komorze, gdzie począłem wszystkie te myśli: zima tedy jeszcze niezupełnie dobiegła końca, a ja już puściłem się w drogę. I przez całe następne dziewięć lat czyniłem nie co innego, jak tylko tłukłem się tu i tam po świecie, starając się być raczej widzem niż aktorem we wszystkich komediach, jakie się na nim odgrywa. Rozważając w każdym przedmiocie szczególnie to, co mogłoby go uczynić podejrzanym i dać nam sposobność do omyłki, wykorzeniałem równocześnie z mego umysłu wszystkie błędy, jakie mogły się weń wprzódy wśliznąć. Nie iżbym w tym naśladował sceptyków, którzy wątpią, aby wątpić, i lubują się zawsze w niezdecydowaniu; przeciwnie, cały mój zamiar dążył tylko ku temu, aby się upewnić. Odrzucałem ruchomą ziemię i piasek, aby natrafić na skałę lub glinę. Udawało mi się to, jak sądzę, dość dobrze, ile że, starając się odkryć fałszywość lub niepewność twierdzeń, jakie rozpatrywałem, nie za pomocą słabych przypuszczeń, ale za pomocą jasnych i pewnych rozumowań, nie spotykałem wśród nich tak wątpliwego, z którego bym nie wyciągnął jakiejś dość pewnej konkluzji, choćby tej właśnie, iż nie zawiera ono nic pewnego. I jako burząc stare domostwo, zachowuje się zazwyczaj gruz, aby się nim posłużyć ku zbudowaniu nowego, tak niwecząc wszystkie mniemania, które osądziłem jako źle ugruntowane, czyniłem rozmaite spostrzeżenia i nabywałem mnogich doświadczeń, które posłużyły mi później ku zbudowaniu pewniejszych. Co więcej, ćwiczyłem się wciąż w metodzie, jaką sobie przepisałem; poza tym bowiem, iż starałem się na ogół prowadzić wszystkie moje myśli wedle reguł, zachowywałem sobie, od czasu do czasu, kilka godzin, które obracałem osobliwie na ćwiczenie się w trudnościach matematycznych lub nawet także w niektórych innych, które mogłem niejako upodobnić do matematycznych, odłączając je od zasad wszystkich nauk, które mi się nie zdawały dość pewne, jako ujrzycie, iż uczyniłem w wielu wyłożonych w tymże tomie. I tak, nie żyjąc na pozór w inny sposób niż ci, którzy, nie mając innego zadania, jak tylko pędzić życie lube a niewinne, starają się oddzielić przyjemności od błędów, i którzy, aby się cieszyć swoim wczasem nie nudząc się, zażywają wszystkich godziwych rozrywek, nie zaniedbywałem statecznego posuwania się w moim zamiarze i zapuszczania się w poznanie prawdy, być może więcej, niż gdybym był tylko czytał książki lub obcował z uczonymi. (przeł. T. Żeleński-Boy)

Niewiele wiemy o tych fascynujących Wanderjahre filozofa. Rok po nocy snów uczestniczył w oblężeniu i zdobyciu Pragi. Nie jest jasne, jaki był jego osobisty udział w walkach, ważnych dla losów Czech, wtedy to bowiem, w bitwie na Białej Górze, czescy protestanci ponieśli sromotną klęskę, która przesądziła o rządach Habsburgów na kilka wieków. Przywódcy powstania przeciw cesarzowi zostali ścięci, a ich głowy zatknięte na moście przez wiele lat stanowiły przestrogę dla potencjalnych buntowników. Palatyn reński, Fryderyk V, „zimowy król” Czech, uciekł, zabierając jedynie trochę klejnotów. Parę lat wcześniej na uroczystościach jego zaślubin z Anną Stuart odegrano Burzę Williama Shakespeare’a. Pochłonięty mocarstwowymi rojeniami młodzik, nie zwrócił zapewne żadnej uwagi na słowa Prospera:

Aktorzy moi, jak ci powiedziałem,

Były to duchy; na moje rozkazy

Na wiatr się lekki wszystkie rozpłynęły.

Jak bezpodstawna widzeń tych budowa,

Jasne pałace i wieże w chmur wieńcu,

Święte kościoły, wielka ziemi kula,

Tak wszystko kiedyś na nic się rozpłynie,

Jednego pyłku na ślad nie zostawi,

Jak moich duchów powietrzne zjawisko.

Sen i my z jednych złożeni pierwiastków;

Żywot nasz krótki w sen jest owinięty. —

 

 

Tablica Einsteina (Oksford, 16 maja 1931)

Niewiele jest rzeczy mniej trwałych niż treść zapisana kredą na tablicy. A jednak dziwacznym zrządzeniem losu tablica zapisana ręką Alberta Einsteina podczas wykładu w Oksfordzie zachowała się do dziś, stając się jednym z najchętniej oglądanych eksponatów miejscowego muzeum historii nauki. Jej treść odnosi się do modelu wszechświata przedstawionego wówczas przez uczonego. Einstein porzucił właśnie swój model świata statycznego i zgodnie z obserwacjami przyjął, że wszechświat się rozszerza. Galaktyki są, jak się żartobliwie wyraził, „światami, które oddalają się od nas z niewiarygodną prędkością, choć ich mieszkańcy nie znają nas w wystarczającym stopniu, by zachowanie takie wydawało się usprawiedliwione”.

Tablica przedstawia dwa równania opisujące zmiany promienia krzywizny wszechświata P, znalezione wcześniej przez Aleksandra Friedmanna (1a i 2a). Wielkość D, opisuje szybkość rozszerzania wszechświata i można ją znaleźć z obserwacji, co uczynił Edwin Hubble ( Vesto Slipher). Einstein znał osobiście amerykańskiego astronoma, lecz najwyraźniej nie widział w druku jego nazwiska i sądził, że pisze się je Hubbel. Na podstawie równań Friedmanna oszacował promień krzywizny wszechświata w latach świetlnych, jego gęstość \varrho w g/cm^3 oraz wiek t w latach. Wartość podana tu przez Einsteina przez czysty przypadek zgodna jest z obecnie przyjmowaną. Aby dojść do współczesnej kosmologii, trzeba było jeszcze wielu obserwacji, choć teoria była w zasadzie gotowa. W roku 1931 ów wiek wszechświata rzędu dziesięciu miliardów lat wydawał się zbyt krótki, sądzono bowiem, że gwiazdy świecą znacznie dłużej (wierzono wtedy, że cała masa gwiazdy z czasem zamienia się w promieniowanie, podczas gdy naprawdę jest to tylko około 1%, co skraca wiek gwiazd o dwa rzędy wielkości).

Tak więc treść tablicy jest dość przypadkowa i nie zawiera żadnego szczególnie istotnego odkrycia (a nawet zawiera pewne błędy rachunkowe, dość częste u Einsteina – nie byłby on dobrym księgowym). Zachowano ją, ponieważ uczony cieszył się wówczas ogromną sławą na całym świecie. Można powiedzieć, że był przeciwieństwem celebryty: jego osiągnięcia były jak najbardziej rzeczywiste i wcale nie pragnął być rozpoznawany na ulicy.

