Stanisław Ulam (1/2)

Wyraz jego twarzy jest zazwyczaj ironiczny i kpiący. W istocie porusza go bardzo wszystko, co jest komiczne. Być może posiada pewien dar rozpoznawania i natychmiastowego wychwytywania śmieszności, nic więc dziwnego, że maluje się to na jego twarzy.
Jego wypowiedzi są bardzo nierówne, czasem poważne, czasem wesołe, ale nigdy nudne. Stara się bawić i rozweselać ludzi, których lubi. Nic, z wyjątkiem nauk ścisłych, nie wydaje mi się aż tak pewne czy oczywiste, by nie dopuszczał możliwości istnienia różnych opinii: sądzi, że na niemal każdy temat można powiedzieć niemal wszystko.
Posiada pewien talent matematyczny i zręczność, które pozwoliły mu zdobyć rozgłos w młodym wieku. Pracując w samotności aż do ukończenia dwudziestu pięciu lat, raczej późno stał się człowiekiem bardziej światowym. Jednak nigdy nie bywa nieuprzejmy, gdyż nie jest szorstki ani surowy. Jeżeli czasem kogoś obrazi, to przez nieuwagę lub niewiedzę.
Jego mowa nie jest gładka ani pełna wdzięku. Kiedy mówi coś miłego, to dlatego, że tak myśli. Cechuje go szczerość i prawdomówność, czasem nieco zbyt wielka, ale nigdy brutalna.
Niecierpliwy i choleryczny, czasami bywa gwałtowny. Bardzo bierze sobie do serca wszystko, co go rani, ale uraza zazwyczaj mija, kiedy da ujście swoim uczuciom. Łatwo na niego wpływać i nim kierować, pod warunkiem, że nie zdaje sobie z tego sprawy.
Niektórzy sądzą, że jest złośliwy, ponieważ bezlitośnie naśmiewa się z pretensjonalnych głupców. W rzeczywistości ma wrażliwe usposobienie, co sprawia, że jego nastrój często się zmienia. Może być jednocześnie wesoły i smutny.
Pan U. zachowuje się zgodnie z następującą zasadą: mówi mnóstwo głupich rzeczy, rzadko je zapisuje i nigdy żadnej z nich nie robi. (przeł. A. Górnicka, przekład nieco poprawiony za oryginałem d’Alemberta)

Autocharakterystykę tę przedstawił (oczywiście po francusku) Stanisław Ulam swojej przyszłej żonie Françoise, dopiero na końcu dodając, że napisał ją Jean Le Rond d’Alembert, jeden ze sławnych fizyków matematycznych XVIII stulecia i autor większości artykułów na temat nauk ścisłych w Wielkiej Encyklopedii Francuskiej.

Czy jest to tylko zabawny zbieg okoliczności, czy też obu uczonych łączy jakieś głębsze powinowactwo? Z pewnością obaj starali się przez całe życie uparcie zachować wolność, d′Alembert przytacza określenie jednego ze swych przyjaciół, że stał się „niewolnikiem swej wolności” – określenie to dobrze pasuje także do Ulama. Wbrew pozorom zachowanie takiej suwerenności poczynań jest w dzisiejszej nauce równie trudne co w XVIII wieku. Stanisław Ulam starał się pracować tak, żeby sprawiało mu to przyjemność, nie lubił presji. Cenił pomysłowość, szybkość rozumowań, nie był z tych, którzy latami rozwijają jakąś jedną metodę czy teorię, choć oczywiście miał swoje ulubione tematy czy sposoby podejścia. W najlepszym sensie tego słowa (pochodzącego od łacińskiego „kochać”) był raczej amatorem niż profesjonalnym uczonym akademickim – co w XX wieku było znacznie rzadsze niż w XVIII.
Już Galileusz pisał przy okazji pewnej uczonej polemiki:

Jeśliby roztrząsanie trudnych problemów było tym samym co przenoszenie ciężarów, czynność, przy której wiele koni przenosi więcej worków ziarna niż jeden koń, zgodziłbym się z tym, że wiele dysput wartych jest więcej niż jedna; ale dysputowanie (discorrere) przypomina bieganie (correre), a nie dźwiganie, toteż jeden koń berberyjski pobiegnie dalej niż sto koni fryzyjskich. (przeł. A. Wasilewska)

W osiemnastowiecznym Paryżu grzechem było mówić głupstwa, a jeszcze większym mówić głupstwa z wysiłkiem. Coś z tej atmosfery przetrwało może w środkowoeuropejskich kawiarniach, w których na początku XX wieku tak chętnie spotykali się artyści i uczeni. Ulam starał się trzymać rzeczy istotnych. Nie słuchał np. dłużej niż dziesięć minut wykładów zaproszonych uczonych, ponieważ jeśli ktoś w ciągu dziesięciu minut nie powiedział nic ciekawego, to zapewne nie będzie miał nic do powiedzenia i potem.

Cechą, która zdecydowanie różni d’Alemberta i Ulama jest stosunek do priorytetu własnych odkryć. Pierwszy zaciekle walczył o pierwszeństwo, drugi natomiast zupełnie się nie wdawał w spory tego rodzaju, uważając je za uwłaczające godności. Paradoksalnie w obu przypadkach – d’Alemberta i Ulama – przyczyną mogła być duma zraniona postępowaniem ludzi, których niezbyt się ceni.

Stanisław Ulam początkowo nie zamierzał zostać matematykiem. W rodzinnym Lwowie uczęszczał do gimnazjum klasycznego. Program nauczania takich szkół, podobny w większości Europy: daleki od problemów świata współczesnego, z naciskiem na historię i naukę martwych języków. Te abstrakcyjne zajęcia kształtować miały przyszłą elitę: urzędników, lekarzy, prawników, uczonych. Były czymś w rodzaju wieloletniej próby i budowały wspólną kulturę absolwentów. Wiemy, że Albert Einstein nie zniósł bezdusznej dyscypliny panującej w gimnazjum monachijskim i rzucił szkołę dwa lata przed maturą. Utalentowanemu językowo Ulamowi nauka przychodziła z łatwością, maturę zdał znakomicie, a greka i łacina towarzyszyły mu przez resztę życia, stanowiąc rodzaj kodu, jakim mógł się porozumiewać z kolegami, którzy przeszli podobną edukację. Uważał zresztą gramatykę łacińską za dobre wprowadzenie do myślenia logicznego.

