Parabola, sounding-board i piękno geometrii

Wielka Brytania ma do dziś znakomitą tradycję uprawiania nauki za stosunkowo niewielkie pieniądze. Royal Society i inne uczone towarzystwa były długo organizacjami zrzeszającymi amatorów na równi z zawodowcami. Sprawiało to, że rozmaite dziwne eksperymenty czy obserwacje osobliwości sąsiadowały w angielskich czasopismach z rzetelnymi osiągnięciami profesjonalistów. Przynajmniej jednak za dziwactwa te rząd Jego/Jej Królewskiej Mości nie musiał wypłacać wysokich apanaży czy to w formie pensji, czy grantów na dogłębne studia nad niczym.

W 1826 roku zbudowano w Attercliffe koło Sheffield niewielki kościół. Okazało się, że występował w nim silny pogłos i choć dźwięk mowy pastora był dobrze słyszalny, to zamazany i niewyraźny. Standardowym sposobem wzmacniania dźwięku idącego od ambony do wiernych była drewniana płyta, sounding-board, umieszczana zwykle poziomo nad amboną. Odbijała ona część dźwięku w stronę publiczności. Określenie sounding-board do dziś zresztą funkcjonuje w angielszczyźnie, lecz głównie w sensie przenośnym. W Attercliffe tego rodzaju rozwiązanie nie pomogło. Toteż wielebny John Blackburn, który studiował w St. John’s College w Cambridge, sięgnął po rozwiązanie znane z geometrii od czasów starożytnych. Wiadomo, że paraboloida – powierzchnia powstająca przy obrocie paraboli wokół osi – ma własność ogniskowania promieni w jednym punkcie. Może więc także służyć jako reflektor, gdy w ognisku umieścimy źródło naszych promieni. John Blackburn obudował więc ambonę w taki sposób, że mówca znajdował się w jej ognisku, a dźwięk rozchodził się na wnętrze kościoła.

Efekty były znakomite, wielebny Blackburn opisał ze szczegółami swą konstrukcję w „The Philosophical Magazine” w roku 1829. Podobnego rozwiązania używa się do dziś, np. w mikrofonach parabolicznych zbierających dźwięk z jakiegoś kierunku i umożliwiających słuchanie rozmów ze sporej odległości.

512px-parabolicmicrophone

Innych przykładów dostarczają wszelkie teleskopy optyczne i radiowe, tu np. gigantyczny radioteleskop w Arecibo, za pomocą którego Aleksander Wolszczan odkrył pierwsze planety poza Układem Słonecznym (a macierzysty UMK zerwał z nim współpracę, bo uczony kiedyś spotykał się z jakimiś agentami SB – co godne i sprawiedliwe, a także słuszne i zbawienne – wszak mamy tylu uczonych, którzy z nikim się nie spotykali oraz niczego nie odkryli).

telescopio_arecibo_thumb

Z jakichś powodów, znanych wyłącznie wysokim komisjom ds. programów nauczania, nie uczy się w szkole nic ponadto, że parabola to wykres funkcji kwadratowej, np. y=ax^2. W sposób naturalny pojawia się ta krzywa w rzutach (gdy opór powietrza jest do pominięcia). Np. w rzucie poziomym ciało przesuwa się poziomo wciąż z tą samą prędkością początkową v, spadając jednocześnie pionowo z przyspieszeniem ziemskim g. Mamy więc dwa równania: w kierunku poziomym x położenie jest proporcjonalne do czasu, a w kierunku pionowym y – do kwadratu czasu (oś y kierujemy w dół).

\left\{ \begin{array}{l}  x=vt\\  y=\dfrac{gt^2}{2} \end{array} \right.\quad \Rightarrow \quad y=\left(\dfrac{g}{2v^2}\right)x^2=ax^2

Dokładnie tyle potrafił udowodnić Galileusz na temat rzutów (miał techniczny problem z rzutami ukośnymi, nie było jeszcze geometrii analitycznej). Rzut poziomy można zilustrować pokazem, przedstawiony zabytkowy przyrząd pochodzi z Teylers Museum w Haarlemie.

large1

Kulka stacza się po łuku z lewej strony i następnie przelatuje przez kolejne pierścienie rozmieszczone zgodnie z równaniem paraboli.

Pokażemy, że kształt paraboliczny może ogniskować promienie w jednym punkcie. Starożytni, którzy nie znali algebry, definiowali parabolę inaczej: jest to zbiór punktów równoodległych od pewnej zadanej prostej (fioletowa na rysunku)oraz od pewnego punktu F.

parabola

Łatwo pokazać, jak można konstrukcyjnie wyznaczyć punkty paraboli. Zaczynamy od P’. Wystawiamy z tego punktu prostopadłą do naszej poziomej prostej (zwanej kierownicą) oraz budujemy dwusieczną odcinka FP’: XP. Szukany punkt P paraboli leży na przecięciu obu prostych i spełnia warunki definicji paraboli. Z konstrukcji tej wynika też, że kąty FPX oraz XPP’ są równe, więc promień biegnący pionowo z góry do P odbije się w kierunku F. Ponieważ dotyczy to każdego promienia biegnącego wzdłuż osi, więc wszystkie one przetną się w F (zwanym ogniskiem).

Łatwo też pokazać, że tak wyznaczona krzywa spełnia algebraiczne równanie paraboli. Niech ognisko znajduje się w punkcie (0,f) układu współrzędnych, kierownica zaś ma równanie y=-f (na rysunku f=0,25). Równe odległości punktu (x,y) od kierownicy i od ogniska dają równanie

(y+f)^2=x^2+(y-f)^2 \Rightarrow y=\dfrac{x^2}{4f}.

Istnieje jeszcze inna definicja paraboli jako przecięcia stożka. Wyobraźmy sobie stożek, bierzemy płaszczyznę styczną do jednej z jego tworzących SR, a następnie przecinamy stożek inną płaszczyzną równoległą do tej pierwszej. Krzywa powstająca na przecięciu płaszczyzny z powierzchnią stożka będzie parabolą.

parabola_conic

Z rysunku odczytać możemy równanie krzywej. Zaczynając od okręgu na dole, mamy x^2=\mbox{PM}\cdot \mbox{MR} (jest to znane twierdzenie nt. wysokości trójkąta prostokątnego (u nas PLR). Ze środkowego rysunku (obie płaszczyzny są prostopadłe do rysunku) widać, że długość MR nie zależy od tego, na jakiej wysokości przetniemy stożek płaszczyzną prostopadłą do jego osi. Natomiast długość PM z twierdzenia Talesa jest proporcjonalna do y, mamy więc y\propto x^2. Ta ostatnia definicja sugeruje związek paraboli z innymi możliwymi przecięciami stożka: elipsą oraz hiperbolą. Ale to już całkiem inna historia.