Zimę 1930/1931 spędził Einstein w Stanach Zjednoczonych, kwiecień – w Berlinie, potem na miesiąc pojechał do Oksfordu z cyklem wykładów Rhodesa. Jego częste podróże wiązały się w dużej mierze z atmosferą w Niemczech, gdzie narastał nacjonalizm i gdzie wciąż spotykały go jakieś przykrości. Opublikowana została np. książka zatytułowana Hundert Autoren gegen Einstein („Stu autorów przeciwko Einsteinowi”). Trzej redaktorzy dzieła skarżyli się tam na zmowę mediów głównego nurtu: „Można było dzięki temu zataić przed ogółem, że teorii względności bardzo wiele brakuje, aby stać się solidnym osiągnięciem nauki, a ostatnio dowiedziono za pomocą nieodpartych argumentów, iż jest ona kompleksem sprzecznych ze sobą twierdzeń, niemożliwych myślowo i intelektualnie zbędnych”. Einstein zauważył kostycznie, że gdyby nie miał racji, to wystarczyłby jeden autor. Książka taka niewątpliwie nigdy by się nie ukazała, gdyby autorem teorii względności był np. Max Planck, którego „niemieckość” była poza podejrzeniem. Wówczas sławiono by tę teorię jako wykwit śmiałego ducha germańskiego, zdolnego złączyć idealizm i doświadczenie. Owa setka autorów nie należała do elity akademickiej, lecz nie był to także żaden margines. Niemcy weszły już na drogę samozniszczenia, którą miały wytrwale podążać aż do 1945 roku. Teoria względności trwa niezagrożona, okazała się więc zresztą znacznie trwalsza niż Tysiącletnia Rzesza.

O przyjazd uczonego do Oksfordu zabiegał od dawna Frederick Lindemann, późniejszy ważny doradca Winstona Churchilla, kierownik Laboratorium Clarendona, który przed laty zrobił doktorat u Nernsta. Einsteina poznał podczas pierwszego Kongresu Solvaya w roku 1911 i od tamtej pory miał dla niego najwyższe uznanie. Lindemann przyjechał po swego gościa rolls royce’em, po drodze do Oksfordu wstąpili do szkoły w Winchester, jednej z najstarszych szkół w Anglii. Gość zwiedził budynki szkoły, w tym szatnię sportowców, gdzie przepocone stroje wisiały pod plakietkami upamiętniającymi różnych sławnych uczniów. „Ach, rozumiem – stwierdził uczony – duch zmarłych wstępuje w spodenki żywych”.

Einstein zamieszkał w Christ Church College, trochę narzekał na konieczność przebierania się w smoking do cowieczornego obiadu, ale zarówno Anglia, jak i Anglicy przypadli mu do gustu. Bywał na niezliczonych herbatkach i kolacjach, grał wielokrotnie w kwartecie albo kwintecie, spacerował po okolicy. Lindemann zadbał, aby gość miał towarzystwo mówiące po niemiecku.

Po jednym z trzech wykładów, jakie Einstein wygłosił w Oksfordzie, zdjęto ze ściany zapisaną przez niego tablicę, by zachować ją na pamiątkę. Uczony czuł się zażenowany takim przejawem kultu jednostki, ale zauważył także, iż niektórzy angielscy koledzy nie potrafli ukryć zazdrości w owym momencie. Nie byłby jednak sobą, gdyby do końca mieścił się w roli przypisanej mu przez okoliczności. Christ Church College był wyłącznie męski, nawet służbę stanowili mężczyźni. Za Einsteinem przyjechała do Oksfordu jedna z jego berlińskich adoratorek, trzydziestoletnia Ethel Michanowski. Uczony pisywał dla niej wiersze, np. taki liryk:

Smukła i delikatnie napięta,
Nic nie skryje się przed jej spojrzeniem.
Uśmiecha się na powitanie przyjaciół,
A jednak jest jak wierzba płacząca.

Wiersz ten nosi datę 16 maja 1931, a więc powstał podczas pobytu Einsteina w Oksfordzie. Ethel przysłała mu do Christ Church College jakiś kosztowny podarek, uczony gniewał się o to, i tak już skrępowany otaczającym go zbytkiem. W dodatku o wizycie Ethel dowiedziała się Elsa i zareagowała furią. Einstein przedłożył żonie następującą argumentację:

Twój gniew na panią M. jest całkowicie bezzasadny, gdyż zachowała się ona w całkowitej zgodzie z moralnością judeochrześcijańską. A oto dowód:
1. należy robić to, co sprawia nam przyjemność, a innym nie szkodzi;
2. nie powinno się robić tego, co nam nie sprawia przyjemności, a innych tylko irytuje. Dlatego też, zgodnie z punktem pierwszym, przyjechała do mnie, a zgodnie z punktem drugim nic ci o tym nie powiedziała. Czy takiemu zachowaniu można coś zarzucić?.

Chyba jednak przeczuwając, że nie przekona w ten sposób rozsierdzonej małżonki, Einstein napisał jednocześnie do Margot, córki Elsy i przyjaciółki Ethel, że sprawa zaczęła się nieco wymykać spod kontroli i byłoby lepiej dla obu zainteresowanych pań, gdyby o nich powszechnie nie plotkowano.

Wszechświat rozpatrywany wówczas przez Einsteina był sferą trójwymiarową (przestrzeń fizyczna byłaby więc skończonej objętości – podobnie jak skończone jest pole powierzchni dwuwymiarowej sfery). Na rysunku przedstawione są sfery dwuwymiarowe (czyli powierzchnie kulistego balonu, powierzchnia balonu jest tu całą przestrzenią). Rozszerzanie  analogiczne jest do nadmuchiwania balonu.

Zależność promienia wszechświata od czasu opisywana jest w takim modelu cykloidą. Nasz świat byłby na wznoszącym się łuku cykloidy. Przypadek promienia bliskiego zeru Einstein wykluczał, sądził, że jego model się tu nie stosuje. Nie sądził też, aby jakiś sens fizyczny miały kolejne łuki cykloidy.

 

Dlaczego nigdy nie zagłosuję na PiS?

Stan państwa polskiego po czterech latach rządów PiS najlepiej ilustruje okładka z sierpniowej „Polityki”. Otóż mamy cyrk zamiast Sejmu z Senatem, rząd, który nie podejmuje samodzielnych decyzji, premiera, który nim nie kieruje i nie może nawet samodzielnie odwołać ani powołać swoich podwładnych, bo stoi za nisko w partyjnej hierarchii, Trybunał Konstytucyjny pod przewodem paniusi za słabej do sądu okręgowego (a naprawdę pana agenta służb), NIK kierowany przez pana b. właściciela bajzlu (też człowieka służb i Opus Dei), Bank Narodowy dziwnie przypominający harem prezesa, zmieniających się jak w kalejdoskopie przygłupów na czele spółek skarbu państwa, zdemolowaną i złamaną prokuraturę, przetrąconych sedziów coraz częściej niestety wydających kuriozalne wyroki o kobietach atakujących głową buty chuliganów itp (nie z głupoty – bo to zawsze się może zdarzyć, ale ze strachu przed zwierzchnikami), media publiczne zarządzane tak, jak interes tego pana od NIK, a działające jak za najlepszych faszystowskich czasów. „My po prostu potrafimy rządzić” – zapewnia prezes, bez którego decyzji nawet partyjna mysz nie piśnie.

Najlepszy okres w nowożytnej historii Polski dobiega właśnie końca. Jeszcze działają niektóre instytucje, jeszcze nie wszystko zostało opanowane przez członków Opus Dei i zwykłych cwaniaczków z prowincji. Wciąż rozwija się gospodarka, rośnie PKB – jak wspaniale jest wysysać tę Polskę w ruinie, która zostawiła finanse w świetnym stanie, nieźle funkcjonującą, bo prywatną gospodarkę, potrafiła budować autostrady, zorganizowała sieć szkół gimnazjalnych, zdemolowaną teraz kaprysem prezesa. Pomału to się kończy, zasiłki i urzędowe płace minimalne nie sprawią, że dogonimy gospodarczo Niemcy, a kontrole skarbowe grożące więzieniem nie zachęcą do inwestowania prywatnych kapitałów. Na chwilę zorganizujemy kapitał zabierając składki emerytalne i finansując z nich różne PESY i Jelcze, ale oczywiście daleko się na tym nie zajedzie. Możemy znacjonalizować jeszcze jeden czy drugi bank, ale ani pieniędzy, ani rozsądku w decyzjach od tego nie przybędzie. Wszystko to jest świetnym pomysłem na katastrofę, która nadejdzie tym szybciej, im mniej bezczynny będzie rząd tych, „co potrafią rządzić”.