Jako uczeń interesował się astronomią i fizyką. Ojciec, prawnik, dumny był, że jego nastoletni syn „rozumie” teorię względności, która w latach dwudziestych ubiegłego wieku stała się sensacją daleko wykraczającą poza kręgi naukowe. Młody Ulam zafascynowany też był niektórymi zagadnieniami matematycznymi, np. czy istnieją nieparzyste liczby doskonałe (liczby doskonałe są sumą swoich dzielników właściwych, jak 6=1+2+3. Rozwiązanie nie jest znane do dziś). Nie chciał zostać prawnikiem, w ówczesnej Polsce Żydzi niełatwo zostawali profesorami, więc i kariera naukowa wydawała się utrudniona. Postanowił zapisać się na miejscową politechnikę, z jakichś powodów był to Wydział Ogólny, a nie Elektryczny, który dawał konkretny zawód. Ponieważ młody człowiek nieco nudził się na wykładach dla pierwszego roku, zaczął chodzić na wykłady Kazimierza Kuratowskiego z teorii mnogości. Młody profesor chętnie rozmawiał ze swym studentem, Ulam odprowadzał go do domu i gawędzili o matematyce. Kuratowski, widząc inteligencję swego studenta, podsunął mu do rozwiązania pewne zagadnienie z teorii mnogości. Ulamowi udało się rozwiązać problem i praca została opublikowana w „Fundamenta Mathematicae”, polskim piśmie poświęconym głównie teorii mnogości i będącym czymś w rodzaju organu polskiej szkoły matematycznej. Dopiero jednak po rozwiązaniu drugiego problemu zasugerowanego przez Kuratowskiego Ulam zdecydował się zostać matematykiem, stało się to przed końcem jego pierwszego roku studiów.

Wkrótce poznał też innych matematyków lwowskich i wiele czasu spędzał w ich pokojach na dyskusjach. Później rozmowy te przenosiły się często do kawiarni. Jedna z takich sesji w kawiarni „Szkockiej” ze Stanisławem Mazurem i Stefanem Banachem trwała, jak wspomina Ulam, siedemnaście godzin z przerwami na posiłki. Z rozmów tych pochodził materiał do jego prac, jak też znaczna część jego wiedzy matematycznej. Ulam nigdy nie należał do uczonych, którzy pilnie śledzą postępy w wybranych dziedzinach i wiedzą na ten temat wszystko. Lubił rozpoczynać od zera, nawet gdy przy okazji odkrywał po raz drugi pojęcia czy fakty znane już w literaturze.

Nieformalny sposób uprawiania nauki bardzo odpowiadał towarzyskiemu Ulamowi, który z trudem naginał się do formalnych wymagań i zdawania egzaminów. W 1932 roku jako student został zaproszony do wygłoszenia komunikatu na Kongresie Matematycznym w Zurychu, gdzie spotkał wielu sławnych uczonych, potem jesienią w ciągu kilku tygodni napisał pracę magisterską, w roku następnym doktorat. Miał wtedy dwadzieścia cztery lata i coraz mniejsze szanse na karierę w Polsce. W sąsiednich Niemczech do władzy doszedł Adolf Hitler, bardzo wielu uczonych żydowskiego pochodzenia, w tym matematyków, musiało opuścić Niemcy. Odbywając w 1934 roku podróż po ośrodkach matematycznych Europy, pochłonięty matematyką Stanisław Ulam ledwie zdawał sobie jednak sprawę z tego, co się dzieje w świecie polityki. W roku następnym poznał Johna von Neumanna, który choć tylko kilka lat od niego starszy, był już sławny. Von Neumann, syn budapeszteńskiego bankiera żydowskiego pochodzenia, nie miał złudzeń co do sytuacji w Europie, toteż wyemigrował do Stanów Zjednoczonych, stary kontynent odwiedzając tylko z okazji jakichś konferencji czy spotkań. Obaj uczeni zaprzyjaźnili się. Poza matematyką łączyło ich sporo: dawne Austro-Węgry, kultura żydowska, klasyczne wykształcenie, pewna kosmopolityczna ogłada i dobre wychowanie. Von Neumann cenił ogromną pewność siebie Ulama, a także jego trudny do przewidzenia tok myślenia. Coś podobnego stwierdził też kiedyś na temat Ulama Stefan Banach: że formułuje on problemy w sposób „dziwny” i proponuje też „dziwne” rozwiązania, które często są skuteczne.

Von Neumann sprawił, że zaproszono Stanisława Ulama do Instytutu Badań Zaawansowanych w Princeton, gdzie tworzono coś w rodzaju ziemskiego raju dla uczonych, zaczynając od matematyków i fizyków teoretycznych. Jedną z pierwszych gwiazd tego Instytutu stał się Albert Einstein. Najmłodszym profesorem był tam von Neumann. Ulam należał do grupy młodych badaczy zapraszanych, by mieli okazję popracować wśród uznanych kolegów. Semestr w Princeton zaowocował trzyletnim stypendium na uniwersytecie Harvarda w Society of Fellows, organizacji finansującej dobrze zapowiadających się młodych uczonych.

Johannes Kepler: Jak w wolnych chwilach odkryć tajemnicę kosmosu? (1595)