Pierre Fermat: zasada najmniejszego działania dla światła (1657-1662)

Greccy geometrzy zauważyli, że światło biegnie po najkrótszej drodze, i to zarówno wtedy, gdy porusza się prostoliniowo między dwoma punktami (np. A i C), jak i wówczas, gdy po drodze odbija się od zwierciadła, biegnąc po łamanej ABC. Najkrótszej drodze odpowiada prawo odbicia: kąt odbicia równy jest kątowi padania.

fermat-heron

Rozumowanie z rysunku znajdujemy u Herona z Aleksandrii w jego Katoptryce (czyli optyce zwierciadeł). Jeśli punkt A odbijemy symetrycznie w płaszczyźnie zwierciadła (prostopadłej do rysunku), otrzymujemy A’. Drogi A’B i AB są więc równe. Zamiast ABC możemy rozpatrywać A’BC. Dowolna łamana AXC ma taką samą długość, jak A’XC. Ponieważ każda łamana biegnąca od A’ do C jest dłuższa niż odcinek prostej, więc najkrótsza droga równa jest ABC i punkt B leży wówczas na odcinku A’C. Łatwo widać, że dla takiej drogi kąt odbicia równa się kątowi padania.

W roku 1657 Pierre Fermat, radca parlamentu (czyli sądu) w Tuluzie, otrzymał w prezencie książkę poświęconą światłu.

la_lumiere_cureau_de_la-chambre

Jej autorem był Marin Cureau de La Chambre, lekarz, do którego nastoletni Ludwik XIV, przyszły Król-Słońce miał ogromne zaufanie. Fermat, urzędnik królewski, czuł się w obowiązku zajrzeć do książki doradcy tak uczonego i ustosunkowanego na dworze (zręczność dyplomatyczną autora widać i w tym, że na karcie tytułowej jego własne nazwisko złożone jest znacznie mniejszą czcionką niż nazwisko potężnego kardynała Mazarin). Książka zawierała dowód Herona. Cureau de La Chambre zwracał też uwagę, że gdy światło się załamuje, przebywana przez nie droga już nie jest najkrótsza.

fermat0

Droga ABC jest oczywiście dłuższa niż ADC na rysunku. Fermat znał, jak wszyscy, prawo załamania (prawo Snella), opublikowane przez Kartezjusza w 1637 roku. Nie zgadzał się jednak z fizycznym wyprowadzeniem tego prawa, niezbyt wierzył chyba w te wszystkie niewidzialne cząstki rozmaitych kształtów i wielkości, które miały się ze sobą zderzać i na siebie napierać, tłumacząc absolutnie wszystko: od ruchu planet i optyki, po magnetyzm i ciężkość ciał. Jako matematyk szukał wyjaśnienia elegantszego i mniej uwikłanego w trudne do sprawdzenia przesłanki. Gdyby przyjąć, że w gęstszym ośrodku światło napotyka większy opór, to należałoby drogę w ośrodku liczyć np. podwójnie. A więc nadal można podejrzewać, że światło wybiera najłatwiejszą drogę. Należałoby jednak minimalizować nie sumę dróg, lecz pewną ich kombinację, np. AB+2BC. Gęstszemu ośrodkowi odpowiadałby większy współczynnik: wyglądało to rozsądnie, gdyż u Kartezjusza światło miało „większą siłę” w ośrodku gęstszym, co nie jest zbyt intuicyjne (ani zrozumiałe). Nie chcąc wdawać się w spory na temat natury światła, Fermat unikał mówienia o jego prędkości – bowiem zdaniem kartezjan oraz Cureau de La Chambre światło rozchodzi się momentalnie. Sporów z kartezjanami, uczniami mistrza, nie uniknął, podobnie jak dwadzieścia lat wcześniej z ojcem-założycielem tej sekty filozoficznej. Fermat znany był z wysuwania twierdzeń, których nie chciało mu się albo których nie potrafił dowieść, słynnym przykładem jest jego Wielkie Twierdzenie udowodnione pod koniec XX wieku. Także i tym razem niezbyt chętnie brał się do sprawdzenia, czy rzeczywiście światło podlega zasadzie najmniejszego działania. Miał własną metodę szukania ekstremum, dość toporną z dzisiejszego punktu widzenia, zastąpioną później przez obliczanie pochodnych. W wersji Fermata prowadziła ona do długich rachunków, ale w pierwszym dniu nowego roku 1662 zakomunikował Cureau de La Chambre, że obliczenia się udały i prowadzą do znanego prawa załamania. Niemal pięcioletnie opóźnienie między wysunięciem twierdzenia a zbadaniem jego konsekwencji tłumaczył Fermat dwiema przeszkodami: po pierwsze, nie był całkiem pewien, jak należy sformułować zasadę minimum i czy prawo Snella jest ściśle słuszne. Drugą przeszkodą była, typowa dla matematyków, niechęć do długich rachunków. W tym przypadku w grę wchodziły cztery odcinki, a więc cztery pierwiastki z sumy kwadratów współrzędnych. „Obawa, że po długich i trudnych rachunkach dojdę do jakiejś fantastycznej i nieregularnej proporcji oraz moja naturalna skłonność do lenistwa pozostawiły rzecz w tym stanie aż do ostatniego napomnienia, którego udzielił mi w pańskim imieniu pan przewodniczący de Miremont. (…) Nagroda za tę pracę okazała się zupełnie nadzwyczajna, niespodziewana i szczęśliwa. Kiedy bowiem przebrnąłem przez wszystkie równania, mnożenia, antytezy i inne operacje, jakich wymaga moja metoda (…) stwierdziłem, że moja zasada daje dokładnie tę samą proporcję załamania, jaką ustalił pan Descartes. Tak bardzo zaskoczył mnie ten niespodziewany wynik, że z trudem mogłem dojść do siebie. Wiele razy powtórzyłem różne operacje algebraiczne, otrzymując stale ten sam wynik, choć moje rozumowanie zakłada, iż przejście światła przez gęste ciała jest trudniejsze niż przez rzadkie, co uważam za prawdziwe oraz niewątpliwe, niemniej jednak pan Descartes zakłada coś przeciwnego”.

Fermat zakłada więc, że nie suma dróg s_1+s_2 musi być minimalna, lecz suma ich kombinacji liniowych s_1+ns_2, gdzie n jest współczynnikiem załamania drugiego ośrodka (względem pierwszego). Łatwo widać, że jeśli przyjmiemy za prędkość światła w drugim ośrodku wielkość v=c/n (gdzie c jest prędkością w ośrodku pierwszym), to można tę zasadę sformułować jako zasadę najkrótszego czasu:

t=\dfrac{s_1}{c}+\dfrac{s_2}{v}=\dfrac{s_1+n s_2}{c}.

Fermat dumny był z otrzymania eleganckiego wyniku, lecz kartezjanie uważali go za ciekawostkę matematyczną, a nie zasadę odnoszącą się do światła. Zasada Fermata nabrała sensu dopiero dla Christiaana Huygensa, który światło uznawał za rozchodzące się zaburzenie eteru, coś w rodzaju fali nieokresowej, jak np. fala uderzeniowa. Wiedział on już, że prędkość światła jest skończona. Huygens przedstawił też elegancki dowód, że zasada Fermata prowadzi do prawa załamania Snella. Jest on wyraźnie prostszy niż obliczenie Fermata – zwykle udaje się uprościć rozumowanie, kiedy już wiadomo, dokąd prowadzi.

fermat-a-la-huygens

Porównujemy rzeczywisty bieg promienia światła ABC z fikcyjnym AFC. Budujemy prostokąt AOHB, mamy w ten sposób pewność, że AB=OH. Na BC opuszczamy prostopadłą GF z punktu G. Z prawa załamania mamy

\dfrac{\mbox{HF}}{\mbox{BG}}=\dfrac{\sin\alpha}{\sin\beta}=n.