Zresztą nie trzeba się znać na żadnej szczegółowej dziedzinie, wystarczy tylko posłuchać. Znakiem rozpoznawczym tej władzy jest kłamstwo. Mamy premiera, który wielokrotnie kłamie/mija się z prawdą/przeinacza fakty/koloryzuje/konfabuluje/zmyśla każdego dnia, to jakaś patologiczna niezdolność trzymania się faktów. Podobnie jak jego prezes, który opowiada bajki o historii Polski, w której Solidarność założył jego brat, a pod Smoleńskiem ktoś „poległ” (niby w boju) i że bez zniszczenia sądów nie można wypłacać 500+ i że ktoś chce „seksualizować” jego dzieci („nasze dzieci” – powiedział). Strumień idiotyzmów wylewający się z tego starszego pana nie powinien nas dziwić. Niemal każdy ma takiego wujka, znającego rozwiązania wszystkich bolączek świata, ale zwykle wujenka go ucisza, więc nie może się rozwinąć. Tego wuja nikt nie ucisza, koła gospodyń w barwnych kieckach słuchają go jak radia, podwładni szybko przekazują owe wypociny dalej, a narodowe media i opłacane trolle wysyłają to w lud fejsbukowy. A na każdego, kto się przeciwstawi, rzuca się stado internetowych piranii, atakując go ze wszystkich możliwych stron, często używając do tego informacji poufnych, czuć przy tym rączkę służb.

Czy zastanawiali się Państwo kiedyś, jak to jest, że Putin albo Erdogan wygrywają wybory w swoich krajach? Nie dlatego, że Rosjanie czy Turcy są jakoś głupsi od Polaków, po prostu głosują na podstawie tego, co wiedzą, a o to, co wiedzą i co myślą, troszczą się już odpowiednie służby. Reszta jest łatwa, nie trzeba nawet fałszować wyników, choć gdyby miały być niekorzystne dla władzy, to i tym pewnie by się zajęli. Nadchodzące wybory może jeszcze nie będą sfałszowane, choć nie są uczciwe i równe, bo tylko jedna ze stron dysponuje dodatkowo milionami naszych pieniędzy i sypie nimi hojnie na parteitagi i afisze oblepiające wsie i miasteczka. No i ma do dyspozycji telewizję za miliardy z podatków i inną prywatną, praktycznie zneutralizowaną. Ale następne wybory będą już jak te z PRL, gdzie lud głosował, ale kandydatów wybierała (i numerowała) Partia. Swoją drogą, jest w tym ironia historycznego losu: kraj, który tak źle znosił podległość wobec Rosji, wypuszczony z klatki nie wie, co robić i w końcu wraca do niej z powrotem, już na własne życzenie.

 

Oko ludzkie i doskonałość stworzenia

Czy długa szyja żyrafy, zajęcze skoki albo narząd taki, jak ludzkie oko, są wytworem opatrznościowego inteligentnego projektu, czy też mogły ukształtować się samorzutnie wskutek ewolucji? Do połowy XIX wieku poglądy ewolucyjne były raczej odosobnione i niedopracowane. W żywych istotach widziano przykład mądrości bożej. Nawet arcyniedowiarek Voltaire pisał w swym Traité de métaphysique (czyli „Traktacie metafizycznym”):

Kiedy widzę zegarek, którego wskazówka pokazuje godziny, dochodzę do wniosku, że istota inteligentna rozmieściła sprężyny tej machiny w taki sposób, by wskazówka pokazywała godziny. Podobnie widząc sprężyny ciała ludzkiego, dochodzę do wniosku, że istota inteligentna rozmieściła jego narządy w taki sposób, aby mogło mieścić się i odżywiać przez dziewięć miesięcy w macicy; że oczy są mu dane, by widzieć, ręce, aby chwytać itd.

Voltaire nie był osobistym wrogiem Stwórcy, był deistą, sceptycznie zapatrującym się na Jego samozwańczych przedstawicieli na ziemi. Argument Voltaire’a podjęty został przez teologa Williama Paleya, który w zegarku znalezionym na wrzosowisku chciał widzieć dowód istnienia Boga, i to koniecznie w jego anglikańskiej odmianie. Rozwijana była, zwłaszcza w XIX wieku, tzw. teologia naturalna. Podkreślano w niej rozmaite przykłady dostosowania istot żywych albo ich poszczególnych narządów do swych funkcji i traktowano to jako przykłady inżynierskich talentów Stwórcy – był wszak wiek przemysłu napędzanego siłą pary, a niebawem także elektryczności, i inżynierowie byli w cenie.Także młody Charles Darwin znał i podzielał argumentację tego rodzaju, zanim odkrył inne rozwiązanie: żywe organizmy mogą ewoluować, a sukces odnoszą te z nich, którym najlepiej uda się wykorzystać swoje środowisko. Nie ma więc projektu ani zegarmistrza czy konstruktora, jest następowanie kolejnych innowacji, kumulujących się niekiedy w coś tak bliskiego doskonałości jak oko ludzkie albo gepard.

W liberalnym i dżentelmeńskim świecie Darwina dyskusja musiała być rzetelna, wyzbyta demagogii. Dlatego w dziele O powstawaniu gatunków uczony zamieścił cały rozdział poświęcony trudnościom własnej teorii – coś, czego jego dzisiejsi koledzy, tak usilnie walczący o przetrwanie w akademickim środowisku, z reguły nie robią, poprzestając na autoreklamie.

Pisze Darwin:

Przypuszczenie, że oko ze wszystkimi swoimi niezrównanymi urządzeniami do nastawiania ogniskowej na rozmaite odległości, do dopuszczania rozmaitych ilości światła oraz korygowania aberracji sferycznej i chromatycznej mogło powstać drogą doboru naturalnego, wydaje się – przyznaję to otwarcie – w najwyższym stopniu niedorzeczne. Rozum jednak mi mówi, że jeśli można dowieść istnienia licznych stadiów pośrednich, od skomplikowanego i doskonałego oka do prostego i niedoskonałego, przy czym każde z tych stadiów jest użyteczne dla posiadacza, jeżeli zmiany te są bardzo niewielkie i dziedziczne (…), i jeżeli takie zmiany lub modyfikacje narządu będą zawsze korzystne dla zwierzęcia przy zmianie warunków życia, wtedy trudności przyjęcia, iż doskonałe i skomplikowane oko może powstać drogą doboru naturalnego (…) nie sposób uznać za rzeczywistą. [przeł. Sz. Dickstein, J. Nussbaum, popr. J. Popiołek, M. Yamazaki, s. 175-176]

O „doskonałości” oka ludzkiego powiemy nieco dalej. Najpierw spójrzmy na samą kwestię ewolucji od plamki ocznej do rozbudowanej struktury z gałką oczną, soczewką i siatkówką.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Dość łatwo wyobrazić sobie kolejne kroki ewolucyjne i korzyści z nich płynące: lepiej mieć jakiś detektor światła niż go nie mieć (np. u fotosyntezującej eugleny światło jest źródłem energii, korzystnie jest zatem znaleźć się w miejscu o lepszym oświetleniu). Podobnie, lepiej jest otrzymywać jakąś, nawet niedokładną informację o kierunku, z którego dociera światło, niż nie otrzymywać jej wcale. Naturalne więc są struktury typu camera obscura: otwór, przez który wpada światło, a naprzeciwko tego otworka komórki światłoczułe. Oko tego rodzaju pozwala zaobserwować jakiś obraz przedmiotu, ma jednak słabą zdolność rozdzielczą i wpuszcza niewiele światła. Owady wykorzystują wiele egzemplarzy takich oczu jednocześnie. Lepszym rozwiązaniem jest poszerzenie otworu, którym wpada światło i umieszczenie soczewki wytwarzającej obraz na światłoczułym ekranie – siatkówce. Można wówczas regulować ilość światła docierającego do siatkówki oraz uzyskać obraz o dobrej zdolności rozdzielczej.