W lipcu 1595 roku Johannes Kepler był dwudziestotrzyletnim nauczycielem w luterańskiej szkole w Grazu w Styrii. Przysłano go tam z Tybingi, gdzie się uczył i miał nadzieję zostać teologiem. Był jednak biedny i korzystał z książęcego stypendium, musiał więc pojechać do Grazu, kiedy tylko zwierzchnicy tak postanowili. Nawiasem mówiąc, Wirtembergia z czasów Keplera miała znakomity system edukacyjny, w którym biedny, lecz uzdolniony młodzieniec mógł przejść przez szkoły wszystkich stopni, nie płacąc ani za naukę, ani za utrzymanie w bursie. A był to przecież XVI wiek! Rządzący kierowali się głównie względami religijnymi: potrzeba było jak najwięcej wykształconych teologów luterańskich, ale uczono porządnie, choć raczej w duchu konserwatywnym.
Kepler podczas studiów zainteresował się astronomią, i to heliocentryczną – jego nauczyciel Michael Mästlin był bowiem jednym z niewielu zwolenników Kopernika. Pół wieku po ukazaniu się dzieła toruńskiego astronoma, zwolenników jego nauk można było policzyć na palcach jednej ręki. Nie było mowy o żadnym przewrocie kopernikańskim, ponieważ prawie nikt nie wierzył, iż Ziemia naprawdę się porusza, a przedstawiony przez Kopernika system to coś więcej niż ćwiczenie z zakresu matematyki stosowanej, bez konsekwencji kosmologicznych.
Kepler w Grazu wciąż chciał myśleć, że po kilku latach wróci do Tybingi i dokończy studia teologiczne. Stało się inaczej, pochłonęła go astronomia (i astrologia), a i władze w Tybindze niezbyt chyba chciały mieć Keplera z powrotem. Był prawdziwie pobożny, ale jak często się to zdarza takim ludziom, nie był ostrożny w wypowiadaniu poglądów i mówił to, w co wierzył. A zwierzchnikom chodziło raczej o ujednoliconą doktrynę, nie o prywatne przemyślenia. Posłuszeństwo ceniono wyżej niż błyskotliwość i gorący zapał.
Uczył w Grazu przedmiotów matematycznych, co obejmowało astrologię. Młody nauczyciel lubił opowiadać nie tylko, co myśli, ale także jak do tego doszedł. Dzięki temu wiemy, że zajął się latem 1595 roku astronomią kopernikańską: „Kiedy pragnąłem dobrze i zgodnie z kierunkiem pracy spędzić czas wolny od zajęć” [ten i poniższe cytaty za: J. Kepler, Tajemnica kosmosu, przeł. M. Skrzypczak i E. Zakrzewska-Gębka, Ossolineum 1972, nieznacznie zmienione].
W astronomii Kopernika proporcje orbit planetarnych wyznaczone są przez obserwacje. Jeśli nawet system heliocentryczny był nieco prostszy, to nasuwało się pytanie: czemu sfery planet są takiej a nie innej wielkości? Jeśli była to rzeczywista architektura kosmosu, to czym kierował się boski Architekt?

solar

A były głównie trzy problemy, których przyczyn, dlaczego jest tak a nie inaczej szukałem, a mianowicie liczba, wielkość i ruch sfer. Odwagi dodała mi owa idealna zgodność pozostających w bezruchu Słońca, gwiazd stałych i przestrzeni pośredniej, z Bogiem-Ojcem, Synem i Duchem Świętym. (…) Początkowo rozważałem zagadnienie w zależności od liczb i zastanawiałem się, czy jedna sfera może być dwa, trzy, cztery razy większa od drugiej w teorii Kopernika. Wiele czasu poświęciłem tej pracy jakby zabawie, ponieważ nie ukazywała się żadna zgodność ani samych proporcji, ani jej przyrostu. Nie osiągnąłem z tego żadnych korzyści; wbiłem sobie jednak głęboko w pamięć odległości, tak jak zostały podane przez Kopernika. (…) Wydaje się, jakoby ruch zawsze podążał za odległością i że gdzie istniał wielki przeskok między sferami, to podobny przeskok występował także między ich ruchami.

Warto zauważyć, że już wtedy Kepler usiłował dociekać, jaka jest zależność między okresem obrotu a wielkością sfery (czyli orbity) planety – w roku 1618 odkrył ścisłe prawo rządzące tą zależnością, zwane dziś III prawem Keplera. Był to więc jeden z problemów, nad którymi rozmyślał całe życie. Młody nauczyciel był pomysłowy: próbował np. umieścić między Marsem a Jowiszem nową planetę, a inną między Wenus i Merkurym, sprawdzając, czy wtedy proporcje jakoś orbit dadzą się lepiej zrozumieć. Teoretycznie było możliwe, że krążą tam gdzieś jakieś niewielkie i nie wykryte planety. Między Marsem a Jowiszem rzeczywiście krąży wiele takich ciał, znanych jako planetoidy. Badał też inne pomysły. Wszystko na próżno.

Prawie całe lato straciłem na tych męczarniach. W końcu przy jakiejś drobnej okazji przybliżyłem się do sedna sprawy. Uznałem, że z bożej łaski udało mi się znaleźć przypadkowo to, czego wcześniej nie mogłem osiągnąć pracą. Uwierzyłem w to tym bardziej, że zawsze prosiłem Boga, aby pozwolił ziścić się moim zamiarom, jeśli Kopernik miał słuszność. W dniu 19 lipca 1595 r., zamierzając pokazać moim słuchaczom skok wielkich koniunkcji przez osiem znaków (…) wpisałem w jedno koło wiele trójkątów, albo quasi-trójkątów, tak aby koniec jednego był początkiem drugiego.

koniunkcje

 

Rysunek przedstawia koniunkcje Jowisza i Saturna na tle znaków zodiaku – jest więc całkowicie abstrakcyjny. Koniunkcje te powtarzają się w odległości około jednej trzeciej zodiaku, jeśli połączyć te punkty liniami, uzyskuje się rysunek Keplera. Sądzono, że te koniunkcje mają ważne znaczenie astrologiczne, stąd taki temat lekcji. Kepler dostrzegł jednak w tym rysunku coś innego:

triangles

Teraz mamy trójkąt wpisany między dwa okręgi. Mogłyby to być sfery Saturna i Jowisza – dwóch planet najdalszych od Słońca. Może więc kwadrat należy wpisać między sferę Jowisza i Marsa itd. Pojawia się jednak kłopot: mamy tylko sześć planet (znanych ówcześnie), a wieloboków foremnych jest nieskończenie wiele. Konstrukcja powinna wyjaśniać, czemu jest akurat sześć planet, a nie np. 120. Wtedy przypomniał sobie Kepler XIII księgę Elementów Euklidesa. Grecki matematyk dowodzi tam, że istnieje dokładnie pięć wielościanów foremnych, czyli takich, że wszystkie ich ściany są jednakowymi wielobokami foremnymi.Platonic_solids

Rysunek: Wikipedia, Максим Пе

W Platońskim Timajosie wielościany te powiązane są z pięcioma elementami, z których zbudowany jest kosmos: sześcian z ziemią, dwudziestościan z wodą, ośmiościan z powietrzem, czworościan z ogniem, a dwunastościan z eterem wypełniającym wszechświat. Była to wówczas śmiała spekulacja oparta na najnowszej matematyce Teajteta, jednego z uczniów Platona. Teraz Kepler znalazł dla tych wielościanów nowe zastosowanie. Należało między sześć sfer planetarnych wpisać owe pięć brył platońskich.

kepler

Jest to konstrukcja zawrotna: pewien głęboki fakt matematyczny został powiązany z układem planetarnym – dla Keplera nasz układ był jedyny we wszechświecie, a Stwórca myślał językiem geometrii. Pozostawało tylko zająć się szczegółami: kolejnością brył, kwestią, jak cienkie powinny być sfery planetarne, czy ich środek liczyć od środka orbity Ziemi, czy od Słońca. Rozwiązana została tajemnica kopernikańskiego kosmosu. I taki właśnie tytuł: Tajemnica kosmosu, nosiło dziełko opublikowane przez Keplera w następnym roku. Zwracał się w nim do czytelnika: „Nie znajdziesz nowych i nieznanych planet, jak te, o których mówiłem nieco wyżej – nie zdobyłem się na taką zuchwałość. Znajdziesz te stare (…) tak jednak utwierdzone, że mógłbyś odpowiedzieć rolnikowi pytającemu, na jakich hakach zawieszone jest niebo, że nie osuwa się”.

