Emmy Noether i jej twierdzenie, część II (1918) Albo: Formalizm Lagrange’a w kwadrans

Podamy tu uproszczoną postać twierdzenia Noether, słuszną w mechanice punktów materialnych. Najważniejsze zastosowania tego twierdzenia dotyczą sytuacji ogólniejszej, to znaczy pól, czyli pewnych funkcji zależnych od położenia i czasu. Uogólnienie jest zresztą dość oczywiste. Jeszcze jedna rzecz: Noether udowodniła dwa twierdzenia, nas interesuje tu tylko pierwsze z nich.

Zaczniemy od mechaniki w sformułowaniu Lagrange’a. Zamiast mówić o siłach, możemy użyć energii potencjalnej V i zbudować lagranżian {\cal L}=E_k-V. Dwa przykłady, które nam się w dalszym ciągu przydadzą:

Przykład 1 Jednowymiarowy ruch dwóch punktów materialnych o współrzędnych x_1, x_2 oraz masach m_1, m_2. Energia potencjalna zależy tylko od względnego położenia obu punktów (co oznacza, że oddziałują one tylko na siebie nawzajem, nie ma żadnych sił zewnętrznych). Lagranżian ma postać:

{\cal L}=\dfrac{m_1\dot{x_1}^2}{2}+\dfrac{m_2\dot{x_1}^2}{2}-V(x_1-x_2).

Kropki oznaczają pochodne po czasie: pochodna współrzędnej po czasie to oczywiście prędkość.

Przykład 2 Punkt na płaszczyźnie poruszający się w potencjale zależnym tylko od odległości od pewnego punktu centralnego (jak planety wokół Słońca). Lagranżian ma w tym przypadku postać:

{\cal L}=\dfrac{m\dot{x}^2}{2}+\dfrac{m\dot{y}^2}{2}-V(\sqrt{x^2+y^2}).

Zauważmy, że te lagranżiany są dość podobne: w obu mamy do czynienia z dwoma stopniami swobody. Z formalnego punktu widzenia to liczba stopni swobody jest ważna, a nie liczba cząstek. Będziemy pisać lagranżian w postaci ogólnej jako {\cal L}={\cal L}(q,\dot{q}), co znaczy, że współrzędnymi są q. Lagranżian będzie też zależał od prędkości \dot{q}. Gdyby liczba stopni swobody była n to powinniśmy te współrzędne ponumerować jakimś wskaźnikiem i=1\ldots n. Wolimy nie wypisywać tych wskaźników, żeby nie gmatwać zapisu.

Następny krok to równania ruchu. Zamiast praw Newtona stosujemy zasadę najmniejszego działania i otrzymujemy równania Lagrange’a. Konkretnie wygląda to tak, tworzymy działanie S,

\displaystyle{S=\int_{0}^{\tau}{\cal L} (q, \dot{q}) dt.}

Szukamy minimum działania (dokładnie: ekstremum), wyobrażając sobie, że do ruchu q=q(t) dodajemy niewielką funkcję \delta q(t). Żądamy teraz, aby zmiana (wariacja) działania znikała. Rozpatrujemy przy tym z założenia tylko takie ruchy, które zaczynają się kończą w ustalonych punktach. Sytuację tę ilustruje rysunek poniżej. Oczywiście do \dot{q} musimy dodać pochodną \dot{\delta q}=\delta\dot{q}.

Łatwo teraz pokazać (co robimy na końcu), że

\delta S=0\iff \dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}=0.

Otrzymaliśmy równania Lagrange’a, które zastępują teraz równania Newtona. W gruncie rzeczy przypominają one równania Newtona: pochodna po czasie z pewnej wielkości p\equiv \frac{\partial {\cal L}}{\partial \dot{q}} nazywanej pędem uogólnionym jest równe sile (uogólnionej). Sprawdźmy to na przykładzie pierwszym. Mamy w istocie dwa równania dla obu naszych zmiennych:

\begin{array}{l}-V'(x_1-x_2)=\dfrac{d}{dt}(m_1 \dot{x_1})\\  \\  V'(x_1-x_2)=\dfrac{d}{dt}(m_2 \dot{x_2}).\end{array}

W równaniach tych V' oznacza pochodną, dostajemy parę sił o przeciwnych znakach, czyli spełniona jest III zasada dynamiki, jak być powinno. Na razie wygląda to wszystko na zawiły sposób sformułowania prostych równań Newtona. Lagrange wiedział jednak, co robi i czemu ogólniejsze podejście jest lepsze. Sformułowanie Lagrange’a łatwo pozwala zastosować inne zmienne niż kartezjańskie. Nasz przykład 2 ma symetrię radialną. Możemy użyć zamiast współrzędnych kartezjańskich współrzędnych biegunowych r, \varphi. Lagranżian przyjmuje wówczas postać:

{\cal L}=\dfrac{m\dot{r}^2}{2}+\dfrac{mr^2\dot{\varphi}^2}{2}-V(r).

Teraz lagranżian nie zależy od jednej ze zmiennych (\varphi), mamy więc dla niej proste równanie:

\dfrac{d}{dt}(mr^2 \dot{\varphi})=0

Inaczej mówiąc, wielkość p_{\varphi}=J=mr^2\dot{\varphi} jest stała. Okazuje się, że pędem uogólnionym sprzężonym z \varphi jest moment pędu J, jak powinno być, gdyż energia potencjalna nie zależy od kierunku, a więc siły są centralne (skierowane do albo od początku układu współrzędnych). Widzimy, że zastosowanie sprytnie dobranych współrzędnych upraszcza nam od razu problem. Jeśli tylko znajdziemy odpowiednie współrzędne, to niektóre pędy uogólnione będą stałe podczas ruchu.

Twierdzenie Noether pozwala nam od symetrii lagranżianu przejść od razu do pewnej wielkości, która musi być zachowana podczas ruchu. Nie musimy przy tym wymyślać jakichś szczególnych współrzędnych. Każdej symetrii odpowiada pewna wielkość, która nie zmienia się z czasem.

Zaczniemy od określenia, czym jest symetria. Żądamy, aby podstawienie (gdzie \delta q jest niewielkie):

\begin{array}{l} q(t) \rightarrow  q(t)+\delta q(t)\\  \\  \dot{q}(t) \rightarrow  \dot{q}(t)+\delta \dot{q}(t).\end{array}

nie zmieniało lagranżianu:

{\cal L}(q,\dot{q})={\cal L}(q+\delta q, \dot{q}+\delta\dot{q}).

Twierdzenie Noether głosi, że wielkość A określona równaniem

A=\delta q_i\dfrac{\partial {\cal L}}{\partial \dot{q_i}}\equiv \delta q_i \cdot p_i

nie zmienia się podczas ruchu. Wprowadziliśmy tu wskaźniki numerujące stopnie swobody, należy po nich wysumować. Dowód można znaleźć na końcu tekstu.