John Ellis, How Science Works: Evolution, 2nd ed., Springer 2016

Obliczono, że cała ta ścieżka ewolucyjna może zmieścić się w czasie rzędu pół miliona lat, przyjmując, że u małych organizmów morskich pokolenie trwa mniej więcej jeden rok). Oznacza to, że kiedy wydarzyła się eksplozja kambryjska: pojawienie się licznych zwierząt około 540 mln lat temu, to praktycznie natychmiast (w skali geologicznej) powinny się też pojawić oczy. Wśród skamieniałości z kambru znajdują się trylobity i żywiące się nimi drapieżniki anomalocaris – zwierzęta te posiadały oczy złożone. Odkryto też, że u gatunków tak różnych, jak myszy, owady i ludzie wpływ na budowę oka ma ten sam gen regulujący PAX6, najwyraźniej mieliśmy więc wspólnych przodków.

Grafika: Trevor D. Lamb, Evolution of the Eye, „Scientific American”, July 2011

Dzielimy przeszłość oka ze śluzicą (hagfish) i minogiem (lamprey). W rozwoju embrionalnym oko człowieka powtarza owe wczesne stadia rozwojowe.

Parę słów na temat jakości optycznej naszego oka. Nie jest ono bynajmniej konstrukcją idealną. W zasadzie ostry obraz odbieramy tylko poprzez czopki skupione w plamce żółtej na powierzchni około 1 mm² – jest to zdecydowanie najbardziej drogocenny fragment naszego ciała. Daje to pole widzenia rzędu zaledwie 2°. Czopki zapewniają nam też widzenie barwne, ponieważ występują w trzech odmianach, które wrażliwe są (głównie) na czerwień, zieleń i błękit. Wrażenie obrazu przed oczami tworzone jest przez nasz mózg, wzrok skanuje bowiem nieustannie pole widzenia (dlatego tak ważna jest ruchomość gałki ocznej). Mamy tu więc do czynienia z dobrej jakości kamerą o niezwykle wąskim polu widzenia, która tworzy szerszy obraz dzięki swoim bezustannym ruchom i oprogramowaniu. Spróbujmy np. przeczytać poniższy tekst, a zobaczymy, że idea linearnego odczytywania tekstu literaz za literą nie jest całkiem poprawna.

Nie werizłeim że mzóg mżoe bez polbrmeu oczdaytć sowła z pporyzsteaimawni ltemirai blye tlkyo perwizsa i otanista błyy na sowich mecscijah

Aberracje sferyczna i chromatyczna (*), o których mówił Darwin nie są w przypadku oka tak trudne do skorygowania, jak mu się zdawało, a to dlatego, że najważniejsze są promienie blisko osi optycznej, dla nich aberracje te są niewielkie. Możemy natomiast przystosowywać się do zmiennych warunków oświetlenia dzięki kurczeniu i rozszerzaniu źrenic oraz możemy modyfikować ogniskową całego oka tak, by obraz przedmiotów położonych niezbyt blisko oka był wyraźny (konkretna odległość dobrego widzenia zależy od indywidualnych cech oka oraz wieku jego posiadacza). W obrębie plamki żółtej zdolność rozdzielcza oka zbliża się do granicy dyfrakcyjnej, tzn. teoretycznej zdolności rozdzielczej (por. John Biddell Airy: Jak drobne szczegóły można dostrzec przez teleskop).

Pod względem konstrukcyjnym oko ludzkie jest jednak zbudowane gorzej niż oko ośmiornicy.

Po lewej stronie mamy oko kręgowca. Włókna nerwowe (2) przechodzą w nim przed światłoczułą siatkówką (1). Cały ten bałagan przed siatkówką pogarsza oczywiście jakość obrazu. Nerwy skupiają się w w dodatku w wiązkę (nerw wzrokowy) (3) w taki sposób, że pozostaje obszar oka niewrażliwy na światło, tzw. plamka ślepa (4). To, że jej zwykle nie widzimy, jest czarodziejstwem mózgu. Po prawej stronie mamy znacznie porządniejszy inżyniersko projekt oka głowonoga, gdzie siatkówka jest umieszczona przed nerwami wzrokowymi, które nie zakłócają biegu światła i nie tworzą plamki ślepej.

Jeśli Stwórca starał się osiągnąć projekt idealny, to udało mu się go zrealizować w przypadku ośmiornic, nie ludzi. Przypomina się odpowiedź wybitnego biologa J.S.E. Haldane’a na pytanie pewnego teologa, czego na temat Boga można dowiedzieć się z badań biologicznych. „Że wykazuje nadmierne upodobanie do chrząszczy” – brzmiała odpowiedź. Jest to aluzja do faktu, że istnieje około miliona gatunków chrząszczy, z czego tylko część jest znana badaczom.

(*) Aberracja sferyczna to efekt nieogniskowania wszystkich promieni w jednym miejscu przez soczewkę o powierzchniach idealnie sferycznych. W oku nie mamy do czynienia z tak prostą sytuacją, ale problem nieogniskowania w jednym punkcie także występuje.

Aberracja chromatyczna pojawia się, ponieważ promienie różnych barw mają różne współczynniki załamania, nawet więc gdyby kształt soczewki został zaprojektowany w sposób idealny, dotyczyłoby to jedynie jednej barwy, dla innych obraz musiałby być nieco rozmyty.

A kromatikus aberráció jelensége.

Johannes Kepler: Jak działa ludzkie oko? (1602-1604)

Jesienią roku 1602 Johannes Kepler, „matematyk” cesarza Rudolfa II (czyli nadworny astronom), bronić się musiał przed posądzeniami o lenistwo. Chodziło o zadanie obliczenia nowych tablic astronomicznych na podstawie obserwacji zmarłego niedawno Tychona Brahego. Zięć duńskiego astronoma, Franz Gansneb Tengnagel, parający się amatorsko astronomią, starał się przejąć to zadanie, ale głównie chodziło mu w tym o cenny zbiór obserwacji teścia, za które oczekiwał zapłaty u dworu. Tengnagel nie potrafił obliczać żadnych tablic, a Kepler był z pewnością jedynym uczonym zdolnym do zreformowania astronomii tak, żeby tablice owe były coś warte. Broniąc się przed zarzutami, Kepler zobowiązał się do napisania dwóch dzieł. Jedno z nich, Komentarze o ruchach Marsa, gotowe miało być na najbliższą Wielkanoc, drugie zaś – Optyczna część astronomii, już za osiem tygodni.

Prace te okazały się znacznie trudniejsze, niż to się zawsze optymistycznemu Keplerowi wydawało: książkę optyczną skończył dopiero pod koniec następnego roku (ukazała się w roku 1604), książka astronomiczna, Astronomia nova, ukazała się dopiero w 1609 roku. Wydłużenie terminów brało się z gruntowności uczonego, który nigdy nie poprzestawał na łatwych osiągnięciach i szedł w swych badaniach dużo dalej, niż potrafili to zrozumieć i zaakceptować jego koledzy. Obie książki były rewolucyjne: optyczna wyjaśniła rolę oka w widzeniu, astronomiczna zawierała odkrycie eliptycznego kształtu orbity Marsa.