Zachodzą też nierówności

\mbox{AF}>\mbox{OH}+\mbox{HF}=\mbox{AB}+n\mbox{BG},

n\mbox{FC}>n\mbox{GC}.

Dodając te nierówności stronami, otrzymujemy:

\mbox{AF}+n\mbox{FC}>\mbox{AB}+n\mbox{BC}.

Zmieniając nieco nasz rysunek, możemy zrozumieć przyczynę prawa załamania dla fal. Linie AA’ oraz BH to czoła fali w pierwszym ośrodku, GF oraz CC’ to czoła fali w drugim ośrodku. W czasie potrzebnym na przejście odległości HF w pierwszym ośrodku, w drugim fala przejdzie odległość BG.

fermat-huygens2

Zatem stosunek obu odległości równy jest

\dfrac{\sin\alpha}{\sin\beta}=\dfrac{c}{v}=n.

Bezpośrednie wyjaśnienie zasady Fermata daje nam mechanika kwantowa albo falowa teoria światła: faza światła zależy od czasu. W sąsiedztwie ekstremum fazy zmieniają się bardzo powoli i rezultatem jest silna fala wypadkowa.

Warto może przytoczyć dzisiejszą wersję obliczeń Fermata. Jest ona banalna, co nie oznacza, że jesteśmy mądrzejsi od Fermata, ale że mamy lepsze techniki rachunkowe. Pojawiły się one już kilka lat później w rękopisach Isaaca Newtona, które niewielu widziało, a później w 1684 roku w pierwszej publikacji Leibniza na temat rachunku różniczkowego. Metoda Fermata przekształciła się w algorytmy, do których stosowania wcale nie potrzeba inteligencji, z powodzeniem robią to dziś programy w rodzaju WolframAlpha itp.

fermat

Wielkość, którą mamy zminimalizować, ma postać:

s(x)=\sqrt{(x-x_a)^2+y_a^2}+n\sqrt{((x-x_b)^2+y_b^2}.

Szukamy ekstremum tej funkcji, przyrównując jej pochodną do zera:

s'(x)=\dfrac{2(x-x_a)}{2\sqrt{(x-x_a)^2+y_a^2}}+n\dfrac{2(x-x_b)}{2\sqrt{((x-x_b)^2+y_b^2}}=0.

Łatwo spostrzec, patrząc na rysunek, że pierwszy składnik równy jest \sin\alpha, a drugi -n\sin\beta, skąd otrzymujemy prawo Snella.

Spirala logarytmiczna

Ponieważ pisałem o spiralach u van Gogha, więc może warto napisać trochę więcej o ich matematyce. Zdefiniujmy spiralę jako krzywą, która zawsze tworzy kąt \alpha z promieniem wodzącym z początku układu.

logarithmic_spiral

Najłatwiej równanie spirali zaleźć we współrzędnych biegunowych: położenie punktu określamy przez odległość od początku układu r oraz kąt \varphi, jaki tworzy promień wodzący z ustaloną półosią. Kąty liczymy przeciwnie do wskazówek zegara. Wielkim odkryciem XVII wieku w matematyce było zauważenie, że krzywe gładkie można traktować jak złożone z bardzo krótkich odcinków linii prostych, najlepiej nieskończenie małych odcinków (ale zawsze można sobie wyobrażać coraz mniejsze odcinki skończone). Narysujmy sobie taki nieskończenie mały odcinek spirali. Oczywiście, musimy narysować odcinek skończony (niebieski na rysunku), nieskończenie małe wielkości nie nadają się do rysowania.

logarithmic-spiral

Stałość kąta \alpha oznacza, że stały, tj. niezależny od punktu jest także jego cotangens:

\mbox{ctg}\alpha=k=\dfrac{dr}{rd\varphi}\Rightarrow \dfrac{dr}{r}=k d\varphi.

Oznaczyliśmy cotangens kąta \alpha literą k, żeby mniej pisać. Wielkość ta nie zależy od punktu spirali. Znaczy to, że gdy obracamy wektor wodzący o d\varphi, to jego nowa długość równa się

r+dr=r(1+kd\varphi).

Po dwóch obrotach o d\varphi dostaniemy r(1+kd\varphi)^2. Gdyby kąt był czasem, a k stopą procentową, to mielibyśmy procent składany: po każdym okresie d\varphi nasz kapitał rośnie o stały czynnik (1+kd\varphi). Sens geometryczny tej spirali jest więc łatwy do uchwycenia: każdy obrót o ustalony kąt oznacza wzrost promienia o ustalony procent, czyli o ustalony czynnik. Wzrost jest więc wykładniczy. Zaczynając od promienia r_0 przy kącie \varphi=0, mamy po n obrotach

r=r_0(1+kd\varphi)^n.

Skończony kąt \varphi możemy uzyskać jako złożenie bardzo wielu obrotów o mały kąt d\varphi. Będzie wówczas spełniony warunek \varphi=nd\varphi. Promień r będzie równy

r=r_0\left(1+\dfrac{k\varphi}{n}\right)^n \Rightarrow r=r_0  e^{k\varphi},

gdzie e oznacza podstawę logarytmu naturalnego (*). Wykładnicza zależność r(\varphi) oznacza, że obracając się w kierunku ujemnym, nigdy nie otrzymamy zera, a więc nasza spirala nie tylko rozwija się nieskończenie, ale i zwija w pobliżu zera nieskończenie wiele razy. Wynika to po prostu z faktu, że \varphi może przyjmować dowolne wartości rzeczywiste, dodatnie, ujemne (albo zero), a r zawsze będzie dodatnie. Nie można narysować otoczenia początku układu, bo tam spirala zwija się nieskończenie wiele razy.

logarithmicspiral

Łatwo jest też obliczyć długość spirali od punktu początkowego do danego kąta \varphi. Patrząc jeszcze raz na nasz nieskończenie mały odcinek spirali, widzimy, że całkowita jej długość jest proporcjonalna do r, a więc skończona:

ds=\dfrac{dr}{\cos\alpha}\Rightarrow s=\dfrac{r}{\cos\alpha}.

(*) Możemy sobie wyobrażać, że liczba n staje się coraz większa, ale tak aby nd\varphi=\varphi . Korzystamy z z granicy przy n\rightarrow\infty:

\lim_{n\rightarrow\infty}\left(1+\dfrac{x}{n}\right)^n=e^x.

Vincent van Gogh, Gwiaździsta noc: chaos i kosmos (czerwiec 1889)

W Słowniku komunałów Gustave’a Flauberta czytamy: „GENIUSZ: nie ma czego podziwiać, to tylko «neuroza»”. Niechęć i fałszywą wyższość dobrze myślącego obywatela, zmieszaną z udawanym współczuciem, znajdujemy w notatce z lokalnej gazety w Arles pod koniec roku 1888:

KRONIKA LOKALNA
Ubiegłej niedzieli pół godziny przed północą niejaki Vincent Vangogh, malarz, narodowości holenderskiej, zjawił się w domu publicznym nr 1, gdzie poprosił niejaką Rachel i wręczył jej …swoje ucho, ze słowami „proszę przechować ten cenny przedmiot”, a następnie odszedł. Policja, poinformowana o tym zajściu, którego sprawca z pewnością musiał być nieszczęsnym szaleńcem, udała się następnego ranka do mieszkania owego osobnika i zastała go śpiącego w swoim łóżku, bez żadnych prawie oznak życia.
Nieszczęśnik przyjęty został natychmiast do szpitala.