Najłatwiej wyjaśnić sens twierdzenia na naszych przykładach. W pierwszym z nich operacja przesunięcia jednocześnie obu punktów materialnych o wspólną niezależną od czasu wielkość \delta a, tzn.:

\begin{array}{l} x_1(t) \rightarrow  x_1(t)+\delta a\\  \\  x_2(t) \rightarrow  x_2(t) + \delta a.\end{array}

nie zmienia energii potencjalnej. Energia kinetyczna też się nie zmienia, ponieważ pochodna funkcji stałej jest równa zeru. Zatem jednoczesne przesunięcie obu punktów materialnych nie wpływa na ich ruch względny, co z fizycznego punktu widzenia brzmi rozsądnie. W myśl tw. Noether zachowana powinna być tu wielkość

A=\delta a m_1\dot{x}_1+\delta a m_2\dot{x}_2=\delta a(m_1\dot{x}_1+m_2\dot{x}_2).

Jest to oczywiście pęd całkowity.

Zobaczmy, jak opisać symetrię w przykładzie drugim. Operacją nie zmieniającą lagranżianu będzie oczywiście obrót w płaszczyźnie xy (najprostsze obroty zmieniają dwie współrzędne, dlatego mamy jeden taki obrót na płaszczyźnie, trzy w przestrzeni trójwymiarowej: xy, xz, yz i sześć w przestrzeni czterowymiarowej). Niewielki obrót o kąt \delta\varphi   w płaszczyźnie dany jest równaniami:

\begin{array}{l}x\rightarrow x-y\delta\varphi\\ \\ y\rightarrow y+x\delta\varphi.\end{array}

Szczegóły można znaleźć poniżej. Wielkością zachowaną jest teraz oczywiście moment pędu:

A=\delta\varphi (xp_y-yp_x)=\delta\varphi J.

Widać, skąd tak naprawdę pochodzi ta dziwaczna kombinacja pędów i współrzędnych: bierze się ona z rozpatrzenia obrotów w płaszczyźnie. W przestrzeni trójwymiarowej mielibyśmy trzy składowe momentu pędu, w przestrzeni czterowymiarowej sześć. Moment pędu można uważać za wektor tylko w przypadku trójwymiarowym, tak się składa, że jest to przypadek ważny dla nas, ale z matematycznego punktu widzenia liczba składowych momentu pędu zazwyczaj nie jest równa wymiarowi przestrzeni.

Jeszcze jedna uwaga: nasze transformacje symetrii są niewielkie. Co to dokładnie znaczy, widać intuicyjnie w przypadku translacji czy obrotów. Rzecz w tym, że np. do symetrii zwierciadlanej tw. Noether się nie stosuje.

Tak to wygląda w najprostszej wersji, możliwe są rozmaite uogólnienia. Jednym z najważniejszych są operacje symetrii zawierające czas. Nasze lagranżiany nie zależą jawnie od czasu. W takim przypadku translacja w czasie jest operacją symetrii. Wielkością zachowywaną w tym przypadku jest A=\dot{q_i}p_i-{\cal L}=E_k+V, czyli całkowita energia układu. Poza symetriami fundamentalnymi możliwe są oczywiście rozmaite symetrie obowiązujące dla konkretnego zagadnienia, każda z nich prowadzi do zachowywanej podczas ruchu wielkości.

(*) Łatwo uzyskać można wyrażenie dla wariacji działania.

\displaystyle{\delta S=\int_{0}^{\tau}\left(\delta q \dfrac{\partial {\cal L}}{\partial q}+\delta\dot{q}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt}

Nie zakładamy tu żadnego szczególnego zachowania \delta q(t) na końcach przedziału czasu. Sytuację przedstawia rysunek.

Całkując drugi wyraz przez części, otrzymujemy następującą postać wariacji;

\displaystyle{\delta S=\int_{0}^{\tau}\delta q \left(\dfrac{\partial {\cal L}}{\partial q}-\dfrac{d}{dt}\dfrac{\partial {\cal L}}{\partial\dot{q}}\right) dt+\left. \delta q\dfrac{\partial {\cal L}}{\partial\dot{q}}\right|^{\tau}_{0}}.

Wynikają stąd zarówno równania Lagrange’a, jak i tw. Noether.

W przypadku zasady najmniejszego działania żądamy, aby \delta S=0. Ponieważ na początku i końcu wariacja \delta q(0)=\delta q(\tau)=0, więc znika też ostatni, scałkowany, wyraz w powyższym wyrażeniu. A to z kolei oznacza, że wyrażenie w nawiasie znika (gdyż \delta q(t) poza tym, że jest niewielkie, może być dowolne i gdyby nawias w jakimś przedziale był różny od zera, to moglibyśmy tak dobrać \delta q(t), żeby całka była różna od zera).

W przypadku tw. Noether wiemy, że działanie się nie zmienia, ponieważ nie zmienia się lagranżian i przedział całkowania, czyli przy tych założeniach \delta S=0. Zakładamy też, że ruch odbywa się zgodnie z równaniami Lagrange’a, co oznacza, że nawias pod całką jest równy zeru, całka też musi być równa zeru. Zostaje nam warunek A(\tau)-A(0)=0. Zatem A(t) od czasu nie zależy.

Wyrażenia dla współrzędnych przy niewielkim obrocie otrzymujemy, przyjmując \cos\delta\varphi=1 oraz \sin\delta\varphi=\delta\varphi. Pokazuje to, co znaczą małe obroty: zostawiamy wyrazy liniowe w \delta\varphi, pomijamy natomiast wyrazy wyższych rzędów.

Reklamy

Emmy Noether i jej twierdzenie, część I (1918)

W fizyce XX wieku ogromną rolę odegrały zasady zachowania oraz symetrie. Zasady zachowania energii, pędu, momentu pędu itd. uważa się dziś za podstawowe prawa przyrody. Zarówno na gruncie fizyki klasycznej, jak i kwantowej, zasady zachowania związane są z symetriami układów fizycznych. Np. niezmienność w czasie praw fizycznych wiąże się z zasadą zachowania energii, symetria translacyjna wiąże się z zasadą zachowania pędu itp. Związek między symetriami a zasadami zachowania określa jedno z twierdzeń udowodnionych przez Emmy Noether. Najpierw powiemy trochę o postaci Emmy Noether, której ranga naukowa daleko wykracza poza twierdzenia znane każdemu fizykowi. W drugiej części przedstawimy szczególny przypadek twierdzenia Noether, obowiązujący w mechanice punktów materialnych. Pamiętać jednak trzeba, że twierdzenie Noether stało się ważną częścią współczesnej fizyki w ogóle, a nie wyłącznie mechaniki.