Pierwszym zagadnieniem optycznym, którym zajął się Kepler jeszcze w Grazu, było tworzenie się obrazu w ciemni optycznej – camera obscura. Oto jak udało mu się rozwikłać ten problem:

(…) odwołałem się do własnych obserwacji w trzech wymiarach. Umieściłem w górze książkę tak, by zajęła miejsce świecącego ciała. Między nią a podłogą ustawiłem stolik mający wieloboczny otwór. Następnie przeciągnąłem nitkę z jednego rogu książki poprzez otwór aż na podłogę; jej koniec znalazł się na podłodze w takim punkcie, że nitka ocierała się o brzegi otworu; zakreśliłem wytworzone w taki sposób punkty i utworzyłem na podłodze figurę podobną do otworu. Podobnie za pomocą nitki przywiązanej do drugiego, trzeciego i czwartego rogu książki a następnie do pewnej liczby punktów wzdłuż jej krawędzi, na podłodze wynikła z tego pewna liczba zakreślonych figur w kształcie otworu, które razem utworzyły wielką czworokątną figurę kształtu książki.

Bardzo możliwe, że metoda Keplera wzorowana była na procedurach opisanych przez Alberta Dürera w jego traktacie Unterweisung der Messung mit dem Zirkel und Richtscheit („Nauka mierzenia za pomocą cyrkla i liniału”, 1525). Książka Dürera była swego rodzaju praktycznym podręcznikiem geometrii przeznaczonym dla rysowników, architektów i rzemieślników. Posługując się nitkami Kepler ustalił, że każdy punkt przedmiotu jest w ciemni optycznej odwzorowywany na obraz otworu tego urządzenia, a przez nałożenie się takich obrazów otworu tworzy się obserwowany przez nas obraz przedmiotu. W ten sposób, jeśli powiedzmy otwór będzie miał kształt trójkąta, a obserwowanym przedmiotem będzie słońce, to każdy punkt słońca będzie odwzorowany jako trójkąt i z nałożenia się takich trójkątów powstanie ostatecznie obraz słońca, który będzie oczywiście okrągły, a nie trójkątny. Obraz ten będzie także nieco większy i tym bardziej rozmyty, im większa jest średnica otworu. Wyjaśniało to wyniki przeprowadzonych w Grazu obserwacji zaćmienia Słońca. Patrząc bezpośrednio na Słońce widać było wówczas ostro zakończony sierp, natomiast obraz Słońca dawany przez ciemnię optyczną miał zaokrąglone krawędzie. Kepler nie był pierwszym, który zrozumiał sposób działania camera obscura, ale zrobił to niezależnie od innych i pierwszy miał opublikować swoje wyniki.

Panujące wówczas poglądy na widzenie wywodziły się od Alhazena (Ibn al-Hajsama), islamskiego uczonego urodzonego w Basrze mniej więcej wtedy, kiedy Mieszko zaczął myśleć o chrzcie Polski. Światło wedle jego teorii wpadało do oka prostopadle (tylko takie promienie dawały wkład do widzenia), a promienie załamywały się potem tak, aby powstał zmmniejszony obraz zewnętrznego przedmiotu. Promienie świetlne nie przecinały się wewnątrz oka, gdyż wtedy powstałby obraz odwrócony i widzielibyśmy wszystko „do góry nogami”. Obraz był także mały, mógł się więc zmieścić w nerwie i przedostać do mózgu – wyobrażano go sobie dość dosłownie jako mały obrazek przenoszony aż do mózgu.

Rysunek za Davidem C. Lindbergiem, Theories of Vision from Al-Kindi to Kepler.

W ciągu kilkudziesięciu lat drugiej połowy XVI wieku ukazało się sporo książek traktujących o budowie ciała ludzkiego na podstawie przeprowadzanych sekcji, a dzięki wynalazkowi druku oraz drzeworytom wyniki tych badań można było przedstawiać w postaci plansz i rysunków. Kepler korzystał z pracy Felixa Plattera, profesora medycyny z Bazylei, zatytułowanej De corporis humana structura et usu („O budowie i funkcjonowaniu ciała ludzkiego”, 1583), będącej w zasadzie zbiorem plansz anatomicznych z dodanym krótkim komentarzem. Używał także dzieła Anatomia Pragensis („Anatomia praska”) znanego mu osobiście i zaprzyjaźnionego z nim Jana Jesenskiego. Uważano wówczas przewąnie, że soczewka oczna, „humor krystaliczny”, odczuwa bezpośrednio światło i kolor, a ponieważ jest połączona z resztą oka i nerwem ocznym, przekazuje ten obraz dalej. Tymczasem Platter pokazał, że soczewka nie jest połączona z nerwem ocznym i siatkówką. Kwestia ta nie była zresztą jednoznacznie rozstrzygnięta przez anatomów, Jesensky różnił się tu od Plattera i Kepler przedłożył pogląd uczonego z Bazylei nad opinię swego przyjaciela.

Fragment planszy Plattera, Kepler zreprodukował ją w swoim dziele.

W miejsce koncepcji promieni prostopadłych Kepler zaproponował tworzenie się obrazu na siatkówce oka. „Widzenie zachodzi, kiedy obraz całej połowy sfery świata przed okiem (…) tworzy się na czerwonawej powierzchni siatkówki.” Promienie od przedmiotu padające w różnych punktach soczewki oka są przez nią załamywane w taki sposób, że skupiają się w punkt dokładnie na siatkówce, na tylnej ściance oka. Dzięki temu każdy punkt przedmiotu daje punktowy obraz na siatkówce. Wcześniej zbadał tworzenie się obrazu w kulistej soczewce zarówno teoretycznie, jak i eksperymentalnie (używając do doświadczeń kulistych szklanych kolb na mocz napełnionych wodą).

Cała ta koncepcja mechanizmu widzenia była pod wieloma względami rewolucyjna. Oko stawało się tylko przyrządem optycznym, zamiast być narządem zmysłów reagującym na swojej zewnętrznej powierzchni na światło. W ten sposób optyka oka stawała się częścią fizyki, podobnie jak dziś optyka aparatu fotograficznego. Część światłoczuła została przesunięta na siatkówkę, tam właśnie miał się wytwarzać obraz i to odwrócony. Był to rzeczywisty obraz, który Kepler nazwał pictura – można by go dostrzec na powierzchni siatkówki, gdyby dało się tam umieścić jakiegoś obserwatora. Kepler nie zamieścił żadnego rysunku tej sytuacji, ale ideę jego teorii dokładnie przedstawia rysunek z dzieła Kartezjusza La Dioptrique z roku 1637. Mamy tam nawet dodatkowego obserwatora oglądającego obraz na siatkówce monstrualnie wielkiego oka.

Tworzenie się obrazu w oku według teorii Keplera. (Rysunek z La Dioptrique Kartezjusza.)

Obraz na siatkówce jest jednak, niestety, odwrócony. Kepler niełatwo pogodził się z tą konsekwencją swojej teorii, pisze, że męczył się bardzo pragnąc wykazać, że promienie raz jeszcze się po drodze przecinają dając ostatecznie obraz prosty. Niezrozumiałe było, czemu nie widzimy wszystkiego do góry nogami. Powstawało też pytanie, jak to się dzieje, że stosunkowo duży obraz na siatkówce zostaje przesłany cienkim nerwem optycznym do mózgu. Teoria Keplera rodziła wyraźne kłopoty dla wciąż zalążkowej fizjologii widzenia. Wyraźnie rozdzielona została jednak część optyczna od części fizjologicznej widzenia: aż do utworzenia się obrazu na siatkówce mamy do czynienia z optyką, a co się dzieje z tym obrazem dalej, to pozostaje już w gestii fizjologów. Co więcej, obrazami rzeczywistymi, takimi jak na siatkówce, można zajmować się w sposób obiektywny: mierzyć ich położenie, rozmiary itd.