Nasz Układ Słoneczny okazał się raczej dziełem dość chaotycznych procesów niż wytworem Platońskiego demiurga. Proporcje orbit nie wynikają z żadnej ścisłej matematyki, Kepler się mylił. Był to szczęśliwy błąd – uskrzydlony odkryciem, pogodził się z tym, że nie zostanie teologiem i zajął się astronomią, co z pewnością wyszło na dobre nauce. Do końca życia wierzył, że wielościany mają coś wspólnego z uporządkowaniem sfer planetarnych, umysłowi zawsze trudno się rozstać z ulubionymi chimerami. W następstwie hipotezy wielościanowej Kepler zajął się szczegółami ruchów planet – to na tej drodze czekały go wielkie odkrycia.

Wielościany foremne związane są ze skończonymi podgrupami grupy obrotów w przestrzeni trójwymiarowej. Można o nich poczytać w książce M. Zakrzewskiego, Algebra z geometrią, Oficyna Wydawnicza GiS 2015. Bardziej popularne są piękne i znakomicie ilustrowane odczyty Hermanna Weyla, wielkiego matematyka i kolegi Einsteina z Zurychu i Princeton, pt. Symetria, PWN 1960, wznowione przez wydawnictwo Prószyński i S-ka w 1997 r.

Najważniejsze wydarzenia w dziejach ludzkości

Zacznijmy od fraszki C.K. Norwida:

DOBRA WOLA

– Przepraszam państwo, lecz przyszła wiadomość,

Że się Uranus wstrząsa

*

– Mniejsza o to

– Co tam po niebie gdzieś patrzysz Jegomość,

To astronomów rzecz, niech sobie plotą…

*

– Przepraszam państwo – ale panna Klara

Na pannę Różę powiedziała: „stara” –

I ten pod wachlarz bilecik schowała…

*

– Gdzie?! jaki?! dawaj!… to rzecz doskonała!

Norwid pisał tu o niezgodnościach ruchu Urana ze znanymi faktami. Okazało się, że niezgodności owe wywołane są przyciąganiem następnej planety, Neptuna. Jej położenie najpierw obliczono, a następnie znaleziono ją na niebie niemal dokładnie w tym miejscu, gdzie wskazywały obliczenia. Samo wydarzenie jest dobrą ilustracją różnicy między nauką nowożytną a innymi przykładami działalności „naukopodobnej” prowadzonej w najróżniejszych cywilizacjach.

Fraszka Norwida wskazuje też na zjawisko szersze niż salonowy brak zainteresowania nauką. Jesteśmy istotami społecznymi, czasem może nawet zanadto społecznymi: w tym sensie, że skłonni jesteśmy uważać świat międzyludzki za cały wszechświat, a nas samych za istoty stworzone nie mniej, ni więcej, tylko na podobieństwo Boga.

David Christian jest zawodowym historykiem. Zrobił jednak coś, na co nie poważyłaby się większość jego kolegów: prowadzi kurs historii wszechświata, od Wielkiego Wybuchu do dziś. Siłą rzeczy większa część materiału pochodzi z innych dziedzin niż historia: z kosmologii, geologii, biologii itd. Spojrzenie z tej perspektywy na dzieje ludzkości uważam za niezwykle ożywcze. Nigdy nie mogłem się nadziwić pasji, jaką większość historyków wkłada w badanie faktów drugo- albo nawet dziesięciorzędnych: jakaś potyczka pod Straconką (w zasadzie trochę większa bójka) albo śledzenie meandrów polityki jakiegoś nieistotnego władcy. Oczywiście rozumiem, czemu można się zajmować tego rodzaju tematem, podobnie jak rozumiem, czemu można się zajmować badaniem jednego gatunku chrząszczy (a jest ich blisko pół miliona). I wcale nie lekceważę „badaczy owadzich nogów”. Nie rozumiem jedynie, czemu nie widzę prób syntezy, innego spojrzenia, mniej uwikłanego w politykę, mity narodowe, mity religijne; mniej prowincjonalnego geograficznie, kulturowo i cywilizacyjnie.

Jakie więc były najważniejsze wydarzenia w dziejach ludzkości? Większość z nich zaszła w prehistorii albo historii bardzo zamierzchłej: wynalezienie rolnictwa, różnych technik pozwalających odziać się, lepić garnki i przede wszystkim tworzyć narzędzia. W dziejach intelektualnych decydujące znaczenie miało pismo i jego ulepszenie w postaci pisma alfabetycznego: dzięki temu ostatniemu nie tylko zawodowcy mogli umieć pisać – była to rewolucja podobna do rozpowszechnienia w latach osiemdziesiątych XX wieku komputerów osobistych, pozwalających każdemu korzystać z narzędzia przedtem zarezerwowanego dla personelu w białych kitlach (sam pamiętam sale z komputerami typu „Odra”, do których nie wolno było wchodzić, należało zostawić przed wejściem karty perforowane z programem i mieć nadzieję, że przejdzie on pomyślnie kompilację, a może nawet się policzy). Nie jest przypadkiem, że cywilizacja grecka rozkwitła w tym samym czasie, gdy rozpowszechniło się pismo alfabetyczne.