W roku 1935, gdy Emmy Noether niespodziewanie zmarła w Stanach Zjednoczonych wskutek powikłań pooperacyjnych, wspomnienie pośmiertne o jej osiągnięciach znalazło się w liście Alberta Einsteina do „New York Timesa”. Najwybitniejszy z naukowych uchodźców niemieckich uhonorował w ten sposób pierwszą tej rangi matematyczkę w historii. Mimo że w latach 1915-1933 pracowała ona w Getyndze, najlepszym wówczas ośrodku matematycznym świata, była znana wśród kolegów, miała uczniów, doktorantów itd., nie udało się jej nigdy uzyskać pełnej profesury, i to pomimo wsparcia Feliksa Kleina oraz Davida Hilberta. Opór przed powołaniem kobiety na katedrę był zbyt silny. W tym czasie w Niemczech profesurę z fizyki eksperymentalnej przyznano tylko jednej kobiecie: Lise Meitner w Berlinie, który uchodził za bardziej postępowy. Pierwszą katedrę matematyki objęła w Niemczech w 1957 r., a więc w zupełnie innych czasach, Ruth Moufang. Noether pracowała przez większą część życia za darmo albo otrzymując niewielkie pieniądze za prowadzenie zajęć na uczelni. Żyła skromnie, nie była zamożna, ale i nie biedna, jej ojciec Max był profesorem matematyki w Erlangen. Emmy miała także braci utalentowanych w kierunkach ścisłych, choć ostatecznie okazało się, że to ona była najwybitniejszym uczonym w rodzinie. Emmy nie uczyła się nigdy w szkole średniej, maturę zdała eksternistycznie. Także na uniwersytecie, w Erlangen i w Getyndze, miała jedynie prawo słuchania wykładów, bez możliwości formalnego ukończenia studiów. Co ciekawe, jej talent matematyczny rozwinął się dość późno. Swój przyzwoity i bardzo pracochłonny doktorat uważała później za nieistotny (obliczyła w nim postać 331 kowariantnych form czwartego stopnia trzech zmiennych). Było to rozszerzenie pracy opiekuna jej doktoratu Paula Gordana. Ówczesna algebra sprawiała na postronnych widzach wrażenie dziedziny zupełnie oderwanej od zastosowań, choć prawie nigdy nie da się tego uczciwie stwierdzić o żadnym dziale matematyki. Prace Gordana i jeszcze starszego Alfreda Clebscha zawierają np. znane w fizyce kwantowej współczynniki Clebscha-Gordana. Współczynniki te są więc kilkadziesiąt lat starsze niż sama mechanika kwantowa.

Fotografia ok. 1915 r. (http://physikerinnen.de)

Już po trzydziestce trafiła do Getyngi z inicjatywy Kleina i Hilberta. Zajęła się tam kwestią symetrii oraz zasad zachowania. Udowodniła dwa słynne dziś twierdzenia na ten temat. Wówczas nie były one tak znane, choć ich udowodnienie miało spore znaczenie dla ogólnej teorii względności. Hilbert zajmował się tą teorią równolegle do Einsteina, wyraźnie z się z nim ścigając. Był to skutek wykładów Einsteina w Getyndze w połowie roku 1915. David Hilbert zapalił się do tego podejścia, jednak jego cel był inny niż Einsteina: pragnął bowiem zaproponować teorię wszystkiego, obejmującą także materię. Ten ambitny zamysł był zdecydowanie przedwczesny, lecz jesienią roku 1915 Hilbert deptał Einsteinowi po piętach. Stanowiło to przykład szeroko wtedy znanego zwyczaju matematyków z Getyngi, że bez większych skrupułów wchodzili w tematykę prac innych kolegów. Nazywano to złośliwie „nostryfikacją”. Einstein o mały włos nie padł ofiarą takiej nostryfikacji. Wielu historyków sądziło zresztą, że to Hilbert pierwszy napisał równania pola ogólnej teorii względności. Tak jednak nie było i sam Hilbert nigdy nie zgłaszał w tej kwestii żadnych roszczeń. Dziś wiemy zresztą, że nie miałby do tego podstaw. Równania pola ogólnej teorii względności sformułował Einstein w listopadzie 1915 roku. Stosunki obu uczonych, przez chwilę dość napięte, wróciły potem do poprzedniego przyjaznego tonu. Hilbert, a później i Klein, interesowali się dość żywo teorią Einsteina, szczególnie kwestią zasady zachowania energii-pędu. Z pracy Noether wynikało, że tensor Einsteina G oraz tensor energii-pędu T muszą spełniać związek {G^{\mu\nu}}_{;\nu}=0={T^{\mu\nu}}_{;\nu}. Dopiero później zauważono, iż włoski geometra Luigi Bianchi już w 1902 ogłosił tożsamości nazwane dziś jego imieniem (nb. tożsamości te znał już Gregorio Ricci dwie dekady wcześniej), z których fakt powyższy wynika. Pokazuje to spory zamęt, jaki istniał nie tylko w samej nowej fizyce, ale także i w stosowanej do niej nienowej matematyce, która jednak nie była znana nawet największym ówczesnym matematykom (wyjątkiem był tu Tullio Levi-Civita).

Największe osiągnięcia Emmy Noether przypadają na lata dwudzieste. Stała się ona ważną postacią w rozwoju nowoczesnej algebry abstrakcyjnej, w której bada się struktury określone za pomocą aksjomatów, niezależnie od konkretnej reprezentacji. Prace te prowadzone były w duchu Hilberta, który od dawna zabiegał o ścisłą aksjomatyzację zarówno matematyki, jak i fizyki. W fizyce podejście tego rodzaju niezbyt się przyjęło, w matematyce szukanie ogólniejszych struktur jest często skuteczną metodą atakowania szczegółowych problemów, tak np. udowodniono wielkie twierdzenie Fermata. Emmy Noether prowadziła w Getyndze słynne z czasem wykłady. Początkowo miały one formę stałego zastępstwa za Davida Hilberta. Chodziło o ominięcie formalnej trudności: Noether nie miała prawa nauczania. Wykłady te przyciągały niezbyt liczne, lecz ważne grono młodych badaczy. W formie przypominały raczej głośne myślenie na temat matematyki niż uporządkowane rozdziały podręcznika. Jednak drugi tom znanej wówczas monografii Moderne Algebra Bartela van der Waerdena w znacznym stopniu był opracowaniem idei z wykładów Noether w Getyndze. W wieku pięćdziesięciu lat osiągnęła niemal wszystko, czego może sobie życzyć uczony: miała liczne publikacje, wielu uczniów, którzy rozwijali jej idee (chętnie się nimi dzieliła i nie zgłaszała roszczeń do pierwszeństwa, nawet gdy się jej ono należało), dwa razy zaproszona była do wygłoszenia referatów na Międzynarodowym Kongresie Matematyków, współredagowała „Mathematische Annalen”. Nie była tylko wciąż profesorem, choć jej młodszy i nie tak wybitny brat, Fritz, uzyskał katedrę na Politechnice Wrocławskiej (wówczas Technische Hochschule) już w 1922 roku.