Ze ściśle technicznego punktu widzenia Kepler zbudował optykę geometryczną z jej wykreślaniem biegu promieni i szukaniem punktów przecięcia – wszystko to, czego do dziś uczy się w szkołach. Teoria Keplera wymagała rozpatrzenia biegu promieni przez ośrodek o kształcie zbliżonym do kuli. Kepler wykazał, że jeśli kulę taką przesłonimy przesłoną (odgrywającą rolę źrenicy) to będzie ona ogniskować promienie w jakimś punkcie. Będzie więc zachowywać się jak soczewka. Oczywiście taki model kulistego ośrodka z przesłoną nie jest dokładnym przedstawieniem gałki ocznej, ale Kepler argumentował, że zachowuje on najważniejsze cechy rzeczywistej sytuacji i jest wystarczający do jego celów.
Praktyczną konsekwencją pracy Keplera było wyjaśnienie, jak działają okulary korekcyjne. Okulary poprawiające wzrok stosowane były od kilkuset lat, pojawiły się już w XIII wieku, początkowo wytwarzano tylko soczewki wypukłe przeznaczone dla dalekowidzów, zwykle osób starszych (umożliwiło to wielu uczonym kontynuowanie pracy także w starszym wieku). W XV wieku zaczęto także szlifować soczewki wklęsłe korygujące wadę krótkowzroczności u osób młodych. Okulary były z początku przedmiotem zbytku i powodem do dumy dla swych posiadaczy, jak wnosić można choćby z przedstawień w sztuce: głowa kanonika w okularach wyrzeźbiona jest na fasadzie katedry w Meaux niedaleko Paryża (XIV wiek), van Eyck umieścił okulary na swoim słynnym obrazie Madonny kanonika van der Paele. Do tej pory stosowano jednak okulary jako wynalazek czysto praktyczny, nie rozumiejąc istoty ich działania. Praca Keplera otworzyła drogę do naukowego badania kwestii wad wzroku u ludzi. Umożliwiła też kilka lat później zrozumienie, jak działa teleskop astronomiczny.

Ściśle techniczne osiągnięcie dotyczące działania oka miało też ważne konsekwencje poznawcze i filozoficzne. Oto bowiem, używając wzroku, odwołujemy się w istocie do obrazów złożonych w całość przez mózg. Dociera do nas ze świata zestaw plamek, pikseli na siatkówce, które muszą dopiero zostać przetworzone w kształt drzewa albo znajomej twarzy. Wszelkie poznanie jest więc znacznie mniej bezpośrednie, niż to się dotąd wydawało. Cztery wieki później zaczynamy powoli rozumieć, jak z impulsów przewodzonych przez neurony mózg składa wyobrażenie tego, co widzimy. W istocie ostro widzimy tylko za pomocą plamki żółtej, niewielkiego fragmentu siatkówki, połączonego niewielką liczbą neuronów tworzących ciało kolankowate boczne z korą wzrokową. Ścieżka między okiem a mózgiem jest więc bardzo wąska i wciąż omiatamy wzrokiem otoczenie, aby zebrać potrzebne informacje. To, co widzimy, jest głównie kreacją naszego mózgu, o czym dobrze wiedzą śledczy, mający na codzień do czynienia z naocznymi świadkami wydarzeń.

Streptomycyna: pierwszy lek przeciw gruźlicy (1943)

Gdy myślimy o najgroźniejszych chorobach zakaźnych, na myśl przychodzą nam ospa, malaria, dżuma czy cholera. Jednak to nie one uśmierciły najwięcej ofiar. Rekord śmiertelności należy do gruźlicy: ponad miliard zgonów w ostatnich dwustu latach.

Gruźlica jest chorobą biednych i niedożywionych, a także tych, którzy mają z jakichś powodów słabszą odporność (w ostatnich latach często łączy się z AIDS). Sprzyjają jej kiepskie warunki mieszkaniowe, stłoczenie wielu osób na małej przestrzeni, toteż nasiliła się wraz z rozwojem miast w paru ostatnich stuleciach. Dosięgała jednak wszystkich: biednych i bogatych. Gdyby nie gruźlica dłużej mogliby tworzyć pisarze tacy, jak Anton Czechow czy George Orwell, a u nas Juliusz Słowacki i Stanisław Brzozowski. Inaczej wyglądałaby matematyka, gdyby Niels Abel czy Bernhard Reimann nie umarli przedwcześnie. Itd. itp., listę tę można by wydłużać.

Pierwszym skutecznym lekiem przeciw gruźlicy była streptomycyna. W listopadzie 1944 roku podano ją młodej pacjentce Mayo Clinic Patricii Thomas, której oba płuca zaatakowała gruźlica i tylko dni dzieliły ją od śmierci. Nie wiedziano jeszcze, jakie dawki leku są odpowiednie, lekarze na bieżąco monitorowali jej stan. Po pięciu miesiącach kuracji choroba ustąpiła i latem 1945 roku Patricia wróciła do domu. Jej chłopak, który służył w marynarce wojennej, także wrócił szczęśliwie, kiedy tylko skończyła się wojna. Pobrali się, mieli trójkę dzieci. Patricia przeżyła jeszcze dwadzieścia lat.

Przez następne kilka lat prowadzono próby kliniczne, obserwowano skutki uboczne. Ostatecznie streptomycyna stała się pierwszym antybiotykiem stosowanym z powodzeniem w leczeniu gruźlicy, a także niektórych innych infekcji.

Antybakteryjne działanie streptomycyny odkryte zostało zaledwie rok przed przypadkiem Patricii Thomas. Odkrycia dokonano na Universytecie Rutgersa w stanie New Jersey. Pracował tam Selman Abraham Waksman, urodzony na Ukrainie mikrobiolog, specjalista od bakterii glebowych i autorytet w tej dziedzinie. To on pierwszy użył nazwy antybiotyk na określenie substancji produkowanej przez jedne bakterie i toksycznej dla innych – gleba jest dla bakterii środowiskiem mocno konkurencyjnym, stąd wytwarzanie takich toksyn zwiększa ich szanse przeżycia. Pierwsze antybiotyki znalezione przez Waksmana i jego współpracowników były jednak toksyczne także dla zwierząt, więc ich przydatność lecznicza była niewielka. Wszystko zmieniło się w listopadzie 1943 roku, gdy jego doktorant Albert Schatz stwierdził, że streptomycyna niszczy prątki gruźlicy. Schatz, syn żydowskiego emigranta z Rosji i Angielki, niedawny absolwent Rutgersa, pracował dzień i noc w piwnicy laboratorium Waksmana nad wyizolowywaniem i badaniem działania różnych substancji wytwarzanych przez promieniowce żyjące w glebie (bakterie te odpowiadają za swoisty zapach mokrej ziemi). Waksman nie zapuszczał się nigdy do piwnicy zajmowanej przez Schatza, obawiając się zarażenia gruźlicą, jego laboratorium nie miało bowiem żadnych zabezpieczeń mikrobiologicznych. Młody człowiek, zarabiający 40$ miesięcznie, spędzał w swej piwnicy większość czasu, żywił się głównie tym, co pozostawało z badań w laboratorium, spał nawet na miejscu, nocny portier budził go od czasu do czasu, gdy trzeba było coś zmienić w ustawieniach aparatury pracującej na okragło. Odkrycie było szczęśliwym trafem, choć oczywiście nie było całkiem przypadkowe: zarówno Waksman, jak i Schatz, szukali substancji o takich właściwościach, nie wiedząc jednak, czy badania zakończą się sukcesem.