Grecy stworzyli też matematykę ujętą w sposób aksjomatyczny – do dziś jest to ideał przedstawiania wiedzy ścisłej. Geometria grecka i jej najważniejsze zastosowanie: opis ruchu planet stworzyły podstawy przyszłego rozwoju nauki, choć ciąg dalszy nastąpił dopiero po piętnastu wiekach i nie był oczywisty. Cywilizacja przeniosła się na północny zachód Europy. Średniowieczne chrześcijaństwo pokazało swą wielkość w gotyckich katedrach, jak też w tym, że potrafiło zasymilować grecką filozofię i naukę – był to zresztą jego szczytowy moment. Reformacja, która podzieliła chrześcijan, była w znacznym stopniu ujawnieniem się nowej wrażliwości i nowego podejścia do świata, czegoś bardziej fundamentalnego niż dogmaty wiary czy uznawanie bądź nieuznawanie papieża. Nowoczesna cywilizacja wywodzi się z chrześcijaństwa zreformowanego w Europie północnej i w Stanach Zjednoczonych. Katolicyzm definitywnie utracił kontakt z nowoczesnością w wieku XVII, w czasach Galileusza. I sądzę, że nigdy go nie odzyskał, choć w każdej epoce aż do dziś wielu było uczonych katolików i niemal każdy papież deklarował, iż ceni i popiera naukę.

Reformacja związana była od początku z wynalezieniem druku: zapewne nie rozszerzyłaby się tak szybko w innych warunkach. Druk i powszechna umiejętność pisania (głównie jednak w krajach protestanckich) były kolejnym progiem udostępniania wiedzy szerokim rzeszom. Jednak nie podział religijny był najważniejszy w wieku XVI i XVII. Nawet wojna trzydziestoletnia z dłuższej perspektywy jest epizodem bez znaczenia. To rewolucja naukowa przesądziła o znaczeniu tej epoki, a także o znaczeniu Europy w dziejach naszej planety. Jakąś nauką zajmowały się wszystkie cywilizacje, lecz to europejska znalazła skuteczny klucz do poznania przyrody. Najpełniej widać to w dziele Isaaca Newtona: modele matematyczne ściśle opisują rzeczywistość fizyczną. Połączenie matematyki i eksperymentu pozwala dowiedzieć się rzeczy, o których się filozofom nie śniło i które są sprawdzalne. Tym się różnimy od innych cywilizacji, że nasze samoloty latają, nie musimy sobie tego jedynie wyobrażać.

Rewolucja naukowa XVII wieku nie dotyczyła biologii. Wydawało się, że istoty żywe nie podlegają dokładnie tym samym prawom, co reszta materii. Świat biologiczny stał się ostatnim azylem zwolenników celowości. Przypomnijmy: już Arystoteles doszukiwał się w przyrodzie przyczyn celowych. Stopniowo celowość została wyeliminowana z astronomii i fizyki. Nie pytamy: w jakim celu Układ Słoneczny zawiera te a nie inne planety krążące po takich a nie innych orbitach. Wydawało się jednak, że oko ludzkie „zostało stworzone” do patrzenia, podobnie jak piękne, smukłe ciało geparda do szybkiego biegania. Charles Darwin i Alfred Russel Wallace pierwsi zauważyli, że przystosowanie do funkcji jest skutkiem doboru naturalnego, a nie celem. Oko naszych przodków (również czworonożnych, również pływających) doskonaliło się stopniowo, aż osiągnęło dzisiejszy stan (wcale zresztą nie idealny: można dobrać soczewki indywidualnie korygujące wzrok, które sprawiają, że widzimy szczegóły, o jakich dotąd nie mieliśmy pojęcia). Podobnie gepardy doskonaliły się w sztuce biegania, w miarę jak gazele doskonaliły się w sztuce uciekania. Ewolucja za pomocą sekwencji niezliczonych drobnych kroków stworzyła całą biosferę. Wielu ludziom wydaje się to nadal trudne do pojęcia i z uporem szukają luk w teorii ewolucji. Ci sami ludzie nie czują na ogół skrupułów, gdy dzięki nowoczesnej terapii zostają wyleczeni. Podobnie jak niektórzy postmoderniści, którzy twierdzą, że fizyka jest formą dominacji białego człowieka i nie jest więcej warta od mitów jakiegoś plemienia, a potem wsiadają w samolot, aby udać się na kolejną konferencję, gdzie będą o tym nauczać młodzież, żądną zdobycia, jeśli nie wiedzy, to przynajmniej stopni naukowych.

Ojciec Gregor Mendel, 1865

Johann Mendel urodził się w chłopskiej rodzinie na Śląsku, był jednym z tych, których miano nazywać później Niemcami Sudeckimi. Chłopiec miał nieco szczęścia: w jego rodzinnej wsi była szkoła, gdyż lokalna właścicielka, hrabina Walpurga Truchsess-Zeil, dbała edukację poddanych. Ponieważ okazał się zdolny, poszedł do następnej szkoły, a później do gimnazjum w Opawie. Przypominało to chyba edukację Jędrzeja Radka z Syzyfowych prac, rodzice z trudem łożyli na utrzymanie syna w mieście. Niewątpliwie pragnęli też zostawić mu gospodarstwo – był bowiem jedynym chłopcem. Po ukończeniu gimnazjum Johann przeniósł się na studia do Ołomuńca, wciąż brakowało mu pieniędzy, sporo chorował. Jego pilność i talent zwróciły uwagę jednego z wykładowców i młodzieniec został przyjęty do augustianów w Brnie. Przyjął zakonne imię Gregor.

Ojciec Gregor był zbyt delikatny i nieśmiały, aby dobrze czuć się w roli duszpasterza. Pasjonowała go natomiast przyroda, zajmował się klasztornym ogrodem, uczył w różnych szkołach, był jednym z założycieli lokalnego towarzystwa naukowego w Brnie. W lutym i marcu 1865 roku zreferował na kolejnych posiedzeniach owego Towarzystwa swoje badania dotyczące krzyżowania grochu. Nie było to zapewne gremium, które mogłoby docenić wyniki ojca Mendla. Być może zresztą jego wyniki na tyle odbiegały od ówczesnego rozumienia dziedziczności, że nawet gdyby ich autor nie był prowincjonalnym nauczycielem przyrody, i tak nikt by na nie nie zwrócił większej uwagi. Bywają prace, których w momencie powstania nikt nie czyta, a które później stają się początkiem nowej dziedziny. Tak było z pracą Mendla, około roku 1900 zrozumiano, że kładzie ona podwaliny pod nową dziedzinę wiedzy: genetykę.