Na dworcu w Getyndze jesienią 1933 r. (http://physikerinnen.de)

Aż nadeszła katastrofa roku 1933. Oczywiście, większość Niemców uznawała ją w tamtej chwili za zwycięstwo albo przynajmniej za krok w dobrym kierunku. Społeczeństwo, karmione od dziesiątków lat rasistowskimi bredniami o wyższości Niemców nad Żydami, nie protestowało, gdy władze polityczne wyciągnęły wnioski z tych nauk i na początek wyrzuciły wszystkich Żydów ze stanowisk państwowych, w tym z uniwersytetów. Emmy Noether nie interesowała się polityką. Nie reagowała nawet, gdy któryś z jej studentów przyszedł na wykład w brunatnej koszuli. Teraz jednak straciła swą i tak mało znaczącą posadę i nie mogła uczyć. Jak wielu rozsądnych ludzi, miała nadzieję, że to szaleństwo skończy się jak zły sen. Znalazła pracę w Stanach Zjednoczonych, w roku 1934 odwiedziła Niemcy jako uczona z zagranicy. Żona jej współpracownika, profesora z Hamburga, Emila Artina wspominała:

Rzeczą, która najbardziej zapadła mi w pamięci, była jazda metrem w Hamburgu. Zabraliśmy Emmy spod Instytutu i natychmiast oboje z Artinem zaczęli rozmawiać o matematyce. Chodziło wtedy o teorię ideałów (Idealtheorie) i mówili o pojęciach takich, jak Ideal, Führer, Gruppe i Untergruppe, po chwili cały wagon zaczął nadstawiać uszu. Byłam śmiertelnie przerażona, myślałam, Boże, za chwilę ktoś nas aresztuje. Był to już rok 1934, a Emmy, nie zwracając na nic uwagi, mówiła bardzo głośno i w podnieceniu coraz głośniej i głośniej, i co chwila pojawiały się słowa Führer oraz Ideal. Była pełna temperamentu i zawsze mówiła bardzo szybko i bardzo głośno.

Terminologia matematyczna nałożyła się tu na partyjną nowomowę, której Emmy zapewne nie znała albo nie zwracała na nią uwagi jako na bełkot. Żona Artina była Żydówką i miała wszelkie powody, by się bać. Rok rządów nazistów pogłębił różnice miedzy wolnym światem a narodowo-socjalistycznym obłędem, przy czym rewolucja dopiero się rozkręcała. Trzy lata później także Artin musiał wyjechać, bo już nawet żona Żydówka nie mogła być tolerowana w czystym rasowo państwie. Emmy zlikwidowała tamtego lata swoje mieszkanie w Getyndze i zrozumiała, że nie wróci szybko do Niemiec. Najbardziej gorzkim aspektem rasistowskiego obłędu było to, że ludzie tacy jak Noether czuli się zawsze Niemcami, nie byli w żaden sposób ludnością napływową, od wieków mieszkali w Niemczech, od XIX wieku tworzyli w coraz większym stopniu ich naukę i kulturę. Żeby nie kończyć myślami o zniszczeniu i nienawiści, przytoczmy słowa Einsteina ze wspomnianego listu do NYT:

Istnieje, na szczęście, mniejszość złożona z tych, którzy wcześnie zdali sobie sprawę, że najpiękniejsze i przynoszące najwięcej satysfakcji przeżycia dostępne człowiekowi nie pochodzą ze świata zewnętrznego, lecz z rozwoju indywidualnych uczuć, myśli i działań. Prawdziwi artyści, badacze i myśliciele zawsze byli osobami tego rodzaju. I choćby życie takich jednostek upłynęło całkiem niepozornie, to jednak owoce ich wysiłków są najcenniejszym dziedzictwem każdego pokolenia dla swych następców.

Kilka dni temu, w wieku pięćdziesięciu trzech lat, zmarła wybitna matematyczka, profesor Emmy Noether, związana z uniwersytetem w Getyndze, a przez ostatnie dwa lata z Bryn Mawr College. W opinii najbardziej kompetentnych współczesnych matematyków, Fräulein Noether była największym twórczym talentem matematycznym, jaki pojawił się od chwili, gdy zaczęło się wyższe wykształcenie kobiet. W dziedzinie algebry, którą od stuleci zajmują się najbardziej utalentowani matematycy, odkryła ona metody, które okazały się niezmiernie ważne dla osiągnięć obecnego młodszego pokolenia matematyków. Matematyka czysta jest na swój sposób poezją idei logicznych. Szuka się w niej najogólniejszych idei zdolnych do połączenia w prostej, logicznej i jednolitej formie jak najszerszego kręgu związków formalnych. W tym dążeniu do logicznego piękna odkrywa się uduchowione formuły konieczne, by głębiej przeniknąć prawa natury.

Einstein nie pisał takich tekstów bez zastanowienia. Zawsze przemawiał do niego ideał życia odosobnionego, niemal klasztornego, i poświęconego spokojnemu namysłowi nad światem. Niezbyt lubił błyszczeć, a przynajmniej szybko go to nudziło. Wielki rozgłos, jaki go otaczał, przyjmował raczej z rozbawieniem, jako coś w istocie niepoważnego i nieco wstydliwego. Przyjaźnił się zresztą nie tylko z wybitnymi uczonymi, ale także z różnego rodzaju dziwakami i oryginałami, cenił osobowość, nie lubił ludzi nijakich. O skali osiągnięć Emmy Noether wiedział zapewne od Hermanna Weyla, który mógł to kompetentnie ocenić. Jego podziw dla matematyki narastał z czasem; w latach trzydziestych w jego pracy nie odgrywało już żadnej roli eksperyment, musiał więc kierować się względami formalnymi, czysto matematycznymi. I rzeczywiście, każdy niemal rodzaj matematyki, prędzej czy później znajduje zastosowanie w naukach o przyrodzie czy świecie społecznym.

 

Fale wzdłuż struny raz jeszcze

Rozpatrywaliśmy już wcześniej działanie dla przypadku jednowymiarowej struny. Jeśli wychylenie w danym punkcie x oraz w jakiejś chwili t oznaczymy przez y=y(x,t), to działanie będzie miało postać

{\displaystyle S=\int_{0}^{\tau} {\cal L}dx dt, \mbox{ gdzie }  {\cal L}=\dfrac{k}{2}\left[\dfrac{1}{c^2}\left(\dfrac{\partial y}{\partial t}\right)^2-\left(\dfrac{\partial y}{\partial x}\right)^2\right] },

gdzie wyłączyliśmy pewną wspólną stałą k, która jest bez znaczenia, oraz wprowadziliśmy drugą stałą, która okaże się prędkością naszych fal c. W dalszym ciągu dla uproszczenia będziemy przyjmować, że prędkość ta równa jest jeden (można to zawsze osiągnąć, dobierając odpowiednio jednostki odległości lub czasu). Będziemy też rozpatrywać strunę nieskończonej długości, żeby nie komplikować sobie sytuacji warunkami na jej końcach. Zasada wariacyjna \delta S=0 przy zmianie (wariacji) naszego wychylenia o \delta y prowadzi do równania falowego. Zamiast jednak powtarzać poprzednią procedurę wprowadźmy do działania nowe zmienne x_{+} oraz x_{-} zdefiniowane następująco:

x_{\pm}=x\pm t.