W słowach tych czuje się krzywy uśmieszek podrzędnego pismaka, który nie dostąpił jeszcze zaszczytu pisywania do szmatławca pod własnym nazwiskiem i chce nas zabawić pikantną anegdotą: wiadomo, ci artyści…
W wieku trzydziestu pięciu lat Vincent van Gogh z niezrozumiałym uporem trzyma się myśli, iż jest malarzem, choć nikt nie ceni jego płócien; nie ukończył żadnej szkoły ani nie radził sobie z typowymi ćwiczeniami rysunkowymi, powtarzano mu raczej, że się do tego nie nadaje; jest biedakiem, utrzymywanym przez niezamożnego brata, cierpi też na niemożliwą dziś do zdiagnozowania chorobę psychiczną z epizodami psychotycznymi.
Mieszczańskie społeczeństwo nie zna już właściwie pojęcia powołania: wybiera się jedynie lepszy bądź gorszy sposób zarabiania pieniędzy. Śmierć Boga dotknęła wszystkich, najbardziej może kościoły i ich funkcjonariuszy, którzy też coraz rzadziej mówią o powołaniu, rozumiejąc przez nie zazwyczaj wygodne i dostatnie życie bez kłopotów. Van Gogh, człowiek na swój sposób głęboko religijny, niezbyt cenił kapłanów i ich urzędowo administrowaną moralność.
Sto lat później Muzeum van Gogha w Amsterdamie odwiedzają każdego roku miliony widzów, w osobliwej pielgrzymce śledząc mozolne wykluwanie się artysty. Widziany na tle swoich współczesnych, nie robi specjalnego wrażenia, ulega modzie na japońszczyznę i impresjonizm, kopiuje tych, których podziwia: wielkich jak Jean François Millet czy Eugène Delacroix albo niezbyt dziś pamiętanych, jak Gustave Doré. Nie jest zręczny, nic nie przychodzi mu łatwo i nic też nie zapowiada wielkiej sztuki. Jeśli czymś się wyróżnia, to uważnością, dostrzeganiem rzeczy drobnych i ludzi niepozornych, biednych, zniszczonych, w czym nic dziwnego, bo sam jest jednym z nich. Pielgrzymka do świętego miejsca sztuki wznosi się spiralnie z piętra na piętro. Dopiero na ostatnim z nich, najwyższym, znajduje się garstka obrazów, które są racją istnienia tego muzeum i które zmieniły nasz sposób patrzenia. Ich autor spędził ten okres – ostatnie dwa lata życia – przeważnie w zakładach dla obłąkanych, z poczuciem zbliżającego się końca.
Romantyczny idea twórczego natchnienia, które niczym duch boży tchnie, kędy chce, do dziś zachowała aktualność. Oznacza to, że nic nie pomoże odmieniać słowo kreatywność przez przypadki i organizować rozmaite warsztaty, liczy się tylko powołanie, a tego nie zapewni żaden certyfikat ani dyplom. Jest ono równie rzadkie co zbawienie u kalwinów, jego znaki zaś nie zawsze łatwe do odczytania przez ludzi, których wzrok przysłania łuska. Nie znamy rzeczywistych źródeł geniuszu, nie jest on jednak z pewnością objawem choroby. Niewykluczone, że dzisiejsze antydepresanty pozbawiłyby van Gogha twórczej siły, ale nie znaczy to wcale, że wystarczy być chorym i nie przyjmować leków, aby stać się artystą podobnej miary.

Koniecznie chciałbym teraz namalować niebo gwiaździste. Często wydaje mi się, że noc jest jeszcze bogatsza w kolory niż dzień, zabarwiona najbardziej intensywnymi fioletami, błękitami i zieleniami.
Gdy zwrócisz na nie uwagę, zauważysz, że niektóre gwiazdy są cytrynowe, inne świecą różowo, zielono albo niebiesko jak niezapominajki. I jest chyba oczywiste, że aby namalować niebo gwiaździste, nie wystarczy porozmieszczać białe punkty na błękitnej czerni. (List do Willemien van Gogh 14 IX 1888)

…czy życie całe jest dla nas widoczne, czy też przed śmiercią znamy tylko jego jedną półkulę?
(…) nic o tym nie wiem, ale widok gwiazd zawsze mnie rozmarza w równie prosty sposób, jak czarne punkty wyobrażające na mapie miasta i wsie. Dlaczego, powiadam sobie, świetlne punkty na firmamencie miałyby być dla mnie mniej dostępne niż czarne punkty na mapie Francji?
Udając się do Taraskonu czy do Rouen wsiadamy do pociągu, kiedy wybieramy się do gwiazd, śmierć jest naszym sposobem lokomocji.
Jedno jest niewątpliwe w tym rozumowaniu: żywi nie możemy pojechać na gwiazdę, tak samo jak nie możemy wsiąść do pociągu umarli.
I w końcu nie wydaje się niemożliwe, żeby cholera, piasek w nerkach, suchoty, rak nie mogły być środkiem komunikacji niebieskiej, tak samo jak statek parowy, omnibus i pociąg są środkami komunikacji ziemskiej.
Umrzeć spokojnie ze starości znaczyłoby pójść do nieba pieszo. (List do Theo 9 albo 10 VII 1888)

Zapewniam cię, że jest mi tu dobrze, i na razie nie widzę powodu, dla którego miałbym zamieszkać w Paryżu albo w jego okolicy. Mam mały pokój oklejony szarozieloną tapetą, firanki są zielone, koloru wody, z motywem z bladych róż, które ożywiają cienkie kreski krwistej czerwieni. (…) przez okratowane okno widzę zamknięty kwadrat zboża – perspektywa jak u van Goyena; z rana widzę, jak nad tym polem wstaje słońce w całej swej chwale. (…) Sala, w której przebywa się w dni deszczowe, przypomina poczekalnię trzeciej klasy w jakimś zapomnianym od Boga miasteczku, tym bardziej że są tu szacowni wariaci, którzy zawsze chodzą w kapeluszu na głowie, w okularach, w stroju podróżnym i z laską w ręce – mniej więcej jak w kąpielisku nadmorskim; grają tu rolę podróżnych. (…)

Narysowałem wczoraj bardzo wielką ćmę, dość rzadką, zwaną trupia główka (w rzeczywistości Pawica gruszkówka, Saturnia pyri) w zdumiewająco dystyngowanych kolorach: czarnym, szarym, białym, cieniowaną z przebłyskami karminu bądź nieznacznie wpadającymi w oliwkową zieleń. (List do Theo, 23 V 1889)

 

papillon-de-nuitunnamed-2742px-vincent_van_gogh_-_emperor_moth_-_google_art_project

Tego ranka widziałem pejzaż z mego okna na długo przed wschodem słońca, świeciła jedynie Gwiazda Zaranna, która wydawała się bardzo wielka. (List do Theo, między 31 V a 6 VI 1889)

van-gogh-starry-night-469x376

Na stronie Moma

Próbowano odnaleźć na namalowanym niebie znane gwiazdozbiory, co się chyba tylko połowicznie udało i nie ma większego znaczenia. Świeci na nim Gwiazda Zaranna – Wenus i dziwny Księżyc: gdyby miało to być przed wschodem słońca, powinien mieć kształt pochylonej do tyłu litery C. Światła wioski są tego samego koloru co gwiazdy, to z pewnością nieprzypadkowe, tak samo jak nieprzypadkowe są dwa pionowe akcenty obrazu: płomienisty cyprys i wieża wiejskiego kościółka Saint Martin. W oczach van Gogha natura ważyła więcej niż ludzkie obrzędy.