Co w pracy Mendla tak bardzo odbiegało od tego, co uczeni pragnęli usłyszeć? Były to lata Charlesa Darwina, niewątpliwie ewolucja była tematem nr 1. Nawet w Brnie miesiąc przed referatem Mendla jeden z członków Towarzystwa omawiał właśnie ewolucję. Wiemy także, że Mendel przeczytał O powstawaniu gatunków. Darwin jednak niewiele miał do powiedzenia na temat zmienności i na temat mechanizmu dziedziczenia, a to, co mówił było zwykle bałamutne.

Mendel_seven_characters-ger.svg

Ojciec Gregor cierpliwie prowadził doświadczenia nad pewnymi określonymi wyraźnie cechami grochu: mogły one występować w jednej albo drugiej wersji: kwiaty mają jeden albo drugi kolor, łodyga jest niska albo wysoka itp. Prace Mendla dowodziły, że dziedziczenie ma charakter losowy i w dodatku dyskretny, cyfrowy: są pewne jednostki dziedziczenia, które łączą się w organizmie potomnym i określają jednoznacznie, która z ewentualności wystąpi: np. czy nasiona będą gładkie, czy pomarszczone. W dodatku Mendel założył, że gdy w roślinie zawarte są obie „skłonności”, to uwidacznia się tylko jedna z nich, a druga może być ukryta i ujawnić się dopiero w potomstwie. Wierzono wtedy raczej w jakieś mieszanie się cech, podobne do mieszania barw na palecie, a nie w coś tak zero-jedynkowego.

Także przypadkowość procesu dziedziczenia trudna była do przyjęcia. Często zarzucano Darwinowi, że Opatrzność chciałby zastąpić przypadkiem, ślepym losem. Prawdopodobnie nie było to prawdą w odniesieniu do poglądów samego Darwina, ale pokazuje, jak broniono się przed uznaniem roli losowości w świecie przyrody ożywionej.

Dopiero wiek dwudziesty wprowadził losowość i przypadkowość na naukowe salony. Zakrawa na ironię, że w 1936 roku Ronald Fisher, jeden z pionierów genetyki i statystyki matematycznej, zakwestionował wyniki liczbowe Mendla jako właśnie zbyt regularne jak na dzieło przypadku. Fisher zastosował do wyników Mendla test chi kwadrat i wykazał, że uzyskanie tak regularnych wyników jest niezwykle mało prawdopodobne. Wywołało to dyskusję, której echa do dziś przewijają się w literaturze dotyczącej genetyki oraz statystyki.

Co to jest ciemna energia?

Ciemna energia to ponad dwie trzecie energii wszechświata. Wyjaśnienie jej pochodzenia jest zapewne największym wyzwaniem fizyki i kosmologii. Pokażemy krótko, o co chodzi, gdy mówimy o ciemnej energii.

1. Prawo Hubble’a

Edwin Hubble odkrył, że wszystkie dalekie obiekty oddalają się od nas z prędkością, która jest proporcjonalna do odległości. Wektorowo możemy to zapisać następująco:

\vec{v}=H\vec{R}.

Parametr H nazywamy parametrem Hubble’a. Gdybyśmy się przenieśli do galaktyki położonej w punkcie \vec{R_1}, prawo Hubble’a nadal będzie obowiązywało dla prędkości i położeń liczonych od galaktyki nr 1:

\vec{v}=\vec{v}_2-\vec{v}_1=H\vec{R}_2-H\vec{R}_1=h(\vec{R}_2-\vec{R}_1)=H\vec{R}.

hubble_Law

Na prawo Hubble’a należy patrzeć jak na rozszerzanie się przestrzeni: galaktyki są w stałych położeniach (jak rodzynki w cieście drożdżowym), a odległości między nimi stale rosną (całe ciasto „rośnie”). Skoro odległości te obecnie rosną, to znaczy, że w przeszłości były mniejsze. Łatwo obliczyć, jak dawno temu wszystkie galaktyki powinny być „obok siebie”. Wystarczy podzielić odległość przez prędkość:

t_H=\dfrac{R}{v}=\dfrac{1}{H}.

Czas ten nie zależy od tego, którą konkretnie galaktykę wybierzemy do obliczeń. Nazywamy go czasem Hubble’a, jego wartość równa się około 14 mld. lat. Zatem t_H lat temu cały wszechświat powinien być bardzo gęsty. Oczywiście, czas Hubble’a nie musi być równy wiekowi wszechświata. Byłoby tak, gdyby w przeszłości galaktyki oddalały się z taką samą prędkością jak dziś. Jednak prędkość ich oddalania się stopniowo maleje za sprawą grawitacji, która jest siłą przyciągającą. Oczekujemy więc, że wiek wszechświata jest mniejszy od czasu Hubble’a.

2. Od czego zależy parametr Hubble’a?

Obserwacje wskazują, że we wszechświecie gęstość materii jest wszędzie stała (oczywiście w odpowiednio dużej skali; nieco podobnie jak możemy uważać, że gaz ma stałą gęstość w skali znacznie większej niż odległość pojedynczych atomów). Pole grawitacyjne ma specyficzną własność: jeśli wyobrazimy sobie kulistą wnękę opróżnioną z materii, to w każdym jej punkcie przyciąganie grawitacyjne jakiejś małej próbnej masy będzie równe zeru.

dziura sferyczna1Oznacza to, że rozpatrując, co się dzieje z całym nieskończonym wszechświatem o stałej gęstości, wystarczy zająć się zachowaniem wybranej kuli – cała materia na zewnątrz tej kuli nie będzie wywierała żadnej siły wypadkowej. Rozpatrzmy więc kulę z galaktykami, która rozszerza się razem z całym wszechświatem. Galaktyki na powierzchni tej kuli mają pewną prędkość oddalania się, jest to zarazem prędkość ekspansji naszej kuli.