Zamieniając zmienne w działaniu, otrzymamy:

{\displaystyle S=\int_{0}^{\tau} {\cal L}dx_{-}dx_{+}, \mbox{ gdzie }  {\cal L}=-k\dfrac{\partial y}{\partial x_{-}} \dfrac{\partial y}{\partial x_{+}}}.

Obliczając wariację tego działania (po drodze trzeba, jak zawsze wykonać całkowanie przez części), dostaniemy teraz równanie

{\displaystyle \dfrac{\partial^2 y}{ \partial x_{-}\partial x_{+} }=\dfrac{\partial}{\partial x_{-}}\left(\dfrac{\partial y}{\partial x_{+}}\right)=0}.

Jest to równanie falowe w nowych zmiennych. Jest ono znacznie łatwiejsze do rozwiązania: wyrażenie w nawiasie nie zależy od zmiennej x_{-}, musi być więc funkcją jedynie x_{+}.

{\displaystyle \dfrac{\partial y}{\partial x_{+}}=h(x_{+})}.

Całkując obustronnie po x_{+}, dostajemy nową funkcję g zmiennej x_{+} plus dowolną funkcję f zmiennej x_{-} (zamiast stałej całkowania):

{\displaystyle y=g(x_{+})+f(x_{-})=g(x+ct)+f(x-ct)}.

Funkcje te przedstawiają fale biegnące odpowiednio w lewo albo w prawo. Widzimy, że jest to najogólniejsze rozwiązanie równania struny. Fala biegnąca w prawo może wyglądać np. tak (na czerwono zaznaczona jest tylko różna od zera część wykresu funkcji f):

Łatwo też utworzyć rozwiązanie odpowiadające pewnym warunkom początkowym. Dla równania drugiego rzędu musimy zadać początkowy kształt całej struny oraz początkową prędkość każdego jej elementu, potrzebne są więc dwie funkcje. Załóżmy dla uproszczenia, że nasza struna jest w chwili t=0 nieruchoma, a jej kształt zadany jest funkcją y(x,0)=f(x). Łatwo sprawdzić, że rozwiązaniem spełniającym ten warunek początkowy jest

y(x,t)=\frac{1}{2}f(x-ct)+\frac{1}{2}f(x+ct).

Już w wieku XVIII Jean d’Alembert znał rozwiązanie dla dowolnych warunków początkowych (tzn. także zadanego rozkładu prędkości początkowych). Na rysunku poniżej funkcja f opisująca początkowe odkształcenie ma kształt trójkąta. Odkształcenie struny w dowolnej późniejszej chwili będzie miało postać dwóch mniejszych trójkątów o tej samej szerokości, przy czym jeden będzie przesuwał się w lewo, a drugi w prawo.

Funkcje na rysunkach nie są gładkie, a więc ściśle biorąc, nie są różniczkowalne w niektórych punktach. Można temu zaradzić albo rozszerzając pojęcie rozwiązania równania, albo przybliżając rozwiązania funkcjami gładkimi, możemy sobie wyobrażać, że wykresy w powiększeniu okazałyby się gładkie.

Albert Einstein: Czy Europa okazała się sukcesem? (1934)

Żyjemy w dziwnych czasach. Być może przyszły historyk Polski napisze: „W latach 2015-2025 Polska stała się jednym z państw buforowych między Rosją a Europą, politycznie zależnym od Rosji przy pozorach niezawisłości i antyrosyjskiej retoryce mediów rządowych. Praktyka rządzenia zbliżyła kraj do innych państw buforowych: Ukrainy, Mołdawii, Białorusi”.

Albert Einstein miał dystans do własnej osoby, z pewnością nie był jednak „dużym dzieckiem” ani w nauce, ani w polityce. W roku 1934 redakcja amerykańskiego pisma „The Nation” zwróciła się do niego z prośbą o wypowiedź na temat Europy. Uczony czuł się europejczykiem właściwie od początku, od czasów gimnazjalnych w Monachium. Już wtedy przeszkadzał mu niemiecki nacjonalizm, choć była to jego stosunkowo łagodna wersja z czasów Drugiej Rzeszy. Mieszkał we Włoszech, w Szwajcarii, w Austro-Węgrzech, potem znowu w Niemczech. Jeździł stale do Austrii, do Francji, do Belgii, do Holandii. Zawsze opowiadał się za tym, co stanowi najważniejszy wkład Europy do historii, tzn. za prawem do wolności wyrażania poglądów. Być może Chińczycy zbudują wielką cywilizację bez wolności indywidualnej i bez demokracji, ale na razie stworzyli jedynie bardzo opresyjne, choć skuteczne technologicznie państwo, w którym niewielu z nas miałoby chęć żyć. Europa i jej amerykańskie przedłużenia: Kanada i Stany Zjednoczone to wciąż miejsca, gdzie tworzy się najwięcej wszystkiego, co składa się na cywilizację i kulturę, i czego warto bronić.

Albert Einstein, nowojorski rabin Stephen Wise oraz Thomas Mann na premierze antywojennego filmu The Fight For Peace, 1938

W 1934 roku Europa była podzielona bardziej niż kiedykolwiek: we Włoszech panował faszyzm, Niemcy bezwolnie poddawały się kolejnym „reformom” narodowych socjalistów, w Polsce rozkwitały ruchy takie, jak ONR (choć władze sanacyjne potrafiły szybko ich zdelegalizować). Wielu oglądało się na wschód: z daleka mogło się wydawać, że w Związku Sowieckim kapitalizm został przezwyciężony. Einstein znał wady kapitalizmu, lecz nie podzielał takiego złudzenia, nigdy nie wierzył, aby siłą, odgórnie, bez współpracy i solidarności można było zbudować cokolwiek trwałego i wartego trwania.