Arystofanes wyśmiewał filozofię w osobie Sokratesa, co bamałuci tylko młodzieńców, szerząc bezbożność (jak wiemy, za to właśnie filozof skazany został na śmierć przez wypicie cykuty – satyryk po stronie siły to postać doprawdy ohydna). Owóż ta arystofanesowa kreatura Sokratesa naucza, że nie istnieje Zeus, a światem rządzą chmury.

– A któż to je zmusza, jeśli nie Zeus, by się ruszały i tłukły?
– Nie żaden Zeus, lecz powietrzny wir. (przeł. J. Ławińska-Tyszkowska)

Dla Greków kosmos był przeciwieństwem chaosu. Słowa kosmos – znaczącego tyle, co piękny ład, regularny porządek (z tego samego rdzenia mamy kosmetykę, czyli sztukę upiększania) – w odniesieniu do wszechświata użył Pitagoras. Chaos przerażał Greków, dlatego wir powietrzny albo atomy Demokryta były doktryną wywrotową, która burzy państwo i porządek. Napięcie między boskim ładem i niezliczonymi atomami, drobinami krążącymi i pulsującymi w próżni, przez długie wieki wydawało się nieusuwalne.

Niebo gwiaździste van Gogha to nie tylko dalekie światła, lecz także porywający wszystko spiralny wir. Uczeni komentatorzy zastanawiali się nad owymi spiralami. Van Gogh mógł gdzieś widzieć rysunki mgławic spiralnych, obserwowanych wówczas przez jeden tylko przyrząd na świecie, wielki teleskop lorda Rosse’a. Były one reprodukowane w niezliczonych książkach i czasopismach. Nikt nie rozumiał dobrze, czym są owe spirale ani skąd się biorą (tego drugiego nie wiemy zbyt dokładnie także i dziś). Nie wiedziano też, czy chodzi o zbiorowiska gwiazd, czy obłoki gazu, a może są to tworzące się nowe układy planetarne?

f3-large

Kształt spiralnych ramion wielu galaktyk bliski jest spirali logarytmicznej. To osobliwa krzywa, którą Jakob Bernoulli kazał wyryć na swoim nagrobku z napisem: resurgo eadem mutata – zmieniona odradzam się ta sama (wyryto mu jednak spiralę Archimedesa bez porównania banalniejszą).

logarithmic_spiral

Rysunek http://www.daviddarling.info/encyclopedia/L/logarithmic_spiral.html

Spiralę taką zatacza jastrząb, polując na zdobycz, którą stara się widzieć stale pod tym samym kątem do kierunku lotu – z tego powodu krzywa ta bywa nazywana spiralą równokątną. Aby dotrzeć do punktu środkowego, trzeba nieskończenie wielu okrążeń, choć droga przebywana przy tej okazji jest skończona. Spiralę taką zataczają ćmy wokół lampy, uczeni wyjaśniają to błędem nawigacji: zachowując stały kąt względem Księżyca ćma leci po linii prostej, zachowując natomiast stały kąt do lampy, zatacza śmiertelną spiralę.

Oli

Przekłady listów do Theo wg J. Guze, z niewielkimi zmianami i uzupełnieniami, datowanie wg http://vangoghletters.org/vg/letters.html.

 

D.A. Henderson, synek Franklina i racjonalność decyzji o szczepieniu

W tych dniach zmarł D.A. Henderson, epidemiolog, który walnie przyczynił się do zlikwidowania ospy na świecie. Był to wynik wieloletniej planowej pracy zespołu ludzi, którymi kierował najpierw w amerykańskiej CDC, a później w WHO. Fachowcy mówią, że to największy wymierny sukces w historii medycyny. Dramatem naszego świata jest fakt, że ludzie tacy jak on są niezbyt znani w przeciwieństwie do różnej maści celebrytów, skandalistów i kokainistów płci obojga.  OB-Henderson__13981471621450

Pisałem o epidemii w roku 1721 w Bostonie i tragicznym losie małego synka Benjamina Franklina. Stosując rachunek prawdopodobieństwa, nietrudno uzasadnić racjonalność decyzji o szczepieniu nawet przy niepełnych danych z XVIII wieku. Musimy pamiętać, że ówczesne szczepienie, tzw. inokulacja albo wariolizacja, różniły się od późniejszej metody. Zaszczepiano bowiem ludziom ospę ludzką, co w niektórych przypadkach kończyło się śmiercią. Dopiero pod koniec stulecia Edward Jenner odkrył, że bezpieczniejsze jest zaszczepianie ludziom ospy krowiej.

Zazwyczaj w podręcznikach matematyki mamy do czynienia z urnami, z których wyciąga się kule i w zależności od tego, co wyciągniemy, pojawiają się różne możliwości i budujemy drzewo rozmaitych ewentualności. Szczepienia są przykładem lepiej chyba przemawiającym do wyobraźni niż losowania białych i czarnych kul z urny.

Oto dane dla epidemii w Bostonie w roku 1721.

  • Liczba ludności miasta: 10 700
  • Poddanych inokulacji 281, z czego 6 zmarło
  • Spośród niepoddanych inokulacji 4917 zachorowało i przeżyło, 842 osoby zachorowały i zmarły, a 4654 osoby w ogóle nie zachorowały

Będziemy prawdopodobieństwa przybliżać częstościami, zazwyczaj nie mamy na to lepszego sposobu, należy pamiętać, że dane pochodzące z niewielkiej próby mogą się okazać niedokładne i dysponując większą statystyką, otrzymalibyśmy nieco inne wyniki. Mamy więc prawdopodobieństwo zgonu po inokulacji równe 6/281=0,021 i przeżycia inokulacji 1-0,021=0,979.

Prawdopodobieństwo zgonu wśród niepoddanych inokulacji oraz zarażonych jest równe 842/(842+4917)=0,146, a prawdopodobieństwo przeżycia w tej samej grupie równa się 1-0,146=0,854.

Prawdopodobieństwo zarażenia osoby niepoddanej inokulacji możemy próbować oszacować na podstawie naszych danych jako (4917+842)/(4654+4917+842)=0,553. Jest to szacowanie z dołu: musimy pamiętać, że część spośród 4654 osób, które nie zachorowały, przeszła już kiedyś ospę i była uodporniona na resztę życia. Jeśli prawdopodobieństwo zarażenia osoby, która nie przeszła ospy, oznaczymy przez x, mamy następujące drzewo możliwości.

qc23465.f1

Rysunek z pracy M Best, A Katamba, and D Neuhauser, Making the right decision: Benjamin Franklin’s son dies of smallpox in 1736.