kula expandujaca

Możliwe są trzy przypadki: prędkość (dowolnej) galaktyki na powierzchni kuli może być większa, równa albo mniejsza od prędkości ucieczki z kuli. Sytuacja jest dokładnie taka, jak w przypadku wystrzeliwania jakiegoś ciała z powierzchni Ziemi: jego prędkość może być większa, równa albo mniejsza od prędkości ucieczki i nasze ciało albo oddali się nieograniczenie (w dwóch pierwszych wypadkach), albo oddali się na pewną maksymalną odległość, a potem zawróci. Obserwacje wskazują, że nasz wszechświat z jakichś powodów zachowuje się tak, że galaktyki mają dokładnie prędkość graniczną: prędkość ucieczki. Nie jest to oczywiste, wygląda na to, że warunki początkowe Wielkiego Wybuchu zostały w precyzyjny sposób wybrane właśnie tak, aby prędkość galaktyk była równa prędkości ucieczki. Wybrane – nie znaczy: wybrane przez Stwórcę, ale jakoś fizycznie wyróżnione. Objaśniają to teorie tzw. inflacji, którymi tutaj nie będziemy się zajmować.
Prędkość ucieczki z powierzchni kuli o masie M i promieniu R równa się (zob. dowolny podręcznik fizyki albo stosowne hasło Wikipedii):

v=\sqrt{\dfrac{2GM}{R}},

gdzie G jest stałą grawitacyjną. Ponieważ w naszej rozszerzającej się kuli są wciąż te same galaktyki, jej masa jest stała i wobec tego prędkość maleje w miarę ekspansji – czegoś takiego oczekujemy od grawitacji. Ktoś, kto zna pochodne, łatwo sprawdzi, że rozwiązaniem tego równania jest R\sim t^{\frac{2}{3}}, (a pochodna v=R^{\prime}\sim t^{-\frac{1}{3}}). Na wykresie wygląda to tak.

einstein de sitter

Masę kuli można zapisać jako iloczyn gęstości \rho i objętości, otrzymamy wówczas prawo Hubble’a:

v=\sqrt{\dfrac{8\pi G\rho}{3}}R\equiv HR.

Ze wzoru tego wynikają dwie rzeczy: bez względu na to jak dużą weźmiemy kulę, otrzymamy tę samą wartość parametru H, jak być powinno, jeśli nasze rozumowanie ma być prawdziwe. Po drugie, w miarę jak kula będzie się rozszerzać, gęstość materii będzie maleć (wciąż ta sama masa przypada bowiem na coraz większą objętość). Zatem parametr Hubble’a też będzie maleć z czasem. Cofając się w czasie, otrzymamy coraz mniejsze promienie i coraz większe gęstości oraz prędkości. Widać, że model ten traci sens, gdy promień równa się zeru, odpowiada to bowiem nieskończonej gęstości. To właśnie jest Wielki Wybuch. Nasz model, podobnie jak ogólna teoria względności, traci sens dla R=0. Możemy natomiast przewidywać, co się będzie działo po Wielkim Wybuchu, a więc dla t>0. I jeszcze jedno: Wielki Wybuch jest granicą czasową naszego wszechświata, ale nie jest związany z żadnym miejscem w przestrzeni. Moglibyśmy naszą kulę wybrać ze środkiem w dowolnym punkcie i wyniki byłyby takie same. Zatem Wielki Wybuch dokonał się jednocześnie w całej przestrzeni: to nie był wybuch jakiejś bomby w pewnym punkcie.

3. Ciemna energia

Parametr Hubble’a H maleje, gdy maleje gęstość wszechświata. Tak być powinno, grawitacja spowalnia ekspansję. Ponieważ nasz wszechświat rozszerza się z prędkością ucieczki, powinien spowalniać coraz bardziej, a parametr Hubble’a powinien dążyć asymptotycznie do zera, nigdy go nie osiągając. Obserwacje (Nobel 2011) wykazały jednak, że do gęstości materii galaktyk \rho należy w ostatnim wzorze na H dodać pewną dodatkową stałą gęstość \rho_{vac} – jest to energia próżni albo inaczej ciemna energia. Nie jest to jakaś drobna poprawka, w dzisiejszym wszechświecie stanowi około 70% całości. Co taki wyraz oznacza? Mamy nową stałą fizyczną, przynajmniej w naszym wszechświecie. Z czasem gęstość ciemnej energii będzie jeszcze bardziej dominować (bo gęstość materii ciągle maleje wskutek ekspansji). Stała Hubble’a nie dąży więc do zera, lecz do pewnej wartości stałej

H_0=\sqrt{\dfrac{8\pi G\rho_{vac}}{3}}> 0.

Prędkość ekspansji będzie więc proporcjonalna do rozmiarów kuli wszechświata. Im większa kula, tym szybciej będzie się nadymać. Oznacza to wzrost wykładniczy, a więc wszechświat rozszerzający się wciąż szybciej i szybciej. Ciemna energia działa zatem jak dodatkowa siła odpychająca, która w końcu przeważa nad grawitacją. Gdyby już dziś liczyła się tylko ciemna energia, dalsze losy wszechświata wyglądałyby następująco.

dark-energy

Jest to zupełnie rozsądne przybliżenie naszej kosmicznej przyszłości. Naprawdę oba wykresy z punktów 2 i 3 gładko w siebie przechodzą, dając tzw. Model uzgodniony (The Concordance Model).
Co może znaczyć taka stała gęstość energii (bo energia i masa są proporcjonalne: E=mc^2)? Może to być np. energia drgań zerowych pól kwantowych. W mechanice kwantowej niemożliwy jest absolutny spoczynek: dlatego np. elektron w atomie stale się porusza. Spoczynek oznaczałby naruszenie zasady nieoznaczoności Heisenberga. Z podobnego powodu atomy w krysztale drgają nawet w temperaturze zera bezwzględnego. No dobrze, ale tu mówimy o pustej przestrzeni. Co ma się w niej poruszać, gdy zabierzemy wszelkie cząstki? Z kwantowego punktu widzenia każda cząstka jest kwantem pewnego pola. Np. fotony są kwantami pola elektromagnetycznego. Pola takie muszą drgać nawet wówczas, gdy nie ma ani jednego fotonu. A muszą drgać, bo inaczej naruszona zostałaby zasada nieoznaczoności. Drgające pole ma pewną energię, więc pola kwantowe powinny mieć energię nawet wtedy, gdy usuniemy wszystkie cząstki. Tak to powinno wglądać, kłopot w tym, że nikt nie potrafi zamienić intuicji tego rodzaju na jakiś rachunek, który by pokazywał, jakie to konkretnie pola dają obserwowaną energię próżni, czyli ciemną energię.

Równania, które napisaliśmy, wynikają także z ogólnej teorii względności, ale wtedy rachunki są bardziej złożone technicznie.