Humanitarny ideał Europy wydaje się nierozerwalnie związany ze swobodą wyrażania poglądów, z wolną wolą jednostki, z dążeniem do obiektywizmu myśli, nie kierującym się jedynie względami użyteczności, i z popieraniem różnic w sferze umysłu i upodobań. Te wymagania i ideały należą do istoty europejskiego ducha. Nie można owych wartości i haseł dowieść na drodze rozumowej, gdyż dotyczą podstawowych kwestii w podejściu do życia i stanowią punkt wyjścia, który przyjmuje się bądź odrzuca z przyczyn emocjonalnych. Wiem tylko, że popieram je z całego serca i byłoby dla mnie czymś nie do zniesienia należeć do społeczeństwa, które je konsekwentnie odrzuca. Nie podzielam pesymizmu tych, co sądzą, iż pełnia intelektualnego rozwoju możliwa jest tylko na fundamencie otwartego czy skrywanego niewolnictwa. Mogło to być prawdą w czasach prymitywnej techniki, gdy wyprodukowanie tego, co niezbędne do życia, wymagało wyczerpującej fizycznej pracy większości ludzi. W naszej epoce wysokiego poziomu techniki, przy rozsądnie wyrównanym podziale pracy i odpowiednich świadczeniach dla wszystkich, jednostka powinna mieć zarówno czas, jak i siłę, aby biernie oraz czynnie uczestniczyć w najwyższych osiągnięciach umysłowych i artystycznych w takim stopniu, w jakim pozwalają na to jej skłonności i zdolności. Niestety, społeczeństwo nasze jest bardzo dalekie od spełnienia tych warunków. (…)

Czy uzasadnione jest zawieszenie na jakiś czas podstawowych wolności jednostek ze względu na wyższy cel poprawy organizacji ekonomicznej? Pewien znakomity i bystry uczony rosyjski bronił w dyskusji ze mną takiego poglądu, wskazując na powodzenie przymusu i terroru – przynajmniej na początku – w funkcjonowaniu komunizmu rosyjskiego i na klęskę niemieckiej socjaldemokracji po wojnie. Nie przekonał mnie. Żaden cel nie wydaje mi się tak wzniosły, by można nim było usprawiedliwiać tak niegodne metody. W niektórych wypadkach przemoc może szybko usuwać przeszkody, ale nigdy nie okazała się twórcza.

Drgania struny: najprostsza teoria pola

Drgania struny, badane jeszcze przez Pitagorasa, są rzeczywiście archetypem fizyki matematycznej.

Przyjrzyjmy się im z punktu widzenia zasady najmniejszego działania. W problemie liny mieliśmy już do czynienia z energią sprężystą liny albo struny. Jeśli w punkcie x wychylenie równe jest y(x), to energia potencjalna całej struny jest równa

{\displaystyle V=\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2 dx.}

Oznaczyliśmy napięcie struny T, pochodną zapisujemy jako cząstkową, bo chcemy, by nasza zmienna y mogła zależeć także od czasu t, co opisuje poprzeczne drgania struny. Zachowujemy tylko energię sprężystości, w przypadku drgań struny grawitacja nie gra roli. Sens fizyczny tego wyrażenia jest dość oczywisty: im bardziej kierunek struny odbiega od kierunku poziomego, tym większa jest energia sprężystości. Odkształcając strunę zmieniamy lokalnie jej kierunek.

Potrzebujemy także energii kinetycznej struny. Jeśli jej liniowa gęstość masy wynosi \varrho, to całkowita energia kinetyczna jest równa:

{\displaystyle E_k=\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2 dx.}

Działanie, tak jak poprzednio, równa się

{\displaystyle S=\int_{0}^{\tau} (E_k-V)dt= \int_{0}^{\tau}\left[\dfrac{\varrho}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\int_{0}^{L}\left(\dfrac{\partial y}{\partial x}\right)^2\right] dx dt. }

 

Działanie jest teraz całką po czasie i przestrzeni z funkcji w nawiasie kwadratowym, którą nazywa się gęstością lagranżianu albo lagranżianem, jeśli ktoś nie przejmuje się bardzo precyzją języka.

{\displaystyle S=\int_{0}^{\tau} {\cal L}dx dt, \mbox{ gdzie }  {\cal L}=\dfrac{\varrho}{2}\left(\dfrac{\partial y}{\partial t}\right)^2-\dfrac{T}{2}\left(\dfrac{\partial y}{\partial x}\right)^2 }

 

Podobnie jak przedtem, możemy z zasady najmniejszego działania otrzymać równania ruchu. W tym celu wyobrażamy sobie, że zamiast y(x,t) wstawiamy pod całkę y(x,t)+\delta y(x,t), gdzie wariacja \delta y jest dowolną, lecz niewielką funkcją położenia i czasu, która znika na końcach struny, dla x=0 oraz x=L i na końcach przedziału czasu: t=0 oraz t=\tau. Liniowa część przyrostu działania to wariacja działania (wyrazy kwadratowe w \delta y odrzucamy, podobnie jak przy obliczaniu pochodnej z definicji):

{\displaystyle \delta S=\int \rho \dfrac{\partial y}{\partial t}\cdot \dfrac{\partial \delta y}{\partial t} dx dt-\int T \dfrac{\partial y}{\partial x}\cdot \dfrac{\partial \delta y}{\partial x} dx dt.}

Całkując oba składniki przez części i korzystając ze znikania wariacji na brzegach naszego obszaru w czasoprzestrzeni (dwuwymiarowej: jeden wymiar przestrzenny i jeden czasowy), dostajemy

{\displaystyle \delta S=0=\int \left[-\rho \dfrac{\partial^2 y}{\partial t^2}{\partial t} + T \dfrac{\partial^2 y}{\partial x^2}\right] \delta y dx dt}.

Wyrażenie w nawiasie kwadratowym musi być wobec tego równe zeru dla dowolnych wartości x i t. Otrzymujemy tzw. równanie falowe:

\dfrac{\partial^2 y}{\partial x^2}=\dfrac{\varrho}{T}\dfrac{\partial^2 y}{\partial t^2}.

Równanie to zależy od jednego parametru, nazwijmy go c:

c=\sqrt{\dfrac{T}{\varrho}}.

Łatwo sprawdzić, że rozwiązaniem naszego równania są dowolne funkcje postaci y=f(x-ct) oraz y=g(x+ct), gdzie funkcje f, g mogą być w zasadzie dowolne (różniczkowalne dwa razy). Opisują one fale poruszające się z prędkością c w prawo albo w lewo. W dwuwymiarowej czasoprzestrzeni są to wszystkie możliwe rozwiązania. Równanie falowe jest liniowe: suma dwóch rozwiązań stanowi także dopuszczalne rozwiązanie.

W problemie drgającej struny występują tzw. fale stojące, będące złożeniem takich fal poruszających się w lewo i w prawo. Można je zapisać jako

y(x,t)=A \sin 2\pi \dfrac{x}{\lambda}\cdot \sin 2\pi \nu t.

Pierwszy sinus automatycznie znika w x=0, warunek aby funkcja znikała też w x=L daje nam równanie

2\pi \dfrac{L}{\lambda}=n\pi\Rightarrow \lambda=\dfrac{2L}{n},

gdzie n jest liczbą całkowitą. Geometrycznie oznacza to, że całkowita liczba połówek sinusoidy musi zmieścić się na odcinku (0,L):

Łatwo sprawdzić, podstawiając nasze rozwiązanie do równania falowego, że dopuszczalne częstości drgań są równe

\nu=\dfrac{nc}{2L}.