Jeśli przyjmiemy x=0,553, to prawdopodobieństwo przeżycia bez inokulacji będzie równe (1-x)+x \cdot 0,854=0,919. Jak widać, wartość ta jest mniejsza od prawdopodobieństwa przeżycia inokulacji, zatem statystycznie biorąc, zabieg ten zwiększa szanse przeżycia. Gdybyśmy mieli więcej informacji, wartość x mogłaby się okazać jeszcze większa, a to by oznaczało, że prawdopodobieństwo przeżycia bez inokulacji jest jeszcze mniejsze (można zapisać to prawdopodobieństwo jako 1-x+0,854x=1-0,146x, jest to więc malejąca funkcja zmiennej x).

Można też się zastanowić, jaka musi być najmniejsza wartość x, żeby inokulacja była racjonalnym zabiegiem. Granicą racjonalności będą równe prawdopodobieństwa zgonu: x\cdot 0,146=0,021, skąd x> 0,144. Ponieważ dane wskazują, że prawie na pewno ostatni warunek jest spełniony, inokulacja jest racjonalnym zabiegiem.

Nie mamy, niestety, danych dla epidemii w 1736 roku w Filadelfii, gdzie mieszkał Benjamin Franklin z rodziną. Mamy jednak dane dla późniejszej epidemii w Bostonie w roku 1752.

  • Boston liczył wówczas 15 684 mieszkańców
  • 5998 osób przeszło już ospę i nie musiało się jej obawiać
  • 2124 osoby poddały się inokulacji (znacznie więcej niż w roku 1721), 30 z nich zmarło
  • 1843 osoby uciekły na wieś, by przeczekać epidemię, nie wiemy, jak wiele spośród nich zmarło.
  • 5719 osób nie poddało się inokulacji ani nie uciekło; 97% spośród nich zachorowało, a 539 zmarło

Prawdopodobieństwo zgonu po inokulacji równe jest 30/2124=0,014; prawdopodobieństwo przeżycia: 0,986. Wartości zbliżone są do tego, co otrzymaliśmy wyżej dla roku 1721.

Wśród niezaszczepionych i narażonych na zachorowanie śmiertelność była równa 539/(0,97\cdot 5719)=0,097, prawdopodobieństwo przeżycia choroby równało się 1-0,097=0,903. Oznaczało to, że nie robiąc nic, ma się prawdopodobieństwo przeżycia 0,03+0,97\cdot 0,903=0,906. Należy porównywać to z wartością 0,986 dla zaszczepionych. Inokulacja była więc znacznie lepszą decyzją.

Statystyka z roku 1752 obejmuje jeszcze możliwość ucieczki z miasta. Była to najprostsza metoda unikania chorób epidemicznych i kogo było na nią stać, ten ją stosował. Nie znamy prawdopodobieństwa zachorowania wśród tych, co uciekli. Oznaczmy je przez y. Mamy więc następujące drzewo możliwości.

qc23465.f2

(Rysunek z pracy jw.)

Można zadać pytanie, jakie powinno być y, aby ucieczka była lepszym wyjściem niż pozostanie w Bostonie i poddanie się inokulacji. Prawdopodobieństwo zgonu osoby uciekającej to 0,097y, należy je porównać z prawdopodobieństwem zgonu po inokulacji, równym 0,014. A zatem, jeśli y< 0,144, to ucieczka jest racjonalna. Trudno jest oczywiście oszacować wartość y, zależy ona np. od tego, czy uciekniemy, zanim jeszcze epidemia się rozwinie, czy w jej późniejszej fazie (choroba ma pewien okres inkubacji, możemy więc wyjeżdżając czuć się dobrze mimo zarażenia). W dodatku uciekając, nadal nie mamy odporności na ospę, a w Bostonie w ciągu osiemnastego wieku większe epidemie wystąpiły w latach 1721, 1730, 1752, 1764, 1776, 1778 oraz 1792. Można się było spodziewać, że za kilkanaście lat choroba znów się pojawi.

J.J. Thomson: Jak powstaje fala elektromagnetyczna? (1903)

Pole elektryczne spoczywającego ładunku zachowuje się tak, jak linie prędkości cieczy (nieściśliwej). Oznacza to, że linie sił pola biegną radialnie z ładunku punktowego i każdą zamkniętą powierzchnię otaczającą nasz ładunek przecina tyle samo linii sił. Strumień pola elektrycznego jest taki sam przez każdą powierzchnię zamkniętą (taka sama objętość cieczy przepływa w jednostce czasu przez każdą powierzchnię: ciecz nie gromadzi się ani nigdzie nie ucieka, np. w czwarty wymiar, ile wpłynęło przez jedną powierzchnię, tyle musi wypłynąć przez drugą).

maxwell fluid

Zatem natężenie pola E razy pole powierzchni sferycznej o promieniu r jest stałe:

E4\pi r^2=\dfrac{q}{\varepsilon_0}\Rightarrow E=\dfrac{q}{4\pi\varepsilon_0 r^2} \mbox{(*)}.

Inaczej mówiąc, kwadrat odległości w prawie Coulomba bierze się stąd, że pole powierzchni sfery rośnie jak r^2. W równaniach tych q oznacza ładunek, \varepsilon_0 stałą informującą o wielkości sił elektrycznych, jest to tzw. przenikalność próżni i jest stałą fizyczną. Najczęściej jednak mamy do czynienia nie z polami elektrostatycznymi, lecz z falami elektromagnetycznymi: dzięki tym falom widzimy na ekranie ten tekst, dzięki tym falom możemy rozmawiać przez komórkę albo obserwować wszechświat, można śmiało stwierdzić, że większość naszej jednostkowej i cywilizacyjnej wiedzy zdobyliśmy dzięki falom elektromagnetycznym.

Spójrzmy nieco inaczej na rysunek wyżej. Gdyby punkt w środku oznaczał Słońce (albo jakąś inną gwiazdę, albo dowolne źródło o symetrii kulistej), a linie były promieniami światła, to przez każdą powierzchnię zamkniętą w jednostce czasu powinna przechodzić taka sama ilość energii, inaczej mówiąc: moc przepływająca przez każdą powierzchnię byłaby taka sama – wszechświat jest dość pusty i praktycznie cała energia przepływa dalej (gdybyśmy zresztą wyobrazili sobie planetę między dwiema powłokami, to po pierwsze byłaby ona malutka w porównaniu do gwiazdy, a więc pochłaniałaby niewiele mocy, a poza tym wysyłałaby tyle watów, ile pochłania – inaczej planeta gwałtownie stygłaby albo się ogrzewała.) Równanie zapisane wyżej można by powtórzyć z niewielkimi zmianami: jeśli I to moc na jednostkę powierzchni (W/m2), czyli natężenie promieniowania gwiazdy, to możemy napisać:

I4\pi r^2=P\Rightarrow I=\dfrac{P}{4\pi r^2}.

P jest mocą gwiazdy [W], czyli ilością energii wysyłanej przez nią w jednostce czasu. Zatem natężenie fali powinno maleć jak 1/r^2, ponieważ pole powierzchni sfery rośnie jak r^2. Natężenie fali jest dla wszystkich rodzajów fal, nie tylko elektromagnetycznych, proporcjonalne do kwadratu amplitudy. Mamy zatem

I\sim E^2\sim \dfrac{1}{r^2}\Rightarrow E\sim \dfrac{1}{r}.