Więcej: Kosmologia relatywistyczna w kwadrans I, Kosmologia relatywistyczna w kwadrans II

Czy globalne ocieplenie to bzdura? Pochwała atmosfery

Atmosfera Ziemi jest jak „uszyta na miarę”: chroni nas przed meteorytami, tłumi promieniowanie nadfioletowe, wytwarzające mutacje (np. raka skóry), zapewnia nam tlen niezbędny do oddychania i jest przezroczysta akurat w tym obszarze fal elektromagnetycznych, które widzimy. Oczywiście, od czasów Charlesa Darwina, wiemy, że trzeba spojrzeć na to odwrotnie: na drodze jakiej ewolucji doszło do tej sytuacji. Ochrona przed meteorytami jest np. niepełna, o czym boleśnie przekonały się dinozaury (zostały tylko energooszczędne zwierzątka w rodzaju dzisiejszych ryjówek – nasi prarodzice). Nam też w zasadzie grozi podobny los, jeśli odpowiednio duża asteroida uderzy w Ziemię. Warstwę ozonową, która chroni przed nadfioletem, dość łatwo byłoby zniszczyć, na szczęście przestaliśmy wypuszczać do atmosfery niektóre związki chemiczne, stosowane w celach dość trywialnych: w dezodorantach i lodówkach. Za tlen powinniśmy dziękować naszym braciom mniejszym roślinom, bez nich (bez fotosyntezy) nie moglibyśmy żyć. Widzimy fale elektromagnetyczne o takich długościach, bo nasza gwiazda centralna najwięcej wysyła w tym obszarze widma (byłoby bez sensu mieć oczy wrażliwe na fale, których praktycznie nie ma). To, że dzięki temu możemy widzieć także inne ciała niebieskie jest tylko wspaniałym dodatkiem. A dzięki obserwacjom gwiazd i planet powstała astronomia matematyczna. A dzięki astronomii powstała fizyka, a dzięki fizyce, a później chemii i biologii, powstała nasza cywilizacja w obecnym kształcie.

W sierpniu 1883 roku na wysepce Krakatau w Indonezji wybuchł wulkan. Wskutek tej erupcji i wywołanych nią fal tsunami zginęło 40 000 ludzi. W końcu października w Europie zaczęły się niesamowicie piękne zachody słońca – znaczyło to, że pył wyrzucony do atmosfery podczas erupcji zdążył już przywędrować na umiarkowane szerokości geograficzne (kolory zachodów słońca to głównie skutek rozpraszania Rayleigha). W Wielkiej Brytanii zachody słońca obserwował zafascynowany nimi poeta, żarliwy katolik, Gerald Manley Hopkins. Swoje opisy wysłał do „Nature”: „Ponad zielenią ukazał się czerwony blask, szerszy i bardziej krzepki; był miękko cętkowany i w żebrach czy pasach kolor był bliższy różu, a w prześwitach, gdzie przeświecał błękit nieba, bliższy malwy. Wyżej był niewyraźnie bzowy. Czerwień można było dostrzec najpierw na wysokości 45º nad horyzontem i widziało się w niej promienie, które jeden z patrzących porównał do ludzkiej dłoni. Do 4:45 czerwień wyparła zieleń i stapiając się z resztką pomarańczowego dosięgła horyzontu” (cyt. w: http://publicdomainreview.org/2012/05/28/the-krakatoa-sunsets/). Malarz William Askroft spędził wiele popołudni, malując widoki nieba na brzegu Tamizy w Chelsea, było to dla niego frustrujące doświadczenie: jego sztuka była bezsilna wobec tej ruchomej powodzi kolorów.

7261360630_2085ed432a_o7261360998_60c9500aa6_o

Zachody słońca po erupcji Krakatau pokazały naocznie, że atmosfera jest wspólna dla całej Ziemi. Jeszcze jedną wspaniałą zaletą, za którą winniśmy wdzięczność naszej siostrze atmosferze, jest efekt cieplarniany. Gdyby nie było atmosfery temperatura Ziemi byłaby równa -20º C – tyle wynika z prostego bilansu energii przychodzącej ze Słońca i wysyłanej przez Ziemię. Ilości energii przychodzącej i wysyłanej w jednostce czasu powinny być równe, inaczej Ziemia musi się ogrzewać albo stygnąć. Naprawdę gdyby temperatura była tak niska, na powierzchni Ziemi byłoby dużo lodu, który świetnie odbija światło i w rezultacie mniej światła słonecznego byłoby pochłaniane przez Ziemię, co znaczy, że temperatura byłaby jeszcze niższa.
Nasza atmosfera przepuszcza niemal całkowicie światło widzialne – większą część energii docierającej do nas ze Słońca. Ziemia, a także sama atmosfera, także wysyłają promieniowanie termiczne, ale jest ono w większości podczerwone, gdyż temperatura Ziemi jest 20 razy mniejsza od temperatury Słońca. Atmosfera Ziemi jest jednak nieprzezroczysta w podczerwieni, dzięki parze wodnej i CO2. Bilans energetyczny wygląda w rezultacie tak.

greenhouse1

Ziemia wysyła więcej promieniowania podczerwonego, niż otrzymuje ze Słońca. Bilans energii zarówno „pod atmosferą”, jak i „nad atmosferą” jest zerowy: tyle samo energii przychodzi i ucieka. Jednak atmosfera promieniuje w górę i w dół, dzięki czemu Ziemia może wysyłać więcej energii – a to oznacza, że jej temperatura jest wyższa: zamiast -20º C otrzymalibyśmy +30º C (-20º C będzie teraz temperaturą na skraju atmosfery, a nie na Ziemi). Temperatura wyszła trochę za wysoka, ale to szczegół. Gdybyśmy przyjęli, że nie cała energia wysyłana w podczerwieni przez Ziemię jest pochłaniana przez atmosferę, ale część jej ucieka w kosmos, wynik byłby bardziej realistyczny. Widać o co chodzi: im bardziej nieprzezroczysta atmosfera w podczerwieni, tym wyższa temperatura planety. Efekt ten – efekt cieplarniany – jest zbawienny, bo, powtórzmy, marnie by nam się żyło w temperaturach średnich poniżej -20º C. Tyle, że gdy atmosfera stanie się zanadto nieprzezroczysta w podczerwieni, na Ziemi może stać się zbyt ciepło. Ludzie od XVIII wieku wysłali do atmosfery tyle CO2, że zaczęło to już wpływać na klimat globalny. Możemy stać się ofiarami naszego sukcesu ewolucyjnego i cywilizacyjnego. Oczywiście, przyszłość jest nieznana, bo może też nadlecieć za, powiedzmy, pięćdziesiąt lat duża asteroida i zafundować nam nie tylko piękne zachody słońca, ale w ogóle zimę na dziesięć lat. Wtedy nikt się nie będzie musiał martwić globalnym ociepleniem, zresztą ryjówki mają na to za mały mózg.