Mamy tu uzasadnienie zależności odkrytej przez Vincenza Galilei. Częstości dozwolone są wielokrotnościami częstości podstawowej. W instrumentach muzycznych wzbudzane są nie tylko drgania o wartości n=1, ale także jej wielokrotności, tzw. składowe harmoniczne. Matematycznie oznacza to, że dźwięk opisać trzeba jako sumę drgań o wielu częstościach. Częstość podstawowa decyduje o wysokości dźwięku. Obecność wyższych składowych harmonicznych słyszymy jako barwę dźwięku: w ten sposób odróżniamy tę samą nutę zagraną np. na skrzypcach i fortepianie.

Piękną cechą matematyki (a przez to i fizyki) jest możliwość zmiany problemu na inny równoważny. Zamiast struny możemy wziąć działanie postaci jak wyżej i zawsze otrzymamy z niego równanie falowe. Okazuje się, że np. drgania pola elektromagnetycznego miedzy dwiema płaszczyznami odległymi o L będą także miały tę postać. Oczywiście stała c będzie wówczas prędkością światła. Teraz nie ma już struny, drga pole elektromagnetyczne, czyli byt zupełnie pitagorejski: coś, czego nie można dotknąć, ale mimo to jest bardzo realne. Można się spodziewać, że działanie dla pola elektromagnetycznego powinno przypominać nasze wyrażenie dla struny. To, co tu opisaliśmy to jednowymiarowa (przestrzennie) teoria pola tzw. skalarnego (opisywanego jedną liczbą). Pole elektromagnetyczne jest nieco bogatsze, ponieważ możliwe są różne polaryzacje fal.

Nasza jednowymiarowa teoria pola traktuje w równoprawny sposób zmienne czasowe i przestrzenne. Jeśli c jest prędkością światła, teoria jest relatywistyczna, tzn. zgodna ze szczególną teorią względności, w której czas i przestrzeń są nierozerwalnie związane ze sobą, choć nietożsame. Był to w istocie problem rozwiązany przez Einsteina: teoria elektromagnetyzmu, która prowadzi do równania falowego, jest nie do pogodzenia z mechaniką Newtona. W elektromagnetyzmie zawsze otrzymujemy fale biegnące z prędkością c w próżni. W mechanice Newtona ich mierzona prędkość powinna zależeć od ruchu obserwatora. Można np. dogonić falę akustyczną, nie ma jednak sposobu, aby dogonić falę elektromagnetyczną – zawsze będzie ona od nas uciekała z prędkością światła. Taki prosty eksperyment myślowy przyciągnął uwagę Einsteina, kiedy uczył się on w Aarau do matury po oblanych (ale nie z fizyki) egzaminach na Politechnikę w Zurychu.

 

Pitagoras i Vincenzo Galilei: początek i koniec tradycji pitagorejskiej (VI w. p.n.e., 1588)

Pitagoras pierwszy nazwał się filozofem, lecz stał się założycielem sekty na poły religijnej, która przekazywała sobie wierzenia, obyczaje, obrządki i nie dopuszczała nikogo bez długiego procesu formowania charakteru i umysłu. Pitagorejczycy wierzyli w wędrówkę dusz, obejmującą także dusze zwierzęce, więc nie składali ofiar ze zwierząt i starali się nie jeść mięsa, zazwyczaj zadowalali się warzywami, kaszą i przyprawami. Mieli też osobliwą na tle ówczesnej Grecji koncepcję piękna:

Piękny jest więc widok całego nieba i poruszających się po nim gwiazd, jeśli ktoś potrafi dostrzec ich porządek; a piękne jest to wszystko przez uczestniczenie w tym, co pierwsze i dostrzegalne umysłem. Pierwsza zaś jest dla Pitagorasa natura liczb i stosunków liczbowych, ogarniająca całość rzeczywistości, zgodnie z nimi bowiem wszechświat jest mądrze zbudowany i prawidłowo uporządkowany; mądrość zaś jest wiedzą o tym, co piękne i pierwsze, boskie i niezniszczalne, zawsze takie samo i podlegające takiemu samemu porządkowi (…) filozofia natomiast to umiłowanie takiej kontemplacji [Jamblich, O życiu pitagorejskim, przeł. J. Gajda-Krynicka].

Wszechświat postrzegali pitagorejczycy jako κόσμος – kosmos, czyli pięknie złożoną harmonijną całość. Pitagoras odkrył, że prostym proporcjom liczbowym, takim jak 2:1; 3:2 oraz 4:3 odpowiadają harmonijnie współbrzmiące interwały dźwięków: oktawa, kwinta i kwarta. Fakt ten stał się punktem wyjścia całej jego filozofii i kosmologii. Odgrywały w nich rolę muzyka i matematyka, ich związek był fundamentalny. Muzyka miała bowiem swe odbicie w strukturze wszechświata, nie była jedynie sztuką wydawania sugestywnych dźwięków. W ten sposób, po raz pierwszy, wszechświat stał się matematyczny.

Pitagorejczycy uzasadniali owe proporcje dźwięków w sposób numerologiczny. Ich zdaniem liczby 1, 2, 3, 4, były wieloznacznymi symbolami. Suma tych czterech liczb nazywana była tetraktys – arcyczwórką. Arytmetyka miała być także podstawą geometrii: przestrzeń wyobrażali sobie pitagorejczycy jako „skwantowaną”, złożoną z dyskretnych wielkości. Doprowadziło to do kryzysu: zgodnie bowiem z twierdzeniem Pitagorasa długość przekątnej kwadratu o boku równym 1 wynosi \sqrt{2}. Jeśli przyjąć, że można tę liczbę zapisać jako stosunek liczb całkowitych (jak powinno być w dyskretnej przestrzeni), dochodzi się do sprzeczności. Dziś mówimy, że \sqrt{2} jest liczbą niewymierną. Odkrycie tego faktu wstrząsnęło pitagorejczykami.

Wróćmy jednak do harmonii dźwięków. Mamy tu początek fizyki matematycznej – oto pewne stosunki w przyrodzie poddane są zasadom matematyki. Z czasem miało się okazać, że jest to prawda w odniesieniu do całej przyrody, choć uznanie tego faktu zajęło ludzkości ponad dwa tysiące lat. Dziś nie mamy wątpliwości co do nadzwyczajnej skuteczności matematyki w badaniu przyrody. Niektórzy uważają nawet, że w każdej nauce tyle jest prawdy, ile jest w niej matematyki.

W jakim sensie proporcje związane są z parami dźwięków?