Sukces okazał się oszałamiający. Schatz stwierdził, że streptomycyna niszczy prątki gruźlicy i wyprodukował pierwsze 10g antybiotyku. Niebawem próby in vivo na świnkach morskich potwierdziły nadzieje wiązane z tą substancją. Firma Merck & Co., sponsorująca badania Waksmana, zdecydowała o zbudowaniu fabryki produkującej nowy lek, niebawem poszły za nimi inne firmy (patent został udostępniony). Był to drugi po penicylinie antybiotyk wprowadzony do leczenia i decyzja była o tyle trudna, że ograniczało się tym samym zasoby przeznaczone na produkcję penicyliny bardzo potrzebnej żołnierzom amerykańskim. Tu nie chodziło już o 40$ miesięcznie i piwnicę na badania, lecz o miliony dolarów i najlepszych chemików potrzebnych do przeskalowania całego procesu do rozmiarów przemysłowych. Niewykluczone, że decyzję uławiła obawa przez bronią biologiczną: streptomycyna niszczy bowiem zupełnie inne rodzaje bakterii niż penicylina.

Dla ludzkości najważniejsze było samo wprowadzenie streptomycyny. W połączeniu z kwasem p-aminosalicylowym (PAS) antybiotyk ten dał pierwszą w historii możliwość wyleczenia gruźlicy. Ludzie są jednak ludźmi i w tle toczyła się nierówna i brzydka walka Waksmana i Schatza o uznanie pierwszeństwa odkrycia. Waksman wygumkował całkowicie udział Schatza i przedstawiał się wszem i wobec jako jedyny odkrywca streptomycyny. Oznaczało to ogromne uznanie: od 1946 roku począwszy Waksman otrzymał 22 doktoraty honorowe i 67 różnych nagród naukowych, w tym Nagrodę Nobla za odkrycie tego konkretnie leku. O Schatzu Waksman nawet nie wspominał, sprowadzając go do roli anonimowego laboranta, który jedynie wykonywał zlecone mu prace. Można zrozumieć ten zawrót głowy: starszy uczony, dotąd wybitny specjalista w dość niszowej dziedzinie, znalazł się nagle w centrum uwagi mediów całego świata i nie potrafił oprzeć się pokusie przypisania sobie całej chwały. Chodziło także o pieniądze. Choć Waksman nie kierował się jedynie chęcią zysku, to zarabiał na  prawach do streptomycyny duże sumy (gwoli sprawiedliwości dodać należy, że przeznaczał je w większości na badania naukowe). Albert Schatz, schowany w cieniu, wciąż z trudem wiążący koniec z końcem, zdecydował się na krok nietypowy w nauce: pozwał Waksmana do sądu. W grudniu 1950 r. doszło do ugody: 3% dochodów z praw do streptomycyny przypadło Schatzowi, 10% Waksmanowi oraz 7% do podziału między wszystkich pracowników laboratorium w czasie, gdy dokonano odkrycia. Kariera naukowa Schatza była jednak skończona, żadna licząca się placówka naukowa nie chciała zatrudnić młodego uczonego, mimo jego niewątpliwych kwalifikacji. Panowało przekonanie, że wyniki badań uzyskanych w danym ośrodku należą się automatycznie kierownikowi – coś w rodzaju ius primae noctis w feudalnej Europie. Sposób patrzenia na rolę młodszych pracowników niewiele zmienił się ćwierć wieku później: kiedy w 1967 roku doktorantka Jocelyn Bell dokonała odkrycia pulsarów, Nagrodę Nobla za to odkrycie otrzymał jej szef Anthony Hewish. W 2018 r. Jocelyn Bell Burnell otrzymała Special Breakthrough Prize m.in. za tamto odkrycie. Pieniądze (3 mln dolarów) przeznaczyła na stypendia dla kobiet, przedstawicieli mniejszości oraz imigrantów specjalizujących się w fizyce.

Harry Kessler: Spotkania z Einsteinem

Hrabia Harry Kessler, syn niemieckiego bankiera i córki irlandzkiego baroneta, urodził się w Paryżu, uczył w szkole prywatnej w Ascot, później w gimnazjum Johanneum w Hamburgu. Czuł się jednakowo dobrze w Niemczech, we Francji i w Anglii, choć wbrew stereotypowi kosmoplity był niemieckim patriotą. Zajmował się głównie sztuką, jako jeden z pierwszych propagował malarstwo Vincenta van Gogha, którego dwa obrazy posiadał. Wypełniał też rozmaite mniej lub bardziej oficjalne misje dyplomatyczne, do których nadawał się wybornie, mając świetne kontakty wśród elity europejskiej. W historii Polski zapisał się poprzez kontakty z Józefem Piłsudskim w czasie jego uwięzienia w Magdeburgu. Wkrótce później został też pierwszym zagranicznym ambasadorem w niepodległej Polsce. Jego Dziennik („Tagebuch”), prowadzony od 1880 r. do 1937 r., jest ważnym źródłem historycznym na temat Niemiec przed wojną światową, w jej trakcie, a także Republiki Weimarskiej i jej upadku.

Portret pędzla Edvarda Muncha z roku 1906

Młodszego o jedenaście lat Einsteina poznał Kessler w Berlinie. W lutym 1921 roku znaleźli się w jednej delegacji do Amsterdamu. Chodziło o ustanowienie kontaktów z Międzynarodowym Kongresem Związków Zawodowych mającym tam siedzibę, w tle majaczyła kwestia wysokości reparacji nałożonych na Niemcy. Obaj byli pacyfistami, Einstein od początku wojny, Kessler, po służbie na froncie i w misjach dyplomatycznych, doszedł do wniosku, że potrzebna jest jakaś forma międzynarodowej organizacji zapewniającej pokojową współpracę, częściową realizacją tej idei była Liga Narodów. Einstein półtora roku wcześniej stał się, niemal z dnia na dzień, najsławniejszym uczonym świata, kiedy brytyjscy astronomowie ogłosili wyniki obserwacji zaćmienia słońca potwierdzające jego teorię grawitacji.

Wcześnie w Bentheim, kontrola graniczna. Einstein, który, jak się zdaje, pierwszy raz podróżował sleepingiem, przyglądał się wszystkiemu z wielkim zainteresowaniem. W pociągu spytałem go, czy astronomiczne implikacje jego teorii względności mogą mieć zastosowanie w przypadku atomu, także zbudowanego w podobny, astronomiczny sposób. Einstein zaprzeczył temu, wskazując, że rozmiar (małość) atomu gra tu rolę. Powiedziałem na to, że wymiar, miara, wielkość i małość są czymś absolutnym, niemal jedynym absolutem, który się utrzymał. Einstein stwierdził, że w istocie rozmiar jest ostatecznym absolutem, poza który nie można wykroczyć. Był zaskoczony, że do tego doszedłem, gdyż absolutne znaczenie rozmiarów stanowi najgłębszą i niewytłumaczalną tajemnicę fizyki. Np. każdy atom żelaza jest dokładnie takich samych rozmiarów jak każdy inny atom żelaza powstały gdziekolwiek we wszechświecie, podczas gdy rozum ludzki może pojąć atomy rozmaitych rozmiarów.

Panująca wówczas teoria atomu była planetarna. Dopiero za kilka lat powstać miała mechanika kwantowa. Z punktu widzenia fizyki klasycznej – a tak patrzył Einstein – jednakowość atomów jest niezrozumiałą prawidłowością, musimy uznać to za dodatkowy fakt doświadczalny. W teorii kwantowej skala wielkości atomowych określona jest z jednej strony wielkością sił elektrycznych, a z drugiej – wielkością stałej Plancka. Mamy tu dwie stałe fizyczne: ładunek elementarny i stałą Plancka. Istnienie jednakowych cząstek, takich jak elektrony czy kwarki, wbudowane jest w kwantową teorię pola powstałą w latach trzydziestych. Co ciekawe, szczególna teoria względności jest potrzebna, aby wyjaśnić związek spinu ze statystyką (cząstki o spinie połówkowym, np. elektrony, nie mogą przebywać w tym samym stanie, co tłumaczy budowę atomów; cząstki o spinie całkowitym, przeciwnie, chętnie przebywają w tym samym stanie, co ma zastoswanie np. w laserach).