Pole elektryczne fali powinno być odwrotnie proporcjonalne do odległości od źródła, a nie do jej kwadratu, jak w przypadku statycznym (*). Możemy teraz zrozumieć, czemu pole elektrostatyczne trudniej zaobserwować: maleje ono bowiem z odległością szybciej niż pole fali elektromagnetycznej. Jest i drugi powód: atomy zawierają tyle samo ładunku ujemnego co dodatniego i w efekcie pola elektrostatyczne niemal się równoważą – niemal, bo ładunki dodatnie (jądra) są średnio biorąc w innym miejscu niż ujemne (elektrony), wypadkowe pole maleje w rezultacie jeszcze szybciej, z sześcianem odległości. Siły elektrostatyczne są bardzo istotne dla wiązań atomów, czyli na niewielkich odległościach.

Jak można z pola spoczywającego ładunku otrzymać pole fali elektromagnetycznej? Zacznijmy od jednostek. Skoro dla pola statycznego E maleje jak 1/r^2, to aby otrzymać zależność 1/r, musimy we wzorze (*) znaleźć dodatkowy czynnik w mianowniku o wymiarze długości (m). Pole fali elektromagnetycznej związane jest z ruchem przyspieszonym ładunku, logicznie jest przypuścić, że powinno być proporcjonalne do jego przyspieszenia a (m/s2). Mamy więc w liczniku metry podzielone przez sekundy do kwadratu. A chcielibyśmy mieć same metry, i w mianowniku. Możemy wykorzystać w tym miejscu drugą stałą fizyczną elektromagnetyzmu, tzn. prędkość światła c (pierwsza to \varepsilon_0). Jeśli przyspieszenie podzielimy przez c^2, dostaniemy taki wymiar, jak potrzeba:

\left[\dfrac{a}{c^2}\right]=\dfrac{m/s^2}{m^2/s^2}=\dfrac{1}{m}.

W wyniku tego zgadywania, zwanego uczenie analizą wymiarową, możemy przypuszczać, że pole elektryczne fali wytwarzanej przez ładunek q powinno mieć postać:

E=\dfrac{qa}{4\pi\varepsilon_0 c^2 r}f(\theta).

Włączyliśmy tu jakąś nieznaną funkcję kąta miedzy przyspieszeniem a promieniem wodzącym. Kąty są bezwymiarowe, więc nie zmienia to naszych wniosków. Zobaczymy, jak można zrozumieć mechanizm wytwarzania fali i ostatni wzór. Rozumowanie poniżej pochodzi od J.J. Thomsona, który w roku 1903 miał wykłady w Yale, gdzie je przedstawił wśród wielu innych rozważań. Fale elektromagnetyczne znane były od kilku dziesięcioleci, wkład Thomsona jest tu czysto dydaktyczny (Główną jego naukową zasługą było odkrycie elektronu, za które otrzymał Nagrodę Nobla w 1906 roku.) Rozumowanie to było zresztą wielokrotnie powtarzane przez autorów podręczników, m.in. w kursie berkeleyowskim, znanym i w Polsce.

Punktem wyjścia jest fakt, że pole elektryczne ładunku poruszającego się jednostajnie wygląda w każdej chwili tak samo jak pole ładunku spoczywającego (*) – chcąc zmierzyć pole w danym punkcie i w danej chwili, musimy wstawić do tego wzoru odległość miedzy punktem a ładunkiem obliczoną właśnie w owej chwili. Zakładamy tu, że prędkość jest niewielka w porównaniu z prędkością światła, jest to założenie do uniknięcia, choć sam Thomson niezbyt dobrze rozumiał ten punkt – było to jeszcze przed teorią względności. W każdym razie w większości przypadków, oprócz akceleratorów cząstek albo kosmicznych katastrof, założenie to jest spełnione.

Impuls typu fali elektromagnetycznej uzyskamy, gdy nasz ładunek zmieni prędkość. Wyobraźmy sobie np., że w pewnej chwili t=0 ładunek zaczął hamować. Oczywiście nie mógł stanąć w miejscu, przez pewien krótki czas \tau poruszał się z przyspieszeniem, a potem już był nieruchomy. Jak powinny wyglądać linie sił w chwili T\gg \tau? Wiemy, że informacja nie może przenosić się szybciej niż c, zatem na zewnątrz sfery o promieniu cT=OR nic jeszcze nie wiadomo, że ładunek się zatrzymał i linie sił zbiegają do punktu O’, w którym powinien się on znaleźć, gdyby nadal poruszał się jednostajnie. W pobliżu ładunku, w odległościach mniejszych niż c(T-\tau)=OP, już wiadomo, że ładunek jest nieruchomy: linie sił zbiegają się w punkcie O. Linie sił pola elektrycznego muszą być ciągłe, nie mogą się zaczynać ani kończyć w punkcie przestrzeni, gdzie nie ma ładunku. Łącząc obraz sprzed hamowania i po hamowaniu uzyskamy co następuje:

electricitymatte00thombw

(Linia sił OPP’Q, oryginalny rysunek z wykładów Thomsona, Electricity and Matter, New Haven 1912)

purcell

(Linia sił to ABCD, ta sama sytuacja w podręczniku Purcella i Morina z roku 2013)

Na pierwszym rysunku nie zaznaczono drogi hamowania, na drugim jest ona zaznaczona, ale tak, że widać, iż jest znacznie krótsza niż droga v_0 T. Do pola radialnego doszło pole skierowane poprzecznie, prostopadle do promienia wodzącego. Właśnie to pole poprzeczne zmienia się jak 1/r. Nie wiem, czy dziś łatwiej się uczyć niż przed wiekiem, z pewnością lepsze są rysunki i liczniejsze źródła wiedzy. Trzymając się oznaczeń drugiego rysunku, widzimy, że stosunek pola poprzecznego E_{\theta} do radialnego E_r równy jest

\dfrac{E_{\theta}}{E_{r}}=\dfrac{v_0 T\sin\theta}{c\tau}=\dfrac{v_0}{\tau}\dfrac{cT}{c^2}\sin\theta=a\dfrac{r}{c^2}\sin\theta.

Widzimy, że wraz z rosnącą odległością stosunek obu składowych pola jest coraz większy: daleko od źródła zostaje jedynie pole poprzeczne. Wstawiając za E_{r} wzór (*), otrzymamy pole promieniowania.

E=\dfrac{qa\sin\theta}{4\pi\varepsilon_0 c^2 r}.

Jak widać, f(\theta)=\sin\theta. Ostatnia zależność oznacza, że tylko przyspieszenie ładunku prostopadłe do promienia wodzącego jest źródłem fali. Jeśli patrzymy na poruszający się ładunek i nie widzimy ruchu (bo porusza się on wzdłuż linii widzenia), nie ma promieniowania. Wyrażenie dla E_{\theta} słuszne jest dla dowolnego ruchu nierelatywistycznego. W antenach ładunki oscylują, zatem przyspieszenie zmienia się okresowo, a tym samym zgodnie z naszym wzorem zmienia się okresowo także pole elektryczne. Mamy rozchodzącą się falę elektromagnetyczną. Nie zajmowaliśmy się tu polem magnetycznym, które jest proporcjonalne do pola elektrycznego i prostopadłe do niego, a także do kierunku rozchodzenia się fali.