Jamblich tak pisze o okolicznościach dokonania owego odkrycia przez Pitagorasa:

Rozmyślał kiedyś i zastanawiał się, czy da się wymyślić dla słuchu jakieś pomocnicze narzędzie, pewne i nieomylne, jakie ma wzrok w cyrklu, w miarce (…), dotyk zaś w wadze i w wynalazku miar; a przechadzając się w pobliżu warsztatu kowalskiego, jakimś boskim zrządzeniem losu usłyszał młoty kujące żelazo na kowadle i wydające dźwięki zgodne ze sobą, z wyjątkiem jednej kombinacji. Rozpoznał zaś w nich współbrzmienie oktawy, kwinty i kwarty. Dostrzegł natomiast, że dźwięk pośredni między oktawą a kwintą sam w sobie pozbawiony jest harmonii, lecz uzupełnia to, czego w innych jest w nadmiarze. Zadowolony zatem, ponieważ została mu zesłana pomoc od boga, poszedł do warsztatu i po wielu rozmaitych próbach odkrył, iż różnica dźwięków rodzi się z ciężaru młotów, nie z siły uderzających, nie z kształtu narzędzi ani też nie z przekształceń kutego żelaza; a zbadawszy dokładnie odpowiednie wagi i ciężary młotów, poszedł do domu i wbił między ściany, od kąta do kąta, jeden kołek, jeden by z wielości kołków albo też z różnej ich natury nie zrodziła się jakaś różnica; następnie przywiesił do kołka w równym od siebie oddaleniu cztery struny z jednakowej materii, jednakowej długości, grubości i jednakowo sporządzone, przywiązawszy do każdej z dołu ciężar i wyrównawszy całkowicie długość strun. Następnie uderzając jednocześnie w dwie struny na przemian, odnalazł wymienione wyżej współbrzmienia, inne w każdym ze związków. Odkrył bowiem, że ta, która obciążona była największym ciężarem wraz z tą, która miała ciężar najmniejszy, razem uderzone tworzą stosunek oktawy. Jedna bowiem miała dwanaście ciężarków, druga zaś sześć; w podwójnej proporcji ujawniła się oktawa, jak to wskazywały same ciężarki. [przeł. J. Gajda-Krynicka]

Jamblich był syryjskim pitagorejczykiem żyjącym w III/IV w. n.e., a więc niemal tysiąc lat po filozofie z Samos. Dlatego, jak to się zdarza zwolennikom bardziej entuzjastycznym niż rozumiejącym, poplątał to i owo w tej historii. Wiemy, że pragnął swymi opowieściami przewyższyć zdobywające sobie popularność historie o innym mistrzu, Jezusie Chrystusie.

Jamblich przedstawia nam etapy odkrycia: mamy więc problem (jak proporcje mogą być odwzorowane dźwiękami?), iluminację pod wpływem przypadkowego bodźca (młoty kowalskie), analizę i wyjaśnienie sensu owej iluminacji, a następnie przeprowadzenie eksperymentu, w którym początkowa sytuacja zostaje sprowadzona do najważniejszej istotnej zależności: chodzi nie młoty, lecz dźwięki; można je badać za pomocą jednakowych strun pod działaniem różnych sił naciągu.

Mamy właściwie przepis, jak należy odkrywać matematyczne prawa przyrody, oczywiście w stosownej chwili musimy otrzymać pomoc od boga, inaczej wkroczymy w jedną z tych niezliczonych ścieżek, które nigdy nie zawiodły do żadnego rozsądnego punktu. Bywa i tak, że ciąg dalszy odnajduje się po wielu latach – w tym sensie z oceną wartości pewnych prac naukowych należy poczekać.

Niestety, ciąg dalszy opowieści Jamblicha dowodzi, że nie zrozumiał on odkrycia mistrza. Nie chodzi bowiem o siły naciągu, lecz długości strun. To one muszą być w odpowiedniej proporcji. Np. kwintę otrzymamy, biorąc taką samą strunę z takim samym naciągiem, lecz o długości krótszej w proporcji 2:3. Przez wieki powtarzano błąd Jamblicha, nie zadając sobie trudu mierzenia czegokolwiek. Powszechnie sądzono, że owe proporcje zawarte są we wszystkich sposobach wydobywania dźwięków tak, jak to widzimy na ilustracji poniżej, pochodzącej z przełomu XV i XVI wieku.

W XVI wieku powiększono listę dźwięków współbrzmiących harmonijnie, uzasadniając to zresztą także na sposób pitagorejski. Gioseffo Zarlino, maestro di capella San Marco w Wenecji, proponował dołączenie 5 i 6 do starożytnego zestawu. Uzasadniał to rozmaitymi „nadzwyczajnymi” własnościami liczby sześć: jest liczbą doskonałą (równą sumie swych podzielników), sześć było dni Stworzenia itd.

Empiryczne podejście do tego zagadnienia zawdzięczamy sceptycyzmowi i jadowitemu charakterowi Vincenza Galilei, muzyka i teoretyka muzyki z Florencji. Był on uczniem Zarlina, lecz zaatakował go bezpardonowo w wydanym w roku 1589 traktacie. Uważał wszelką numerologię za nonsens i postanowił wykazać to doświadczalnie. Stosunki dźwięków nie są bowiem związane jednoznacznie ze stosunkami liczbowymi. Np. kwintę możemy uzyskać nie tylko skracając strunę w stosunku 3/2, ale także zwiększając siłę naciągu w proporcji (3/2)^2=9/4. Mamy więc następujące prawo: chcąc otrzymać dany wyższy dźwięk możemy albo skrócić strunę x razy, albo zwiększyć siłę naciągu x^2 razy. Było to pierwsze w ogóle nowożytne prawo fizyki matematycznej.
W ten sposób numerologia została pogrążona, gdyż widzimy, że równie dobrze można by wiązać kwintę z proporcją 9/4. Był to tylko jeden z wielu argumentów wysuwanych w traktacie przeciwko Zarlinowi. Vincenzo Galilei miał zdolnego syna o imieniu Galileo, któremu przekazał swój choleryczny temperament i namiętną pogardę dla umysłowej niższości. Niewykluczone, że eksperymenty nad tą kwestią prowadzili zresztą obaj razem, zapewne w roku 1588. W roku następnym Galileo uzyskał skromną posadę na uniwersytecie w Pizie. Napisał tam poemat na temat noszenia togi, w którym drwił z księży (wrogowie wszelkiej niewygody), uczonych kolegów (są jak flaszki wina: nieraz we wspaniale oplecionych butelkach zamiast bukietu czuje się wiatr albo perfumowaną wodę i nadają się tylko do tego, by do nich nasikać), a także twierdził, że chodzenie nago jest największym dobrem. Zajął się też poważnie mechaniką. Możliwe, że to ciężarki zawieszone na końcu struny w eksperymentach prowadzonych z ojcem, a nie kandelabr w katedrze, nasunęły mu myśl o wahadle.

Prawo odkryte przez Vincenza Galileo łatwo uzasadnić. Prędkość rozchodzenia się dźwięku v w strunie naciągniętej siłą T, która ma gęstość liniową (masa na jednostkę długości) \varrho równa się

v=\sqrt{\dfrac{T}{\varrho}}.

Jeśli końce struny są nieruchome, to długość powstającej fali \lambda jest dwa razy większa niż długość struny L: \lambda=2L. Zatem częstość drgań struny \nu jest równa

\nu=\dfrac{1}{2L}\sqrt{\dfrac{T}{\varrho}}.

Napięcie struny wchodzi więc w potędze 1/2, stąd wynik Vinzenza Galileo.