Następnego dnia rano obaj podróżnicy udali się do Rijksmuseum, gdzie oglądali Straż nocną Rembrandta.

W marcu 1922 r. Kessler znalazł się wśród gości zaproszonych na kolację do Einsteinów.

Wieczorem u Einsteinów. Spokojne, przyjemne mieszkanie w zachodnim Berlinie (Haberlandstraße 5), nieco zbyt duże i zbyt wielkoprzemysłowe przyjęcie, któremu ta kochana, wyglądająca niemalże dziecięco, para gospodarzy przydawała pewnej naiwności. Bogaty [Leopold] Koppel, [Paul von] Mendelssohn, przewodniczący [Emil] Warburg, jak zwykle kiepsko ubrany Bernhard Dernburg i tak dalej. Jakieś promeniowanie dobra i prostoty przekształcało to typowe berlińskie towarzystwo w coś niemalże patriarchalnego i bajkowego. Einstein i jego żona, których nie widziałem od czasu ich długiej podróży zagranicznej, odpowiadali z prostotą na moje pytania o przyjęcie w Ameryce i w Anglii; były to w istocie wielkie triumfy, choć Einstein podchodził do nich w swój ironiczny i sceptyczny sposób, mówiąc, że nie wie, czemu ludzie tak bardzo interesują się jego teoriami; jego żona mówiła mi, że mąż zawsze powtarza, iż czuje się jak oszust czy hochsztapler, który nie daje ludziom tego, czego od niego oczekują. Potem powtórzył mi wielokrotnie i bardzo dokładnie, co pisał do niego [Paul] Painlevé, i opowiedział o podróży do Paryża. Zaczyna ją za kilka dni i spędzi w Paryżu osiem dni. Tutaj będzie traktowany jak podejrzany w kręgach uniwersyteckich. Ale one są naprawdę okropne. Przepełnia go niesmak, kiedy o tym myśli. I ma nadzieję coś zdziałać w Paryżu dla wznowienia stosunków między uczonymi niemieckimi i francuskimi. Różnice zdań z Painlevé traktuje jako drobiazg, wydaje się, że nie przywiązuje do niej wagi.

Koppel, Mendelssohn, Dernburg byli bankierami. Pierwszy finansował w znacznej mierze Instytuty Cesarza Wilhelma chemii fizycznej i fizyki (obecnie instytuty Maksa Plancka). Warburg był fizykiem z bogatej i ustosunkowanej rodziny zasłużonej także w nauce i historii sztuki. Podróż do Ameryki służyła zbieraniu pieniędzy na uniwersytet w Jerozolimie. Wizyta w Anglii i nadchodząca wizyta we Francji miały znaczenie nie tylko naukowe, rany wojenne wciąż były głębokie po obu stronach, Einstein pragnął odrodzenia międzynarodowej społeczności uczonych. Paul Painlevé, matematyk i deputowany, działał z podobnych jak Einstein pobudek po stronie francuskiej. Sadził ponadto, że znalazł sprzeczności w einsteinowskiej teorii – jak widzimy jej twórca nizbyt się tym przejął, i słusznie. Wizyta w Paryżu okazała się sensacją naukową i dziennikarską.

Berlin, 18 grudnia 1924, czwartek. Po południu powrót z Weimaru do Berlina. Wieczorem w „Kaiserhofie” bankiet urodzinowy Billa Simonsa. Około setki sław ze świata politycznego, bankowego i intelektualnego; mieszanina kapitalizmu z socjalizmem, głównie na bazie żydowskiej.

Rozmawiałem dość długo z Albertem Einsteinem, gdyż obaj czuliśmy się dość obco w tym towarzystwie. Na moje pytanie nad czym teraz pracuje, odpowiedział, że rozmyśla. Kiedy się rozmyśla nad jakimkolwiek twierdzeniem naukowym, to właściwie zawsze można posunąć się nieco do przodu: bo każde, bez wyjątku, twierdzenie naukowe jest fałszywe; wynika to z nieadekwatności ludzkiego myślenia i możliwości pojmowania w stosunku do natury, wskutek czego wszelkie pojęciowe ujęcie natury nigdy nie pokrywa się z nią całkowicie. Każde twierdzenie naukowe, jeśli mu się bliżej przyjrzeć, zaczyna się chwiać i prowadzi do nowego dokładniejszego sformułowania, ale znowu coś się nie zgadza, co prowadzi do nowego sformułowania i tak ad infinitum. Coraz wyraźniej występuje na jego twarzy coś ironicznego, żartobliwie bolesny sceptycyzm Pierrota maluje się wokół oczu. Obserwując jego twarz, gdy mówi, nie sposób nie pomyśleć o poecie Lichtensteinie – Lichtensteinie, który śmieje się nie tylko z zewnętrznych przejawów ludzkiej arogancji, ale także z jej przyczyn.

Alfred Lichtenstein był ekspresjonistą, autorem groteskowych opowiadań w stylu Alfreda Jarry’ego. Zginął na wojnie w wieku dwudziestu pięciu lat.

Jeszcze jeden obrazek:

Berlin. 15 lutego 1926. Wieczorem na kolacji u mnie Albert Einstein z żoną, Roland de Margeries z żoną, hrabina Sierstorpff, Theodor Wolff z żoną, Helene i Jean Schlumberger (z „Nouvelle Revue Française”). (…) Einstein, majestatyczny, mimo przesadnej skromności i trzewików do fraka. Trochę przytył, ale w oczach nadal ma dziecinne, figlarne przebłyski. Jego żona opowiada, że odebrał on ostatnio, po wielu ponagleniach, dwa złote medale przyznane mu przez Royal Society i Royal Astronomical Society, a później spotkali się w kinie. Gdy go spytała, jak wyglądają medale, odrzekł, że nie wie, bo ich jeszcze nie rozpakował. Nie interesują go takie błahostki. Podała mi inne przykłady. Kiedy Niels Bohr otrzymał amerykański Medal Barnarda, który jest przyznawany wybitnemu badaczowi natury raz na cztery lata, w gazetach napisali, że poprzednio otrzymał go Albert Einstein. Einstein pokazał gazetę i spytał, czy to prawda, bo kompletnie o tym zapomniał. Nie można go było namówić, aby zawiesił order Pour le Mérite. Podczas jednego z niedawnych posiedzeń Akademii Nernst zwrócił mu uwagę, że nie ma Pour le Mérite, ze słowami: „Pewnie żona zapomniała panu go zawiesić. Błąd w stroju”. Einstein jednak odpowiedział: „Nie zapomniałem, wcale nie zapomniałem. Nie chciałem go włożyć”.

Einstein miał bardzo swoiste podejście do sławy, którą zyskał właściwie bez swego udziału. Starał się pozostać normalny, nadal zajmował się swoją pracą, uczęszczał na różne posiedzenia i spotkania, bo trudno było tego uniknąć, zresztą spotkania towarzyskie lubił. Był największą znakomitością Berlina czasów Republiki Weimarskiej, sprawiało mu przyjemność bywanie wśród ludzi wybitnych, chodzenie na koncerty i do teatru, nie przeszkadzało mu, że ludzie go rozpoznają na ulicach. Szczerze lekceważył symbole próżności: medale, ordery, honorowe członkostwa, rozumiejąc doskonale, że to nie ma żadnego, ale to żadnego znaczenia. W naszych czasach, gdy tylu ludzi jest wręcz opętanych chęcią zwrócenia na siebie uwagi za wszelką cenę, miło jest pomyśleć, że najsławniejszy uczony w dziejach zupełnie się nie przejmował tym, jak go widzą inni.

Rysunek Maksa Liebermanna, 1925 r.