Uwaga nt. kątów: Natężenie fali elektromagnetycznej będzie zawierało kwadrat pola, a więc \sin^2\theta. Oczywiście, jeśli źródło złożone jest z wielu ładunków, których przyspieszenia rozmieszczone są przypadkowo i izotropowo (jak w przypadku gwiazdy), wypadkowa energia będzie niezależna od kierunku, zostanie tylko zależność od odległości.

Uwaga nt. stałych: Czasem używa się innej pary stałych: \varepsilon_0 oraz \mu_0. Zachodzi zależność:

\mu_0=\dfrac{1}{\varepsilon_0 c^2}.

Jak Ptolemeusz nie odkrył prawa Snella

Klaudiusz Ptolemeusz był astronomem i astrologiem, wierzył zapewne w boskość ciał niebieskich i studiowanie ich ruchów traktował jako udział w pewnym misterium. Bo też zrozumienie każdej, nawet drobnej tajemnicy świata ma w sobie coś z misterium i z obrzędu wtajemniczenia. Nie trzeba do tego mieszać ludzi w szatach rytualnych, profesjonalistów, którzy zazwyczaj niczego nie rozumieją. Nie potrzeba pleść o Bogu, o którym wszyscy wiemy bardzo niewiele.

Wyjaśnienie ruchu planet musiało Ptolemeuszowi przynieść wielką satysfakcję: dokończył dzieła wielu pokoleń. My dzisiaj patrzymy na jego teorię jak na wstęp do Kopernika i Keplera, lecz przez czternaście wieków uważano ją za niedościgniony wzór. Geocentryzm nikomu właściwie nie przeszkadzał, był oczywisty, tak jak my uważamy za oczywistość, że Ziemia się porusza, choć nie każdy potrafiłby wskazać doświadczalne dowody tego faktu. Ptolemeusz zresztą doskonale sobie zdawał sprawę z możliwości ruchu Ziemi, odrzucał ją przedstawiając pewne argumenty, a więc nie z braku wyobraźni.

Był zawodowym uczonym, zajmował się całością nauk matematycznych, a więc także geografią i skalami muzycznymi oraz optyką. Pierwszy opisał ilościowo i doświadczalnie zbadał zjawisko załamania światła. Używał do tego następującego przyrządu.

ptolemy_refraction

Światło biegnie po łamanej ZEH, DEB jest linią rozdziału dwóch ośrodków, np. na dole mamy wodę albo szkło (w kształcie połowy walca), a u góry powietrze. Koło zaopatrzone jest w podziałkę w stopniach. Uczony mierzył kąty padania i oraz załamania r. Oto jego wyniki dla granicy powietrze-woda.

 

i r
10 8
20 15,5
30 22,5
40 29
50 35
60 40,5
70 45,5
80 50

Jest to rzadki przypadek starożytnej pracy eksperymentalnej poza astronomią. Optyka była przedłużeniem astronomii, więc dość naturalne było zainteresowanie zjawiskami świetlnymi. Tabelka Ptolemeusza nie jest jednak do końca wynikiem doświadczalnym, zauważymy to, analizując dokładniej wartości kątów załamania i ich różnice.

i r pierwsze różnice drugie różnice
10 8 8
20 15,5 7,5 -0,5
30 22,5 7 -0,5
40 29 6,5 -0,5
50 35 6 -0,5
60 40,5 5,5 -0,5
70 45,5 5 -0,5
80 50 4,5 -0,5

Uczony najwyraźniej „poprawiał” surowe dane eksperymentalne, być może nawet nie wykonał wszystkich pomiarów, zachował się jak niesumienny student podczas zajęć laboratoryjnych: i tak przecież wiadomo, co ma wyjść. Nie należy z tego powodu wszczynać larum, że przyłapaliśmy Ptolemeusza na oszustwie: w jego czasach i jeszcze bardzo długo potem starano się raczej uzyskać pewną formułę, jakiś rodzaj matematycznego zrozumienia zamiast relacjonować listę wyników obarczonych błędami. Teoria i eksperyment spotykały się w nieco innym miejscu niż dziś. Ptolemeusz zapewne chciał po inżyniersku rozumieć, skąd się biorą liczby w jego tabelce. Funkcja liniowa tu nie pasuje, bo wówczas różnice byłyby stałe. Jeśli drugie różnice (czyli różnice kolejnych różnic) są stałe, to znaczy, że opisujemy obserwowaną zależność funkcją kwadratową (*). Jej wykresem będzie parabola.

woda

Czerwone kropki są prawidłowymi wynikami dla kątów załamania w wodzie. Błędy nie są wielkie, choć znacznie przewyższają niedokładności tolerowane wówczas w astronomii. Podobne dane przedstawia Ptolemeusz dla szkła, także i one są dopasowane do paraboli.

szklo

W istocie Ptolemeusz stracił okazję do odkrycia prawa bardziej zadowalającego pod względem matematycznym. Podał on bowiem także wyniki dla załamania z wody do szkła. Także i tym razem dopasował je do funkcji kwadratowej, choć z pewnymi anomaliami. Nie zauważył jednak, że skoro ma dane dla granic ośrodków powietrze-woda oraz szkło-woda, to kąty dla załamania z wody do szkła powinny już wynikać z poprzednich danych. Wystarczy bowiem wyobrazić sobie następującą sekwencję ośrodków: woda-powietrze-szkło. Dla obu granic znamy zależności miedzy kątami po obu stronach (Ptolemeusz wiedział, że kierunek biegu promieni nie ma znaczenia w załamaniu, wyobrażał sobie zresztą nie promienie świetlne, lecz promienie wzrokowe, które wybiegają z oka). Możemy sobie następnie wyobrazić, że warstwa powietrza staje się coraz cieńsza: kąty w wodzie i w szkle cały czas są takie same, logicznie jest więc przypuścić, że pierwsze dwie zależności dają nam tę trzecią (woda-szkło). Ptolemeusz nie poszedł tą drogą i chyba nie zauważył, że przybliżenie kwadratowe jest nie do utrzymania dla trzeciej pary ośrodków. W gruncie rzeczy prawo Snella, choć takie proste, wymaga spojrzenia na zjawisko załamania w odpowiedni sposób, mieści w sobie od razu pewną teorię. Nie miejmy za złe Ptolemeuszowi w II w.n.e., że nie poradził sobie z problemem, który jeszcze na początku wieku XVII okazał się za trudny dla samego Johannesa Keplera. Ostatecznie prawo załamania odkrył Ibn Sahl, żyjący w X wieku, kiedy nasi przodkowie kryli się po lasach, a w XVII wieku niezależnie od siebie Thomas Harriot, Willebrord Snell i René Descartes. Tylko ten trzeci opublikował to prawo, a także jego mechaniczne uzasadnienie, zresztą fałszywe.

(*) Łatwo zauważyć, że różnice dla funkcji kwadratowej są liniową funkcją argumentu. W przypadku biegu promieni z powietrza do wody Ptolemeusz stosuje (niejawnie) funkcję

r=\dfrac{33}{40}i-\dfrac{1}{400}i^2.

Funkcja odwrotna nie jest już kwadratowa (musimy rozwiązać ostatnią równość względem i). Zatem złożenie tej funkcji odwrotnej z funkcją kwadratową nie może nam dać funkcji kwadratowej dla trzeciej pary ośrodków.

Dane Ptolemeusza